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Abstract 

The goal of this project is to develop a camera-based system that can determine the (x,y) 

coordinates of one or more robots during FIRST Robotics Competition game play and transmit 

this information to the robots. The intent of the system is to introduce an interesting new 

dynamic to the competition for both the autonomous and user guided parts of play. To 

accomplish this, robots are fitted with custom matrix LED beacons. Two to six cameras may 

then capture images of the field while a FPGA embedded system at each camera performs image 

processing to identify the beacons. This information is sent to a master computer which 

combines the six images to reconstruct robot coordinates.  The effort included simulating camera 

imaging, designing and developing a beacon system, implementing interfaces and image 

processing algorithms on an FPGA, meshing image data from multiple sources, and deploying a 

functional prototype.  
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Executive Summary 

This project involved the design and construction of a location tracking system for robots 

during FIRST Robotics Competitions (FRC). FRC is a large annual international competition 

between high school teams organized by FIRST, in an effort to expose high school students to 

engineering challenges. In preparation for the competition, students have 6 weeks to design and 

build a robot to play a game developed by FIRST. Each year, the game is changed to present a 

new challenge for contestants. In the past, robots have performed tasks in an arena such as 

throwing basketballs into hoops, hanging objects in a certain order, and throwing Frisbees. 

 We designed and implemented a low-cost camera-based robot localization system to add 

a new dynamic to FRC.  This system sends the robots their locations in real-time, which allows 

teams to enhance the capabilities of their robot, and allows FIRST to provide new, more 

complicated challenges.  For instance, teams could experiment with more precise control when 

launching objects towards goals by knowing not only what direction the goal is in, but how far 

away the goal is.  It also opens the door to having longer autonomous game-play periods with 

more advanced path planning requirements. 

 To realize this dynamic, our robot localization system uses custom programmable LED 

beacons that provide unique patterns for each of the robots for visual identification. The beacons 

were made using a colored LED matrix connected to a microcontroller that controls the matrix 

pattern via a custom PCB that we designed. Each robot in the arena is fitted with a beacon and 

multiple cameras placed in specific locations around the arena are capable of viewing the 

beacons. The camera images are processed to identify the robots in the image, and each robot's 

position is calculated from these images.  
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Each of the six cameras on the edges of the arena is connected to an FPGA development 

board via a custom PCB that we also designed for this project to form a camera/FPGA vision 

subsystem. Each camera sends image frames to the FPGA, where the frames are processed, 

stored, and interpreted in order to locate and identify the beacons within the image. Then, the 

information about each detected beacon from each of the vision subsystems is sent to a central 

PC where the physical coordinate reconstruction is performed.  

To provide reliable information to the PC, the FPGAs perform a number of critical 

operations on the incoming frames. First, the data format of the incoming frames is converted 

from YUV to RGB using a color space converter. Next, a color filter stage filters and normalizes 

the colors in the image for enhanced performance during the identification process. Next, the 

modified frame is stored in RAM. The FPGA logic was designed in Verilog using Xilinx design 

tools. A soft-core Microblaze microprocessor was also generated inside the FPGA that searches 

through the RAM to find pixels that had passed the filtering stage, and then interprets them to 

find the centers of each beacon. Beacons that are found are then compared to the expected 

signature of each unique pattern in order to determine which beacon corresponds to which robot.  

Finally the location of the center of each beacon within the image plane is sent to the 

central PC with an associated unique ID. Using algorithms we implemented, the pixel 

coordinates of each received beacon are mapped to locations in the arena. The calculated 

coordinates are transmitted wirelessly to the robots during the competition. 

 The system we designed has been successfully tested and implemented using a single 

beacon, FPGA/camera vision subsystem, and PC. The full scale tests we performed indicate that 

our system can calculate the location of the beacons accurately to within eight inches 

consistently. The system is capable of running in real time, and the final step required to deploy 
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the system is to duplicate the hardware and synchronize communication so there are six 

camera/FPGA subsystems running at once. 
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Chapter 1: Introduction 

 The FIRST Robotics Competition (FRC) is a large international competition between 

high school teams. It is organized by FIRST, which stands for “For Inspiration and Recognition 

of Science and Technology.” This organization was founded in 1989 by Dean Kamen with the 

goal of increasing appreciation of science and technology and offering students opportunities to 

learn important skills be exposed to engineering practices. High school students are given six 

weeks to build a robot that weighs less than 120 pounds and can operate both autonomously and 

under wireless direction. These robots are given tasks to complete, and the team that completes 

the task most effectively wins the competition. 

 The games for the FRC are different every year. In 2011, the game was called 

“LOGOMOTION.” In this game, robots were required to pick up pieces of the FIRST logo and 

place them on a rack on the opposing team’s side of the arena in the same order as the logo. 

Once this task is completed, the robots released a miniature robot which was capable of climbing 

the posts within the arena. In 2012, the game was called “Rebound Rumble.” In this game, teams 

used robots to toss basketballs into hoops on the opposing team’s side of the arena. There were 

four hoops and the higher hoops awarded more points to the scorer. A typical FIRST arena 

environment is shown in Figure 1below. 
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Figure 1: LOGOMOTION Arena [1] 

FIRST creates interesting new challenges for the competition each year. As such, they are 

always open to new forms of improving their competitions. For example, they used technology 

from the Xbox KINECT in their competition in 2012. In the course of this project we designed a 

system that can be incorporated into new FRC challenges to introduce entirely new game types 

and provide a powerful new tool to the students involved. 

The main goal of the system we designed is to provide the competing robots with their 

locations in real time during the competitions. Providing the robots with their precise locations in 

real time would allow robot teams to execute elaborate team actions, and allow individuals to 

make more informed decisions about their actions. The ability for robots to know their own 

precise coordinates can also allow FIRST to design interesting new game types that enhance the 

overall experience for everyone. 

In order to begin defining our system, we developed a list of requirements. These 

requirements were based on logistical, financial, and technical considerations for FIRST.  

Our system aims to put as little burden on event organizers, participants, and the fans as possible, 

while providing useful location tracking information to teams and their robots to make the games 

more fun and make the learning experience better for the high school students. 
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The first requirement for our system is that it is capable of consistently identifying all 

robots individually. The data produced by our system would not be useful if it merely detected 

the positions of unspecified robots. Adding the ability to identify robots as individuals ensures 

that teams will be able to use the data we provide effectively. 

In order for our tracking system to be useful, it must be accurate. To meet this 

requirement, we aimed for our system to be accurate to within 3 inches. However, so long as the 

system is relatively accurate, it will be of use to the competitors. We strove to make the system 

as accurate as possible while keeping the overall cost of the system low enough for FIRST to 

incorporate the system into their competitions. 

Further, our system must not disrupt the flow of the FRC challenges. This means that our 

system must be assembled and initialized quickly and seamlessly before a FIRST event begins. 

Additionally, the system must be capable of functioning for an entire event without requiring 

maintenance. Finally, our system must cost a reasonable amount so that organizers can afford to 

utilize the system. 

In our research, we determined that the most effective method for fulfilling the goals and 

requirements of this system utilizes cameras. Based on simulations and other design 

considerations, our design called for the use of six cameras. These cameras were placed around 

the arena as can be seen in Figure 2 and Figure 3 below. 
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Figure 2: Camera Locations on FIRST Arena (Overhead View)  

 

Figure 3: Cameras around the FIRST arena 

 Since the robots in FIRST competitions are quite variable in size, height, and shape, we 

decided the best way to uniquely identify the robots consistently was to design a beacon that is 

capable of displaying multiple unique patterns and place it on the robots. When the system 

processes the images, it searches for this beacon and associates the particular beacon pattern with 

a robot.  
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After we process the images from each camera, we combine the data from all of the 

cameras to locate the robots in the arena. This is done using similar concepts to stereo-vision, but 

with up to six cameras being integrated into the system. Using six camera stereo-vision also 

allows the system to see robots that have traveled near obstacles that may obscure the ability of a 

particular camera to see them. 

The next chapter describes the background work that guided the design process. Chapter 

3 will discuss the system design, and Chapter 4 will describe implementations we created to 

facilitate system development. Chapter 5 will explain the details of our implementation, and 

Chapter 6 will show the system tests we performed and their results. Finally in Chapter 7 we will 

show the results of our tests and the conclusions we drew from these results. 
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Chapter 2: Background 

 This chapter describes the background work we carried out for the project. It includes 

becoming familiar with the FIRST arena environment, investigating camera-based tracking 

methods, investigating the geometry involved with mapping pixels onto a surface, and 

investigating image processing algorithms. 

2.1: The FIRST Robotics Arena 

 Each year the participants of the FIRST Robotics competition are given the layout of the 

arena in mid-January. This information is provided when FIRST holds a kickoff event where the 

teams are provided the rules of the game as well as the layout of the arena for the upcoming 

tournament. The one thing that is consistent is that the arena is always 27 feet wide by 54 feet 

long. The arena itself will have different aspects to it each year depending on the objective of the 

game. For the 2013 game the arena consists of slots to toss a disk in as well as pyramids to 

climb. A layout of this arena can be seen in Figure 4 below. 

 

Figure 4: FIRST Arena for 2013 [2] 
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In previous years the field has had components such as ramps, racks and different pieces 

of equipment that can either aid the teams or add more complexities to give the robots a more 

difficult challenge. 

2.2: Image Basics 

 Digital images can come in many forms. Some are visual, while others are produced by 

sonograms or radar. Some are colored, while others are black and white or grayscale. Basic 

grayscale digital image processing begins by assembling an array of values, each representing a 

pixel from the image. Often, these pixels are simply assigned a number within an 8-bit range, 

which provides 256 unique values. These values correspond to the intensity of the light in the 

pixel. As seen in Figure 5, the higher intensities correspond to whiter shades of grayscale [3]. 

 

Figure 5: Grayscale Pixel Intensity [3] 

 Other images can include color values, often with thousands or millions of distinct colors 

available. 

2.3: Tracking Methods for Robot Detection and Identification 

 While researching camera vision-based tracking methods, we found some interesting 

methods that had been used for localization by others. Our design decisions were informed with 

some of the concepts below, including using thresholds to isolate objects within an image and 
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using color pattern recognition. We also explored overhead camera use but found it to be overly 

burdensome for FIRST. 

2.3.1: Elevated Cameras with Color Detection and Thresholding 

A paper called "Tracking a Robot Using Overhead Cameras for RoboCup SPL League" 

by Jarupat Jisarojito discussed a project using elevated cameras to determine the real world 

coordinates of a robot on a playing field [4]. Two cameras were placed just to the side of the 

field in an elevated position such that each camera covered slightly more than half of the field. 

An example of the setup can be seen in Figure 6 below. In the actual setup, cameras were placed 

directly over the goals and angled such that the maximum amount of the field is covered. 

 

Figure 6: The Field with Cameras [4] 

As each frame is captured, the image is compared to a previously determined background 

image. The two images are subtracted to remove the background and the resulting image is 

converted to grayscale. At this point, a threshold is applied that converts the image to black and 

white where black pixels represent pixels that are the same as the background and white pixels 

represent pixels that are significantly different from the background. In addition to the 
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background subtraction, the areas outside of the arena are ignored. This ensures that moving 

objects, such as people, that are outside of the play area are not falsely detected as robots. Figure 

7 below shows the empty arena (left), the arena with a robot (middle) and the image after the 

threshold and masking are applied (right) [4]. 

 

Figure 7: Using Thresholds to Convert Colored Images to Black And White [4] 

Each robot is outfitted with color patches in order to determine the location and 

orientation. These colors are reapplied after the thresholding and masking are complete. That 

image is converted to the original hues, the patches are detected and the centroid of the blue 

region (at the center of the head) is determined. This region is mapped to a grid where each grid 

location can be mapped to a real world coordinate. In this application, each grid represented an 

area with dimensions of 400mm by 500mm. Using this system, the average error between the 

actual position of the robot and the system determined position was on the order of 100mm. 

However, differences of up to 440 mm were also observed [4]. 

Some problems were found in this system. Some areas of the field had strong lighting and 

therefore reflected off of the head of the robot and affected the observed color negatively. This 

could be overcome by using an active system that generates its own light instead of relying on 

reflected light. Additionally, this method could allow for different colors to be used and therefore 

robots could be uniquely identified whereas this system does not allow for specific identification 

of robots. Further, this system does not have enough accuracy for our purposes. Worst case 
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errors in the position of the robot were 17.6 inches. This issue could be resolved by using more 

than two cameras. This would improve accuracy and would allow for redundancy in the case 

where one robot occludes another from view [4]. 

2.3.2: Colored Pattern Recognition 

 A paper entitled “Robotracker – A System for Tracking Multiple Robots in Real Time” 

by Alex Sirota discussed the use of a program to track multiple robots in an arena in real time 

[5]. This application was aimed towards miniature robotic Lego cars which would move around 

the arena. The basis for the tracking was based upon the RBG color space. Each Lego racer was 

fitted with what was described as a “hat” on the top of it. This “hat” is a series of circles in a 

target display as shown in the Figure 8 below. 

 

Figure 8: An RGB Color Pattern [5] 

Using specific circle patterns consisting of red, blue and green colored rings that can have 

anywhere from 3 rings for a possibility of 21 different object to track. This can be a single ring a 

double ring or a triple ring target. Each ring is designated by a code with red representing the 

number 1, green representing the number 2 and blue representing the number 3. In the case of 

this coding Figure 8 above would have RGB code (123) [5]. 

Next using threshold values in the program the users can eliminate noise and other 

components such as contrast to give the camera optimal viewing of the target.  The analysis of 

the targets follows a simple block diagram as seen below in Figure 9 in which the system detects 
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the targets, then analyzes the region and their colors, then detects the ID related to the color code 

[5].  

 

Figure 9: Moving From Colored Image to Identification Step [5] 

The modules for this system are designed using C++ and use a variety of programs to 

detect and analyze the targets. Frames are captured in BMP, PPM or AVI format and then 

analyzed to find any hat patterns located in the image. An analyzed frame from the camera can 

be seen in Figure 10 below. 

