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Abstract

Dynamic Adaptive Streaming over HTTP (DASH) is a popular, modern method for streaming media. Adap-
tive bitrate (ABR) functionality allows DASH to adjust to changing network conditions during the course
of the stream. However, little work has assessed DASH’s performance over geostationary satellite networks,
where high latencies cause many network protocols to perform poorly. This paper presents results from ex-
periments that evaluate DASH over a commercial geostationary satellite connection, comparing performance
when adjusting two different configuration settings of the stream: The length of video segments, and the
ABR algorithm used to make decisions. Results show that: 1) longer segment lengths are more stable but
fail to adjust bitrate, staying at a low video quality; and 2) the buffer-based BOLA ABR algorithm has fewer
stalls and better video quality than either a throughput-based approach or a hybrid approach.
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Chapter 1

Introduction

Video streaming has grown to be one of the largest consumers of Internet bandwidth. Much of

this traffic is from mobile devices, leading to the popularity of modern streaming methods with support

for adaptive bitrate (ABR), allowing them to adjust the stream to perform best even as network conditions

change. The most common adaptive streaming method is Dynamic Adaptive Streaming over HTTP (DASH),

supported by YouTube, Netflix, Fubo, and other services. DASH uses traditional HTTP servers to serve

content, with the process largely being led by the DASH-aware client [20].

Geostationary satellite networks have been used to provide Internet access for many years [6],

with their fixed position in the sky ensuring the same satellite can always be reached. However, even

with technological improvements increasing their bandwidth capabilities, these connections always have

substantially higher latencies.

These high latencies cause many network protocols to perform poorly, including TCP [23]. Rel-

atively little research has evaluated the performance of DASH streams over these geostationary satellite

networks. This paper explores that topic, examining how manipulating a set of independent variables im-

proves or degrades the stream’s performance.

All experiments are performed using a commercial geostationary satellite connection, not simulated

or emulated. A 10 minute video is streamed in full, with data collected on the network throughput and

indicators of the user’s Quality of Experience (QoE). Depending on the experiment, one of two independent

variables is manipulated to examine its effects: the length of the video segments, set to either 5 seconds,

10 seconds, or 20 seconds; or the ABR algorithm used to make bitrate decisions, set to either buffer-based

BOLA, a throughput-based algorithm, or a hybrid algorithm that mixes both approaches.
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Analysis of the segment length results finds that longer segment lengths never stall (never letting

the buffer of video reach empty), but achieve this by staying at the minimum bitrate, never changing to

higher ones. Analysis of the ABR algorithm results finds that the buffer-based BOLA algorithm performs

largely better than the other two, with fewer and shorter stalls, fewer bitrate changes, and more time spent

at higher bitrates.

The rest of this paper is structured as follows: Chapter 2 provides background knowledge of the

topics used in the work; Chapter 3 reviews existing work on these topics; Chapter 4 defines the structure of

the experiments; Chapter 5 presents and analyzes the results of these experiments; Chapter 6 summarizes

key observations and takeaways; Chapter 7 discusses limitations and proposes topics for future research.
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Chapter 2

Background

This chapter provides an overview of the topics applied in this project.

2.1 Geostationary Satellite Networks

Satellites are commonly used to provide Internet access in remote locations where terrestrial Internet

access is rare [13]. Traditionally, the satellites used for Internet service are placed in geostationary/Geosyn-

chronous Equatorial Orbit (GEO), so that service does not depend on the satellite’s current position in its

orbit. However, geostationary satellite networks have a high round-trip time (RTT) of approximately 600ms

[16] due to the far distance from Earth.

The Bandwidth-Delay Product (BDP) of a network, measured in bits, is computed by multiplying

the bandwidth of the network by its round-trip time. It represents the maximum amount of data that can be

traveling within the network without being acknowledged at any given time [21]. While high-BDP networks

may have high bandwidths that allow large transmissions, the long delay in sending messages along them

can interfere with the performance of some network protocols. Modern GEO networks are capable of large

bandwidths in the hundreds of Mbps, but the high RTT also implies a high BDP, making them vulnerable

to these performance problems. For example, a network capable of 100Mbps with average RTT of 600ms,

has a BDP of 7.5MB.

3



2.2 Transport Protocols

2.2.1 Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) builds on the Internet Protocol’s (IP’s) base for network

communications to provide reliable, ordered message transmission with the ability to identify and correct

errors. Thanks to these capabilities, TCP is used for a large portion of Internet traffic [29], especially traffic

that must ensure all the data arrives correctly.

2.2.1.1 TCP Handshake

As part of providing reliable data transmission, TCP begins any connection with a three-way

“handshake” between the client and the server. The client begins with a SYN (synchronize) message, showing

that it wants to start a new connection with the server. The server gets the SYN message, then responds with

a SYN-ACK (synchronize-acknowledge) message that confirms it is ready to establish the connection with that

client. The client finally responds with an ACK (acknowledge) message, which confirms and fully establishes

the connection [43]. This initial handshake is valuable for TCP’s promises of reliability, but requires at least

one full round-trip of transmissions. In a high-RTT environment like GEO satellites, this overhead can be

significant.

2.2.1.2 TCP and Congestion Control

Network congestion occurs when the amount of data currently being transmitted on the network

exceeds the capacity of the components of the network [24]. This condition can lead to packets being lost

in transmission, so avoiding it is important for the performance of the network. While the lost packets can

be retransmitted, this extra data only contributes to the issue. To resolve congestion, the senders must be

throttled to reduce the rate of data being transmitted [24].

As a Transport layer protocol, TCP plays a key role in this congestion control. TCP’s congestion

control scheme has two phases: Slow start, and congestion avoidance. Slow start works by increasing the

size of the “window” that determines how much data it sends at once. It starts with a small window,

and with successive sequences, exponentially increases the size of this window until one of the following

end conditions are met [24]. If a packet is lost, slow start is restarted from the beginning with a minimum

window size. If the preset slow start threshold ssthresh is reached, slow start is complete and the next phase,

4



congestion avoidance, begins. Slow start is used to quickly find the capacity of the network. By default,

Linux starts the window size at cwnd = 10 packets [41], and doubles that size with each iteration. Taking

a goal capacity of 144Mbps and an RTT of 750ms (based on observed results in the later experiments), it

will take approximately 8.25 seconds to ramp up to this maximum capacity at this growth rate.

Congestion avoidance is entered when, theoretically, the network’s capacity has nearly been reached.

As such, while there are many congestion avoidance algorithms with different approaches and techniques,

its continued increase of the window size is typically much slower, often linear instead of exponential. Since

Linux kernel version 2.6.18, TCP-CUBIC has been implemented as the default algorithm [19], with an

approach that rapidly increases window size to reach saturation but slows down as it approaches to not

overshoot.

2.3 HTTP

The HyperText Transfer Protocol (HTTP) is the backbone connecting web servers and clients,

allowing free data exchange regardless of device or platform. It is built on a model where a client makes a

request for media, such as text or images, to a server, which returns a response with the requested media

or an error message indicating why it could not be returned. HTTP is largely stateless, meaning that each

request is independent of each other and the server response is not linked to previous requests. HTTP has

traditionally been built on top of TCP, using it for data transmission [1].

2.3.1 HTTP Versions

HTTP has seen many evolutions that added features or changed approaches, from HTTP/1.0,

published in 1997, to HTTP/3.0, published in 2022.

HTTP/1.0 builds a simple client-server and request-response model. This version closes the under-

lying TCP connection after each request, requiring a new one to be opened each time [17].

