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Abstract

This thesis details potential design improvements by exploiting a new general grid model

utilizing multiple wind and solar energy plants. A single renewable energy plant which relies

on wind speed or solar insolation is unreliable because of the stochastic nature of weather

patterns. To allow such a plant to match the requirements of a variable load some form

of energy storage must be incorporated. To ensure a low loss of load expectation (LOLE)

the size of this energy storage must be large to cope with the strong fluctuations in energy

production. It is theorized that by using multiple renewable energy plants in separate areas

of a region, the different weather conditions might approach a probabilistically independent

relationship. The probability of energy generated from combined plants will then approach

a Gaussian distribution by the central limit theorem. While maintaining the same LOLE as

a single renewable plant this geographic separation model theoretically stabilizes the energy

production and reduces the system variables: energy storage size, energy storage efficiency,

and cumulative plant capacity. New generic weather models that incorporate levels of

independence are created for wind speeds and solar insolations at different locations to

support the geographic separation model. As the number of geographically separated plants

increases and the weather approaches independence the system variables are reduced.
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Chapter 1

Introduction

The intent of this thesis is to recognize a new model of geographic separation which

improves the stability of wind and solar plants. These renewable energy plants produce

electricity with a sporadic behavior that has made them untrustworthy on the grid as a

major contributor. The inclusion of energy storage is a solution to this problem, however

the amount of energy storage required is typically enormous representing an immense imple-

mentation expense. Lacking enough energy storage a renewable plant will often not match

its load resulting in an undesired grid condition.

The geographic separation model improves the stability of the renewable energy plants

by physically placing a large distance between many plant sites to attain different weather

conditions. If it is assumed that the weather at the various locations is probabilistically in-

dependent, then the central limit theorem states that as the number of weather-independent

geographic locations increases the probability distribution function (PDF) for the generated

energy of all the renewable energy plants combined should approach a normal distribution.

It is expected that this will increase the grid stability of the system without incurring a

significantly larger equipment cost.

Independent weather patterns are unlikely so an additional weather model is presented

to vary the probability of having identical or independent weather. As the probability of

independent weather is increased the likelihood of matching the energy generation to the

load shows what levels of geographic separation are required to achieve worthwhile results
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given the number of geographic locations.

Although the overall grid model is not a proof that geographic separation will always

stabilize renewable energy production this does show that it is likely that one can stabilize

the energy production. In addition the same stability should be achievable with a smaller

storage size, lower storage efficiency, and smaller cumulative production capacity.

Within this thesis the the geographic separation model and the tiered implementation

method are novel contributions to the field of renewable energy generation.
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Chapter 2

The Geographic Separation Model

In the process of designing a new renewable energy production system model, the geo-

graphic separation model, that improves energy production stability a few steps were taken.

A new model that included multiple renewable energy plants had to be designed. Past

models were reviewed to understand their strengths and weaknesses. These were then used

to advance to a new model design that better describe a generic renewable system with

multiple renewable plants. In order to better evaluate the stability of the renewable energy

and test the effect of this new model on energy storage all conventional generators were

removed to allow for complete renewable production penetration.

2.1 Typical Models

In order to mathematically evaluate a renewable system a particular model must be used

as an accurate representation. When renewable energy is considered two different forms of

models are typically chosen depending on what kind of grid the system is to be connected

to. These two types of models are often used based on the isolation from a main grid.

When electric energy is supplied far from a local grid renewable energy is a viable option

that is often considered. The connectivity of such a system includes one or more forms of

renewable energy generation and sometimes a level loading unit to provide electricity when

the renewable energy is not available. A diagram of this model can be seen in figure 2.1

which includes a photovoltaic source (PV), wind turbine generator (WTG), and a diesel
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generator (DG). The level loading unit in the figure represents a diesel generator however

other forms of generators and energy storage can be used instead.

Figure 2.1: Typical model of small isolated grid utilizing renewable energy sources [1].

The other typical model was used when a connection to a large grid was available.

Most simulations associated with these models were used to test the stability of the grid as

stochastic renewable energy penetration levels increase [7]. These studies also have proposed

methods of increasing the useful production capacity by performing basic modifications to

the grid’s model. Some studies in particular [8] have determined how effective a certain plant

would be if none of the excess energy was used and in this case how high of a production

capacity is required to reach certain penetration levels. A basic model representing such a

grid connected configuration can be seen in figure 2.2.

Both of these models assume a perfect grid. The main focus is on energy production

and demand on a generalized grid so propagation and conversion losses are ignored as well

as any phasor analysis. This simplifies the study so that approximate stability limits can

be determined for a region’s weather patterns without concerns for the specific grids that

share that weather pattern. If a specific transmission design had been used in the model

then other layouts may not apply. Even moving a renewable plant to another point in the

network could possibly invalidate the study.

It can be seen from figure 2.2 that the classical model is described by a few basic inter-

acting components: What does the load require, what can the renewable plants generate

based on the wind, and what can the traditional power plants provide. When using Monte
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Figure 2.2: Typical model of local grid utilizing renewable energy sources [1].

Carlo simulations the load will sometimes be higher than what all the generating units can

provide for a certain number of hours per year. The hours per year expectation over multi-

ple simulations is the LOLE. This is one of the standard methods to measure the stability

of the grid and is explained in more detail later. If two sets of simulations are compared

the system with the lower LOLE is said to be more stable than the other.

The two most common ways to determine a LOLE when wind plants are included in

the model is to use a multistate wind farm representation or a Monte Carlo simulation

[3]. Solar power is typically modeled using a very similar Monte Carlo simulation such as

in [2] or using a monthly averaging method [8]. Traditional power plants will often use

another method similar to the multistate wind farm assuming two states defined by the

forced outage rate (FOR).

The FOR is used as a probability of failure indicating either full production capacity or

no production capacity [3]. The FOR model has been extended to include wind power [3] and

is referred to as the multistate WTG model. This model allows for multiple states of power

production based on typical weather patterns and WTG failure rates. Depending on how

forced outage rate is represented and the intention of the model there are various methods
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of finding a LOLE. Aleksandar Dimitrovski and Kevin Tomsovic’s work [7] discusses many

of these methods. FOR begins to deteriorate when the power output from one point in

time is not independent of all others as with systems dependent on weather. Systems that

involve a time series model or a model which depends on previous events are not accurately

described by a FOR but can be used as a rough estimate.

When wind or solar power is added to a system the more advanced methods of modeling

often involve some form of time or event based power production estimate. Auto-regressive

and moving average (ARMA) models are the typical method by which the weather is mod-

eled. These models are very specific to a particular location and use a large amount of data

gathered over many years to generate. Once the model has created chronological weather

for multiple Monte Carlo simulations, the average of the results is one of the most accurate

outcomes one can attain. For certain locations the wind model can be estimated using a

6-step FOR model which has been shown to compare to these more advanced simulation

methods [3]. When solar weather is not generated using an ARMA model an averaged

monthly or yearly expectation is often used. An example of these averages can be seen in

the results of [8].

Energy storage poses other interesting problems as well. Although multistate models

are used in this thesis for wind and solar weather predictions the normal mathematical

procedures to determine LOLE based on FOR cannot be used. Even though the generated

energy and daily load is independent of other day’s daily power output in this model the

current charge of the energy storage is not. For this reason a Monte Carlo simulation is

used in order to preserve the energy storage’s state over time.

From any one of these forms of simulation there must be a method of determining the

LOLE. The equation used to determine the Loss of Load (LOL) from a discrete Monte

Carlo simulation can be seen in equation 2.1,

LOL =
8760 ∗

∑N
i=1 Hi

N ∗ ts
(2.1)

where 8760 is the number of hours in one non-leap year, N is the number of data samples,

Hi is the loss of load in hours for the ith data sample, and ts is the time separation between

time samples in hours. This equation adds up the number of hours the available energy
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could not match the load and normalizes outcome over one year.

A Monte Carlo simulation must be run numerous times to determine a probability

distribution function (PDF) of the likely LOL conditions. Various aspects of the grid can

then be inspected such as the expected value, also known as the LOLE, and the standard

deviation. The standard deviation is often ignored if it is small compared to the LOLE.

Equation 2.2 is used to determine the LOLE from numerous Monte Carlo simulation LOL’s,

LOLE =
∑M

i=1 LOLi

M
(2.2)

where M is the number of Monte Carlo simulations and LOLi is the LOL from the ith

Monte Carlo simulation. This equation is derived from the LOLE equation found in [1].

A lower LOLE is typically viewed as better however there is sometimes more to consider.

One example is a grid tolerable to short duration blackouts. Two simulations showing the

same LOLE could have drastically different real world results. If one simulation often fails

but for very short durations of time this will tend to not affect this particular load. The

other simulation may have the same LOLE however will have a very unlikely case with a

loss of load condition that lasts for a long duration of time. This would have a significant

effect on this particular load as compared to the many short blackouts. With specific loads

this is something important to consider and may warrant a modification of the LOLE or

the model. Healthy state probability and loss of health expectation from [1], expected

unserved energy from [7], and ramp rate from [9] are all examples of various evaluation

methods specific to a type of study. In this paper generalized loads are used so LOLE is

used unchanged as the measure of stability.

Improving on renewable energy in order to attain a better LOLE has been attempted

through various means. One of the methods stated as the ultimate solution is energy storage

[10]. The issue with energy storage is the sheer Wh needed to stabilize any large portion of

the grid when penetration levels begin to affect the overall grid stability. In order to decrease

the need for energy storage with large renewable generating capacities the renewable energy

plants must stabilize their energy production first.

One typical method to improve on a random signals predictability is to use the central

limit theorem and use multiple independent sources. Unfortunately weather conditions do
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not allow a guarantee of independence. Regardless there is a possibility for improvement

over one power plant by increasing the number of plants and distributing them geograph-

ically in an attempt to have somewhat independent weather characteristics. At this point

the question becomes how many plants are needed and how unrelated do those plants need

to be in order to see an improvement in the stability of the system.

2.2 Improvement Through Number of Plants

By distributing power generation to multiple independent renewable energy plants the

power output may eventually become normalized and somewhat predictable depending on

how independent the weather is between the locations. The number of plants that requires

this is highly dependent on the shape of the PDF that represents the power output from

the renewable source. Additionally every day of the year the weather characteristics would

be different so this also depends on all the various distributions over the entire year. To

ensure that the power output is reliable through the entire year each day’s power generation

PDF would have to be sampled and summed repeatedly in order to generate an adequately

normalized power production expectation. The maximum number of times a distribution

was summed to become normalized within certain decided limits would imply the number

of geographic locations required for such stability. This will most likely reveal an extreme

situation in which every day must be highly predictable requiring an unrealistic number of

independent renewable power plants. Instead of inspecting every day’s PDF a Monte Carlo

simulation should indicate when the addition of plants no longer has a significant effect on

the system’s overall operation regardless of each day’s independence.

2.3 Improvement Through Geographic Separation

The reality of weather systems dictates that no matter how far a renewable energy plant

is separated from another they will have some form of dependence. It is rather obvious

that a distant enough separation will be highly independent, such as an installation in New

England compared to an installation in Australia, however a global wide event such as a

large volcanic eruption will no doubt affect solar power output in both regions.
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If the number of power plants is limited the dependence now dictates the improvement

in the renewable system. One distinct method of analyzing such a set of weather patterns

would be the correlation. The issue with correlation is reversing it so that random weather

can be generated. Based on a PDF and a value of correlation there can be infinite solu-

tions. In contrast if the correct specific joint PDF is determined this possibly prevents the

simulation from being generalized to other locations.

For this reason a notion of dependence (D) has been created. Dependence in this thesis

refers to a number between 0 and 1 symbolizing the probability that all the plants received

the same weather on any given day. This implies that the probability of the plants not

receiving the same weather is simply 1−D.

Determining dependence for multiple locations is not a matter of correlation. This has

to do with how likely it will be for two or more plants to be the same. By observing weather

fronts it can be seen that one plant’s weather may be vastly different or the same as another

depending on the shape and movement of a front. In an attempt to equalize the system

for a given dependence each plant was given a probability of being equal to the next. This

allows D to define all the probabilities associated with the individual sites.

2.4 Execution Methods

The design of a mathematically sound method to determine the dependencies amongst

the various plants is critical to how the full model will behave. Two methods were devised

both with desired and undesired characteristics. The first method involved total dependence

or independence by a probable chance every day while the second method used a tiered

system to independently decide each plant’s relative dependence. Two tiered systems were

devised in order to meet desired system characteristics.