 

Figure 10: An Image Frame Showing Separate Targets Being Recognized [5] 

2.4: Number of Cameras 

 One paper we studied examined many of the kind of systems previously described and 

drew some conclusions. The paper concluded that using multiple cameras allows for a larger 
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visible range and allows for the use of redundancy to reduce errors. Figure 11 below shows a 

scene involving the use of multiple cameras to track objects. Camera C2 is dedicated to the 

yellow and green areas. Camera C1 is dedicated to the blue and green areas. The two of them 

overlap in the green area, where redundancy can be utilized, but data sharing must be 

incorporated. Overlapping is complicated to implement, but offers substantial benefits to 

accuracy [6].  

 

Figure 11: Multiple Cameras Tracking Objects [6] 

2.5: Mapping Pixels Onto the Arena 

 Before moving forward with camera selection, we desired to create an imaging model 

that would allow us to test various camera parameters and select the proper components to meet 

our requirements. In order to make an imaging model, we had to understand the mathematical 

properties describing perspective distortion and mapping image plane coordinates onto a scene. 

The preliminary exploration we performed is shown below. 
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2.5.1: From ends of the arena 

 In Figure 12 below, an example image is presented. The dashed lines represent the 

borders of square pixels as part of an image plane. The thick red lines represent the borders of a 

hypothetical FIRST Robotics arena. The camera view is angled downward onto the arena from 

the center of one end of the arena. 

 As we can see, there is some perspective distortion. The far end of the arena appears to be 

more narrow than it really is, and the arena appears not to be as long from end to end as it really 

is. In calculating the positions of various robots, this distortion must be accounted for, or else the 

desired 3-inch accuracy of our tracking system would be unattainable. 

 

Figure 12: Camera View from One End of the Arena 

 In Figure 13, we can see a side cross-sectional view of the scene presented in this 

example. The length of the space between the camera lens and the end of the arena is L. The 

height at which the camera lens is place is H. The camera viewing angle is θ. Each dashed line 

represents the border of a pixel, similar to the ones shown in the previous image. Ln is the length 

of the captured space in the highest pixel of the camera module. Ln-1 is the length of the captured 
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space of the second-highest pixel of the camera module. Notice that Ln-1 is shorter than Ln. This 

clearly shows how the perspective distortion is manifested in this hypothetical application. As 

the pixels on in the camera module move from the bottom of the image to the top, the amount of 

distance represented per pixel increases steadily. 

 

Figure 13: Cross Section of the Scene 

 There are a number of potential ways to minimize this error. The use of multiple cameras 

as shown below is one way, as shown in Figure 14 below. In this example, both cameras would 

monitor the entire arena and then average their interpretations of the position of a robot to 

reconcile their disagreement. In this method, using more cameras enhances the accuracy of the 

system. However, this also increases the cost of the system. 
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Figure 14: Cross Sectional View of the Scene with Two Cameras 

 Another way to address this error is shown in Figure 15. The two cameras are placed in 

the same locations as before, but they each have their own dedicated space on the arena and they 

are lower from the floor. This allows the cameras to utilize all of their pixels for just one half of 

the arena, reducing the error from the perspective distortion. The space between the pixel 

boundaries is not large enough for the error to become large. However, there is still an error. 

Using this method also presents new challenges for setting up the system. If the two cameras 

overlap in their tracking space, something would have to address the potential that a robot would 

be identified by both cameras. 
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Figure 15: Cross Sectional View of the Scene with Two Cameras with Their Own Spaces to Monitor 

2.5.2: Using an Overhead Camera 

Another way to reduce the effects of perspective distortion is to use an overhead camera. 

This configuration has a number of advantages and a number of disadvantages. One advantage is 

the reduced effects of perspective distortion.  

 To better understand the effects of the perspective distortion with a vertical camera 

placement, a cross-sectional view is presented in Figure 16. We can see that as before, the 

number of pixels along either the X or Y axis of the pixilated image is divided evenly among the 

degrees of the viewing angle θ. Since the camera is placed over the center of the arena, the 

distortion varies symmetrically on either side of the arena. 

 One can see that if the camera is raised in elevation, the increase in perspective distortion 

as one travels from the center of the arena outward would be reduced, but the space that each 

pixel covers would be increased. Raising the camera further is a way to reduce this distortion, but 

a camera with a significantly higher resolution would be needed to maintain accuracy for the 

tracking system. 
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 While some problems are solved, new ones arise. The camera would have to be held 

somehow above the arena. This means it would have to be suspended from the ceiling or held up 

by a structure. This would drastically increase the cost of the system and the burden it places on 

FIRST organizers. 

 To solve this problem, multiple cameras would have to be placed above the arena so that 

they could be suspended from lower heights. However, they would still need to be suspended 

and more cameras cost more money and present more logistical challenges. 

 

Figure 16: Cross Section of the Scene with One Overhead Camera 

2.5.3: Quantifying Perspective Distortion 

 In order to make a real system that tracks real robots, this distortion must be corrected on-

site in some sort of algorithm. One way to do this is to assign each pixel on the camera a 

corresponding set of (x, y) coordinates with respect to the arena floor. Once the pixel showing 

the target is identified, it would be compared with the pre-determined association between pixel 

location and arena location. 
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 To understand this association, we must first understand that the camera viewing angles 

in the X and Y directions and the resolution are important. At the heart of this mathematical 

relationship are two parameters of interest. These are the number of degrees per pixel in the X 

direction, and the number of degrees per pixel in the Y direction.  

 These parameters are of interest because, as can be seen in Figure 17, we can see that the 

pathway to each pixel boundary where it meets the arena floor is related to the radius of a circle. 

 

 

 

Figure 17: Aid for Calculation of Space Covered Per Pixel 

The Math 

x = number of pixels in the x direction in the camera 

θ = Camera viewing angle in the x direction 

g = θ/x = Degrees per pixel in the x direction 
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H = r1 = height of the camera 

r2 = distance from camera lens to Point 2 in the x direction 

L1 = length of the area between Point 1 and the first pixel boundary 

L2 = length of the area between the first pixel boundary and the second pixel boundary 

P = Pixels from the center of the image 

 

We start with just one triangle, formed between Point 1, the camera lens, and the first 

pixel boundary.  

L1 = H * tan(g)      (2.1) 

The next triangle is formed between Point 1, the camera lens, and the second pixel 

boundary.  

L2 = H * tan(2g)      (2.2) 

 Continuing further, the general relationship is 

LN = H * tan(P * g)      (2.3) 

 This relationship can be used to show the position of any pixel in an image, mapped to 

the FIRST arena. To form the coordinates (x, y), the equations for the Y direction are the same, 

but with different parameters, which are given by the camera. 

Notes 

Later, the above calculations were found to only be useful when mapping the pixels along 

one-dimensional lines on the arena space. Further research was done to find a more robust 

mathematical relationship between the image plane and arena surface, and it is discussed in 

Chapter 4.3. 
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2.6: Image Processing Algorithm 

 Since our system requires the ability to examine an image and identify specific features, 

we researched existing algorithms that could be used for this purpose. The most useful algorithm 

was found in a paper titled FPGA Implementation of a Single Pass Real-Time Blob Analysis 

Using Run Length Encoding [7]. This algorithm begins by assuming that background pixels and 

object pixels have already been distinguished from one another. Figure 18 is the example given 

in the paper showing the difference between the original image and the filtered image. 

 

Figure 18: Original Image (Left) and Filtered Image (Right) [7] 

With the image filtered, the algorithm scans each line from left to right. When an object 

pixel is identified, the adjacent pixels that have already been scanned are examined. If all of 

these pixels are background pixels, a new label is assigned to that pixel. If any of these belongs 

to an object, the same label is assigned to the pixel in question. Figure 19 demonstrates this 

process. 
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Figure 19: Non-Background Pixel Identified [7] 

If multiple pixels are identified on the same line, the start and end pixel locations for each 

run of consecutive pixels are noted. At the end of each line, the runs for the current line are 

compared to the runs of the previous line to determine if there is any overlap. If overlap occurs, 

the run for the current line is given the same label as the run that it overlaps. If no overlap occurs, 

the run is given a new label.  This operation can be seen in Figure 20. 

 

Figure 20: Line Comparison [7] 

When the algorithm encounters a run that overlaps with two or more runs on previous 

line it merges the two previous runs into a single run. When this happens, the information 

relating to the first run is combined with that of the second such that the final run accurately 

represents the entire object as it has been scanned. An example where merging is required can be 

seen in Figure 21 below. 
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Figure 21: Example Requiring Merge [7] 

 After every line has been scanned, the centroid is determined using the following 

equations [7]. 

        
 

 
         (2.4) 

        
 

 
         (2.5) 

A is the area of the box surrounding the object, u is the horizontal location of each pixel 

in the blob, and v is the vertical location of pixel in the blob. After this calculation, the true 

center of each object has been determined. 
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Chapter 3: System Design 

From our background research, several issues were found that should be addressed.  Our 

system needs to be capable of tracking robots on an entire 27x54 foot field, that can have various 

obstacles and ramps that can block sightlines and change the heights of robots.  Also, since each 

robot is independently controlled, each of the 6 robots playing the game should have a unique 

visual ID that can be identified, independent of the robot’s design.  Once images are captured, a 

system must be developed to analyze the images to find the unique IDs.  Then the perspective 

distortion of the camera must be corrected, which allows accurate reconstruction of robot 

locations. 

The system that we designed to accomplish the goal of this project operates in four major 

stages. The first stage of the system involves utilizing an array of LEDs to generate a specific 

pattern of colors. The second stage is the image acquisition stage where images from the camera 

are captured and stored. The third stage is the image processing stage where key data is extracted 

from the images. The fourth and final stage is the reconstruction stage where data from multiple 

cameras are combined to determine the locations of the robots.  

Figure 22 below shows the overall hierarchy for the full scale system. This system uses 

six cameras placed around the arena. Each has its own FPGA embedded system to process the 

images and send the results to the central PC. Once the data from the six cameras has been 

received by the central PC, the locations of all of the robots are reconstructed and provided to 

FIRST for distribution to the teams. 
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Figure 22: System Hierarchy 

3.1: Camera 

 One of the most crucial aspects of our project was the selection of our camera. We 

needed to choose a camera that would be able to see all aspects of the arena while being able to 

handle the requirements needed to accurately take pictures and communicate with our FPGA. 

The quality of our camera has a direct impact on the accuracy of our system as a whole. As a 

result, we performed extensive research in order to choose the best possible option for our 

system.  

3.1.1: Camera Resolution 

 In order to make sure we were purchasing a camera which could handle the needs of our 

system, we created the imaging simulator described in section 4.3 to test the accuracy of 

potential cameras. The simulator included user defined parameters covering the different aspects 
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of a camera specification such as the field of view of the lens and the camera resolution. After 

running the simulator, an image was produced that showed how effectively that camera would be 

able to locate robots within the arena. Examples of these images can be seen Figure 23 and 

Figure 24 below. In Figure 23, the camera was placed at the bottom left corner of the arena and 

angled down at a 45 degree angle. In Figure 24, the camera was placed at the center of one of the 

edges of the arena and was again angled down at a 45 degree angle. In both of these figures, 

green indicates that the error at that location was less than 3 inches, yellow indicates that the 

error was less than 5 inches, red indicates that the error was less than 7 inches, and white 

indicates that the camera could not see that part of the arena. 

 

 

Figure 23: Heat Map of Accuracy from a Corner 
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Figure 24: Accuracy from Center of Sideline 

3.1.2: Camera Interface 

 Our process in searching for the right camera took us across many different pieces of 

equipment. Originally we looked into security cameras and focused specifically on field of view 

and resolution without paying attention to the interface with the rest of the system or the cost for 

each camera. This meant that we were leaning towards high end models of cameras which cost in 

the range of $800 to $1500 each.  After further investigation, it became clear that we had to focus 

on other aspects of the cameras because the models we were leaning towards had outputs that 

would be burdensome as part of an image processing system. We chose to use a camera that 

outputs its data serially in a raw image format instead of a camera that outputs its data in 

compressed format via USB. In order for us to use a USB camera, we would need a computer 

with a USB interface and the required software to interpret the data for each camera. This is not a 

cost-effective implementation so we decided to use a camera with raw data transmitted in an 

uncompressed format.  

3.1.3: Camera Specifications 

Once we decided on a camera that provided uncompressed data, we came to the 

conclusion that we would need a camera that provided data in either RGB or YUV format.  Also 
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on our list of specifications was a horizontal viewing angle of at least 95 degrees as well as an 

86.5 degree vertical viewing angle to allow a 5 degree tolerance in either direction. These angles 

would allow us to cover the field completely with enough overlap between the separate cameras 

to ensure that the system would function with a high degree of accuracy. In looking at the camera 

modules it became clear that we would be able to look for specifications such as resolution and 

data output and leave the viewing angle issue for our choice of lens.  

After performing research we decided to use the 24C1.3XDIG shown below, which is a 

camera module produced by Videology. The camera can be seen in Figure 25 below. 

 

 

Figure 25: 24C1.3XDIG Camera Module [8] 

 We arrived at this piece of equipment after looking through many other cameras. This 

camera outputs a digital 8 bit YUV output and has a 1.3 Megapixel sensor that can output images 

up to a resolution of 1280 x 1024. This camera is also flexible in that it can use a variety of 

lenses that fit into a CS, M12 or pinhole lens mount. Finally, it is significantly less expensive 

than the other high end cameras we looked at since this module would end up costing $200. 
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3.2: LED Beacon 

 An important part of our project was the use of LEDs to identify and locate the robots. 

This beacon was designed with the intent that it would be placed on top the robots during the 

competition to serve as a target for locating and identifying the robots within the arena. The 

beacons have been designed in such a way that up to twelve beacons can be in the arena 

simultaneously and that each beacon will have a unique pattern associated with it. The matrix 

used for the beacon can be seen in Figure 26 below. 

