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ABSTRACT

Tele-nursing robots offer a safe approach to patient care in quarantine areas during pandemics, re-

ducing infection risks for healthcare workers and patients. Theymay also address nursing shortages

and improve healthcare viability by providing remote care in various settings. However, remote

manipulation is a challenging task due to limited feedback, latency, lack of sensory feedback, lim-

ited dexterity, and environmental factors. These factors make it difficult to control objects remotely

with accuracy and precision, requiring advanced technology and skilled operators to achieve suc-

cessful outcomes. In this dissertation, we investigate human-robot interfaces for remote manipula-

tion of tele-nursing robots, which aims to enable effective and effortless control.

This dissertation addresses challenges related to remote manipulation for tele-nursing robots,

focusing on developing workload-adaptive teleoperation interfaces for efficient and intuitive con-

trol, designing human-preferred remotemanipulation assistance based on natural human perception-

action coordination for improved user adaptivity, and additionally investigating the impact of tele-

operation assistance reliability on workload and user preference.

We advance the design of human-robot collaboration for remotemanipulation, enabling humans

and robots to contribute their strengths. We further develop objective engagement and workload

estimation methods using human motion and gaze tracking. The developed human-robot interfaces

are effective across various remote manipulation systems. The dissertation concludes by summa-

rizing key takeaways and identifying potential directions for future research.
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Chapter 1

Introduction

The ability of robots to handle dull, dirty, and dangerous tasks is undoubtedly one of their greatest

advantages. However, robots still lack the cognitive abilities of humans and may encounter unex-

pected situations (e.g., malfunctions, unforeseen obstacles, and interactions with humans) that they

are not programmed to handle. Therefore, human-robot interaction is necessary tomonitor and con-

trol the robot’s actions, provide additional information or instructions, and intervene when needed

to ensure that the robot operates safely and effectively. Some of the most significant challenges

in human-robot interaction are ensuring safety, trust, communication, adaptability, and user inter-

face. Safety is crucial, as robots can pose physical risks to humans if they malfunction or are used

improperly [5]. Humans must trust robots to behave predictably and reliably, and this trust must be

established through effective communication and transparency of the robot’s actions [6]. Robots

need to communicate with humans in a way that is clear and easy to understand [7], which requires

developing natural language processing and other communication tools. Adaptability is essential,

as robots must be flexible and able to adjust to changing environments and situations [8]. Effec-

tive user interface design is critical in enabling humans to control and monitor robots’ actions [9].

With the increasing utilization of robots in various industries, it is crucial to prioritize the seamless

integration of human-robot collaboration into existing workflows, which allows for efficient and

collaborative work between humans and robots, ultimately leading to optimal outcomes.

Motivation of This Work —While the challenges of human-robot interaction are complex, robots

are increasingly being developed to address specific needs in various fields. Tele-nursing robots

1
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have emerged as a promising solution for handling dangerous tasks in quarantine areas [10], par-

ticularly during times of pandemics such as COVID-19 [11] and Ebola [12]. These robots offer a

safe approach to patient care, allowing healthcare providers to remotely monitor and communicate

with patients without the need for direct physical contact. This can significantly reduce the risk

of infection for both healthcare workers and patients as well as help prevent the spread of conta-

gious diseases. Moreover, tele-nursing robots offer a potential solution to address the shortage of

nursing workers and improve long-term healthcare viability for an aging society by providing re-

mote care in hospitals, homes, and nursing facilities. Currently, most of the contemporary nursing

robots (e.g., Intouch RT-Vita [10, 13], Ava [14], BeamPro 2 [15], Vecna VGo [16]) are limited to

providing just mobility and telepresence. A few advanced robot prototypes (see Figure 1.1) can

perform nursing tasks that require manipulation capability and mobility. However, even equipped

with state-of-the-art autonomy, these robots cannot perform nursing tasks at operational speed, or

handle high-complexity tasks. They are also not able to perform reliably without human direct

control or intervention [17]. While teleoperation interfaces become a natural and practical solution

to this problem, teleoperation interfaces may also become the threshold for human-robot teaming.

Unlike surgical robots that are specialized for structured operations, nursing robots are designed for

assisting a wide range of tasks (see the representative tasks in Figure 1.1) that require the coordina-

tion of the control of the robot arm, hand, and base, as well as the active sensors and telepresence.

Prior research has demonstrated that the performance of human-robot teaming via teleoperation is

limited by the usability of control interfaces rather than the robot’s physical capabilities. The high

workload and learning effort associated with robot teleoperation interfaces may prevent nursing

workers from using the nursing robots on a daily basis and impose barriers to the nursing profes-

sion. The recent advances in human-robot interfaces provide a wide range of approaches for the

teleoperation and assistance of complex motion coordination. However, it is still unclear which

interface and assistance design could be most suitable for the remote control of tele-nursing robots.

This dissertation aims to fill the gap in remote manipulation by proposing new design philosophies
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for effective and effortless control methods.

TRINA 1.0 TRINA 2.0 MOXI

Representative Nursing Tasks

Food Preparation Taking Measurement Cleaning

Figure 1.1: The prototypes of advanced tele-nursing robots (i.e., TRINA 1.0 [1], TRINA 2.0 [2],
and Moxi robot [3]) and representative nursing tasks.

Limitation of Related Work— The state-of-the-art interfaces and teleoperation assistance in terms

of freeform control via motion mapping (e.g., motion capture systems [18], portable motion capture

devices [19, 20], and exoskeletons [21]) with action support [22] and shared autonomy [23] result

in an interface design that is dexterous, precise, and reliable in remote manipulation. However,

this type of interface has not been evaluated in the context of nursing robots with the end-users.

Although efficient and intuitive, teleoperation via motion mapping may cause more physical fa-

tigue than conventional desktop robot controllers which has not been thoroughly studied. From

the perspective of active telepresence camera control, previous research has developed interfaces

for intuitive camera control, such as head/gaze tracking [24], and robot autonomy for dynamic

viewpoint selection [25]. However, these designs are mostly hand-engineered and lack a deep un-

derstanding of human behavior and preference for perception-action coupling. Furthermore, they

are designed for single-camera systems and cannot handle active telepresence via multiple cam-
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eras. Moreover, related work has proposed various approaches to assist human teleoperators with

remote perception and motion control. These approaches include enhancing the interface’s sensory

capabilities [26], using alternative sensory feedback [27], and delegating difficult tasks to reliable

autonomous systems [28]. However, existing research mostly compares similar approaches to val-

idate their effectiveness, and no study has compared different types of approaches to inform how

to choose or integrate them when multiple options are available. Lastly, existing research has

analyzed the causes and effects of failures in human-robot interactions and proposed methods to

mitigate negative impacts (see [29]). However, it is still unclear how the frequency and types of

errors affect human performance, workload, perception, and preference for the level of autonomy

in robotic assistance.

Design Objectives — To enable effective tele-nursing, it is crucial that the robot used in the pro-

cess provides manipulation capabilities in addition to navigation and telemedicine. In general, a

tele-nursing robot serves a variety of functions, including communication, mobility, measurement,

general manipulation, and tool use. However, manipulation presents a significant bottleneck as

non-technology experts are required to operate highly complex robots in stressful and time-sensitive

situations for extended periods. Additionally, the level of strength and dexterity required for manip-

ulation tasks can vary significantly, from basic cleaning to precise measurements. The dissertation

addresses these concerns by focusing on three key design objectives for human-robot interfaces.

The first objective is efficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiencyefficiency, which involves completing tasks quickly and effectively, especially

in time-sensitive situations. The second objective is intuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitivenessintuitiveness, which aims to reduce the burden

of learning and increase ease of use. The third objective is ergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomicsergonomics, which focuses on designing

the interface to minimize physical and cognitive workload, allowing for continuous operation over

extended periods. We are also investigating operator augmentation approaches that improve direct

control with sensory assistance and action support. We hypothesize that two key factors can im-

pact the natural and casual use of assistance. The first factor is human preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preferencehuman preference, as people often
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have unique preferences for how they want to receive assistance. By taking human preferences into

account, the robot can be personalized to meet the needs of each user, increasing the chances of

successful user adaptability. The second factor is assistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliabilityassistance reliability, which pertains to the de-

pendability and consistency of the assistive technology. This includes the accuracy and precision

of the technology in performing its intended function. If the assistance technology is unreliable,

users may be less likely to use it due to a loss of trust and acceptance.

1.1 Research Objectives and Contributions

With the objective of enhancing the design of human-robot interfaces for remote manipulation, I

investigate the following research questions:

R1 What would be the most appropriate interface design for nursing robots, tasks, and workers?

Problem Statement — Tele-nursing robots hold great promise for providing solutions for quarantine

and remote patient care. While more complex robotic systems are being developed for human-robot

teaming in future healthcare workplaces, it remains unclear which teleoperation interfaces are most

suitable for teleoperating with a wide range of nursing tasks. Given that end-users, such as nursing

workers, are typically not familiar with robot operation, it is crucial that the teleoperation interface

be efficient, intuitive, and ergonomic.

General Interface Evaluation Specific Effort Analysis Workload-adaptive Shared Autonomy

EMG Raw Data

Muscle Effort

Physical Fatigue

Large-scale 

Movement

Intent 

Inference

Precise

Manipulation
Human Human Robot

Figure 1.2: A proposed framework for the evaluation and evolution of the human-robot interface.
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Proposed Methods —We propose a framework to evaluate the control interfaces to iteratively de-

velop an intuitive, efficient, and ergonomic teleoperation interface (see Figure 1.2). The framework

is a hierarchical procedure that incorporates general to specific assessment and its role in design

evolution. To demonstrate the efficacy of the proposed framework, we conducted three user stud-

ies for the evaluation and evolution of the tele-nursing robot interfaces. Specifically, we compared

three representative interface designs frequently used for the direct teleoperation of low-autonomy

robots (i.e., the robot autonomy is limited to basic collision avoidance and inverse kinematics),

including gamepad, stylus/joystick, and whole-body motion mapping via a motion capture sys-

tem. The evaluations were performed over a set of “pseudo” nursing tasks that require the motion

coordination skills frequently performed in a wide range of nursing tasks, including: arm-hand

coordination (object grasping), bimanual coordination (for handling large, deformable and heavy

objects), loco-manipulation (for navigating in a cluttered workspace), and camera selection and

control to support these tele-actions.

Key Findings and Novel Contributions — Our general evaluation found that: whole-body motion

mapping interfaces have the best task performance and learning efforts among freeform teleop-

eration interfaces for nursing robots. However, it may cause non-negligible physical fatigue and

prevent users from teleoperating with the robots for a long time. Our integrated participant in-

terview and survey also identified and ranked the fatigue-causing factors, including maintaining

steady postures for wrist camera controls and adjusting arm posture for stable object grasping. Our

robot autonomy design and specialized evaluation focused on reducing the physical workload of

the interface and improving the ergonomics of the interface. For the specialized evaluation, we

proposed a novel Electromyography (EMG)-based muscle effort index, to provide a more detailed,

objective, and accurate physical workload assessment. The outcomes of the specialized evalua-

tion validated the efficacy of our robot autonomy design, as well as our proposed framework for

interface evaluation and evolution. We believe the proposed framework, including most of the
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evaluation metrics, is applicable to human-robot teaming interfaces beyond teleoperation.