This first model that relies on either complete independence or dependence for a given

day is rather simple. The dependence given as D determined exactly how likely the plants

were to be identical to one another. This provides two outcomes for the system. For any

given day S1 would be the case when the weather conditions were identical while S2 would

imply that all the individual site’s power production should be calculated independently.

Mathematically this can be represented by Equations 2.3 and 2.4.
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P [S1] = D (2.3)

P [S2] = 1−D (2.4)

When the weather for this mathematical representation is observed two possible situ-

ations exist. Either all of the geographic sites would receive the same weather or their

weather would be decided independently. Unfortunately this model does not support more

than one set of identical weather conditions spread between many plants. This is assumed

to occur as weather fronts pass over a region that the plants occupy.

The second method was then developed to improve on the first method. The tiered sce-

nario allows the plants to generate electricity quantized by the number of weather patterns,

the weather condition for each weather pattern, and the number of plants affected by each

weather pattern. The purpose is to keep the probability of two plants having the same

weather the same for any two plants attached to the simulated grid. From a perspective of

two plants the joint PDF will have a high likelihood of remaining on the Y=X line if D is

high. An example of a two plant joint PDF assuming a uniform distribution for D = 1 can

be seen in figure 2.3.

Increasing the number of plants to three and preserving the same principles seen with

two plants generates a joint PDF as in figure 2.4. The darker the shading on the various

surfaces inside the volume the more likely it is that that particular event will occur. This

is an approximated graph and the shading is not exact in order to clarify the method used

when moving from two plants to three.

Although this model is relatively basic, issues arise with its software implementation.

For up to three locations it may be practical to generate a joint PDF however as more

locations are added the computational complexity increases a great deal. For this reason a

process was devised to imitate the PDF representations shown in figures 2.3 and 2.4.

For simplicity it was decided that some method of determining one plant’s weather at

a time would be necessary. Initially a method was devised that exactly modeled figure 2.4.

Assuming D = .25 a diagram of the implementation model can be seen in figure 2.5. Each
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Figure 2.3: Joint PDF of two plants assuming D = 1 and assuming both uniformly
distributed.



12

Figure 2.4: Joint PDF of three plants assuming D ≈ .5 and assuming all uniformly
distributed.
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tier to the model represents the possible weather conditions for a particular plant and S1-S3

are the weather conditions for a given day that the renewable plants are experiencing. The

first plant is decided based on its pure independent weather PDF. The second plant has a

probability Dm of having the same conditions as the first and a probability of 1 − Dm of

having different weather. Following this, the third plant has a Dm probability of having

similar weather to the first plant, Dm probability of being like the second, or 1 − 2 ∗ Dm

probability of having a different weather condition. Dm in this case is set at .3536 to force

D = .25.

Figure 2.5: First probabilistic implementation model with D=0.25.

As much as the model proposed was designed directly from the diagram in figure 2.4

there was a caveat: it was determined that when D = 1 the probability of every plant’s

weather being the same was not 1. For this reason a model slightly different from figures

2.3 and 2.4 was used that still follows the same principles. This new model which was

used for both solar and wind weather generation can be seen with a three-tier configuration

representing the separate power plant’s weather in figure 2.6.

Dm takes on a new role as the probability that a second or later tier will be modeled

after a previous tier. Using equation 2.5 where n is the number of plants Dm = 0.5 when

D = 0.25 and n = 3. The following paragraph describes the process in figure 2.6 with more

detail.

Dm = n−1
√

D (2.5)
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Figure 2.6: Probabilistic implementation model used with D=0.25.

The first tier S1 is always set based on a sampled random variable c1 from an independent

PDF representing the possible weather patterns. The second tier has a 50% chance of having

the same weather and a 50% chance of not having the same weather. This repeats when

a new weather pattern has not been created. If a new weather pattern has been identified

there is still a 50% chance of creating a third weather pattern on the third tier but the other

50% is split evenly at 25% for condition S1 and 25% for condition S2. Mathematically a

PDF is modified to follow this process. The second PDF is based on the first PDF and is

generated using equation 2.6.

FC2(c2|C1) = FC1(c2) ∗ (1−Dm) + δ(c2 − C1) ∗Dm (2.6)

where FC1 is the independent weather distribution, δ(x) is the Dirac delta function, and

Dm is the n−1
√

D where n is the number of plants and D is the probability of all the plants

producing the same power. The nth PDF is then adjusted as in equation 2.7.

Unfortunately thorough analysis of this method shows that the probability of the first

plant is 50% likely to be the same as the second plant however it is only 37.5% that the

first plant will be the same as the third plant. Although the number of plants with the

same weather is represented as desired the relationship of any given plant to any other plant

is incorrect. If the power plants are of equal production capacity then this caveat can be

ignored.
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FCn(cn|C1 ∩ C2 ∩ · · · ∩ Cn−1) =

FC1(cn) ∗ (1−Dm) +

δ(cn − C1) ∗
Dm

n− 1
+

δ(cn − C2) ∗
Dm

n− 1
+

· · ·+

δ(cn − Cn−1) ∗
Dm

n− 1
(2.7)

2.5 Proposed Model

In order to incorporate multiple plants a new model for the grid simulations was de-

signed. The most significant change was the addition of multiple solar plants and wind

plants. To better utilize the renewable sources the system also uses energy storage instead

of a generator to provide electricity when renewable energy is not available. This model pro-

vides two great features. First the energy storage can be evaluated given various dependence

levels and numbers of plants. More importantly when the renewable system stabilizes the

grid with no outside influence it shows what is required for 100% solar, wind, or combined

penetration. Figure 2.7 shows the layout for this new model.

Each of either the solar pants or wind plants are assumed to be the same type and design

while all have the same production capacity. Wind data is generated separately from solar

data as well which implies that they are completely independent. Other models have used

a similar method of independent wind and solar such as [1].

The energy storage can be anything from batteries to artificial reservoirs to designs such

as superconductive inductors embedded in the bedrock [11]. All of these real world designs

have operational nuances which are ignored in this thesis for a more general model. The

design decided upon assumes an overall efficiency and storage capacity. One to three days

worth of storage were always required creating a maximum of 1/6 C discharge or charge

rate based on a peak load of four times the average load. Most storage elements can meet

this requirement so these constraints were ignored. If the discharge or charge rate of an
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Figure 2.7: New model of large scale grid utilizing renewable energy and energy storage.
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actual design is limited to a slower rate then the energy storage will be too small to handle

the load properly.
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Chapter 3

Generation of Simulated Solar
Radiation Data

The generation of solar radiation data is done in multiple steps. In this case histori-

cal power output from a solar array was available through [12]. This power output data

is characterized through some mathematical method in order to describe its behavior so

that solar power could be estimated for multiple partially dependent solar power plants.

The process involved changing to solar insolation, analyzing the insolation data, creating

randomized solar insolation for multiple plants, averaging that solar insolation over the nu-

merous plants, and then determining the solar plant output power based on the insolation,

cumulative plant size of all the plants, and solar conversion efficiency.

3.1 Typical Methods of Data Generation

There are two typical methods used in the design and analysis of solar plants. One

method uses expected power output averaged over months or years of time in order to

estimate the energy going to the grid. This method is crude and does not consider weather

patterns, diurnal energy output, or variations in weather from day to day. This method

is typically used in grid-connected units designed to create electricity for income assuming

either no need for load matching or a certain percentage of lost power that did not match

the load.

The other method used to determine a solar plant’s effectiveness uses time-based Monte

Carlo simulations. This method has numerous variations but every one is designed to inspect
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the ability of the solar plants to match the load. This is often used to either determine the

effectiveness of the plant by determining the plant’s capacity factor or determine the stability

of the grid that the solar plants are connected to using LOLE.

This more advanced model is implemented in three steps as described in [2] in reference

to the design of the WATGEN program. These first three steps are used in order to generate

hourly solar radiation using ARMA models based on available data. Figure 3.1 shows a

basic block diagram showing the three steps used in order to generate hourly solar radiation.

Figure 3.1: Basic steps WATGEN uses to generate solar insolation [2].

The incident solar insolation on the solar panels must be determined from the solar

insolation. This is largely dependent on the physical characteristics of the solar plant such

as which direction the solar collector is aimed, the tilt angle of the collector, array tracking

capabilities, and geographic location.

The last step takes the incident solar insolation and converts it to energy output from the

plants that utilize solar energy production. The energy that is generated from a photovoltaic

solar panel can be modeled by equation 3.1 obtained from [9] where MPV is the solar array

size, Tt is the temperature, and St is the incident solar insolation on the solar arrays. It

should be noted that this equation is specific to solar panels and that there are various other

forms of energy production that use solar radiation. All of these have separate equations

and specific application differences in determining the electric output so this is only intended

as an example.

Et = 3.24 ∗MPV (1− 0.0041 ∗ (Tt − 8)) ∗ St (3.1)
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3.2 Adjustments for Number of Plants and Geographic Sep-
aration

Unfortunately the more advanced ARMA model to determine solar insolation is not

appropriate. This is because the simulation requires a generic set of weather to New England

and a dependence between multiple plants. ARMA models cannot currently meet either of

these requirements. Additionally the average expectation method is not appropriate. This

is because a simulation indicating a time-based insolation is required while this more basic

method uses an average over a long period of time. For this reason a new method was

devised that is based on a wind prediction method as seen in [3]. A PDF is generated for

each day of the year indicating the expected solar radiation for the entire day based on past

data. These PDFs are then used to create a time-based solar radiation generation model.

The generation of these daily solar radiation PDFs are based off of collected power

production data in Worcester, MA. This data was acquired from Matt Arner at Heliotronics

[13], the sponsor for ”Solar energy and photovoltaics education in Worcester” [12]. Using

the daily solar radiation a table was generated showing the weather conditions that were

present in the past for each day of the year. This allows the use of a window method to

generate the PDFs.

The window method is used multiple times in this report as a tool to acquire pertinent

data from a set of gathered data. This method takes all the data within a time window

over multiple years when the data is available and recognizes it for analysis. As an example

if the window was set for 2 days and the day of interest was January 15th then all of the

data gathered on the 13th, 14th, 15th, 16th, and 17th of January for all years would be

recognized. Data gathered for the 15th of January with varying window sizes can be seen

in table 3.1. It should be noted that the data in table 3.1 is just an example using fake data

with no particular meaning required.

Once the window size is determined selecting what data to use when creating the PDF

is rather simple. The data is first collected from the given day of interest, in this case the

15th day of the year, January 15th. The window then dictates how many days before and

after this day data should also be collected. If the window size is 0 then the only data used
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Table 3.1: Example data gathering of individual PDF set up for the window method.

Day of year ... 12 13 14 15 16 17 18 ...

1999 544 395 619 83 405 673
2000 852 442 265 437 856 545
2001 143 536 915 81 870
2002 597 708 49

Table 3.2: Data gathered for January 15th.

Window Size Data Gathered

0 Days 83 265 81
1 Days 83 265 81 619 915 405 437
2 Days 83 265 81 619 915 405 437 395

442 536 856 708

is from the 15th. If the window size is 1 then the 14th, 15th, and 16th should all have their

data collected. Equation 3.2 dictates the range of days that data will be collected. Dw is

the day of the year that the PDF is being generated for, W is the window size in days, and

Dc is the day of interest. If this evaluation is true then Dc’s data over the various years

should be included. This is a wrap-around style algorithm so Dc = −1 implies the 365th

day of the year.

Dw −W ≤ Dc ≤ Dw + W (3.2)

Using equation 3.2 and table 3.1 example sets of gathered data were generated for the

15th of January. The example sets can be seen in table 3.2. When data is not available the

blank data is ignored in the window method.

From the resultant data a PDF can be generated for that particular day. Each collected

piece of data is represented as a delta function with an area corresponding to the probability

of that event and the position based on the radiation defined by the collected data value.

For a window size of 0 days equation 3.3 represents the PDF for January 15th where i is

the random variable for possible outcomes according to the window method.
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FI(i) =
δ(i− 83)

3
+

δ(i− 265)
3

+
δ(i− 81)

3
(3.3)

Equation 3.3 is generated using the general form of the PDF function from equation 3.4

where Ij is the jth data element acquired from the window method and N is the number of

data elements acquired using the window method. In order to represent these PDFs digitally

the delta functions are spread out over 100 equally distributed areas over the range of the

corresponding PDF.

