A Feature-Oriented Software Engineering Approach to
Integrate ASSISTments with Learning Management Systems

by
Hien D. Duong

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in
Computer Science

by

May 2014

APPROVED:

Professor George T. Heineman, Thesis Advisor

Professor Gary Police, Thesis Reader

Professor Craig Wills, Department Head

Abstract

Object-Oriented Programming (OOP), in the past two decades, has become the most
influential and dominant programming paradigm for developing large and complex software
systems. With OOP, developers can rely on design patterns that are widely accepted as solutions
for recurring problems and used to develop flexible, reusable and modular software. However,
recent studies have shown that Objected-Oriented Abstractions are not able to modularize these
pattern concerns and tend to lead to programs with poor modularity. Feature-Oriented
Programming (FOP) is an extension of OOP that aims to improve the modularity and to support
software variability in OOP by refining classes and methods. In this thesis, based upon the work
of integrating an online tutor systems, ASSISTments, with other online learning management
systems, we evaluate FOP with respect to modularity. This proof-of-concept effort demonstrates

how to reduce the effort in designing integration code.

Acknowledgements

It is my privilege to have Professor George Heineman as my advisor for my graduate
research. Without his generous support, warm guidance and patience, this work would not have
been possible. Thanks Professor Heineman for his advice and guidance on both academics and
life.

Thanks to my thesis reader, Professor Gary Police, for his time and valuable suggestions.

Thanks to Professor Neil T. Heffernan, Cristina Heffernan and David Magid for detail
workflow suggestions while | developed ASSISTments apps. Without your participations,
ASSISTments apps would never be Live in Edmodo Store during the time | worked on my
thesis.

Thanks to ASSISTments lab mates who help me a lot while doing the development work
of ASSISTments.

Last but not least, I would like to thank my wife. This thesis is a product of her

unconditional love, support, and encouragement throughout years.

Content

Chapter 1. INTFOTUCTION........c.eiviiiiiieieitet ettt ettt e et 9
O /0 €7 LA o S 9
1.2. Literature review on software integration PerspectiVvecoveerreenneenseienseeseseeen, 10
1.3. The Need to Integrate Learning Management SYSTEMSccovverreenninenineiensiee e, 11

Chapter 2. BACKGIOUNG...........ouiiiiiiieies bbb 13
2.1, SOTtWAre PrOQUCTE LINES ...veveieeeiieeees ettt nnens 13
2.2. WAL IS FRALUIE ...ttt bbbttt e e e e 14
2.3. ECHIPSE FRAUIEIDEo ittt bbb bbb bbb ne e 15
p o [(=T o = oo IS A1 (=] 0 11T 18

2.4. 1. ASSISTMENES ...ttt bbb bbbttt et 18
2.4.2. EAMOTO ..o bbb bbb 21
2.4.3. INBIOOM ... bbb 24

Chapter 3. CaSE STUAYvcueiieeiicicieeee sttt e b e e et et et e a et e s e s e sennan 27
3.1, KOMDALSO AN DESIGN ...vcvviieiieieieieete et be bbb e sre e srenre s 28
3.2. KombatSolitaire Feature-Based DeSigNcccccvvveiiiiieie s 33

(@1 T C=T o Y 1= g oo (o] (0o V2 36
O I @ 0| AN o] o] o - T SRRSO 36
4.2. CONNECLION MOEI ... et 38

Chapter 5. CONNECION COUEceiuieeieieieere ettt b e b e e ereseene s nns 41
5.1. Overview integration between ASSISTments and INBIOOM ..o, 41
5.2. Overview integration between ASSISTments and EAMOOccccvevireneincneeceeee 43
5.3. Detailed Integration Scenario With EAMOO ..o 44
5.4. Object Oriented design and implementation...........cocoovveirieneiineneines s 49

Chapter 6. Featured-based APProOach ... 57
6.1. Refactoring OOP 0 eXIraCt TEATUIEScccoieiririeiririeiree s 58
6.2. Layers design and implementation ... 59

6.2.1. Get EAModo Teacher and STUAENTScovveieerieirereeceee e 60
6.2.2. Create Teachers and Students accounts in ASSISTMENTSccccvrrrierrrienneienneens 60
6.2.3. Create dictionary data in EAMOUOccccoviiiiiiiiicccecc e 61

6.2.4. Create SChOO! data iN ASSISTIMENTScieiiieeeee ettt e et e e e st e e s seeeeesaereeesan 61

6.2.5. ASSIgN USErS t0 SCNOOL. ...viiiiiiccee s 61
B.2.6. CrEaLE ClASS: ...viueiiiieiiiteieie ettt bbbt bbb 62
6.2.7. Enroll students in class i ASSISTMENLScccvieiiiiiiiee s 62
6.2.8. Create assignment iN ASSISTMENTSccccviiiiiiiiiiiiicese e 62
6.2.9. Student login Edmodo to do assignment in ASSISTMENLS.........ccccevvvivvecieieie e 63
6.2.10. Transfer back assignment grade back to EAMOOcccvvevieiiiiiicicceceeeee, 63
Chapter 7. Conclusions and FUTUIE WOTKcccoviiiriiiieee s 64
% I O o] 113 (o] o OO SRRRPRSRSRR 64
7.2, FUBUIE WOTK .ttt bbbttt st et et e e be e e enas 65
Appendix A. Example of data return back from EAMOdO..........cccevviiiniiiinniiieeeese e, 66
Appendix B: Connector COAe tahIe ..o e 67
B1. API tables already exists in ASSISTMENTS:ccooriiiiieiiiee e 67
B.1.1. external_referenCe _TYPES ..o 67
B.1.2. €XIErNAl_TEFEIENCESc.eiviieeiceeiceeese ettt nreneas 67
B.1.3. ACCESS_TOKENSeeviiiieiicieiee ettt st n et se st st enenne e enenreneas 68

B.2. ANeW Dridge API aDIES.......ccoovieeeee s 68
APPENdiX C. CONNECIOT CIASSESviiviiiiiiiiieitesieie ettt bbbt resre b sreereens 70
CL. MOGEI CIASSES ...ttt et sttt b b ettt en e e e e 70
C2. CONIOIIET CIASSES ...ttt ettt bbbttt neneens 71
RETEIBICES ...ttt s ettt E e b sttt b e b et b e et e st e b e neebe s b e e ebesbenenaeeeneneeneas 71

List of figures

Figure 1.1. Modeling variability in @ dOMAINccooiiiiiiinie e 9
Figure 1.2. Connector With direCt MESSAGINGccvoveirriuririiiririieee et 10
Figure 1.3. Connector with iNdireCt MESSAGINGcovivivririiieiririeereee e 11
Figure 2.1. Linux’s kernel configuration too]...........ccooviiiiiiinnie s 14
Figure 2.2. Sample Feature MOEIccoiiiiiieic e 16
Figure 2.3. Hello Feature Sample COde ..o 17
Figure 2.4. Wonderful Feature Sample COUE ... e 17
Figure 2.5. World Feature Sample COUe ..o 17
Figure 2.6. Valid HelloWorld Configurationccccoieiiiiiiinineiese s 18
Figure 2.7. SAMple ASSISTMENTS SCIEENcviiiieieieisises e ss e e e s 20
Figure 2.8. SAMple EAMOUO SCIEENccuviiiiiiicece e sre e 22
Figure 2.9. Sample iNBIOOM SCIEEN........cci i e 25
Figure 3.1. A feature diagram that captures Solitaire variationsc.ccoccvevvveviiiiiieniesiesiese e 27
Figure 3.2. Sample KombatSolitaire Klondike Screenshot ..o, 29
Figure 4.1. FORM MethodOlOgYcceiiiiiiiiiii e 37
Figure 4.2. OUr MethOAOIOQYoceiveiieie e 37
Figure 4.3. Sample integration DEtWEEN LIMISS.........ccociiiiiiiieie e 39
Figure 4.4. Multiple instances of connector code adapt to each systemcccocvvvveiieiieienieennn, 40
Figure 5.1. Screening ASSISTMeNtS HTML REPOI.......ccooiiiiiieiiere e 42
Figure 5.2. Promoted integration scenario With iINBIOOMccccooviiiiiiiiicireeeee e 42
Figure 5.3. Promoted integration scenario With EAMOdO..........cccccviiiiiiiiininiceee e 43
Figure 5.4. Edmodo Integration FIOWCHhaArtccccoiiiiiiiiice e 44
Figure 5.5. TeacCher SEarch fOr @PP ...coovierririeisee st 45
Figure 5.6. Teacher iNStalls the @PPcooieirieiieee e 45
Figure 5.7. License and Group of students the app will be applied t0 ... 46
Figure 5.8. Teacher launches ASSISTment app. He/she automatically forward to ASSISTments

without prompting ask fOr Credentials ... 48
Figure 5.9. Integration detail steps between ASSISTments and Edmodo under Student Role48
Figure 5.10. ASSISTments appears inside an iFrame in EAMOdOccccovvviinneiinncniecee 49
Figure 5.11. High level cONNECLOr dBSIGNccoviiiiiiiiieeee e 50

Figure 5.12. Sample code to present jSON ODJECLcccoviiiiiiiiiiii e 52

Figure 5.13. Sample code to serialize an JSON ODJECTcccocviiiiiiiiiiiiie e 52
Figure 5.14. Sample code to represent data aCCeSS ODJECEccvcveieieiierierieieee e 52
Figure 5.15. Example code invoked automatically.ccccoiviiiiiiiiiiiii e 53
Figure 5.16. Sample code to SENd API FEQUEST.cccoiiiiiiiiieie e 55
Figure 5.17. Sample code to coNStrUCt API FEQUESL.ccviiviiiiiieiiiiesie e 56
Figure 6.1. Proposed approach for CONNECLOIS..........cucviiiiie e 57
Figure 6.2. OOP dynamic website iNVOKES @ FRATUIEc.cciviireiiice e 58
FIgure 6.3. EAMOUO FRATUIE ..ottt bttt snenenne e 58
Figure 6.4. EdMOAO INTEGIAtIONcueiveiiiiieiecieeee et 59
Figure 6.5. ASSISTMENLS FINAI SCIEENeviiicieeiceee e e 61

