

Robot Localization for FIRST Robotics

April 16, 2013

A Major Qualifying Project Report

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science in

Electrical & Computer Engineering and Robotics Engineering

By:

Scott Burger

Adam Moriarty

Samuel Patterson

Daniel Riches

Advisers:

Dr. David Cyganski

Dr. R. James Duckworth

Project Number: MQPDC1201

ii

Acknowledgements

We would like acknowledge the

contributions of those who helped make this project a success:

Professors Cyganski and Duckworth for always guiding us toward improving our work,

providing insightful advice, and for providing the inspiration for this project.

Professor Miller for his experience working with FIRST Robotics and his help as we defined our

system requirements.

Technician Bob Boisse for soldering the fine-pitch components to the camera PCB for us.

Kevin Arruda for getting up before dawn to teach how to use the laser cutter to make the case for

our embedded system.

iii

Abstract

The goal of this project is to develop a camera-based system that can determine the (x,y)

coordinates of one or more robots during FIRST Robotics Competition game play and transmit

this information to the robots. The intent of the system is to introduce an interesting new

dynamic to the competition for both the autonomous and user guided parts of play. To

accomplish this, robots are fitted with custom matrix LED beacons. Two to six cameras may

then capture images of the field while a FPGA embedded system at each camera performs image

processing to identify the beacons. This information is sent to a master computer which

combines the six images to reconstruct robot coordinates. The effort included simulating camera

imaging, designing and developing a beacon system, implementing interfaces and image

processing algorithms on an FPGA, meshing image data from multiple sources, and deploying a

functional prototype.

iv

Executive Summary

This project involved the design and construction of a location tracking system for robots

during FIRST Robotics Competitions (FRC). FRC is a large annual international competition

between high school teams organized by FIRST, in an effort to expose high school students to

engineering challenges. In preparation for the competition, students have 6 weeks to design and

build a robot to play a game developed by FIRST. Each year, the game is changed to present a

new challenge for contestants. In the past, robots have performed tasks in an arena such as

throwing basketballs into hoops, hanging objects in a certain order, and throwing Frisbees.

 We designed and implemented a low-cost camera-based robot localization system to add

a new dynamic to FRC. This system sends the robots their locations in real-time, which allows

teams to enhance the capabilities of their robot, and allows FIRST to provide new, more

complicated challenges. For instance, teams could experiment with more precise control when

launching objects towards goals by knowing not only what direction the goal is in, but how far

away the goal is. It also opens the door to having longer autonomous game-play periods with

more advanced path planning requirements.

 To realize this dynamic, our robot localization system uses custom programmable LED

beacons that provide unique patterns for each of the robots for visual identification. The beacons

were made using a colored LED matrix connected to a microcontroller that controls the matrix

pattern via a custom PCB that we designed. Each robot in the arena is fitted with a beacon and

multiple cameras placed in specific locations around the arena are capable of viewing the

beacons. The camera images are processed to identify the robots in the image, and each robot's

position is calculated from these images.

v

Each of the six cameras on the edges of the arena is connected to an FPGA development

board via a custom PCB that we also designed for this project to form a camera/FPGA vision

subsystem. Each camera sends image frames to the FPGA, where the frames are processed,

stored, and interpreted in order to locate and identify the beacons within the image. Then, the

information about each detected beacon from each of the vision subsystems is sent to a central

PC where the physical coordinate reconstruction is performed.

To provide reliable information to the PC, the FPGAs perform a number of critical

operations on the incoming frames. First, the data format of the incoming frames is converted

from YUV to RGB using a color space converter. Next, a color filter stage filters and normalizes

the colors in the image for enhanced performance during the identification process. Next, the

modified frame is stored in RAM. The FPGA logic was designed in Verilog using Xilinx design

tools. A soft-core Microblaze microprocessor was also generated inside the FPGA that searches

through the RAM to find pixels that had passed the filtering stage, and then interprets them to

find the centers of each beacon. Beacons that are found are then compared to the expected

signature of each unique pattern in order to determine which beacon corresponds to which robot.

Finally the location of the center of each beacon within the image plane is sent to the

central PC with an associated unique ID. Using algorithms we implemented, the pixel

coordinates of each received beacon are mapped to locations in the arena. The calculated

coordinates are transmitted wirelessly to the robots during the competition.

 The system we designed has been successfully tested and implemented using a single

beacon, FPGA/camera vision subsystem, and PC. The full scale tests we performed indicate that

our system can calculate the location of the beacons accurately to within eight inches

consistently. The system is capable of running in real time, and the final step required to deploy

vi

the system is to duplicate the hardware and synchronize communication so there are six

camera/FPGA subsystems running at once.

vii

Table of Contents

Acknowledgements ... ii

Abstract .. iii

Executive Summary ... iv

Table of Contents .. vii

Table of Figures ... xi

Table of Tables .. xvi

Chapter 1: Introduction ... 1

Chapter 2: Background ... 6

2.1: The FIRST Robotics Arena ... 6

2.2: Image Basics .. 7

2.3: Tracking Methods for Robot Detection and Identification .. 7

2.3.1: Elevated Cameras with Color Detection and Thresholding.. 8

2.3.2: Colored Pattern Recognition ... 10

2.4: Number of Cameras ... 11

2.5: Mapping Pixels Onto the Arena... 12

2.5.1: From ends of the arena.. 13

2.5.2: Using an Overhead Camera .. 16

2.5.3: Quantifying Perspective Distortion .. 17

2.6: Image Processing Algorithm ... 20

viii

Chapter 3: System Design ... 23

3.1: Camera ... 24

3.1.1: Camera Resolution .. 24

3.1.2: Camera Interface ... 26

3.1.3: Camera Specifications .. 26

3.2: LED Beacon ... 28

3.3: Image Acquisition and Processing ... 28

3.4: Beacon Location Reconstruction ... 30

Chapter 4: Modules for Testing .. 31

4.1: Camera Model.. 31

4.2: VGA Display ... 31

4.3: Imaging Model ... 32

Chapter 5: System Implementation ... 39

5.1: Tracking Beacon .. 39

5.1.1: Requirements .. 39

5.1.2: Design Choices and Considerations ... 39

5.1.3: Tracking Beacon Design ... 41

5.1.4: LED Matrix Controller ... 43

5.1.5: Beacon Implementation .. 44

5.1.6: Testing .. 47

ix

5.2: Camera PCB .. 49

5.2.1: PCB Design... 49

5.3: I
2
C Interface ... 52

5.4: Camera Interface .. 57

5.5: Beacon Filter .. 58

5.5.1: Color Space Converter .. 58

5.5.2: Color Filter .. 61

5.6: RAM Interface ... 63

5.6.1: RAM Configuration .. 63

5.6.2: Read and Write Operations ... 66

5.6.3: System Interface ... 69

5.7: Interfacing Submodules ... 71

5.8: Image Processing ... 72

5.8.1: Implementation ... 72

5.8.2: Testing .. 74

5.9: Reconstructing Locations from Images.. 80

5.9.1: Requirements .. 81

5.9.2: Implementation ... 81

5.9.3: Testing .. 84

5.10: Calibration Algorithm .. 84

x

Chapter 6: System Testing .. 89

Chapter 7: Conclusions ... 94

7.1: Future Work ... 95

References ... 97

Appendix A: Beacon Control Code .. 99

Appendix B: LED Matrix Controller Schematic .. 106

Appendix C: Verilog Modules .. 107

Appendix D: Section of Image Processing Code .. 113

Appendix E: Sample of Processing Code ... 116

Appendix F: List of Materials ... 118

xi

Table of Figures

Figure 1: LOGOMOTION Arena [1] ... 2

Figure 2: Camera Locations on FIRST Arena (Overhead View) ... 4

Figure 3: Cameras around the FIRST arena ... 4

Figure 4: FIRST Arena for 2013 [2] ... 6

Figure 5: Grayscale Pixel Intensity [3] ... 7

Figure 6: The Field with Cameras [4] ... 8

Figure 7: Using Thresholds to Convert Colored Images to Black And White [4] 9

Figure 8: An RGB Color Pattern [5] ... 10

Figure 9: Moving From Colored Image to Identification Step [5] ... 11

Figure 10: An Image Frame Showing Separate Targets Being Recognized [5] 11

Figure 11: Multiple Cameras Tracking Objects [6] .. 12

Figure 12: Camera View from One End of the Arena .. 13

Figure 13: Cross Section of the Scene .. 14

Figure 14: Cross Sectional View of the Scene with Two Cameras .. 15

Figure 15: Cross Sectional View of the Scene with Two Cameras with Their Own Spaces to

Monitor ... 16

Figure 16: Cross Section of the Scene with One Overhead Camera .. 17

Figure 17: Aid for Calculation of Space Covered Per Pixel ... 18

Figure 18: Original Image (Left) and Filtered Image (Right) [7] ... 20

Figure 19: Non-Background Pixel Identified [7] .. 21

Figure 20: Line Comparison [7] ... 21

Figure 21: Example Requiring Merge [7] ... 22

xii

Figure 22: System Hierarchy .. 24

Figure 23: Heat Map of Accuracy from a Corner ... 25

Figure 24: Accuracy from Center of Sideline ... 26

Figure 25: 24C1.3XDIG Camera Module [8] ... 27

Figure 26: LED Matrix with PCB Controller and MSP430 ... 28

Figure 27: Image Acquisition and Image Processing Block Diagram .. 29

Figure 28: VGA Display Testbench ... 32

Figure 29: Overhead View of Objects on Field Being Viewed By A Camera 33

Figure 30: Image of the Scene in Figure 29 Using Our Simple Camera Model 34

Figure 31: Actual Image Taken by Camera as Seen in Figure 29 .. 34

Figure 32: Examples of Frame Transformations from B to F [9] ... 35

Figure 33: Rotation of Q in frame (x,y,z) to Q' in frame (u,v,w) ... 36

Figure 34: Accurate Simulation of setup in Figure 29 .. 37

Figure 35: Original Beacon Layout .. 40

Figure 36: LED Beacon Design .. 40

Figure 37: LED Matrix for Beacon Design .. 41

Figure 38: Example of Illuminated Beacon .. 42

Figure 39: Layout of Row/Column Grouping .. 44

Figure 40: Prefabricated LED Matrix Controller PCB ... 45

Figure 41: Led Matrix Controller Assembled ... 46

Figure 42: LED Matrix with PCB Controller and MSP430 ... 47

Figure 43: LED PCB Malfunction .. 47

Figure 44: Former Board Layout .. 48

xiii

Figure 45: Necessary Board Layout ... 48

Figure 46: LED Matrix Displaying Pattern 3 ... 49

Figure 47: Custom Breakout PCB before Order ... 50

Figure 48: Fabricated PCB.. 51

Figure 49: PCB with Camera Attached, Plugged Into Nexys3 Board .. 51

Figure 50: Resolution and Frame Rate Chart [8] .. 52

Figure 51: Register 0 Detail [8] .. 53

Figure 52: Reading Default Settings via I
2
C... 54

Figure 53: Displaying Read Results to User ... 54

Figure 54: Writing 0x40c3 to Register 0 .. 55

Figure 55: Reading 0x40c3 from Register 0 ... 56

Figure 56: Results of Reading the Previously-Written Value of Register 0 56

Figure 57: Data Format of Camera [8] ... 57

Figure 58: Camera Interface Block Diagram .. 58

Figure 59: Color Space Converter Block Diagram ... 60

Figure 60: Color Space Conversion Testbench .. 61

Figure 61: Completed Beacon Filter Block Diagram ... 62

Figure 62: Unfiltered Image.. 62

Figure 63: Filtered Image.. 63

Figure 64: BCR Write Operation[10] ... 64

Figure 65: BCR Write Operation Testbench .. 65

Figure 66: Burst Mode Write [10] .. 66

Figure 67: Burst Mode Read [10] ... 66

xiv

Figure 68: Write to Address 0 ... 68

Figure 69: Read from Address 0 ... 68

Figure 70: Intended Write Operation .. 69

Figure 71: Portion of RAM after Write Operation ... 69

Figure 72: Block Diagram of Integrated Modules .. 72

Figure 73: MATLAB Patch Locator Test Image .. 74

Figure 74: Results of MATLAB Patch Locator .. 75

Figure 75: Debugging Microblaze access to RAM... 76

Figure 76: Full Scale Test Image .. 77

Figure 77: Beacon Identifier Test Output ... 78

Figure 78: Beacon Requiring Merging ... 79

Figure 79: Image for Beacon Pattern Identification Test .. 79

Figure 80: Results of Beacon Pattern Identification Test ... 80

Figure 81: Resolving Beacon Positions Concept .. 80

Figure 82: Overhead View of Location Reconstruction Theory .. 83

Figure 83: Pitch and Z Pose Parameters, Side View .. 85

Figure 84: Roll Pose Parameter, View of Camera From Behind .. 85

Figure 85: Yaw, X, Y Pose Parameters Shown, Overhead View of Camera 85

Figure 86: Error between Two Images ... 86

Figure 87: Reference Frames for Camera Calibration [12] .. 88

Figure 88: Camera/FPGA subsystem, case, and holster ... 90

Figure 89: Actual Beacon (98, 166) Compared to Reconstructed Location (106, 166) in Test 2.

Total Error: 8 Inches ... 91

xv

Figure 90: Actual Beacon (62, 132) Compared to Reconstructed Location (63, 134) in Test 2.

Total Error: 2 Inches ... 92

Figure 91: Larger Scale Test Results .. 92

xvi

Table of Tables

Table 1: Identification Patterns ... 43

Table 2: BCR Settings .. 65

1

Chapter 1: Introduction

 The FIRST Robotics Competition (FRC) is a large international competition between

high school teams. It is organized by FIRST, which stands for “For Inspiration and Recognition

of Science and Technology.” This organization was founded in 1989 by Dean Kamen with the

goal of increasing appreciation of science and technology and offering students opportunities to

learn important skills be exposed to engineering practices. High school students are given six

weeks to build a robot that weighs less than 120 pounds and can operate both autonomously and

under wireless direction. These robots are given tasks to complete, and the team that completes

the task most effectively wins the competition.

 The games for the FRC are different every year. In 2011, the game was called

“LOGOMOTION.” In this game, robots were required to pick up pieces of the FIRST logo and

place them on a rack on the opposing team’s side of the arena in the same order as the logo.

Once this task is completed, the robots released a miniature robot which was capable of climbing

the posts within the arena. In 2012, the game was called “Rebound Rumble.” In this game, teams

used robots to toss basketballs into hoops on the opposing team’s side of the arena. There were

four hoops and the higher hoops awarded more points to the scorer. A typical FIRST arena

environment is shown in Figure 1below.