FI(i) =
δ(i− I1)

N
+

δ(i− I2)
N

+ · · ·+ δ(i− IN )
N

(3.4)

Once the various PDF’s have been generated for each day of the year simulated solar

radiation data may be generated for one location that has similar weather characteristics to

the gathered data. This single plant’s weather data can then be used with the generation of

more PDF’s as described in the execution methods section of the The Geographic Separation

Model chapter. Besides generation of solar radiation the rest of the solar simulation work

just as a normal Monte Carlo simulation does.

3.3 Data Generation Methodology

The generation of random solar radiation is done using the PDF’s that were described

in the previous section, Adjustments for Number of Plants and Geographic Separation. At

the top level a few major functions are performed. First the data is attained and placed

in the proper format for the window method. It should be mentioned that the data in

this simulation was determined from solar array power output and as such this information

is transformed into estimated radiation based on the solar arrays efficiency of 12.35% and

size of 9.72 m2 which were determined from [12]. All other efficiency losses such as DC to

AC conversion losses are ignored. This data is then passed to a maximum solar radiation

generator, a PDF generator, and a perfect day generator. These pass PDF’s, daily maximum

output energy, and an array of perfect days for every day of the year to the simulation data

generator. Figure 3.2 shows the major functions just described.

The generation of daily maximum solar radiation is done for one major reason: it was
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Figure 3.2: Basic flow diagram representing the generation of random solar radiation data.

desired that the system could be analyzed as compared to maximum energy output for that

given day. A perfect day would be represented by 1 and a day with no energy production

would be characterized by a 0. If more advanced methods were used then cloud cover could

be utilized to determine the effective percentage of the daily maximum radiation.

Creating the maximum data set is a rather simple process. This uses the window method

as described for the solar radiation PDFs. For the particular day Dc the maximum energy

output within the window for all the years specified is chosen as the maximum for that day.

Specifying a window of W = 2 days for January 15th and using the data present in table

3.2 the maximum for W = 2 days is 915. Most important to describing the daily maximum

solar radiation is the window size used to determine those maximums. A window size that

is too large will provide results that are higher than is to be expected. Using a window size

that is too small can often result in a maximum that does not characterize the maximum for

that day of the year because of a chance set of low value conditions. The window size must

also be equal to or larger than the window used to create the PDFs in order to ensure that

any simulated day does not produce more than 100% of the maximum. For these reasons

the window was increased from 0 days until a relatively smooth output was generated that

had no significant dips in the maximum energy production for the entire year. Even though

it was found that the maximum energy could be generated with a window range of W = 8

days the window range used was W = 20 days to match the PDF’s window size.
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The daily maximum solar radiation levels are passed to the PDF generator, the solar

radiation generator, and the perfect days generator. The PDF generator scales the data

according to the daily maximums and then using the window method creates a set of PDF’s

for every day of the year. For simulation the PDF’s must be represented by some form of

probability mass function. For this reason they must also be split up into some number

of discrete probabilities, also referred to as steps in [3]. Karki, Hu, and Billinton have

described the minimum number of steps for the type of simulation that they are running

[3]. Unfortunately their simulations were for wind power and included no form of energy

storage. For both of these reasons 100 steps were used instead of their proposed six as a

large safety margin.

In order for the solar data to be realistic a set of days assuming perfect weather for solar

generation is created and passed to the solar data generator. The model used for a perfect

day is the positive half of a sine wave stretched between the start of the day’s sunlight and

end of the day’s sunlight. The magnitude in W is scaled such that the integral of the power

over the entire day is equal to the maximum data set’s element in Wh corresponding to the

same day. The beginning and end of each day is determined based on a linear interpolation

between the longest and shortest day of the year. Figure 3.3 shows the length of each day

of the year assuming that the shortest day lasts from 7:30 AM to 4:00 PM and the longest

day lasts from 6:00 AM to 8:00 PM. Daylight savings time is not incorporated into this

model.

Generating the solar data was the more complex block of figure 3.2. This block uses

a loop to iteratively generate solar data for multiple plants. Up to this point all of the

information generated and gathered is generic to all solar plants and all simulation scenarios

used in this thesis. This block takes this information and creates unique data sets for each set

of simulation conditions. The number of plants and the dependence of the plants determines

the unique characteristics of the data set being created. A flow chart indicating the process

used to generate the sets of radiation data is presented in figure 3.4.

For each data set there are a specified number of plants that data will be generated for.

The flow chart starts by generating the first plant’s solar radiation for four years worth

of data. Following this if more plants have to have their radiation data generated then a
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Figure 3.3: Length of each day of the year used in solar radiation data generation.

Figure 3.4: Flow chart indicating method of solar weather generation.
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minor loop, where each of the other power plants have their solar radiation generated, is

entered. First the PDF’s are modified as described by equation 2.7 for every day of the four

years. The modified PDFs are then used to create the plant’s output and if no more power

plants need solar radiation data then the minor loop is terminated and the process returns

to the main loop. Directly following this the solar radiation output for all of the sites is

averaged together with the assumption that the sum of all the identical plants will have the

same production capacity as a data set assuming one plant. This data is saved into a table

and the loop continues until one hundred sets of random solar insolation data is generated

and is passed to the output. Equation 3.5 shows the relationship between the production

capacity of n1 plants as compared to n2 plants where PC1 is the production capacity for

n1 plants and PC2 is the production capacity for n2 plants.

n1 ∗ PC1 = n2 ∗ PC2 (3.5)

As can be seen a single plant has the same production capacity as numerous plants. For

this reason the average solar radiation can be used assuming a linear relationship between

the solar insolation and power production capacity which is true in this model.

The generation of solar radiation for a particular plant is a little more detailed than the

rest of the flow chart in figure 3.4. Initially the daily solar radiation is determined on a scale

of zero to one based on the PDF’s provided from the weather data. This value indicates

how close the weather is to the maximum solar radiation of that day. This is also the solar

radiation that is used in the adjustment of the other power plant’s PDFs for solar radiation.

In order to generate solar radiation data over an entire day a few more steps must

be taken. A perfect day is used as a starting point with five minute time increments.

A repetitive process is employed until equation 3.6 is true where Sc is the scaled solar

radiation, Sm is the maximum solar radiation for the entire day, and S5i is the ith five

minute increment of weather for that day.

Σ288
i=0S5i ≤ Sm ∗ Sc (3.6)

The first step in this repeated process is to pick a five minute time span during the day
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determined by a PDF that is uniformly distributed between 1 and 288. This five minute

time span’s solar radiation is then multiplied by a random number whose PDF is uniformly

distributed between 0 and 1. This repeats until the total solar radiation is correct for that

given day. When the scaled solar radiation is less than .1 the perfect day is automatically

scaled to 1/10th it’s original size before the loop. If the scaled solar radiation is less than

.01 then the perfect day is scaled to the scaled solar radiation and the repetitive process is

avoided. This is done to speed up the generation of solar radiation data.

Although the solar radiation was generated in five minute increments it is desired that

the final output be in fifteen minute increments to speed up the Monte Carlo simulations.

For this reason the discrete solar radiation data is added together in groups of three in order

to form fifteen minute increments. If multiple plants are to have their output combined then

the fifteen minute increments amongst the plants are then averaged. This is the final form of

solar radiation data generated. The size of the plants adjusts how much energy is produced

by simply multiplying the cumulative plant size by all the fifteen minute increments.

In order to combine solar and wind plants there had to be a method to convert the

solar radiation to Wh
W for each of the fifteen minute time increments, a measure of energy

produced in Wh per unit of production capacity in W . Using constants for panel efficiency

and panel W
m2 the needed Wh

W measurements can be determined. For example equation

3.7 can be used to perform this conversion where Epwt is the energy produced per watt

of production capacity during the fifteen minute time interval t in Wh
W , Srt is the solar

radiation during the time interval t in Wh
m2 , E is the efficiency of the solar panel array, and

PVr is the W
m2 constant for the solar panels. Multiplying Epwt by the production capacity

in W yields the energy in Wh produced during the time interval t.

Epwt =
Srt ∗ E

PVr
(3.7)
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Chapter 4

Generation of Simulated Wind
Speed Data

Generating wind speeds characteristic of a geographic location can be done using many

different methods. Unfortunately like the generation of solar radiation the typical methods

used to generate random wind speeds are not entirely appropriate for a system in which

multiple locations are partially dependent on one another. Because of this a modified

version of the existing models is presented for data generation that can vary dependence

over multiple locations.

4.1 Typical Methods of Data Generation

Wind models are often similar to solar radiation models. ARMA models are used most

often for sites with a large amount of historical data as seen in [1, 3, 14, 15]. Sites with

less than adequate data for an ARMA model or without need for such detail will often use

a different method involving the use of a weibull distribution [3] or a direct distribution

modeled identically to the sample data through PDFs such as in [5].

For site specific models the ARMA model is used extensively. For one geographic loca-

tion this model can provide an hour by hour wind prediction which when compared to the

actual wind can be very accurate preserving not only sample by sample probabilities but

also autocorrelation as seen in [15]. For an in depth description of how an ARMA model

works [14] is a good source. Unfortunately wind speed ARMA models do not allow for the

dependence between two sites to be modeled. They must be either completely dependent
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Table 4.1: Six step common wind speed model [3].

Wind Speed (By µ and σ) Wind Speed (km/hour) Probability

µ− 2 ∗ (5σ
3 ) 0 0.0051

µ− (5σ
3 ) 2.7633 0.1920

µ 19.5300 0.6120
µ + (5σ

3 ) 36.2967 0.1796
µ + 2 ∗ (5σ

3 ) 53.0633 0.0109
µ + 3 ∗ (5σ

3 ) 69.8300 0.0003

or independent.

Weibull distributions can be used as an alternative to ARMA models. Because this

method relies on a PDF to determine wind speed multidimensional PDF’s can be generated

identically to the process used in the generation of random solar radiation data. As was

mentioned earlier an alternative to the weibull distribution involves the use of a distribution

created directly from the collected wind speed data.

The creation of a direct model is very simple. Wind data is gathered over an entire year

and the results of wind speed are used in the creation of a PDF in the form of equation

4.1, much like equation 3.4. Wj is the jth wind speed measured and N is the number of

data samples gathered. This effectively builds a common model for any geographic area

comparable to where the data was gathered [3].

FW (w) =
δ(w −W1)

N
+

δ(w −W2)
N

+ · · ·+ δ(w −WN )
N

(4.1)

The best feature of a common model is the way it can be modify in order to generate

another site’s weather when little or no historical data is available. By scaling and shifting

the distribution according to the wind’s mean and standard deviation at the particular site

a new relatively accurate model can be attained. The common model devised by [3] can be

seen in figure 4.1 and the specific values used can be seen in table 4.1.

Once wind speeds are predicted the actual power production must be estimated based

on the plant’s power generation characteristics. A typical wind turbine will have three speed

ratings; Cut in, rated, and cut out speed. Cut in speed is the speed at which the wind speed

is high enough to generate electricity. The power output rises with wind speed until the
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Figure 4.1: Six step common wind speed model [3].

rated speed is reached. The rated speed is the point at which the generator is producing a

maximum specified power and cannot produce any more. The power output from the wind

turbine does not change until the wind speed reaches the cut-out speed. The amount of

energy generated at these wind speeds is the rated output. At the cut-out speed it is unsafe

for the wind turbine to operate so it is shut down and no energy is generated. An example

power output to wind speed curve is shown in figure 4.2 for a Clipper Liberty wind turbine.

Once random wind speeds are generated the electricity that a particular wind speed

produces depends on the particular model and design of wind turbine. The wind speed to

power output curve describes how a particular turbine reacts so that a designer can easily

translate the system’s power output given the wind speed. In order to determine a PDF of

wind turbine energy production the wind speed to power curve can be used as a function of

the random variable for wind speed. A typical power curve will have a high probability of

no power production and rated power output since both cover a rather wide range of wind

speeds. As an example the six step common wind speed model was also translated into a

PDF representing power production in table 4.2. It can be seen that the slowest two wind

speed steps and the fastest two wind speed steps have been combined because of the cut in

speed and rated speed.
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Figure 4.2: Example wind speed to power output curve set for an actual family of four wind
turbines [4].

Table 4.2: Six step common wind speed model translated into PDF of power production
[3].

Power Output (MW) Probability

0.000 0.1971
1.325 0.6120
14.650 0.1796
27.000 0.0112
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4.2 Simulation Concepts

For a more accurate representation of the LOLE it was desired that a yearly trend and

a daily trend be used. A PDF based wind generation system similar to the solar method

was also desired since the dependence methods could still be used. Unfortunately all of

the classical wind modeling techniques described did not meet both of these needs. As a

compromise a twenty five step model was employed from a set of distribution data local

to Ipswitch, MA [5] assuming a hub height of thirty nine meters. This model was then

normalized such that it had a mean wind speed of 1 m/s. In order to meet the yearly trend

each monthly mean wind speed was used to scale the PDF to an appropriate size. The

normalized PDF and the monthly average wind speeds can be seen in figures 4.3 and 4.4.