R2 How to design remote manipulation assistance based on human natural perception-action co-

ordination?

Problem Statement — Among the many aspects of motion control, the coordination between per-

ception and action is most critical to tele-nursing task performance. Knowledge about perception-

action coupling has been leveraged in human-robot interaction to a limited extent and has already

yielded effective models and approaches for predicting human intent [30], optimizing camera mo-

tions and viewpoints [31], interactive perception [32], and sensory augmentation of human-robot

interfaces for motor skill training and rehabilitation [33]. While remote robots limit human percep-

tion andmotion capabilities, they also provide opportunities for the humanmotor system to explore.

Novel perception-action coupling skills do not exist in the repertoire of human motor control, yet

are critical for robot teleoperation.

Tele-nursing Robot 

with Active Telepresence System

Simulated Remote Perception 

Using Wearable Cameras

Video Stream 

from Telepresence Cameras

Head

Clavicle Workspace

Action Perception

Figure 1.3: The novel experimental paradigm to study the perception-action coordination in the
usage of active telepresence cameras.

Novel Experimental Paradigm — The research efforts aim to bridge this gap, by proposing a novel

experimental paradigm (see Figure 1.3) that can simulate human natural behavior and preference
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in the usage of active telepresence. We further conduct comprehensive user studies with this exper-

imental paradigm to 1) discover the perception-action coupling of a coupled human-robot system,

and 2) reveal its implications to the design of robot teleoperation interface and assistive autonomy.

Key Findings — The findings from our human experiment further imply the suitable design for

intuitive camera control and autonomous camera selection. Moreover, people actively resort to

every possible haptic feedback, to compensate for the lost depth information of the visual feedback.

Inspired by this, from a high-level perspective, we propose a philosophy for tele-robotic interface

that we may restore the lost haptic perception by adding vibrotactile feedback, we may replace

haptic with augmented reality visual display, or we may delegate the task components that heavily

rely upon haptic feedback to reliable robot autonomy.

R3 How to achieve augmentation adaptation to distinct feedback mechanisms, types of assistance,

and autonomy levels?

Problem Statement — The use of augmentation techniques can enhance human-robot collaboration

in manipulating tasks. However, achieving effective augmentation adaptation to different feedback

mechanisms, types of assistance, and autonomy levels remains a significant challenge. The existing

interface designs [34] and feedback mechanisms [35, 36] may not be suitable for all tasks, resulting

in a decreased level of control and performance. Therefore, there is a need to investigate how to

achieve effective augmentation adaptation to distinct feedback mechanisms, types of assistance,

and autonomy levels to improve human-robot collaboration and increase user preference.

Proposed Methods — Shown in Figure 1.4, we first implement sensory feedback in terms of haptic

and augmented reality (AR) visual cues to represent four types of information critical to the preci-

sion and performance of a tele-manipulation task, namely: (1) target location; (2) constraint alert;

(3) grasping affordance; and (4) grasp confirmation. We further propose systematic approaches for

perception and action assistance. For perception augmentation, we redesign the layout of AR visual



1.1. Research Objectives and Contributions 9

cues to convey the visual information difficult to perceive in a 2D camera for the pick-and-place

task. We also provide a picture-in-picture (PIP) complementary camera viewpoint from a signifi-

cantly different perspective, in which missing visual information such as loss of depth perception.

The perception augmentation in form of the PIP can be presented always or dynamically given the

robot and task states. And for action augmentation, in addition to the automated precise manipula-

tion provided by shared autonomy control, humans can now use hand pose tracking and a trackpad

on the handheld controller to control the robot’s motions for both freeform and constrained motion.

Another approach is the scaling of the operator-to-robot interface mapping is dynamically adjusted

to support both large-scale movements and fine adjustments. As AR visual cues for remote manip-

ulation with varying autonomy levels are also a crucial concern. We propose a systematic set of

AR visual cues to assist in remote robot manipulation, ranging from direct to supervisory control.

These AR cues provide guidance for the human operator to control the robot’s motion towards a

target, navigate around obstacles in a 3D workspace, and indicate when the robot’s autonomy is

activated and its planned motion or action.

Feedback Mechanisms:

Haptic and AR Visual Cues

Types of Assistance:

Perception and Action Augmentation

Integrated Augmentation:

AR Features for Various Levels Autonomy

AR Visual Cues

Haptic Cues

Figure 1.4: The proposed feedback mechanisms, different types of assistance, and integration of
augmentation.

Key Findings and Novel Contributions — Based on the user study, we found that: (1) transparency,

performance, and workload were improved with the haptic and AR visual cues over the baseline

without sensory feedback. Also, the preference for sensory integration tended to avoid feedback
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overlap when involving the different types of secondary tasks, (2) the effectiveness of and pref-

erence for the perception and action augmentation depend on the task performance objective, the

user’s need for assistance, and the types of users, and (3) participants’ preferred AR visual cues

changed as the level of autonomy increased from direct to supervisory control. Initially, cues guided

human motion for robot control, but as autonomy increased, participants preferred global guidance.

AR cues duplicating the robot’s autonomywere less effective and not preferred. Experienced users’

recommendations influenced participants’ cue preferences regardless of initial selections based on

video instructions. The novel contributions are threefold: (1) a generalizable design of haptic and

AR visual cues crucial for precise and efficient remote manipulation, (2) an integrated comparison

of various perception and action augmentations to facilitate optimal human-robot collaboration in

freeform tele-manipulation, and (3) a novel method for objective estimation of physical and cog-

nitive workload based on human motion and eye-tracking devices.

R4 What are the implications of reliability on the usage of autonomy and how can they impact

human preferences?

Problem Statement — Robot autonomy can provide assistance for perception and action, such as

object recognition, human intent inference, and motion planning and control, in various levels

and types. These assistive capabilities are expected to improve collaboration between humans

and robots in the remote control. However, the reliability of robot autonomy may vary due to

uncertainty in perception and action, as well as the complexity of the task. It is currently unclear

how to adjust the level and type of robot assistance to accommodate these variations in reliability.

Proposed Methods —We explore the impact of robot autonomy reliability on human performance,

workload, and preference for robot assistance in remote manipulation. Our study proposes two

human-robot collaboration (see Figure 1.5) paradigms: shared control, where humans control gross

manipulation and robot autonomy controls precise actions, and supervisory control, where robot

autonomy controls both gross and precise actions, but humans detect and correct manipulation



1.2. Outline of the Dissertation 11

errors. The errors may happen to the autonomous actions triggered by the operator, at the action

level (e.g., picking up the wrong object) or the motion level (e.g., missing to grasp an object).

Human-Robot Collaboration Paradigms:

Shared and Supervisory Control

Error Types:

Sequence and Grasp/Place

Sequence Error

Grasp/Place Error

Figure 1.5: Shared and supervisory paradigms for assisted remote robot manipulation and intro-
duced error types.

Key Findings and Novel Contributions — We conduct two user studies: one to compare the two

HRC paradigms and characterize their effectiveness when the assistive autonomy is reliable; and

the other to investigate how the type and frequency of the errors affect the tasks and human operators

in the two HRC paradigms when assistive autonomy is not reliable. Our results show that: (1) the

interface with a higher level of reliable autonomy yields significantly better performance, lower

workload, and higher user preference but lower engagement, and (2) the frequency and type of

the error have significant impacts on the task performance and human workload but only partially

affects the operator’s preference and usage of autonomy.

1.2 Outline of the Dissertation

Chapter 1 — This chapter introduces the specific application that the dissertation focuses on and

outlines the key research objectives that guide the study.
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Chapter 2

Interface Design for Nursing Robots

Research Question 1

Nursing Professionals

Chapter 4 & 5

Remote Manipulation Assistance

Research Question 3 & 4

Teleoperation Interfaces Perception Augmentation

Action Augmentation

Integrated Augmentation

Sensory Feedback

Chapter 3

Perception-Action Coordination

Research Question 2

Viewpoint Control and Selection

Design Philosophy for Sensory Integration

Reliability of Assistance

Novel Experimental Paradigm

Objective Measurements

Fatigue-causing Components

Workload-adaptive Autonomy

General Interface Evaluation

Specific Workload Assessment

Physical and Cognitive Workload Estimation

Action and Visual Engagement Analysis

Figure 1.6: Dissertation overview.

Chapter 2 — This chapter presents the hierarchical framework that evaluates human-robot inter-

faces in a general-to-specific manner, addressing limitations rather than augmenting autonomous

functions. We apply this to the design evolution of tele-nursing robots, focusing on freeform teleop-

eration skills and the needs of nurses as the primary users. Findings in this chapter were published

in this journal article and these robotics refereed full conference papers:

[J1] T. C. Lin, A. U. Krishnan, and Z. Li, ”Intuitive, Efficient and Ergonomic Tele-Nursing Robot

Interfaces: Design Evaluation and Evolution”, ACM Transactions on Human-Robot Interac-

tion (THRI), 2022.

[C1] T.C. Lin, A. U. Krishnan, and Z. Li, ”Physical Fatigue Analysis of Assistive Robot Teleoper-

ation via Whole-body Motion Mapping”, IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2019.

[C2] T. C. Lin, A. U. Krishnan, and Z. Li, ”Shared Autonomous Interface for Reducing Physical

Effort in Robot Teleoperation via Human Motion Mapping”, International Conference on

Robotics and Automation (ICRA), 2020.

Chapter 3 — This chapter aims to deepen the understanding of human adaptation by proposing
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a novel experimental paradigm that simulates human natural behavior and preferences in active

telepresence usage. We conducted comprehensive user studies with this paradigm to discover the

perception-action coupling of a coupled human-robot system and its implications for designing

robot teleoperation interfaces and assistive autonomy. Findings in this chapter were published in

this journal article and robotics refereed full conference paper:

[J2] T. C. Lin, A. U. Krishnan, and Z. Li, ”Perception-Motion Coupling in Active Telepresence:

Human Behavior and Teleoperation Interface Design”, ACM Transactions on Human-Robot

Interaction (THRI), 2022.

[C3] T. C. Lin, A. U. Krishnan, and Z. Li, ”How People Use Active Telepresence Cameras in

Tele-manipulation”, International Conference on Robotics and Automation (ICRA), 2021.

Chapter 4 — This chapter explores user preferences of remote manipulation assistance include:

1) multi-sensory integration using haptic and augmented reality visual cues, 2) perception augmen-

tation with additional viewpoints for different perspectives on visual feedback, 3) action augmen-

tation with assistive autonomy and constrained/scaled motion, and 4) a combination of perception

and action augmentation with varying levels of robot autonomy and suitable AR features. Findings

in this chapter were published in or submitted to this journal article and these robotics refereed full

conference papers:

[J3] T. C. Lin, A. U. Krishnan, and Z. Li, ”Perception and Action Augmentation for Teleopera-

tion Assistance in Freeform Tele-manipulation”, Submitted to ACM Transactions on Human-

Robot Interaction (THRI), 2022.