 

Figure 26: LED Matrix with PCB Controller and MSP430 

3.3: Image Acquisition and Processing 

 In order to specify the hardware for the Pre-Processing stage, we first determined the 

requirements of this stage. We determined that this stage must be able to operate at a speed that 

is faster than the clock rate of the camera, and that it must be capable of a pipelined data flow in 

order to avoid data loss. The data must be converted from YUV to RGB, passed through a filter, 

and stored in RAM without losing or corrupting a single piece of data.  
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With an entire frame accessible in RAM, the image processing stage begins. This stage 

uses a soft-core microprocessor to process the image. The intent of this stage is to find the center 

of each beacon and identify which robot the beacon belongs to. This is done by first using a 

modified version of the Run-length encoding algorithm described in Chapter 2. This new 

algorithm finds all adjacent pixels that are of the same color and groups them together. After this 

initial scan is complete, the groups are examined with respect to each other. If two groups are 

determined to be adjacent to each other, they are interpreted as being part of the same beacon and 

an identifier is assigned to the center of that group based on the colors of the pixels in each 

group. The block diagram for these two stages can be seen in Figure 27 below. 

 

Figure 27: Image Acquisition and Image Processing Block Diagram 

In order to implement these two stages, we chose to use an FPGA as it is capable of 

performing the required logical operations at a higher speed can be configured to implement a 

pipelined data flow. After choosing to use an FPGA as the platform to implement our image 

processing stage, we chose a specific FPGA to use. We chose to use a Spartan 6 FPGA on a 

Nexys3 development board. This board was chosen because of the FPGA and the peripherals 
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such as the RAM as well as UART and VGA display ports it contains. This FPGA is capable of 

operating at a speed significantly higher than the camera we chose and is large enough that it is 

able to easily support our system design. The RAM peripheral on this board is necessary for 

storing an image so that the entire image can be processed at the same time. With all of these 

capabilities, the Spartan 6 FPGA on a Nexys3 development board was the best choice for 

developing our Image Processing stage. 

3.4: Beacon Location Reconstruction 

 Once each camera has finished processing a frame, it transmits the pixel coordinates of 

the center of each beacon along with its identifier to a central computer. The final stage 

reconciles data from multiple cameras in order to reconstruct the real world coordinates of the 

beacons. The program that runs the user interface with the PC and performs the coordinate 

reconstruction was made to be portable so any PC running Windows can run the program. 
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Chapter 4: Modules for Testing 

4.1: Camera Model 

 Since many of the Verilog modules we developed relied on receiving data from the 

camera, we developed a model of the camera. This model was designed in such a way that it 

produced the same signals as the camera. These signals included 8 bits of image data, a signal 

indicating when a horizontal line had ended, a signal indicating when a frame ended, and the 54 

MHz clock that the camera provides. With this model successfully implemented, we were able to 

test our digital logic models in simulation. By simulating these modules, we significantly 

decreased the amount of time required to debug each system. This is because simulations provide 

significantly more visibility of all of the signals in a module than testing on a physical FPGA 

would.  

4.2: VGA Display 

In order to facilitate our testing, we designed a module that was capable of reading image 

data from RAM and displaying it on a VGA display. This module has two main components. 

The first component generates the timing signals required to communicate with the display. This 

is done by using a 25 MHz clock which increments two counters. These two counters drive 

synchronization signals which set the monitor to display an image at 640X480 resolution. The 

second component utilizes a FIFO to ensure that color data is always available and accurate. This 

is done by continuously writing pixel data from RAM until the FIFO is full. While data is being 

written in, data is simultaneously read out to drive the VGA display. By doing this, the display 

will always have pixel data ready when it is needed. 
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After implementing the VGA Display module, a testbench was created in order to verify 

that data was available to send to the display at the proper times. The result of this test can be 

seen in Figure 28 below. This figure particularly demonstrates that data is passed into the system 

64 bits at a time and sent to the monitor 8 bits at a time. Additionally, the signal that indicates 

that the FIFO cannot hold more data is shown. 

 

Figure 28: VGA Display Testbench 

4.3: Imaging Model 

Since our project is based on using images to find object locations, it was very important 

to develop an understanding for how three-dimensional locations are projected onto a two-

dimensional image plane.  This was done by developing a model for the camera. Initially a 

simple model was developed, but it was found to be too limited, and did not accurately represent 

the camera. This motivated the development and implementation of a more complex imaging 

model. 
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 The initial model developed attempted to treat horizontal and vertical displacement in the 

image as functions of single angles. Distance left or right from the center of the image was 

assumed to be a function of a single angle because the object imaged was to the left or right of an 

imaginary plane determined by the yaw angle of the camera as shown in Figure 29, and distance 

up or down was assumed to be because the object was above or below a plane determined by the 

pitch angle of the camera. This created an easy model to calculate, but we noticed it did not 

properly simulate images of objects when implemented. For instance, Figure 29 shows a red and 

green object being imaged by a camera located at the bottom left corner of the setup.  Since the 

objects are on the same line of sight from the camera, our initial model created the image shown 

in Figure 30.   

 

Figure 29: Overhead View of Objects on Field Being Viewed By A Camera 
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Figure 30: Image of the Scene in Figure 29 Using Our Simple Camera Model 

 We then measured out Figure 29 in the lab, and took an image with an actual camera, 

which is shown in Figure 31 below.  Clearly, this figure demonstrates that the green object 

should be closer to the image center than the red one, so our simple camera model did not 

accurately represent how a camera maps real world locations to images.  Since it wasn't capable 

of accurately simulating a mapping from real-world locations to image locations, it would have 

been unsuitable to try inverting the process and determining real-world locations from an image. 

The figure below shows how the setup in Figure 31 would actually be seen by a camera. 

 

Figure 31: Actual Image Taken by Camera as Seen in Figure 29 
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 To address the limitations of the initial model, the more complex pin-hole camera model 

was implemented and used. This model uses rotation matrices to perform frame transformations 

between field coordinates and camera coordinates, like those seen in Figure 32.   

 

Figure 32: Examples of Frame Transformations from B to F [9] 

 

This rotation is accomplished by multiplying 3 3x3 matrices that encode the roll, pitch, 

and yaw of the camera with respect to the field’s coordinate system.  For example, a roll of the 

camera, which is a rotation around the axis perpendicular to the image plane, is represented as: 

             
               

   
                

     (4.1) 

This is useful because multiplying this matrix by any 3 dimensional position vector will properly 

rotate the vector into a new frame described by the rotation, for example, substituting 90 degrees 

for θ, and multiplying by a vector <1,0,0> will result in: 
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This indicates that a 90 degree roll is a transformation around the y-axis of the field.  A single 

simple rotation matrix like Rroll is a rotation around a single axis.  By combining 3 of them, a full 

3 axis rotation can be created.  Our camera model uses a full rotation matrix of: 

                          

  
               

   
                

  
   
               
                

  
                
               

   

  

(4.3) 

This allows us to specify the direction of any camera using 3 angles α, β, and γ, and any vector 

<x,y,z> in field coordinates can then be rotated into an equivalent vector <u,v,w> in camera 

coordinates as in Figure 33.   

 

Figure 33: Rotation of Q in frame (x,y,z) to Q' in frame (u,v,w) 

 Once this frame transformation is complete, the vector in <u,v,w> is converted to 

homogeneous coordinates, by dividing the vector by w, this creates a vector, 

   
             

 

 
 
 

 
   .  Since the w axis is perpendicular to the image plane of the 

camera, this vector ends on the image plane of the pinhole camera. Then   
            can be 

pixelized based on the field of view and resolution of the camera, which allows us to accurately 

model how an object appears in a camera image.     
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 In summary, by measuring the distance between the camera and a point in field 

coordinates (x,y,z), and multiplying that vector by R to rotate the vector into camera coordinates, 

then converting it to homogenous camera coordinates and pixelizing the result, we could 

accurately map a real-world camera pose and object location to an actual image. This mapping 

accounted for the impact of all 6 degrees of the camera's pose in generating the horizontal and 

vertical image locations of an object, rather than just 4. This allowed us to simulate much more 

accurate representations of how our camera would view different objects. Figure 34 shows an 

accurate simulation of the image of the scene in Figure 29, using the pin-hole camera model 

described.  The black line indicates the center of the image for reference. Note that the green 

block is closer to the center line than the red block. 

 

 

Figure 34: Accurate Simulation of setup in Figure 29 



 

 

38 

 

 This imaging model was heavily used throughout project development.  It helped us 

determine how camera and lens parameters such as resolution and field of view impacted our 

field coverage, which helped us develop our design specifications.  It also helped quantify 

beacon size and pattern resolution limitations.  Finally, it was used directly to map images back 

to 3 dimensional locations once the central PC received the image data from the FPGA. 

  



 

 

39 

 

Chapter 5: System Implementation 

 With testing modules successfully implemented, we were able to implement and test our 

individual modules. This chapter describes the requirements, implementation process, and tests 

performed for each module we developed. 

5.1: Tracking Beacon 

 Our tracking beacon had to be designed and constructed in a manner that was efficient 

and compatible with our camera system. This section describes how we designed and 

implemented our beacon to meet this requirement. 

5.1.1: Requirements 

 The requirements for our beacon were very straightforward. The first was that it had to be 

clearly visible to our camera and able to be powered by the robots in the competition. Another 

requirement was that there had to be the ability to display multiple patterns in order to uniquely 

identify multiple robots within the arena.  The final requirement of the tracking beacon was that 

it had to be simple enough that people who worked the FIRST competition with no knowledge of 

the system would be able to work our beacon design. Patterns for the beacon can be selected 

simply by pushing a button. 

5.1.2: Design Choices and Considerations 

 The beacon design evolved from many different ideas. We first came up a set of 3 LEDs 

in a triangle for our beacon consisting of red, green or blue. This was because the front LED 

could be used to help identify which robot was which due to the position of the 2 rear LEDs. 

This allowed us to track up to 6 possible robots but lacked the ability to expand that number 

should FIRST decide to add more robots to a playing field. Also in implementing the LEDs we 
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decided to use RGB tri-colored LEDs because they were easily identifiable, as well as being 

easier to use because of the simplicity in changing the color of the LED when needed for beacon 

patterns. The idea behind this method was to use trigonometry to determine a reference point’s 

location as seen in Figure 35 below. 

 

 

Figure 35: Original Beacon Layout 

Once we determined that this beacon concept did not provide enough different patterns to 

identify the robots uniquely, we decided to move onto a different beacon design as seen in Figure 

36 below. This design was chosen because it could be easily detected by a camera due to the area 

it occupies.  

 

Figure 36: LED Beacon Design 
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However, after receiving and testing the LEDs in lab, we came to the conclusion that this 

design was inefficient because it would require more space to implement and this would make 

our design being more intrusive to the competitors.  

With size consideration and efficiency in mind, we went researching new ways to 

implement a tracking Beacon. After doing research we came across an LED Matrix and decided 

that this would be the best solution. The matrix we used to implement our design can be seen in 

Figure 37 below. 

 

Figure 37: LED Matrix for Beacon Design 

5.1.3: Tracking Beacon Design 

The beacon design for our LED matrix went through many different stages.  In order to 

implement set of unique pattern designs, we configured our matrix to have four different sectors 

which would each occupy a 4 by 4 quadrant of the LED matrix. An example layout of our 

beacon can be seen in Figure 38 below.  
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Figure 38: Example of Illuminated Beacon 

The pattern design for tracking has 4 quadrants that get illuminated to represent RGB 

colors. Because of our cameras ability to differentiate between colors we can combine 2 colors 

such as red and green or red and blue to minimize the space of our beacon and still ensure that 

each quadrant can be detected. We have designed the patterns such that they are easily 

identifiable for the image processing stage of our system. In total we have 12 unique color 

patterns as described in the table below to allow FIRST the ability to increase the number of 

robots in the arena while still ensuring that our system will be able to accurately track the 

beacons. In a typical FRC game, six robots are used and all of these robots can be tracked by our 

system. 
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Table 1: Identification Patterns 

The reason we chose to use three quadrants next to each other as the same color with the 

final quadrant being a different color is because it allowed our image processing system to easily 

distinguish between different patterns. 

5.1.4: LED Matrix Controller 

In order to control what tracking pattern was seen on the LED matrix we needed to 

design a PCB that would control the voltage input to each quadrant. After looking into the 

matrix’s pinout it became apparent that we would need to multiplex the matrix in order to display 

the correct color in each of the four quadrants. 

 At first we discussed using a shift register for the output controller in order to be able to 

control each LED separately. Soon it became clear that using shift registers would over 

complicate our design because we only needed to control individual quadrants instead of 

individual LEDs. This led us to believe that a simple MSP430 microcontroller would be the best 

option to use for multiplexing purposes because of its simplicity.  Using this microcontroller we 

could tie off the rows and columns into groups using h-bridges.  This allowed us to use only 8 



 

 

44 

 

I/O lines. These lines are for Rows1-4 and 5-8, Red Columns 1-4 and 5-8, Green Columns 1-4 

and 5-8, as well as Blue Columns 1-4 and 5-8 as seen in Figure 39 below. 

 

Figure 39: Layout of Row/Column Grouping 

This method of grouping simplified our design because each group was connected to an 

output of a quadruple half-h driver.  We decided to use the half–h drivers as can be seen in 

Appendix B because of their ability to work with the current requirements of the LED matrix as 

well as the microcontroller.  To implement this design we used two of these drivers to control 

specific quadrants as needed to display the correct pattern.  

5.1.5: Beacon Implementation 

  With the requirements and design specifications discussed in the previous section, we 

designed our PCB for implementation. The prefabrication layout of our LED Matrix Controller 

PCB can be seen in Figure 40 below. 
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Figure 40: Prefabricated LED Matrix Controller PCB 

After all of our components were acquired and the PCB was fabricated, we populated the board 

for testing. The final assembled LED Matrix Controller can be seen in Figure 41 below.  
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Figure 41: Led Matrix Controller Assembled 

Finally attaching the matrix and Launchpad to the PCB we were able to test our design to verify 

its functionality. Our assembled Beacon can be seen in Figure 42. 