List of tables

Table 3.1. Reusability COMPAIISONccciiiiiiiiiie e sreens 28
Table 3.2. Classes within KS model hierarchy ..o 28
Table 5.1, EXAMPIE AP FEIUML .oviiiiiiece et ens 46

Table 5.2. Connector code packages lIStedcccviiiiiiiicicccece e 50

Chapter 1. Introduction

1.1. Motivation

Before the advent of mass production, the manufacturing process required handcrafted
work and each product was unique, in the sense that is was built from scratch. During the age of
industrialization, mass production based upon assembly lines used standard parts were
constructed individually but then could be combined/assembled to create more complex
products. The focus on standardized products reduced production costs and improved the quality
of products and processes. Recognizing that different customers have different needs and wishes,
manufacturers started to increase diversity in their product portfolios. In a way, mass production
is similar to mass customization with just a few variations. Below is an example from the fast-

food industry of mass production with individualized configuration [8].

oo fres Declarative Sandwiches, Inc.
Whaeaot breod
poveta gl)

75 White beeod Mssey Murtard

X Maye
75 Mexicon wouce
Sweel ond sour souce

7S Lathuce 74 Cocvmber

7S Tomatoan 79 Ofives Lol Lm.d 4
R ———-,
7% Jolopesos Murhrosms s enionoe
Pickies ol pappen s 1
% o More Chease !
7% Mozzorela NS psey
Pepper Jock ST 7 Popper
Swin 2N Se

Twe Vegetaren
4 [SSSSS)
Torkey borbecve rd

Sa'ame Grifled Chickan

0

Figure 1.1. Modeling variability in a domain

1.2. Literature review on software integration perspective

We have found no other research targeting the use of feature oriented programming
(FOP) in integration code at the time that this thesis was written. However, there is a similar
engineering technique that aims to develop software systems by reusing pre-existing software
components rather than features called Component-based software engineering (CBSE). Lau et
al Error! Reference source not found. summarized that component-based approaches tend to
use the concept of composition by taking two or more components then putting them together in
some way. Component composition mechanisms fall into two main categories: direct message
passing and indirect message passing. In general, with direct message passing scheme, there are
two distinct role: the sender and the receiver. And when components are connected by direct
message, data flow and control flow are mixed with the computation, and thus the message tends
to “hard-wired” into component. It makes sender and receiver tightly couple together.
Connection by indirect message passing typically happens with glue code that passes messages
between components. To connect a component to another component, a connector is used, when

notified by the former, invokes a method in the latter.

Figure 1.2. Connector with direct messaging

10

Figure 1.3. Connector with indirect messaging

Example of direct messaging are remote procedure calls (RPC). Models that adopt direct
messaging include the CORBA Component Model (CCM) [17]. Models that adopt indirect

message include JavaBeans [18].

1.3. The Need to Integrate Learning Management Systems

Learning mathematics in classroom’s today is different than it was twenty years ago.
While there is no definite proof for the one “right way” to teach mathematics, it increasingly
important for teachers to adopt effective teaching strategies. Incorporating technology into the
teaching of mathematics has proven to be an effective method of mathematics Error! Reference
source not found.. Hadley and Sheingold suggest that technology is most valuable to teaching
and learning once teachers integrate it as a tool into everyday classroom practice and into
subject-matter curricula Error! Reference source not found.. The need to integrate between
technologies emerges when teachers need to use a variety of teaching activities, while each
integrated learning technology is designed only to deliver one particular set of instructional

content.

11

Besides the purpose of integrating learning technologies for sharing content across, there
are increasingly requirements for utilizing data between systems for researching purpose. As
Harmelen and Workman identify, learning analytics refers to the interpretation of a wide range
of data, which can be collected by outcomes data across a wide variety of learning tools [20]. For
example, ASSISTments collect data from students such as assignment performance but social
interactions, provided by Edmodo from its social learning platform, are not directly assessed as

part of student’s educational purpose.

12

Chapter 2. Background

2.1. Software Product Lines

Software product lines emerged since late of 1960s and gained more momentum in
software industry from 1990s. The main idea is that software systems should be constructed from
reusable parts instead of being developed from scratch. And instead of composing a software
system always in the same way, it should be based upon the customer’s requirements, where
customers can choose from pool of configuration options. A clear example of a successful
software product line is the Linux kernel which runs on a variety of platforms, such as embedded
devices, desktop systems, and large-scale servers Error! Reference source not found.. Linux
also supports different applications, from office software and games, to high-performance
computing and server software. In able to efficiently supports all kinds of different platforms and
application scenarios, Linux allows users to choose among large set of options (up to 10,000
features according to Tartler et al. [23]) to define the Linux kernel to fit their needs. The Figure

below is a screenshot of Linux’s configuration tool, called Kconfig.

13

Eile Edit Option Help

Option | | option Al
-- General setup ~- Processor family
RCU Subsystem {~ O Opteron/Athlon64/Hammer/K8
@ Control Group support | O Intel P4 / older Netburst based Xeon
[Configure standard kernel features (for sm —Q Core 2/newer Xeon
Kernel Performance Events And Counters ! =0 Intel Atom
GCOV-based kernel profiling @® Generic-x86-64
Enable loadable module support [0 1BM Calgary IOMMU support (NEW)
-~ Enable the block layer ~[J AMD IOMMU support (NEW)
10 Schedulers O Configure Maximum number of SMP Processors and NL
- - (8) Maximum number of CPUS
@ Paravirtualized guest support
-- Power management and ACP! options [Multi-core scheduler support
[ACPI (Advanced Configuration and Power I -~ Preemption Model
SFI (Simple Firmware Interface) Support =0 No Forced Preemption (Server)
CPU Frequency scaling @® Voluntary Kernel Preemption (Desktop)
Memory power savings QO Preemptible Kernel (Low-Latency Desktop) v
-- Bus options (PCl etc.)) | L’_I
{38) PCCard (PCMCIA/CardBus) support
@ Support for PCI Hotplug SMT (Hyperthreading) scheduler support -
Executable file formats / Emulations (SCHED_SMT)
-- Networking support .
1 Networking options CONFIG_SCHED_SMT:
=~ Network packet filtering framework (Ne |} sut scheduler support improves the CPU scheduler's
|~ Core Netfilter Configuration _Iﬂ decision making
| | » when dealing with Intel Pentium 4 chips with =]

Figure 2.1. Linux’s kernel configuration tool

Clearly, the industrialization of software development is facilitated by software product
lines. Ideally, based on set of reusable parts, a software manufacturer can generate a software
product that adapt to certain customer’s requirements. The concept of feature is a core concept to
distinguish the products of a product line. For example: some customers requires Email client

that supports both IMAP and POP3 but others only need POP3.

2.2. What is Feature

Feature-Oriented Programming (FOP) is a paradigm for the construction, customization,
and synthesis of large-scale software systems. FOP is the study of feature modularity and
programming models that support feature modularity. The concept of a feature is at the heart of
FOP. A feature is a unit of functionality of a software system that satisfies a requirement,
represents a design decision, and provides a potential configuration option. The basic idea of

14

FOP is to decompose a software system in terms of the features it provides. The goal of the
decomposition is to construct well-structured software that can be tailored to the needs of the
user. Typically, from a set of features, many different software systems can be generated that
share common features and differ in other features. The set of software systems generated from a
set of features is also called a software product line. In other words, A product line shares a
common set of features developed from a common set of software artifacts [3][5][6].

According to Czarnecki, feature models, in their basic form, contain mandatory/optional
features, feature groups, and implies and excludes relationships [8]. A feature model is a tree of
features, whose root encapsulates the base feature, the minimum unit of functionality required
for the existence of the system. Other nodes in the tree represent either solitary features, which
can be optional or mandatory, or grouped features, which can be either exclusive-or groups or or-

groups.

2.3. Eclipse FeaturelDE

FeaturelDE is an open-source solution tool for product line implementation, targeted
primarily at researchers, teachers, and students. FeaturelDE is installed using the Eclipse plug-in
mechanism. In FeaturelDE, the whole application is divided into parts representing different
features. While this may sound similar to the concept of object-oriented classes there is an

important difference. A feature in our sense always represents a certain aspect of the application.

Every feature can be related to an arbitrary number of software artifacts. In FeaturelDE,
these artifacts can be classes, methods, fields or even single statements as well as additional
resources like graphics or user-documentation. Especially, the option to change only parts of a

method offers great flexibility in the design of features. In software product lines, not all

15

combinations of features are considered valid and lead to useful software systems. A feature
model defines the valid combinations of features in a domain Error! Reference source not
found.. Features models have a hierarchical structure, whereas each feature can have sub-
features Error! Reference source not found.. The graphical representation of a sample feature

model is feature diagram and example is shown below:

HelloWorld Legend:
T # Mandatory
e Y < Optional
Main | | Feature | | World Apstract
Concrete

Wonderful || Beautiful
Figure 2.2. Sample Feature Model

The features Hello and World are mandatory and simply print the features name. The
features Wonderful and Beautiful are not required. Connections between a feature and its group
of sub-features are distinguished as: and, or, and alternative [25]. The children of and groups can
be either mandatory or optional. A feature is abstract if it is not mapped to implementation
artifacts and concrete otherwise [26]. A feature model may also have cross-tree constraints to
define dependencies which cannot be expressed otherwise.

Feature models are a common notion for variability and their semantics is as follows: the
selection of a feature implies the selection of its parent feature. Furthermore, if a feature is
selected, all mandatory sub-features of an and group must be selected. In or groups, at least one
sub-feature must be selected and in alternative groups, exactly one sub-feature has to be selected.

In FOP, classes are decomposed into feature modules, each implementing a certain
feature. A feature module may contain methods and fields of several classes. Feature modules

can be composed into a program based on a given configuration and order of the features.