HTTP/1.1 was introduced in 1999 to address some of the limitations of HTTP/1.0. The Keep-

Alive header allows TCP connections to be reused for multiple requests, significantly reducing overhead. It

introduced chunk transfer encoding, which allows the server to send a response in parts. Chunk transfer

encoding is used by DASH to send video chunks over a persistent HTTP connection [46].

HTTP/2.0 made changes to support the increased complexity and sizes of data transferred over

the modern Internet, such as converting messages from plaintext to binary, enabling compression of headers,

5



and allowing multiplexing where parallel requests can be made over the same connection [14]. HTTP/2.0 is

currently used by 39.3% of websites [8].

HTTP/3.0, the latest version, was published in 2022. It replaces TCP with a new protocol, QUIC,

which is designed to adapt to more mobile devices and address issues with TCP. Among its changes, QUIC

improves multiplexing performance by resolving the Head-Of-Line blocking issue, allowing data to be trans-

ferred more effectively [25]. HTTP datagrams are introduced, where requests and responses are sent in

different packets [4]. HTTP/3.0 is currently used by 25.7% of websites [8].

2.4 Dynamic Adaptive Streaming over HTTP

Dynamic Adaptive Streaming over HTTP (DASH) is a multimedia streaming technique that uses

conventional HTTP servers to serve content to DASH-aware clients [20]. It supports adaptive bitrate, which

allows the quality level of the content to be adjusted throughout the stream to adapt to network and device

conditions, maximizing the user’s experience while fitting within the constraints of the streaming system’s

capabilities. DASH streaming is designed to be client-driven, where the client receives information on what

is available for the stream and makes its own decisions on what to request next [20].

Content is prepared for DASH streaming through a process known as “DASHing,” where it is split

up into chunks of a fixed length called “segments.” Multiple versions of the content, each at a different

bitrate, can be provided to allow the client to request lower bitrate content, which is easier to download, or

higher bitrate content, which is higher quality but more difficult to download. A manifest file is created that

describes the content being made available, including the different quality levels and the bitrates required for

each of them. For each segment, the client decides which quality level it will request based on its capabilities,

current network conditions, or other factors.

2.4.1 ABR Algorithms

Video streaming over the Internet faces challenges due to varying devices, fluctuating bandwidth,

and challenging network conditions such as high RTT in satellite connections. Adaptive Bitrate (ABR)

streaming aims to provide a smooth viewing experience by selecting the best bitrate based on these conditions

[18].

ABR algorithms can be categorized into three main types: throughput-based, buffer-based, and

hybrid algorithms:
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Throughput-based algorithms estimate the available network bandwidth and predict the bitrate the

network is capable of handling for the next video segment. They decrease video startup time by predicting

the throughput before the video starts and requesting the appropriate bitrate [42].

Buffer-based algorithms, like BOLA (Buffer Occupancy based Lyapunov Algorithm), use buffer

levels to make decisions on the bitrate without predicting the throughput. BOLA uses buffer level thresholds

to change the bitrate when certain buffer levels are reached [38].

Hybrid algorithms combine aspects of both throughput-based and buffer-based algorithms. One

such algorithm, DYNAMIC, uses the fact that throughput-based algorithms perform better when the buffer

level is low and buffer-based algorithms perform better when the buffer level is high, switching between the

two based on the current buffer level to gain the advantages of both [37].

Dash.js, the official DASH reference player, incorporates one algorithm of each type: A throughput-

based algorithm, BOLA as buffer-based, and DYNAMIC as hybrid [37].
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Chapter 3

Related Work

This chapter reviews existing work relevant to the topics involved in this paper, noting key results

and contributions.

3.1 Satellite Networks

The high throughput but extremely high latency of GEO satellite networks is a substantially dif-

ferent scenario from most networks, meaning that the performance of many networking protocols and appli-

cations built on traditional assumptions can be significantly different, often much worse.

Kachooei et al. [23] note that TCP’s traditional slow start phase performs poorly on satellite links,

“often overshooting and causing significant packet loss,” but the TCP HyStart method designed to prevent

this can instead exit too early, also reducing performance. They propose a modified approach that finds a

balanced point to exit, observing improved start-up performance on an actual satellite connection.

3.1.1 TCP Congestion Control

TCP has had many different algorithms proposed for its congestion control phase. However, the

distinct high-latency characteristics of a satellite network break many of the assumptions that traditional

methods are built on, creating the potential for these algorithms to perform poorly.

Claypool, Chung, and Claypool [7] compare congestion control algorithms TCP-BBR, TCP-Cubic,

TCP-Hybla, and TCP-PCC over a real, not simulated, satellite connection. TCP-BBR, TCP-Cubic, and
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TCP-PCC are each designed for traditional networks and represent three different approaches to congestion

control, while TCP-Hybla is optimized for satellite networks. They find that TCP-BBR and TCP-Cubic

perform similarly, but note important differences between TCP-PCC and TCP-Hybla: TCP-PCC achieves

high throughputs and low RTTs; while TCP-Hybla ramps up speed very quickly, making it a strong candidate

for small downloads.

Liu et al. [28] analyze the effects of a Performance Enhancing Proxy (PEP) on TCP performance

over a real, not simulated, satellite connection, comparing the same four congestion control algorithms as [7]:

TCP-BBR, TCP-Cubic, TCP-Hybla, and TCP-PCC. They found that the PEP significantly improved the

start-up performance of all algorithms, with particular benefit to TCP-Cubic and TCP-PCC, which otherwise

exhibited slow start-up times in the satellite environment. With the PEP, all algorithms achieved a small

download (described as a webpage) in about 5 seconds, “about 3 times faster than a default TCP-Cubic flow

without a PEP.”

Obata, Tamehiro, and Ishida [31] assess the TCP-STAR algorithm on a real, not simulated, satellite

connection. STAR [32] was designed to be optimized for satellite connections, reducing damage to throughput

caused by some transmission errors, and increasing the congestion window more quickly. Obata, Tamehiro,

and Ishida [31] compare STAR to TCP-NewReno and TCP-Hybla, finding that “STAR and Hybla achieve

better throughput when segment losses do not occur, while STAR achieves the best throughput when segment

losses occur.”

3.2 DASH

3.2.1 Segment Lengths

DASH uses small segments of video encoded at various quality levels for adaptive bitrate streaming.

Both shorter and longer segment lengths have pros and cons: longer lengths have less player overhead and

can improve encoding efficiency, but have slower adaptation to network conditions; while shorter lengths

provide better latency and network adaptability, but increased risk of stalls [26]. In live video applications,

shorter segment sizes can improve latency but may increase the risk of stalls and playback issues on some

devices [33].

Performance is also affected by the nature of the connection: A persistent connection (supported

by HTTP/1.1 and up) where the HTTP connection is reused for multiple requests creates less overhead

in segment requests, while a non-persistent connection requires a new TCP handshake for each request,
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resulting in more overhead. Lederer [26] finds that, for a persistent connection, segment lengths of around 2

to 4 seconds are ideal, providing “a good compromise between encoding efficiency and flexibility for stream

adaptation to bandwidth changes”; while for a non-persistent connection, longer lengths of around 5 to 8

seconds are better.