 

 

47 

 

 

Figure 42: LED Matrix with PCB Controller and MSP430 

5.1.6: Testing 

After beginning testing with the LED PCB, it became apparent that the beacon was not 

behaving as predicted. The patterns that were being displayed can be seen in Figure 43 below.  

 

Figure 43: LED PCB Malfunction 
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Upon testing the connections between the matrix and the PCB it was discovered that some of the 

lines to one of the headers were reversed. The Figure 44 shows what the original header 

orientation was. 

 

Figure 44: Former Board Layout 

Based upon the pinout of the LED matrix the header should have been positioned as follows in 

Figure 45. 

 

Figure 45: Necessary Board Layout 

In order to correct the PCB error we created a new basic breakout board to reverse the 

orientation of the headers to ensure they connected to the right signals. Finally once this was 

done we retested the Matrix and all twelve of the beacon patterns displayed correctly. Figure 46 

below shows the Matrix displaying pattern 3. 
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Figure 46: LED Matrix Displaying Pattern 3 

5.2: Camera PCB  

 In order to communicate with the FPGA our camera needed a custom breakout board that 

connected the signals from the camera to a connector on the Nexys3 development board. This 

was necessary because the connector for our camera was not available on the Nexys3 board. Our 

custom circuit board was designed to provide the necessary connections between the camera and 

the Nexys3. The board needed to incorporate two connectors; a 30-pin Molex mating connector 

for the camera, and a 68-pin VHDCI connector to connect with the Nexys3 board. Connecting to 

the VHDCI connector was preferable to the other connections available on the Nexys3 because it 

is designed for high-speed data transfers and is designed for high speed data. The appropriate 

connections to the camera were made in accordance with the Digilent Nexys3 functional 

descriptions of the various VHDCI connector signals when designing the custom board. 

5.2.1: PCB Design 

Figure 47 below shows the board design before it was sent for fabrication. The camera 

plugs in within the bounds of the dark blue lines. It has mounting holes on two corners, designed 
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to correspond with the mounting holes on the camera module itself. Also, some screws and nuts 

were selected to mount the camera to the board during operation so it did not fall off when tilted 

upside down. 

 

Figure 47: Custom Breakout PCB before Order 

 There are four surface mount circuit elements that were added. Three are capacitors, one 

is a resistor. Capacitor C1 and resistor R1 serve as the shield for the VHDCI connector. They are 

used in a low pass configuration in order to prevent voltage spikes in the signals. Capacitors C2 

and C3 are decoupling capacitors that filter out noise from the power supply to the camera. 

 The four holes on the corners were added to the board to allow for standoffs to be added 

so the board would rest at the same height as the Nexys3 and also protect the solder connections 

from wear. There are 12 labeled test points on the board to use during testing and debugging of 

the board, camera, and FPGA logic. Figure 48 below shows the fabricated PCB and Figure 49 

shows the fabricated PCB connected to the Nexys3 development board.  
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Figure 48: Fabricated PCB 

 

Figure 49: PCB with Camera Attached, Plugged Into Nexys3 Board 

 We used the test points to initially confirm that all connections had properly been made 

between the camera and the FPGA. The test points also played a critical role in verifying the 
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functionality of the camera and in development of the I
2
C communication with the camera 

because debugging that communication was made easier by observing the communications on an 

oscilloscope. 

5.3: I2C Interface 

 The Videology 24C1.3xDIG camera we used has user-selectable settings for all sorts of 

camera features. These include resolution, gain control, contrast, shutter speed, as well as several 

others. In order to adjust these for optimal settings, an I
2
C interface was created using a 

Micoblaze soft-core processor which is generated inside the FPGA. 

 There are eleven configurable registers with settings for this camera. The one that is of 

most immediate interest to us was register 0 which contains the settings for the frame rate, gain 

mode, and resolution. The settings available for resolution and frame rate are in the Figure 50 

below: 

 

Figure 50: Resolution and Frame Rate Chart [8] 

In Figure 51, all the available settings configured in register 0 are shown, bit by bit. For 

our testing purposes, VGA (640X480) resolution has to be used. This is because SXGA 

(1280X1024) resolution requires a 108 MHz pixel clock for use with a VGA display, but the 

fastest we could read data from the SRAM on the Nexys3 board is 80 MHz.  
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Figure 51: Register 0 Detail [8] 

 To set the camera to VGA resolution, bits 15:14 needed to be 01 in binary as can be seen 

in Figure 51. Also, we wanted to change the mains frequency from the default of 50 Hz to 60Hz 

which is more easily compatible with standard 640X480@60Hz for the monitor. To achieve 

these settings, we needed to write 0x40C3 to register 0. 



 

 

54 

 

 

Figure 52: Reading Default Settings via I2C 

 The oscilloscope image in Figure 52 above shows an entire sequence to read the data in 

register 0 from the camera. The clock is entirely driven by the master, which is our FPGA, 

except when the slave (the camera) is stretching the clock. 

 

Figure 53: Displaying Read Results to User 

 Figure 53 above shows the results of the read action displayed on the seven segment 

displays on the Nexys3 board. For comprehensive reading and writing, a simple user interface 
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was implemented to guide the user through the short command entry process. For instance, if a 

user wants to read from register 0, they simply set all the slider switches to low, press the right 

button, and then press the down button to execute the command. The LEDs are used to show the 

user the status of the entry user interface. 

 

Figure 54: Writing 0x40c3 to Register 0 

 Next, 0x40C3 is written to the camera, as shown in Figure 54 above. The process is a 

little simpler and shorter than a read, since the camera does not have to be re-addressed. 
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Figure 55: Reading 0x40c3 from Register 0 

 To confirm that 0x40C3 was received, the register is read again. The camera confirms 

that the register was what we wanted. The sequence can be seen in Figure 55 above and the 

seven segment display confirms it to the user as shown in Figure 56 below. 

 

Figure 56: Results of Reading the Previously-Written Value of Register 0 
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5.4: Camera Interface 

 The camera we used for our system provides data 8 bits at a time in UYVY format as can 

be seen in Figure 57 below. 

 

Figure 57: Data Format of Camera [8] 

Since our design requires the data to be in RGB format for processing, we needed to 

implement a module that packaged multiple 8-bit words into single 32-bit words, macropixels. 

These macropixels are passed on to the other modules as they become available. We decided that 

the simplest way to implement this packaging mechanism was to use a FIFO. The FIFO takes in 

8-bit words at every positive edge of the 54 MHz clock provided by the camera and produces 32-

bit words at the positive edge of an 80 MHz clock, which is used by the rest of the system, if the 

YUV to RGB conversion module is ready for data. This FIFO serves the purpose of packaging 

the data for further use and performing the clock domain crossing that moves to the faster clock 

domain of the main system. Figure 58 below shows the block diagram for this module. This 

block diagram shows 8 bit data from the camera passing through the FIFO and being output as a 

32 bit macropixel. 
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Figure 58: Camera Interface Block Diagram 

5.5: Beacon Filter 

 The main purpose of the Beacon Filter module is to filter out image data that is not part 

of one of the LED Beacons or calibration markers. This is done in two phases. First the image 

data is converted from the YUV color space to the RGB color space. A filter is then applied that 

removes data that does not fit the profile of an LED Beacon or a Calibration Marker. This filter 

also normalizes all data that matches the profile so that further image processing can be 

performed in a simpler manner. 

5.5.1: Color Space Converter 

The first step in performing the filtering is to convert from the YUV color space to the 

RGB color space. This conversion is done by first breaking the macropixel from the camera 

interface into two pixels. A macropixel contains 4 words of data that correspond to data for the 

two pixels in the following manner: U0/1 Y0 V0/1 Y1. This data is broken up to form two pixels as 

follows: Y0 U0/1 V0/1 and Y1 U0/1 V0/1. Once these pixels have been assembled, the math required 
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to convert from the YUV color space to the RGB color space is applied. This is done by applying 

the following equations. 

                                            (5.1) 

                              (5.2) 

                              (5.3) 

The submodule that applies this math has been pipelined such that the computations take 7 clock 

cycles to complete.  

In addition to the conversion submodule we used, we designed custom digital logic that 

served to control the data flow within this module. In order to signal that the data on the output is 

valid, a signal is given to the submodule that is passed through the pipeline with the data that is 

being converted. This signal is driven high when valid data is applied at the input and a signal 

from the output of the pipeline is driven high when valid data is available at the output.  

The data flow for this module can be seen in the block diagram in Figure 59 below. Raw 

image data comes from the Camera Interface module. Each macropixel is multiplexed such that 

individual pixels are sent to the YUV to RGB Converter so that each pixel is converted in the 

proper order. When the data has been converted, it is compressed so that it requires less space in 

RAM and can be easily used to drive the colors on a VGA display. Finally, the data is packaged 

in a FIFO so that 64 bits of data can be written to RAM at the same time. 
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Figure 59: Color Space Converter Block Diagram 

 When the implementation of this submodule was completed, a testbench was created that 

applies simulated data from the camera and demonstrates that the data is assembled properly for 

use in other modules. The results of this test can be seen in Figure 60 below. Of note is this test 

bench is that data is applied on the camera_data input. This data is converted and the results of 

this conversion can be seen on the processed_data_in wire. It is then passed to the compressor 

which shrinks the data down to 8 bits per pixel and writes the compressed data into the FIFO. 

Finally, the 64 bits of packaged data can be seen properly assembled on the dout line. 
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Figure 60: Color Space Conversion Testbench 

5.5.2: Color Filter 

 With the image data in RGB format, the first portion of the image processing can be 

executed. This stage filters out image data that is not part of an LED Beacon or a Calibration 

Marker. This is done by comparing the Red, Green, and Blue values of each pixel to pre-

determined threshold values. Six values are used; three that check if a color is above a minimum 

value and three that check if a color is below a maximum value. For example, in order for a pixel 

to pass through the filter with the color yellow, it would need to have Red and Green values 

above the minimum thresholds for those colors and a Blue value below the maximum threshold. 

This ensures that the only colors that get through the filter are those that are purely one color or 

another. Additionally, this stage filters out most data that is not relevant to the LED Beacons or 

the Calibration Markers. This stage has the limitation that bright sources of light that are located 

in the arena will not necessarily be removed since they have the proper profile.  

 The block diagram for the completed Beacon Filter module can be seen in Figure 61 

below. This block diagram has replaced the simple data compressor block with the more 

complex Color Filter block described in this section. 
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Figure 61: Completed Beacon Filter Block Diagram 

 This stage was tested using the VGA Display module. The results of these tests can be 

seen in Figure 62 and Figure 63 below. Figure 62 shows an image that was taken by our system 

with the color filtering disabled. Figure 63 shows the same scene with filtering enabled. In both 

of these figures, the white crosshair was used to identify the center of the image and was not 

actually perceived by the camera. All of the data that was not part of the calibration markers or 

LED Beacon was removed and the important colors had their values normalized successfully. 

 

Figure 62: Unfiltered Image 
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Figure 63: Filtered Image 

5.6: RAM Interface 

The RAM Interface module was designed in order to facilitate use of the onboard RAM. 

The interface has three main purposes; configure the RAM with the appropriate settings, perform 

a write operation, and perform a read operation. The first step in developing the interface was to 

determine how to configure the RAM. Once this was completed, the read and write operations 

were developed. 

5.6.1: RAM Configuration 

When the configuration settings for the RAM were being chosen, the biggest 

consideration was the speed at which writes could be performed. Our limitation was that data 

came in from the camera 8 bits at a time at a rate of 54 MHz. Since the RAM has an upper bank 

and lower bank, each of which holds 8 bits per address, we were able to write 16 bits at a time. 

Therefore, we needed to be able to perform writes at an average rate of 27 MHz. We initially 

considered using the asynchronous access mode of the RAM, but we quickly discovered that this 

would operate at 1 write per 70 ns which is on the order of 14 MHz. We then found that 

synchronous burst mode write operations could be performed much faster. This is because 
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multiple writes can be performed in quick succession as long as the addresses are consecutive. 

We chose to operate the RAM at its maximum clock rate of 80 MHz and in 4 word burst mode. 

At this speed, the RAM requires 7 clock cycles to prepare a write, then performs a 4 writes over 

the next 4 clock cycles. Therefore, in a worst case scenario, 4 writes are performed in 11 clock 

cycles which averages to be a rate of 29 MHz which is above our requirement. 

 Once these settings were chosen, we developed the method for programming these 

settings into the RAM. This is done by performing a write to the Bus Configuration Register 

(BCR). A write to the BCR is done by driving the RAM input signals as seen in Figure 64 from 

the MT45W8MW16BGX datasheet [10].  

 

Figure 64: BCR Write Operation[10] 

The key signals to drive for the BCR write operation are the address lines, CRE, ADV#, 

CE#, and WE#. CRE is driven high to indicate that a configuration register access is being 

performed. ADV# and CE# are both driven low to indicate that the chip has been enabled and 

that the data on the address lines is valid. WE# is held high when ADV# and CE# are first driven 
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low, but is driven low when the write is actually performed. Finally, the address lines contain the 

settings to write into the BCR. The data on these lines is given by the following table.  

 

Table 2: BCR Settings 

Once the BCR write operation was implemented, a testbench was created that would 

execute the operation on model of the RAM and verify that the operation had been implemented 

properly. The results of this test can be seen in Figure 65 below. 

 

Figure 65: BCR Write Operation Testbench 
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5.6.2: Read and Write Operations 

The proper sequences required to perform read and write operations on the RAM were 

determined from the RAM datasheet. The basic sequences can be seen in Figure 66 and Figure 

67 below. 

 

Figure 66: Burst Mode Write [10] 

 

Figure 67: Burst Mode Read [10] 
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The major difference between the above figures and the sequences used for our 

implementation is that the latency for the system in the figures is 3 clock cycles where in our 

system the latency is 7 clock cycles. Both operations rely on the use of the address lines, ADV#, 

CE#, OE#, WE#, and LB#/UB#. ADV# is driven low to indicate that an operation is beginning. 

When this happens, CE# must also be driven low, and the data that is present on the address line 

is locked in. LB# and UB# are held low at all times in our design because for both reads and 

writes, we intend to use both banks of RAM.  