[C4] T. C. Lin, A. U. Krishnan, and Z. Li, ”Comparison of Haptic and Augmented Reality Visual

Cues for Assisting Tele-manipulation”, International Conference on Robotics and Automa-

tion (ICRA), 2022.
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[C5] A. U. Krishnan, T. C. Lin, and Z. Li, ”Improve the Control Precision of a free-form Tele-

manipulation Interface”, IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), 2022.

[C6] A. U. Krishnan, T. C. Lin, and Z. Li, ”Human Preferred Augmented Reality Visual Cues for

Remote Robot Manipulation Assistance: from Direct to Supervisory Control”, Submitted to

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.
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Chapter 2

Desirable Control Interface for Tele-nursing

Robot

2.1 Motivation

Prior research has demonstrated that the performance of human-robot teaming via teleoperation

is limited by the usability of teleoperation interfaces rather than the robot’s physical capabilities.

The high workload and learning effort associated with robot teleoperation interfaces also prevent

nursing workers from using the nursing robots on a daily basis, and impose barriers to the nursing

profession. The recent advances in human-robot interfaces provide a wide range of interfaces for

the teleoperation of complex motion coordination. However, it is still unclear which interface

design could be the most suitable for nursing robots, nursing tasks, and workers.

• EMG-based physical workload analysis

• Muscle effort

• Physical fatigue

• Reduction of physical workload evaluation

Subjective Measurements
• Survey

• Interview

• NASA-TLX

• Mental demand

• Physical demand

• Temporal demand

• Performance

• Effort

• Frustration
• Assistive autonomy for precise tele-manipulation

General Evaluation

Objective Measurements
• Learning Effort

• Learning outcomes 

w.r.t. training time

• Task Performance

• Completion time

• Errors

• Interface interaction

• Cognitive Workload

• Secondary task 

Specific Assessment

Design Evolution

Figure 2.1: A proposed hierarchical framework for the evaluation and evolution of the human-robot
interface.
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We hypothesize that the desirable teleoperation interfaces for nursing robots should be effi-

cient (high task performance), ergonomic (low cognitive and physical workload), and intuitive

(low learning efforts). In this chapter, we presented the proposed hierarchical framework for the

evaluation and evolution of a human-robot interface. The concept and the procedures are presented

in Figure 2.1. We first conduct a general user study evaluation, to characterize the interfaces based

on their performance, workload, and learning effort. With the results from this general evaluation,

we further conducted an integrated interview and survey with participants to identify the causing

factors and the extent of their influence. Robot autonomy is further designed to address the major

interface limitations discovered in the general evaluation user study. A specialized evaluation was

used to assess the efficacy of the designed robot autonomy.

2.2 Literature Review

Teleoperation Interface and Assistance — The capabilities of the nursing robots are not funda-

mentally limited by the hardware, but by the usability of interfaces. Thus far, research efforts on

tele-medicine interfaces primarily focus on tele-surgical robots [37]. Since most of the surgical

robots are focused on specific procedures (e.g., [38]), the interface design as well as the evaluation

methods and metrics tend to be platform- and task-specific. The state-of-the-art interfaces and tele-

operation assistancemethods for complex robot platforms (e.g., mobile manipulators and humanoid

robots) could be considered for tele-nursing robots of higher motion capabilities [39]. For the on-

line control of motion coordination, these interfaces either map the human motions to the robots

(using customized cockpits [40], commercial virtual reality and gaming controllers [41, 42, 43, 44],

soft/hard exoskeletons [21, 45] and data gloves [46, 47], marker-less or marker-based motion cap-

turing device [18, 19, 20, 45, 48, 49, 50, 51, 52, 53, 54, 55]), or map human motor commands using

myoelectric devices [43, 56, 57] and brain-computer interfaces [58, 59, 60] (see the representative
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interfaces in Table 2.1). Particularly, motion mapping interfaces such as motion capture systems

(e.g., Vicon [18]), portable motion capture devices (e.g., Microsoft Kinect [19, 50, 52, 61], Xsens

MVN [20, 51, 53, 62]) and exoskeletons [21, 45] are most natural to control humanoid robots to

perform hand-arm coordination, bimanual manipulation, locomotion, and whole-body coordina-

tion. Within the spectrum of robot autonomy level, ranging from fully manual control to fully

autonomous control (see the review in [63]), action support and shared control are often used

to assist the freeform teleoperation using motion mapping interfaces. Action support like tremor

filtering [64], obstacle avoidance [65] and precise orientation assistance [22, 66], usually assists

the execution of a selected action. Shared control is mostly used to assist the operator in actions

towards a goal or generating motion along certain trajectories [23, 28, 67, 68, 69]. Overall, the

freeform control via motion mapping augmented by robot autonomy results in an interface design

that is dexterous, precise, and reliable in motion control, which is desirable for a tele-nursing robot.

However, it is hard to specify the design choices of the interface and robot autonomy without ap-

propriate evaluation.

Table 2.1: Representative interfaces for online control of humanoid robot motion coordination.

Input interface Controlled motion

Human motions
Customized cockpits Whole-body [40]
VR controller Multiple hand configuration [43]

Whole-body [70]
Exosuit Balancing [21]

Manipulation and positioning [71]
RGB-D camera Whole-body [19]

Bi-manual manipulation [72]
Marker-based Whole-body [18]
IMU-based Whole-body [20]
Human motor commands
Myo Arm pose [57]
BCI Pick-and-place [73]

Navigation [60]



18 Chapter 2. Desirable Control Interface for Tele-nursing Robot

Evaluation Metrics and Methods — Prior research efforts have provided many generic frame-

works for the evaluation of human-robot teaming (HRT) performance and the usability of inter-

faces [74, 75, 76, 77, 78, 79, 80, 81]. The evaluation of human-robot interfaces is usually cou-

pled with the assessment of task effectiveness (e.g., time- and error-based [82]) and human per-

formance (e.g., workload [82], situational awareness [83]), and therefore share the same set of

metrics [84, 85, 86, 87, 88, 89]. Some recent research efforts have also proposed metrics for the

evaluation at system level [90, 91], or suggest evaluating dynamic aspects of the human-robot

teaming (e.g., interactivity [92], teaming fluency [93], transparency [94], interface learning ef-

forts [95]). For a particular robotic system, modality of the interface, work context and primary

user group, the generic framework need to be augmented with the domain- and application-specific

metrics [5, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 110]. Generally

speaking, the work on human-robot interface evaluation falls into two categories, which may be:

(1) a general evaluation which uses a framework of metrics to characterize the interface, or (2)

a specific evaluation to assess the efficacy of some design choices using the metrics that empha-

size the interface improvement. The novel contribution of this chapter is to propose an evaluation

framework that integrates the general and specific evaluations with the interface and robot auton-

omy design, to close the loop of interface evaluation and evolution.

The choice of evaluation metrics depends on the available evaluation methods and data col-

lection approaches. Bethel et al reviewed the methods of HRI human studies [111], while Abou

reviewed the related work for the approaches for HRI performance assessment [80]. In the nursing

research community, there are reviews on the usage of nursing robots [112] and on the evaluation

of tele-nursing for its satisfaction, self-care practices, and cost savings [113]. The recently devel-

oped nursing robot platforms are usually presented with lab experiment evaluations [1, 114, 115,

116, 117, 118]. Although both the field study and lab experiments can collect data for quantitative

evaluation, the subjective evaluation primarily replies to interview and survey feedback, while the
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objective evaluation usually relies upon the measurements of the robot, task, and human states. The

standard practice of evaluating HRT interfaces is to use general-purpose surveys (e.g., NASA-TLX

and System Usability Scale [119, 120, 121]), or use a customized questionnaire design only appli-

cable to a specific experiment (e.g., [122]). Participant interview, which has proven to be very

useful for connecting human-robot teaming performance to the specific aspects of the interface

design characteristics [123, 124], hasn’t been well utilized for human-robot interface evaluation.

Recently, the evaluation of HRT interfaces has more objective and quantitative metrics adopted for

assessing human performance. For instance, the assessment of physical workload can be estimated

based upon objective (neuro-) physiological measurements, including Electromyography (EMG)

and Electroencephalograms (EEG) [125, 126]. Eye tracking has also been used for objective and

accurate assessment of mental workload [127, 128, 129], attention [130, 131] and situational aware-

ness [132, 133, 134]. Thus far, most nursing robots are (mobile) telepresence robots controlled

using GUI interfaces, for which the cognitive workload has more influence on the usability of the

interface. As the future tele-nursing robots will demand more complex motion control, interfaces

that map human motions to robots will become more desirable for the efficient operation of the

tasks. The physical workload of using such interfaces on a daily basis will no longer be negligible.

Prior research has investigated the physical fatigue associated with conventional tele-robotic inter-

faces. For instance, the physical fatigue during tele-robotic surgery causes muscle tremors and may

result in dangerous situations in critical surgical steps [135]. Besides, fatigue level also negatively

affects the Quality of Teleoperation (QoT), which indicates a teleoperator’s confidence in com-

mands and decisions [136]. Beyond the teleoperation of medical robots, increased fatigue results

in reduced performance during the teleoperation of Unmanned Ground Vehicles (UGV) [137]. The

accurate assessment of muscle efforts and physical fatigue, therefore, becomes critical for evaluat-

ing interface usability. Recent robot interfaces have incorporated the physical fatigue assessment

using EMG sensing [8, 18, 138] and biomechanical human modeling (e.g., OpenSim [139, 140]).

Besides, the learning efforts for the interfaces, measured as the difference in task performance and
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workload, are also important for the nursing robots to be accepted by nursing workers. To address

these needs, our proposed interface evaluation framework will also incorporate novel methods and

metrics for the quantitative and objective assessment of the physical workload, and the interface

learning efforts of nursing workers.

2.3 Telerobotic System

Manipulation
Dual-Armed  Humanoid  Torso  

(Rethink  Robotics  Baxter)

Two-Fingered Grippers 

(UBIROS GentleDuo)

Three-Fingered Grippers 

(Righthand Robotics 

ReFlex Grippers)

Navigation
Omnidirectional Mobile Base 

(HStar AMP-I) 

Active Perception
Head Camera

(Fisheye)

Torso Camera

(Microsoft Kinect 2)

Wrist Cameras

(RealSense D435)

Figure 2.2: Tele-robotic Intelligent Nursing Assistant (TRINA) system.

2.3.1 Robot Platform

Shown in Figure 2.2, the Tele-Robotic Intelligent Nursing Assistant (TRINA) consists of a dual-

armed humanoid torso (Rethink Robotics Baxter), and an omnidirectional mobile base (HStar

AMP-I). For grasping objects, two Righthand Robotics Reflex grippers were used in the exper-

iments evaluating physical fatigue indices and benefits of automating grasping while two two-



2.3. Telerobotic System 21

fingered soft grippers (UBIROS GentleDuo) were used for evaluating teleoperation interfaces. The

visual sensor suite consists of a ELP-USBFHD01M 180◦ fisheye camera mounted on the robot

head, two Intel RealSense D435 cameras on the wrists, and a Microsoft Kinect 2 on the middle

of the Torso. The RGB-D cameras on the Kinect are used for object detection for teleoperation

assistance.