2

Figure 1: LOGOMOTION Arena [1]

FIRST creates interesting new challenges for the competition each year. As such, they are

always open to new forms of improving their competitions. For example, they used technology

from the Xbox KINECT in their competition in 2012. In the course of this project we designed a

system that can be incorporated into new FRC challenges to introduce entirely new game types

and provide a powerful new tool to the students involved.

The main goal of the system we designed is to provide the competing robots with their

locations in real time during the competitions. Providing the robots with their precise locations in

real time would allow robot teams to execute elaborate team actions, and allow individuals to

make more informed decisions about their actions. The ability for robots to know their own

precise coordinates can also allow FIRST to design interesting new game types that enhance the

overall experience for everyone.

In order to begin defining our system, we developed a list of requirements. These

requirements were based on logistical, financial, and technical considerations for FIRST.

Our system aims to put as little burden on event organizers, participants, and the fans as possible,

while providing useful location tracking information to teams and their robots to make the games

more fun and make the learning experience better for the high school students.

3

The first requirement for our system is that it is capable of consistently identifying all

robots individually. The data produced by our system would not be useful if it merely detected

the positions of unspecified robots. Adding the ability to identify robots as individuals ensures

that teams will be able to use the data we provide effectively.

In order for our tracking system to be useful, it must be accurate. To meet this

requirement, we aimed for our system to be accurate to within 3 inches. However, so long as the

system is relatively accurate, it will be of use to the competitors. We strove to make the system

as accurate as possible while keeping the overall cost of the system low enough for FIRST to

incorporate the system into their competitions.

Further, our system must not disrupt the flow of the FRC challenges. This means that our

system must be assembled and initialized quickly and seamlessly before a FIRST event begins.

Additionally, the system must be capable of functioning for an entire event without requiring

maintenance. Finally, our system must cost a reasonable amount so that organizers can afford to

utilize the system.

In our research, we determined that the most effective method for fulfilling the goals and

requirements of this system utilizes cameras. Based on simulations and other design

considerations, our design called for the use of six cameras. These cameras were placed around

the arena as can be seen in Figure 2 and Figure 3 below.

4

Figure 2: Camera Locations on FIRST Arena (Overhead View)

Figure 3: Cameras around the FIRST arena

 Since the robots in FIRST competitions are quite variable in size, height, and shape, we

decided the best way to uniquely identify the robots consistently was to design a beacon that is

capable of displaying multiple unique patterns and place it on the robots. When the system

processes the images, it searches for this beacon and associates the particular beacon pattern with

a robot.

5

After we process the images from each camera, we combine the data from all of the

cameras to locate the robots in the arena. This is done using similar concepts to stereo-vision, but

with up to six cameras being integrated into the system. Using six camera stereo-vision also

allows the system to see robots that have traveled near obstacles that may obscure the ability of a

particular camera to see them.

The next chapter describes the background work that guided the design process. Chapter

3 will discuss the system design, and Chapter 4 will describe implementations we created to

facilitate system development. Chapter 5 will explain the details of our implementation, and

Chapter 6 will show the system tests we performed and their results. Finally in Chapter 7 we will

show the results of our tests and the conclusions we drew from these results.

6

Chapter 2: Background

 This chapter describes the background work we carried out for the project. It includes

becoming familiar with the FIRST arena environment, investigating camera-based tracking

methods, investigating the geometry involved with mapping pixels onto a surface, and

investigating image processing algorithms.

2.1: The FIRST Robotics Arena

 Each year the participants of the FIRST Robotics competition are given the layout of the

arena in mid-January. This information is provided when FIRST holds a kickoff event where the

teams are provided the rules of the game as well as the layout of the arena for the upcoming

tournament. The one thing that is consistent is that the arena is always 27 feet wide by 54 feet

long. The arena itself will have different aspects to it each year depending on the objective of the

game. For the 2013 game the arena consists of slots to toss a disk in as well as pyramids to

climb. A layout of this arena can be seen in Figure 4 below.

Figure 4: FIRST Arena for 2013 [2]

7

In previous years the field has had components such as ramps, racks and different pieces

of equipment that can either aid the teams or add more complexities to give the robots a more

difficult challenge.

2.2: Image Basics

 Digital images can come in many forms. Some are visual, while others are produced by

sonograms or radar. Some are colored, while others are black and white or grayscale. Basic

grayscale digital image processing begins by assembling an array of values, each representing a

pixel from the image. Often, these pixels are simply assigned a number within an 8-bit range,

which provides 256 unique values. These values correspond to the intensity of the light in the

pixel. As seen in Figure 5, the higher intensities correspond to whiter shades of grayscale [3].

Figure 5: Grayscale Pixel Intensity [3]

 Other images can include color values, often with thousands or millions of distinct colors

available.

2.3: Tracking Methods for Robot Detection and Identification

 While researching camera vision-based tracking methods, we found some interesting

methods that had been used for localization by others. Our design decisions were informed with

some of the concepts below, including using thresholds to isolate objects within an image and

8

using color pattern recognition. We also explored overhead camera use but found it to be overly

burdensome for FIRST.

2.3.1: Elevated Cameras with Color Detection and Thresholding

A paper called "Tracking a Robot Using Overhead Cameras for RoboCup SPL League"

by Jarupat Jisarojito discussed a project using elevated cameras to determine the real world

coordinates of a robot on a playing field [4]. Two cameras were placed just to the side of the

field in an elevated position such that each camera covered slightly more than half of the field.

An example of the setup can be seen in Figure 6 below. In the actual setup, cameras were placed

directly over the goals and angled such that the maximum amount of the field is covered.

Figure 6: The Field with Cameras [4]

As each frame is captured, the image is compared to a previously determined background

image. The two images are subtracted to remove the background and the resulting image is

converted to grayscale. At this point, a threshold is applied that converts the image to black and

white where black pixels represent pixels that are the same as the background and white pixels

represent pixels that are significantly different from the background. In addition to the

9

background subtraction, the areas outside of the arena are ignored. This ensures that moving

objects, such as people, that are outside of the play area are not falsely detected as robots. Figure

7 below shows the empty arena (left), the arena with a robot (middle) and the image after the

threshold and masking are applied (right) [4].

Figure 7: Using Thresholds to Convert Colored Images to Black And White [4]

Each robot is outfitted with color patches in order to determine the location and

orientation. These colors are reapplied after the thresholding and masking are complete. That

image is converted to the original hues, the patches are detected and the centroid of the blue

region (at the center of the head) is determined. This region is mapped to a grid where each grid

location can be mapped to a real world coordinate. In this application, each grid represented an

area with dimensions of 400mm by 500mm. Using this system, the average error between the

actual position of the robot and the system determined position was on the order of 100mm.

However, differences of up to 440 mm were also observed [4].

Some problems were found in this system. Some areas of the field had strong lighting and

therefore reflected off of the head of the robot and affected the observed color negatively. This

could be overcome by using an active system that generates its own light instead of relying on

reflected light. Additionally, this method could allow for different colors to be used and therefore

robots could be uniquely identified whereas this system does not allow for specific identification

of robots. Further, this system does not have enough accuracy for our purposes. Worst case

10

errors in the position of the robot were 17.6 inches. This issue could be resolved by using more

than two cameras. This would improve accuracy and would allow for redundancy in the case

where one robot occludes another from view [4].

2.3.2: Colored Pattern Recognition

 A paper entitled “Robotracker – A System for Tracking Multiple Robots in Real Time”

by Alex Sirota discussed the use of a program to track multiple robots in an arena in real time

[5]. This application was aimed towards miniature robotic Lego cars which would move around

the arena. The basis for the tracking was based upon the RBG color space. Each Lego racer was

fitted with what was described as a “hat” on the top of it. This “hat” is a series of circles in a

target display as shown in the Figure 8 below.

Figure 8: An RGB Color Pattern [5]

Using specific circle patterns consisting of red, blue and green colored rings that can have

anywhere from 3 rings for a possibility of 21 different object to track. This can be a single ring a

double ring or a triple ring target. Each ring is designated by a code with red representing the

number 1, green representing the number 2 and blue representing the number 3. In the case of

this coding Figure 8 above would have RGB code (123) [5].

Next using threshold values in the program the users can eliminate noise and other

components such as contrast to give the camera optimal viewing of the target. The analysis of

the targets follows a simple block diagram as seen below in Figure 9 in which the system detects

11

the targets, then analyzes the region and their colors, then detects the ID related to the color code

[5].

Figure 9: Moving From Colored Image to Identification Step [5]

The modules for this system are designed using C++ and use a variety of programs to

detect and analyze the targets. Frames are captured in BMP, PPM or AVI format and then

analyzed to find any hat patterns located in the image. An analyzed frame from the camera can

be seen in Figure 10 below.

Figure 10: An Image Frame Showing Separate Targets Being Recognized [5]

2.4: Number of Cameras

 One paper we studied examined many of the kind of systems previously described and

drew some conclusions. The paper concluded that using multiple cameras allows for a larger

12

visible range and allows for the use of redundancy to reduce errors. Figure 11 below shows a

scene involving the use of multiple cameras to track objects. Camera C2 is dedicated to the

yellow and green areas. Camera C1 is dedicated to the blue and green areas. The two of them

overlap in the green area, where redundancy can be utilized, but data sharing must be

incorporated. Overlapping is complicated to implement, but offers substantial benefits to

accuracy [6].

Figure 11: Multiple Cameras Tracking Objects [6]

2.5: Mapping Pixels Onto the Arena

 Before moving forward with camera selection, we desired to create an imaging model

that would allow us to test various camera parameters and select the proper components to meet

our requirements. In order to make an imaging model, we had to understand the mathematical

properties describing perspective distortion and mapping image plane coordinates onto a scene.

The preliminary exploration we performed is shown below.

13

2.5.1: From ends of the arena

 In Figure 12 below, an example image is presented. The dashed lines represent the

borders of square pixels as part of an image plane. The thick red lines represent the borders of a

hypothetical FIRST Robotics arena. The camera view is angled downward onto the arena from

the center of one end of the arena.

 As we can see, there is some perspective distortion. The far end of the arena appears to be

more narrow than it really is, and the arena appears not to be as long from end to end as it really

is. In calculating the positions of various robots, this distortion must be accounted for, or else the

desired 3-inch accuracy of our tracking system would be unattainable.

Figure 12: Camera View from One End of the Arena

 In Figure 13, we can see a side cross-sectional view of the scene presented in this

example. The length of the space between the camera lens and the end of the arena is L. The

height at which the camera lens is place is H. The camera viewing angle is θ. Each dashed line

represents the border of a pixel, similar to the ones shown in the previous image. Ln is the length

of the captured space in the highest pixel of the camera module. Ln-1 is the length of the captured

14

space of the second-highest pixel of the camera module. Notice that Ln-1 is shorter than Ln. This

clearly shows how the perspective distortion is manifested in this hypothetical application. As

the pixels on in the camera module move from the bottom of the image to the top, the amount of

distance represented per pixel increases steadily.

Figure 13: Cross Section of the Scene

 There are a number of potential ways to minimize this error. The use of multiple cameras

as shown below is one way, as shown in Figure 14 below. In this example, both cameras would

monitor the entire arena and then average their interpretations of the position of a robot to

reconcile their disagreement. In this method, using more cameras enhances the accuracy of the

system. However, this also increases the cost of the system.

15

Figure 14: Cross Sectional View of the Scene with Two Cameras

 Another way to address this error is shown in Figure 15. The two cameras are placed in

the same locations as before, but they each have their own dedicated space on the arena and they

are lower from the floor. This allows the cameras to utilize all of their pixels for just one half of

the arena, reducing the error from the perspective distortion. The space between the pixel

boundaries is not large enough for the error to become large. However, there is still an error.

Using this method also presents new challenges for setting up the system. If the two cameras

overlap in their tracking space, something would have to address the potential that a robot would

be identified by both cameras.

16

Figure 15: Cross Sectional View of the Scene with Two Cameras with Their Own Spaces to Monitor

2.5.2: Using an Overhead Camera

Another way to reduce the effects of perspective distortion is to use an overhead camera.

This configuration has a number of advantages and a number of disadvantages. One advantage is

the reduced effects of perspective distortion.

 To better understand the effects of the perspective distortion with a vertical camera

placement, a cross-sectional view is presented in Figure 16. We can see that as before, the

number of pixels along either the X or Y axis of the pixilated image is divided evenly among the

degrees of the viewing angle θ. Since the camera is placed over the center of the arena, the

distortion varies symmetrically on either side of the arena.

 One can see that if the camera is raised in elevation, the increase in perspective distortion

as one travels from the center of the arena outward would be reduced, but the space that each

pixel covers would be increased. Raising the camera further is a way to reduce this distortion, but

a camera with a significantly higher resolution would be needed to maintain accuracy for the

tracking system.

17

 While some problems are solved, new ones arise. The camera would have to be held

somehow above the arena. This means it would have to be suspended from the ceiling or held up

by a structure. This would drastically increase the cost of the system and the burden it places on

FIRST organizers.

 To solve this problem, multiple cameras would have to be placed above the arena so that

they could be suspended from lower heights. However, they would still need to be suspended

and more cameras cost more money and present more logistical challenges.

Figure 16: Cross Section of the Scene with One Overhead Camera

2.5.3: Quantifying Perspective Distortion

 In order to make a real system that tracks real robots, this distortion must be corrected on-

site in some sort of algorithm. One way to do this is to assign each pixel on the camera a

corresponding set of (x, y) coordinates with respect to the arena floor. Once the pixel showing

the target is identified, it would be compared with the pre-determined association between pixel

location and arena location.

18

 To understand this association, we must first understand that the camera viewing angles

in the X and Y directions and the resolution are important. At the heart of this mathematical

relationship are two parameters of interest. These are the number of degrees per pixel in the X

direction, and the number of degrees per pixel in the Y direction.

 These parameters are of interest because, as can be seen in Figure 17, we can see that the

pathway to each pixel boundary where it meets the arena floor is related to the radius of a circle.

Figure 17: Aid for Calculation of Space Covered Per Pixel

The Math

x = number of pixels in the x direction in the camera

θ = Camera viewing angle in the x direction

g = θ/x = Degrees per pixel in the x direction

19

H = r1 = height of the camera

r2 = distance from camera lens to Point 2 in the x direction

L1 = length of the area between Point 1 and the first pixel boundary

L2 = length of the area between the first pixel boundary and the second pixel boundary

P = Pixels from the center of the image

We start with just one triangle, formed between Point 1, the camera lens, and the first

pixel boundary.

L1 = H * tan(g) (2.1)

The next triangle is formed between Point 1, the camera lens, and the second pixel

boundary.

L2 = H * tan(2g) (2.2)

 Continuing further, the general relationship is

LN = H * tan(P * g) (2.3)

 This relationship can be used to show the position of any pixel in an image, mapped to

the FIRST arena. To form the coordinates (x, y), the equations for the Y direction are the same,

but with different parameters, which are given by the camera.