In order to perform a write operation WE# must be driven low when ADV# and CE# are 

initially driven low. Additionally, OE# must be driven high throughout the entirety of the 

operation, and that WE# must be driven low at the same time as ADV# and CE#. On the first 

positive edge of the clock after the latency period, the data that is on the DQ line will be written 

to the given address. At the next positive edge of the clock, data is available from the address 

immediately following the given address. At the end of the operation, four address worth of data 

will have been read. For example, if the address given at the beginning of the operation was 

address 0, data from addresses 0, 1, 2, and 3 would have been provided. 

A read operation differs from a write operation in that WE# must be driven high when 

ADV# and CE# are initially driven low. Further, OE# must be driven low during the latency 

period of the operation in order to indicate that a read is being performed. At the first positive 

edge of the clock after the latency period, valid data will be available from the given address. At 

the next positive edge of the clock, data is available from the address immediately following the 

given address. At the end of the operation, four address worth of data will have been read in the 

same manner as data was written for a write operation. 
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When the write and read operations were understood, a state machine was implemented 

that drove the signals as appropriate. Once the state machine was implemented, a testbench was 

created and the write and read operations were tested with a model of the RAM. The results of 

these tests can be seen in Figure 68 and Figure 69 below. 

 

Figure 68: Write to Address 0 

 

Figure 69: Read from Address 0 

The Figure 68 demonstrates a write operation to address 0 with the following data values: 

64, 8, 192, and 8. Figure 69 demonstrates a read operation on address 0 following the previous 

write operation. When the read operation is performed, the data values read out are: 64, 8, 192, 

and 8 which are identical to the values written by the write operation. 

 After the read and write operations were verified in simulation, the RAM interface was 

installed on the FPGA and another test was performed. This test repeatedly wrote four separate 
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values to the RAM.  Figure 70 below shows one of the write operations that we intended to 

perform. Figure 71 below shows the contents of the RAM after our test was performed. The data 

appear to be out of order in the second figure. This is due to the program we used to read data 

from the RAM to a PC for viewing. The program reads data from the lower bank followed by the 

upper bank while our system writes data first to the upper bank, then to the lower bank. Since 

read and write operations within our system are consistent in the ordering of the banks, this is not 

an issue. 

 

Figure 70: Intended Write Operation 

 

Figure 71: Portion of RAM after Write Operation 

5.6.3: System Interface 

 With the individual RAM operations successfully implemented, the last remaining 

portion of the RAM Interface module to be developed was the system interface. This interface 

was intended to provide a simple way for writes or reads to be initiated. To make the interface as 

simple as possible, four inputs and three outputs are utilized. The first two important inputs 

indicate that a write or read operation has been requested. If either of these inputs is driven high 

and the state machine is not performing an operation, the operation corresponding to that input 
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will be performed. In the event that both inputs are driven high at the same time, write operations 

are given priority. The third input contains the 23 bit address that the operation is intended to be 

performed on. This value is given to the RAM Interface instead of being sent straight to the 

RAM because the data on the address line must be overridden when a BCR write is performed. 

The RAM Interface detects when a BCR write is intended and multiplexes the signals 

appropriately. The final input signal is a 64 bit input that contains data that is to be written to the 

RAM. When a read operation is performed, the 64 bits of data are split up so that the top 16 bits 

of data are written to the first address; the second 16 bits are written to the second address, and 

so on. 

 The first important output signal is a signal indicating that the RAM Interface is ready to 

begin either a write or read operation. It can also be used to indicate that the RAM Interface is 

currently performing an operation. The main use for this signal is in handshaking between the 

RAM Interface and the module that is providing it data. The remaining two output signals are 

useful for read operations. One of the signals is a 64 bit line that contains the data from a four 

word burst read. When a read is performed, the data from the first read is stored in the top 16 

bits, the data from the second read is stored in the next 16 bits and so on similar to how the data 

is data input is used. The final output is a signal indicating that a read has been completed and 

the data on the 64 bit data output is valid. This signal, similar to the ready signal, is used in 

handshaking between the RAM Interface and other modules that are requesting data from the 

RAM. 

 With all of these signals in place and all operations functioning properly, the RAM 

Interface can be used as a simple way to either write data to or read data from the RAM. Due to 

this simplicity, the logic required in other modules to use the RAM is significantly decreased. 
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5.7: Interfacing Submodules 

 The final step required to complete the data flow was to integrate each of the modules 

together. This was done by first connecting each module such that the output of one module 

connected to the input of the following module. Additionally, handshaking routines were 

developed so that data would not be lost because the sending module was ready to send without 

the receiving module being in a position to receive the data. With the handshaking in place, data 

was able to pass through the system without being lost due to miscommunication between 

modules and without being lost due to the system operating at too low of a speed. 

Once this was accomplished, the two stages of processing that occur in the FPGA had to 

be reconciled. This had to be done because the RAM that was used is only capable of reading or 

writing at one time; it is incapable of performing both operations simultaneously. As a result of 

this, the system can either be in the image acquisition stage or the preprocessing stage. Since 

these stages require the modules to behave in different ways, a state machine was created that 

determines which stage is active and drives enable signals for each module as appropriate. 

Finally, the system that was used to control the addressing to the RAM was developed. 

This system sets the address to 0 if the system has just been activated, if it has been reset, or if it 

is transitioning from image acquisition to image processing or vice versa. Otherwise, the address 

increments by 4 every time a write or read operation is detected by the RAM Interface module. 

This is done because the RAM only requires the address to be valid when an operation starts. 

Therefore, if the address is incremented immediately after an operation begins, it is highly 

unlikely that the address lines will not have stabilized by the time a new address is needed. 

The block diagram for the integrated system can be seen in Figure 72 below. This block 

diagram shows the data flow through the Camera Interface, Color Conversion, and Ram 
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Interface modules. It also shows the complexity of the state machine, addressing, and control 

logic in the system.  

 

Figure 72: Block Diagram of Integrated Modules 

5.8: Image Processing  

 The image processing stage is the implementation that locates the center of each beacon 

within the image, matches each beacon with its unique ID and sends this information to the 

Central PC. In order to perform these tasks, the beacon identifier requires access to the image 

data stored in RAM by the Image Acquisition stage as well as the ability to communicate with 

the PC to send the information. The capability of performing the recognition and identification of 

the patterns within the image consistently and reliably is the central responsibility for this stage. 

5.8.1: Implementation 

Due to the complexity of this implementation, we decided that developing it in software 

was the best solution. The Spartan 6 FPGA is capable of supporting a Microblaze soft-core 
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microprocessor, and it is generated Xilinx ISE software. It is a 32-bit microprocessor capable of 

running at 100 MHz, which gives the beacon identifier plenty of capability to perform as 

intended. 

The Image Processing algorithms begin once the Image Acquisition stage signals that it is 

complete the beacon identifier begins acquiring pixel values from RAM until a horizontal line 

worth of data is stored in a buffer. Then, the buffer is searched for colored patches. Each time a 

colored pixel is found, it is compared with the previous pixel. If the previous pixel is the same 

color as the current pixel, the current pixel is added to the patch for the previous pixel. If the 

previous pixel is not part of a patch, a new patch is created that starts with that pixel. Data for 

each patch is recorded for interpretation after the entire frame has been processed. 

Once a horizontal line of pixels has been processed, the next line is acquired from RAM 

and the same process is performed as the previous line. However, pixels within a line are not just 

compared with their neighbors to the sides; they are compared with their neighbors above and 

below. Patches that meet the requirements we set to be considered part of the same patch are 

combined. This process is repeated for the entire frame. 

Once all the patches are found, they are interpreted. Patches must be at least 5 pixels in 

size to be considered part of a beacon. This is to reduce the likelihood that a noise will pass 

through the filtering stage and be identified as a beacon. Patches that are adjacent to one another 

by five pixels in any direction but are different colors are combined into a beacon. 

Algorithms are used to decrease false identifications, so that duplicates are not produced, 

and so that the beacons are properly matched with their unique identifier. Then, the algorithm 

looks at each beacon and compares the sizes of the two associated patches to determine which ID 
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to generate. The location of this beacon is stored along with its unique ID for transmission after 

each beacon has been processed. 

After all beacons are identified and all non-beacon patches are discarded, the Image 

Processing stage enters transmit mode. In transmit mode, the matrix object information is sent to 

the PC for that frame, and a new frame is requested by the beacon identifier and it waits until the 

rest of the system is ready for more image processing to be performed on the next frame. 

5.8.2: Testing 

 Before implementing the color patch location algorithm in the Microblaze processor, we 

developed it in MATLAB and tested it on some simple simulated images. The simulated image 

can be seen in Figure 73 and the results of this test can be seen in Figure 74. 

 

 

Figure 73: MATLAB Patch Locator Test Image 
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Figure 74: Results of MATLAB Patch Locator 

 Next, we translated the algorithm from MATLAB to C syntax and began developing the beacon 

identifier implementation inside the FPGA. 

 We decided to test the beacon identifier on a test image before moving to camera images. 

This allowed us to compare our results to a constant, known scenario for more efficient 

debugging. To make these test images, we made binary files the size of our test resolution with 

patches of nonzero values inserted to mimic colored pixels. These binary files were written to 

RAM in order to replicate how the system would work using a camera-acquired image as closely 

as possible. 

We found that the process of reading the RAM via the Microblaze was not working 

properly. The first indication of a problem was when the count of beacons after processing a 

frame showed zero beacons despite them being present in the RAM. 

Next, known data was read in smaller quantities, sent to a PC via the UART, and 

observed in Putty. The data was being properly read from the first location of each 4-address 

block, but not the subsequent three addresses within the block. 

Below are screenshots of the tests we performed. We generated a new binary file to 

download into the RAM that contains the hex values 22 11 44 33 66 55 88 77 AA 99 in the first 

several addresses of RAM. We began reading addresses starting at address 0, where 0x2211 was 

present. The way our SRAM is configured, SRAM63_32 (the upper 32 bits of the 64-bit SRAM 
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read results bus) should contain those 16 bits (0x2211), followed by the next 16 bits (0x4433). 

SRAM31_0 (the lower 32 bits of the 64-bit SRAM read results bus) should contain 0x66558877. 

We repeated this test on the first several block addresses, and in each case, only the first address 

within the block was read properly. The reason the same address is copied into all four address 

spaces is because the burst was not working, so the same location was read into each address 

space. An example of this issue can be seen in Figure 75 below. 

 

Figure 75: Debugging Microblaze access to RAM 

At that point, we could read the contents of memory properly if we only read one address 

at a time. However, we wanted to be able to use the burst mode because it is a better engineering 

design that allows us to read more pixels more quickly. 

Through testing, we found that the RAM interface Verilog design module worked only 

when the address specified for each read was provided by the Verilog design instead of the 

Microblaze processor. 

We found the next issue to be that the array that stores incoming pixel data was not 

declared as a static variable. This was causing issues with the memory that corrupted other 

variables. When we changed this, the Beacon Identifier ran to completion and identified slightly 

more than the correct number of beacons. Our algorithm did not take into account beacons that 
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are more complicated in shape yet. To fix this, we made a function that merges beacons that 

share the same color and share a border. When this function was complete, the Beacon Identifier 

was demonstrated as identifying the correct number of beacons and all beacons were in the 

correct location with the correct color.  

Figure 76 below describes the test that we performed at the full resolution. This image is 

the full scale 1280X1024 test image that we placed into the RAM. 

 

Figure 76: Full Scale Test Image 

Figure 77 below shows the output of the beacon identifier test. We used the UART 

communication to send out the data so that we could see it on a computer screen. As can be seen 
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in the image, we were identifying the appropriate number of color patches and they were 

centered in the correct locations and have the correct number of pixels associated with them. 

Note that the origin of the image is at the top left, so that larger Y values are actually lower on 

the image. 

 

Figure 77: Beacon Identifier Test Output 

Figure 78 below is an example of a beacon that requires merging. As each new horizontal 

line is scanned, two purple patches are initially detected due to the horizontal nature of our 

algorithms. However, further down the image we find that these two patches are actually part of 

the same patch. The merging function takes all of the small patches that are close enough to one 

another and puts them into one patch. 
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Figure 78: Beacon Requiring Merging 

With our patch recognition algorithms functional, we moved on to identify beacons using 

the actual camera images instead of test images. Figure 79 below shows the image that appeared 

on the computer monitor screen after passing through the color filtering system. The second 

image shows the results of the test sent via UART to a computer. The results shown in Figure 80 

demonstrate that the beacon was located at pixel (292, 278) with the origin located at the bottom 

left corner of the image. This matched what we expected from the image that was displayed on 

the monitor. 

 

Figure 79: Image for Beacon Pattern Identification Test 
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Figure 80: Results of Beacon Pattern Identification Test 

 Similar tests were extensively performed in order to verify that the pattern identification 

system was fully functional. 

5.9: Reconstructing Locations from Images 

After image processing, the next step in the information flow is to actually resolve the (x, 

y) beacon locations. This is done by combining the data from the 6 cameras with knowledge of 

where the cameras are located. 

 

Figure 81: Resolving Beacon Positions Concept 

 Figure 81 above shows the goal of this part of the system. The goal is to take the known 

pixel coordinates, (U, V), and determine the physical location (X, Y) inside the arena space. 
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5.9.1: Requirements 

This stage has several important requirements.  It needs to resolve the camera locations 

quickly, account for the possibility of the beacons being at a variety of heights, and flexibly 

incorporate data from two to six cameras, depending on the beacon's location and the number of 

cameras around the field capable of identifying it. 

5.9.2: Implementation 

 Once accurate images could be simulated from a camera pose and object location, we 

could move to solve for an object location based on a camera image.  Initially, this reconstruction 

was developed assuming a height for the beacons. This allowed us to solve for a location with 

only one image, however, this seemed to put significant requirements on the FRC teams to 

mount the beacons at a specific height, and wouldn't allow our system to compensate for 

different terrain heights, which is a feature common in FRC games. These inflexibilities 

motivated a solution to use two camera images from different perspectives to first find the height 

of the object, and then solve for its (x, y) location as in stereo-vision. Because there are six 

cameras present on the field, we developed a solution that to combine the data from all 6 cameras 

to generate a least-squares error image reconstruction based on all the images that the object is 

located in. 