3.2.2 ABR Algorithms

Many factors can change what is needed for a stream to perform optimally, such as the use of

multiple devices, different connection links, and changing network conditions. Many ABR algorithms have

been proposed to address different scenarios and requirements. These algorithms can largely be placed into

these distinct categories based on what factors they use to make decisions:

Throughput-based ABR algorithms make decisions using some measure of network throughput to

estimate the available bandwidth. The Dash.js library includes a simple throughput-based ABR rule, which

uses a sliding window approach: It computes throughput based on how long it took to download each segment,

and then picks the highest available encoded bitrate that fits within that measured throughput [10]. Jiang,

Sekar, and Zhang [22] propose FESTIVE, another classic throughput-based algorithm. FESTIVE looks at

the mean of the measured throughput for the past five video segments and uses that to decide on the next

bitrate [22]. FESTIVE also considers the fairness of the bandwidth allocation among multiple video players

sharing the same bottleneck link. Zhou et al. [48] propose TFDASH, a throughput-based control scheme for

video streaming with multiple clients using DASH. The core idea behind TFDASH is to avoid “off” periods

during the downloading process for all clients, i.e., between all the clients, aim for the bandwidth to be fully

utilized.

Buffer-based algorithms make decisions solely based on the buffer level, avoiding the overhead of

throughput estimation. Spiteri, Urgaonkar, and Sitaraman [38] propose Buffer Occupancy based Lyapunov

Algorithm (BOLA), which chooses the bitrate of each segment to download based on the current buffer

level and the expected future buffer level. It uses a set of thresholds on the buffer level to make decisions:

When the buffer level gets high enough, it upswitches to a higher quality level, or when it gets low enough,

it downswitches to a lower one. It models bitrate adaptation as a utility-maximization problem, using

Lyapunov optimization to minimize stalls and maximize video quality.

Hybrid algorithms use a combination of both buffer and throughput-based algorithms. The Dash.js

library includes Dynamic, which switches between BOLA and the throughput rule discussed above, to

attempt to gain the benefits of both. It uses BOLA when the buffer level is above 10 seconds, and switches
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back to throughput when it falls below 10 seconds [37]. De Cicco et al. [12] present ELASTIC, which applies

feedback control theory to create an algorithm that can share a single link with multiple devices, creating

a fair result. ELASTIC uses a feedback loop to adjust the video bitrate based on the available network

bandwidth and the buffer level. ELASTIC does not generate an on-off traffic pattern that can otherwise

lead to unfairness and underutilization [12]. Bentaleb et al. [3] also attempts to create a more fair result

when multiple devices are sharing a single link. They propose GTA, which uses game theory to model ABR

decisions as a bargaining process. GTA works by modeling the interactions between the video player and

the network as a non-cooperative game, where the player and the network compete to maximize their utility.

Learning-based approaches apply machine learning to the ABR problem. Mao, Netravali, and

Alizadeh [30] present Pensieve, which uses reinforcement learning to train a neural network that chooses the

best bitrate for upcoming video chunks. It gathers information from client video players and does not depend

on pre-set models or assumptions. Instead, Pensieve learns to make ABR choices based on the outcomes of

previous decisions.

3.2.3 Quality of Experience (QoE) Metrics

The experience of a user watching a stream is subjective, as each person is sensitive to different

aspects of the stream. Additionally, the application may require different characteristics: A broadcast of a

live sporting event needs to be stable and always keep playing; alternatively, a stream of a scenic video that

plays in the background may prioritize having the video be high quality and look good. With this in mind,

to be able to compare streams it is important to define consistent, objective measures that contribute to a

user’s Quality of Experience (QoE).

Seufert et al. [36] details factors affecting the QoE of a stream, first itemizing and categorizing these

factors, and second identifying a hierarchy of which are most important and when two factors contradict each

other. They note four categories of “Perceptual” factors: Waiting Times include the time to start playing

and time in stalls; Video Adaptation includes how frequently the quality switches and how big the switches

are; Video Quality includes all the factors of the video quality; and Context Factors includes details of what

is being watched and how it is being played. They found that stalls were more impactful to QoE than quality

level changes, time to start playing, or video quality. Additionally, video quality was more important than

framerate in “spatially complex videos,” on small screens, or with fast foreground motion.

Yin et al. [47] and Bentaleb, Begen, and Zimmermann [2] use four QoE factors: Average video

quality, average size/magnitude of quality changes, total stall time, and time to start playing. They use a
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weighted sum of these factors to be able to address different user preferences or application requirements.

Yin et al. [47] discusses three archetypes: a balanced user, one that prefers the video quality not change

much, and one that prefers the stream not stall.
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Chapter 4

Methodology

This chapter describes the test bench used for and the procedures of the experiments.

4.1 Test Bench Setup

The experimental setup is depicted in Figure 4.1, consisting of a client, a server, and a network

connection between them. Its components are discussed below.

Figure 4.1: Experimental Setup
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4.1.1 Components

4.1.1.1 Glomma

Glomma is the client device that initiates the video streams and receives the data. It runs Ubuntu

18.04.6 LTS with kernel version 4.15.0-202-generic. It is equipped with a single Intel Core i7-5820k CPU

at 3.3GHz, 32 GB of RAM, and a single 4 TB HDD.

4.1.1.2 MLCNet Servers

The MLCNet servers are used as the source for the streaming data during the tests. Four servers are

available, denoted A, B, C, and D. They are virtualized using Kubernetes, running on shared resources. While

the configurations of each are slightly different, all tests discussed were performed on MLCNetC, so only its

configuration is discussed. MLCNetC runs Ubuntu 18.04.6 LTS with kernel version 4.15.0-194-generic.

It is equipped with two cores of an Intel E312xx CPU (shared with other servers) at 2.5GHz, 4 GB of RAM,

and 42 GB of available HDD space.

Apache version 2.4.29 is used to serve the data used in the tests. DASH is designed to run on

standard HTTP servers, so no DASH-specific configuration was performed. However, a Let’s Encrypt SSL

certificate was configured using Certbot, to provide HTTPS support for the streams.

4.1.2 Network Connection

Glomma can be configured to transfer data to the servers using either the satellite connection or

the WPI LAN. MLCNet servers receive data from both sources via the WPI LAN, with the only distinction

being the IP address that the data is received from.

Glomma is connected to the network by two Intel I210 Gigabit Ethernet Controllers, one connected

to the WPI LAN via a Gigabit-capable link, and one connected to the Viasat router via a Gigabit-capable

link. The Linux ip route utility is used to create static routes that ensure outgoing network connections

directed towards an MLCNet server hostname are routed through the network controller connected to the

Viasat link. These routes are deleted when the device restarts and may be deleted in other situations, so it

must be verified that the correct routes were in place when a test began.

The MLCNet servers are connected to the network by a virtual Ethernet adapter, connected to the

WPI network via a Gigabit-capable link.
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4.1.2.1 Local Area Network (LAN) Connection

The WPI LAN connects to the Internet via several 10 Gigabit links, with each user throttled to a

maximum of 1Gbps. All devices used in these experiments are connected to the LAN via wired Ethernet.

4.1.2.2 Geostationary Satellite Connection

Satellite connectivity is provided by the Viasat network, which uses a set of satellites in geosta-

tionary orbit/Geosynchronous Equatorial Orbit (GEO). The large distance required by the orbits causes

unusually high Round-Trip Times (RTT), despite the high bandwidth capability of the network. Due to the

geographic location of the test bench at WPI, it connects to the ViaSat-2 satellite. A Viasat router/modem

combination device is connected via Ethernet to the local device(s), and communicates with the satellite

using a Ka-band outdoor antenna. The service plan set up provides a peak data rate of 144Mbps. The

Performance Enhancing Proxy (PEP) on the network was disabled during tests.