2.3.2 Representative Teleoperation Interfaces

The control input for the teleoperation interfaces is selected based on whether the interface pro-

vides point control (i.e., discrete control of robot states) or free control (i.e., simultaneous control

of multiple degrees of freedom). Figure 2.3 highlights the selected input devices based on the spec-

trum of representative teleoperation interfaces, ranging from single-axis control [141] to multi-axis

control [142, 143] with three-axis control [62, 144] lying in between.

Mouse / Keyboard

Gamepad

Haptic Device

Stylus / Joystick

Handheld Controller

Motion Tracking

Single-axis Three-axis Multi-axis

Point Control Free Control

Figure 2.3: Spectrum of representative teleoperation interfaces.

Gamepad — The TRINA robot is controlled using a gamepad (Logitech F710) as shown in Fig-

ure 2.4. The gamepad control interface consists of 2 modes: arm and base mode. The arm mode

controls the motion of the robot arm while the base mode controls the motion of the robot base.

There are dedicated buttons to cycle between the two modes, to return the arms to a pre-defined

starting position and hold the current gripper pose. The left and right trigger buttons are used to

switch between the arm being currently controlled and controlling the gripper, respectively. The
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gripper of the currently active arm will be controlled when operated using the trigger. The joy-

sticks of the gamepad are to control the motion of the base and arms depending on the mode the

operator is in currently. In the arm mode, the left joystick moves the arms up and down while the

right joystick moves the arm forward, backward, and sideways. In the base mode, the left joystick

moves the base forward, backward, and sideways while the left gamepad rotates the base clockwise

and counterclockwise. Specifically, the end-effector position and base motion are controlled using

velocity control based on the location of the joystick on the gamepad:

Vx = Xleft/5 (2.1)

Vy = Yleft/5 (2.2)

Vz = Yright/5 (2.3)

where Vx, Vy and Vz are the velocities in the x,y, and z directions, Xleft, Yleft and Yright are the

x-coordinate and y-coordinate position of the left joystick and y-coordinate position of the right

joystick respectively. When controlling the base Vx, Vy and Vz correspond to the motion of the

base in the x and y directions and rotation of the base respectively.

RT: Gripper control

Right Joystick:

Twist Base 

Clockwise/Counter-clockwise

Move Arm

Forward/Backward/Sideways

Left Joystick:

Move Base 

Forward/Backward/Sideways

Lift Arm

Up/Down

LT: Switch to Left/Right arm

D-Pad: 

Switch to Head/Wrist 

Camera

Y: Switch to Arm/Base Mode

X: Return to Home Position

A: Hold Gripper Position

Figure 2.4: Gamepad controller configuration for teleoperation interface.

As it is not possible to represent the cartesian positions of the gripper through the gamepad, the



2.3. Telerobotic System 23

grippers are controlled through velocity control. The direction in which the gamepad is held and the

extent to which it is moved from the center determines the velocity with which the gripper moves.

This principle applies to moving the arm up, down, and sideways. For the gamepad interface, the

gripper is designed such that the face of the gripper when open always points downwards. The

interface was designed in this manner because this orientation of the gripper enables the robot to

pick up even objects that are very small or laundry that can lie flat against the table. However,

this interface is limited in its joint control abilities. The addition of this extra mode to the interface

might make the interface more complicated.

To illustrate this interface, we explain how the robot is controlled to pick up an object off a

table. The user first switches to the base mode to position the robot near the table and the object

using the two joysticks. The user then switches to the arm mode and uses the trigger switch to

cycle between the left and the right arm. The user uses the two joysticks to position the arm near

the object. The right trigger (RT) button is used to close the gripper and the Hold (A) button is used

to lock the gripper’s position. The user can then use the joysticks to lift the arm off the table.

Stylus Device — The TRINA robot is controlled using the stylus device (Geomagic Touch) as

shown in Figure 2.5. Due to the limited amount of user inputs that can be extracted from the

device, the interface is split into three modes namely the base, arm, and gripper modes. There

are two buttons on both styluses that can cycle between the modes. Once a mode is selected, the

dedicated engage button can be used to activate the mode of teleoperation.

The motion of the styluses can control the respective arms in arm mode. To make the interface

as intuitive as possible, the orientation of the robot arm from the robot’s ”elbow” to the gripper is

mapped to the orientation of the stylus of the device. To control the robot end-effector positions

Cartesian position control was used. The position and orientation of the left and right styluses were

scaled to the robot frame and the robot limbs were moved to the desired location by solving the

Inverse Kinematics of the Baxter robot arms. In the base mode, the left stylus can move the base
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Left Device Right Device

In Arm mode: 

Move Left Arm

In Base mode:

Move Base Forward/

Backward/Sideways

In Arm mode: 

Move Right Arm

In Base mode: 

Rotate Base Clockwise/

Counter-clockwise

Toggle Modes

(Arm/Base/Gripper)

Engage Mode

Toggle Modes

(Arm/Base/Gripper)

Engage Mode

Figure 2.5: Stylus device (Geomagic Touch) configuration for teleoperation interface.

linearly while the right stylus is used to rotate the base. This means that the base moves forwards,

backward, and sideways depending on the way the left stylus is moved. The right stylus is used to

rotate the base clockwise and counterclockwise. The base control uses velocity control similar to

the one described in the Gamepad interface where the location of the right and left styluses control

the robot base rotation and translation respectively.

To illustrate this interface, we again use the example of grasping an object off a table. The user

in the base mode uses the stylus motion to move the base closer to the table and the object. The

user then must switch to the arm mode to control the arms using the styluses. Once in a suitable

pose, the user can close the gripper in the gripper mode. The gripper can be toggled between fully

open and fully closed. Once the object is fully grasped, the user can switch back to arm mode to

lift the arm.

MotionMapping— The Vicon Nexus motion capture system is used to develop a motion mapping

interface to control the TRINA robot (Figure 2.6). The human motion was captured at 100 Hz by

10 infrared cameras and streamed at 50 Hz for robot control. The subject’s physical attributes do

not affect the end-effector positions of the robot as only the position and orientation of the wrist

and the swivel angle of the teleoperator are mapped to the robot during teleoperation. The swivel
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angle is defined as the rotation of the elbow of the operator with respect to the axis connecting the

centers of the shoulder and wrist joints [4]. This angle is then used as an indicator of the operator’s

arm posture.

Figure 2.6: Overview of robot teleoperation via motion mapping interface.

The motion mapping interface developed using the VICON motion capture set-up also con-

trolled the robot motion using the Cartesian position similar to the method described in the Stylus

device. The location of the operator’s hands in the human skeleton captured by the motion capture

system is scaled to the robot frame. The Inverse Kinematics for the Baxter robot arms is solved

to control the motion of the robot end-effectors. The robot base is controlled using the desired

velocity. The direction and magnitude of offset of the operator’s feet from the origin defined in the

operator’s workspace is the direction and magnitude of the velocity with which the base is required

to move.

Table 2.2 defines the controls for the motion mapping interface. Robot teleoperation can be
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engaged and disengaged by squatting. The operator can control the robot’s arms by moving their

arms in the desired manner and the robot will replicate these movements. The robot base can be

moved by the operator stretching their leg out in the desired direction of motion. For example, the

operator can move the robot forward, backward, left, and right by stretching their leg out forward,

backward, left, and right respectively. The robot base can also be moved diagonally depending

upon how the operator moves their leg. The opening and closing of the robot grippers can be

achieved by the operator opening and closing their fingers.

Table 2.2: Motion mapping teleoperation interface. The arm posture is measured by the swivel
angle, i.e., the rotation of the elbow position with respect to the axis connecting the shoulder and
wrist positions [4].

Teleoperation Input Robot Function

Robot’s Upper Body
Hand position and orientation End-effector position and orientation
Arm posture and orientation Manipulator arm posture
Rotate upper body Rotate mobile base orientation
Hand open/close Gripper opens/closes
Right shank flexion Activate teleoperation assistance

Robot’s Lower Body
Squat Engage/Disengage teleoperation
Leg steps forward/backward Mobile base moves front/back
Left (right) leg steps left (right) Mobile base moves left (right)
Lift right leg Switch the camera view

We shall use the example of picking up an object from a table to explain this interface. The

operator moves the robot toward the table and the object by stretching their legs in the necessary

direction. Once at a convenient position, the operator can make the robot reach out to the object

by reaching out in the corresponding direction in their workspace. The robot replicates this motion

and once at the right position, the gripper can be closed when the operator closes their fingers.

Graphical User Interface — A Graphical User Interface (GUI) is used to provide the teleoperator

with the video stream from the fisheye camera (e.g. in the bottom of Figure 2.6 ) and the two
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wrist cameras. The video stream and the control GUI are presented to the user on a monitor at the

teleoperation workstation. This video stream provides the teleoperator with a real-time view of the

workspace. The GUI also tells which mode the operator is in while using the gamepad and stylus

interface or which arm is being controlled when in the gamepad mode. The current robot state is

also provided as a 3D model in a simulated environment.

2.3.3 Teleoperation Assistance

We proposed a workload-adaptive shared autonomy control to enable humans and robots to com-

plement each other’s strength in collaborative control. Human operators can use their hand motions

and pose to guide the robot’s gross manipulation to approach a target and move across the cluttered

workspace so that they can freely determine the task procedures and action sequence. Meanwhile,

the robot autonomously performs precise manipulation actions based on human goals inferred by

user input. The flowchart in Figure 2.7 describes the design of the autonomous grasping function

for teleoperation assistance. The Microsoft Kinect attached to the robot was used for capturing

the workspace. Mask-RCNN [145, 146] is used to detect objects and generate bounding boxes of

(2×height)× (3× thickness)× (5×width) (cm3) around the center of an object. This enhanced

region around the object is where teleoperation assistance is available for the user and is termed the

Teleoperation Assistance Zone (TAZ). The TAZ was designed in this manner based on the inputs

from an initial pilot study while designing this interface.

The bounding box generated by the Mask-RCNN model on the Kinect RGB-stream around the

detected objects was projected to the depth stream from the Kinect. The center of this bounding

box was determined to be the center of the object. The depth value of the center of the object thus

obtained can be used to find the remaining two coordinates of the object using the pinhole camera

equations [147]. The coordinates of the object formed in the Kinect frame are transformed into
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the coordinate system of the Baxter. This provides us with the location of the detected object in

the three-dimensional workspace. If multiple objects are present in the workspace (e.g. cluttered

environment), it will return the coordinate of the closest object as default.

The teleoperator is indicated if the end-effector is in this region by audio and visual notifications.

Points on the mid-points of the left and right vertical sides of the original bounding box around the

object are identified as target grasping points. Based on where the robot arm presents in the TAZ,

a reaching-to-grasp motion is planned for the corresponding nearest target point by solving the

inverse kinematics for this location. The assistance does not control the gripper and this action is

left to the discretion of the operator who goes will complete the grasping action if he/she believes

the gripper is in an appropriate position for grasping.