Figure 4.3: Normalized wind PDF from one year’s worth of data gathered in Ipswitch, MA
[5].

The next step to generate random wind data required fifteen minute time increments of

wind. Preliminary testing showed that solar power required multiple days of energy storage
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Figure 4.4: Average monthly wind speeds for Ipswitch, MA [5].
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in order to stabilize the grid without outside aid. Wind power can be very sporadic much

like solar energy so it was assumed that the need for energy storage would also be in the

range of multiple days worth of storage. It was assumed that small fluctuations in wind

power would be averaged and could be ignored because of the size of the storage. These

assumptions allowed the use of the diurnal average output power according to daily wind

characteristics from [5] to specify the fifteen minute energy production levels. This diurnal

data was then normalized so that it’s average was 1 m/s. By multiplying this normalized

diurnal wind speed by the random daily average the fifteen minute increments were then

attained. The normalized diurnal wind speed can be seen in figure 4.5.

Figure 4.5: Normalized diurnal average from one year’s worth of data gathered in Ipswitch,
MA [5].

4.3 Data Generation Methodology

The methods used to generate random wind speed data was very similar to the basic

steps involved while making the random solar radiation data. Daily average winds are

determined the same way that daily solar radiation is determined. Multiple wind plants
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have their PDFs modified just like with multiple solar plant’s. Most of the differences

appear when one wants to generate the random wind on an hour by hour basis and then

translate that to electric energy. Figure 4.6 shows the basic steps used to generate the wind

energy data.

Figure 4.6: Flow chart indicating method of random wind energy generation.

The first step in the process is to generate four years worth of randomized daily average

wind speeds. The random wind speeds are created from the PDFs determined for every

day of the year. As described previously there are 12 PDFs split between the months of the

year all of which are scaled versions of a normalized PDF to meet the average wind speed

of the given month.

If there are multiple plant locations then the minor loop is entered. This minor loop

works identically to the minor loop for solar radiation generation by repeatedly adjusting

the daily PDF’s for every day in the four year data set and then generating random wind

data based on the new PDFs. Once all of the wind plants have wind data then the system

returns to the major loop.

The next two blocks in the major loop deviate from the solar radiation generation

methods. First for each day of random wind the information is spread out into a full days

worth of fifteen minute increments. The values placed in each of these increments is based

on the normalized diurnal average wind speed multiplied by that day’s average wind speed.
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Next the fifteen minute increments of wind are translated to electric power based on a

specialized distribution shown in figure 4.7. This curve is an estimate for the curve of a

wind generator recommended for the Ipswitch MA site in [5] which is also included as a

comparison. It was desired that the wind turbine be estimated from the cut in, rated,

and cut out wind speeds rather than a detailed set of points in case many different wind

turbines were used in experimentation. No other wind turbine models were used in this

thesis despite this feature.

Figure 4.7: Normalized estimated power curve for wind turbine appropriate for winds in
Ipswitch, MA[6].

This curve assumes no power production below the cut in speed and a linear interpolation

to one watt at the rated wind speed which stays constant to the cut out wind speed. It is

assumed that the number of wind turbines will be numerous so the production capacity of

an individual wind turbine is unimportant. Instead if the normalized power curve is used

to translate wind speed into normalized power, then Wh
W energy approximations per watt

of production capacity are attained.

Once the estimated power has been determined for all of the locations the fifteen minute

energy approximations can be averaged and then stored. This repeats in order to create

multiple sets of random weather based energy production estimates. Multiplying all the

data by a production capacity yields energy production estimates for the system. This data

is then passed to the Monte Carlo simulations for analysis.
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Chapter 5

Load Data Generation

In order to characterize a simplified load a few assumptions were made. One of the most

prevalent assumptions was that the load would be modeled after the existing energy usage

in Worcester County, Massachusetts, USA based on a scaled New England load. It was also

assumed that the daily load probability would be normally distributed and the hourly load

would follow from an average diurnal load pattern generated from historical data. Using

these constraints a quick and effective load model was generated using a typical diurnal

load, daily load mean values, and daily load standard deviations. With the exception of the

assumed normally distributed load this method closely resembles that of [7].

If there are numerous independent but identically distributed loads on the grid then

the addition of all the identical load’s power requirements become normally distributed. It

is safe to assume that there are similar types of loads on the grid because of residential

as well as industrial applications that use similar equipment. Assuming that the loads

operate independently on a daily basis they should form many normally distributed loads.

By adding all the normal load distributions together a total distribution is attained which

is also normally distributed. This allows for the normally distributed daily load assumption

as an approximation of the actual grid.

The method used to generate the fifteen minute load data is most similar to the wind

power data generation methods assuming a single site location. Daily means and standard

deviations are determined for each day of the year. These are used to create normally dis-



38

tributed PDFs for each day of the year which are then used to create the random daily load

requirements. These daily approximations are then converted to fifteen minute increments

using the typical normalized diurnal load. A flow chart showing the generation steps to

make the random load data is shown in figure 5.1.

Figure 5.1: Basic flow diagram indicating method used to generate random load data.

To get the characteristics of the load there had to be collected data or an available

model already created. Eight years of the New England load was attained through [16].

The typical diurnal load was determined by averaging the power required during every hour

of the day over the entire set of data. Every element of the typical diurnal load was divided

by the sum of all the elements to create the normalized diurnal load. A conversion from

hour increments to fifteen minute increments was also required. Equation 5.1 shows a single

step method to attain this fifteen minute normalized load from a diurnal load where Lnt is

the normalized load during the fifteen minute increment t represented as a percentage of

the whole day’s load and Lath is the average load during the hour th in Wh.

Lnt =
L

a
t−(t(mod4))

4

4 ∗
∑24

h=1 Lah

(5.1)

By taking the daily New England load measurements and organizing it according to

day of the year a mean and standard deviation was determined for every day. These were

the means and standard deviations used to generate the distributions for the daily load

requirements. When each element of the fifteen minute normalized load was multiplied

by the full daily estimated load requirement the fifteen minute load requirements for that
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particular day were created.

Generating the daily load is done for all the data sets all at once. There is no dependence

issues such as with wind or solar data generation so no looping is required. These daily

loads were then each stretched out over a full day using the fifteen minute normalized load

and cascaded together. The first day is always January first to match the random wind and

solar data sets.

The last step to convert the fifteen minute load requirements was to scale it to an

approximate Worcester County load. It was assumed that each person in New England

uses the same amount of electricity so the final step was to scale the power requirement by

the percent population of Worcester County as compared to the rest of New England. The

scale factor used was an approximation of 5.5% of the total New England population [17].
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Chapter 6

Simulation Methodology

The Monte Carlo simulations used to evaluate the system were rather basic from a top

level view. This system took in sets of fifteen minute energy production and fifteen minute

load requirements as well as storage characteristics. The result was the mean and standard

deviation of the LOL for the circumstances that the sets of data and storage specifications

created. The fifteen minute energy production and fifteen minute load requirement sets

were determined as according to the previous few chapters while the storage characteristics

were constants used in the estimation of grid sized energy storage. Figure 6.1 shows this

very basic top level diagram.

Figure 6.1: Basic Monte Carlo Simulation.

For each fifteen minute time increment the load was balanced using the energy storage

and the available energy. Excess energy was used to charge the storage element while the
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storage provides energy when the power generation facilities could not. If the energy storage

was depleted this represented a loss of load condition determined by the ratio of the fifteen

minutes that were not provided power. At the end of the simulation the numerous total

possible LOL conditions from numerous simulations were averaged over one years time to

attain the LOLE. The standard deviation was also recorded as a measure of accuracy.

The load data is taken from the load data generation methods directly with no modifi-

cation. This particular load data set is used in every Monte Carlo simulation. It should be

noted that the size of the load was rather unimportant, but rather the comparison of the

load to the equipment used to power it was of more importance. This load was similar to

approximately 784,000 people’s energy usage according to the approximate population of

Worcester County, Massachusetts as compared to the entire New England load.

Generated energy data is not as simple as the load data. Energy data represents the

generated energy provided to the grid for every fifteen minute increment of time over four

years. By taking the Wh
W measurements for every fifteen minute time increment and mul-

tiplying it by the watts of production capacity a Wh measurement was determined. This

allowed control of the production capacity of a given power source for every set of simu-

lations run. When wind and solar were to be combined they were equally represented by

averaging the Wh
W measurements for every set of fifteen minute increments. This allowed a

fair comparison to a system that uses just wind or solar plants.

The storage specifications included the storage size and the average overall storage effi-

ciency. For simplicity it was chosen that the storage element would have a basic efficiency

that determined how much energy would be lost between the time the system puts energy

into the storage element until the energy comes out of the storage element. The storage size

itself represents how much energy can be taken out of the storage element and delivered to

the load with no efficiency loss when it is at full capacity. During the Monte Carlo simu-

lations it was theorized that a properly sized storage element would be on average half full

thus the system should be started with the energy storage at half of it’s full capacity. This

was preferred over no charge because the first few days would represent an uncharacteristic

event in a well designed renewable system which should always have some level of charge.

Full charge was also not desired because it would represent a possible rare circumstance
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which would skew the results towards a lower LOLE. Maximum charge and discharge rates

were ignored because of the large size of the energy storage elements.

The method of actually performing the Monte Carlo simulation is a little more com-

plicated than the top level diagram implies. The details of this simulation methodology

include finding the difference between the load and the power generated, on a step by step

basis determining the state of charge in the storage element, and determining the LOL

for every fifteen minute interval. This process is done for each of the one hundred sets of

simulation data in each set of simulations. A flow chart showing the process of the Monte

Carlo simulation can be seen in figure 6.2.

Initially a load mismatch is determined. This is simply the difference between the load

and the energy production for every fifteen minute increment. Equation 6.1 is used to

determine the load mismatch where LMt is the load mismatch during the fifteen minute

increment t, Egt is the energy generated during the fifteen minute interval t, and Lt is the

load requirement during the fifteen minute increment t. A purely stable grid will have a

very small variation in LMt however with renewable energy the initial load mismatch at

any given time can have a very large amplitude compared to the load requirement.

LMt = Egt − Lt (6.1)

The energy storage was used to compensate for the large amplitude in the load mismatch.

For every fifteen minute increment in the sequence the current state of the energy storage

will change. The given storage condition can be determined from equation 6.2 where Es(X)

is the energy storage condition at time X, LMt is the load mismatch during time interval

t, Es is the average overall energy efficiency, and T is related to t as the end of the time

span represented by t measured in time increments equal to t.

Es(T ) = Es(T − 1) + LMt ∗ Es (6.2)

The energy storage is limited by the overall storage size so before the next storage state

can be determined from a current state the energy storage must be limited to its maximum

and minimum capacity. The load mismatch was then adjusted according to how much the
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Figure 6.2: Details of the Monte Carlo simulation.
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energy storage could balance the load’s requirements. If excess power is generated beyond

what the energy storage can absorb then the load mismatch still has a positive energy

mismatch and the energy storage state is capped at full capacity. If the energy storage

was completely depleted in the effort to power the grid and more energy was needed then

there will still be a negative energy mismatch and the energy storage is capped at 0 Wh

of storage. Any positive mismatch can be dumped through some means or simply not

produced in the case of solar power and is thus removed from the load mismatch. Negative

energy mismatch is of more importance and represents a loss of load condition. Assuming

fifteen minute increments are used equation 6.3 provides an estimate for the number of

hours the LOL condition lasted during a fifteen minute interval that a LOL condition has

occurred where LOLt is the number of hours of LOL condition present during the time span

t. This occurs in the last step of the flow chart where the LOL conditions are determined.

LOLt =
LMt − Es(T − 1)

4 ∗ LMt
(6.3)

Because the separate simulations have no effect on each other they are all run at the

same time in the form of a giant set of arrays. When the final array containing all LOLt

conditions was available the hours LOL were summed for each simulation. The resulting

set of summed LOL conditions creates a mean and standard deviation providing the LOLE

originally sought using equation 2.2.
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Chapter 7

Results and Discussion

It was theorized that by designing a power generating plant that is geographically sep-

arated into multiple smaller plants a grid could operate with a smaller storage size. Also of

interest was how certain changes would affect the need for high energy storage efficiency as

well as large cumulative plant size. The LOLE variation showed how the storage capacity,

storage efficiency, and cumulative production capacity requirements were affected. Each of

the simulations run could vary with plant size, dependence between the plants, number of

plants, load size, storage size, and storage efficiency.