Notes

Later, the above calculations were found to only be useful when mapping the pixels along

one-dimensional lines on the arena space. Further research was done to find a more robust

mathematical relationship between the image plane and arena surface, and it is discussed in

Chapter 4.3.

20

2.6: Image Processing Algorithm

 Since our system requires the ability to examine an image and identify specific features,

we researched existing algorithms that could be used for this purpose. The most useful algorithm

was found in a paper titled FPGA Implementation of a Single Pass Real-Time Blob Analysis

Using Run Length Encoding [7]. This algorithm begins by assuming that background pixels and

object pixels have already been distinguished from one another. Figure 18 is the example given

in the paper showing the difference between the original image and the filtered image.

Figure 18: Original Image (Left) and Filtered Image (Right) [7]

With the image filtered, the algorithm scans each line from left to right. When an object

pixel is identified, the adjacent pixels that have already been scanned are examined. If all of

these pixels are background pixels, a new label is assigned to that pixel. If any of these belongs

to an object, the same label is assigned to the pixel in question. Figure 19 demonstrates this

process.

21

Figure 19: Non-Background Pixel Identified [7]

If multiple pixels are identified on the same line, the start and end pixel locations for each

run of consecutive pixels are noted. At the end of each line, the runs for the current line are

compared to the runs of the previous line to determine if there is any overlap. If overlap occurs,

the run for the current line is given the same label as the run that it overlaps. If no overlap occurs,

the run is given a new label. This operation can be seen in Figure 20.

Figure 20: Line Comparison [7]

When the algorithm encounters a run that overlaps with two or more runs on previous

line it merges the two previous runs into a single run. When this happens, the information

relating to the first run is combined with that of the second such that the final run accurately

represents the entire object as it has been scanned. An example where merging is required can be

seen in Figure 21 below.

22

Figure 21: Example Requiring Merge [7]

 After every line has been scanned, the centroid is determined using the following

equations [7].

 (2.4)

 (2.5)

A is the area of the box surrounding the object, u is the horizontal location of each pixel

in the blob, and v is the vertical location of pixel in the blob. After this calculation, the true

center of each object has been determined.

23

Chapter 3: System Design

From our background research, several issues were found that should be addressed. Our

system needs to be capable of tracking robots on an entire 27x54 foot field, that can have various

obstacles and ramps that can block sightlines and change the heights of robots. Also, since each

robot is independently controlled, each of the 6 robots playing the game should have a unique

visual ID that can be identified, independent of the robot’s design. Once images are captured, a

system must be developed to analyze the images to find the unique IDs. Then the perspective

distortion of the camera must be corrected, which allows accurate reconstruction of robot

locations.

The system that we designed to accomplish the goal of this project operates in four major

stages. The first stage of the system involves utilizing an array of LEDs to generate a specific

pattern of colors. The second stage is the image acquisition stage where images from the camera

are captured and stored. The third stage is the image processing stage where key data is extracted

from the images. The fourth and final stage is the reconstruction stage where data from multiple

cameras are combined to determine the locations of the robots.

Figure 22 below shows the overall hierarchy for the full scale system. This system uses

six cameras placed around the arena. Each has its own FPGA embedded system to process the

images and send the results to the central PC. Once the data from the six cameras has been

received by the central PC, the locations of all of the robots are reconstructed and provided to

FIRST for distribution to the teams.

24

Figure 22: System Hierarchy

3.1: Camera

 One of the most crucial aspects of our project was the selection of our camera. We

needed to choose a camera that would be able to see all aspects of the arena while being able to

handle the requirements needed to accurately take pictures and communicate with our FPGA.

The quality of our camera has a direct impact on the accuracy of our system as a whole. As a

result, we performed extensive research in order to choose the best possible option for our

system.

3.1.1: Camera Resolution

 In order to make sure we were purchasing a camera which could handle the needs of our

system, we created the imaging simulator described in section 4.3 to test the accuracy of

potential cameras. The simulator included user defined parameters covering the different aspects

25

of a camera specification such as the field of view of the lens and the camera resolution. After

running the simulator, an image was produced that showed how effectively that camera would be

able to locate robots within the arena. Examples of these images can be seen Figure 23 and

Figure 24 below. In Figure 23, the camera was placed at the bottom left corner of the arena and

angled down at a 45 degree angle. In Figure 24, the camera was placed at the center of one of the

edges of the arena and was again angled down at a 45 degree angle. In both of these figures,

green indicates that the error at that location was less than 3 inches, yellow indicates that the

error was less than 5 inches, red indicates that the error was less than 7 inches, and white

indicates that the camera could not see that part of the arena.

Figure 23: Heat Map of Accuracy from a Corner

26

Figure 24: Accuracy from Center of Sideline

3.1.2: Camera Interface

 Our process in searching for the right camera took us across many different pieces of

equipment. Originally we looked into security cameras and focused specifically on field of view

and resolution without paying attention to the interface with the rest of the system or the cost for

each camera. This meant that we were leaning towards high end models of cameras which cost in

the range of $800 to $1500 each. After further investigation, it became clear that we had to focus

on other aspects of the cameras because the models we were leaning towards had outputs that

would be burdensome as part of an image processing system. We chose to use a camera that

outputs its data serially in a raw image format instead of a camera that outputs its data in

compressed format via USB. In order for us to use a USB camera, we would need a computer

with a USB interface and the required software to interpret the data for each camera. This is not a

cost-effective implementation so we decided to use a camera with raw data transmitted in an

uncompressed format.

3.1.3: Camera Specifications

Once we decided on a camera that provided uncompressed data, we came to the

conclusion that we would need a camera that provided data in either RGB or YUV format. Also

27

on our list of specifications was a horizontal viewing angle of at least 95 degrees as well as an

86.5 degree vertical viewing angle to allow a 5 degree tolerance in either direction. These angles

would allow us to cover the field completely with enough overlap between the separate cameras

to ensure that the system would function with a high degree of accuracy. In looking at the camera

modules it became clear that we would be able to look for specifications such as resolution and

data output and leave the viewing angle issue for our choice of lens.

After performing research we decided to use the 24C1.3XDIG shown below, which is a

camera module produced by Videology. The camera can be seen in Figure 25 below.

Figure 25: 24C1.3XDIG Camera Module [8]

 We arrived at this piece of equipment after looking through many other cameras. This

camera outputs a digital 8 bit YUV output and has a 1.3 Megapixel sensor that can output images

up to a resolution of 1280 x 1024. This camera is also flexible in that it can use a variety of

lenses that fit into a CS, M12 or pinhole lens mount. Finally, it is significantly less expensive

than the other high end cameras we looked at since this module would end up costing $200.

28

3.2: LED Beacon

 An important part of our project was the use of LEDs to identify and locate the robots.

This beacon was designed with the intent that it would be placed on top the robots during the

competition to serve as a target for locating and identifying the robots within the arena. The

beacons have been designed in such a way that up to twelve beacons can be in the arena

simultaneously and that each beacon will have a unique pattern associated with it. The matrix

used for the beacon can be seen in Figure 26 below.

Figure 26: LED Matrix with PCB Controller and MSP430

3.3: Image Acquisition and Processing

 In order to specify the hardware for the Pre-Processing stage, we first determined the

requirements of this stage. We determined that this stage must be able to operate at a speed that

is faster than the clock rate of the camera, and that it must be capable of a pipelined data flow in

order to avoid data loss. The data must be converted from YUV to RGB, passed through a filter,

and stored in RAM without losing or corrupting a single piece of data.

29

With an entire frame accessible in RAM, the image processing stage begins. This stage

uses a soft-core microprocessor to process the image. The intent of this stage is to find the center

of each beacon and identify which robot the beacon belongs to. This is done by first using a

modified version of the Run-length encoding algorithm described in Chapter 2. This new

algorithm finds all adjacent pixels that are of the same color and groups them together. After this

initial scan is complete, the groups are examined with respect to each other. If two groups are

determined to be adjacent to each other, they are interpreted as being part of the same beacon and

an identifier is assigned to the center of that group based on the colors of the pixels in each

group. The block diagram for these two stages can be seen in Figure 27 below.

Figure 27: Image Acquisition and Image Processing Block Diagram

In order to implement these two stages, we chose to use an FPGA as it is capable of

performing the required logical operations at a higher speed can be configured to implement a

pipelined data flow. After choosing to use an FPGA as the platform to implement our image

processing stage, we chose a specific FPGA to use. We chose to use a Spartan 6 FPGA on a

Nexys3 development board. This board was chosen because of the FPGA and the peripherals

30

such as the RAM as well as UART and VGA display ports it contains. This FPGA is capable of

operating at a speed significantly higher than the camera we chose and is large enough that it is

able to easily support our system design. The RAM peripheral on this board is necessary for

storing an image so that the entire image can be processed at the same time. With all of these

capabilities, the Spartan 6 FPGA on a Nexys3 development board was the best choice for

developing our Image Processing stage.

3.4: Beacon Location Reconstruction

 Once each camera has finished processing a frame, it transmits the pixel coordinates of

the center of each beacon along with its identifier to a central computer. The final stage

reconciles data from multiple cameras in order to reconstruct the real world coordinates of the

beacons. The program that runs the user interface with the PC and performs the coordinate

reconstruction was made to be portable so any PC running Windows can run the program.

31

Chapter 4: Modules for Testing

4.1: Camera Model

 Since many of the Verilog modules we developed relied on receiving data from the

camera, we developed a model of the camera. This model was designed in such a way that it

produced the same signals as the camera. These signals included 8 bits of image data, a signal

indicating when a horizontal line had ended, a signal indicating when a frame ended, and the 54

MHz clock that the camera provides. With this model successfully implemented, we were able to

test our digital logic models in simulation. By simulating these modules, we significantly

decreased the amount of time required to debug each system. This is because simulations provide

significantly more visibility of all of the signals in a module than testing on a physical FPGA

would.

4.2: VGA Display

In order to facilitate our testing, we designed a module that was capable of reading image

data from RAM and displaying it on a VGA display. This module has two main components.

The first component generates the timing signals required to communicate with the display. This

is done by using a 25 MHz clock which increments two counters. These two counters drive

synchronization signals which set the monitor to display an image at 640X480 resolution. The

second component utilizes a FIFO to ensure that color data is always available and accurate. This

is done by continuously writing pixel data from RAM until the FIFO is full. While data is being

written in, data is simultaneously read out to drive the VGA display. By doing this, the display

will always have pixel data ready when it is needed.

32

After implementing the VGA Display module, a testbench was created in order to verify

that data was available to send to the display at the proper times. The result of this test can be

seen in Figure 28 below. This figure particularly demonstrates that data is passed into the system

64 bits at a time and sent to the monitor 8 bits at a time. Additionally, the signal that indicates

that the FIFO cannot hold more data is shown.

Figure 28: VGA Display Testbench

4.3: Imaging Model

Since our project is based on using images to find object locations, it was very important

to develop an understanding for how three-dimensional locations are projected onto a two-

dimensional image plane. This was done by developing a model for the camera. Initially a

simple model was developed, but it was found to be too limited, and did not accurately represent

the camera. This motivated the development and implementation of a more complex imaging

model.

33

 The initial model developed attempted to treat horizontal and vertical displacement in the

image as functions of single angles. Distance left or right from the center of the image was

assumed to be a function of a single angle because the object imaged was to the left or right of an

imaginary plane determined by the yaw angle of the camera as shown in Figure 29, and distance

up or down was assumed to be because the object was above or below a plane determined by the

pitch angle of the camera. This created an easy model to calculate, but we noticed it did not

properly simulate images of objects when implemented. For instance, Figure 29 shows a red and

green object being imaged by a camera located at the bottom left corner of the setup. Since the

objects are on the same line of sight from the camera, our initial model created the image shown

in Figure 30.

Figure 29: Overhead View of Objects on Field Being Viewed By A Camera

34

Figure 30: Image of the Scene in Figure 29 Using Our Simple Camera Model

 We then measured out Figure 29 in the lab, and took an image with an actual camera,

which is shown in Figure 31 below. Clearly, this figure demonstrates that the green object

should be closer to the image center than the red one, so our simple camera model did not

accurately represent how a camera maps real world locations to images. Since it wasn't capable

of accurately simulating a mapping from real-world locations to image locations, it would have

been unsuitable to try inverting the process and determining real-world locations from an image.

The figure below shows how the setup in Figure 31 would actually be seen by a camera.

Figure 31: Actual Image Taken by Camera as Seen in Figure 29

35

 To address the limitations of the initial model, the more complex pin-hole camera model

was implemented and used. This model uses rotation matrices to perform frame transformations

between field coordinates and camera coordinates, like those seen in Figure 32.

Figure 32: Examples of Frame Transformations from B to F [9]

This rotation is accomplished by multiplying 3 3x3 matrices that encode the roll, pitch,

and yaw of the camera with respect to the field’s coordinate system. For example, a roll of the

camera, which is a rotation around the axis perpendicular to the image plane, is represented as:

 (4.1)

This is useful because multiplying this matrix by any 3 dimensional position vector will properly

rotate the vector into a new frame described by the rotation, for example, substituting 90 degrees

for θ, and multiplying by a vector <1,0,0> will result in:

 (4.2)

36

This indicates that a 90 degree roll is a transformation around the y-axis of the field. A single

simple rotation matrix like Rroll is a rotation around a single axis. By combining 3 of them, a full

3 axis rotation can be created. Our camera model uses a full rotation matrix of:

(4.3)

This allows us to specify the direction of any camera using 3 angles α, β, and γ, and any vector

<x,y,z> in field coordinates can then be rotated into an equivalent vector <u,v,w> in camera

coordinates as in Figure 33.

Figure 33: Rotation of Q in frame (x,y,z) to Q' in frame (u,v,w)

 Once this frame transformation is complete, the vector in <u,v,w> is converted to

homogeneous coordinates, by dividing the vector by w, this creates a vector,

 . Since the w axis is perpendicular to the image plane of the

camera, this vector ends on the image plane of the pinhole camera. Then
 can be

pixelized based on the field of view and resolution of the camera, which allows us to accurately

model how an object appears in a camera image.

37

 In summary, by measuring the distance between the camera and a point in field

coordinates (x,y,z), and multiplying that vector by R to rotate the vector into camera coordinates,

then converting it to homogenous camera coordinates and pixelizing the result, we could

accurately map a real-world camera pose and object location to an actual image. This mapping

accounted for the impact of all 6 degrees of the camera's pose in generating the horizontal and

vertical image locations of an object, rather than just 4. This allowed us to simulate much more

accurate representations of how our camera would view different objects. Figure 34 shows an

accurate simulation of the image of the scene in Figure 29, using the pin-hole camera model

described. The black line indicates the center of the image for reference. Note that the green

block is closer to the center line than the red block.