16

Using the example in the figure above, here are the actual object-oriented classes
contained within each of the designated features:

Hello Feature

public class Main {
public void print () {
System.out.print ("Hello") ;
}

public static void main(String[] args) {
new Main () .print () ;

}

Figure 2.3. Hello Feature Sample Code

Wonderful Feature

public refines class Main {

public void print () {

Super () .print ();
System.out.print (" Beautiful");

Figure 2.4. Wonderful Feature Sample Code

Beautiful Feature (similar to Wonder Feature)

World Feature.

public refines class Main {

public void print () {

Super () .print () ;
System.out.print (" World!");

Figure 2.5. World Feature Sample Code

Example of valid configurations are shown below:

17

‘ hisliodVord,(valid.ApossblesonianEiions) |, HelloWorld (valid, 1 possible configurations)
Main Main
4 [l Feature 4 [l Feature
Wnndfarful W | Wonderful
v | Beautitul ./ | Beautiful
World World
Hello Beautiful World Hello Wonderful Beautiful World

Figure 2.6. Valid HelloWorld Configuration

2.4. Integrating Systems

2.4.1. ASSISTments

Assistance and assessment are integrated in ASSISTments, a web-based math tutoring
system for 7th-12th grade students which offers instruction to students while providing a detailed
evaluation of their abilities to teachers. The ASSISTments System is being built to identify the
difficulties individual students—and the class as a whole—are having, and teachers will be able
to use this detailed feedback to tailor their instruction to focus on those difficulties. Unlike other
assessment systems, the ASSISTments system also provides students with intelligent tutoring
assistance while assessment information is collected. Tutorial help is given if a student answers
the question wrong or asks for help. The tutorial help assists the student learn the required
knowledge by breaking the problem into sub questions called scaffolding or giving the student
hints on how to solve the question.

Figure below shows a screenshot of an ASSISTments problem with three scaffolding
questions. Solving this problem involved understanding congruence, perimeter, and equation
solving. If the student had answered correctly, she would have moved on to a new problem.

However, she incorrectly answered 23, and the system responded with, “Hmm, no. Let me break

18

this down for you.” It then presented the student with some questions that would help to isolate
the skills with which she had difficulty and to tutor her so that she could figure out the correct
actions. The tutor began by asking a scaffolding question that isolated the step involving
congruence. Eventually she got the scaffolding question correct (by answering “AC”) and then
was given a question about perimeter. The figure shows that the student selected %2 * 8 * x as the
formula for perimeter, and the system responded with a “buggy message” letting the student
know she seems to be confusing perimeter with area. The student requested two hint messages,
as shown at the bottom of the screen. The tutoring ends with a final question, which is actually
the original question asked again. The student then will go on to do another math problem and

will again get tutoring if she gets it wrong.

19

2R Welcome to Assistments Project Web Portal - Microsoft Internet Explorer E“X
© Fle Edt Vew Favorkes Tooks Hep i
»

Qmw - Q M REG Puwa s @ 35 oy
: fuidoss | &) b, acsistment orglpoetalfndes.tsp v B

S e) L I

B E
¥ i : 8 inchies i :
A x c o ¥

mr:n‘:tgcrco?s :@ES ‘:’B"étsw‘ 1 Theoriginal question
23 inches. What is the length of z g ;::ﬁ;:l;;rc

Mo RE g DEET c. Equation-Solving
Hmm, no.

Let me break this down for you

«—1 The 1% scaffolding question

Vﬂmh»deo&‘xrix@cABCha:mesamzlengh_ _
a¢ side DF oftrisngle DEF? ‘ [Congruence |

What is the permmeter of tnamgle ARC?
O2+8

The 24 scaffolding question

®, *8x 1
! -
-Permm!er
O2+x+8

@) 112 *x(2%)
A buggy message
No. You might be thanking that the area 55 1/2 base tenes height, but you are looking for the
penmeter.
Penmeter is defined as the sum of all sides of a figure The 1# hint message
' The penmeter of triangle ABC 13 the sum of all its sides.]v
< p . >
S The 2™ hint message
IQ] Done

Figure 2.2. Sample ASSISTments screen

ASSISTments provides a set of RESTful APIs that allow external partners to integrate
with the system. Some highlight APIs that allows to create users account, ask for access_token,
and forward users to go inside ASSISTments without asking for credentials. Those APIs that
allow ASSISTments to interact with other systems in seamless manner, without interruption, rely

on Single Sign On capability.

20

Some examples ASSISTments APIs include:
User Login:

Request:

Type: | GET

URL: | assistments.org/apiZ_ heslper/user_login
?partner=<partner id>

kaccess=<access token>
&on_success=<success callback>
&on_failure=<failure callback>

Create User

Request:

Type: | zO3T

URL: | assistments.org/apil/user

Request Headers and Key-Value Pairs:

Header | assistments—auth

partner | Required: Partner ID (ASSISTments provided)

Payload:
"userType": "<principal proxy>",
"firstName": "<text>",
"lastNams": "<text>",
"displayName": "<text>",
"timeZone": "<UTC offset>"

"usernams": "<usernar

"password": "<password:
"registrationCode": "

"email": "<email>"

<code>",

2.4.2. Edmodo

Edmodo can be incorporated into classrooms through a variety of applications including
Reading, Assignments, and Paper-studying. Current uses include posting assignments, creating
polls for student responses, embedding video clips, create learning groups, post a quiz for
students to take, and create a calendar of events and assignments. Students can also turn in
assignments or upload assignments for their teachers to view and grade. Teachers can annotate

the assignments directly in Edmodo to provide instant feedback.

21

Parents can also view this website, either under their child's username or they may create
their own account. The Parent accounts allow parents to see their children's assignments and
grades. Teachers, subject to creating and maintaining parental records, could send alerts to
parents about school events, missed assignments, and other important messages. Similarly,
teachers can, subject to creating and maintaining class-participant data, generate printable class
rosters. so if a teacher is going to have a substitute teacher in their classroom who needs a printed

roster, they can print one from an Edmodo account.

(G wesan B P Language Ants * | Filler poats by Notfcasane (39 o

Latest Poats Posts Foisens Meerbery Senall Geougs

 Dascower Group Code
ype your ncte here. 2 a
U Jon o Creste Jon Group URL
NI Awwa 02030 LOMNOMeRion
B o Come
(\ Mot anguage Arts
D Back 1o Seheal 2
Work shop ‘. Vecabulary Flashoaeds are attachod for Tuck Everisating. As shways, the Golden

Pinsspoie sward goes 10 the first person 10 weite one sectence in the mply that uses o8
B Eomoco New User of Pese words ComeDy

Vecabulary: Tuck Everisating o S
° 3 Rocort Activit

T v 2Resctions) Trey A logged in
Extoa Crmat Tuee Everastng
f Social St
B P2 Soclsl Stuses Q Mrs. Amy Egly ls now
Show Al ¥ - ” Troy A - The fact that he was BURLY was IRRELEVANT, %a man wis very Y conrected 1o
BOVINE and when ho FALTERED haffaay down the stains, & was increditly Mrs. Jon Cook
= GALUING
smmunities Browse
P.S. Mr. Recsevel - | uaed & sorms-colon and every™ing'
,1".‘_\ 0
3 L Lg Ma. Torunys Govindarsjan &
=t n Wathry M. - Awww Trey toat me again! & good job T - oW COPNeCted 10

‘ Conch Krishra
5] " rs Das
(‘i- Mo - Gowat job Tray! The Goiden Pinesscie wil be bestowed ugon you

Show AX tomomow, Somy Kathy, tetter luck next week!

Figure 2.3. Sample Edmodo screen

Student and, possibly parental, data is normally already maintained in a school's
information management system and so would require ongoing effort and care to duplicate and
maintain data on Edmodo outside the school's own security controls.

Edmodo, as with any social network, can be used as a place to post and critique work,

facilitate collaboration, and post creative writing for an audience. Educational social networking

22

sites, like Edmodo, offer an opportunity to “connect with students and help them create norms
and reflect on how different online actions will be interpreted. Edmodo and other social
networking sites offer educators a chance to explore the use of social networks and use of media
and online formats. Edmodo is used worldwide but mainly from the US. In Edmodo, teachers
can put posts with attachments such as videos or pictures from their iPad, iPhone or computer
and put it in a group folder in which pupils and teachers can access the post in a safe learning
environment. It can be used to teach children how to create podcasts, posts and basic website
designing.

With Edmodo's Apps API, Apps can integrate with Edmodo’s core features such as:
Students can turn in Edmodo assignments, teachers can upload grades into teachers’ grade
books, and content can be stored immediately into teachers’ libraries

This figure below list an example Edmodo APIs:

23

Launch Request
Example Request

GET /launchRequests?apl key=<API EEY>&launch key=5SclE8cT

Example Response

"a=zer type":"TEACHER™,
"access token™: ™atok abbd3e0l”™,
"a=zer token™:"b020c42d1",

"first name":"Bokb",

"last name":"Smith"

"avatar url":"https:///edmodoimages.s3.amazonaws. com/default _avatar.png”,
"thumb url":"https://edmodoimages.=s3.amazonaws.com/default avatar t.png",
"time zone":"BST",

"user id":1234567,

"groups": [
"group id":3T79557,

"iz owner™:1

"group id"™:37

iz owner™:1

2.4.3. inBloom

inBloom funded by the Bill & Melinda Gates Foundation and the Carnegie Corporation,
with mission is to provide a valuable resource to teachers, students and families, to improve
education. inBloom makes it easier for teachers to see a more complete picture of individual
student progress than what most currently have access to through its secure, single-access point.
With this information teachers are able to better identify where each student needs extra

attention, and to tailor education materials that maximize the one-on-one time they spend with

24

students. Further, currently it’s difficult for teachers to find the many valuable instructional
materials that exist across the country or even in their own school districts. Through its resource
index, inBloom saves teachers valuable time by helping them more easily search for and share
these materials.

inBloom provides REST API, full client-server Web service with features such as: Bult-
in HTTP basic access authentication, support JSON data-interchange format and HTTP methods

to exchange representation of resources.

—
A e A e [T pe— [ST e—r——) L. .