4.1.3 Test script

A test script was created for use during experiments. The first component is a webpage that

integrates the Dash.js player and collects statistics from the player during the stream. It was based on the

script created by Xu and Claypool [45], but with significant additions to collect more data during the course

of the test and better support automation. While the script simply loads the latest version of Dash.js from

its CDN, v4.6.0 was the latest published at the time of both experiments. The webpage is run in a headless

environment, using Firefox v109.0.

The Dash.js player is highly configurable, including settings that affect its buffering behavior [11].

While these settings were experimented with early in the course of study, they were not focused on. The

settings were fixed at the same values throughout all experiments, with these values depicted in Table 4.1.

Name Value

bufferToKeep 20 sec
stableBufferTime 20 sec

bufferTimeAtTopQuality 40 sec
fastSwitchEnabled true

initialBufferLevel NaN

Table 4.1: Settings for buffer-related configuration of Dash.js player in test script.

The other component of the test script is a Python script, responsible for automating the majority
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of the test procedure so it can be easily and reliably replicated. It is run using Python v3.10.9. This script

integrates with the webpage using Selenium v4.6.0, automatically inputting the manifest file to stream,

starting the stream, and detecting when the stream has completed.

The Python script also launches other programs that collect additional data. UDPing [44] is used

to track round-trip-times during the course of the test, sending a packet every 250 ms. This UDP-based

utility is necessary because WPI’s network blocks traditional ICMP-based pings. tshark, a terminal-oriented

version of Wireshark, is used to collect network traces on both the client (v3.6.7) and server (v2.6.10) during

the test. It takes all the collected data and puts it into a single folder for the current test.

The data collected by the test script and the reasoning for collecting each point are described in

Table 4.2. The source code for the test script is available at [40].

4.2 Test Video

One test video was prepared and used for all tests, based on the Big Buck Bunny [15] sample video,

an open-source film commonly used in the literature [3, 27, 45]. The video is 10 minutes and 33 seconds long,

or 633 seconds in total. To support DASH streaming’s adaptive bitrate, the video is re-encoded at multiple

bitrates. Creating more quality levels allows more flexibility in bitrate adjustment, but takes up more storage

space on the server hosting the content. Our choices for bitrates (referred to as “quality levels”) were based on

Xu and Claypool [45], but added an additional, higher quality level to ensure that the maximum bitrate was

sufficient to stress the satellite link. The quality levels and their specifications are documented in Table 4.3.

The base video, at a resolution of 3840x2160 pixels and 60 frames per second, was independently re-encoded

into each quality level using FFmpeg [35] version git-2020-02-24-bc9b635. Those encoded videos were

then DASHed into segments using mp4box [34] version 2.0-rev0-g418db414-master. The segment length

was adjusted depending on the experiment, and the settings are shared in those sections. Note that no audio

was included in the encoded videos (using the -an FFmpeg command), as the DASH streams would not play

correctly when audio was included.

Note that both the encoding and DASHing steps have several parameters that can be changed,

affecting the output and results. One pair of parameters caused unexpected issues. With the mp4box utility,

the -dash (number) option creates output videos with segment lengths (a DASH concept) of the given

duration, while the -frag (number) option creates output videos with fragment lengths (an MP4 concept)

of the given duration. In theory, these may be set to different values as long as the fragment length is less

than or equal to the segment length, since the MP4 video may not play properly if a fragment is split up and
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Name Frequency Method Purpose

Realtime
elapsed since
start of test

Every 0.5 seconds JavaScript on web-
page

To find out how long the test
has been running when events
occur.

Video time
elapsed since
start of test

Every 0.5 seconds JavaScript on web-
page

To find out how far in the video
has gotten when events occur.

Current framer-
ate, resolution,
and bitrate of
video

Every 0.5 seconds JavaScript on web-
page

Determine the quality level
playing at any given time.

Current size of
buffer

Every 0.5 seconds JavaScript on web-
page

Understand how buffer-based
ABR algorithms make their
decisions.

Current esti-
mated through-
put

Every 0.5 seconds Dash.js player out-
put

View the player’s understand-
ing of the network conditions.

Time video
took to start
playing

Once at beginning JavaScript on web-
page

Measure QoE metric.

Start time,
stop time, and
length of stalls

At every stall JavaScript on web-
page

Measure QoE metric.

Time and new
level of quality
change

At every quality
change

JavaScript on web-
page

Measure QoE metric.

Wireshark trace
from client

Constant throughout
test

Wireshark View network activity on the
client device for test data and
to identify conflicting traffic.

Wireshark trace
from server

Constant throughout
test

Wireshark View network activity on the
client device for test data and
to identify conflicting traffic.

Packet round-
trip time and
loss data

Every 0.25 seconds UDPing Identify if the network is behav-
ing differently from expected or
dropping too many packets.

Table 4.2: Descriptions of the data collected by the test script and the purposes of each point.

Quality Level Resolution Framerate Bitrate

1 480x270 60FPS 2Mbps
2 640x360 60FPS 3Mbps
3 960x540 60FPS 5Mbps
4 1280x720 60FPS 10Mbps
5 1920x1080 60FPS 17.2Mbps
6 3840x2160 60FPS 40Mbps

Table 4.3: Quality levels the video was prepared in, and the specifications of each.
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only part is downloaded at a time. However, in testing, this produced videos that were encoded incorrectly,

displaying visual artifacts, skipping parts of the video, and jumping around to other parts of the video than

expected. Setting fragment length always equal to segment length resolved this issue, and all results shared

in this paper were DASHed using this condition.

4.3 Pilot Tests

While the Dash.js player is a common DASH player in the literature [3], the test script used by

this paper customizes Dash.js’s behavior (see Section 4.1.3) and adds many additional systems and routines.

In addition, the videos used during the tests were encoded and DASHed with different tools and different

settings. As such, it is important to verify that these modifications do not substantially affect the behavior

of the stream, incorrectly skewing results. A series of pilot tests were conducted to check this.

4.3.1 Format

The pilot tests were conducted on a different computer from the rest of this paper, a desktop

PC running Windows 10 with a display connected. This computer was configured to route all of its traffic

through the Viasat link. Tests were recorded using Open Broadcaster Software Studio (OBS Studio) for later

review and assessment. Since the other players did not have the same systems for collecting performance

data during the test, objective comparison between them could not be made using these performance metrics.

Instead, a text description of the performance was written down during the course of the test, focusing on

the stalls and quality level changes experienced.

The player used in this paper was compared to two other players. The DASH Industry Forum

(DASH-IF) provides an online reference player for the Dash.js library [9], demonstrating its capabilities and

customization options. v4.5.0 of this player was included in the comparison. Bitmovin provides an online

reference player for Bitdash [5], their proprietary player based on the open-source “libdash” library also

published by them. The version of this demo available on 2023-01-22 was included in the comparison; the

exact version number was not recorded during the test, but it was between v8.98.0 and v8.111.0.