Figure 34: Accurate Simulation of setup in Figure 29

38

 This imaging model was heavily used throughout project development. It helped us

determine how camera and lens parameters such as resolution and field of view impacted our

field coverage, which helped us develop our design specifications. It also helped quantify

beacon size and pattern resolution limitations. Finally, it was used directly to map images back

to 3 dimensional locations once the central PC received the image data from the FPGA.

39

Chapter 5: System Implementation

 With testing modules successfully implemented, we were able to implement and test our

individual modules. This chapter describes the requirements, implementation process, and tests

performed for each module we developed.

5.1: Tracking Beacon

 Our tracking beacon had to be designed and constructed in a manner that was efficient

and compatible with our camera system. This section describes how we designed and

implemented our beacon to meet this requirement.

5.1.1: Requirements

 The requirements for our beacon were very straightforward. The first was that it had to be

clearly visible to our camera and able to be powered by the robots in the competition. Another

requirement was that there had to be the ability to display multiple patterns in order to uniquely

identify multiple robots within the arena. The final requirement of the tracking beacon was that

it had to be simple enough that people who worked the FIRST competition with no knowledge of

the system would be able to work our beacon design. Patterns for the beacon can be selected

simply by pushing a button.

5.1.2: Design Choices and Considerations

 The beacon design evolved from many different ideas. We first came up a set of 3 LEDs

in a triangle for our beacon consisting of red, green or blue. This was because the front LED

could be used to help identify which robot was which due to the position of the 2 rear LEDs.

This allowed us to track up to 6 possible robots but lacked the ability to expand that number

should FIRST decide to add more robots to a playing field. Also in implementing the LEDs we

40

decided to use RGB tri-colored LEDs because they were easily identifiable, as well as being

easier to use because of the simplicity in changing the color of the LED when needed for beacon

patterns. The idea behind this method was to use trigonometry to determine a reference point’s

location as seen in Figure 35 below.

Figure 35: Original Beacon Layout

Once we determined that this beacon concept did not provide enough different patterns to

identify the robots uniquely, we decided to move onto a different beacon design as seen in Figure

36 below. This design was chosen because it could be easily detected by a camera due to the area

it occupies.

Figure 36: LED Beacon Design

41

However, after receiving and testing the LEDs in lab, we came to the conclusion that this

design was inefficient because it would require more space to implement and this would make

our design being more intrusive to the competitors.

With size consideration and efficiency in mind, we went researching new ways to

implement a tracking Beacon. After doing research we came across an LED Matrix and decided

that this would be the best solution. The matrix we used to implement our design can be seen in

Figure 37 below.

Figure 37: LED Matrix for Beacon Design

5.1.3: Tracking Beacon Design

The beacon design for our LED matrix went through many different stages. In order to

implement set of unique pattern designs, we configured our matrix to have four different sectors

which would each occupy a 4 by 4 quadrant of the LED matrix. An example layout of our

beacon can be seen in Figure 38 below.

42

Figure 38: Example of Illuminated Beacon

The pattern design for tracking has 4 quadrants that get illuminated to represent RGB

colors. Because of our cameras ability to differentiate between colors we can combine 2 colors

such as red and green or red and blue to minimize the space of our beacon and still ensure that

each quadrant can be detected. We have designed the patterns such that they are easily

identifiable for the image processing stage of our system. In total we have 12 unique color

patterns as described in the table below to allow FIRST the ability to increase the number of

robots in the arena while still ensuring that our system will be able to accurately track the

beacons. In a typical FRC game, six robots are used and all of these robots can be tracked by our

system.

43

Table 1: Identification Patterns

The reason we chose to use three quadrants next to each other as the same color with the

final quadrant being a different color is because it allowed our image processing system to easily

distinguish between different patterns.

5.1.4: LED Matrix Controller

In order to control what tracking pattern was seen on the LED matrix we needed to

design a PCB that would control the voltage input to each quadrant. After looking into the

matrix’s pinout it became apparent that we would need to multiplex the matrix in order to display

the correct color in each of the four quadrants.

 At first we discussed using a shift register for the output controller in order to be able to

control each LED separately. Soon it became clear that using shift registers would over

complicate our design because we only needed to control individual quadrants instead of

individual LEDs. This led us to believe that a simple MSP430 microcontroller would be the best

option to use for multiplexing purposes because of its simplicity. Using this microcontroller we

could tie off the rows and columns into groups using h-bridges. This allowed us to use only 8

44

I/O lines. These lines are for Rows1-4 and 5-8, Red Columns 1-4 and 5-8, Green Columns 1-4

and 5-8, as well as Blue Columns 1-4 and 5-8 as seen in Figure 39 below.

Figure 39: Layout of Row/Column Grouping

This method of grouping simplified our design because each group was connected to an

output of a quadruple half-h driver. We decided to use the half–h drivers as can be seen in

Appendix B because of their ability to work with the current requirements of the LED matrix as

well as the microcontroller. To implement this design we used two of these drivers to control

specific quadrants as needed to display the correct pattern.

5.1.5: Beacon Implementation

 With the requirements and design specifications discussed in the previous section, we

designed our PCB for implementation. The prefabrication layout of our LED Matrix Controller

PCB can be seen in Figure 40 below.

45

Figure 40: Prefabricated LED Matrix Controller PCB

After all of our components were acquired and the PCB was fabricated, we populated the board

for testing. The final assembled LED Matrix Controller can be seen in Figure 41 below.

46

Figure 41: Led Matrix Controller Assembled

Finally attaching the matrix and Launchpad to the PCB we were able to test our design to verify

its functionality. Our assembled Beacon can be seen in Figure 42.

47

Figure 42: LED Matrix with PCB Controller and MSP430

5.1.6: Testing

After beginning testing with the LED PCB, it became apparent that the beacon was not

behaving as predicted. The patterns that were being displayed can be seen in Figure 43 below.

Figure 43: LED PCB Malfunction

48

Upon testing the connections between the matrix and the PCB it was discovered that some of the

lines to one of the headers were reversed. The Figure 44 shows what the original header

orientation was.

Figure 44: Former Board Layout

Based upon the pinout of the LED matrix the header should have been positioned as follows in

Figure 45.

Figure 45: Necessary Board Layout

In order to correct the PCB error we created a new basic breakout board to reverse the

orientation of the headers to ensure they connected to the right signals. Finally once this was

done we retested the Matrix and all twelve of the beacon patterns displayed correctly. Figure 46

below shows the Matrix displaying pattern 3.

49

Figure 46: LED Matrix Displaying Pattern 3

5.2: Camera PCB

 In order to communicate with the FPGA our camera needed a custom breakout board that

connected the signals from the camera to a connector on the Nexys3 development board. This

was necessary because the connector for our camera was not available on the Nexys3 board. Our

custom circuit board was designed to provide the necessary connections between the camera and

the Nexys3. The board needed to incorporate two connectors; a 30-pin Molex mating connector

for the camera, and a 68-pin VHDCI connector to connect with the Nexys3 board. Connecting to

the VHDCI connector was preferable to the other connections available on the Nexys3 because it

is designed for high-speed data transfers and is designed for high speed data. The appropriate

connections to the camera were made in accordance with the Digilent Nexys3 functional

descriptions of the various VHDCI connector signals when designing the custom board.

5.2.1: PCB Design

Figure 47 below shows the board design before it was sent for fabrication. The camera

plugs in within the bounds of the dark blue lines. It has mounting holes on two corners, designed

50

to correspond with the mounting holes on the camera module itself. Also, some screws and nuts

were selected to mount the camera to the board during operation so it did not fall off when tilted

upside down.

Figure 47: Custom Breakout PCB before Order

 There are four surface mount circuit elements that were added. Three are capacitors, one

is a resistor. Capacitor C1 and resistor R1 serve as the shield for the VHDCI connector. They are

used in a low pass configuration in order to prevent voltage spikes in the signals. Capacitors C2

and C3 are decoupling capacitors that filter out noise from the power supply to the camera.

 The four holes on the corners were added to the board to allow for standoffs to be added

so the board would rest at the same height as the Nexys3 and also protect the solder connections

from wear. There are 12 labeled test points on the board to use during testing and debugging of

the board, camera, and FPGA logic. Figure 48 below shows the fabricated PCB and Figure 49

shows the fabricated PCB connected to the Nexys3 development board.

51

Figure 48: Fabricated PCB

Figure 49: PCB with Camera Attached, Plugged Into Nexys3 Board

 We used the test points to initially confirm that all connections had properly been made

between the camera and the FPGA. The test points also played a critical role in verifying the

52

functionality of the camera and in development of the I
2
C communication with the camera

because debugging that communication was made easier by observing the communications on an

oscilloscope.

5.3: I2C Interface

 The Videology 24C1.3xDIG camera we used has user-selectable settings for all sorts of

camera features. These include resolution, gain control, contrast, shutter speed, as well as several

others. In order to adjust these for optimal settings, an I
2
C interface was created using a

Micoblaze soft-core processor which is generated inside the FPGA.

 There are eleven configurable registers with settings for this camera. The one that is of

most immediate interest to us was register 0 which contains the settings for the frame rate, gain

mode, and resolution. The settings available for resolution and frame rate are in the Figure 50

below:

Figure 50: Resolution and Frame Rate Chart [8]

In Figure 51, all the available settings configured in register 0 are shown, bit by bit. For

our testing purposes, VGA (640X480) resolution has to be used. This is because SXGA

(1280X1024) resolution requires a 108 MHz pixel clock for use with a VGA display, but the

fastest we could read data from the SRAM on the Nexys3 board is 80 MHz.

53

Figure 51: Register 0 Detail [8]

 To set the camera to VGA resolution, bits 15:14 needed to be 01 in binary as can be seen

in Figure 51. Also, we wanted to change the mains frequency from the default of 50 Hz to 60Hz

which is more easily compatible with standard 640X480@60Hz for the monitor. To achieve

these settings, we needed to write 0x40C3 to register 0.

54

Figure 52: Reading Default Settings via I2C

 The oscilloscope image in Figure 52 above shows an entire sequence to read the data in

register 0 from the camera. The clock is entirely driven by the master, which is our FPGA,

except when the slave (the camera) is stretching the clock.

Figure 53: Displaying Read Results to User

 Figure 53 above shows the results of the read action displayed on the seven segment

displays on the Nexys3 board. For comprehensive reading and writing, a simple user interface

55

was implemented to guide the user through the short command entry process. For instance, if a

user wants to read from register 0, they simply set all the slider switches to low, press the right

button, and then press the down button to execute the command. The LEDs are used to show the

user the status of the entry user interface.

Figure 54: Writing 0x40c3 to Register 0

 Next, 0x40C3 is written to the camera, as shown in Figure 54 above. The process is a

little simpler and shorter than a read, since the camera does not have to be re-addressed.

56

Figure 55: Reading 0x40c3 from Register 0

 To confirm that 0x40C3 was received, the register is read again. The camera confirms

that the register was what we wanted. The sequence can be seen in Figure 55 above and the

seven segment display confirms it to the user as shown in Figure 56 below.

Figure 56: Results of Reading the Previously-Written Value of Register 0

57

5.4: Camera Interface

 The camera we used for our system provides data 8 bits at a time in UYVY format as can

be seen in Figure 57 below.

Figure 57: Data Format of Camera [8]

Since our design requires the data to be in RGB format for processing, we needed to

implement a module that packaged multiple 8-bit words into single 32-bit words, macropixels.

These macropixels are passed on to the other modules as they become available. We decided that

the simplest way to implement this packaging mechanism was to use a FIFO. The FIFO takes in

8-bit words at every positive edge of the 54 MHz clock provided by the camera and produces 32-

bit words at the positive edge of an 80 MHz clock, which is used by the rest of the system, if the

YUV to RGB conversion module is ready for data. This FIFO serves the purpose of packaging

the data for further use and performing the clock domain crossing that moves to the faster clock

domain of the main system. Figure 58 below shows the block diagram for this module. This

block diagram shows 8 bit data from the camera passing through the FIFO and being output as a

32 bit macropixel.

58

Figure 58: Camera Interface Block Diagram

5.5: Beacon Filter

 The main purpose of the Beacon Filter module is to filter out image data that is not part

of one of the LED Beacons or calibration markers. This is done in two phases. First the image

data is converted from the YUV color space to the RGB color space. A filter is then applied that

removes data that does not fit the profile of an LED Beacon or a Calibration Marker. This filter

also normalizes all data that matches the profile so that further image processing can be

performed in a simpler manner.

5.5.1: Color Space Converter

The first step in performing the filtering is to convert from the YUV color space to the

RGB color space. This conversion is done by first breaking the macropixel from the camera

interface into two pixels. A macropixel contains 4 words of data that correspond to data for the

two pixels in the following manner: U0/1 Y0 V0/1 Y1. This data is broken up to form two pixels as

follows: Y0 U0/1 V0/1 and Y1 U0/1 V0/1. Once these pixels have been assembled, the math required

59

to convert from the YUV color space to the RGB color space is applied. This is done by applying

the following equations.

 (5.1)

 (5.2)

 (5.3)

The submodule that applies this math has been pipelined such that the computations take 7 clock

cycles to complete.

In addition to the conversion submodule we used, we designed custom digital logic that

served to control the data flow within this module. In order to signal that the data on the output is

valid, a signal is given to the submodule that is passed through the pipeline with the data that is

being converted. This signal is driven high when valid data is applied at the input and a signal

from the output of the pipeline is driven high when valid data is available at the output.

The data flow for this module can be seen in the block diagram in Figure 59 below. Raw

image data comes from the Camera Interface module. Each macropixel is multiplexed such that

individual pixels are sent to the YUV to RGB Converter so that each pixel is converted in the

proper order. When the data has been converted, it is compressed so that it requires less space in

RAM and can be easily used to drive the colors on a VGA display. Finally, the data is packaged

in a FIFO so that 64 bits of data can be written to RAM at the same time.

60

Figure 59: Color Space Converter Block Diagram

 When the implementation of this submodule was completed, a testbench was created that

applies simulated data from the camera and demonstrates that the data is assembled properly for

use in other modules. The results of this test can be seen in Figure 60 below. Of note is this test

bench is that data is applied on the camera_data input. This data is converted and the results of

this conversion can be seen on the processed_data_in wire. It is then passed to the compressor

which shrinks the data down to 8 bits per pixel and writes the compressed data into the FIFO.

Finally, the 64 bits of packaged data can be seen properly assembled on the dout line.

61

Figure 60: Color Space Conversion Testbench

5.5.2: Color Filter

 With the image data in RGB format, the first portion of the image processing can be

executed. This stage filters out image data that is not part of an LED Beacon or a Calibration

Marker. This is done by comparing the Red, Green, and Blue values of each pixel to pre-

determined threshold values. Six values are used; three that check if a color is above a minimum

value and three that check if a color is below a maximum value. For example, in order for a pixel

to pass through the filter with the color yellow, it would need to have Red and Green values

above the minimum thresholds for those colors and a Blue value below the maximum threshold.