In order to understand the effects these variables would have on a system, three sets

of simulations were run. One set was run with only wind power, the second set was run

with only solar power, and the last with an equal amount of wind and solar power. Each

one of these simulation sets had three variations; storage capacity, storage efficiency, and

cumulative plant production capacity. Each of the three simulation types were run with 1,

3, 6, and 10 separate plant locations with 11 dependence levels ranging from completely

independent to completely dependent. This made 396 simulation configurations in all.

Figure 7.1 shows this layout just described.

The most important simulations resulted in a LOLE approaching 0 hours per year. For

this reason the worst condition must approach 0 hours per year in the simulation to properly

evaluate the results. It was expected that the worst case scenario would be using a single

geographic location regardless of dependence level. To ensure this, various storage size and

cumulative plant size pairs were found through repetitive simulations. These pairs would

approach 0 hours per year LOLE to be used as maximum points during simulation. It
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Figure 7.1: Simulation layout.

was found that even when the storage efficiency was set at 100% there had to be either an

enormous storage size or cumulative production capacity to meet a LOLE of 0 hours per

year. For this reason a 10 hours per year LOLE intercept line was used to find a single pair

for solar, wind, and both combined.

These maximums were used as both limiting test points and constants during simulation.

As an example, when simulating with variation in storage capacity the size was varied from

0 KWh to the maximum KWh while the cumulative power production capacity was held

constant at the maximum limit chosen. The storage was also held at 100% efficient.

Determining these maximums was the next step before running the simulations. An

algorithm was used to approximate the cumulative plant size where LOLE = 10 hours per

year for various energy storage sizes assuming a 100% storage efficiency. This provided a

graph as seen in figure 7.2 for wind, 7.3 for solar, and 7.4 for both.

As is shown in the plots of maximum pairs, a point has been chosen which is the maxi-

mum cumulative plant size and maximum energy storage capacity pair used in their respec-

tive simulations. Any point on the line was appropriate as the maximum pairs reference

point however it was assumed that a power facility would be designed with cost in mind.

These points would perhaps represent a low energy storage size as well as low cumulative
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Figure 7.2: LOLE = 10 hours per year intercept approximation for wind.
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Figure 7.3: LOLE = 10 hours per year intercept approximation for solar.



49

Figure 7.4: LOLE = 10 hours per year intercept approximation for both solar and wind
combined.
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production capacity. These points should also prevent the storage or production elements

from overwhelming each other in terms of stabilizing effects.

Unfortunately no pertinent results can be attained from using the same constants for

wind, solar, and combined simulations so comparisons between these simulation sets can

sometimes be subjective. What can clearly be seen is that the combined wind and solar

plants often require a lower storage size and plant size as compared to the other simulation

sets to attain an equal LOLE.

7.1 Variation of Storage Size

It has been confirmed that the energy storage required to stabilize a grid is very large.

One of the main objectives of geographic separation was to partially stabilize the renewable

power that was being generated in order to reduce the need for such large amounts of

energy storage. In order to evaluate any improvements, a set containing cumulative plant

size, storage efficiency, and storage size was determined for each of the three kinds of plants

that would provide a low LOLE with one geographic location. Cumulative plant size and

storage efficiency were held constant while the storage size was decreased in increments of

2% of the determined storage size until it reached 0 KWh of storage. These steps were

performed with solar, wind, and both combined using varying numbers of locations and

varying levels of dependence. To compare them fairly all simulations pertaining to a given

plant type used the same cumulative plant size, storage efficiency, and maximum storage

size.

7.1.1 Wind Simulations

The first simulation run assumed only wind power. Vast improvements could be seen

assuming complete independence, D = 0, as seen in figure 7.5. This shows that it is possible

to remove approximately 75% the energy storage for three locations and perhaps even 87%

for more locations.

As much as the energy storage was improved for a completely independent set of con-

ditions, it is also desirable to know how the system will react with weather that is more
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Figure 7.5: LOLE for D = 0 and 1, 3, 6, and 10 geographic locations with varying storage
size using wind plants.

dependent. It is hard to see the difference in results for 6 and 10 locations so the complete

set of 11 dependence levels for 3 locations is compared to a single location in figure 7.6.

Each of the black solid lines represents a different dependence level with three locations.

The lower the LOLE as compared to the other lines, the lower the dependence level. Com-

plete dependence acts almost identically to the single location’s performance, which should

be expected. There are immediate improvements to LOLE as soon as some independence

is seen, however more independence beyond D = 0.8 does not lower the LOLE much in

comparison. A large improvement from D = 1.0 to D = 0.8 is a desirable result because

very little independence leads to a huge improvement in the LOLE. For six and ten locations

the same pattern is seen.

In order to better see the LOLE for various geographic locations and dependence, levels

they are all graphed in figure 7.7. This figure is also zoomed in over a small range compared

to the previous graphs for clarity.

As useful as figure 7.7 is, a better understanding of the 10 hours per year LOLE inter-

cepts was desired. These intercepts were interpolated and placed in table A.1. Additionally

this table includes the percent comparison to one geographic location. Figure 7.8 shows the

percent comparisons on a graph for the various numbers of locations for a visual interpre-
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Figure 7.6: LOLE for various dependence levels for 3 geographic locations compared to 1
geographic location with varying storage size.

Figure 7.7: LOLE for various dependence levels and geographic locations with varying
storage size.



53

tation.

Figure 7.8: Percent of one location storage size for LOLE = 10 hours per year vs. depen-
dence level for 3, 6, and 10 locations using wind power.

7.1.2 Solar Simulations

Although wind power seems to improve with an increase in the number of locations, the

simulations with exclusively solar plants did not show an obvious improvement. Instead

the probability of independence seemed to dictate the difference between the various LOLE

curves. Given a certain D the plots with 3, 6, and 10 locations were virtually identical.

Using measured standard deviations of each Monte Carlo simulation it was found that

virtually every set of 3, 6, and 10 locations for a given dependence level were within one

standard deviation of each other except for when D = 0, complete independence. This

showed that when given a level of dependence the number of locations would typically have

little affect on the LOLE. A graph showing the various dependence levels for 10 locations

is shown in figure 7.9.

Analysis of the results as dependence changes shows that the system does not react the
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Figure 7.9: LOLE for varying storage sizes with 10 geographic locations and varying levels
of dependence using solar plants.
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same as it would with wind power. Instead of having a significant immediate change as

the locations became more independent such as with wind simulations, the system reacted

slower as seen from the data in table A.2 and the graph of that data in figure 7.10. This

may imply that a farther geographic separation may be necessary to have improvements

comparable to what wind power plants achieve and this may imply that there is not much

improvement available with solar generation because the geographic separation required

may be impractical.

Figure 7.10: Percent of 1 location storage size for LOLE = 10 hours per year vs. dependence
level for 10 locations using solar power.

7.1.3 Combined Wind and Solar Simulations

By using both solar and wind power it was theorized that the LOLE would decrease as

compared to just solar or wind because the generated diurnal energy would more closely

match the diurnal load. Although this will neither be proved nor disproved, the LOLE
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is lower for a given storage size than just solar or wind power. It should also be noted

that the cumulative plant size maximum was much smaller than for just wind or solar

power plant simulations. Figure 7.11 shows LOLE’s for various storage sizes and numbers

of geographic locations assuming complete independence. The lower dependence levels are

closely matched much like what was observed with the wind power curves in figure 7.6.

Figure 7.11: LOLE for D = 0 and 1, 3, 6, and 10 geographic locations with varying storage
size using wind and solar power plants.

It is again important to inspect the decrease in storage size required for 10 hours LOLE

as the geographic locations become more independent. Table A.3 displays the storage size

required to reach a LOLE of 10 hours per year for each dependence level and number of

plants pair. Figure 7.12 shows the percent decrease from the maximum storage size for 3, 6,

and 10 locations for all dependence levels. The decrease in LOLE appears very similar to the

characteristics shown with wind plants however the system does not improve as much. This

was because of the difference in maximum storage sizes between the combined simulations

and the exclusive wind simulations.
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Figure 7.12: Percent of 1 location storage size for LOLE = 10 hours per year vs. dependence
level for 3, 6, and 10 locations using wind and solar power.
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7.2 Variation of Storage Efficiency

Different forms of energy storage have a different efficiency associated with them. Also

different forms of energy storage will have a cost and possibly a size limit associated with

them. Sometimes forms of storage with lower efficiency will cost less and if lowering the

storage efficiency does not lead to a large change in LOLE then a less expensive form of

energy storage may be used. For these simulations the storage size and the plant size are

chosen as mentioned before, for the wind, solar, and combined simulations individually.

The storage efficiency is now varied instead from 100% to 0% efficient in intervals of 2%.

It should be noted that although results may indicate that the system can stabilize

with lower storage efficiency as the number of locations and independence improve this

simulation also keeps the storage size constant. There is likely a balance between the size

of the storage and the storage efficiency such that as the storage size decreases a higher

efficiency is still needed. This however was not investigated directly.

7.2.1 Wind Simulations

Wind power again lead to significant levels of improvement. This time the improvement

was in storage efficiency instead of storage size. Figure 7.13 shows this improvement with

complete independence for all numbers of locations. Table A.4 and figure 7.14 shows the

percent of one locations required efficiency as the independence increases for 3, 6, and 10

geographic locations. Yet again the independence for wind power shows little improvement

beyond D = 0.8 as the independence improves.

7.2.2 Solar Simulations

Solar storage efficiency also seems to follow a similar pattern to the solar storage size

simulations. Although there is improvement with the increase in number of geographic

locations it is not obvious until 0 hours per year LOLE is approached. Figure 7.15 shows

the two extremes of the simulations which indicates how similar they are. Additionally the

standard deviation indicates that the two extremes are within approximately two to three

standard deviations of each other until low LOLE levels are attained.
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Figure 7.13: LOLE for D = 0 and 1, 3, 6, and 10 geographic locations with varying storage
efficiency using wind plants.

Inspecting the storage efficiency required to reach 10 hours per year LOLE reveals an

interesting pattern similar to the one seen with storage size. Table A.5 and figure 7.16

show this data and it is rather clear that the system seems to improve with an increase

in dependence levels. This data also shows that there is little change when the number of

locations is changed.

7.2.3 Combined Wind and Solar Simulations

The case with solar and wind appears similar to the case with just wind because of

the immediate improvement as complete dependence changes to a slight amount of inde-

pendence. Unfortunately the improvements are not as drastic. This may be because the

wind plants were configured with approximately four times the amount of energy storage

as when both wind and solar plants are combined. Figure 7.17 shows the LOLE vs. storage

efficiency curves which also resemble the wind simulations.

The intercepts for 10 hours per year LOLE show results that yet again have little im-
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Figure 7.14: Percent of 1 location storage efficiency for LOLE = 10 hours per year vs.
dependence level for 3, 6, and 10 locations using wind power.
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Figure 7.15: LOLE for D = 0 with 1 and 10 geographic locations with varying storage
efficiency using solar plants.

Figure 7.16: Percent of 1 location storage efficiency for LOLE = 10 hours per year vs.
dependence level for 3, 6, and 10 locations using solar power.
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Figure 7.17: LOLE for D = 0 with 1, 3, 6, and 10 geographic locations with varying storage
efficiency using both solar and wind plants.

provement once a level of dependence of D = 0.8 is achieved. As mentioned before this

is good because the geographic locations can be rather close to one another while still

stabilizing the power production.

7.3 Variation of Plant Size

Lowering the cumulative plant size was the last experiment. As the dependence de-

creases and the number of plants increases it is theorized that the power output will lend

itself to lower production extremes where energy will be wasted, thus allowing a smaller cu-

mulative plant size for the same LOLE. This applies to all three of wind solar and combined

simulations although improvements amongst these vary. It should be noted that any set of

wind, solar, or wind and solar combined simulations were very similar with little difference

until low LOLE conditions are met.
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Figure 7.18: Percent of 1 location storage efficiency for LOLE = 10 hours per year vs.
dependence level for 3, 6, and 10 locations using solar and wind power.

7.3.1 Wind Simulations

To get a feel for how the LOLE varies with plant size only 10 and 1 locations were

graphed with complete independence in figure 7.19. This forms the limits that all the other

simulations within this set reside in. The intercepts with 10 hours per year LOLE do vary

a great deal even though these two simulation sets are rather close.