Each player was tested on a video provided by Streamroot [39], which is delivered over the Akamai

CDN. Its quality levels are described in Table 4.4, with bitrates ranging from 3 Mbps to 20 Mbps. The

20 Mbps maximum bitrate is large enough to stress the satellite connection, though not as high as the

maximum of the video prepared for this paper. The video is approximately three minutes long, not as long
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Quality Level Resolution Framerate Bitrate

1 1280x720 ∼24FPS 3Mbps
2 1920x1080 ∼24FPS 5Mbps
3 2880x1620 ∼24FPS 7Mbps
4 3840x2160 ∼24FPS 10Mbps
5 3840x2160 ∼24FPS 15Mbps
6 3840x2160 ∼24FPS 20Mbps

Table 4.4: Quality levels of Streamroot video used in pilot tests.

as this paper’s test video but long enough for the satellite connection to ramp up to maximum bitrates. The

manifest file used the “SegmentBase” format, same as this paper’s test video.

4.3.2 Results

Only one full trial of each test was completed. For concision, quality levels (QL) are abbreviated

as QL1 (lowest) through QL6 (highest). Note that the quality levels described in this section are

not connected to the quality levels in the rest of the paper.

DASH-IF player: Took 10 seconds to begin playing. Began at QL1. QL changed frequently, in the

range QL1 to QL6, for the first 40 seconds of the video. At that point, QL changed to QL5 and stayed there,

maintaining a buffer size of around 5 seconds, for 45 seconds. Then QL dropped to QL1, and the buffer size

started to build up to around 15 seconds, with QL slowly climbing up to QL6. After 20 seconds, QL dropped

to QL1 as the buffer level nearly hit zero, but quickly returned to QL5. After 40 seconds, QL increased to

QL6 and stayed there for the last 10 seconds of the video.

Bitmovin player: Took 15 seconds to begin playing. Began at QL1. Within the first 10 seconds,

QL increased to QL4 and then stalled for 7 seconds. After about 20 seconds, QL increased to QL5 and

immediately stalled for 10 seconds. QL dropped to QL4 and resumed playing, maintaining buffer level size

of 1-6 seconds, for 1 minute. QL dropped to QL2 as it stalled for 3 seconds. QL stayed at QL2, with buffer

level size increasing to 15 seconds, for about 1 minute. At that point, QL increased to QL6 for the last 20

seconds of the video.

Our player: Took 13 seconds to begin playing. Began at QL1. Attempted QL2 for a short time

but returned to QL1 and built up buffer for around 30 seconds. Upswitched to QL6 and swapped between

that and QL5 for about 45 seconds. With buffer size falling, QL dropped down between QL2 and QL4 and

built up buffer size to around 15 seconds. After 10-15 seconds of time elapsed, upswitched back to QL6 and

stayed there for the rest of the test, maintaining a buffer size of 10-15 seconds.
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4.3.3 Discussion

All three players took a comparable amount of time to start playing, about 10-15 seconds, and

started at the lowest quality level. The DASH-IF player made by far the most quality level changes at the

beginning, going through the entire range of levels. Our player changed fewer times, briefly higher attempting

a higher quality level before returning to the minimum. The Bitmovin player attempted a couple upswitches

early on, but was unsuccessful with both resulting in stalls.

After the start, all players found a stable quality level that they stayed at for some time. However,

after roughly a minute, each found the buffer level falling and downswitched, with DASH-IF and our player

avoiding the stall experienced by Bitmovin.

Bitmovin stayed at a low quality level for most of the remaining time, only changing to maximum

for the last 20 seconds. Both the DASH-IF player and our player were able to reach the top two quality

levels and stay in that range for the rest of the test. Note that all players were able to reach the maximum

quality level by the end of the video, but varied in how long they spent there.

4.3.4 Conclusion

The Bitmovin player appeared to be the most aggressive in upswitches, and was also the only

player to stall. While all three players experienced a sudden drop in buffer level in the middle of the test,

the Dash.js-based players (DASH-IF, ours) were just barely successful in avoiding stalls. The DASH-IF

player changed quality levels many more times at the start of the video than the others. Overall, our player

behaved similarly to the other Dash.js-based player (DASH-IF), indicating that the choice of player is not

significantly different.

4.4 Experimental Setup

4.4.1 Test Procedure

The test is run using an automated script that handles launching the test and organizing the

resulting data in to a consistent location. At the beginning, it outputs the current values for CPU utilization,

logged-in users, and network route configuration. These are used to verify that the client has the correct

routes configured and that external factors, like excessive utilization from another user, are not impacting
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test results. The test is run in headless mode.

The order of startup for each component was chosen to ensure that each data collection component

has sufficient time to start operating, before the stream itself begins. For example, tshark will return from

a command to launch and allow execution to continue before it has completely started collecting data. This

ordering is depicted in Algorithm 1.

The stream completing is automatically detected by Selenium using a DOM element that is placed

on the page by JavaScript when the video ends. If the stream takes more than 30 minutes to complete, it is

considered to have “timed out,” and is automatically stopped. Timed-out results are manually discarded.

Algorithm 1 Sequence of events in the test procedure.

1: Output validity verification data
2: Start Wireshark on server
3: Start UDPing server on server
4: Start Wireshark on client
5: Start UDPing client on client
6: Launch browser and open test webpage
7: Enter test manifest file on webpage
8: Detect stream finishing (or timeout and kill manually)
9: Stop UDPing client on client

10: Stop UDPing server on server
11: Stop Wireshark on server
12: Stop Wireshark on client
13: Download Wireshark data from server
14: Wait 5 seconds for local Wireshark capture to complete
15: Move all collected data into a directory for this test and output the name
16: Close browser and exit

4.4.2 Variables

4.4.2.1 Independent Variables

Two variables were studied to understand their impact on DASH performance. Table 4.5 introduces

the independent variables investigated in this experiment.

The segment length affects the duration of the individually downloadable video segments. Generally,

longer segments are larger in size. Lederer [26] found that segment lengths had a notable impact on DASH

performance, due to the overhead required for requesting and downloading each segment. Shorter segments

take less time to download due to the smaller size, but the overhead caused by starting the download is

relatively fixed and therefore is a more significant portion of the overall size for a shorter segment. They

found that 2-4 seconds was an optimal segment length. However, their study used a network latency of
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Parameters Rationale

Segment length Overhead in requesting segments
ABR algorithm Characteristics of different algorithms may fit high RTT

Table 4.5: Independent variables

150ms, significantly less than the 600ms expected in a GEO satellite network, so the overhead was expected

to play an even more significant role in this paper’s scenario.

The ABR algorithm affects what information the DASH player uses to make quality level decisions

and how it uses it. The Dash.js player includes three standard algorithms, each representing a different

category of approach: Throughput (rate-based); BOLA (buffer-based); and Dynamic (hybrid) [37]. Dynamic

is set as the default of Dash.js. While these algorithms represent a mix of approaches on their own, there

is still significant interest in studying their performance and proposing new algorithms that may perform

better in certain scenarios [3, 12, 22]. Research on ABR algorithm performance in GEO satellite networks

is limited.

4.4.2.2 Dependent Variables

A variety of metrics were collected to first check the validity of results, then to objectively evaluate

and compare the performance of each stream. The full set of data collected is described in Section 4.1.3;

the metrics treated as indicators of the stream performance are discussed here. “Measured throughput” is

calculated using the packet capture data from the Wireshark trace on the client, using the packet sizes to

determine the amount of data transferred over time. It is the only indicator that is not observed by the

user, but provides insight into how successful the client was at receiving stream data. A higher average

measured throughput should indicate a better stream as it would be able to transfer higher quality level

video segments, but if the measured throughput was sometimes high and sometimes low it could indicate

the quality level changing frequently which is not desirable.