This ensures that the only colors that get through the filter are those that are purely one color or

another. Additionally, this stage filters out most data that is not relevant to the LED Beacons or

the Calibration Markers. This stage has the limitation that bright sources of light that are located

in the arena will not necessarily be removed since they have the proper profile.

 The block diagram for the completed Beacon Filter module can be seen in Figure 61

below. This block diagram has replaced the simple data compressor block with the more

complex Color Filter block described in this section.

62

Figure 61: Completed Beacon Filter Block Diagram

 This stage was tested using the VGA Display module. The results of these tests can be

seen in Figure 62 and Figure 63 below. Figure 62 shows an image that was taken by our system

with the color filtering disabled. Figure 63 shows the same scene with filtering enabled. In both

of these figures, the white crosshair was used to identify the center of the image and was not

actually perceived by the camera. All of the data that was not part of the calibration markers or

LED Beacon was removed and the important colors had their values normalized successfully.

Figure 62: Unfiltered Image

63

Figure 63: Filtered Image

5.6: RAM Interface

The RAM Interface module was designed in order to facilitate use of the onboard RAM.

The interface has three main purposes; configure the RAM with the appropriate settings, perform

a write operation, and perform a read operation. The first step in developing the interface was to

determine how to configure the RAM. Once this was completed, the read and write operations

were developed.

5.6.1: RAM Configuration

When the configuration settings for the RAM were being chosen, the biggest

consideration was the speed at which writes could be performed. Our limitation was that data

came in from the camera 8 bits at a time at a rate of 54 MHz. Since the RAM has an upper bank

and lower bank, each of which holds 8 bits per address, we were able to write 16 bits at a time.

Therefore, we needed to be able to perform writes at an average rate of 27 MHz. We initially

considered using the asynchronous access mode of the RAM, but we quickly discovered that this

would operate at 1 write per 70 ns which is on the order of 14 MHz. We then found that

synchronous burst mode write operations could be performed much faster. This is because

64

multiple writes can be performed in quick succession as long as the addresses are consecutive.

We chose to operate the RAM at its maximum clock rate of 80 MHz and in 4 word burst mode.

At this speed, the RAM requires 7 clock cycles to prepare a write, then performs a 4 writes over

the next 4 clock cycles. Therefore, in a worst case scenario, 4 writes are performed in 11 clock

cycles which averages to be a rate of 29 MHz which is above our requirement.

 Once these settings were chosen, we developed the method for programming these

settings into the RAM. This is done by performing a write to the Bus Configuration Register

(BCR). A write to the BCR is done by driving the RAM input signals as seen in Figure 64 from

the MT45W8MW16BGX datasheet [10].

Figure 64: BCR Write Operation[10]

The key signals to drive for the BCR write operation are the address lines, CRE, ADV#,

CE#, and WE#. CRE is driven high to indicate that a configuration register access is being

performed. ADV# and CE# are both driven low to indicate that the chip has been enabled and

that the data on the address lines is valid. WE# is held high when ADV# and CE# are first driven

65

low, but is driven low when the write is actually performed. Finally, the address lines contain the

settings to write into the BCR. The data on these lines is given by the following table.

Table 2: BCR Settings

Once the BCR write operation was implemented, a testbench was created that would

execute the operation on model of the RAM and verify that the operation had been implemented

properly. The results of this test can be seen in Figure 65 below.

Figure 65: BCR Write Operation Testbench

66

5.6.2: Read and Write Operations

The proper sequences required to perform read and write operations on the RAM were

determined from the RAM datasheet. The basic sequences can be seen in Figure 66 and Figure

67 below.

Figure 66: Burst Mode Write [10]

Figure 67: Burst Mode Read [10]

67

The major difference between the above figures and the sequences used for our

implementation is that the latency for the system in the figures is 3 clock cycles where in our

system the latency is 7 clock cycles. Both operations rely on the use of the address lines, ADV#,

CE#, OE#, WE#, and LB#/UB#. ADV# is driven low to indicate that an operation is beginning.

When this happens, CE# must also be driven low, and the data that is present on the address line

is locked in. LB# and UB# are held low at all times in our design because for both reads and

writes, we intend to use both banks of RAM.

In order to perform a write operation WE# must be driven low when ADV# and CE# are

initially driven low. Additionally, OE# must be driven high throughout the entirety of the

operation, and that WE# must be driven low at the same time as ADV# and CE#. On the first

positive edge of the clock after the latency period, the data that is on the DQ line will be written

to the given address. At the next positive edge of the clock, data is available from the address

immediately following the given address. At the end of the operation, four address worth of data

will have been read. For example, if the address given at the beginning of the operation was

address 0, data from addresses 0, 1, 2, and 3 would have been provided.

A read operation differs from a write operation in that WE# must be driven high when

ADV# and CE# are initially driven low. Further, OE# must be driven low during the latency

period of the operation in order to indicate that a read is being performed. At the first positive

edge of the clock after the latency period, valid data will be available from the given address. At

the next positive edge of the clock, data is available from the address immediately following the

given address. At the end of the operation, four address worth of data will have been read in the

same manner as data was written for a write operation.

68

When the write and read operations were understood, a state machine was implemented

that drove the signals as appropriate. Once the state machine was implemented, a testbench was

created and the write and read operations were tested with a model of the RAM. The results of

these tests can be seen in Figure 68 and Figure 69 below.

Figure 68: Write to Address 0

Figure 69: Read from Address 0

The Figure 68 demonstrates a write operation to address 0 with the following data values:

64, 8, 192, and 8. Figure 69 demonstrates a read operation on address 0 following the previous

write operation. When the read operation is performed, the data values read out are: 64, 8, 192,

and 8 which are identical to the values written by the write operation.

 After the read and write operations were verified in simulation, the RAM interface was

installed on the FPGA and another test was performed. This test repeatedly wrote four separate

69

values to the RAM. Figure 70 below shows one of the write operations that we intended to

perform. Figure 71 below shows the contents of the RAM after our test was performed. The data

appear to be out of order in the second figure. This is due to the program we used to read data

from the RAM to a PC for viewing. The program reads data from the lower bank followed by the

upper bank while our system writes data first to the upper bank, then to the lower bank. Since

read and write operations within our system are consistent in the ordering of the banks, this is not

an issue.

Figure 70: Intended Write Operation

Figure 71: Portion of RAM after Write Operation

5.6.3: System Interface

 With the individual RAM operations successfully implemented, the last remaining

portion of the RAM Interface module to be developed was the system interface. This interface

was intended to provide a simple way for writes or reads to be initiated. To make the interface as

simple as possible, four inputs and three outputs are utilized. The first two important inputs

indicate that a write or read operation has been requested. If either of these inputs is driven high

and the state machine is not performing an operation, the operation corresponding to that input

70

will be performed. In the event that both inputs are driven high at the same time, write operations

are given priority. The third input contains the 23 bit address that the operation is intended to be

performed on. This value is given to the RAM Interface instead of being sent straight to the

RAM because the data on the address line must be overridden when a BCR write is performed.

The RAM Interface detects when a BCR write is intended and multiplexes the signals

appropriately. The final input signal is a 64 bit input that contains data that is to be written to the

RAM. When a read operation is performed, the 64 bits of data are split up so that the top 16 bits

of data are written to the first address; the second 16 bits are written to the second address, and

so on.

 The first important output signal is a signal indicating that the RAM Interface is ready to

begin either a write or read operation. It can also be used to indicate that the RAM Interface is

currently performing an operation. The main use for this signal is in handshaking between the

RAM Interface and the module that is providing it data. The remaining two output signals are

useful for read operations. One of the signals is a 64 bit line that contains the data from a four

word burst read. When a read is performed, the data from the first read is stored in the top 16

bits, the data from the second read is stored in the next 16 bits and so on similar to how the data

is data input is used. The final output is a signal indicating that a read has been completed and

the data on the 64 bit data output is valid. This signal, similar to the ready signal, is used in

handshaking between the RAM Interface and other modules that are requesting data from the

RAM.

 With all of these signals in place and all operations functioning properly, the RAM

Interface can be used as a simple way to either write data to or read data from the RAM. Due to

this simplicity, the logic required in other modules to use the RAM is significantly decreased.

71

5.7: Interfacing Submodules

 The final step required to complete the data flow was to integrate each of the modules

together. This was done by first connecting each module such that the output of one module

connected to the input of the following module. Additionally, handshaking routines were

developed so that data would not be lost because the sending module was ready to send without

the receiving module being in a position to receive the data. With the handshaking in place, data

was able to pass through the system without being lost due to miscommunication between

modules and without being lost due to the system operating at too low of a speed.

Once this was accomplished, the two stages of processing that occur in the FPGA had to

be reconciled. This had to be done because the RAM that was used is only capable of reading or

writing at one time; it is incapable of performing both operations simultaneously. As a result of

this, the system can either be in the image acquisition stage or the preprocessing stage. Since

these stages require the modules to behave in different ways, a state machine was created that

determines which stage is active and drives enable signals for each module as appropriate.

Finally, the system that was used to control the addressing to the RAM was developed.

This system sets the address to 0 if the system has just been activated, if it has been reset, or if it

is transitioning from image acquisition to image processing or vice versa. Otherwise, the address

increments by 4 every time a write or read operation is detected by the RAM Interface module.

This is done because the RAM only requires the address to be valid when an operation starts.

Therefore, if the address is incremented immediately after an operation begins, it is highly

unlikely that the address lines will not have stabilized by the time a new address is needed.

The block diagram for the integrated system can be seen in Figure 72 below. This block

diagram shows the data flow through the Camera Interface, Color Conversion, and Ram

72

Interface modules. It also shows the complexity of the state machine, addressing, and control

logic in the system.

Figure 72: Block Diagram of Integrated Modules

5.8: Image Processing

 The image processing stage is the implementation that locates the center of each beacon

within the image, matches each beacon with its unique ID and sends this information to the

Central PC. In order to perform these tasks, the beacon identifier requires access to the image

data stored in RAM by the Image Acquisition stage as well as the ability to communicate with

the PC to send the information. The capability of performing the recognition and identification of

the patterns within the image consistently and reliably is the central responsibility for this stage.

5.8.1: Implementation

Due to the complexity of this implementation, we decided that developing it in software

was the best solution. The Spartan 6 FPGA is capable of supporting a Microblaze soft-core

73

microprocessor, and it is generated Xilinx ISE software. It is a 32-bit microprocessor capable of

running at 100 MHz, which gives the beacon identifier plenty of capability to perform as

intended.

The Image Processing algorithms begin once the Image Acquisition stage signals that it is

complete the beacon identifier begins acquiring pixel values from RAM until a horizontal line

worth of data is stored in a buffer. Then, the buffer is searched for colored patches. Each time a

colored pixel is found, it is compared with the previous pixel. If the previous pixel is the same

color as the current pixel, the current pixel is added to the patch for the previous pixel. If the

previous pixel is not part of a patch, a new patch is created that starts with that pixel. Data for

each patch is recorded for interpretation after the entire frame has been processed.

Once a horizontal line of pixels has been processed, the next line is acquired from RAM

and the same process is performed as the previous line. However, pixels within a line are not just

compared with their neighbors to the sides; they are compared with their neighbors above and

below. Patches that meet the requirements we set to be considered part of the same patch are

combined. This process is repeated for the entire frame.

Once all the patches are found, they are interpreted. Patches must be at least 5 pixels in

size to be considered part of a beacon. This is to reduce the likelihood that a noise will pass

through the filtering stage and be identified as a beacon. Patches that are adjacent to one another

by five pixels in any direction but are different colors are combined into a beacon.

Algorithms are used to decrease false identifications, so that duplicates are not produced,

and so that the beacons are properly matched with their unique identifier. Then, the algorithm

looks at each beacon and compares the sizes of the two associated patches to determine which ID

74

to generate. The location of this beacon is stored along with its unique ID for transmission after

each beacon has been processed.

After all beacons are identified and all non-beacon patches are discarded, the Image

Processing stage enters transmit mode. In transmit mode, the matrix object information is sent to

the PC for that frame, and a new frame is requested by the beacon identifier and it waits until the

rest of the system is ready for more image processing to be performed on the next frame.

5.8.2: Testing

 Before implementing the color patch location algorithm in the Microblaze processor, we

developed it in MATLAB and tested it on some simple simulated images. The simulated image

can be seen in Figure 73 and the results of this test can be seen in Figure 74.

Figure 73: MATLAB Patch Locator Test Image

75

Figure 74: Results of MATLAB Patch Locator

 Next, we translated the algorithm from MATLAB to C syntax and began developing the beacon

identifier implementation inside the FPGA.

 We decided to test the beacon identifier on a test image before moving to camera images.

This allowed us to compare our results to a constant, known scenario for more efficient

debugging. To make these test images, we made binary files the size of our test resolution with

patches of nonzero values inserted to mimic colored pixels. These binary files were written to

RAM in order to replicate how the system would work using a camera-acquired image as closely

as possible.

We found that the process of reading the RAM via the Microblaze was not working

properly. The first indication of a problem was when the count of beacons after processing a

frame showed zero beacons despite them being present in the RAM.

Next, known data was read in smaller quantities, sent to a PC via the UART, and

observed in Putty. The data was being properly read from the first location of each 4-address

block, but not the subsequent three addresses within the block.

Below are screenshots of the tests we performed. We generated a new binary file to

download into the RAM that contains the hex values 22 11 44 33 66 55 88 77 AA 99 in the first

several addresses of RAM. We began reading addresses starting at address 0, where 0x2211 was

present. The way our SRAM is configured, SRAM63_32 (the upper 32 bits of the 64-bit SRAM

76

read results bus) should contain those 16 bits (0x2211), followed by the next 16 bits (0x4433).

SRAM31_0 (the lower 32 bits of the 64-bit SRAM read results bus) should contain 0x66558877.

We repeated this test on the first several block addresses, and in each case, only the first address

within the block was read properly. The reason the same address is copied into all four address

spaces is because the burst was not working, so the same location was read into each address

space. An example of this issue can be seen in Figure 75 below.

Figure 75: Debugging Microblaze access to RAM

At that point, we could read the contents of memory properly if we only read one address

at a time. However, we wanted to be able to use the burst mode because it is a better engineering

design that allows us to read more pixels more quickly.

Through testing, we found that the RAM interface Verilog design module worked only

when the address specified for each read was provided by the Verilog design instead of the

Microblaze processor.

We found the next issue to be that the array that stores incoming pixel data was not

declared as a static variable. This was causing issues with the memory that corrupted other

variables. When we changed this, the Beacon Identifier ran to completion and identified slightly

more than the correct number of beacons. Our algorithm did not take into account beacons that

77

are more complicated in shape yet. To fix this, we made a function that merges beacons that

share the same color and share a border. When this function was complete, the Beacon Identifier

was demonstrated as identifying the correct number of beacons and all beacons were in the

correct location with the correct color.