Determining the 10 hours per year intercepts for all the graphs was performed and the

results are presented in table A.7. The comparison in % of 1 location’s LOLE can be seen

in figure 7.20. Yet again there is a large improvement with very little independence. Unlike

with previous simulations the improvement is approximately one third the original plant

size which is not as good as with storage size or storage efficiency simulations but still

represent a significant improvement.
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Figure 7.19: LOLE vs. cumulative wind plant size for D = 0 with 1 and 10 geographic
locations.
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Figure 7.20: Cumulative wind plant size needed for LOLE = 10 hours per year vs. depen-
dence level for 3, 6, and 10 locations.
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7.3.2 Solar Simulations

As mentioned before the simulations have a very small difference in LOLE over all

cumulative plant sizes and thus only the independent 1 location and 10 location LOLE

curves are shown in figure 7.21. The solar plant simulations were the closest results of all

the cumulative plant size simulations, however the slope as the simulations approached 10

hours per year LOLE was so low that the improvement was still more than the combined

wind and solar simulations. As mentioned before, because of the constants used in these

simulations the improvement may be worse than the combined wind and solar simulations

if a different maximum plant size and storage size pair had been chosen.

Figure 7.21: LOLE for D = 0 with 1 and 10 geographic locations with varying cumulative
solar plant size.

The system seemed to vary with dependence level and not number of locations as can

be seen again in figure 7.22. Table A.8 shows the solar plant size required for 10 hours

per year LOLE assuming 10 geographic locations for all levels of dependencies. Just like
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previous simulation sets using solar plants, the improvement seems to be semi-linear over the

dependence range and not offering an immediate significant improvement as the dependence

level decreases.

Figure 7.22: Cumulative solar plant size needed for LOLE = 10 hours per year vs. depen-
dence level for 3, 6, and 10 locations.

7.3.3 Combined Wind and Solar Simulations

While using wind and solar plants the 1 location simulation arguably acts like two

locations already because the solar and wind power are completely independent in these

experiments. This is one of the innate benefits that combined solar and wind simulations

posses. It is theorized that this causes the extremely close limits of independent 1 and 10

location graphs as seen in figure 7.23 because the single location acts more like two locations.

A smaller improvement compared to just solar or just wind is very obvious from table

A.9 and figure 7.24 as the best the system improves is 60 % of the original 1 location power
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Figure 7.23: LOLE for D = 0 with 1 and 10 geographic locations with varying cumulative
solar and wind plant size.
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production capacity. What should be noted is that the physical production capacity that

corresponds to a reduction of 60 % of the original level is significantly lower than either

wind or solar power alone by a significant amount. This is also attained with a smaller

storage size at the same storage efficiency indicating that the combination of independent

wind and solar power will probably result in a lower power plant equipment cost.

Figure 7.24: Cumulative wind and solar plant size needed for LOLE = 10 hours per year
vs. dependence level for 3, 6, and 10 locations.
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Chapter 8

Conclusions

There are many results indicating improvement of the overall system stability as more

geographic locations are added and as these geographic locations’ weather become more

independent of one another. It is also particularly good to see that combining wind and

solar power improves the system’s stability as compared to using just wind or just solar

power. The real world will most likely use both forms of energy generation because of

geographic conditions and availability of proper weather conditions forcing a combination

of solar and wind energy generation.

Unfortunately these results do not show that there will always be improvement. What

they do reveal are improvements that can be made with geographic separation of renewable

power plants. They do not prove that there will be improvements to any given set of

geographic locations. Although complete independence allows a mathematical proof of

increased stability, complete independence is highly unlikely in a real world circumstance

and virtually impossible to prove. Every possible real world condition would have to be

evaluated.

For further research a design related to an ARMA model should be developed that

relates multiple wind and solar locations together. This would allow a site specific model

to evaluate the actual improvement available. This includes time based as well as location

based relationships for solar vs. solar, wind vs. wind, and solar vs. wind power plants.

This model should allow a proof that some sets of locations can benefit from the geographic
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separation model and will do so with much more accuracy for a specific set of locations.

Incorporating a power generation facility that has innate energy storage should also be

used as an extension of this model. Hydroelectric power is an example of this where energy

is stored in the form of elevated water. Theoretically the energy storage size requirement

could be lowered for the same LOLE possibly allowing a less expensive renewable solution.
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Appendix A

Simulation Output Data and

Results

Table A.1: Storage Size for LOLE = 10 hours per year using wind power.

D 1 Loc. 3 Locations 6 Locations 10 Locations
GWh GWh % GWh % GWh %

0.0

206.1

58.19 28.2 23.90 11.6 12.34 5.99
0.1 61.69 29.9 25.83 12.5 13.65 6.63
0.2 59.53 28.9 26.07 12.7 13.88 6.74
0.3 59.37 28.8 26.00 12.6 14.50 7.04
0.4 60.37 29.3 27.62 13.4 15.09 7.32
0.5 58.57 28.4 28.29 13.7 16.19 7.86
0.6 62.49 30.3 28.16 13.7 16.53 8.02
0.7 63.42 30.8 30.37 14.7 18.95 9.20
0.8 66.98 32.5 33.13 16.1 20.80 10.1
0.9 68.94 33.5 43.72 21.2 33.65 16.3
1.0 198.2 96.2 195.2 94.7 204.9 99.4
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Table A.2: Storage Size for LOLE = 10 hours per year using solar power assuming 10
locations.

D GWh %
0.0 13.35 23.23
0.1 30.26 52.63
0.2 35.22 61.25
0.3 39.69 69.03
0.4 44.39 77.21
0.5 45.70 79.48
0.6 47.12 81.96
0.7 51.62 89.78
0.8 52.42 91.17
0.9 56.94 99.04
1.0 57.49 100

Table A.3: Storage Size for LOLE = 10 hours per year using wind and solar power.

D 1 Loc. 3 Locations 6 Locations 10 Locations
GWh GWh % GWh % GWh %

0.0

53.34

16.35 30.7 8.824 16.5 7.666 14.4
0.1 18.91 35.4 12.52 23.5 10.71 20.1
0.2 19.97 37.4 13.91 26.1 11.77 22.1
0.3 20.84 39.1 15.03 28.2 12.58 23.6
0.4 21.66 40.6 15.40 28.9 13.56 25.4
0.5 22.15 41.5 16.68 31.3 14.24 26.7
0.6 22.77 42.7 17.40 32.6 14.67 27.5
0.7 24.13 45.2 18.21 34.1 15.83 29.7
0.8 24.21 45.4 19.59 36.7 16.75 31.4
0.9 26.58 49.8 21.65 40.6 20.36 38.2
1.0 52.59 98.6 53.24 99.8 51.70 96.9
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Table A.4: Storage Efficiency for LOLE = 10 hours per year using wind power.

D 1 Location 3 Locations 6 Locations 10 Locations
% Efficiency % Efficiency % Efficiency % Efficiency

0.0

94.2

10.8 2.0 1.8
0.1 11.2 2.0 1.8
0.2 10.7 2.0 1.8
0.3 10.8 2.0 1.8
0.4 11.0 2.0 1.9
0.5 10.9 2.0 1.9
0.6 11.8 2.0 1.9
0.7 11.7 3.0 1.9
0.8 12.2 3.8 2.0
0.9 13.5 6.3 3.8
1.0 87.2 80.1 97.8

Table A.5: Storage Efficiency for LOLE = 10 hours per year using solar power.

D 1 Location 3 Locations 6 Locations 10 Locations
% Efficiency % Efficiency % Efficiency % Efficiency

0.0

91.7

35.4 33.9 32.5
0.1 40.2 41.0 41.5
0.2 43.2 43.4 45.5
0.3 45.9 46.4 50.1
0.4 48.4 47.9 52.6
0.5 52.7 51.9 54.5
0.6 55.2 59.3 56.9
0.7 61.6 67.7 64.8
0.8 65.1 71.2 67.8
0.9 64.6 90.3 86.7
1.0 100 93.0 100
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Table A.6: Storage Efficiency for LOLE = 10 hours per year using both wind and solar
power.

D 1 Location 3 Locations 6 Locations 10 Locations
% Efficiency % Efficiency % Efficiency % Efficiency

0.0

91.7

28.1 23.2 21.1
0.1 29.2 23.7 22.1
0.2 29.1 24.1 22.2
0.3 29.3 24.3 22.3
0.4 29.7 24.3 23.0
0.5 29.8 24.9 23.6
0.6 30.3 25.1 23.6
0.7 30.6 25.6 24.2
0.8 31.0 27.1 24.5
0.9 32.2 28.3 27.1
1.0 79.3 80.9 78.3

Table A.7: Comulative wind plant size for LOLE = 10 hours per year.

D 1 Loc. 3 Locations 6 Locations 10 Locations
GW GW % GW % GW %

0.0

23.68

10.39 43.9 9.227 39.0 8.810 37.2
0.1 10.59 44.7 9.226 38.9 8.859 37.4
0.2 10.64 44.9 9.231 39.0 8.843 37.3
0.3 10.54 44.5 9.256 39.1 8.900 37.6
0.4 10.48 44.2 9.212 38.9 8.945 37.8
0.5 10.56 44.6 9.381 39.6 9.020 38.1
0.6 10.79 45.6 9.428 39.8 9.016 38.1
0.7 10.60 44.7 9.457 39.9 9.239 39.0
0.8 10.87 45.9 9.727 41.1 9.205 38.9
0.9 10.93 46.1 10.02 42.3 9.873 41.7
1.0 23.13 97.6 22.46 94.8 24.52 103.5
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Table A.8: Comulative solar plant size for LOLE = 10 hours per year assuming 10 locations.
D GW %
0.0 12.81 48.0
0.1 15.89 59.5
0.2 17.29 64.7
0.3 18.48 69.2
0.4 19.53 73.1
0.5 20.06 75.1
0.6 20.64 77.2
0.7 22.82 85.4
0.8 23.34 87.3
0.9 26.26 98.3
1.0 26.72 100.0

Table A.9: Comulative wind and solar plant size for LOLE = 10 hours per year.

D 1 Loc. 3 Locations 6 Locations 10 Locations
GW GW % GW % GW %

0.0

9.667

6.479 67.0 5.965 61.7 5.802 60.0
0.1 6.575 68.0 6.067 62.8 5.992 62.0
0.2 6.568 67.9 6.087 63.0 5.995 62.0
0.3 6.554 67.8 6.151 63.6 6.006 62.1
0.4 6.585 68.1 6.181 63.9 6.046 62.5
0.5 6.667 69.0 6.216 64.3 6.103 63.1
0.6 6.655 68.8 6.228 64.4 6.106 63.2
0.7 6.702 69.3 6.248 64.6 6.163 63.8
0.8 6.739 69.7 6.365 65.8 6.198 64.1
0.9 6.876 71.1 6.503 67.3 6.421 66.4
1.0 9.441 97.7 9.501 98.3 9.381 97.0
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Appendix B

Matlab Code for Solar Data
Generation

%By combining the PDF’s into a multi-dimmensional PDF you can attain the

%result of multiple sites. It is assumed that all sites follow the same

%PDF.

%

% pdfs - (365xgranularity) Output PDF probabilities for any given site.

% yearly maxs - (1x365) Daily maximums for any given day in a year (Wh/m^2).

% ratio - (1x1) How dependent the two sources should be. (between 0 and

% 1). 0 implies no dependence, 1 complete dependence.

% Sample Count - (1x2) [Number of sample sets (M), # of points per set (N)].

% Time Sep - (1x1) Time in hours between time samples. 10

% Location cout - (1x1) Number of solar array plants there are.

% power output - (MxN) Solar insolation going down to each meter squared of

% solar panel at the plants. (Wh/m^2).

function power output = solar power prediction( pdfs,

bins,

yearly maxs,

ratio,

Sample Count, 20

Time Sep,

Location count)

prompt = ’Creating yearly perfects’
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%Generate perfect days of the year (ASSUMES NE ENVIRONMENT SIMILAR TO

%WORCESTER)

Max = [72 240]; %Longest day of year

Min = [90 192]; %Shortest day of year

yearly perfect = yearly perfects(Max, Min, yearly maxs);

30

prompt = ’Pre-generating cdfs’

%Pre-generate the cdfs to speed things up in the loop. These cdfs can only

%be used for the first set of solar array data.

pdfs first = pdfs;

cdfs first = pdfstocdfs(pdfs first);

prompt = ’Defining variables before the loop.’