The other indicators can be considered Quality of Experience (QoE) metrics, as they determine

how good the stream appears to the user. Most QoE metrics assessed in this paper are based on Bentaleb,

Begen, and Zimmermann [2] and Yin et al. [47]. “Time to begin playing” is the amount of time elapsed

between the stream being started and the content itself actually beginning to play. The content only begins

to download once the stream is started, and it takes time to be downloaded. A longer time to start means

the user has to wait for longer. “Number/size of stalls” relates to how frequently the stream’s buffer reaches

zero and has to stop to wait for more content to download (termed a “stall”), and how long the user has to
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Parameters Rationale

Measured throughput Determines video quality that can be transferred
Time to begin playing Waiting time should be as minimum as possible
Number/size of stalls Stalls frustrate user

Number of quality changes Unstable quality worsens experience
Average quality level Higher quality is better
Absolute time to finish Determined by stalls and other issues along the way

Table 4.6: Dependent variables

wait for that content to download once a stall begins. More and longer stalls frustrate the user. “Number

of quality changes” captures how often the stream player changes to a higher or lower quality level via the

adaptive bitrate selection algorithm. A stream that oscillates between the lowest and the highest quality

levels may be less desirable than a stream that chooses a middle quality level and stays there consistently.

“Average quality level” measures what quality level the stream was at most of the time; calculated in this

paper as the mode, or most common. A stream that spends more time at a higher quality level is more

desirable. “Absolute time to finish” is based on how long elapsed between the stream starting and the stream

completing, and is compared to the actual length of the video to determine how much extra time was needed

to finish it, due to stalls and other issues. A stream that took 30 minutes to complete a 10 minute video

is less desirable than a stream that took 15 minutes to complete that same video. It is important to note

that these metrics do not always change together, and in fact sometimes act as tradeoffs, where improving

one metric worsens another. For example, a stream can be tuned to reduce the number of stalls by fixing it

at the lowest quality level, which decreases the average quality level. Depending on the application of the

stream, some tradeoffs may be more optimal.

Table 4.6 includes the dependent variables we are trying to quantify.
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Chapter 5

Analysis

This chapter presents our test data and identifies notable results. The first subsection focuses on

the segment length experiment, while the second focuses on the Adaptive Bitrate (ABR) experiment.

5.1 Segment Length Test

In the segment length test, a total of n = 3 full runs were completed for each of the three settings

(5 second, 10 second, and 20 second). All results that do not identify individual runs or name a specific one

are aggregate results where all runs were factored in.

5.1.1 Time to Start Playing

Longer segments are larger in file size, so they are expected to take longer to start playing. As

observed in Table 5.1, both 10 sec and 20 sec segment lengths take longer than 5 sec, but 10 sec and 20 sec

are not substantially different. This suggests that the time required to download may “plateau” once the

connection has enough time to ramp up in speed.

Setting Mean (sec) 95% Confidence (sec) Stdev (sec)

5 sec 6.8 ±2.0 0.6
10 sec 11.1 ±0.8 0.3
20 sec 11.5 ±1.9 0.6

Table 5.1: Segment length test, time to start playing. Time elapsed between starting the stream
and the video beginning to play, due to downloading the first segment.
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Setting Mean (#) 95% Confidence (#) Stdev (#)

5 sec 45.0 ±8.2 5.9
10 sec 0 ±0 0
20 sec 0 ±0 0

Table 5.2: Segment length test, stall counts. Total number of individual stalls observed over the
course of the test, regardless of the length of the stall.

Setting Mean (sec) 95% Confidence (sec) Stdev (sec)

5 sec 4.0 ±0.6 3.2
10 sec 0 ±0 0
20 sec 0 ±0 0

Table 5.3: Segment length test, stall lengths. Average lengths of stalls observed over the course of the
test.

5.1.2 Stall Counts

Longer segments are supposed to be more stable, as they mean the player has more video to work

with when before it needs to download a new segment. The data in Table 5.2 support this, with 10 sec and

20 sec never stalling at all.

5.1.3 Stall Lengths

Data on stall lengths are depicted in Table 5.3. Once again, since only 5 sec segment length stalled,

it is the only one with nonzero results, exhibiting average stall lengths of 4.0 seconds. Figure 5.1 shows the

distribution of stall lengths for each setting visually.

5.1.4 Total Amounts of Stall Time

Data on the total amount of time spent in a stall over the course of the test are depicted in Table 5.4,

computed as the product of the number of stalls and the average length of those stalls. Since only 5 sec

segment length stalled, it is the only one with nonzero results. With a total video time of 633 seconds, stall

time took up 22% of the total time required to complete a stream on average.

Setting Total (sec)

5 sec 180.3
10 sec 0
20 sec 0

Table 5.4: Segment length test, total amounts of stall time. Total amount of time spent in a stall
over the course of the test, the product of the number of stalls and the average length of those stalls.
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Figure 5.1: Segment length test, stall length box plots. Distribution of stall lengths over the course
of the test.

Setting Mean (#) Stdev (#)

5 sec 62.7 3.3
10 sec 0 0
20 sec 0 0

Table 5.5: Segment length test, number of quality level changes. Number of quality level changes
observed over the course of the test, regardless of whether it is an upswitch or downswitch.

5.1.5 Quality Level Changes

Table 5.5 shows the average number of quality level changes observed over the course of the segment

length tests. 5 seconds is the only one to change quality at all, and changed an average of 62.7 times in total.

5.1.6 Network Throughputs

Table 5.6 compares estimated throughput numbers between each setting. 5 sec segment length

achieves substantially higher estimated throughputs, but it should be noted that the throughput is limited

by the quality levels: If a low bitrate segment is being downloaded, the throughput will never be that high

because the ramp-up time becomes a more significant part. With 10 sec and 20 sec segment lengths never

changing quality, this occurs, and limits their throughputs. Figure 5.2 shows the estimated throughput over

time for each run of the 5 second segment length setting.
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Setting Mean (Mbps) Stdev (Mbps)

5 sec 36.6 29.8
10 sec 3.0 0.8
20 sec 4.1 0.9

Table 5.6: Segment length test, estimated throughputs. Throughput metrics, as reported by the
Dash.js player’s throughput estimator. Averaged over all runs of the setting.

Setting Mean (Mbps) Stdev (Mbps)

5 sec 7.5 17.0
10 sec 2.1 2.9
20 sec 2.1 4.0

Table 5.7: Segment length test, measured throughputs. Throughput metrics, as measured by the
Wireshark trace on the client. Averaged over all runs of the setting.

Table 5.7 compares measured throughput numbers between each setting. Similar to the estimated

numbers, 5 sec segment length achieves much higher throughputs, though this can be explained by the same

issue referenced above. Figure 5.3 shows the measured throughput over time for each run of the 5 second

segment length setting.

Figure 5.4 compares the estimate of throughput to the measured throughput for the first run of

the 5 sec segment length. The estimated throughput spikes as segments are downloaded, then falls when the

buffer is filled up. In this case, it creates an “envelope” over the top of the measured throughput.

Notice that in the 5 second segment length test, the measured throughputs are smaller, roughly 1/5

of the estimated throughputs. This difference may be explained by the fact that the estimated throughputs

are “smoothed” by being a lagging indicator of network traffic, as opposed to the very bursty nature of

actual network requests. Since the estimated throughput does not return to near zero almost immediately

after spiking (see Figure 5.4), there are fewer zero values to reduce the arithmetic mean compared to the

measured throughput.
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Figure 5.2: Segment length test, estimated throughput vs time. Throughput over time, as re-
ported by the Dash.js player’s throughput estimator. 5 second segment length.