€ 3 C _ seachuvioonon -

I e

Triangle Madians ang Cettroion (30 Prooh)

Trargis Mediats ind Cetirinds

Trange Mediats ing Cotiraes

Area 3f acosed Equelateral Trongse [vame Davks 3 wied)

Average of Contral Tendency. Amametc Mean. Median, and Mode

Figure 2.4. Sample inBloom screen

25

This figure below list an example inBloom APIs:

Example request/response for /schools/{id}
Request:

GET httpa://localhost/api/fresat/vl.3/achools/[id]
Fesponse:

midmy mrid)e,
"achoolCategories™: |
"Junior High School™

r
"organizationCategoriesa™: |
"School™

],
"gradesOffered™: |
"Sixth grade”,
"Jeventh grade™,

"Eighth grade™

]
"éddress": [
"name0fCounty™: "Wake™

"streetNumberName™ : "1i1 Lye B",
"poatalCode™: "101127,

"statelibbreviation™: "IL",
"addressType™: "Physical™,
"city™: "Chicago™

}
r
"educationOrgldentificationCode™: [
"identificationSyatem™: "School™,

"ID™: "East Daybreak Junior High™
1

Chapter 3. Case study

Heineman introduced an approach to construct encapsulate varieties via layers [9]. His
undergraduate class developed dozen of plugin components for a card solitaire game engine with
MVC (Model-View-Controller) design patterns. To maximize reusable code, he developed a set

of layers that can be assembled to form solitaire variation plugins.

KombaiFeaturelDE

game types s inslances Variations
- -

infeger | deck | pile buildablePile | fanPile | stackiostack buidablePileToPie | | pileToBuildablePile | fanPideToPile aDeck BetaFreeCell | Betaklondike

freeCallLayoul fraeoalin.:las
aDeck = dack
builtablePilaToPile = pils
BuildablePilaToPile = BuildablePils
pileToBuildablePile = pile
plaToBuldablePile = BuildablePils
freeCallRules = freeCalllayout

Figure 3.1. A feature diagram that captures Solitaire variations

In the figure above, a feature model that describes the variability of Kombat solitaire
game. The variants of KombatSolitaire can be produced in this domain. The root of the tree
denotes the concept that is modeled. All other boxes denotes features, where child features

depend on parent features.

Table 3.1 below compares the reusability factor for generated layers of four solitaire

plugin components against their hand-coded counterparts.

27

Table 3.1. Reusability Comparison

Java

ACDK

#Classes (#reused)

Layers (#reused) %

diot 6 (0) 16 (13) 81%
Narcotic 7 (0) 17 (13) 76%
GrandFatherClock 6 (0) 31 (29) 93%
Klondike 11 (0) 31 (25) 80%

3.1. KombatSolitaire Design

Kombat Solitaire (KS) is a Java application that enables head-to-head competition of

solitaire variations played simultaneously over the Internet. KS was developed as part of an

undergraduate software engineering course. Each plugin represents a single solitaire variation. A

rich set of model elements are already provided, as shown in Table 3.2.

Table 3.2. Classes within KS model hierarchy

Card Single Card in adeck

Stack Abstract representation of cards in sequence
from bottom to top

Pile Stack whose topmost card is visible

Deck A stack of 52 cards forming a playing deck

Column Stack of cards that reveals cards below the
topmost card

BuildablePile Pile of face down cards on top of which a

Column can be built (as in Klondike)

28

Each model element shown (except for the abstract Stack class) has a corresponding view
element that depicts the model element within the solitaire playing field. Each KS plugin is
responsible for constructing a model of the game, which may include a deck, columns where
cards are stacked, a running score, and waste piles. The plugin then defines the views for these
model elements over a 2-dimensional playing field such that no two views intersect each other.
Finally, a controller is registered with each view to manage mouse events (press, release, and
click) and perform moves as allowed by the solitaire variation. The sum total of all the

controllers enforces the rules of a solitaire variation.

The KombatSolitaire case study presented here is a microcosm of the overall thesis effort.
That is, this thesis will demonstrate how to convert ordinary Java code into a set of features that
represent the same functionality. In a straight object-oriented implementation of a solitaire
variation, a programmer would construct objects from pre-existing classes (such as found in
Table 3.2) to implement the required variation. For example, assume a developer wanted to

implement the FreeCell solitaire variation, shown below:

Figure 52. Sample KombatSolitaire Klondike Screenshot

29

In this variation, there are four Free Cells in the upper left corner which can store a single
face up card. In the upper right corner are four Base Cells which show face up cards, but they
can contain up to thirteen cards each (one per suit). At the bottom of the game are eight
Buildable Piles showing the arrangement of face up cards at play. A snippet of code in such a

stand-alone object-oriented implementation would look something like the following:

public void initialize (int seed) {
deck = new Deck ("deck");
deck.shuffle (seed);
for (int 1 = 0; i < columns.length; i++) {
columns([i] = new Column ("col"™ + (i+1));

}

for (int i = 0 ; 1 < freeCells.length; i++) {
freeCells[i] = new Pile ("free" + (i+1));

}

for (int i = 0 ; 1 < baseCells.length; i++) {
baseCells[i] = new Pile ("base" + (i+1));

That is, the program would first create the model elements forming the structure of the

game. Then they would create view objects to visually place these model elements on the screen:

public void initializeView () {
CardImages ci = getCardImages|() ;
int cw = ci.getWidth{();
int ch ci.getHeight () ;

for (int i = 0; i < freeCellViews.length; i++) {
freeCellViews[i1] = new PileView (freeCells[i]):;
freeCellViews[1] .setBounds (10+15*i+i*cw, 20, cw, ch);

}

for (int 1 = 0; 1 < baseCellViews.length; i++) {
baseCellViews[i] = new PileView (baseCells[i]);
baseCellViews[1] .setBounds (125+15*i+(i+4)*cw, 20, cw, ch);
}

int colH = 13*ch; // allow up to 13 cards

for (int i = 0; i < 8; i++) {
columnViews [i] = new ColumnView (columns[i])
columnViews [1] .setBounds (45+15*i+i*cw, 40 + ch, cw, colH);

30

Once all view elements are created, then the user needs to register the appropriate AWT

Mouse Listeners to react to mouse events over these objects

public void initializeControllers () {

for (int i = 0; 1 < 4; i++) {

freeCellViews[i] .setMouseAdapter (new FreeCellFreeCellController (
this, freeCellViews([i])):

}

for (int 1 = 0; 1 < 4; i++) {

baseCellViews[i] .setMouseAdapter (new FreeCellBasePileController (
this, baseCellViews[i])):

}

;1< 8; 1i++) |
] .setMouseAdapter (new FreeCellColumnController (
this, columnViews[i])):;

for (int i =0
columnViews|[1

These Controller classes contain the real logic of the FreeCell variation. Indeed, the
structure of two solitaire variations may be identical (both model and view elements) and the
only difference remains in the Controller objects.

The controller classes process low-level MouseEvent events and decides users actions by
interpreting the sequence of MousePress, MouseDrag and MouseRelease events. The following
controller snippet for the FreeCell Game processes MouseRelease events over one of the four

base piles:

public void mouseReleased (MouseEvent me) {
Container ¢ = theGame.getContainer();

Widget w = c.getActiveDraggingObject () ;
if (w == Container.getNothingBeingDragged())
return;

boolean changed = false;
if (w instanceof CardvView) {

changed = processDraggingCardView ((CardvView) w);
} else if (w instanceof ColumnView) {

31

changed = processDraggingColumnView ((ColumnView) w);

}

// try auto moves

if (changed) {
((FreeCell) theGame) . tryAutoMoves () ;

}

// release the dragging object and repaint everything
c.releaseDraggingObject () ;
c.repaint () ;

The reason for inserting this code here is to demonstrate the intertwined logic of these
controllers. This one, for example, is able to process cards being dragged to the base pile from a
free cell or one of the buildable piles. It also automatically advances any automatic moves that
the game of FreeCell can determine to execute. We are omitting the additional detail found in the
processDraggingCardView and processDraggingColumnView methods.

In poorly designed code, the Controller logic is intertwined with the Model and View
classes, which reduces their reusability and overall coherence. However, when they are cleanly
separated, the Controller classes quickly become overly detailed and complicated.

In Java — indeed in any object-oriented language — the unit of composition is an object
(which really means the class used to define the object). Because the controllers contain the true
logic, they often are not reusable themselves, as Heineman observed [9]. The irony is that the
reusable model and view widgets have none of the Solitaire behaviors associated with them,
whereas the non-reusable controllers contain all of the “important” code for the solitaire

variation.

32

3.2. KombatSolitaire Feature-Based Design

Heineman observed that using MVC naturally leads to the inability to reuse controllers
[9]. Domain experts have considerable expertise in using inheritance to capture the rich
information to be stored in a model. HCI experts show how to build user interfaces that decouple
the model from the view presented to the users. But the complex logic found in controllers can
quickly be unmanageable because of the inherent limitations of the basic extension constructs in
0O programming languages. Since business logic is encapsulated within controllers, MVC may
actually be an impediment to the proper reuse or extension of business logic. For this reason,
Heineman investigated how to convert the KombatSolitaire code base into features, using
Batory’s AHEAD tool suite. Ultimately the final system was realized using the FeatureIDE
Eclipse Plugin.

The layers designed for this solution are intended to be the unit of composition, rather
than individual classes. To achieve this goal, the premise is that as each additional layer is
composed, there will always be a working solitaire implementation, albeit one with reduced
functionality.

To represent a composition of layers, we use the dot ® notation. Starting from the game
layer, one constructs a solitaire variation by the repeated composition of additional layers as
designed in the solitaire solution space. In general, a solitaire variation is defined by equations of

the following form, using features defined earlier.

variation = {Variations} e {moves} e {types} e game

Let’s propose the following as the simplest Solitaire variation.

33

There is a deck of cards and two piles. To deal a card from the deck to the empty
waste pile, click on the deck. Players can drag the card from the waste pile to the

home pile. Once all cards have been played, the game is over.

To assemble this variation using Features, you use existing layers and write three

additional layers to describe the layout and the rules for this variation. Here is the final equation

simplest = { SimplestRules, SimplestLayout, Simplest, Variations} e {deckToStack,

stacktostack, moves} e {pile, deck, integer, types} e game

Most of these features are pre-existing and exist to support other solitaire variations as
well. This exercise will demonstrate that it is possible to assemble an implementation of a
solitaire variation predominantly from existing Feature layers.