Robot teleoperation using motion mapping interface

Object Detection & Teleoperation Assistance Zone
• Detect objects using Mask-RCNN from Kinect RGB-D data

• Identify object center position with respect to TRINA

• Returns coordinate of the closest object if multiple objects present

• TAZ defined as a 3D box around the object
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Human agent request for control?

(Initiate the trigger)
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Human agent request for assistance?
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Figure 2.7: Workload-adaptive shared autonomy feature for teleoperation assistance.
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2.4 User Study I: Comparison of Teleoperation Interfaces

To appraise the usability of the general to specific teleoperation interface evaluation framework, we

conducted a series of user studies to validate each component step-by-step. In the first user study,

we present the usage of the general pre-defined metrics to evaluate three representative designs of

contemporary robot teleoperation interfaces. We tried to find a feasible teleoperation interface that

is intuitive and easy to learn for the primary users (nursing workers) who usually do not have an

engineering background.

2.4.1 Experimental Setup

First, the three teleoperation interfaces are compared to find the best-suited interface for the nursing

workers. This experiment requires the subject to control the robot platform using the gamepad,

stylus, and motion mapping interfaces (See Figure 2.8). The teleoperator receives a real-time video

stream from the fish-eye camera of the robot workspace. The user performs different tasks that

involve them manipulating different objects placed on a table in two different experiment stages,

the training and performance phase. The task performance time, number and type of errors, and the

number of mode switches were recorded. The responses to arithmetic questions asked during the

performance phase are also recorded. After all the tasks, the user answers a survey that captures

the user’s preferences for the different interfaces.

2.4.2 Participants and Tasks

Our user study involves (N=8) nursing students (eight female, 19-21 years old) who represent the

future users of the teleoperation interface. We also recruited three registered nurses to get their

feedback and attitude toward the use of tele-nursing assistive robots on a daily basis. All the par-
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ticipants have experience working in healthcare and are familiar with the hospital environment.

They also do not have any robotics or engineering expertise and have almost zero gaming experi-

ence with the gamepad controller. The experimental protocol was reviewed and approved by the

Worcester Polytechnic Institute Institutional Review Board.

(a) (b) (c)

Figure 2.8: Nursing robot teleoperation via: (a) Gamepad (b) Stylus-Style Joysticks and (c) Motion
Mapping Interface.

The participants in this user study performed two tasks (see Figure 2.9). The testing task (left)

is to collect an individual object on the counter workspace and is designed to examine the user’s

learning effort and the outcome of practice time for each interface. This task is performed both

before and after the practice session to evaluate the learning outcome. The evaluation task (right)

is to clean and organize several objects scattered in the workspace and is designed to evaluate the

interface’s usability. Our prior study shows that most of the tele-nursing tasks require the users to

perform: 1) free control of reaching-to-grasp rigid and deformable objects, 2) free control to move

the mobile base to facilitate manipulation, and 3) point control to facilitate engaging/disengaging

the interface or mode switching. Based on this finding, we set up a “pseudo-task” which incorpo-

rates these necessary teleoperation skills in the context of workspace cleaning and organization by

a nurse. Specifically, the user will teleoperate with the nursing robot to collect several rigid and
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deformable objects randomly placed on a counter workspace and sort them into two separate bins.

This task integrates the free control of precise and gross manipulation in a cluttered environment,

locomotion, and point control of robot states, all of which are necessary primitive robot control

skills for tele-nursing tasks.

Figure 2.9: The tasks of the user study include collecting a single object (left), and cleaning and
organizing a counter workspace (right).

2.4.3 Experimental Procedure

The user study consists of a Training Phase and a Performance Phase. The order of interfaces

was randomized for each participant. For each user interface, the experimenter introduced and

demonstrated the interface functions. In the Training Phase, the subject performs the testing task

described in the previous section twice. The two trials of the testing task are separated by a practice

session of 15 minutes. The participants can stop the practice session anytime they feel comfort-

able with the interface and are confident in performing the second trial of the training task. The

time consumed for practice and the change in performance between the two trials of the testing

task is used in evaluating the learning effort associated with the interface. The participants move

on to the Performance Phase after completing the training phase. In the Performance Phase the
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users will perform the evaluation task, i.e., collecting 3 grocery items and 3 pieces of clothing,

and sorting them into two baskets. The participants were required to answer two-digit arithmetic

problems continuously for the entirety of the task (as in [148]). This secondary task helps identify

the mental effort required for decision-making during robot teleoperation and provides an objective

measurement of the cognitive workload of the teleoperators.

2.4.4 General Evaluation Metrics

In order to investigate themost feasible teleoperation interfaces that can be utilized by non-robotics-

related populations (e.g. healthcare workers and nurses), we performed the evaluation of three rep-

resentative designs of contemporary control interfaces (handheld gamepad, stylus-based devices,

and human motion mapping) by a system of objective and subjective metrics to appraise the learn-

ing effort, task performance and operation workload.

Objective Measurements — For learning effort evaluation, we consider the learning outcomes

(indicated by the task completion time, numbers of mode switches, and errors before and after

practice) and practice time used during the training phase for each teleoperation interface. This

measurement helps us to quantify how fast the users can build confidence to use the control in-

terface and how much impact training has on task efficiency and accuracy. On the other hand,

the investigator could just simply adopt the method of asking the participants to perform multiple

trials of the training task and using only the task completion time to evaluate the interface. This is

however not sufficient as an index as it will ignore other critical factors that might be essential in

influencing the learning curve.

For task performance evaluation, we measure the time required to complete the task, the num-

ber of interactions with the interface (mode switches in our case) during teleoperation, as well as

the number and type of errors. The type of errors that influence the performance include errors that:
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(1) reduce efficiency, (2) decrease accuracy and (3) diminish safety. For example, in the pick-and-

place sub-task in our evaluation task, the types of errors we include are: (1) dropping or knocking

over objects, (2) inappropriate grasps, and (3) collisions with the table.

For operation workload evaluation, we used a secondary task where the participants had to

solve simple arithmetic questions [148] while teleoperating the robot. Users were allowed to skip

questions if they deemed it too difficult. A mentally demanding task would make the user perceive

a problem to be more difficult than they usually would have, and they would answer fewer ques-

tions or have more errors or skip more questions. The longer response time indicates that the user

requires a higher cognitive workload for robot teleoperation, and therefore has less capacity for the

other aspects of the tasks (e.g. professional decision-making, patient interaction, and information

inquiry).

Subjective Measurements —We utilized NASA-TLX as the workload assessment tool that helps

record the user’s self-evaluation of Mental, Physical and Temporal Demands, Performance, Effort,

and Frustrations [149]. We further calculated the overall NASA-TLX score to identify the sub-

jective workload by weighting each effort demand. The weighting coefficients were generated by

choosing from a series of pairs of rating scale factors that were deemed to be important based on

the official instructions. In addition to the NASA-TLX evaluation form, the comprehensive custom

questionnaire is an integral part that captures the users’ feedback and attitude toward the newly im-

plemented methods and interfaces. Unlike the traditional customized questionnaire in human-robot

interaction, we performed a post-study interview to identify the causing factors and features that

will improve the interface usability.
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2.4.5 Feasible Interface to Control Tele-nursing Robot

Learning Effort and Outcome — Figure 2.10(a) shows the comparison of interfaces in terms of

learning effort. The dotted line indicates the mean of the maximum and minimum value from all

participants for both learning effort and outcome. For N=8 nursing students, the motion mapping

interface (Mocap) has a better learning outcome and lower learning effort, compared to the other

interfaces. Each ellipse plots the mean and standard deviation of the testing task completion time

with respect to the mean and standard deviation of the user’s practice time. The red, green, and blue

colors are for the motion mapping interface (Mocap), stylus, and gamepad, respectively. The learn-

ing outcomes can be found by comparing the ellipses of the same color. On average, the nursing

students spent less time (219±39 sec) learning theMocap interface than the gamepad (792±57 sec)

and stylus device (870±20 sec) interfaces. ANOVA analysis showed that: 1) The learning effort

for Mocap was significantly lower than that for the gamepad (F(2,21)=71.137, p<0.001) and stylus

interfaces (F(2,21)=71.137, p<0.001); 2) The Mocap interface also had the least completion time

(61±6.7 sec) after practice for the testing task, followed by the gamepad (90±8.2 sec), and then the

stylus (228±57 sec); 3) In the evaluation task, the Mocap interface also has a significantly faster

completion time than the gamepad (F(1,14)=6.979, p<0.05) and stylus interfaces (F(1,14)=8.296,

p<0.05). We also noticed that the completion time for the testing task before the practice was sig-

nificantly slower than after practice, when using the gamepad (F(1,14)=5.624, p<0.05) and stylus

device (F(1,14)=5.442, p<0.05). The significant effects of practice for these two interfaces were

confirmed by the participants’ reports in the post-study interview. The effect of practice is also

more significant for the gamepad than for the stylus interface, which may be because the gamepad

is a widely used gaming interface for the public. However, the participants also report that it is

difficult to remember the many different functions associated with the gamepad buttons. On the

other hand, the Mocap interface has a low learning effort and the trivial effect of practice indicates

that this interface is the most intuitive one for nursing robot teleoperation.
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Figure 2.10: (a) Practice time vs Completion time for nursing students. (b) Comparison of the
number of errors, interactions, and subjective workload (NASA-TLX) across interfaces for nursing
students.

We further use the weighted NASA-TLX scores to measure the subjective workload before

and after practice with the interface. The weighting coefficients were selected as follows: mental

demand=5, physical demand=4, temporal demand=0, performance=1, effort=3, frustration=2. In

Figure 2.10(b), the Interactions field refers to the number of times a mode has to be switched while

using the interface. A switch from controlling the base of the robot to the right arm of the robot

is considered an interaction when evaluating the gamepad and stylus interfaces. However, for the

Mocap interface since the operator can control all aspects of the robot functionality at the same

time, this part of the graph is empty as no interactions/mode switching is required. The comparison

of all the interfaces for all the nursing students shows no significant difference in the number of

errors and interactions and subjective workload during the testing task performed before and after

practice. However, the motion mapping interface allowed users to control the robot arm and mobile

base simultaneously eliminating the complexity of mode switches that resulted in a lower total

subjective workload (23±4.7) than the gamepad (29±3.8) and stylus (40±6.2).

Task Performance — Figure 2.11(a) compares the performance in the evaluation tasks among all

the interfaces, using the following objective metrics: 1) the completion time of the evaluation task,
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and 2) the response time for each math question (i.e., the secondary task). The dotted line indicated

the mean of the maximum and minimum values from all participants for both cognitive workload

and performance. For nursing students, the task completion time using the Mocap interface was

less (404±50 sec) than the gamepad (745±176 sec) and stylus (1367±165 sec). ANOVA analysis

shows the significant differences in completion time between Mocap and stylus (F(2,21)=11.667,

p<0.001) and between the gamepad and stylus device (F(2,21)=11.667, p=0.015). The results also

indicate that the subjects took lesser time to solve the arithmetic questions while using the Mocap

interface (12.8±1.6) than the gamepad (16±1.5) and stylus device (20.3±2.9).
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Figure 2.11: (a) Completion time vs Cognitive workload based on the time per question answered
for nursing students. (b) The number of interactions and type of errors for nursing students.