%Instantiate data variables before loop in order to speed up the process.

days = ceil(Sample Count(2) * Time Sep / 24);

data = zeros(Location count, days * 288); 40

raw = zeros(Location count, days);

power output = zeros(Sample Count(1), Sample Count(2));

yearly maxs total = yearly maxs;

pdfs new = pdfs first;

if Location count == 1

ratio = 1;

else

ratio = ratio ^ (1/(Location count − 1));

end

while size(yearly maxs total, 2) < days 50

yearly maxs total = [yearly maxs total yearly maxs];

end

yearly maxs total = yearly maxs total(1:days);

%Loop anything after this

for i = 1:Sample Count(1)

%Generate first set of elements

raw(1, 1:days) = gen solar from cdfs(days, cdfs first);

%Generate second and further sets of dependent elements

%Will require generation of various pdfs/cdfs 60

if(Location count > 1)
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for j = 2:Location count

pdfs new = pdf adjuster(pdfs new, pdfs first, bins, ratio, raw(1:j−1, 1:days));

cdfs new = pdfstocdfs(pdfs new);

raw(j, 1:days) = gen solar from cdfs(days, cdfs new);

end

end

raw = raw .* (ones(Location count, 1) * yearly maxs total);

%Generate daily 5-minute data from daily power 70

data = gen five minute insolation(data, raw, yearly perfect, yearly maxs);

%Generate properly split “hourly specified” data and add up for all the

%power locations.

power output(i, 1:Sample Count(2)) = . . .

(1/Location count) .* ones(1, Location count) * . . .

conv time sep(Time Sep, data, Sample Count(2));

end;

%The point of this function is to attain an approximated daily PDF for a

%whole year based off of previous data over multiple years.

%

% yearly: yearly data in the format of a matrix 366 days “tall” and as wide

% as necesary. Last coloumn is reserved for validity counts as inevitably

% the data has holes in it from year to year. Everything should be

% compacted to the left and the validity count should represent how many

% accurate values there are in that row.

%

%days: Number of days to include in the PDF. Recommendation is to get at 10

%least as many as are in the smallest recurring frequency.

%

%granularity: Number of bins to use in the PDF’s.

%

% pdfs - (365xgranularity) Output pdf for any given day corrsponding to the

% data given.

% bins - (1xgranularity+1) Bins that the pdf lies in.

function [pdfs, bins] = dailypdf(yearly, days, granularity, Array Size, Array Eff)
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20

%Seperate the number of valid values per day and the data itself.

temp1 = size(yearly);

count = yearly(1:temp1(1), temp1(2));

temp1 = yearly(1:temp1(1), 1:temp1(2) − 1);

%attain maximums and regularize the data.

maxs = yearly maxs(yearly, Array Size, Array Eff, days);

A = size(temp1);

maxs = maxs * ones(1, A(2));

temp1 = temp1 ./ maxs; 30

%create the pdf variable.

pdfs = zeros(1,granularity);

%Prepare data for loop.

temp2 = size(temp1);

temp1 = [temp1(size(temp1, 1) − days:size(temp1, 1), . . .

1:temp2(2)) ; temp1 ; temp1(1:days, 1:temp2(2))];

count = [count(size(count, 1) − days:size(count, 1)) ; count ; count(1:days)];

40

%bins creation

bins = 0:1/(granularity):1;

bins(granularity + 1) = inf ;

holder = temp2(1);

%Loop per day

for rep1 = 1:holder;

%initialize temp2

temp2 = 0;

%loop for grouping 50

for rep2 = rep1:rep1 + 2*days + 1;

if(count(rep2) > 0)

temp2 = [temp2 temp1(rep2, 1:count(rep2))];

end

end

%remove 0 from temp2
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temp2 = temp2(2:size(temp2, 2));

%create pdf for that day!

temp3 = histc(temp2, bins); 60

temp4 = sum(temp3);

pdfs = [pdfs ; (temp3(1:granularity) ./ temp4)];

end

pdfs = pdfs(2:size(pdfs, 1), 1:granularity);

% yearly maxs is a function to determine a maximum output trend so that

% PDF’s and CDF’s can be created using a uniform 1 maximum.

%

% yearly - (MxN) Data in the form of a tall array for the whole year. All

% valid data is compacted “to the left” for a given day and the final

% column is given a validity count.

% days - (1x1) Number of days to check forward and backwards to find

% maximum.

% Array Size - (1x1) Size of array that gave “yearly” (m^2)

% Array Eff - (1x1) Efficiency of array that gave “yearly” (Unitless, 10

% Efficiency).

%

% maxs - (Mx1) - Maximums for any particular day of the year (based on

% input). (Wh/M^2)

function maxs = yearly maxs(yearly, Array Size, Array Eff, days)

%Creating a maximum size vector for individual days.

temp = size(yearly);

%Strip off the pertinent data count at the end 20

temp = yearly(1:temp(1), 1:(temp(2)−1));

%Find the maximums for all the years.

temp = max(temp’)’;

%Finding max over days represented by left/right.

maxs = zeros(1, length(temp));

temp = [temp((length(temp)−days):(length(temp))) ; temp ; temp(1:days)];
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for rep1 = 1:length(maxs);

maxs(rep1) = max(temp((rep1):(rep1+2*days+1)));

end 30

maxs = maxs’;

maxs = maxs / Array Size;

maxs = maxs / Array Eff;

%This function is intended to produce a set of perfect yearly solar

%insolation graphs. The time seperation per unit is 5 minutes.

% Max - (1x2) Maximum day spread of time.

% Start time first. (Time of day in 5-minute increments)

% Min - (1x2) Minimum day spread of time.

% Start time first.(Time of day in 5-minute increments)

% Daily Maxs - (1x365) Maximum power for a perfect non-cloudy day. (Wh/m^2)

%yearly perfects - (288x365) Power output in 5-minute increments. (Wh/m^2) 10

function yearly perfects = yearly perfects(Max, Min, Daily Maxs)

%Step 1: Create ideal power for a whole year.

ideal power = [1:1:288]’ * ones(1,365); %5 minute increments by each day of year.

%ratios = [min distance from longest day ; min distance from shortest day];

ratios = [min([abs([1:1:365] − 172) ; abs([1:1:365] − 537)]) ; . . .

min([abs([1:1:365] − 356) ; abs([1:1:365] + 9)])];

%ratios = [ratio of shortest day to use ; ratio of longest day to use]; 20

ratios = [ratios(2, 1:365) ./ (ratios(1, 1:365) + ratios(2, 1:365)) ; . . .

ratios(1, 1:365) ./ (ratios(1, 1:365) + ratios(2, 1:365))];

%hours = [start of sunlight (365 days) ; end of sunlight (365 days)];

hours = [ratios(1, 1:365) .* Max(1) + ratios(2, 1:365) .* . . .

Min(1) ; ratios(1, 1:365) .* Max(2) + ratios(2, 1:365) .* Min(2)];

%difference = [number of 5-minute increments sunlight is available]

difference = (hours(2,1:365) − hours(1, 1:365));
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%difference is propogated through all 5-minute increments for later math. 30

difference = ones(288, 1) * difference;

%minimum = starting point of sunlight.

minimum = ones(288, 1) * hours(1, 1:365);

%ideal power = sin wave with amplitude according to daily maxs, frequency

%dependent on difference, and offset based on minimum.

ideal power = sin((2 * pi ./ (2 * difference)) .* (ideal power − minimum));

%Clear out upper and lower sine wave repeats near midnight.

hours(1, 1:365) = floor(hours(1, 1:365)); 40

hours(2, 1:365) = ceil(hours(2, 1:365));

blockout = (1:288)’ * ones(1, 365);

for i = 1:365

blockout(1:288, i) = (blockout(1:288, i) > hours(1, i)) .* . . .

(blockout(1:288, i) < hours(2, i));

end

yearly perfects = ideal power .* (ideal power > 0) .* blockout;

for i = 1:365

yearly perfects(1:288, i) = yearly perfects(1:288, i) .* . . .

Daily Maxs(i) ./ sum(yearly perfects(1:288, i)); 50

end

%([zeros(Max(1),365) ; ones(Max(2) - Max(1), 365) ; zeros(288 - Max(2), 365)]);

%The purpose of this function is to create a random set of solar insolation

%data based upon the cdfs provided. Always starts from day 0 of the year

%(January 1st). Assumes every year is not a leap year.

% predictions - (1x1) Number of days to predict solar insulation for.

% (days)

% cdfs - (NxM) cdfs of the solar insolation (typically 365xgranularity).

% raw data = (1xpredictions) Random solar data (before daily maxs is

% applied) (%) 10

function raw data = gen solar from cdfs(predictions, cdfs)
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raw data = zeros(1, predictions);

random day = rand(1, predictions);

A = size(cdfs);

A = A(2);

B = size(cdfs);

k = 0;

for g = 1:predictions 20

k = k + 1;

raw data(g) = interp1(cdfs(k, 1:A), 0:1/(A − 1):1, random day(g));

if k == B(1)

k = 0;

end

end;

%The purpose of this function is to convert any given pdf of a single

%dimmension into a cdf.

%pdfs - (MxN) pdf of something (N seperate bins, M cases).

%cdfs - (MxN+1) cdf corresponding to pdf (N seperate bins, M cases).

function cdfs = pdfstocdfs(pdfs)

A = size(pdfs); 10

multiply = ones(A(2));

multiply = triu(multiply, 1);

cdfs = [pdfs * multiply pdfs * ones(A(2), 1)];

for i = 1:size(cdfs, 1)

for j = 2:size(cdfs, 2)

if cdfs(i, j − 1) >= cdfs(i, j)

cdfs(i, j) = cdfs(i, j − 1) + 1/10000000;

end

end 20

cdfs(i, 1:size(cdfs, 2)) = cdfs(i, 1:size(cdfs, 2)) ./ cdfs(i, size(cdfs, 2));
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end

%This function is intended to generate a set of pdfs for a year given the

%raw data from other somewhat-dependent variables.

% new pdfs - (GxM) Pass in the output variable so a new copy in memory is

% not instantiated every time.

% original pdfs - (365XM) pdf’s that each solar array follows.

% bins - (1xM) Bins that was used to create the pdf.

% ratio - (1x1) Ratio of dependence (1 is full dependence, 0 is independent).

% givens - (NxG) Raw 0-1 ratio of maximum power out. [givens per day, day]

10

% new pdfs - (GxM) new PDF with givens applied.

function new pdfs = pdf adjuster(new pdfs, original pdfs, bins, ratio, givens)

A = size(givens);

B = size(original pdfs);

for g = 1:A(2)

temp = histc(givens(1:A(1), g), bins) * ratio / A(1);

new pdfs(g, 1:B(2)) = temp(1:B(2)); 20

end

while size(original pdfs, 1) < size(new pdfs, 1)

original pdfs = [original pdfs ; original pdfs];

end

A = size(new pdfs);

new pdfs = original pdfs(1:A(1), 1:A(2)) .* (1−ratio) + new pdfs;

%This function is intended to take the power for a day, the yearly perfect

%representations (in 5 minute increments), and generate solar data that has

%the proper Wh/m^2 for the given day.
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% solar insolation - (Mx288*N) Pass in the output variable so a new copy in memory is

% not instantiated every time.

% daily - (MxN) Daily Solar Insolation (Wh/m^2)

% perfects - (288x365) Perfect solar insolation for any given 5 minute

% increment of the year. (Wh/m^2)

% Daily Maxs - (365x1) Daily maximum power output (Wh/m^2) 10

% solar insolation - (Mx288*N) Solar insolation data output in 5-minute

% increments (Wh/m^2)

function solar insolation = gen five minute insolation( solar insolation,

daily,

perfects,

Daily Maxs)

C = size(daily);

J = 0; 20

for I = 1:C(2)

J = J + 1;

if J == 366

J = 1;

end

this day = ones(C(1), 1) * perfects(1:288, J)’;

for B = 1:C(1)

if(daily(B, I) <= .01 * Daily Maxs(J))

this day(B, 1:288) = this day(B, 1:288) * (daily(B)/Daily Maxs(J)); 30

else

if(daily(B, I) <= .1 * Daily Maxs(J))

this day(B, 1:288) = this day(B, 1:288) * .1;

end

while sum(this day(B, 1:288)) > daily(B, I)

deduct = randint(1,1,[1,288]);

this day(B, deduct) = this day(B, deduct) .* rand;

end

%Scale lost watts to equal prediction

if(sum(this day(B, 1:288)) < daily(B, I)) 40

this day(B, 1:288) = . . .
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this day(B, 1:288) + (perfects(1:288, J)’ - . . .

this day(B, 1:288)) .* ((daily(B, I) − sum(this day(B, 1:288))) . . .