The design of these layers support the model-view-controller (MVC) paradigm inherent
in the underlying Java object-oriented implementation, however the true novelty appears when
expanding (or contracting) the basic elements in a solitaire variation.

The best way to explain the logic is to show the full details for one of the layers, in this
case, the pile layer, which contains the following JAK artifacts:
class FlipPile extends Move
refines class Game
class PileAdapter extends MouseAdapter

class PileManager
class PileToPile extends MoveCardMove

34

The pile layer refines an existing class (Game) and introduces four new classes to deal
with the behaviors associated with Solitaire piles. Specifically, you can view only the top card in
a pile, although it may contain any number of cards. You can interact with a pile by removing its
top card (pressing the left mouse button) or releasing a card (or a column of cards) onto the pile
(by releasing the left mouse button over the pile).

The PileAdapter class extends MouseAdapter which allows it to be a drop-in replacement

for any MouseL.istener interface.

<< heineman adds more detail on Simplest>>

35

Chapter 4. Methodology

Like in the construction industry, you would have to know what you are going to build
before you can build it. So the first step in methodology is what software will be integrated and
figure out integration method. We need to integrate between ASSISTments with other Learning
Management Systems (LMSs) to utilize research in educational data mining and to share content
across educational community. The contents of LMSs can be accessed immediately by all users
(teachers, student, parents and administrators etc.) — all applications appear in one system,
through a seamless online environment with a single sign-on learning portal.

The goal or scope of the thesis is to implement a system based layers that generates

connector code for each of the system need to be integrated with ASSISTments.

4.1. Our Approach

K.Lee et al, 2000 proposed Feature-Based Object-Oriented Engineering, or Feature-
Oriented Reuse Method (FORM), which instead identifying objects by popular method such as
Keyword analysis [10][11], structured analysis [12], scenario-based analysis [5][6], but identify
reusable objects by linking feature categories to object categories. FORM could extract
important relationships between objects (aggregation and generalization) from feature model
(composed-of, generalization, and implemented by). This leads FORM method favor object
composition than class inheritance when design and development of reusable components (e.g.,

modules).

36

Feedback

Feature Model

Object Extraction

Candidate
Objects

Object Organization

Organization Support

g4 Object Model

Figure 4.16. FORM Methodology

Our approach, however, does not start with feature model. What we believe is that even

objected that properly abstracted and modeled for future reuses more likely subject to change

than functions [15][16].

Working QOOF
Connector Code

Refactor

Configure & Create

Build Features

Figure 4.2. Our Methodology

37

To capture all the variants of each connector code, before going into integration layers
design step, we programmed a prototype of integration between ASSISTments and inBloom.
After that, there is one prototype need to be integrated with ASSISTments including: Edmodo.
All two systems are what client requests to see the integration works. Then we can gather more
functional requirements from the client based upon prototype system. All of the prototypes be
programmed in Java.

After capturing all variants of integration between systems, but before writing any layer
code, we first design integration based layers. Those layers could be assembled to satisfy all
functional specification that describes in detail the functions to perform by the system.
Moreover, those layers should be assembled easily enough to generate connector code.

Once all appropriate layers and specifications have been determined, the development of
system based layers is started. During the development process, we perform unit test to verify
new layers system reliability by comparing the result of integration with each prototype system.
Finally, we can test the entire system by generating separate connector code for not only all

inBloom and Edmodo, but also any system that desire.

4.2. Connection Model

Integration between two systems, even they are built for similar purpose, can be very
complex process, since they can be very different in nature.

Each Learning Management System (LMS) provides its own interface, which is defined
by an API (Application Programming Interface), to enable it to communicate with other systems
according to a particular set of rules. Because of each own particular API, you cannot
immediately "plug and play" one system to communicate with others; we need connector code.

Figure 1 below is the flowchart describes connecting between systems:

38

ASSISTments

Figure 4.3. Sample integration between LMSs

The connector code above is specialized code that adapts to particular rules of both
ASSISTments and inBloom to make them work together. When ASSISTments wants to connect
with another LMS, Edmodo for example, this connection again requires writing special purpose
connector code between two systems with independent APIs. Much of the effort in writing these
connectors will be wasted because of the way that the object oriented code has to be written. The
primary issue is the lack of modularity in object-oriented design patterns [1]. When code
implements an interface, the internal (almost arbitrary) code written cannot be used and
extended; rather this leads to copy/paste style reuse when attempting to bridge to multiple

systems.

Figure 4.4 shows an example of creating grades using ASSISTments API with inBloom
and Edmodo. Consider how we would export grades out of ASSISTments. In this figure, we
shows the schema differences in the APIs of inBloom and Edmodo. Some of this functionality

can be shared but there are noticeable differences.

39

inBloom_CourseTranscript

creditsEarned
educationOrganizationReference
studentiAcademicRecordld
finalLetterGradetarned
courseld
finalNuseeicGradetarned
gradelevelwhenTaken

ASSISTments_Student_Grade courseAttesptResult

studentId
gradeType

B

Figure 4.47. Multiple instances of connector code adapt to each system

The premise of this thesis is that we need to properly engineering “glue” or bridge code,
and existing languages do little to help the reuse problem in this domain. Rather we must turn to
a model that allows code to be woven together to achieve reuse. As shown in the figure above,
the processing of extract data for sending and receiving is similar but data fields are different.
These differences lead to diverse behaviors in object-oriented design. Recently, in Software
Engineering, there are advanced programming techniques gain momentum to encapsulate
variability such as Feature-Oriented Programming (FOP) or Aspected-Oriented Programming
[2][8]. In this thesis work, we propose to design features that are not rigidly based upon class

structure, and can be composed appropriately to create different connecter code as desire.

40

Chapter 5. Connector Code

5.1. Overview integration between ASSISTments and inBloom

Figure 5.1 is the scenario promoted for integrating between ASSISTments and inBloom.
This has been coded and tested to work successfully in connecting two systems.

Two big rectangles represent two systems needed to be connected. Left hand side is
inBloom and right hand side is ASSISTments. Each rectangle inside is an operation which
triggered by the connector code. The arrows show data exchanged between two systems and
managed by connector code. The down arrow in each system shows the previous step needed to
be completed in order to continue. In this diagram, some required bean classes of connector code
map to object of two systems not to be listed here. Those bean classes are required to build,
serialize objects to json data and deserialize json data to objects. Example of the bean classes
will be provided in later part of the thesis.

In this scenario, the upload back students grade into inBloom is optional. For the current
release of connector code, ASSISTments does not support API to get student grades. The code of
submitting back data to inBloom is done by screening ASSISTments HTML report, based upon
some predefined text to obtain student performance result. Crawling large text file to extract

desire data is not an efficient method.

41

Teacher

Item Report
Class: Re-do Class (Apr 09, 2014)

Section: | Entire Class v

Automatically refresh report every 2 mirutes

Hide Carrect Answers Row

Refresh Now

Downlosd Report to: Soreadshest

S aomranien orias e e ssaconn eaacn
o slrsuny sy s, sbnsy T, Tee
langnvmzel RMAMOY pygien mudive sden paadees
ow Gaagh %
%52 o 20 158
CrackariNitnar x v x x
e i B 8187 2 n
i x v o
e © " w17 w
Fatter,sarr 5 3 " X
sl o8] 54 % int requestag
E v © v o
— © 565 m

[1. GetinBloom Teacher w

ttpsy/testl assistments.org/teache

Figure 5.1. Screening ASSISTments HTML Report

Connector Code

Authorize. java
GetStudent.java
TransferUserFrominbloom.java

L

(@ Real-Debrid | Q.. T3 Oreilly-Algorith...
.

CJ Interview (3 Leaming Tech [greeksforgreeks...

¥le="pasaing

ASSISTments

(—)

2. Create Teacher, Student

>

(Name, Email, Username) J

3. Create Course
(including other dictionary data
required by inBloom)

lgssa2ans—

e

5
o

/

CreateAlssignment.java
CreateClass.java

lgssa00ns—

5. Enroll Student
to new Course
(including create course
dictionary data required by
inBloom)

PELELLT -

Accounts

B\

4, Create Class, Assignment fo]

class
(including other dictionary data
required by ASSISTments such as

link class to teacher)

(S5822N5—

6. Enroll Student
to new Class

Click on assignment

£

uccess

7b.Students do assignment]

9. Check Transfer

UploadGradeTolnBloom.java

L
(

8. Teacher submit Assignment

(login inBloom to check the data |«
transfer from ASSISTments)

Performance back to inBloom

Figure 5.2. Promoted integration scenario with inBloom

42

5.2. Overview integration between ASSISTments and Edmodo

Below is the high level view of integration between ASSISTments and Edmodo. The

scenario is very similar to inBloom. Then naturally, the class structure is similar but the code

inside is different in some senses. For example, with inBloom, Authorize.java have to deal with

OAuth2 security while with Edmodo is OAuth.

1. Get Edmodo Teacher and

Connector Code

Authorize.java
GetStudent.java
TransferUserFromEdmodo. java

L

ASSISTments

[a—

2. Create Teacher, Student

»

(Name, Email, Username)

Students }

[S522INS—

2. Create dictionary data (that
required in Edmodo, such as
Assignment)

=

e

/

CreateAssignment.java
CreateClass.java

7a. Students login Edmodo

4. Create Class, Assignment for
class
(including other dictionary data
*,’T’/_é required by ASSISTments such as

l Accounts

link class to teacher)

-55822N5—

6. Enroll Student
to new Class

-
>

Click on an app J

| UploadGradeToEdmodo .java‘

[7b.Students do assignment }

(8. Teacher submits Assignment

9. Check Transfer J

Lperformance back to Edmodo.

Figure 5.3. Promoted integration scenario with Edmodo

43

5.3. Detailed Integration Scenario with Edmodo

With all the scenarios below, the integration process is activated by Edmodo site. It

means teachers and students have to have accounts in Edmodo site first.