 Since a camera image provides horizontal and vertical information (a (u, v) pixel 

location), one image can allow us to solve for the (x, y) location of an object, provided we know 

the height, z, that the object is located at.  This is a case of solving two equations (the mapping to 

u pixels, and v pixels), for two unknowns; the x and y positions of the object. However, since 

FRC robots vary widely in size, assuming the height of the beacon on the robot is not reasonable.  
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To combat this, we looked to implement a way to combine two camera images to create one 3-

dimensional location. 

There were two different methods available to combine image data from two cameras to 

solve for an object location.  An iterative method would assume a height z, then calculate an (x, 

y) location based off of one image, then use the calculated (x, y) and a different image to try to 

solve for the z location, and iterate until the (x, y, z) location converged.  Since this system needs 

to quickly determine the beacon locations, this iterative method did not seem promising, so 

principles of stereo-vision were employed to implement a direct method of combining the image 

data. This method used the pinhole camera model developed in Chapter 4.3 to express each (u, v) 

pixel as a 3D line, L, radiating from the camera's focal point. This is done by expressing the pixel 

as a vector           by depixelizing it into homogeneous image plane coordinates.  Then, 

to reverse the homogenization, v is multiplied by a scalar, S, and multiplied by the rotation 

matrix     which is the inverse of the rotation matrix used to change from <x,y,z> coordinates 

to <u,v,w> camera coordinates, and rotates Sv back into <x,y,z> coordinates: 

                 (5.4) 

Two different cameras provide two different lines, L1 and L2 pointing to the same object.  By 

solving for the intersection of L1 and L2, the height of the object z can be determined.  Then 

using either L1 or L2, the x and y components of the location can be found. This principle is 

illustrated in Figure 82 below. 
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Figure 82: Overhead View of Location Reconstruction Theory 

 While this method does allow determination of the full (x, y, z) position of the beacon, 

there will be quantization error due to the pixelization, which can be significant at long ranges, 

and error due to inaccurate determination of the pose of each of the cameras. These errors 

propagate through the system to the reconstructed locations. However, if extra data is available 

from other cameras, these errors can be reduced. This requires solving an over determined linear 

system and finding a least squares solution [11]. This was implemented by defining a linear 

system of the form:  

              (5.5) 

Where A and b are column vectors with entries for each image that contains the object.  

Both sides of the equation are multiplied by A
T
, giving:  

                   (5.6) 
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Since     and     are scalar values, solving for   
   

   
 gives the least squares error solution 

for x, which is the best possible solution for the object’s location, given the images available. 

This calculation is repeated for x, y, and z. 

5.9.3: Testing 

As this system was implemented, the functionality was continually tested in simulations.  

Test images of objects from various perspectives were generated, and those images were used to 

reconstruct the beacon locations. The reconstruction was then compared to the actual location the 

simulator started with. This procedure was repeated with different image resolutions, camera 

locations, lens viewing angles, numbers of cameras, and beacon locations. The results from these 

simulations helped guide design decisions regarding the beacon design, camera resolution, and 

lens angle.  

5.10: Calibration Algorithm 

The accuracy of the beacon reconstruction as described above is extremely dependent on 

accurately knowing the pose of each camera. Since the system requires installing these cameras 

above the floor, it was unreasonable to assume that the cameras would be precision aligned. This 

motivated the development of an automated calibration routine, which uses images of objects, 

called calibration markers, at known locations inside the field to accurately determine the 

camera's pose. The calibration markers are placed temporarily before the competitions until the 

calibration is done. The calibration markers are simple blue LEDs. The pose of the camera is 

defined as the six parameters that describe the physical orientation of the camera. These are roll, 

pitch, yaw, x, y, and z. These parameters are visualized below. 
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Figure 83: Pitch and Z Pose Parameters, Side View 

 

 

Figure 84: Roll Pose Parameter, View of Camera From Behind 

 

 

Figure 85: Yaw, X, Y Pose Parameters Shown, Overhead View of Camera 
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 Initially, we sought to implement a calibration algorithm that develops a guess for the 

camera's pose, simulates an image of markers from that pose, and minimized the error between 

the simulated image and an actual image by iteratively changing different parameters of the 

guessed pose. After this was found to be ineffective, we implemented an approach to calibration 

that iteratively optimized the rotation of the camera, and the location of the camera, using an 

object-space co linearity error vector as defined by Lu, Hagar, and Mjolsness [11].  

Our first attempt to calibrating the camera tried to assume camera locations, simulate 

images from those locations, and compare the simulated image to the actual image. This idea 

was based on the fact that we had an actual image, we had mathematics that describe how to 

simulate an image based on a guessed camera pose and object locations, and minimizing the 

differences between the actual and simulated images by changing our guessed pose would allow 

us to accurately determine the actual camera's location. We defined the error in an image as the 

sum of pixel distances between objects in the actual image and simulated image. Figure 86 below 

shows the individual errors between objects in one image (squares) and another image 

(triangles). 

 

Figure 86: Error between Two Images 
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Using this error definition, we found a value for an arbitrary degree of freedom in the 

camera's pose that minimizes the error. We then incorporated that value into the guess for the 

camera pose, and proceeded to find a value that minimized the image error for a different degree 

of freedom, repeating until the pose stopped changing, or a maximum number of iterations was 

reached. This approach ran into issues because it attempted to optimize the 6 degrees of freedom 

of the camera individually, which caused convergence issues, and unsatisfactory results in 

simulation. These results motivated us to find a more established algorithm to solve this issue. 

 The Orthogonal Iteration Algorithm developed by Lu et al. developed a solution to the 

calibration problem by separating the pose into two variables, instead of six, and using an object-

space error vector, rather than an image-space error vector [12]. This object space co linearity 

error vector is again based on the pin-hole camera model, and its idea that the focal point of the 

camera, the projection of an object on the image plane, and the actual image should be collinear. 

Thus the error vector ei is described as: 

                             (5.7) 

Where    
    

 

  
   

 is projection operator, and vi =[u,v,1]
t
 is the image of pi =[x,y,z]

t
 on the 

camera’s image plane, and R and t are a 3x3 rotation matrix and 3x1 displacement vector 

respectively which describe the pose of the camera in field coordinates.  Figure 87 below shows 

how R and t serve as a frame transformation between the object reference frame, or field 

coordinates, and the camera reference plane.  
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Figure 87: Reference Frames for Camera Calibration [12] 

Using equation 5.7, R and t could be iteratively optimized.  This was done by computing: 

                             
       (5.8) 

Where n is the number of calibration markers used.  Then values of R and t were found to 

minimize the sum of the errors. This method of calibration was much more effective at 

determining the camera's pose than using image space error as described in Figure 86, allowing 

accurate position reconstructions in both simulations and real-world tests. 
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Chapter 6: System Testing 

 With the entirety of the system implemented, we moved on to testing. The system as a 

whole was tested in an environment that was meant to emulate a FIRST arena. We used our 

single camera to take and process images from locations exactly as they would be positioned in a 

real FIRST environment. We placed the LED beacon so that it was visible to three typical 

camera locations of our system. This was done to demonstrate the ability to use stereo-vision 

concepts incorporating more than two cameras spaced far apart. We also performed tests using 

just two cameras. From each camera position, we captured an image of the arena so that it could 

be processed offline. We had to process the data offline because we did not have the resources 

available to us to replicate our hardware. 

Figure 88 shows the testing equipment for viewing the LED beacon and communicating 

with the PC. The FPGA board and camera are held inside an acrylic case that we fashioned 

specifically to hold these items and support all of our testing operations. The case holding the 

camera and FPGA subsystem can be manually tilted and fixed to a certain pose. There is access 

to the lens for manual focusing, as well as access to the switches and buttons for mode control. 

Two USB wires connect the PC to the FPGA board for development as well as high speed serial 

communication. 
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Figure 88: Camera/FPGA subsystem, case, and holster 

 We preliminarily performed two small scale tests with two cameras spaced ten feet apart. 

In these tests, two cameras were used to reconstruct the locations of beacons placed relatively 

close to the cameras. In the first of these, the beacon was located (in inches) at (32, 63) and was 

reconstructed at (32, 60) with an error of three inches. In the second test, the beacon was located 

at (54, 70) and was reconstructed at (54, 75) with an error of five inches. 

 After performing our preliminary tests and verifying that the system functioned properly, 

we began executing larger scale tests. In our first larger scale test, we placed the beacon at 

location (123, 198) and used cameras in three locations of the side of our simulated arena to 

locate the beacon. This test was done to confirm the ability to use more than two cameras for 

reconstruction of locations. The result was (118, 202) which corresponds to an error of about six 

inches. 
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After completing the first test, we performed another test by placing the beacon at (98, 

166) and performing the reconstruction using two cameras placed at corners of the arena spaced 

27 feet apart. The results of this test can be seen in Figure 89 below. 

 

Figure 89: Actual Beacon (98, 166) Compared to Reconstructed Location (106, 166) in Test 2. Total Error: 8 Inches 

 In this test, the reconstruction algorithm found the beacon to be eight inches away from 

where it was actually located. 

 For our final test, we placed the beacon at (62, 132) and again ran the system with two 

cameras spaced 27 feet apart. The results of this test can be seen in Figure 90 below. In this test 

the reconstruction algorithm found the beacon to be two inches away from the actual beacon 

location. 
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Figure 90: Actual Beacon (62, 132) Compared to Reconstructed Location (63, 134) in Test 2. Total Error: 2 Inches 

 The actual beacon locations and reconstructed beacon locations for the three larger scale 

tests are plotted in Figure 91 below. 

 

Figure 91: Larger Scale Test Results 
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After analyzing the results of the tests, we found that the maximum error was 8 inches 

and the minimum error was two inches. We believe the range of these results to be due to the fact 

that the rig used to hold the camera in place was not entirely stable and the lens of the camera 

required focusing between calibration and beacon images. These two factors combined to create 

slight errors between the location of the camera as determined by the calibration algorithm and 

the actual location of the camera when the reconstruction image was taken. In the FIRST 

environment, the cameras would be firmly locked in place, and not require manual focusing 

during the competition, and this source of error would be greatly diminished.  
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Chapter 7: Conclusions 

 The robot localization system we designed and implemented successfully met all of our 

system requirements and goals except for a slightly larger error than we were striving for. The 

system was carefully designed and developed with the requirements in mind, and the result was a 

system that is close to being able to be implemented by FIRST with a minor lens upgrade, and 

implementation of an FPGA-based Ethernet controller. The lens would need a larger field of 

view to cover the intended area, and the Ethernet controller would enable FIRST to transmit data 

across the entire field effectively. 

 The essential requirement that our system be able to detect and identify all robots 

separately was met. This was done by using programmable LED beacons that give twelve unique 

patterns for use by the robots. The beacon identification algorithms were successfully able to 

identify these patterns in the camera frames and associate them with the appropriate unique 

identifier. This was made possible by the very careful design of the embedded FPGA system. 

The processes that are run by the FPGA hardware as well as the soft-core Microblaze processor 

were extensively planned out before implementation and developed with exhaustive attention to 

detail in order to achieve the best possible results for identification. 

Testing indicates that the coordinates generated for the beacons are consistently accurate 

to eight or fewer inches. While eight inches maximum error is above our ideal accuracy, it is still 

reasonably accurate such that it would be of use to the competitors. Additionally, small 

variations were present in the system due to human error. This was caused by repeatedly moving 

the single camera/FPGA system to multiple locations in order to simulate using multiple 

cameras. In a real FIRST environment, the cameras would be held steady and no manual lens 
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adjustment would be required during operation and therefore, the results would be slightly 

improved.  

 The requirement that our system be minimally invasive was met. One way we met this 

requirement was to use automated calibration to allow setup to be simple and not force the 

volunteers to place the cameras in an extremely precise location. Another way we met this 

requirement was to make an LED beacon that is small, light, and low enough in power that it can 

be fitted to the robots. 

 Low maintenance operation was achieved successfully. One way we achieved this was by 

adding the capability of powering the beacons using the robots’ on-board power sources to 

power the LED beacons. The cameras and their associated embedded systems are powered by a 

wall outlet, which is readily accessible at FIRST competitions. The LED beacons are durable 

enough for use in the competitions, as long as they are placed on the robots in the right locations 

so that they are not hit directly by other robots with excessive force. 

 The ability of the system to be robust and flexible in a competitive environment was 

achieved successfully. This was accomplished primarily inside the image processing embedded 

systems. To prevent false identifications or bottlenecking due to excessive data requirements, the 

embedded systems filter and normalize the incoming frames specifically to preserve the beacons 

and as little background noise as possible. System testing was done inside Harrington 

Auditorium as well as inside the MQP lab in different lighting conditions and operation was 

consistently smooth. 

7.1: Future Work 

 Testing thus far has been performed by using our single-camera rig to capture images 

from multiple locations in order to simulate the effect of having multiple cameras by taking 
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instantaneous snapshots of the test environment. However, the single-camera rigs are all identical 

to one another. This means that implementing a full real-time system is possible by simply 

replicating our hardware with a minor lens upgrade. Supporting the networking of all six 

cameras with the PC over Ethernet would allow FIRST to save money. 

 The lens available for us during testing did not have the desired field of view or depth of 

field. In order to make the full system capable of seeing the entire field, a new lens with the 

proper field of view is desired. No modifications to the rest of the hardware would be required to 

use a new lens, and only the two lens angle parameters inside the PC source code would need to 

be edited. 

 The range of our tests was limited by the visibility of the beacon. As the beacon was 

farther away in the images, the color differences within the LED matrix became obscured. This 

meant that the beacon did not appear to have discrete colored sections to the camera, and this 

compromised our algorithms. However, a simple and practical solution to this problem would be 

to use four LED matrices instead of one. These would be placed in a square pattern, and one 

entire LED matrix would be one color, and the other three would be another color. This would 

make the smallest quadrant of the matrix four times larger than it is currently, and it would be 

seen far more consistently at range. The total beacon size would be six by six inches after the 

revision. 
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Appendix A: Beacon Control Code 

 The source code below was used to control the patterns displayed on the LED matrix. 