Figure 5.3: Segment length test, measured throughput vs time. Throughput over time, as mea-
sured by the Wireshark trace on the client. 5 second segment length.

Figure 5.4: Segment length test, estimated and measured throughput vs time. Comparing esti-
mated throughput to observed throughput over time. 5 second segment length, first run.
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Setting Mean (sec) 95% Confidence (sec) Stdev (sec)

Dynamic 4.6 ±0.7 0.6
Throughput 4.4 ±0.4 0.3

BOLA 4.5 ±1.7 1.2

Table 5.8: ABR algorithm test, time to start playing. Time elapsed between starting the stream
and the video beginning to play, due to downloading the first segment.

Setting Mean (#) 95% Confidence (#) Stdev (#)

Dynamic 25.8 ±14.5 16.5
Throughput 27.7 ±15.8 18.0

BOLA 16.6 ±11.1 11.3

Table 5.9: ABR algorithm test, stall counts. Total number of individual stalls observed over the
course of the test, regardless of the length of the stall.

5.2 ABR Algorithm Test

In the ABR algorithm test, a total of n = 6 full runs were completed for each of the three settings

(Dynamic, Throughput, BOLA). All results that do not identify individual runs or name a specific one are

aggregate results where all runs were factored in. However, the third run of BOLA timed out and was not

repeated, so its results were discarded. Therefore, any aggregate results of BOLA only have n = 5 runs

factored in.

5.2.1 Time to Start Playing

Longer segments are larger in file size, so they are expected to take longer to start playing. Table 5.8

depicts measurements of the time it took each setting to start in the ABR algorithm experiments. The means

of all three algorithms are similar, though BOLA has a slightly higher standard deviation.

5.2.2 Stall Counts

Table 5.9 shows that BOLA had a lower average total number of stalls, though it still fell within

the confidence intervals of the other values. This may indicate that BOLA is more successful in selecting

quality levels in the satellite scenario.
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Setting Mean (sec) 95% Confidence (sec) Stdev (sec)

Dynamic 4.6 ±0.49 3.1
Throughput 4.6 ±0.46 3.0

BOLA 3.6 ±0.53 2.4

Table 5.10: ABR algorithm test, stall lengths. Average lengths of stalls observed over the course of
the test.
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Figure 5.5: ABR algorithm test, stall length box plots. Distribution of stall lengths over the course
of the test.

5.2.3 Stall Lengths

Table 5.10 contains the average lengths of stalls for each algorithm, while Figure 5.5 shows the

distribution of stall lengths for each setting. BOLA has a lower average length of stall, and its confidence

interval falls just outside the confidence interval of the Throughput algorithm, indicating a significant dif-

ference between these. It is just barely within the confidence interval of Dynamic, which could also suggest

a difference there. Once again, BOLA exhibits signs of being better at selecting bitrates in the satellite

network.

5.2.4 Total Amounts of Stall Time

Table 5.11 shows the total amount of time each setting spent in a stall on average, over the course

of the test. As expected with fewer, shorter stalls, BOLA spends the least time in a stall, roughly half as

long as the others.
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Setting Total (sec)

Dynamic 117.7
Throughput 128.1

BOLA 59.8

Table 5.11: ABR algorithm test, total amounts of stall time. Total amount of time spent in a stall
over the course of the test, the product of the number of stalls and the average length of those stalls.

Setting Mean (#) Stdev (#)

Dynamic 48.2 17.7
Throughput 48.0 18.6

BOLA 35.2 19.8

Table 5.12: ABR algorithm test, number of quality level changes. Number of quality level changes
observed over the course of the test, regardless of whether it is an upswitch or downswitch.

5.2.5 Quality Level Changes

Figure 5.7 and Table 5.12 show BOLA experiencing fewer quality level changes, and its confidence

interval for this number falling outside those of the other two algorithms. This provides evidence for BOLA

picking more optimal quality levels, having to then try again less often. Additionally, Figure 5.6 shows that

BOLA spends less time at the lower quality levels (1-4) and much more time at Quality Level 5. Between

fewer changes and a larger share of higher quality levels, BOLA appears to perform better.

5.2.6 Network Throughputs

Table 5.13 shows the DASH player’s averages for its estimate of throughput for each algorithm.

The standard deviations of each are comparable, but BOLA has a notably higher mean value for estimated

throughput, roughly 23% higher. With BOLA being the only algorithm of the two to not consider through-

put at all in its decisions, it suggests that ignoring its measures of throughput allows it to achieve better

performance. When looking at actual measured throughputs in Table 5.14, the difference between BOLA

and the other algorithms is smaller, but still around 17%.

Figure 5.8 shows the estimated throughput over time for the BOLA algorithm, for each run. Fig-

ure 5.9 shows the actual measured throughput over time for the BOLA algorithm, for each run. Figure 5.10

compares the measured to actual throughputs directly to each other, for the BOLA algorithm, for each run.

As with Section 5.1.6, the measured throughputs are smaller, though this time the measured

throughputs are instead about 1/3 of the estimated throughputs. The reason for this is likely similar,

as Figure 5.10 exhibits the same behavior.
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Figure 5.6: ABR algorithm test, quality level distribution. Distribution of quality levels over the
course of the test.

Figure 5.7: ABR algorithm test, quality level change distribution. Distribution of quality level
changes per minute over the course of the test.
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Setting Mean (Mbps) Stdev (Mbps)

Dynamic 48.8 31.4
Throughput 46.4 32.2

BOLA 60.1 32.2

Table 5.13: ABR algorithm test, estimated throughput. Average and standard deviation of
throughput, as reported by the Dash.js player’s throughput estimator. Averaged over all runs of the set-
ting.

Setting Mean (Mbps) Stdev (Mbps)

Dynamic 14.7 22.6
Throughput 14.5 22.4

BOLA 17.1 26.6

Table 5.14: ABR algorithm test, measured throughput. Average and standard deviation of through-
put, as measured by the Wireshark trace on the client. Averaged over all runs of the setting.
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Figure 5.8: ABR algorithm test, estimated throughput vs time. Throughput over time, as reported
by the Dash.js player’s throughput estimator. “BOLA” ABR algorithm.
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Figure 5.9: ABR algorithm test, measured throughput vs time. Throughput over time, as mea-
sured by the Wireshark trace on the client. “BOLA” ABR algorithm.
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Figure 5.10: ABR algorithm test, estimated and measured throughput vs time. Comparing esti-
mated throughput to observed throughput over time. “BOLA” ABR algorithm, first run.
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Chapter 6

Conclusion

The results of the segment length experiment are fairly simplistic, due to a clear division between

the settings: The 10 second and 20 second segment lengths never stalled, but also never changed quality levels

and always stayed at the minimum level. While the stability of those higher segment lengths is desirable,

the 3Mbps bitrate of the video is poor, well below the capabilities of the satellite connection. Overall, the

hypothesis that the larger segments would allow the HTTP connection more time to ramp up to high speeds

was not supported by our evaluation.

A clear reason for the unexpected behavior of the higher segment lengths was not identified. The

estimated throughput never gets very high, which could suggest that the player may be limiting itself by

assuming the low throughput indicates it could not handle a higher bitrate, while it is actually just because

the low bitrate video never gives it enough time to ramp up the bitrate. However, all experiments showed the

player starting at the same low bitrate, and the others achieved higher bitrates. It could be a consequence

of the limited buffer size set: The regular buffer size of 20 seconds allows a maximum of four segments at 5

seconds each, but only two for 10 seconds, or one for 20 seconds. With this restricted buffer, the player may

not think it has the space to try any downloads that could be unsuccessful.