Figure 76 below describes the test that we performed at the full resolution. This image is

the full scale 1280X1024 test image that we placed into the RAM.

Figure 76: Full Scale Test Image

Figure 77 below shows the output of the beacon identifier test. We used the UART

communication to send out the data so that we could see it on a computer screen. As can be seen

78

in the image, we were identifying the appropriate number of color patches and they were

centered in the correct locations and have the correct number of pixels associated with them.

Note that the origin of the image is at the top left, so that larger Y values are actually lower on

the image.

Figure 77: Beacon Identifier Test Output

Figure 78 below is an example of a beacon that requires merging. As each new horizontal

line is scanned, two purple patches are initially detected due to the horizontal nature of our

algorithms. However, further down the image we find that these two patches are actually part of

the same patch. The merging function takes all of the small patches that are close enough to one

another and puts them into one patch.

79

Figure 78: Beacon Requiring Merging

With our patch recognition algorithms functional, we moved on to identify beacons using

the actual camera images instead of test images. Figure 79 below shows the image that appeared

on the computer monitor screen after passing through the color filtering system. The second

image shows the results of the test sent via UART to a computer. The results shown in Figure 80

demonstrate that the beacon was located at pixel (292, 278) with the origin located at the bottom

left corner of the image. This matched what we expected from the image that was displayed on

the monitor.

Figure 79: Image for Beacon Pattern Identification Test

80

Figure 80: Results of Beacon Pattern Identification Test

 Similar tests were extensively performed in order to verify that the pattern identification

system was fully functional.

5.9: Reconstructing Locations from Images

After image processing, the next step in the information flow is to actually resolve the (x,

y) beacon locations. This is done by combining the data from the 6 cameras with knowledge of

where the cameras are located.

Figure 81: Resolving Beacon Positions Concept

 Figure 81 above shows the goal of this part of the system. The goal is to take the known

pixel coordinates, (U, V), and determine the physical location (X, Y) inside the arena space.

81

5.9.1: Requirements

This stage has several important requirements. It needs to resolve the camera locations

quickly, account for the possibility of the beacons being at a variety of heights, and flexibly

incorporate data from two to six cameras, depending on the beacon's location and the number of

cameras around the field capable of identifying it.

5.9.2: Implementation

 Once accurate images could be simulated from a camera pose and object location, we

could move to solve for an object location based on a camera image. Initially, this reconstruction

was developed assuming a height for the beacons. This allowed us to solve for a location with

only one image, however, this seemed to put significant requirements on the FRC teams to

mount the beacons at a specific height, and wouldn't allow our system to compensate for

different terrain heights, which is a feature common in FRC games. These inflexibilities

motivated a solution to use two camera images from different perspectives to first find the height

of the object, and then solve for its (x, y) location as in stereo-vision. Because there are six

cameras present on the field, we developed a solution that to combine the data from all 6 cameras

to generate a least-squares error image reconstruction based on all the images that the object is

located in.

 Since a camera image provides horizontal and vertical information (a (u, v) pixel

location), one image can allow us to solve for the (x, y) location of an object, provided we know

the height, z, that the object is located at. This is a case of solving two equations (the mapping to

u pixels, and v pixels), for two unknowns; the x and y positions of the object. However, since

FRC robots vary widely in size, assuming the height of the beacon on the robot is not reasonable.

82

To combat this, we looked to implement a way to combine two camera images to create one 3-

dimensional location.

There were two different methods available to combine image data from two cameras to

solve for an object location. An iterative method would assume a height z, then calculate an (x,

y) location based off of one image, then use the calculated (x, y) and a different image to try to

solve for the z location, and iterate until the (x, y, z) location converged. Since this system needs

to quickly determine the beacon locations, this iterative method did not seem promising, so

principles of stereo-vision were employed to implement a direct method of combining the image

data. This method used the pinhole camera model developed in Chapter 4.3 to express each (u, v)

pixel as a 3D line, L, radiating from the camera's focal point. This is done by expressing the pixel

as a vector by depixelizing it into homogeneous image plane coordinates. Then,

to reverse the homogenization, v is multiplied by a scalar, S, and multiplied by the rotation

matrix which is the inverse of the rotation matrix used to change from <x,y,z> coordinates

to <u,v,w> camera coordinates, and rotates Sv back into <x,y,z> coordinates:

 (5.4)

Two different cameras provide two different lines, L1 and L2 pointing to the same object. By

solving for the intersection of L1 and L2, the height of the object z can be determined. Then

using either L1 or L2, the x and y components of the location can be found. This principle is

illustrated in Figure 82 below.

83

Figure 82: Overhead View of Location Reconstruction Theory

 While this method does allow determination of the full (x, y, z) position of the beacon,

there will be quantization error due to the pixelization, which can be significant at long ranges,

and error due to inaccurate determination of the pose of each of the cameras. These errors

propagate through the system to the reconstructed locations. However, if extra data is available

from other cameras, these errors can be reduced. This requires solving an over determined linear

system and finding a least squares solution [11]. This was implemented by defining a linear

system of the form:

 (5.5)

Where A and b are column vectors with entries for each image that contains the object.

Both sides of the equation are multiplied by A
T
, giving:

 (5.6)

84

Since and are scalar values, solving for

 gives the least squares error solution

for x, which is the best possible solution for the object’s location, given the images available.

This calculation is repeated for x, y, and z.

5.9.3: Testing

As this system was implemented, the functionality was continually tested in simulations.

Test images of objects from various perspectives were generated, and those images were used to

reconstruct the beacon locations. The reconstruction was then compared to the actual location the

simulator started with. This procedure was repeated with different image resolutions, camera

locations, lens viewing angles, numbers of cameras, and beacon locations. The results from these

simulations helped guide design decisions regarding the beacon design, camera resolution, and

lens angle.

5.10: Calibration Algorithm

The accuracy of the beacon reconstruction as described above is extremely dependent on

accurately knowing the pose of each camera. Since the system requires installing these cameras

above the floor, it was unreasonable to assume that the cameras would be precision aligned. This

motivated the development of an automated calibration routine, which uses images of objects,

called calibration markers, at known locations inside the field to accurately determine the

camera's pose. The calibration markers are placed temporarily before the competitions until the

calibration is done. The calibration markers are simple blue LEDs. The pose of the camera is

defined as the six parameters that describe the physical orientation of the camera. These are roll,

pitch, yaw, x, y, and z. These parameters are visualized below.

85

Figure 83: Pitch and Z Pose Parameters, Side View

Figure 84: Roll Pose Parameter, View of Camera From Behind

Figure 85: Yaw, X, Y Pose Parameters Shown, Overhead View of Camera

86

 Initially, we sought to implement a calibration algorithm that develops a guess for the

camera's pose, simulates an image of markers from that pose, and minimized the error between

the simulated image and an actual image by iteratively changing different parameters of the

guessed pose. After this was found to be ineffective, we implemented an approach to calibration

that iteratively optimized the rotation of the camera, and the location of the camera, using an

object-space co linearity error vector as defined by Lu, Hagar, and Mjolsness [11].

Our first attempt to calibrating the camera tried to assume camera locations, simulate

images from those locations, and compare the simulated image to the actual image. This idea

was based on the fact that we had an actual image, we had mathematics that describe how to

simulate an image based on a guessed camera pose and object locations, and minimizing the

differences between the actual and simulated images by changing our guessed pose would allow

us to accurately determine the actual camera's location. We defined the error in an image as the

sum of pixel distances between objects in the actual image and simulated image. Figure 86 below

shows the individual errors between objects in one image (squares) and another image

(triangles).

Figure 86: Error between Two Images

e e

e
e

87

Using this error definition, we found a value for an arbitrary degree of freedom in the

camera's pose that minimizes the error. We then incorporated that value into the guess for the

camera pose, and proceeded to find a value that minimized the image error for a different degree

of freedom, repeating until the pose stopped changing, or a maximum number of iterations was

reached. This approach ran into issues because it attempted to optimize the 6 degrees of freedom

of the camera individually, which caused convergence issues, and unsatisfactory results in

simulation. These results motivated us to find a more established algorithm to solve this issue.

 The Orthogonal Iteration Algorithm developed by Lu et al. developed a solution to the

calibration problem by separating the pose into two variables, instead of six, and using an object-

space error vector, rather than an image-space error vector [12]. This object space co linearity

error vector is again based on the pin-hole camera model, and its idea that the focal point of the

camera, the projection of an object on the image plane, and the actual image should be collinear.

Thus the error vector ei is described as:

 (5.7)

Where

 is projection operator, and vi =[u,v,1]
t
 is the image of pi =[x,y,z]

t
 on the

camera’s image plane, and R and t are a 3x3 rotation matrix and 3x1 displacement vector

respectively which describe the pose of the camera in field coordinates. Figure 87 below shows

how R and t serve as a frame transformation between the object reference frame, or field

coordinates, and the camera reference plane.

88

Figure 87: Reference Frames for Camera Calibration [12]

Using equation 5.7, R and t could be iteratively optimized. This was done by computing:

 (5.8)

Where n is the number of calibration markers used. Then values of R and t were found to

minimize the sum of the errors. This method of calibration was much more effective at

determining the camera's pose than using image space error as described in Figure 86, allowing

accurate position reconstructions in both simulations and real-world tests.

89

Chapter 6: System Testing

 With the entirety of the system implemented, we moved on to testing. The system as a

whole was tested in an environment that was meant to emulate a FIRST arena. We used our

single camera to take and process images from locations exactly as they would be positioned in a

real FIRST environment. We placed the LED beacon so that it was visible to three typical

camera locations of our system. This was done to demonstrate the ability to use stereo-vision

concepts incorporating more than two cameras spaced far apart. We also performed tests using

just two cameras. From each camera position, we captured an image of the arena so that it could

be processed offline. We had to process the data offline because we did not have the resources

available to us to replicate our hardware.

Figure 88 shows the testing equipment for viewing the LED beacon and communicating

with the PC. The FPGA board and camera are held inside an acrylic case that we fashioned

specifically to hold these items and support all of our testing operations. The case holding the

camera and FPGA subsystem can be manually tilted and fixed to a certain pose. There is access

to the lens for manual focusing, as well as access to the switches and buttons for mode control.

Two USB wires connect the PC to the FPGA board for development as well as high speed serial

communication.

90

Figure 88: Camera/FPGA subsystem, case, and holster

 We preliminarily performed two small scale tests with two cameras spaced ten feet apart.

In these tests, two cameras were used to reconstruct the locations of beacons placed relatively

close to the cameras. In the first of these, the beacon was located (in inches) at (32, 63) and was

reconstructed at (32, 60) with an error of three inches. In the second test, the beacon was located

at (54, 70) and was reconstructed at (54, 75) with an error of five inches.

 After performing our preliminary tests and verifying that the system functioned properly,

we began executing larger scale tests. In our first larger scale test, we placed the beacon at

location (123, 198) and used cameras in three locations of the side of our simulated arena to

locate the beacon. This test was done to confirm the ability to use more than two cameras for

reconstruction of locations. The result was (118, 202) which corresponds to an error of about six

inches.

91

After completing the first test, we performed another test by placing the beacon at (98,

166) and performing the reconstruction using two cameras placed at corners of the arena spaced

27 feet apart. The results of this test can be seen in Figure 89 below.

Figure 89: Actual Beacon (98, 166) Compared to Reconstructed Location (106, 166) in Test 2. Total Error: 8 Inches

 In this test, the reconstruction algorithm found the beacon to be eight inches away from

where it was actually located.

 For our final test, we placed the beacon at (62, 132) and again ran the system with two

cameras spaced 27 feet apart. The results of this test can be seen in Figure 90 below. In this test

the reconstruction algorithm found the beacon to be two inches away from the actual beacon

location.

92

Figure 90: Actual Beacon (62, 132) Compared to Reconstructed Location (63, 134) in Test 2. Total Error: 2 Inches

 The actual beacon locations and reconstructed beacon locations for the three larger scale

tests are plotted in Figure 91 below.

Figure 91: Larger Scale Test Results

93

After analyzing the results of the tests, we found that the maximum error was 8 inches

and the minimum error was two inches. We believe the range of these results to be due to the fact

that the rig used to hold the camera in place was not entirely stable and the lens of the camera

required focusing between calibration and beacon images. These two factors combined to create

slight errors between the location of the camera as determined by the calibration algorithm and

the actual location of the camera when the reconstruction image was taken. In the FIRST

environment, the cameras would be firmly locked in place, and not require manual focusing

during the competition, and this source of error would be greatly diminished.

94

Chapter 7: Conclusions

 The robot localization system we designed and implemented successfully met all of our

system requirements and goals except for a slightly larger error than we were striving for. The

system was carefully designed and developed with the requirements in mind, and the result was a

system that is close to being able to be implemented by FIRST with a minor lens upgrade, and

implementation of an FPGA-based Ethernet controller. The lens would need a larger field of

view to cover the intended area, and the Ethernet controller would enable FIRST to transmit data

across the entire field effectively.

 The essential requirement that our system be able to detect and identify all robots

separately was met. This was done by using programmable LED beacons that give twelve unique

patterns for use by the robots. The beacon identification algorithms were successfully able to

identify these patterns in the camera frames and associate them with the appropriate unique

identifier. This was made possible by the very careful design of the embedded FPGA system.

The processes that are run by the FPGA hardware as well as the soft-core Microblaze processor

were extensively planned out before implementation and developed with exhaustive attention to

detail in order to achieve the best possible results for identification.

Testing indicates that the coordinates generated for the beacons are consistently accurate

to eight or fewer inches. While eight inches maximum error is above our ideal accuracy, it is still

reasonably accurate such that it would be of use to the competitors. Additionally, small

variations were present in the system due to human error. This was caused by repeatedly moving

the single camera/FPGA system to multiple locations in order to simulate using multiple

cameras. In a real FIRST environment, the cameras would be held steady and no manual lens

95

adjustment would be required during operation and therefore, the results would be slightly

improved.

 The requirement that our system be minimally invasive was met. One way we met this

requirement was to use automated calibration to allow setup to be simple and not force the

volunteers to place the cameras in an extremely precise location. Another way we met this

requirement was to make an LED beacon that is small, light, and low enough in power that it can

be fitted to the robots.

 Low maintenance operation was achieved successfully. One way we achieved this was by

adding the capability of powering the beacons using the robots’ on-board power sources to

power the LED beacons. The cameras and their associated embedded systems are powered by a

wall outlet, which is readily accessible at FIRST competitions. The LED beacons are durable

enough for use in the competitions, as long as they are placed on the robots in the right locations

so that they are not hit directly by other robots with excessive force.