This system allowed us to generate unique patterns for each robot which allows multiple robots 

to be tracked simultaneously. 

#include <msp430g2553.h> 

#include <stdio.h> 

#include <string.h> 

 

#define row1 BIT0 

#define row2 BIT1 

#define red1 BIT2 

#define red2 BIT3 

#define green1 BIT4 

#define green2 BIT5 

#define blue1 BIT7 

#define blue2 BIT6 

#define Button BIT3 

 

static int ButtonCount = 0; 

static int ulButtons; 

static int lastButton = 0; 

static int top_bot_actual = 0; 

static int top_bot = 0; 

static int counter = 0; 

 

void main(void) { 

 

 WDTCTL = WDTPW + WDTHOLD;        

    //reset watch dog timer 

 

 TA0CCTL0 = CCIE;                               

   //Timer A0 setup 

 TA0CTL = TASSEL_2 + MC_1 + ID_3;           

 TA0CCR0 =  12000;                          

 

 TA1CCTL0 = CCIE;                                 

  //Timer A1 setup 

 TA1CTL = TASSEL_2 + MC_1 + ID_0;            

 TA1CCR0 =  124;                              

 

 _BIS_SR(GIE); 

 

 P2SEL &= ~BIT6;          

     //selecting general I/O 

 P2SEL &= ~BIT7;          

     //selecting general I/O 

 

 P2OUT = 0;           

     //setting outputs to 0 
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 P2DIR |= row1 + row2 + red1 + red2 + green1 + green2 + blue1 + blue2;

 //setting pins to output 

 

 P1REN = BIT3; 

 P1SEL = 0; 

 P1DIR &= ~BIT3; 

 P1IN |= BIT3;//read from P1IN port 3 to find out if button's pressed 

} 

 

// Timer A0 interrupt service routine 

#pragma vector=TIMER0_A0_VECTOR 

__interrupt void Timer0_A (void) 

{ 

 ulButtons = ((P1IN & Button) != Button); 

 

 if((lastButton == 0) && ulButtons) 

 

  if(ButtonCount + 1 > 13) // Count up 13 for button press to 

change between beacon patterns. 

   ButtonCount = 0; 

  else 

   ButtonCount++; 

 

 lastButton = ulButtons; 

} 

 

#pragma vector=TIMER1_A0_VECTOR 

__interrupt void Timer1_A (void) 

{ 

 if(counter > 31) 

  counter = 0; 

 else 

  counter++; 

 

 if(top_bot_actual == 0){  //Switches between top set of rows 

and bottom set in order to multiplex 

  top_bot_actual = 1; 

 } 

 else { 

  top_bot_actual = 0; 

 } 

 

 if(counter >= 10) // 12 default 

  top_bot = 2; 

 else 

  top_bot = top_bot_actual; 

 

 switch(ButtonCount) 

 { 

 

 case 0: 

 

  P2OUT &= row1 + row2;        

           //Set 

Matrix output to be off when powered.    

  break; 

 



 

 

101 

 

 case 1: 

  if(top_bot ==0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & red1) + row2) |  ((~row1 & red2) + 

row2));    //Set matrix top row to display red in top left 

     

             

            

 //and red in top right 

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & red1) + row1) | ((~row2 & red2 +blue2) 

+ row1));   //Set matrix bottom row to display red in lower left  

             

            

 //and purple in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 2: 

  if(top_bot ==0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & red1) + row2) |  ((~row1 & red2) + 

row2));    //Set matrix top row to display red in top left 

     

             

            

 //and red in top right    

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & red1) + row1) | ((~row2 & red2 + 

green2) + row1));  //Set matrix bottom row to display red in lower left  

             

            

 //and yellow in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 3: 

  if(top_bot ==0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & red1) + row2) |  ((~row1 & red2) + 

row2));   //Set matrix top row to display red in top left  

    

             

            

 //and red in top right 

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 
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   P2OUT |= (((~row2 & red1) + row1) | ((~row2 & green2) + 

row1));   //Set matrix bottom row to display red in lower left  

             

            

 //and green in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 4: 

  if(top_bot ==0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & green1 + red1) + row2) |  ((~row1 & 

green2 + red2) + row2));//Set matrix top row to display yellow in top left 

     

             

            

 //and yellow in top right 

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & green1 + red1) + row1) | ((~row2 & 

red2) + row1)); //Set matrix bottom row to display yellow in lower left  

             

            

 //and red in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 5: 

  if(top_bot ==0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & green1 + red1) + row2) |  ((~row1 & 

green2 + red2) + row2));//Set matrix top row to display yellow in top left 

     

             

            

 //and yellow in top right    

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & green1 + red1) + row1) | ((~row2 & 

green2) + row1)); //Set matrix bottom row to display yellow in lower left  

             

            

 //and green in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 6: 

  if(top_bot ==0){ 

   P2OUT &= row2; 
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   P2OUT |= (((~row1 & green1 + red1) + row2) |  ((~row1 & 

green2 + red2) + row2));//Set matrix top row to display yellow in top left 

     

             

            

 //and yellow in top right    

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & green1 + red1) + row1) | ((~row2 & red2 

+ blue2) + row1));//Set matrix bottom row to display yellow in lower left  

             

            

 //and purple in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 7: 

  if(top_bot ==0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & green1) + row2) |  ((~row1 & green2) + 

row2));   //Set matrix top row to display green in top left 

     

             

            

 //and green in top right    

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & green1) + row1) | ((~row2 & red2) + 

row1));  //Set matrix bottom row to display green in lower left  

             

            

 //and red in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 8: 

  if(top_bot == 0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & green1) + row2) | ((~row1 & green2) + 

row2));  //Set matrix top row to display green in top left  

    

             

            

 //and green in top right     

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & green1) + row1) | ((~row2 & red2 + 

green2) + row1)); //Set matrix bottom row to display green in lower left  
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 //and yellow in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 9: 

  if(top_bot == 0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & green1) + row2) | ((~row1 & green2) + 

row2));   //Set matrix top row to display green in top left 

     

             

            

 //and green in top right     

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & green1) + row1) | ((~row2 & red2 + 

blue2) + row1)); //Set matrix bottom row to display green in lower left  

             

            

 //and purple in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 10: 

  if(top_bot == 0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & blue1 + red1) + row2) | ((~row1 & blue2 

+ red2) + row2)); //Set matrix top row to display purple in top left  

    

             

            

 //and purple in top right  

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & blue1 + red1) + row1) | ((~row2 & red2) 

+ row1));  //Set matrix bottom row to display purple in lower left  

             

            

 //and red in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 11: 

  if(top_bot == 0){ 

   P2OUT &= row2; 
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   P2OUT |= (((~row1 & blue1 + red1) + row2) | ((~row1 & blue2 

+ red2) + row2)); //Set matrix top row to display purple in top left  

    

             

            

 //and purple in top right    

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & blue1 + red1) + row1) | ((~row2 & 

green2 + red2) + row1));  //Set matrix bottom row to display purple 

in lower left  

             

            

 //and yellow in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 

 case 12: 

  if(top_bot == 0){ 

   P2OUT &= row2; 

   P2OUT |= (((~row1 & blue1 + red1) + row2) | ((~row1 & blue2 

+ red2) + row2));  //Set matrix top row to display purple in top left 

     

             

            

 //and purple in top right    

  } 

  else if(top_bot == 1){ 

   P2OUT &= row1; 

   P2OUT |= (((~row2 & blue1 + red1) + row1) | ((~row2 & 

green2) + row1)); //Set matrix bottom row to display purple in lower left  

             

            

 //and green in lower right    

  } 

  else 

   P2OUT &= row1 + row2; 

  break; 

 } 

} 
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Appendix B: LED Matrix Controller Schematic 

 The following schematic shows the connections required to implement the LED Matrix 

Controller. The PCB generated from this schematic was used with the Beacon Control Code in 

Appendix A to generate the unique patterns used to identify multiple robots simultaneously. 
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Appendix C: Verilog Modules 

 The Verilog code below is the top level module that was implemented for the Image 

Acquisition and Image Processing stages. These stages were used to interface with the camera, 

store frames, and process the images for each camera. This is only a small subsection of the 

Verilog design in order to keep the size of this report manageable. The full source code for this 

design is available if requested. The names of the other Verilog Modules used in this system are: 

Camera_In, Processing, RAM_Interface, and VGA_Display. 

`timescale 1ns / 1ps 

// This module is the top level module for the Image Acquisition and  

// Image Processing stages of the system. In this module, data is taken  

// from the camera in YUV format, converted to RGB format and stored in  

// RAM. After a frame has been stored in RAM, the Microblaze begins  

// processing the image to determine the center of each beacon and which  

// pattern it is displaying. Once this is complete, the data is sent via  

// UART communications to a Central PC for processing. 

 

module top_level( 

 input FPGA_clk, 

 input reset, 

 input next_frame, 

 input dclk, 

 input HREF, 

 input VREF, 

 input filter, 

 input auto_mode, 

 input UART_Rx, 

 input [2:0] switch, 

 input [7:0] din, 

 output adv_l, 

 output lb_l, 

 output ub_l, 

 output ce_l, 

 output oe_l, 

 output we_l, 

 output cre_l, 

 output flash_ce, 

 output clk_RAM, 

 output HS, 

 output VS, 

 output UART_Tx, 

 output [7:0] VGA_Color, 

 output [7:0] led, 

 output [22:0] addr, 

 inout [15:0] dq  

 ); 
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 // Horizontal Pixel Resolution 

 parameter HPIXELS = 640; 

 // Vertical Pixel Resolution 

 parameter VPIXELS = 480; 

 // Total number of pixels in frame based on HPIXELS and VPIXELS 

 parameter NUM_PIXELS = HPIXELS*VPIXELS; 

  

 // Values assigned to state labels 

 parameter [2:0] WAIT_STATE = 0, CAMERA_DATA = 1, FINAL_DATA = 2, 

MICROBLAZE = 3, VGA_DISPLAY = 4; 

 

 wire ready; 

 wire valid_camera_data; 

 wire valid_processed_data; 

 wire clk_80M; 

 wire processing_complete; 

 wire display; 

 wire data_valid; 

 wire VGA_FIFO_Full; 

 wire FIFO_reset; 

 wire powering_up; 

 wire clk_25M_180; 

 wire clk_54M; 

 wire clk_25M; 

 wire ready_2; 

 wire auto_next_frame; 

 wire microblaze_active; 

 wire blob_next_frame; 

 wire blob_read; 

 wire [31:0] camera_data; 

 wire [63:0] processed_data; 

 wire [63:0] RAM_dout; 

 wire [6:0] led_outputs; 

 wire [31:0] GPI1, GPI2, GPI3; 

 wire [31:0] GPO1; 

  

 reg last_ready; 

 reg last_VREF; 

 reg last_read; 

 reg [2:0] last_state; 

 reg [2:0] current_state, next_state; 

 reg [11:0] HLimit; 

 reg [22:0] addr_in; 

 reg [24:0] timer; 

 

// clk_converter takes in 100 MHz clock input and creates other clock 

signals. 

clk_converter inst_clk_converter ( 

 .CLK_IN1(FPGA_clk),  // In - 100 MHz clock 

 .clk_100M(clk_100M),  // Out - 100 MHz clock 

 .clk_80M(clk_80M),  // Out - 80 MHz clock 

 .clk_25M(clk_25M),  // Out - 25 MHz clock 

 .clk_25M_180(clk_25M_180) // Out - 25 MHz clock 180 degree phase 

shift 

 );  

   

// Camera_In receives data from the camera and packages macropixels together 
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Camera_In inst_Camera_In( 

 .clk(dclk),    // In - 54 MHz clock 

 .reset(FIFO_reset),  // In - Reset 

 .read(Camera_In_read),  // In - FIFO read signal 

 .write(Camera_In_write), // In - FIFO write signal 

 .din(din),    // Out - Image data [7:0] 

 .valid(valid_camera_data), // Out - FIFO valid 

 .dout(camera_data)  // Out - Macropixel of data [31:0] 

 ); 

  

// Processing module converts from YUV to RGB and applies filters 

Processing inst_Processing( 

    .clk(clk_80M),    // In - 80 MHz clock 

 .valid_in(valid_camera_data),  // In - Valid data 

 .filter(filter),    // In - Activate Filtering 

 .reset(FIFO_reset), // In - Reset 

 .ready(ready_2),  // In - FIFO read control. RAM ready for data 

    

    .camera_data(camera_data),  // In - Image Data [23:0] 

 .valid_out(valid_processed_data), // Out - Valid data on output 

    .processed_data_out(processed_data), // Out - Processed data [63:0] 

 .processing_complete(processing_complete) // Out - Processing has 

finished 

    ); 

  

// Performs RAM reads and writes 

RAM_Interface inst_RAM_interface( 

 .din(processed_data),  // In - Din [63:0]  

 .read(RAM_read),            // In - Read command 

 .write(RAM_write),           // In - Write command 

 .clk(clk_80M),               // In - 80 MHz clock 

 .reset(reset),               // In - Reset 

 .addr_in(addr_in),           // In - Address [22:0] 

 .clk_out(clk_RAM),           // Out - 80 MHz clock 

 .adv_l(adv_l),               // Out - Adv 

 .lb_l(lb_l),                 // Out - LB 

 .ub_l(ub_l),                 // Out - UB 

 .ce_l(ce_l),                 // Out - CE 

 .oe_l(oe_l),                 // Out - OE 

 .we_l(we_l),                 // Out - WE 

 .cre_l(cre_l),               // Out - CRE 

 .flash_ce(flash_ce),         // Out - Flash CE 

 .ready(ready),               // Out - Ready for operation 

 .dout_valid(data_valid),     // Out - Output data valid 

 .powering_up(powering_up),   // Out - RAM is in powering up state 

 .addr_out(addr),             // Out - Address to RAM 

 .dout(RAM_dout),             // Out - Dout [63:0] 