Figure 2.11(b) further compares the interfaces by the number of errors and mode switches for

the evaluating task. The nursing students have fewer total operation errors using Mocap interfaces

(3.1±0.6), compared to using the gamepad (8.6±1.7) and stylus (6.6±1.7). The ANOVA anal-

ysis indicated significant differences between the Mocap interface and gamepad (F(2,21)=3.513,

p<0.05). The breaking-down of error types shows that the Mocap and gamepad interfaces tend

to cause more inappropriate grasps. Our post-study interviews show that this is due to the lack of

depth perception in the visual feedback. Additionally, the stylus interface requires significantly
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more mode switches during operation than the gamepad because the user has only one button to

cycle between the hand, arm, and base control. The Mocap interface does not need any mode

switching as all robot components can be controlled simultaneously via whole-body motion map-

ping.

Subjective Operation Workload — As seen in Figure 2.12(a), the total workload while teleop-

erating the robot using the Mocap interface was lower (37.4±4.2) than the gamepad (45.8±4.1)

and stylus device (56.1±5.8) among nursing students. The ANOVA analysis on the user-reported

feedback regarding mental demand shows that the Mocap interface demands significantly lower

mental effort than the gamepad (F(2,21)=9.828, p<0.05) and stylus (F(2,21)=9.828, p<0.001).
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Figure 2.12: (a) Subjective workload (NASA-TLX) for nursing students. (b) Users’ preference
rating for the gamepad (G), stylus device (S), and motion mapping interface (M) based on control-
lability (M1), efficiency (M2), accuracy (M3), mental demand (M4) and physical demand (M5).

Users’ Preference — The survey feedback from the customized questionnaire is shown in Fig-

ure 2.12(b). All nursing students chose the human motion mapping interface as the easiest one to

learn and preferred using it as the robot teleoperation interface for future use. Moreover, they re-

ported that the motion mapping interface had better controllability, efficiency, accuracy, and lower

mental demand but required greater physical effort.

Registered Nurses’ Performance and Feedback — Table 2.3 shows the practice time, learning

effort (testing task completion time, number of error and mode switches), and subjective workload

for three registered nurses across all interfaces. Due to the small population, we are not able to
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conclude anything significant. However, the practice time and testing task completion time after

practice indicates that: 1) registered nurses require more effort to learn the interface, particularly

for the gamepad and stylus indicated by the greater usage of the practice time; 2) for the gamepad

interface, practicing the interface does not have as much an impact as it had for the nursing students;

3) the motion mapping interface is still the easiest to learn among all the interfaces for elder nursing

workers as identified by the lower practice time, testing task completion time and errors during

teleoperation; (4) the overall weighted workload after practice tends to be lower while using motion

mapping interface.

Table 2.3: Learning effort and outcome of registered nurses.

Learning Effort

Completion Time (s) Errors Mode Switch Overall NASA-TLX

Nurses Practice Time (s) Before Practice After Practice Before Practice After Practice Before Practice After Practice Before Practice After Practice

Gamepad

1 900 157 177 2 4 8 14 88 55

2 900 372 201 8 4 14 10 43 31

3 900 231 414 2 11 1 12 42 47

Stylus Devices

1 900 915 213 10 2 33 6 100 80

2 900 259 212 1 1 9 12 38 34

3 900 356 153 0 0 12 7 37 22

Motion Mapping

1 420 54 64 0 0 0 0 12 21

2 292 76 35 0 0 0 0 44 29

3 472 63 44 1 1 0 0 28 26

For registered nurses, Figure 2.13(a) shows the performance in the evaluation tasks among all

the interfaces using the same metrics used for the nursing students. The motion mapping interface

outperforms the gamepad and stylus devices in terms of faster task completion time, fewer errors,

and mode switches. The secondary task results also demonstrate that the nurses can solve the

arithmetic questions faster while using the motion mapping interface than the gamepad and stylus

devices. The total workload while teleoperating the robot using the motion mapping interface

was lower than the gamepad and stylus device (Figure 2.13(b)) and the motion mapping interface

demands lower mental effort than the gamepad and stylus device interfaces based on the user-

reported feedback. All registered nurses chose the motion mapping interface as the most intuitive

and easiest to learn. They also preferred using it for nursing assistive robot teleoperation on a daily
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basis to help them with routine tasks. Furthermore, they also reported that the motion mapping

interface had better controllability, efficiency, accuracy, and lower cognitive workload but was

concerned about the heavier physical demand, especially for extended usage.

Task Performance

Nurses Completion Time (s) Errors Mode Switch Secondary Task (s)

Gamepad

1 1150 7 36 46

2 579 5 20 17.5

3 1360 10 38 30.9

Stylus Devices

1 1903 2 55 50.1

2 1624 7 56 25.4

3 1474 7 64 32

Motion Mapping

1 400 1 0 14.8

2 325 3 0 15.5

3 377 4 0 17.1
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Figure 2.13: (a) Task performance of registered nurses. (b) Subjective workload (NASA-TLX) for
registered nurses.

To this end, the whole-body motion mapping interface resulted in the best task performance

and learning outcomes as well as the lowest cognitive workload which indicates it is a feasible

interface. However, because of the higher physical demand of the motion mapping interface, the

participants reported experiencing a non-trivial physical workload, particularly when using the

interface for an extended duration.
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2.5 User Study II: Analysis of Physical Effort

The results from User Study I show that teleoperating the robot via the human motion mapping

interface outperforms the handheld gamepad and stylus-based devices in terms of better task per-

formance and lower learning effort as well as cognitive workload. However, non-trivial physical

fatigue may prevent such interfaces from being widely used for robot teleoperation, particularly

for daily usage made of long work hours. In the second user study, we propose the objective as-

sessment of muscle effort and physical fatigue while teleoperating the robot using surface EMG to

investigate the fatigue-causing components.

2.5.1 Experimental Setup

The participant was asked to teleoperate with the robot by standing in the center of the motion

capture workspace (10 Vero cameras coupled with the Nexus platform from VICON). The real-

time visual feedback was projected in front of the participant with the default view being the feed

from the fisheye camera. The participant can also cycle through two cameras placed on the wrists

of the robot arms to provide depth perception.

Right Side View Front View Back View

Lateral Deltoid

Posterior Deltoid

Anterior Deltoid

Biceps

Brachioradialis

Trapezius

Erector Spinae

Figure 2.14: Surface EMG placement.



2.5. User Study II: Analysis of Physical Effort 41

During the experiment, the Vicon motion capture system records human motion at 100 Hz and

streams human motion for robot control at 50 Hz. As shown in Figure 2.14, wireless sEMG sensors

(TrignoTM from Delsys Inc.) are used to record the EMG signals at 1,000 Hz of 14 individual

muscles (Anterior, Lateral and Posterior Deltoids, Biceps, Brachioradialis, Trapezius, and Erector

Spinae Muscles of the left and right sides of the body). These 14 muscle groups are most involved

in controlling the motion of the upper body.

(a) (b) (c)

Figure 2.15: Robot teleoperation tasks: (a) collecting, (b) stacking and (c) laundry.

2.5.2 Participants and Preparation

Our experiment involved 6 male (25 ± 3 years old) and 2 female participants (28–29 years old).

Seven participants had an engineering-related background and one female participant had no expe-

rience in engineering or robot control. All the participants had a normal skeletal muscle system in

the upper extremities and normal trunk function. The experimental protocol was approved by the

Worcester Polytechnic Institute Institutional Review Board.

After the EMG sensor attachment, all the participants were asked to perform the set of subject-

specific maximum voluntary contraction tests to record the maximum force generated by each

targeted muscle. The MVC test involved a series of single-joint motions to isolate the contraction
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from each muscle. The experimenter tries to resist the subject’s single joint motion during the

MVC test by applying a resisting force. The MVC movements include: (1) shoulder front raise,

(2) shoulder lateral raise, (3) shoulder reverse fly, (4) shoulder shrug, (5) biceps curl, (6) wrist

extension, and (7) lower back extension. These MVC signals served as the baseline to normalize

the EMG signal recorded during the task performance.

2.5.3 Tasks and Procedure

As shown in Figure 2.15, the participants are instructed to perform three robot teleoperation tasks

in the experiment, namely: (1) Collecting: collect six scattered grocery items on a large table

into a container; (2) Stacking: stack food containers in the instructed order; (3) Laundry: collect

towels and blankets (3 pieces of laundry) into a laundry basket and take them out in a pre-defined

sequence. Each participant performs each task three times. For each iteration of each task, the

items were replaced in the same position to ensure that the tasks were executed in largely the same

manner. The first repetition of each task was used to analyze the muscle usage during the robot

teleoperation.

At the start of the user study, each participant was briefed about the capabilities of the robot

platform, the way to use the motion mapping interface, and the objectives of the experiment. Each

participant was attached with surface EMG sensors on the muscle groups and reflective markers

for tracking human motion. Then, we performed a MVC test for each participant to normalize the

EMG signal.

Before the experiment, participants could become familiar with the TRINA system through a

training session. Participants first performed a quick practice session that lets them use the functions

listed in Table 2.2. The training tasks were similar to the performance tasks but with fewer items.

They could practice in this training session until they felt confident and comfortable using the
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motion mapping interface independently to teleoperate with the robot to accomplish the tasks.

The order of the tasks was randomized, and participants took a minute’s break after finishing

each task iteration. They moved on to the next task only if they felt completely rested and they felt

no fatigue in any area of their body. After accomplishing the experiment, each participant answered

a custom questionnaire. The task completion time for each task was also monitored.

2.5.4 Objective Assessment of Physical Workload

By the general evaluation metrics, robot teleoperation via motion mapping has been demonstrated

to be an intuitive, efficient, and low learning curve approach for controlling themotion coordination

of humanoid robots. However, the trade-off with using human motion mapping as a teleoperation

interface is the non-trivial physical fatigue associated with this interface and this information is also

captured in the NASA-TLX self-evaluation and post-study questionnaire. Muscle fatigue has been

defined as any exercise-induced reduction in the maximum capacity to generate force or power out-

put [150]. Assessment of physical fatigue can be based on the measurements of force, power, and

torque. Besides, heart rate can also be used to detect muscle contraction and infer overall physical

fatigue level [151]. Among all the approaches, sEMG measurement has proven to be more effec-

tive as it measures muscle activity in a non-invasive and real-time environment and provides the

ability to monitor the physical fatigue of a particular muscle [152]. Thus, in addition to the sub-

jective measurements, we developed indices that assess the physical workload objectively using

wireless surface EMG sensors (TrignoTM from Delsys Inc. at 1,000 Hz sample rate). Our analysis

of the EMG signals aims to: (1) investigate individual muscle effort and physical fatigue devel-

opment during teleoperation using motion mapping; (2) compare the physical fatigue induced by

different tasks and thus identify movements that cause fatigue, giving us the directions to facilitate

the fatigue-adaptive interface design. Figure 2.16 illustrates our data preparation process for the
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muscle effort and physical fatigue estimation.
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Figure 2.16: Process of the muscle effort and physical fatigue analysis.