/ (Daily Maxs(J) − sum(this day(B, 1:288))));

end

end

end

solar insolation(1:C(1), 288 * (I − 1) + 1:288 * I) = this day;

end

% The purpose of this function is to convert a time series 5-minute data

% into another time series data. (MUST BE IN INCREMENTS OF 5 MINUTES).

% Time Sep - (1x1) Time seperation between data points desired.

% solar insolation in - (MxN) 5-minute solar insolation input.

% length - (1x1) Number of data points that are being kept.

% solar insolation out - (Mxlength) Solar insolation output in Time Sep

% increments.

10

function solar insolation out = conv time sep(Time Sep, solar insolation in, length)

A = size(solar insolation in);

solar insolation out = solar insolation in(1:A(1), 1:length);

seperation = 12 * Time Sep;

if seperation ˜= 1

for B = 1:length

solar insolation out(1:A(1), B) = . . .

sum(solar insolation in(1:A(1), ((B−1) * seperation + 1) : B * seperation)’)’;

end 20

end
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Appendix C

Matlab Code for Wind Data
Generation

% This function is meant to produce random wind generated power based off

% of a cutin wind, cutout wind, rated wind, and the weather charactaristics

% of that area.

% pdf bins edges - (365xM) edges of the bins that the pdf’s are based off

% of for each day of the year. (m/s)

%

% year wind pdf - (1xM-1) probability for any given day that the wind

% will be within certain bins. A certain distribution is assumed and scaled

% accordng to the bins. (probability, unitless) 10

%

% diurnal average normalized - (1x24) the average daily wind distributed

% over each hour so that the average value over the day is 1 m/s.

%

% Time Sep - (1x1) Number of hours for each data point. (hours)

%

% data size - (1x2) [M, N] Size of output data [# of samples, Data set from one

% sample]

%

% locations - (1x1) Number of locations to simulate for each sample. (# 20

% locations)

%

% dependence - (1x1) Probability of having all locations being the same

% (probability, unitless)
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%

% cutin wind - (1x1) Wind speed at which the wind turbine will begin

% generating electricity (m/s)

%

% rated wind - (1x1) Wind speed that the wind turbine is rated for (m/s)

% 30

% cutout wind - (1x1) Wind speed that the generator shuts down for safety

% reasons (m/s)

% power output - (M, N) Power output for each Time Sep time increment

% in each sample. ((Wh/(W of wind power))

function power output = gen wind( pdf bins edges,

year wind pdf,

diurnal average normalized,

Time Sep, 40

data size,

locations,

dependence,

cutin wind,

rated wind,

cutout wind)

days = ceil(data size(2) * Time Sep / 24);

year wind pdf = ones(365, 1) * year wind pdf;

year wind cdf = pdfstocdfs(year wind pdf); 50

if locations == 1

ratio = 1;

else

ratio = dependence ^ (1/(locations − 1));

end

wind power profile = [−1, cutin wind, rated wind, . . .

cutout wind, cutout wind + 10^−9, 1000 ; 0, 0, 1, 1, 0, 0];

60

power output = zeros(data size);
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random day wind = zeros(locations, days);

year wind pdf new = 0;

pdf bins new = 0;

for i = 1:data size(1)

random day wind(1, 1:days) = . . .

gen wind from cdfs(days, year wind cdf, pdf bins edges);

if(locations > 1)

for j = 2:locations 70

[year wind pdf new, pdf bins new] = . . .

pdf adjuster(year wind pdf new, year wind pdf, . . .

pdf bins new, pdf bins edges, ratio, . . .

random day wind(1:(j−1), 1:days));

random day wind(j, 1:days) = . . .

gen wind from cdfs(days, pdfstocdfs(year wind pdf new), pdf bins new);

end

end

random time sep wind = days to time sep(diurnal average normalized, . . .

Time Sep, random day wind); 80

for j = 1:locations

random time sep wind(j, 1:data size(2)) = . . .

interp1(wind power profile(1, 1:6), wind power profile(2, 1:6), . . .

random time sep wind(j, 1:data size(2)));

end

power output(i, 1:data size(2)) = ones(1, locations) * . . .

random time sep wind(1:locations, 1:data size(2)) .* 1/locations .* Time Sep;

end

%This function is intended to generate a set of pdfs for a year given the

%raw data from other somewhat-dependent variables.M̂

% new pdfs - (GxM) Pass in the output variable so a new copy in memory is

% not instantiated every time.

% original pdfs - (365XM) pdf’s that each solar array follows.

% bins - (1xM) Bins that was used to create the pdf.

% ratio - (1x1) Ratio of dependence (1 is full dependence, 0 is independent).
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% givens - (NxG) Raw wind speed output. [givens per day, day]

% new pdfs - (GxM) new PDF with givens applied. 10

function [new pdfs, bins new] = pdf adjuster(new pdfs, original pdfs, bins new, bins, ratio, givens)

A = size(givens);

B = size(original pdfs);

C = size(bins);

k = 0;

for g = 1:A(2)

k = k + 1;

temp = histc(givens(1:A(1), g), bins(k, 1:C(2))) * ratio / A(1); 20

new pdfs(g, 1:B(2)) = temp(1:B(2));

if(k == C(1))

k = 0;

end

end

while size(original pdfs, 1) < size(new pdfs, 1)

original pdfs = [original pdfs ; original pdfs];

end

30

bins new(1:C(1), 1:C(2)) = bins;

while size(bins new, 1) < size(new pdfs, 1)

bins new = [bins new ; bins];

end

A = size(new pdfs);

new pdfs = original pdfs(1:A(1), 1:A(2)) .* (1−ratio) + new pdfs;

bins new = bins new(1:A(1), 1:C(2));

%The purpose of this function is to convert any given pdf of a single

%dimmension into a cdf.

%pdfs - (MxN) pdf of something (N seperate bins, M cases).
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%cdfs - (MxN+1) cdf corresponding to pdf (N seperate bins, M cases).

function cdfs = pdfstocdfs(pdfs)

A = size(pdfs); 10

multiply = ones(A(2));

multiply = triu(multiply, 1);

cdfs = [pdfs * multiply pdfs * ones(A(2), 1)];

for i = 1:size(cdfs, 1)

for j = 2:size(cdfs, 2)

if cdfs(i, j − 1) >= cdfs(i, j)

cdfs(i, j) = cdfs(i, j − 1) + 1/10000000;

end

end 20

cdfs(i, 1:size(cdfs, 2)) = cdfs(i, 1:size(cdfs, 2)) ./ cdfs(i, size(cdfs, 2));

end

%The purpose of this function is to create a random set of wind speed

%data based upon the cdfs provided. Always starts from day 0 of the year

%(January 1st). Assumes every year is not a leap year.

% predictions - (1x1) Number of days to predict wind speed for.

% (days)

% cdfs - (365xM) cdfs of the wind speed (typically 365xgranularity).

% bin edges - (365xM)

% raw data = (1xpredictions) Random wind data as average wind speed over 10

% that day. (m/s average for a day)

function raw data = gen wind from cdfs(predictions, cdfs, bin edges)

raw data = zeros(1, predictions);

random day = rand(1, predictions);

A = size(bin edges);
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k = 0;

for g = 1:predictions

k = k + 1; 20

raw data(g) = interp1(cdfs(k, 1:A(2)), bin edges(k, 1:A(2)), random day(g));

if k == A(1)

k = 0;

end

end;

%The purpose of this function is to take the wind predictions and create a

%typical average day with that average wind speed.

% day pattern - (1x24) Average wind during the day for each hour

% normalized. (m/s average per hour normalized)

% Time Sep - (1x1) amount of time for each average placement (hours)

% predictions - (1xM) Average wind for all days (m/s average over a day

% each)

% raw data = (1xM * 24 / Time Sep) Time Sep seperated average wind speed 10

% data.

function raw data = days to time sep(day pattern, Time Sep, predictions)

day sep = 24 / Time Sep;

raw data = zeros(size(predictions, 1), size(predictions, 2) * day sep);

day pattern adjust = zeros(1, day sep);

for j = 0:23 20

for i = 1:(1/Time Sep)

day pattern adjust(j / Time Sep + i) = day pattern(j + 1);

end

end

for j = 1:size(predictions, 1)

for i = 1:size(predictions, 2)

raw data(j, ((i − 1) * day sep + 1):(i * day sep)) = . . .
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day pattern adjust * predictions(j, i);

end

end 30
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Appendix D

Matlab Code for Load Data
Generation

%means, standard deviations, typical day

Days = 365*4;

Time Sep = .25;

Points = Days * 24 / Time Sep;

cases = 1100;

Worcester Percent = 784992/14239724;

%Create load for all of NE

random daily load = create daily load(means .* 10^6, standard deviations .* 10^6, [cases, Days]); 10

%Then divide it by approximate Worcester load

random daily load = random daily load .* Worcester Percent;

%Pre-allocate output for speed.

load data = zeros(cases, Points);

for i = 1:Days

for j = 1:cases

load data(j, ((i − 1) * 24 / Time Sep + 1):(i * 24 / Time Sep)) = . . .

typical day .* random daily load(j, i);

end 20

end

%function create daily load assumes normally distributed load data and generates
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%daily loads specified by the input arguments.

% means - (1x365) means of various days. (Wh)

% stds - (1x365) Standard deviation of various days. (Wh)

%Size - (1x2) Size of final array [M, N] (unitless)

%daily load data - (MxN) Random load based on the means and standard

%deviations. (Wh)

10

function daily load data = create daily load(means, stds, size)

daily load data = zeros(size);

J = 0;

for i = 1:size(2)

J = J + 1;

daily load data(1:size(1), i) = normrnd(means(J), stds(J), [size(1), 1]);

if(J >= 365)

J = 0;

end

end 20

%function Convert hours quarter hours

% in - (1x24) Daily expected load. (% daily output)

% out - (1x96) Daily expected load (% daily output)

function out = Convert hours quarter hours(in)

out = 0;

10

for i = 1:size(in, 2)

out = [out, in(i) .* ones(1, 4) .* .25];

end

out = out(2:size(out, 2));
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Appendix E

Matlab Code for Monte Carlo
Simulations

%Currently the point of this function is to take in solar data,

% solar array information, energy storage information, and load

% information and return the load mismatch for every data point.

%

%

% System Power In - (MxN) System power in (Wh)

% Time Sep - (1x1) Time Seperation in Solar Insolation and Load Data

% Measurements (Hours)

% Storage Max - (1x1) Storage Maximum Charge (Wh)

% Storage Eff - (1x1) Energy Storage Efficiency (Unitless) 10

% Load - (MxN) Load Data (Wh)

%

% LOL - (Mx1) Loss of Load Results (Hours total)

function [LOL] = balance predict( System Power In,

Time Sep,

Storage Max,

Storage Eff,

Load)

20

[M,N] = size(System Power In);

%Determine load mismatch
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Load Mismatch = System Power In − Load;

%Filter through storage element

Current Charge = zeros([M (N+1)]);

Current Charge(1:M, 1) = ones(M,1) * (Storage Max / 2); 30

Load Mismatch = Load Mismatch .* ((Load Mismatch < 0) + . . .

(Load Mismatch >=0) .* Storage Eff);

for i = 1:N

Current Charge(1:M,i+1) = Current Charge(1:M,i) + Load Mismatch(1:M,i);

undercharge = ((Current Charge(1:M,i+1) < 0).*Current Charge(1:M,i+1));

overcharge = ((Current Charge(1:M,i+1) > Storage Max).* . . .

(Current Charge(1:M,i+1)−Storage Max));

Load Mismatch(1:M,i) = undercharge+overcharge;

Current Charge(1:M,i+1) = Current Charge(1:M,i+1) − Load Mismatch(1:M,i); 40

end

if(Storage Eff > 0)

Load Mismatch = Load Mismatch .* ((Load Mismatch < 0) + . . .

(Load Mismatch >= 0) ./ Storage Eff);

end

Load Zeros = Load == 0;

Load = Load + Load Zeros; 50

LOL = (Load Mismatch .* (Load Mismatch < 0)) ./ Load;

LOL = (Load Zeros == 0) .* LOL;

LOL = LOL .* Time Sep;

length = size(LOL);

length = length(2);

LOL = LOL * ones(length, 1) * −1;

LOL = 8760 * LOL / (N*Time Sep); 60
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