00435 ea)

ASSISTments

sanbai puag sanbai puag
| |

sanbay pug
|

3fessay Jou3 fejdsig

Connector

Edmodo

Iie3

Jies

14 J0sSEINg
M 3suodsay

Aold
PR 183y [scapng

SUN0IIE SJUIPNIS

SEIgsse

530005

sa)
SI3qWaN

15anbay yaune]

7
=
= 0
a5

dnaunjsanbay

23 428G pu3g

sanbal pusg

5anbal puag

JuBwugisse
ue 3jean 03 3pAI
035U ISISSY 45y

=
£
E]

oN

Y
s1qWwaw dnosd
i 3sundsay

E12p §28q pus;

a
=
0
=
E

Figure 5.4. Edmodo Integration Flowchart

3]0y JaYea) :MO|IION 0POLUPT PUB SIUBLS|SSY

44

First of all, teachers in Edmodo would know about ASSISTments. They could search in

Edmodo Store to install the app from ASSISTments.

Search All Teachers...

ASSISTments Search Apps...
Fublisher . ASSISTments
Publisher
: Fractions: Dividing of class & & 6 which will
Follow Publisher App
Q Posts Y Please suggest me as early as possible. i will be highly oblised for the same.
9 Collections > ® Nov2s, 2013 - @ ~

Figure 5.5. Teacher search for app

connect to

Available Credit

$5.00

® Purchase Credit

Add to Wishlist

Store Home

I3

Manage My Apps 7 1
What is the difference of 8 -3 ?
4 7

Be sure to put a space between the whole number and the fraction in your answer. For example the answer

Account History should look like this: 6 2/3. Not like this: 62/3

#
@ Wishlist
®

56/14

Browse by Subject \ J
We will not tell you if you are right or wrong.

Gl Career & Tech Education

Help

You are done with this problem!

Q Computer Technology
Go to next problem (*

@ Creative Arts

Play Demo
Q Health & PE —
Gairloch is a... ?
e 1
m Language Arts @ —_—‘—‘—‘w?.::::,.) ‘ "; >
T } P ¢
@ Math F—_*“—"i: ey :

Figure 5.6. Teacher installs the app

45

The teacher then makes decision to install the app. Teacher has to pay the fee if needed.
In case the app is free, teacher can immediately chooses which groups of students the app

applied to. And the app then automatically appears in students view.

Available Licenses

Unlimited - Expires Jan 23, 2015

Install App In One or More Groups
™ Group 2

Learn more about your Edmodo Store app license

Total: $0.00

¥ | Agree to the End User Agreement

Figure 5.7. License and Group of students the app will be applied to

Please notice that each ASSISTments app is one problem set. So readers can assume that
there would be hundreds of ASSISTments app in Edmodo. If the teacher first installs

ASSISTments app, via Edmodo API, below are what information we can get:

Teacher user_token: unique number that identify user in the system.
first_name

last_name

user_type: TEACHER

time_zone

groups: list of group that teacher are the owner.
access_token: Authorizes and authenticates user login and
permissions.

Student user_type: STUDENT
user_token
first_name
last_name

Table 5.1. Example API return.

Based on those information get from Edmodo, ASSISTments automatically does

following steps:

46

1. Create principal account for teacher with assume that:

+ login name: user_token @edmodo.com (538237@edmodo.com)

+ email: login name
+ First name: first_name
+ Last name: last_name
+ Password: randomize (then would reset later if teacher provides the real email address)
+ display name: first_name last_name

2. Create proxy account for students:
+ Username: first_namelast_name. Notice that student never have to login ASSISTments
so Username just for tracing purpose.
+ First name: first_name
+ Last name: last_name
+ display name: first_name last_name

3. Automatically enroll teacher and students into “Edmodo School” (with assume that this
school is created beforehand).

4. Automatically using teacher permission to create class. Class name is the combination of
teacher name, skill builder name.

5. Enroll students in class.

6. Automatically create a new assignment and assigns to students.
Now both students and teacher from Edmodo can be navigate to ASSISTments without

any login required from ASSISTments.

47

mailto:first_namelast_name@junk.com
mailto:lindakim@junk.com

Search posts, groups, users, apps and more

3

Mumeral to Edmodo Planner
words 2. M.

Figure 5.8. Teacher launches ASSISTment app. He/she automatically forward to ASSISTments without
prompting ask for credentials

In case of students:

ASSISTments and Edmodo Workflow: Student Role

Start to use ASSISTments

Edmodo

Connector

Display Error Message

ASSISTments

Figure 5.9. Integration detail steps between ASSISTments and Edmodo under Student Role

In both cases, if teachers or students launch the app successfully, they will be forwarded

inside ASSISTments, which is embeded as an iFrame inside Edmodo.

48

Edmodo | Numeral © %

\

<« C' | & httpsy//wpiassistments.edmodobox.com/home#/store/app/?app_id=1152 o =

Numeral to words 2.NBT.A.3 E |

T R
ASSiSTments Il Student Budddent MRS Linda kim (1056265b05d@edmodo.com) Logout

Comments on Problems Messages Preferences Need help?

Classes View Disabled Classes

Group 1 1-1

Grade:
Automatically Disable Class On: May 04, 2015

disable now

Roster Edit Class Info [+] Class
Settings

=
07 New Class

Content to Assign Close all
[23 problem Sets I've Built Create Sub-folder
23 My Folder Items Create Sub-folder Add

Figure 5.10. ASSISTments appears inside an iFrame in Edmodo

5.4. Object Oriented design and implementation
The bridge code is actually a servlet runs on Apache Tomcat server and waits for . It
handles requests from source system, manipulate them to adapt to target system’s API, sends
request to target system, receives respond from target system, manipulate the respond and

forward respond to source system.

49

{edmodo]

Request Response

Java servlet (AuthorizeServlet, GetUserProfile, etc.)

Controller Create User Connector
Database

[Create School

CreateClass

UserDao

Data Access Obje
SchoolDao

ClassDao

Java servlet (CreatePrincipalUser, ActivePrincipalUser,CreateClass,etc.)

ASSiSTments

Figure 5.11. High level connector design

When we successfully did object-oriented approach for bridging ASSISTments with both
inBloom and Edmodo, there are the structure of code in both package are very similar. Below is

the packages in two solutions:

Table 5.2. Connector code packages listed

inBloom Edmodo
assist.bean assist.bean
assist.job assist.job
global global

50

inbloom.bean edmodo.bean

inbloomJob edmodoJob
inbloomLogin edmodoLogin
utilities utilities

Details of these package classes are listed in an Appendix C.

In the context of functionality, we can see the similar in code structure in both solution.
Both solutions have 7 packages and each package pair inline exposed very similar
functionalities.

The assist.bean package contains data objects that map to API payload of ASSISTments.
It also contains Serializer object responsible for serial data object into Json format. And
assist.bean also contains the data access object that map to data fields in database.

This Json object then be transferred between system via Internet.

package assist.bean;

public class Class {

private String courseName;

private String courseNumber;

private String sectionNumber;

public String getCourseName () {
return courseName;

}

public void setCourseName (String courseName) {
this.courseName = courseName;

}

public String getCourseNumber () {
return courseNumber;

}

public void setCourseNumber (String courseNumber) {
this.courseNumber = courseNumber;

}

public String getSectionNumber () {
return sectionNumber;

}

public void setSectionNumber (String sectionNumber) {
this.sectionNumber = sectionNumber;

}

51

Figure 5.12. Sample code to present json object

public class ClassSerializer implements JsonSerializer<Class> {

QOverride
public JsonElement serialize(Class classObj, Type type,
JsonSerializationContext context) {

final JsonObject jsonObject = new JsonObject () ;
jsonObject.addProperty ("courseName",
classObj.getCourseName ()) ;
jsonObject.addProperty ("courseNumber",
classObj.getCourseNumber ()) ;
jsonObject.addProperty ("sectionNumber",
classObj.getSectionNumber ()) ;
return jsonObject;

Figure 5.13. Sample code to serialize an json object

public class ClassDaoBean implements Serializable {
private String partner refernce;
private int external refernce type id;
private String external refernce;
private String user access_ token;
private String partner external reference;
private String user connector token;
private String note;

public String getPartner refernce() {
return partner refernce;
}
public void setPartner refernce(String partner refernce) ({
this.partner refernce = partner refernce;
}
public int getExternal refernce type id() {
return external refernce type id;
}
public void setExternal refernce type id(int
external refernce type id) {
this.external refernce type id = external refernce type id;
}
public String getExternal refernce() {
return external refernce;
}
(..0)

Figure 5.14. Sample code to represent data access object

52

In the assist.job package, all classes are servlet and responsible for sending GET request
to ASSISTments by using ASSISTments API. Each servlet is invoked automatically if dictionary
data need to be created in ASSISTments side or manually if users trigger an event in external
system side.

Invoked automatically if a new teacher from a new system wants to use ASSSITments.
The bridge code will ask ASSISTments to automatically teacher into school without teacher
notice.

Invoked manually if teacher requests such as he/she wants to create assignment in

ASSISTments. Then the bridge code will ask ASSISTments to do so.

Figure 5.15. Example code invoked automatically.

String nces = ApplicationSettings.SchoolNCES;

School school = new School();
school.setNces (nces) ;

GsonBuilder gsonBuilder = new GsonBuilder();
gsonBuilder.registerTypeAdapter (School.class, new SchoolSerializer());
Gson gson = gsonBuilder.create();

String payloadJdson = gson.todson (school);

(...)

String resJson = ASSISTAPIUtilities.getJSONNotBehalf (APISchool,
payloadJdson) ;

Gson gsonSchoolRef = new GsonBuilder () .create();
SchoolRef schoolRef = gsonSchoolRef.fromJson (resdson, SchoolRef.class);

Global package

This package contains configuration information for the bridge code to work. Those
global settings are used everywhere in the bridge code and convenient to access. The information
such as ASSISTments API URLs are stored here.