Muscle Effort Analysis — The recorded EMG signals are within the 40 Hz-700 Hz range in the

spectrum domain. The raw EMG data were pre-processed using a high pass filter (cutoff frequency

10 Hz), to remove the soft tissue artifact and offset the frequency baseline. The processed signal

further went through a full-wave rectification and then a sixth-order elliptical low pass filter (cutoff

frequency 50 Hz), to remove noise and transients and develop a linear envelope of the EMG signal.

We use computer-based methods to determine the onset and offset of muscle contraction of the

processed EMG signal. The tunable parameters include the threshold value (standard deviation of

the baseline signal) and the number of samples (sliding windows in the units of a millisecond) for

which the mean must surpass the defined threshold. We choose the combination of three times the

standard deviation of the muscle static contraction obtained from the first 200 frames of the EMG

signal in the maximum voluntary contraction (MVC) test and 25 milliseconds as the signal sliding

window size. This window size has shown similar results to results from the visually derived
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data [153]. The MVC test also serves as the tool to normalize the EMG signal with respect to

the maximum force generated by each muscle [154]. Figure 2.16(a) shows the individual muscle

contraction levels (represented as the black line which is the normalized processed EMG signal

from the MVC test) and contraction duration (indicated by the green bars).

Fatigue Analysis —We use the band pass filter (25 to 500 Hz) to filter the recorded EMG signals

and apply the conventional fast Fourier transformation to convert the signal from time domain to

power spectrum domain to calculate the spectral density. Previous studies have shown that the

mean and median frequencies of the surface EMG signals decrease as the muscle contraction du-

ration increases, and therefore can be used to measure the fatigue in isometric contraction [155].

To address the inadequate sensitivity of the transitional fatigue indices during dynamic contrac-

tions, increased fatigue can be measured by the highly sensitive Dimitrov spectral fatigue indices

(FInsmk) [156]. These indices are the features extracted from the spectral moments computed from

the EMG power-spectral density (PSD) function. The spectral moment (Mk) can be calculated us-

ing equation (2.4):

Mk =

∫ fmax

fmin

fkPS(f)df (2.4)

whereMk indicates the spectral moment, f is the frequency, fmax and fmin represent the bandwidth

of the signal and PS(f) is the EMG power-frequency spectrum as a function of frequency and k is

the chosen order. The Dimitrov spectral fatigue indices are represented by the ratio of the spectral

moments of order (-1) and order k which is in the range of 2-5:

FInsmk =
M−1

Mk

=

∫ fmax
fmin

f−1PS(f)df∫ fmax
fmin

fkPS(f)df
, k = 2 to 5 (2.5)

The fifth-order FInsm5 data was selected for generating the objective physical fatigue index
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since the variation across the repetitions tended to be wider when the order k of the normalizing

spectral moment was higher. The relative changes in the fatigue index is calculated against the first

repetition within the trial. This means the fatigue index will always start at 100 % and the values

increase with increasing fatigue.

Objective Fatigue Index =
FInnsm5

FI1nsm5

× 100% , n = repetition number in the trial (2.6)

Figure 2.16(b) shows the example output of the fatigue index for the muscle on the left and

right sides of the body (blue and red lines in the graph on the bottom right).
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Figure 2.17: Objective physical fatigue indices validation.

Pilot Testing — For verification of our methods with literature, we evaluated the effective-

ness of the objective indices for measuring fatigue using a validation test. Participants (N = 5)

were instructed to perform single joint movements like Biceps curls and side lateral raises using
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their dominant hand to lift a dumbbell (9.5 kg) for 10 repetitions (left in Figure 2.17), which was

expected to fatigue their Bicep and lateral Deltoid in the signals detected by the surface EMG sen-

sors attached. As the fatigue increases, the static fatigue index (for isometric contraction using

mean frequencies, Fmean) decreases (Figure 2.17(a) and 2.17(c) shows the results from a represen-

tative participant) while the dynamic fatigue index (for the dynamic contraction using Dimitrov

spectral indices, FInsm5) increases (Figure 2.17(b) and 2.17(d) shows the results from a repre-

sentative participant) that those indices share the same trend with the results reported in previous

literature [155, 156]. We choose the dynamic fatigue index based on spectral indices as it is more

sensitive and was reported to be more suitable for measuring the fatigue caused due to motion.

Shrug

20% of the BW

Dumbbell Raise Biceps Curl Reverse Wrist Curl

Anterior

Lateral

Posterior

5% of the BW

Back Extension

No Extra Load

Male Female

Deltoid (Anterior) 150.68 123.64

Deltoid (Lateral) 171.30 137.95

Deltoid (Posterior) 199.85 192.33

Biceps 179.88 201.53

Trapezius 200.65 181.94

Lower Back 268.24 248.82

Forearm 171.04 150.79

Figure 2.18: A series of isolation exercises (left) and the muscle-specific fatigue threshold (right).
Bodyweight is denoted as BW in the figure.

For identification of fatigue threshold, one important issue in fatigue assessment is to deter-

mine an appropriate fatigue threshold which may vary largely across muscle groups. Prior research

chose to use a certain percentage of MVC value as the fatigue threshold, which was expected to be

suitable for their tasks. Our robot teleoperation involves tasks that utilize mostly the upper body.

Thus, we propose an experimental approach to determine the fatigue threshold for each targeted

muscle. The participants (two male and one female) were instructed to perform a series of isolation

exercises (pictured to the left in Figure 2.18) using their dominant and non-dominant hands. The
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participants had to lift a dumbbell (20 percent of the body weight for the trapezius; 5 percent of

the body weight for the anterior, lateral, posterior deltoid, biceps, and forearm; no extra load for

the lower back) for 3 sets with 12 repetitions each. They can rest between each repetition for one

minute. After the weight-lifting experiment, we asked the participants to point out the specific ses-

sion and repetition at which they struggled to continue the task. On average, the participants pointed

to the 9th repetition in the third set as the fatigue threshold. The ratio (in terms of percentage) be-

tween the spectral indices of the 9th repetition and the 1st repetition will be used as the threshold

for identifying the onset of physical fatigue. The muscle-specific fatigue threshold is defined as

the mean of the index value identified for the dominant and non-dominant hand (Figure 2.18 in the

right).

2.5.5 Fatigue-Causing Components in Tele-manipulation

Muscle Effort Analysis — Figure 2.19 highlights how long the different muscle groups were con-

tracted as a percentage of task completion time while performing different trials of the Collecting,

Stacking, and Laundry tasks averaged across all the participants. The lateral and anterior deltoid

muscles, bicep muscles, trapezius muscles, and forearm muscles showed considerable activity dur-

ing the execution of the teleoperation tasks.

As seen in Figure 2.20, the subjects were separated into two groups. P1-P3 were users who

were familiar with the teleoperation interface while P4-P8 were users who were relative novices

to teleoperation. The results show that familiarity with the teleoperation interface reduces task

completion time. The effect of familiarity with teleoperation on task performance requires further

investigationwith a greater number of subjects, but the preliminary results show that it has a positive

effect on task completion times.

Physical Fatigue Analysis — As shown in Figure 2.21 for novice and expert representative par-
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Figure 2.19: The muscle effort across all muscle groups averaged across all the participants for the
three trials and three tasks. Muscle effort is identified as the percentage of task completion time
that the muscle is contracted.
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Figure 2.20: The task completion time across user groups and tasks.

ticipants, the area in red in the figure indicates the time when the fatigue index is above the fatigue

threshold for the particular muscle identified using the technique described in pilot testing. The

Anterior and Lateral Deltoids were found to have been muscle groups susceptible to physical fa-

tigue in addition to the Biceps and Trapezius. The novice and expert groups were created based on

the subject’s familiarity with teleoperation. This user study shows that physical fatigue developed

in the users is lesser if the familiarity with teleoperation is more.
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Figure 2.21: Representative participant result of physical fatigue across tasks and muscle groups of
the (a) left anterior deltoid, (b) right anterior deltoid, (c) left lateral deltoid, (d) right lateral deltoid,
(e) left posterior deltoid, (f) right posterior deltoid, (g) left biceps, (h) right biceps, (i) left trapezius,
(j) right trapezius, (k) left lower back, (l) right lower back, (m) left forearm and (n) right forearm.

In Figure 2.22, it is clear that the novice users incur greater fatigue across the Anterior and

Lateral Deltoids, Biceps, Trapezius, and Forearms while the expert users show considerably less

fatigue across these samemuscle groups. The users might becomemore efficient with their motions

with increased familiarity. Similar to identifying how task completion time is related to interface

familiarity, further testing is required to identify how physical fatigue of the muscles reduces with

interface familiarity.
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Survey Results — We surveyed the level of physical demand for each task, and the impact of

several possible fatigue-causing factors. The reported physical demand of the three tasks is ordered

as: Stacking > Collecting > Laundry, corresponding to the amount of precise manipulation and

active perception each task requires. The teleoperation actions that cause the most fatigue (above a

3 rating out of 5 in the survey) include: (a) holding a steady pose of the wrist camera for observation,

(b) aligning objects, (c) raising the arm up for a long time during teleoperation, (d) grasping small

objects, and (e) adjusting camera view for the best perspective. The less fatigue-causing actions

(below 3 in rating out of 5) include: (f) picking objects from the top, (g) grasping large objects, (h)

picking up objects from the side, (i) placing objects, (j) carrying grasped objects, and (k) lifting the

leg to change camera. The results confirm the fatigue-causing task characteristics and teleoperation

actions, implied in the muscle effort and fatigue analysis.

2.6 User Study III: Evaluation of Shared Autonomy

The results from User Study II identify the actions that cause the most physical fatigue, namely

steady arm postures for wrist camera control and precise manipulation for grasping objects. This

physical fatigue as previously mentioned will deter future adoption of teleoperation techniques

and needs to be addressed. In this study, an interface was developed that automated the robotic

grasping of objects. This will eliminate the need for depth perception through wrist camera control

and reduce the teleoperator’s effort for manipulation.

2.6.1 Experimental Setup

The experimental setup in this user study is similar to the second user study, where the participant

teleoperated the robot by standing in the motion capture workspace, with the real-time fisheye
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camera feed of the workspace projected in front of them (see the left half of Figure 2.16). In

addition to visual feedback, we also provided the camera feed from the Kinect which provides the

detected objects and the location of the teleoperation assistance zone for the users. Audio cues are

also played when the robot end-effector is within the TAZ.

Wireless sEMG sensors are used to monitor muscle activity during the experiments to evaluate

the physical effort. We focused on 10 individual muscles, namely the Anterior and Lateral fibers of

the Deltoid, the Biceps, the Brachioradialis (Forearm) and the Trapezius of the left and right sides

of the body (see Figure 2.14). Comparing muscle activity with and without teleoperation helps us

understand the impact of teleoperation assistance on the teleoperation experience.