 The ability of the system to be robust and flexible in a competitive environment was

achieved successfully. This was accomplished primarily inside the image processing embedded

systems. To prevent false identifications or bottlenecking due to excessive data requirements, the

embedded systems filter and normalize the incoming frames specifically to preserve the beacons

and as little background noise as possible. System testing was done inside Harrington

Auditorium as well as inside the MQP lab in different lighting conditions and operation was

consistently smooth.

7.1: Future Work

 Testing thus far has been performed by using our single-camera rig to capture images

from multiple locations in order to simulate the effect of having multiple cameras by taking

96

instantaneous snapshots of the test environment. However, the single-camera rigs are all identical

to one another. This means that implementing a full real-time system is possible by simply

replicating our hardware with a minor lens upgrade. Supporting the networking of all six

cameras with the PC over Ethernet would allow FIRST to save money.

 The lens available for us during testing did not have the desired field of view or depth of

field. In order to make the full system capable of seeing the entire field, a new lens with the

proper field of view is desired. No modifications to the rest of the hardware would be required to

use a new lens, and only the two lens angle parameters inside the PC source code would need to

be edited.

 The range of our tests was limited by the visibility of the beacon. As the beacon was

farther away in the images, the color differences within the LED matrix became obscured. This

meant that the beacon did not appear to have discrete colored sections to the camera, and this

compromised our algorithms. However, a simple and practical solution to this problem would be

to use four LED matrices instead of one. These would be placed in a square pattern, and one

entire LED matrix would be one color, and the other three would be another color. This would

make the smallest quadrant of the matrix four times larger than it is currently, and it would be

seen far more consistently at range. The total beacon size would be six by six inches after the

revision.

97

References

[1] Video. FIRST, 8 Jan. 2011. WMV. <http://www.youtube.com/watch?v=93Tygo0_O5c>.

[2] Digital Image of FIRST arena. Digital image. FIRST Robotics. FIRST Robotics, n.d. Web.

<http://frc-manual.usfirst.org/upload/images/2013/1/Figure2-1.jpg>.

[3]

Introduction to Image Processing. Space Telescope. PDF.

<http://www.spacetelescope.org/static/projects/fits_liberator/image_processing.pdf>.

[4] Jisarojito, Jarupat. "Tracking a Robot Using Overhead Cameras for RoboCup SPL League."

[5] Sirota, Alex. Robotracker - A System for Tracking Robots in Real Time. Tech. Technion:

Israel Institute of Technology, 2004.

<http://www.iosart.com/robotracker/RoboTracker.pdf>.

 [6] Wang, Meng, and Jean-Yves Herve. "3D Target Tracking Using Multiple Calibrated

Cameras." IEEE Explore. IEEE, n.d. Web.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4259921>.

[7] Trein, J., A. Th. Schwarzbacher, and B. Hoppe. "FPGA Implementation of a Single Pass

Real-Time Blob Analysis Using Run Length Encoding." School of Electronic and

Communications Engineering. School of Electronic and Communications Engineering,

Feb. 2008. Web. Jan.-Feb. 2013. http://www.electronics.dit.ie/postgrads/jtrein/mpc08-

1Blob.pdf.

[8] "Application Note." Videology Inc. Videology Inc, 1 Apr. 2010. Web. Nov. 2012.

http://www.videologyinc.com/media/products/application%20notes/APN-

24C1.3xDIG.pdf.

[9] Mathworks. "Frame Transformations." Frame Transformations. N.p., 2013. Web. 15 Apr.

2013.

98

[10] Micron. "Async/Page/Burst CellularRAM TM 1.5 MT45W8MW16BGX." N.p., 2004. Web.

[11] Ron, Amos. "Review of Least Squares Solutions to Overdetermined Systems." University

of Wisconsin Madison. University of Wisconsin, 9 Nov. 2010. Web. Mar. 2013.

http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture17.pdf.

[12] Lu, Chien-Ping, Gregory J. Hager, and Eric Mjolsness. "Fast and Globally Convergent Pose

Estimation From Video Images." The Computable Plant. National Science Foundation

Frontiers in Integrative Biological Research (FIBR) Program, 18 Feb. 1998. Web. Dec.

2012. <http://computableplant.ics.uci.edu/papers/1998/lu98fast.pdf>.

https://exchange.wpi.edu/owa/redir.aspx?C=178c6321c3484b77a20b9ecda91b48b3&URL=http%3a%2f%2fpages.cs.wisc.edu%2f%7eamos%2f412%2flecture-notes%2flecture17.pdf

99

Appendix A: Beacon Control Code

 The source code below was used to control the patterns displayed on the LED matrix.

This system allowed us to generate unique patterns for each robot which allows multiple robots

to be tracked simultaneously.

#include <msp430g2553.h>

#include <stdio.h>

#include <string.h>

#define row1 BIT0

#define row2 BIT1

#define red1 BIT2

#define red2 BIT3

#define green1 BIT4

#define green2 BIT5

#define blue1 BIT7

#define blue2 BIT6

#define Button BIT3

static int ButtonCount = 0;

static int ulButtons;

static int lastButton = 0;

static int top_bot_actual = 0;

static int top_bot = 0;

static int counter = 0;

void main(void) {

 WDTCTL = WDTPW + WDTHOLD;

 //reset watch dog timer

 TA0CCTL0 = CCIE;

 //Timer A0 setup

 TA0CTL = TASSEL_2 + MC_1 + ID_3;

 TA0CCR0 = 12000;

 TA1CCTL0 = CCIE;

 //Timer A1 setup

 TA1CTL = TASSEL_2 + MC_1 + ID_0;

 TA1CCR0 = 124;

 _BIS_SR(GIE);

 P2SEL &= ~BIT6;

 //selecting general I/O

 P2SEL &= ~BIT7;

 //selecting general I/O

 P2OUT = 0;

 //setting outputs to 0

100

 P2DIR |= row1 + row2 + red1 + red2 + green1 + green2 + blue1 + blue2;

 //setting pins to output

 P1REN = BIT3;

 P1SEL = 0;

 P1DIR &= ~BIT3;

 P1IN |= BIT3;//read from P1IN port 3 to find out if button's pressed

}

// Timer A0 interrupt service routine

#pragma vector=TIMER0_A0_VECTOR

__interrupt void Timer0_A (void)

{

 ulButtons = ((P1IN & Button) != Button);

 if((lastButton == 0) && ulButtons)

 if(ButtonCount + 1 > 13) // Count up 13 for button press to

change between beacon patterns.

 ButtonCount = 0;

 else

 ButtonCount++;

 lastButton = ulButtons;

}

#pragma vector=TIMER1_A0_VECTOR

__interrupt void Timer1_A (void)

{

 if(counter > 31)

 counter = 0;

 else

 counter++;

 if(top_bot_actual == 0){ //Switches between top set of rows

and bottom set in order to multiplex

 top_bot_actual = 1;

 }

 else {

 top_bot_actual = 0;

 }

 if(counter >= 10) // 12 default

 top_bot = 2;

 else

 top_bot = top_bot_actual;

 switch(ButtonCount)

 {

 case 0:

 P2OUT &= row1 + row2;

 //Set

Matrix output to be off when powered.

 break;

101

 case 1:

 if(top_bot ==0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & red1) + row2) | ((~row1 & red2) +

row2)); //Set matrix top row to display red in top left

 //and red in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & red1) + row1) | ((~row2 & red2 +blue2)

+ row1)); //Set matrix bottom row to display red in lower left

 //and purple in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 2:

 if(top_bot ==0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & red1) + row2) | ((~row1 & red2) +

row2)); //Set matrix top row to display red in top left

 //and red in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & red1) + row1) | ((~row2 & red2 +

green2) + row1)); //Set matrix bottom row to display red in lower left

 //and yellow in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 3:

 if(top_bot ==0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & red1) + row2) | ((~row1 & red2) +

row2)); //Set matrix top row to display red in top left

 //and red in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

102

 P2OUT |= (((~row2 & red1) + row1) | ((~row2 & green2) +

row1)); //Set matrix bottom row to display red in lower left

 //and green in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 4:

 if(top_bot ==0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & green1 + red1) + row2) | ((~row1 &

green2 + red2) + row2));//Set matrix top row to display yellow in top left

 //and yellow in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & green1 + red1) + row1) | ((~row2 &

red2) + row1)); //Set matrix bottom row to display yellow in lower left

 //and red in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 5:

 if(top_bot ==0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & green1 + red1) + row2) | ((~row1 &

green2 + red2) + row2));//Set matrix top row to display yellow in top left

 //and yellow in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & green1 + red1) + row1) | ((~row2 &

green2) + row1)); //Set matrix bottom row to display yellow in lower left

 //and green in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 6:

 if(top_bot ==0){

 P2OUT &= row2;

103

 P2OUT |= (((~row1 & green1 + red1) + row2) | ((~row1 &

green2 + red2) + row2));//Set matrix top row to display yellow in top left

 //and yellow in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & green1 + red1) + row1) | ((~row2 & red2

+ blue2) + row1));//Set matrix bottom row to display yellow in lower left

 //and purple in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 7:

 if(top_bot ==0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & green1) + row2) | ((~row1 & green2) +

row2)); //Set matrix top row to display green in top left

 //and green in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & green1) + row1) | ((~row2 & red2) +

row1)); //Set matrix bottom row to display green in lower left

 //and red in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 8:

 if(top_bot == 0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & green1) + row2) | ((~row1 & green2) +

row2)); //Set matrix top row to display green in top left

 //and green in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & green1) + row1) | ((~row2 & red2 +

green2) + row1)); //Set matrix bottom row to display green in lower left

104

 //and yellow in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 9:

 if(top_bot == 0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & green1) + row2) | ((~row1 & green2) +

row2)); //Set matrix top row to display green in top left

 //and green in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & green1) + row1) | ((~row2 & red2 +

blue2) + row1)); //Set matrix bottom row to display green in lower left

 //and purple in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 10:

 if(top_bot == 0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & blue1 + red1) + row2) | ((~row1 & blue2

+ red2) + row2)); //Set matrix top row to display purple in top left

 //and purple in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & blue1 + red1) + row1) | ((~row2 & red2)

+ row1)); //Set matrix bottom row to display purple in lower left

 //and red in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 11:

 if(top_bot == 0){

 P2OUT &= row2;

105

 P2OUT |= (((~row1 & blue1 + red1) + row2) | ((~row1 & blue2

+ red2) + row2)); //Set matrix top row to display purple in top left

 //and purple in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & blue1 + red1) + row1) | ((~row2 &

green2 + red2) + row1)); //Set matrix bottom row to display purple

in lower left

 //and yellow in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 case 12:

 if(top_bot == 0){

 P2OUT &= row2;

 P2OUT |= (((~row1 & blue1 + red1) + row2) | ((~row1 & blue2

+ red2) + row2)); //Set matrix top row to display purple in top left

 //and purple in top right

 }

 else if(top_bot == 1){

 P2OUT &= row1;

 P2OUT |= (((~row2 & blue1 + red1) + row1) | ((~row2 &

green2) + row1)); //Set matrix bottom row to display purple in lower left

 //and green in lower right

 }

 else

 P2OUT &= row1 + row2;

 break;

 }

}

106

Appendix B: LED Matrix Controller Schematic

 The following schematic shows the connections required to implement the LED Matrix

Controller. The PCB generated from this schematic was used with the Beacon Control Code in

Appendix A to generate the unique patterns used to identify multiple robots simultaneously.

107

Appendix C: Verilog Modules

 The Verilog code below is the top level module that was implemented for the Image

Acquisition and Image Processing stages. These stages were used to interface with the camera,

store frames, and process the images for each camera. This is only a small subsection of the

Verilog design in order to keep the size of this report manageable. The full source code for this

design is available if requested. The names of the other Verilog Modules used in this system are:

Camera_In, Processing, RAM_Interface, and VGA_Display.

`timescale 1ns / 1ps

// This module is the top level module for the Image Acquisition and

// Image Processing stages of the system. In this module, data is taken

// from the camera in YUV format, converted to RGB format and stored in

// RAM. After a frame has been stored in RAM, the Microblaze begins

// processing the image to determine the center of each beacon and which

// pattern it is displaying. Once this is complete, the data is sent via

// UART communications to a Central PC for processing.

module top_level(

 input FPGA_clk,

 input reset,

 input next_frame,

 input dclk,

 input HREF,

 input VREF,

 input filter,

 input auto_mode,

 input UART_Rx,

 input [2:0] switch,

 input [7:0] din,

 output adv_l,

 output lb_l,

 output ub_l,

 output ce_l,

 output oe_l,

 output we_l,

 output cre_l,

 output flash_ce,

 output clk_RAM,

 output HS,

 output VS,

 output UART_Tx,

 output [7:0] VGA_Color,

 output [7:0] led,

 output [22:0] addr,

 inout [15:0] dq

);

108

 // Horizontal Pixel Resolution

 parameter HPIXELS = 640;

 // Vertical Pixel Resolution

 parameter VPIXELS = 480;

 // Total number of pixels in frame based on HPIXELS and VPIXELS

 parameter NUM_PIXELS = HPIXELS*VPIXELS;

 // Values assigned to state labels

 parameter [2:0] WAIT_STATE = 0, CAMERA_DATA = 1, FINAL_DATA = 2,

MICROBLAZE = 3, VGA_DISPLAY = 4;

 wire ready;

 wire valid_camera_data;

 wire valid_processed_data;

 wire clk_80M;

 wire processing_complete;

 wire display;

 wire data_valid;

 wire VGA_FIFO_Full;

 wire FIFO_reset;

 wire powering_up;

 wire clk_25M_180;

 wire clk_54M;

 wire clk_25M;

 wire ready_2;

 wire auto_next_frame;

 wire microblaze_active;

 wire blob_next_frame;

 wire blob_read;

 wire [31:0] camera_data;

 wire [63:0] processed_data;

 wire [63:0] RAM_dout;

 wire [6:0] led_outputs;

 wire [31:0] GPI1, GPI2, GPI3;

 wire [31:0] GPO1;

 reg last_ready;

 reg last_VREF;

 reg last_read;

 reg [2:0] last_state;

 reg [2:0] current_state, next_state;

 reg [11:0] HLimit;

 reg [22:0] addr_in;

 reg [24:0] timer;

// clk_converter takes in 100 MHz clock input and creates other clock

signals.

clk_converter inst_clk_converter (

 .CLK_IN1(FPGA_clk), // In - 100 MHz clock

 .clk_100M(clk_100M), // Out - 100 MHz clock

 .clk_80M(clk_80M), // Out - 80 MHz clock

 .clk_25M(clk_25M), // Out - 25 MHz clock

 .clk_25M_180(clk_25M_180) // Out - 25 MHz clock 180 degree phase

shift

);