External system bean

53

The external system beans, such as edmodo.bean or inbloom.bean, are very similar to
assist.bean in structure of code. But their functionalities are map external system API object. The
difference is all of the objects are transaction objects because dictionary data already exist in
external system. We should notice again that external system is the trigger entity. And all the
dictionary data needed to be set up beforehand to allow trigger to be fired from external system.
External system job

Similar to assist.job package, all classes under inbloom.job or edmodo.job are servlets
and controllers. Those servlets receive requests, initiate correspond controllers then and waiting
controllers to be invoked. Transactions are invoked manually with users notice or automatically.
Example of invoked automatically such as connector code wants to get more detail information
of user by sending extra API request to Edmodo.

External system login

The login functionality is grouped in separate package because of its natural complexity.
Each external system has its own authentication and authorization methods to validate users. For
example, with inBloom, it uses 0Auth2 and with Edmodo it uses oAuthla.

Utilities package

This package has classes responsible for constructing API requests to ASSISTments or
Edmodo. Methods in those classes are static and are invoked by controllers when needed. It also
handle the response returned. And when it finishes, it will return control to controllers with status

of response is valid or exception occurs to let controllers what need to be done next.

public static String sendURLGet (String fullURL) {

BufferedReader reader = null;
String checkResponse = "";

54

try

URL url = new URL (fullURL) ;
HttpURLConnection connection = (HttpURLConnection) url
.openConnection () ;

connection.setRequestMethod ("GET") ;

BufferedReader in = new BufferedReader (new
InputStreamReader (
connection.getInputStream())) ;

ApplicationSettings.setErrorStatusCode (
connection.getResponseCode ()) ;

String inputLine;

StringBuffer response = new StringBuffer();

while ((inputLine = in.readLine()) != null) {
response.append (inputlLine) ;

}

in.close();

checkResponse = response.toString();

} catch (Exception e) {
System.out.println ("An error might occur with sendURLGet:
" + fullURL);
e.printStackTrace () ;
ApplicationSettings.setErrorTitle ("Error while
communicating with Edmodo. We are sorry cannot proceed

further!");
ApplicationSettings.setErrorDetail ("An error
might occur with sendURLGet: " + fullURL);

return null;

}

return checkResponse;

Figure 5.16. Sample code to send API request.

public String getProfile (ArrayList<String> userTokens) {

String request = "";
setResources ("profiles") ;

Gson gson = new Gson();
String userTokensJson = gson.toJson (userTokens) ;

request = "/" + getResources() + "?" + "api key=" +
getApi key()+"&access token="+getAccess token()+"&user tokens="+userTokensJs
ony

request = ApplicationSettings.EdmodoAPIBase + request;

return request;

55

Figure 5.17. Sample code to construct API request.

56

Chapter 6. Featured-based Approach

P. Elizondo and K-K Lau proposes different approach than direct and indirect message
connector approach [27]. As illustrated in the figure below, components do not call methods in
other components. Instead, all method calls are initiated and coordinated by the connectors. The

round dots denote the origins of the communication and coordination.

Figure 6.1. Proposed approach for connectors

This is clear contrast to both direct and indirect messaging technology since components
originate communication and coordination. And they are convinced that their connector types
support reusable not only at design but also at implementation phase.

And we found that our connector works as similar as Elizondo and Lau suggested. As
describe before in connection workflow in Figure 5.4, users from Edmodo initiate the process
then that is all. Subsequence steps are to be performed by the connector. The connector invokes

ASSISTments or Edmodo services when it needs.

57

6.1. Refactoring OOP to extract features

A feature is a unit of functionality of a software system that satisfies a requirement.
Therefore in attempt to refactor already working code, we move all the functionalities into
features. However, we still have to keep the service handler in the object-oriented project. This is
because for the time being, FeaturelDE cannot create a dynamic website project. So the OOP

dynamic web application will delegate its work to correspond feature.

@WebServlet ("/CreateAssignment")

public class CreateAssignment extends HttpServlet ({

private features.CreateAssignment f createAssignment = new
features.CreateAssignment () ;

protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {
f createAssignment.doGet (request, response) ;

Figure 6.2. OOP dynamic website invokes a feature

public class CreateAssignment {
public void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

Below is the model of Edmodo feature for the first attempt:

EdmodoFeature Legend:
P SN < Optional
— e A T Abstract
Base Authorize | Global | assistJob edmodoJob Concrete

Figure 6.3. Edmodo Feature

58

6.2. Layers design and implementation

A layer is a set of files that define a feature of an application. Code representations are
expressed as .jak files. For convenience, we list the integration scenario of inBloom and
ASSISTments below for reference. In this scenario, we remove all the java classes represent
controllers in OOP approach. We replace those controllers by layer classes. Detail of the
designation is listed below.

And because of similar features design and implementation between feature-based

connector between inBloom and Edmodo, we are going to list features of Edmodo connector

code.

1. Get Edmodo Teacher and

Students 2. Create Teacher, Student

Accounts

(Name, Email, Username)

e Ve \
S 4, Create Class, Assignment for

class

——— | (including other dictionary data
required by ASSISTments such as

link class to teacher)

@
£
&
a8
B
@
2

3. Create dictionary data (that
required in Edmodo, such as
Assignment)

5. Enroll Student

tonew Class

7a. Students login Edmodo
Click on an app

7b.Students do assignment

8. Do Assignment
9. Check Transfer (Students login and do the

w

Figure 6.4. Edmodo Integration

59

6.2.1. Get Edmodo Teacher and Students

Feature: Authorize.jak.

Initiate entity: Edmodo users

Functionalities: An Edmodo user clicks one ASSISTments app. This app automatically
send an API call to connector code requesting to launch ASSISTments app. Connector code
handles the request but there is some security check happen there. The connector code has to
make sure who is making the request by checking known api_key.

Connector code then has to check whether or not it is the user first launch ASSISTments
app.

If it is the first launch then it has to save user information such as user_token from
Edmodo into connector database and then automatically request ASSISTments to create user
account. If a user is a teacher then students accounts in his group also created.

If users already have accounts then he/she is forward directly inside ASSISTments.

6.2.2. Create Teachers and Students accounts in ASSISTments

Feature: TransferUserFromEdmodo.jak.

Initiate entity: Automatically invoked after Authorize.jak

Functionalities: Right after authorize and authenticate users from Edmodo, connector
sends request to create user accounts in ASSISTments. Normally, accounts will be created in
ASSISTments. Teacher will be a principal account and student will be a proxy account. If there
is something wrong with the process then Edmodo user will be saved in connector database

without creating a new users in ASSISTments.

60

6.2.3. Create dictionary data in Edmodo

Feature: CreateAssignment.jak.

Initiate entity: Automatically invoked when TransferUserFromEdmodo.jak finishes.

Functionalities: This will be invokded when ASSISTments allows teacher to create an
Edmodo assignment. This function maybe useful when teacher wants to transfer students

performance from ASSISTments back to Edmodo.

Me to @ASSISments_Skill_Builder
My Assignment
==

Turned in (0) Due Dec 30, 2014

Operations and Algebraic Thinking

ASSiISTments.

A Free Public Service of Worcester Polyrechnic Tresriniste

Figure 6.58. ASSISTments final screen

6.2.4. Create school data in ASSISTments
Feature: CreateSchool.jak
Initiate entity: Invoked automatically by connector after successfully create user

accounts in ASSISTments.

Functionalities: In order for users do his/her normal job in ASSISTments, ASSISTments
requires he/she needs to be assigned to a school. If user from Edmodo has valid school NCES
code then new school automatically created if this school is not existed before. Otherwise,

teacher and his students are in “Edmodo School”.

6.2.5. Assign users to school.

Feature: AssignUserSchool.jak
61

Initiate entity: Invoked automatically by connector after school created in ASSISTments
Functionalities: Schools are required for every users in ASSISTments. This feature does

assign new users to a school.

6.2.6. Create class

Feature: CreateClass.jak

Initiate entity: Invoked automatically by connector after assigning users to school in
ASSISTments

Functionalities: Teacher needs class to organize his/her students. ASSISTments requires
teacher access_token to behaves on his/her behalf to create class. One group in Edmodo
correspond to one and only one class in ASSISTments. Number of groups in Edmodo will be

created exactly the same number of classes in ASSISTments.

6.2.7. Enroll students in class in ASSISTments

Feature: EnrollStudentClass.jak
Initiate entity: Invoked automatically by connector after creating classes.
Functionalities: Students with the same group in Edmodo will be automatically enrolled

into the same class in ASSISTments.

6.2.8. Create assignment in ASSISTments

Feature: CreateAssignmentASSIST.jak

Initiate entity: Invoked automatically by connector after assign users to school in
ASSISTments

Functionalities: Connector code automatically send REST API to ASSISTments to

request for creating an assignment in ASSISTments. Each ASSISTments app in Edmodo is one

62

assignment in ASSISTments. With this, students from Edmodo can login and do the assignment

in ASSISTments.

6.2.9. Student login Edmodo to do assignment in ASSISTments.
Feature: Authorize.jak

Initiate entity: Students in Edmodo

Functionalities: Students from Edmodo click on an ASSISTments app and they are able
to forward inside ASSISTments to do the assignment.
6.2.10. Transfer back assignment grade back to Edmodo

Feature: ScreenHTMLReport.jak and UploadGradeToEdmodo.jak

Initiate entity: Teachers in Edmodo

Functionalities: This functionality is optional for a teacher in ASSISTments when they

want to send back the grade to Edmodo. First of all, the connector code will crawl generated

HTML report in ASSISTments, reads each student performance. Then connector code sends

request back to Edmodo to update or create new grade there.

63

Chapter 7. Conclusions and Future Work

7.1. Conclusion

In this thesis, we put forward the idea of using Feature-Oriented Programming technique
in practice by developing connectors between systems. In the first part, we introduce the basic
concepts of FOP with examples from academics simple program HelloWord to Linux
configuration tool, an industrial complex program. Then we go more in-depth details on
designing and implementing the connector code by using Objected Oriented Programming
technique. This step is important since FOP is an extension of OOP. The successful of the OOP
solution is illustrated by having many ASSISTments apps reviewed by Edmodo development
teams and appears in Edmodo Store.