The ABR algorithm experiment showed notable differences in performance between the algorithms.

BOLA had fewer stalls and those stalls were, on average, shorter. Its stall lengths were shorter than the

Throughput algorithm’s, though just barely not significantly different from the Dynamic algorithm. BOLA

also had fewer quality level changes, significantly lower than Throughput and Dynamic; and spent a much

larger share of time at the second-highest quality level. BOLA achieved higher average throughputs, both

in its internal estimate and the actual observed values.
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These results largely suggest that BOLA is better for the high-BDP GEO satellite network. This

could be because it is difficult for the throughput estimator to achieve a good estimate of the network’s

bandwidth, due to the high latency, so the algorithm that does not use this estimate is more successful.
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Chapter 7

Future Work

There is substantial opportunity to either address limitations of this work, or to continue it by

expanding the scope further.

7.1 Limitations

The test video used did not include audio due to the stream with audio not playing correctly.

While this does mean the results focus only on the video stream, avoiding any other conflicting factors, most

practical applications of video streaming include at least one audio track, so its effects could be investigated.

This separate track is also typically served over DASH as a separate stream, and it would be valuable to

see how the satellite scenario handles two streams at the same time, one low bitrate (audio) and one high

bitrate (video). Future work should investigate streams of both video and audio over a satellite.

This work does not fully establish a cause for why the 10 second and 20 second segment length

streams never change quality level from the minimum. But since they were never observed to stall, it

indicates that there is excess bandwidth capacity for higher bitrates. Further work should identify the cause

for this issue, and resolve it if possible to truly understand DASH performance with these segment lengths.

7.2 Opportunities

We conducted six tests for each ABR algorithm and found statistically significant results indicating

better performance by ABR BOLA. However, there is potential for conducting additional tests with each
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algorithm to gather more data. Furthermore, our tests used a segment length of 4 seconds for all ABR

algorithms. Examining the impact of varying segment lengths on each algorithm’s performance could deliver

insightful results.

As discussed in Chapter 3, there have been many ABR algorithms proposed with different ap-

proaches to the ABR problem. Since the BOLA algorithm is shown in this paper to have significantly

different performance, there is reason to believe other ABR algorithms could have similar improvements or

degradations in performance. These algorithms should be investigated over a GEO satellite network.

While the three segment lengths tested in this paper represent a wide range of values, they still do

not extend down to the lowest lengths recommended for typical networks [26], nor to extremely high lengths.

Comparing a low segment length over a traditional network directly to a GEO satellite network could help

to identify precisely how differently the two networks behave. Testing extremely high segment lengths could

demonstrate if there is a “peak” of performance at a sweet spot, or if unusual behavior arises at the high

end.

This work only runs a single stream at a time, but having multiple DASH streams competing for

bandwidth at once has been shown to cause many performance challenges [3, 12, 22]. It is possible that

some fairness schemes, such as those that require information to be transmitted across the network between

agents, could struggle on a GEO satellite network, where sending even small messages can take a long time.

Future work should run multiple streams at once to observe how various ABR algorithms compete over a

satellite connection.

The modern QUIC transport protocol is becoming the new standard, over the long-living TCP.

While QUIC provides little benefit over TCP when running through a GEO satellite network [29], it is still

possible that the application of DASH will behave differently and exhibit more of a difference. Additionally,

TCP has many different congestion control algorithms available, some of which are designed specifically for

high-latency satellite connections. These should be compared to identify if there are any opportunities to

improve performance.
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Figure A.1: Segment length test, distributions of quality levels. Distribution of quality levels over
the course of the test.

Figure A.2: Segment length test, box plots of quality level changes per minute. Distribution of
quality level changes per minute over the course of the test.
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Figure A.3: Segment length test, estimated throughput vs time. Throughput over time, as re-
ported by the Dash.js player’s throughput estimator. 10 second segment length.

Figure A.4: Segment length test, estimated throughput vs time. Throughput over time, as re-
ported by the Dash.js player’s throughput estimator. 20 second segment length.

Figure A.5: Segment length test, measured throughput vs time. Throughput over time, as mea-
sured by the Wireshark trace on the client. 10 second segment length.
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Figure A.6: Segment length test, measured throughput vs time. Throughput over time, as mea-
sured by the Wireshark trace on the client. 20 second segment length.

Figure A.7: Segment length test, estimated and measured throughput vs time. Comparing esti-
mated throughput to observed throughput over time. 10 second segment length, first run.

Figure A.8: Segment length test, estimated and measured throughput vs time. Comparing esti-
mated throughput to observed throughput over time. 20 second segment length, first run.
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Figure A.9: Out of order and missing packets. Packet status vs time. 5 second segment length.
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Figure A.10: Out of order and missing packets. Packet status vs time. 10 second segment length.
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Figure A.11: Out of order and missing packets. Packet status vs time. 20 second segment length.
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Appendix B - ABR Algorithm Results
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Figure B.1: Throughput over time, as reported by the Dash.js player’s throughput estimator. “Dynamic”
ABR algorithm.
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Figure B.2: Throughput over time, as reported by the Dash.js player’s throughput estimator. “Through-
put” ABR algorithm.
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Figure B.3: Throughput over time, as measured by the Wireshark trace on the client. “Dynamic” ABR
algorithm.
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Figure B.4: Throughput over time, as measured by the Wireshark trace on the client. “Throughput” ABR
algorithm.
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Figure B.5: Comparing estimated throughput to observed throughput over time. “Dynamic” ABR algo-
rithm, first run.
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Figure B.6: Comparing estimated throughput to observed throughput over time. “Throughput” ABR al-
gorithm, first run.
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(a) BOLA ABR Algorithm: Buffer Level Evolution
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(b) Throughput-based ABR Algorithm: Buffer Level Evolution
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(c) Dynamic ABR Algorithm: Buffer Level Evolution

Figure B.7: Comparison of Buffer Level Evolution for ABR BOLA,Throughput and Dynamic
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(a) BOLA ABR Algorithm: Stall Duration Evolution
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(b) Throughput-based ABR Algorithm: Stall Duration Evolution
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(c) Dynamic ABR Algorithm: Stall Duration Evolution

Figure B.8: Comparison of Stall Duration Evolution for ABR BOLA,Throughput and Dynamic
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(a) BOLA ABR Algorithm: Resolution Evolution
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(b) Throughput-based ABR Algorithm: Resolution Evolution
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(c) Dynamic ABR Algorithm: Resolution Evolution

Figure B.9: Comparison of Resolution Evolution for ABR BOLA, Throughput, and Dynamic Algorithms
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(a) BOLA ABR Algorithm: RTT Evolution
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(b) Throughput-based ABR Algorithm: RTT Evolution
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(c) Dynamic ABR Algorithm: RTT Evolution

Figure B.10: Comparison of RTT Evolution for ABR BOLA, Throughput, and Dynamic Algorithms
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Figure B.11: Out of order and missing packets. Packet status vs time. BOLA.
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Figure B.12: Out of order and missing packets. Packet status vs time. Dynamic.

54



0 2 4 6 8 10

0

1 Out of Order Sequences

Missing Sequences

Time(min)

In
O
rd
er
(1
)
/
O
u
t
of

O
rd
er
(0
)

Figure B.13: Out of order and missing packets. Packet status vs time. Throughput.
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