// Camera_In receives data from the camera and packages macropixels together

109

Camera_In inst_Camera_In(

 .clk(dclk), // In - 54 MHz clock

 .reset(FIFO_reset), // In - Reset

 .read(Camera_In_read), // In - FIFO read signal

 .write(Camera_In_write), // In - FIFO write signal

 .din(din), // Out - Image data [7:0]

 .valid(valid_camera_data), // Out - FIFO valid

 .dout(camera_data) // Out - Macropixel of data [31:0]

);

// Processing module converts from YUV to RGB and applies filters

Processing inst_Processing(

 .clk(clk_80M), // In - 80 MHz clock

 .valid_in(valid_camera_data), // In - Valid data

 .filter(filter), // In - Activate Filtering

 .reset(FIFO_reset), // In - Reset

 .ready(ready_2), // In - FIFO read control. RAM ready for data

 .camera_data(camera_data), // In - Image Data [23:0]

 .valid_out(valid_processed_data), // Out - Valid data on output

 .processed_data_out(processed_data), // Out - Processed data [63:0]

 .processing_complete(processing_complete) // Out - Processing has

finished

);

// Performs RAM reads and writes

RAM_Interface inst_RAM_interface(

 .din(processed_data), // In - Din [63:0]

 .read(RAM_read), // In - Read command

 .write(RAM_write), // In - Write command

 .clk(clk_80M), // In - 80 MHz clock

 .reset(reset), // In - Reset

 .addr_in(addr_in), // In - Address [22:0]

 .clk_out(clk_RAM), // Out - 80 MHz clock

 .adv_l(adv_l), // Out - Adv

 .lb_l(lb_l), // Out - LB

 .ub_l(ub_l), // Out - UB

 .ce_l(ce_l), // Out - CE

 .oe_l(oe_l), // Out - OE

 .we_l(we_l), // Out - WE

 .cre_l(cre_l), // Out - CRE

 .flash_ce(flash_ce), // Out - Flash CE

 .ready(ready), // Out - Ready for operation

 .dout_valid(data_valid), // Out - Output data valid

 .powering_up(powering_up), // Out - RAM is in powering up state

 .addr_out(addr), // Out - Address to RAM

 .dout(RAM_dout), // Out - Dout [63:0]

 .dq(dq) // InOut - RAM data line [15:0]

);

// Microblaze soft-core processor

MCS mcs_0 (

 .Clk(clk_100M), // IN - 100 MHz clock

 .Reset(reset), // In - Reset

 .UART_Rx(UART_Rx), // In - UART_Rx

 .UART_Tx(UART_Tx), // Out - UART_Tx

 .GPO1(GPO1), // Out - [31 : 0] GPO1

110

 .GPI1(GPI1), // In - [31 : 0] GPI1

 .GPI1_Interrupt(), // Out - GPI1_Interrupt

 .GPI2(GPI2), // In - [31 : 0] GPI2

 .GPI2_Interrupt(), // Out - GPI2_Interrupt

 .GPI3(GPI3), // In - [31 : 0] GPI3

 .GPI3_Interrupt() // Out - GPI3_Interrupt

);

// VGA control module

VGA_Display inst_VGA_Display(

 .reset(reset), // In - Reset

 .VGA_clk(clk_25M), // In - 25 MHz clock

 .clk_25M_180(clk_25M_180),// In - 180 degree out of phase 25 MHz clock

 .clk_80M(clk_80M), // In - 80 MHz clock

 .display(display), // In - Display active

 .data_valid(data_valid), // In - RAM data valid

 .data(RAM_dout), // In - RAM data [63:0]

 .VGA_FIFO_Full(VGA_FIFO_Full), // Out - FIFO full

 .HS(HS), // Out - Horizontal Sync

 .VS(VS), // Out - Vertical Sync

 .VGA_Color(VGA_Color) // Out - Pixel color [7:0]

);

// Limit number of pixels per line to HPIXELS

always @(posedge dclk)

 begin

 if(~HREF)

 HLimit <= 0;

 else

 HLimit <= HLimit + 1'b1;

 end

// Pulse detection for microblaze RAM read

always @(posedge clk_80M)

 last_read <= blob_read;

 // Increment addr

always @(posedge clk_80M)

 begin

 last_ready <= ready;

 if((last_state == FINAL_DATA && current_state == MICROBLAZE) ||

(last_state == MICROBLAZE && current_state == VGA_DISPLAY) || reset ||

(current_state == VGA_DISPLAY && ~VS))

 addr_in <= 0;

 else if(current_state != WAIT_STATE)

 begin

 if((~ready && last_ready))

 begin

 if(addr_in + 3'h4 < NUM_PIXELS/2-1)

 addr_in <= addr_in + 3'h4;

 else

 addr_in <= 0;

 end

 end

 else

 addr_in <= 0;

 end

111

// Process/transmit state machine

always @(posedge clk_80M)

 if(reset)

 current_state <= WAIT_STATE;

 else

 current_state <= next_state;

// Next state logic

always @(current_state, VREF, processing_complete, last_VREF, next_frame,

powering_up, addr_in, blob_next_frame, auto_next_frame)

 case(current_state)

 WAIT_STATE:

 if(powering_up || next_frame)

 next_state <= WAIT_STATE;

 else if(last_VREF && ~VREF)

 next_state <= CAMERA_DATA;

 else

 next_state <= WAIT_STATE;

 CAMERA_DATA:

 if(powering_up || next_frame)

 next_state <= WAIT_STATE;

 else if(~last_VREF && VREF)

 next_state <= FINAL_DATA;

 else

 next_state <= CAMERA_DATA;

 FINAL_DATA:

 if(powering_up || next_frame)

 next_state <= WAIT_STATE;

 else if(processing_complete)

 next_state <= MICROBLAZE;

 else

 next_state <= FINAL_DATA;

 MICROBLAZE:

 if(powering_up || next_frame)

 next_state <= WAIT_STATE;

 else if(blob_next_frame)

 next_state <= VGA_DISPLAY;

 else

 next_state <= MICROBLAZE;

 VGA_DISPLAY:

 if(powering_up || next_frame || auto_next_frame)

 next_state <= WAIT_STATE;

 else

 next_state <= VGA_DISPLAY;

 default:

 next_state <= WAIT_STATE;

 endcase

// Delay VREF

always @(posedge clk_80M)

 begin

 last_VREF <= VREF;

 last_state <= current_state;

 end

// DIsplay image for 1 second

112

always @(posedge clk_25M)

 if(current_state != VGA_DISPLAY || timer >= 25000000)

 timer <= 0;

 else

 timer <= timer + 1'b1;

// Control signals for Camera_In FIFO

assign Camera_In_read = (current_state == CAMERA_DATA || current_state ==

FINAL_DATA || current_state == WAIT_STATE);

assign Camera_In_write = (HREF && current_state == CAMERA_DATA && (HLimit <=

((HPIXELS*2)-1)));

// RAM read/write control signals

assign RAM_write = valid_processed_data && (current_state != VGA_DISPLAY &&

!microblaze_active);

assign RAM_read = (microblaze_active) ? ~last_read && blob_read :

(current_state == VGA_DISPLAY && ~VGA_FIFO_Full);

// Activate VGA Display

assign display = (current_state == VGA_DISPLAY);

// Provide Reset signal to FIFOs

assign FIFO_reset = reset | next_frame | auto_next_frame;

// Provide ready signal to Converting Module to ensure empty FIFOs

assign ready_2 = ready | (current_state == WAIT_STATE);

// Wait set amount of time, then initiate new frame grab

assign auto_next_frame = (timer == 5000000) && auto_mode;

// Microblaze given control of RAM

assign microblaze_active = (current_state == MICROBLAZE);

// Microblaze RAM Inputs

assign GPI1 = RAM_dout[63:32];

assign GPI2 = RAM_dout[31:0];

// Microblaze Control Inputs

assign GPI3 = {data_valid, microblaze_active, (ready && ~powering_up),

switch, 26'b0};

// Microblaze Control Outputs

assign blob_next_frame = GPO1[31];

assign blob_read = GPO1[30];

assign led_outputs = GPO1[29:23];

endmodule

113

Appendix D: Section of Image Processing Code

 The source code seen below is the main function of the Image Processing stage. This

stage was used to search through a frame worth of filtered image data and determine the location

and patterns associated with all beacons that were visible to the camera. This is only a small

subsection of the Image Processing Code in order to keep the size of this report manageable. The

full source code for this design is available if requested.

int main() {

 unsigned int v, x;

 unsigned int Neighbor, transmit;

 int Current_MaxMarker;

 int Current_Marker;

 init_platform();

 // Initialize GPO and GPI

 SRAM63_32 = XIOModule_Initialize(&gpi1, XPAR_IOMODULE_0_DEVICE_ID);

 SRAM63_32 = XIOModule_Start(&gpi1);

 SRAM31_0 = XIOModule_Initialize(&gpi2, XPAR_IOMODULE_0_DEVICE_ID);

 SRAM31_0 = XIOModule_Start(&gpi2);

 incontrols = XIOModule_Initialize(&gpi3, XPAR_IOMODULE_0_DEVICE_ID);

 incontrols = XIOModule_Start(&gpi3);

 outcontrols = XIOModule_Initialize(&gpo1, XPAR_IOMODULE_0_DEVICE_ID);

 outcontrols = XIOModule_Start(&gpo1);

 // Determine number of pixels between patches in order to merge

 val = roundDivide(hpixels, 200);

 // Loop while system is powered

 while(1){

 overflow = 0;

 numBeacons = 0;

 // Wait for FPGA to signal that an image is ready to be processed

 while(transmit == 0){

 transmit = (XIOModule_DiscreteRead(&gpi3, 3) << 1) >> 31;

 }

 // Reset MaxMarker for each frame

 MaxMarker = 0;

 // Search the frame for all patches of color

 for(v = 0; v < vpixels && !overflow; v++)

 Current_Marker = 0;

 Current_MaxMarker = 0;

 // Acquire a new line of pixels

 GetNewPixels();

 // Scan a line of pixels for color

114

 for(x = 0; x < hpixels-1 && !overflow; x++){

 // Check Pixel

 if(pixelarray[x] != 0) {

 if(x == 0) {

 // Pixel has no color

 Neighbor = 0;

 }

 else {

 // Pixel has neighboring pixels with

color

 Neighbor = (pixelarray[x] ==

pixelarray[x-1] || pixelarray[x] == pixelarray[x-2]); // Same thing, I

swapped in use of the horizontal line array.

 }

 }

 else {

 // Pixel has no neighboring pixels with color

 Neighbor = 2;

 }

 // Determine which patch the pixel belongs to

 if(Neighbor == 0){

 if((Current_MaxMarker + 1) <= max_blobs){

 Current_Marker = Current_MaxMarker;

 Current_MaxMarker++;

 }

 else {

 Current_Marker = Current_MaxMarker;

 overflow = 1;

 break;

 }

 // Create new run

 Current_Run[start_pixel][Current_Marker] = x;

 Current_Run[end_pixel][Current_Marker] = x;

 Current_Run[current_color][Current_Marker] =

pixelarray[x];

 }

 else if(Neighbor == 1){

 // Add pixel to current run

 Current_Run[end_pixel][Current_Marker] = x;

 }

 }

 if(Current_MaxMarker != 0){

 // Add pixel to marker

 UpdateMarker(Current_MaxMarker, v);

 }

 }

 // Request new frame (set next_frame up to high and then low

again)

 outcontrols |= 0x80000000;

 XIOModule_DiscreteWrite(&gpo1, 1, outcontrols);

 // Scan through all patches and merge patches that are adjacent

 Merge();

 // Identify all beacons within the frame and match a pattern to

the beacons

 Identify();

115

 // After all beacons have been identified, transmit data via UART

to central PC

 Transmit();

 // Clear all data after transmission is complete to prevent

issues with the next frame

 for (v = 0; v < max_blobs; v++)

 {

 for(x = 0; x < 10; x++)

 {

 if(x < 3)

 Current_Run [x] [v] = 0;

 Run [x] [v] = 0;

 }

 }

 // Signal FPGA that image processing is complete

 outcontrols &= 0x7FFFFFFF;

 XIOModule_DiscreteWrite(&gpo1, 1, outcontrols);

 }

 cleanup_platform();

 return 0;

}

116

Appendix E: Sample of Processing Code

This Application implements the image model described in Chapter 4.3, to simulate

camera images of objects. It requires other classes implemented for this system, such as Field

and CameraSettings to function. These libraries are available upon request.

int currentView = 1;

int nextView = 1;

Field pField;

void setup()

{

 setupFieldSimulation();

}

void draw()

{

 if (currentView!=nextView)

 {

 currentView = nextView;

 fill(color(255));

 rect(0, 0, width, height);

 drawGrid();

 CameraImage frame2 = pField.generateCameraImage(currentView);

 frame2.generatePositionsFromImage();

 }

}

void mousePressed()

{

 nextView++;

 nextView = nextView>pField.cameras.size()? 1:nextView;

}

void drawGrid()

{

 fill(color(0));

 for (int i=0; i< width; i+=40)

 {

 int strokeWidth = i%200 ==0? 2:1;

 strokeWeight(strokeWidth);

 line(i, 0, i, height);

 text(i,i,10);

 }

 for (int j=0; j<height; j+=40)

 {

 int strokeWidth = j%200 ==0? 2:1;

117

 strokeWeight(strokeWidth);

 line(0, j, width, j);

 text(j,0,j+10);

 }

}

void setupFieldSimulation()

{

 size(1280, 1024);

 background(color(255));

 stroke(color(0));

 rect(0, 0, width, height);

 pField = new Field();

 drawGrid();

 Beacon beacon1 = new Beacon(30, 30, -60, color(0, 0, 255));

 Beacon beacon2 = new Beacon(50, 30, -60, color(0, 0, 255));

 Beacon beacon3 = new Beacon(35, 50, -60, color(0, 0, 255));

 Beacon beacon4 = new Beacon(18, 20, -60, color(0, 0, 255));

 Beacon beacon5 = new Beacon(35, 10, -60, color(0, 0, 255));

 Beacon beacon6 = new Beacon(18, 40, -60, color(0, 0, 255));

 pField.addBeacon(beacon1);

 pField.addBeacon(beacon2);

 pField.addBeacon(beacon3);

 pField.addBeacon(beacon4);

 pField.addBeacon(beacon5);

 pField.addBeacon(beacon6);

 CameraSettings cam1 = new CameraSettings(0, 0, 45);

 CameraSettings cam2 = new CameraSettings(0, 60, 135);

 pField.addCamera(cam1);

 pField.addCamera(cam2);

 CameraImage frame2 = pField.generateCameraImage(currentView);

 frame2.generatePositionsFromImage();

}

118

Appendix F: List of Materials

 This appendix shows the materials we used to implement this system and their individual

costs. These parts were used in every stage of the project and were all used in the final design.