By having working OOP connector code, we can capture all the variations of each
working solution between ASSISTments and inBloom, and ASSISTments and Edmodo. Then
we refactor OOP connector code to develop working connector solution in FOP. However,
during the time of the thesis work, FeatureIDE does not support for creating dynamics web
project. So we have no choice to keep the servlet class structure from OOP and apply to FOP.
Most of effort reduced is in development of controller classes in FOP ASSISTments side.

The main contribution work of this thesis is to represent a case study to integrate systems
using FOP technique. There are no literature on integrating system using FOP but similar
concepts in Component-based Software Engineering. Based upon this thesis work, we conclude

that using FOP technique is totally possible and very promising on integrating systems.

64

7.2. Future Work

FeaturelDE currently one of the best academics tool supports for Feature-Oriented
Software Development. However, this tool is still in early development stage and not all standard
Java is supported such as ability to create dynamics web application. FeaturelDE is open-source
and published under General Public License, so developers are encourage to extend it. We hope
that in the near future, we could spend effort to the development of FeaturelDE by let it

understand web application notation.

In this thesis work, we only have the connector code working for two prototype systems,
Edmodo and inBloom. Since we are receiving increasing requests to integrate ASSISTments
with Learning Tools Interoperability (LTI), we hope that in the near future, we could advance the

thesis work by integrating seamlessly more learning management systems with ASSISTments.

65

Appendix A. Example of data return back from Edmodo

Teacher

and student tokens

Teacher

user_token: unique number that identify user in the system (do not change).
first_name

last_name

user_type: TEACHER

time_zone

groups: list of group that teacher are the owner.

access_token: Authorizes and authenticates user login (change each time app
launched)

Student

user_type: STUDENT

user_token: unique number that indentify user in the system (do not change)
first_name

last_name

access_token (change each time app lauched)

Teacher

school profile

Profile

edmodo_school_id:123456
nces_school_id:ABC987654
name:Edmodo High

address:1200 Park Place, Suite 350
city:San Mateo

state:CA

zip_code:94403

country_code:US

Group Info

Group

group_id:379557

title:Period 1

member_count:20,

owners:[
b020c42d1,
693d5c765

1,

subject:Math,

sub-subject:Algebra

start_level:9th,

end_level:9th

66

Appendix B: Connector code table

B1. API tables already exists in ASSISTments:

B.1.1. external _reference_types

This table provides type of reference created.

Field

Type

Foreign Key

Note

id

integer

table_name

characterf]

Values now:

. users

. schools

. student class sections
. class assignment

. individual assignments
. student classes.

OOk, WN R

B.1.2. external references

This table will tell what type of data created via APl by ASSISTments.

Field Type Foreign Key | Note

id integer

external_reference character[] Values in this column are automatically
generated by ASSISTments
correspond to request to create users,
class, school via API

partner_id integer Point out who makes API request

type _id integer Yes reference to id field in
external_reference_types table

db_id integer Yes reference to id field in correspond

table.

For example, if type_id = 1 (mean
user) then this db_id reference to id
field in users table.

67

B.1.3. access_tokens

Field Type Foreigh Key Note

id integer

user_id character[] Yes point to id field of users table
partner_id integer

expiration timestamp

token characterf]

B.2. A new bridge API tables

Table name: partner_external_references

Field Type Foreign Key Note
id integer
partner_referen | character[] | Shows users Point out who makes API request
ce belongs to which This is the partner’s reference identifier
connecting system. | provided by ASSISTments.
Point to
partner_refernece of
api_partners table.
integer Specifies the object type of
external_refere represented by this row. This is the id
nce_type_id value found in the table
external_reference_types
external_refere | character][] This is an ASSISTments-provided
nce unique identifier to an ASSISTments
object.
The type of object is specfified by the
external_reference_type_id above.
user_access_t | character(] When external_reference refers to an

oken

ASSISTments user, this is the access
token granted to partner_reference to
act on behalf of the ASSISTments
user.

68

partner_extern | character(] This value comes from the partner

al_reference application (or site) and uniquely
identifies an object in the partner's
application.
The type of object is specfified by the
external_reference_type_id above.

user_connector | character[] When partner_external_reference

_token refers to a partner’s user, this is the
access token granted to act on behalf
of the partner’s user.

note text Data, specific to the partner application

/ site, about the object represented by
this row.

69

Appendix C. Connector Classes
C1. Model Classes

4 1 assistbean
. [3] Classjava
. [ClassSerializer.java
. [School java
. [SchoolRefjava
- [3] SchoolSerializer.java
. [7] Userjava
. [1] UserRefjava
» [UserSerializer.java

4 #} inbloom.bean
- [9] AcademicRecord java
- [3] AcademicRecordSerializerjava
. [3] BirthDate java
- [J] CourseOffering.java
- [1] CourseOfferingSerializer java
- [9 CourseSection,java
- [1] CourseSectionSerializer,java
- [3] CourseTranscriptjava
- [1] CourseTranscriptSerializerjava
- [9] CreditsEarned java
- [1] CreditsEarnedSerializerjava
. [4] LinkSelfUserInfojava
- [J] Name,java
. [9] SelfUserInfojava
- [J] SessionCheckjava
. [3] Studentjava

C2. Controller Classes

4 £ assistlob
+ 4] AssignUserSchool.java
: CreateAssignment.java
. [3] CreateClassjava
. [3] CreateSchool,java
. [3] EnroliStudentClass.java
. [3] LinkPrincipalUser.java
. [3] ScreenHTMLReportjava
: TransferUserFromInBloom.java
- [4] UploadGradeTolnBloom.java

4 # inbloomlob
- [1] CreateCourseOffering.java
» [1] CreateCourseSectionjava
- [4] CreateCourseTranscriptjava
- [1] CreateStudentAcademicRecord.java
- [J] GetStudentjava
4 1 inbloomLogin
. [1] AccessToken,java
- [1] Authorize java

References

[1] Hannemann, J., Kiczales, G., “Design Patterns Implementation in Java and Aspect]”,
Proceedings of the 17th ACM conference on Object-oriented programming, systems,
languages, and applications (OOPSLA ’02), Nov 2002.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J.

Irwin. Aspect-Oriented Programming. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), pages 220-242, 1997.

71

3]

[4]

[5]

[6]

[7]

(8]

[9]

D. Batory, J. Liu, and J. N. Sarvela. Refinements and Multi-Dimensional Separation of
Concerns. In Proceedings of the International Symposium on Foundations of Software
Engineering (FSE), pages 48-57, 2003.

H. Ossher and P. Tarr. Hyper/J: Multi-Dimensional Separation of Concerns for Java. In
Proceedings of the International Conference on Software Engineering (ICSE), pages 734—
737, 2000.

P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2002.

K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering. Foundations,

Principles, and Techniques. Springer-Verlag, 2005.

C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proceedings of the

European Conference on Object-Oriented Programming (ECOOP), pages 419-443, 1997.

Czarnecki, K.; Wasowski, A., "Feature Diagrams and Logics: There and Back Again,”
Software Product Line Conference, 2007. SPLC 2007.

George T. Heineman, An Instance-Oriented Approach to Constructing Product Lines from
Layers, WPI-CS-TR-05-06.

[10] Abbott R. Program design by informal English descriptions. Communications of the ACM

1983: 26(11).

[11] Wirfs-Brock R, Wilkerson B, Wiener L. Designing Object-Oriented Software. Prentice-

Hall: Englewood Cliffs, New Jersey, 1990.

[12] Gomaa H. Software Design Methods for Concurrent and Real-Time Systems. Addison-

Wesley: Reading, Massachusetts, 1993.

72

[13] Jacobson I, Christerson M, Jonsson P, Overgaard G. Object-Oriented Software Engineering.
Addison-Wesley: Workingham, England, 1992.

[14] Beck K, Cunningham W. A laboratory for teaching object-oriented thinking. SIGPLAN
Notices 1989; 24(10).

[15] M Kuhlemann, M Rosenmdller, S Apel, T Leich, On the duality of aspect-oriented and
feature-oriented design patterns. Proceedings of the 6th workshop on Aspects, components,
and patterns for infrastructure software, 2010

[16] Thim et al, Applying Design by Contract to Feature-Oriented Programming, FASE 2012

[17] P. Velasco Elizondo and K.-K. Lau, A Catalogue of Component Connectors to Support
Development with Reuse. The Journal of Systems and Software 83(1165-1178), 2010.

[18] Emmerich, W.; Kaveh, N., Component technologies: Java beans, COM, CORBA, RMI, EJB
and the CORBA component model, ICSE 2002. Proceedings of the 24rd International
Conference, 2002.

[19] Nastasi, B.K., & D.H. Clements. Motivational and social outcomes of cooperative education

environments. Journal of Computing in Childhood Education, 1993

[20] Hadley, M., & Sheingold, K. Commonalties and distinctive patterns in teachers’ integration

of computers. American Journal of Education, 1993

[21] Harmelen and Workman, Analytics for Learning and Teaching, CETIS 2013.

[22] Sincero J, Schirmeier H, Schréder-Preikschat W, Spinczyk O, Is the Linux kernel a software

product line? In: Proc. Int’l Workshop Open Source Software and Product Lines (SPLC-
OSSPL), 2007.

73

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=j27MIVUAAAAJ&citation_for_view=j27MIVUAAAAJ:WF5omc3nYNoC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=j27MIVUAAAAJ&citation_for_view=j27MIVUAAAAJ:WF5omc3nYNoC

[23] Tartler R, Lohmann D, Sincero J, Schroder-Preikschat W. Feature consistency in
compiletime-configurable system software: Facing the linux 10,000 feature problem. In:
Proc. Int’l EuroSys Conference (EuroSys). ACM Press, 2011.

[24] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, 1990.

[25] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

[26] J. Liu, D. Batory, and S. Nedunuri. Modeling Interactions in Feature-Oriented Designs. In
Proceedings of the International Conference on Feature Interactions in Software and

Communication Systems (ICFI), 2005.

[27] Thum, T., Kastner, C., Erdweg, S., and Siegmund, N. Abstract features in feature modeling.
In Proceedings of the 2011 15th International Software Product Line Conference, 2011.

[28] A catalogue of component connectors to support development with reuse P Velasco-
Elizondo, KK Lau Journal of Systems and Software 83 (7), 2010.

74