 .dq(dq)                      // InOut - RAM data line [15:0] 

 ); 

 

// Microblaze soft-core processor 

MCS mcs_0 ( 

  .Clk(clk_100M),   // IN - 100 MHz clock 

  .Reset(reset),    // In - Reset 

  .UART_Rx(UART_Rx),   // In - UART_Rx 

  .UART_Tx(UART_Tx),   // Out - UART_Tx 

  .GPO1(GPO1),    // Out - [31 : 0] GPO1 
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  .GPI1(GPI1),    // In - [31 : 0] GPI1 

  .GPI1_Interrupt(),   // Out - GPI1_Interrupt 

  .GPI2(GPI2),    // In - [31 : 0] GPI2 

  .GPI2_Interrupt(),  // Out - GPI2_Interrupt 

  .GPI3(GPI3),    // In - [31 : 0] GPI3 

  .GPI3_Interrupt()   // Out - GPI3_Interrupt  

); 

 

// VGA control module 

VGA_Display inst_VGA_Display( 

    .reset(reset),    // In - Reset 

    .VGA_clk(clk_25M),          // In - 25 MHz clock 

 .clk_25M_180(clk_25M_180),// In - 180 degree out of phase 25 MHz clock 

 .clk_80M(clk_80M),        // In - 80 MHz clock 

 .display(display),        // In - Display active 

 .data_valid(data_valid),       // In - RAM data valid 

    .data(RAM_dout),                 // In - RAM data [63:0] 

 .VGA_FIFO_Full(VGA_FIFO_Full), // Out - FIFO full 

 .HS(HS),                       // Out - Horizontal Sync 

 .VS(VS),                       // Out - Vertical Sync 

 .VGA_Color(VGA_Color)          // Out - Pixel color [7:0] 

    ); 

  

// Limit number of pixels per line to HPIXELS 

always @(posedge dclk) 

 begin 

  if(~HREF) 

   HLimit <= 0; 

  else 

   HLimit <= HLimit + 1'b1; 

 end 

// Pulse detection for microblaze RAM read 

always @(posedge clk_80M) 

 last_read <= blob_read; 

  

 // Increment addr 

always @(posedge clk_80M) 

 begin 

  last_ready <= ready; 

   

  if((last_state == FINAL_DATA && current_state == MICROBLAZE) || 

(last_state == MICROBLAZE && current_state == VGA_DISPLAY) || reset || 

(current_state == VGA_DISPLAY && ~VS)) 

   addr_in <= 0; 

  else if(current_state != WAIT_STATE) 

   begin 

    if((~ready && last_ready)) 

     begin 

      if(addr_in + 3'h4 < NUM_PIXELS/2-1) 

       addr_in <= addr_in + 3'h4; 

      else 

       addr_in <= 0; 

     end 

   end 

  else 

   addr_in <= 0; 

 end 
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// Process/transmit state machine 

always @(posedge clk_80M) 

 if(reset) 

  current_state <= WAIT_STATE; 

 else 

  current_state <= next_state; 

  

// Next state logic 

always @(current_state, VREF, processing_complete, last_VREF, next_frame, 

powering_up, addr_in, blob_next_frame, auto_next_frame) 

 case(current_state) 

  WAIT_STATE: 

   if(powering_up || next_frame) 

    next_state <= WAIT_STATE; 

   else if(last_VREF && ~VREF) 

    next_state <= CAMERA_DATA; 

   else 

    next_state <= WAIT_STATE; 

  CAMERA_DATA: 

   if(powering_up || next_frame) 

    next_state <= WAIT_STATE; 

   else if(~last_VREF && VREF) 

    next_state <= FINAL_DATA; 

   else 

    next_state <= CAMERA_DATA; 

  FINAL_DATA: 

   if(powering_up || next_frame) 

    next_state <= WAIT_STATE; 

   else if(processing_complete) 

    next_state <= MICROBLAZE; 

   else 

    next_state <= FINAL_DATA; 

  MICROBLAZE: 

   if(powering_up || next_frame) 

    next_state <= WAIT_STATE; 

   else if(blob_next_frame) 

    next_state <= VGA_DISPLAY; 

   else 

    next_state <= MICROBLAZE; 

  VGA_DISPLAY: 

   if(powering_up || next_frame || auto_next_frame) 

    next_state <= WAIT_STATE; 

   else 

    next_state <= VGA_DISPLAY; 

  default: 

   next_state <= WAIT_STATE; 

 endcase 

 

// Delay VREF 

always @(posedge clk_80M) 

 begin 

  last_VREF <= VREF; 

  last_state <= current_state; 

 end 

 

// DIsplay image for 1 second 
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always @(posedge clk_25M) 

 if(current_state != VGA_DISPLAY || timer >= 25000000) 

  timer <= 0; 

 else 

  timer <= timer + 1'b1; 

   

 

// Control signals for Camera_In FIFO 

assign Camera_In_read = (current_state == CAMERA_DATA || current_state == 

FINAL_DATA || current_state == WAIT_STATE); 

assign Camera_In_write = (HREF && current_state == CAMERA_DATA && (HLimit <= 

((HPIXELS*2)-1))); 

 

// RAM read/write control signals 

assign RAM_write = valid_processed_data && (current_state != VGA_DISPLAY && 

!microblaze_active); 

assign RAM_read = (microblaze_active) ? ~last_read && blob_read : 

(current_state == VGA_DISPLAY && ~VGA_FIFO_Full); 

 

// Activate VGA Display 

assign display = (current_state == VGA_DISPLAY); 

 

// Provide Reset signal to FIFOs 

assign FIFO_reset = reset | next_frame | auto_next_frame; 

 

// Provide ready signal to Converting Module to ensure empty FIFOs 

assign ready_2 = ready | (current_state == WAIT_STATE); 

 

// Wait set amount of time, then initiate new frame grab 

assign auto_next_frame = (timer == 5000000) && auto_mode; 

 

// Microblaze given control of RAM 

assign microblaze_active = (current_state == MICROBLAZE); 

 

// Microblaze RAM Inputs 

assign GPI1 = RAM_dout[63:32]; 

assign GPI2 = RAM_dout[31:0]; 

 

// Microblaze Control Inputs 

assign GPI3 = {data_valid, microblaze_active, (ready && ~powering_up), 

switch, 26'b0}; 

 

// Microblaze Control Outputs 

assign blob_next_frame = GPO1[31]; 

assign blob_read = GPO1[30]; 

assign led_outputs = GPO1[29:23]; 

      

endmodule 
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Appendix D: Section of Image Processing Code 

 The source code seen below is the main function of the Image Processing stage. This 

stage was used to search through a frame worth of filtered image data and determine the location 

and patterns associated with all beacons that were visible to the camera. This is only a small 

subsection of the Image Processing Code in order to keep the size of this report manageable. The 

full source code for this design is available if requested. 

int main() { 

 unsigned int v, x; 

 unsigned int Neighbor, transmit; 

 int Current_MaxMarker; 

 int Current_Marker; 

 init_platform(); 

 

 // Initialize GPO and GPI 

 SRAM63_32 = XIOModule_Initialize(&gpi1, XPAR_IOMODULE_0_DEVICE_ID); 

 SRAM63_32 = XIOModule_Start(&gpi1); 

 SRAM31_0 = XIOModule_Initialize(&gpi2, XPAR_IOMODULE_0_DEVICE_ID); 

 SRAM31_0 = XIOModule_Start(&gpi2); 

 incontrols = XIOModule_Initialize(&gpi3, XPAR_IOMODULE_0_DEVICE_ID); 

 incontrols = XIOModule_Start(&gpi3); 

 outcontrols = XIOModule_Initialize(&gpo1, XPAR_IOMODULE_0_DEVICE_ID); 

 outcontrols = XIOModule_Start(&gpo1); 

 

 // Determine number of pixels between patches in order to merge 

 val = roundDivide(hpixels, 200); 

 

 // Loop while system is powered 

 while(1){ 

  overflow = 0; 

  numBeacons = 0; 

   

  // Wait for FPGA to signal that an image is ready to be processed 

  while(transmit == 0){ 

   transmit = (XIOModule_DiscreteRead(&gpi3, 3) << 1) >> 31; 

  } 

   

  // Reset MaxMarker for each frame 

  MaxMarker = 0; 

   

  // Search the frame for all patches of color 

  for(v = 0; v < vpixels && !overflow; v++) 

   Current_Marker = 0; 

   Current_MaxMarker = 0; 

    

   // Acquire a new line of pixels 

   GetNewPixels(); 

    

   // Scan a line of pixels for color 
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   for(x = 0; x < hpixels-1 && !overflow; x++){ 

    // Check Pixel 

    if(pixelarray[x] != 0) { 

     if(x == 0) { 

      // Pixel has no color 

      Neighbor = 0; 

     } 

     else { 

      // Pixel has neighboring pixels with 

color 

      Neighbor = (pixelarray[x] == 

pixelarray[x-1] || pixelarray[x] == pixelarray[x-2]);   // Same thing, I 

swapped in use of the horizontal line array. 

     } 

    } 

    else { 

     // Pixel has no neighboring pixels with color 

     Neighbor = 2; 

    } 

 

    // Determine which patch the pixel belongs to 

    if(Neighbor == 0){ 

     if((Current_MaxMarker + 1) <= max_blobs){ 

      Current_Marker = Current_MaxMarker; 

      Current_MaxMarker++; 

     } 

     else { 

      Current_Marker = Current_MaxMarker; 

      overflow = 1; 

      break; 

     } 

     // Create new run 

     Current_Run[start_pixel][Current_Marker] = x; 

     Current_Run[end_pixel][Current_Marker] = x; 

     Current_Run[current_color][Current_Marker] = 

pixelarray[x]; 

    } 

    else if(Neighbor == 1){ 

     // Add pixel to current run 

     Current_Run[end_pixel][Current_Marker] = x; 

    } 

   } 

   if(Current_MaxMarker != 0){ 

    // Add pixel to marker 

    UpdateMarker(Current_MaxMarker, v); 

   } 

  } 

  // Request new frame (set next_frame up to high and then low 

again) 

  outcontrols |= 0x80000000;                       

  XIOModule_DiscreteWrite(&gpo1, 1, outcontrols); 

   

  // Scan through all patches and merge patches that are adjacent 

  Merge(); 

  // Identify all beacons within the frame and match a pattern to 

the beacons 

  Identify(); 
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  // After all beacons have been identified, transmit data via UART 

to central PC 

  Transmit();                        

 

  // Clear all data after transmission is complete to prevent 

issues with the next frame 

  for (v = 0; v < max_blobs; v++) 

  { 

   for(x = 0; x < 10; x++) 

   { 

    if(x < 3) 

     Current_Run [x] [v] = 0; 

    Run [x] [v] = 0; 

   } 

  } 

  // Signal FPGA that image processing is complete 

  outcontrols &= 0x7FFFFFFF; 

  XIOModule_DiscreteWrite(&gpo1, 1, outcontrols); 

 } 

 cleanup_platform(); 

 return 0; 

} 

  



 

 

116 

 

Appendix E: Sample of Processing Code 

This Application implements the image model described in Chapter 4.3, to simulate 

camera images of objects. It requires other classes implemented for this system, such as Field 

and CameraSettings to function.  These libraries are available upon request. 

 

 

int currentView = 1; 

int nextView = 1; 

Field pField; 

 

void setup() 

{ 

  setupFieldSimulation(); 

} 

 

void draw() 

{ 

  if (currentView!=nextView) 

  { 

    currentView = nextView; 

    fill(color(255)); 

    rect(0, 0, width, height); 

    drawGrid(); 

    CameraImage frame2 = pField.generateCameraImage(currentView); 

    frame2.generatePositionsFromImage(); 

  } 

} 

 

void mousePressed() 

{ 

  nextView++; 

  nextView = nextView>pField.cameras.size()? 1:nextView; 

} 

 

 

void drawGrid() 

{ 

  fill(color(0)); 

  for (int i=0; i< width; i+=40) 

  { 

    int strokeWidth = i%200 ==0? 2:1; 

    strokeWeight(strokeWidth); 

     

    line(i, 0, i, height); 

    text(i,i,10); 

  } 

  for (int j=0; j<height; j+=40) 

  { 

    int strokeWidth = j%200 ==0? 2:1; 
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    strokeWeight(strokeWidth); 

    line(0, j, width, j); 

    text(j,0,j+10); 

  } 

} 

 

 

void setupFieldSimulation() 

{ 

  size(1280, 1024);   

  background(color(255)); 

  stroke(color(0)); 

  rect(0, 0, width, height); 

   

  pField = new Field(); 

  drawGrid(); 

  Beacon beacon1 = new Beacon(30, 30, -60, color(0, 0, 255)); 

  Beacon beacon2 = new Beacon(50, 30, -60, color(0, 0, 255)); 

  Beacon beacon3 = new Beacon(35, 50, -60, color(0, 0, 255)); 

  Beacon beacon4 = new Beacon(18, 20, -60, color(0, 0, 255)); 

  Beacon beacon5 = new Beacon(35, 10, -60, color(0, 0, 255)); 

  Beacon beacon6 = new Beacon(18, 40, -60, color(0, 0, 255)); 

   

  pField.addBeacon(beacon1); 

  pField.addBeacon(beacon2); 

  pField.addBeacon(beacon3); 

  pField.addBeacon(beacon4); 

  pField.addBeacon(beacon5); 

  pField.addBeacon(beacon6); 

 

 

  CameraSettings cam1 = new CameraSettings(0, 0, 45); 

  CameraSettings cam2 = new CameraSettings(0, 60, 135); 

 

  pField.addCamera(cam1); 

  pField.addCamera(cam2); 

 

 

  CameraImage frame2 = pField.generateCameraImage(currentView); 

  frame2.generatePositionsFromImage(); 

}  
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Appendix F: List of Materials 

 This appendix shows the materials we used to implement this system and their individual 

costs. These parts were used in every stage of the project and were all used in the final design. 

 

 