2.6.2 Participants and Preparations

Our experiment included 6 male (ranging from 22 to 25 years old) and 2 female participants (29

and 31 years old). The Six male participants had engineering-related backgrounds and both female

participants had no experience in engineering or robot control. All the participants had a normal

skeletal muscle system in the upper extremities and normal trunk function. The experimental pro-

tocol was approved by theWorcester Polytechnic Institute Institutional Review Board. Out of the 8

participants in this experiment, 1 male and 1 female participant had also participated in User Study

II. Prior to the start of each experiment, all participants also went through a training stage where

they were allowed to become familiar with the interface and thus the past experiences of some

participants did not inherently make them better than the participants without prior experiences.

After the EMG sensor attachment, all the participants were asked to perform the subject-specific

maximum voluntary contraction test to record the maximum force generated by each targeted mus-

cle. The MVC test was conducted similarly to the exercise done in the second user study.
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2.6.3 Tasks

As shown in Figure 2.23, the participants performed the following tasks: (a) reaching to grasp an

individual object, and (b) grasping multiple objects (bottles and cups) in a cluttered workspace.

User Study II has indicated that precise manipulation is one of the most fatigue-causing factors

in teleoperation. We choose these tasks because precise orientation control in reaching-to-grasp

is challenging for the operators during teleoperation and requires careful design of teleoperation

interface assistance (e.g., [22]).

(a) (b)

Figure 2.23: Teleoperation tasks: (a) reaching-to-grasp an individual object; (b) collecting multiple
objects in a cluttered counter workspace.

2.6.4 Experimental Procedure

Training — Each participant undergoes a training session to get familiar with the teleoperation

interface, the autonomous grasping function, and the robot. The training task is to pick up a bottle

on the counter and place it in a basket. The participants can practice in this training session until

they feel confident and comfortable using the teleoperation interface and assistive function.

Section 1 — In this session, a participant was instructed to reach and grab a bottle placed on the
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counter (Figure 2.23(a)). The participants were asked to grab the object for five repetitions each,

under the following conditions: (a) using their dominant and non-dominant arms; (b) with and

without the teleoperation assistance (Total number of trials = 5 repetitions × 2 arms × 2 modes).

The order of arms and the availability of assistance was randomized. All the repetitions of the

object grasping task had the same initial robot arm configuration, and initial and final location of

the object. The participants were required to pick up and place the object in a stable manner. During

each trial, we record the time for completing the task, the number of times the object was knocked

down, and the EMG signal of the muscle groups for physical workload analysis. The participants

also answered survey questions about their teleoperation experience, in the NASA Task Load Index

(NASA-TLX) format.

Section 2— In this session, the user has to pick up three cylindrical objects in a cluttered workspace

and place it in a basket (see Figure 2.23(b)). This taskwas to simulate a real-world scenario in which

a nursing robot needs to clean and organize a workspace with medical supplies, patient room debris,

and laundry (based on the tasks identified in [1]). The participant could choose between picking up

the object manually or using teleoperation assistance. If the object was dropped, they are allowed to

pick it up unless the object falls off the counter. We counted the number of times that the user uses

teleoperation assistance. We also scored the participant’s task performance in the following way:

(1) +10 points for picking up each object and placing it in the basket; (2) -20 points for knocking an

object down or dropping an object when moving it to the basket. The scoring system helps compare

quantitatively the performance of the participants who use assistance and don’t use assistance by

comparing the scores they were able to achieve.
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2.6.5 Data Analysis and Results

Our analysis of the sEMG data aims to evaluate physical workload (muscle effort and fatigue)

during teleoperation using motion mapping with and without the assistance feature. Figure 2.16

illustrates our data analysis process where we have determined individual muscle contraction du-

ration and individual physical fatigue level.

We compared the physical efforts, task completion time, and number of errors in Session 1 (ob-

ject grasping task), to objectively and quantitatively assess the teleoperators’ physical workload

reduction when using teleoperation assistance. We further use the results from the NASA-TLX

survey and customized questionnaires in Sessions 1 and 2 to assess their perception of workload,

preference for teleoperation assistance, and their change in attitude toward teleoperated robot tech-

nologies.

Performance and Efforts — We analyzed the recorded data to evaluate the teleoperator’s effi-

ciency, accuracy, and effort to perform the object grasping task in Experiment Session 1. For Effi-

ciency (T) and Accuracy (A), we averaged task completion time and the number of errors across all

five repetitions in the four discrete conditions (with and without assistance, and for both the dom-

inant and non-dominant hands). The Effort (E) is measured by the average contraction duration

for all the muscle groups. For each participant, these three indices were then normalized to range

between 0 and 1, with respect to the difference between maximum and minimum values across all

the conditions. Figure 2.24 compares the performance of Radar Charts across participants. Overall,

the teleoperation assistance improves the task Efficiency and Accuracy for all the participants and

for teleoperation using both the non-dominant and dominant arms. The reduction of Effort is more

prominent and consistent for the non-dominant arm across the teleoperators.

Our ANOVA analysis further reveals the improvement in task Efficiency and Accuracy when

using teleoperation assistance for the object grasping task. This can be seen by the recorded task
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Figure 2.24: Performance evaluation procedure and summary for object grasping across all sub-
jects.

completion times (non-dominant arm: F(1,12)= 33.87, P< 0.01; dominant arm: F(1,12)= 52.35,

P< 0.01), number of errors (non-dominant arm: F(1,12)= 6.02, P< 0.05; dominant arm: F(1,12)=

9.85, P< 0.01) and duration of muscle contraction (non-dominant arm: F(1,12)= 5.93, P< 0.05;

dominant arm: F(1,12)= 7.93, P< 0.05). Overall, grasping without teleoperation assistance took

13.3 seconds longer for the non-dominant arm and 11.9 seconds longer for the dominant arm on

average. This is mostly because the teleoperation assistance reduced the risk of knocking down the

object during grasping and the effort for precise manipulation.

We further compared the muscle efforts and physical fatigue between teleoperation with and

without assistance across all muscle groups for each participant. The different levels of muscle

effort were calculated using the Kullback-Leibler (KL) divergence measurement based on muscle

contraction duration and all the results were normalized by the maximum value. As shown in Fig-

ure 2.25, most of the muscles had a significant reduction in physical effort (marked as green) with a

higher level of relaxation for the deltoids and biceps of the dominant/non-dominant hand. It is noted
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that the trapezius muscle however has reduced reduction (marked as white) or increased physical

effort as shown by the red marks for 2 participants. Overall, the assistance function performed

equally effectively on both arms for all participants.
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Figure 2.25: Comparison of physical effort across all muscles with dominant (D) and non-dominant
(ND) hand.

The level of physical fatigue was computed using the fatigue index for all repetitions. Fig-

ure 2.26 presents the physical fatigue developed across all the muscle groups for a representative

participant. The magnitude of the fatigue index was lower while using the teleoperation assistance

for most of the repetitions for both dominant and non-dominant arms. The duration for each repe-

tition of the task was relatively small and hence the fatigue index did not pass the fatigue threshold.

However, these results can be used to predict the potential physical fatigue developed due to ex-

tended teleoperation duration and is a part of our planned future work. The area under the curve

represents the total accumulated fatigue. As shown in Figure 2.27(a), most of the muscles had sig-

nificantly less accumulated fatigue (non-dominant arm: anterior and lateral Deltoid, Trapezius and

Forearm, P< 0.01; dominant arm: anterior and lateral Deltoid and Forearm, P< 0.01) while using

teleoperation assistance.

We also used the weighted NASA-TLX scores to evaluate the teleoperators’ perception of



58 Chapter 2. Desirable Control Interface for Tele-nursing Robot

Deltoid (Anterior) Deltoid (Lateral) Biceps Trapezius Forearm

F
at

ig
u
e 

In
d

ex
, 
%

100

110

120

130

140

150

160

170

F
at

ig
u
e 

In
d
ex

, 
%

100

110

120

130

140

150

160

170

1 2 3 4 50

Number of Repetition

1 2 3 4 50

Number of Repetition

1 2 3 4 50

Number of Repetition

1 2 3 4 50

Number of Repetition

1 2 3 4 50

Number of Repetition

D
o
m

in
a
n

t
N

o
n

-D
o
m

in
a
n

t Manual

Assistance

Figure 2.26: Representative participant result of physical fatigue across all muscles with dominant
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Figure 2.27: (a) Comparison of accumulated fatigue across all muscles in the dominant (D) and
non-dominant (ND) hands. (b) The subjective workload from weighted NASA-TLX scores.

task performance and workload. The weighting coefficients were selected as follows: mental de-

mand=4, physical demand=5, temporal demand=0, performance=2, effort=3, frustration=1. Shown

in Figure 2.27(b), the teleoperators have answered the survey in support of the usability of the assis-

tance function. Participants reported a significantly lower workload while using the teleoperation

assistance for the non-dominant (P< 0.01) and dominant (P< 0.05) hands. The lower workload

rating for the assistance function is understandable as there were no errors during operation and the

need to manually execute the precise manipulation to perform grasping is eliminated. Additionally,

as the assistance function reduces the duration of muscle contraction the mental fatigue incurred

due to teleoperation also reduces. As a result, the operation times are reduced as there are no errors
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and user motion is more efficient. The users may have reported reduced physical workload in their

surveys because of these advantages.

Preference for the Teleoperation Assistance — In Experiment Session 2, participants could

choose whether or not to use teleoperation assistance to pick and place objects. As shown in Fig-

ure 2.28, we found that (1) more participants prefer to use teleoperation assistance (16 times out of

24), (2) participants who used assistance more (more than two times out of three, P4-P8) had higher

scores than the participants who performed the tasks more manually (P1-P3), (3) participants who

completed the tasks more manually (55.3±7.4) reported higher subjective workload than using

assistance (24.6±6.8).
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Figure 2.28: Performance of score system for collecting three objects.

After Experiment Session 2, participants rated in hindsight their preference for teleoperation

assistance and manual control during robot teleoperation on a 1-7 Likert scale with 1 being the

least and 7 being the most in terms of the agreement. As there was a greater preference for the

assistive function (6.6±0.6) than purely manual control (3.6±0.7), the users were questioned on

what factors made them favor teleoperation assistance more. They point out that teleoperation

assistance can (1) increase the success rate; (2) reduce the task completion time; (3) reduce the

cognitive workload; and (4) reduce the physical workload. The results highlight the participant’s

belief that teleoperation assistance improves performance.
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2.7 Summary and Outlook

In this chapter, we present a complete framework that integrates interface evaluation and evolution

in a closed-loop and potentially iterative process. We compare the motion mapping interface with

several widely used tele-medical robot interface modalities. To the best of our knowledge, this is

the first user study that evaluates nursing robot interfaces with nursing students and practitioners.

We also design and evaluate robot autonomy for reducing the physical fatigue in robot teleopera-

tion, as physical fatigue is a non-trivial problem when human motion tracking interfaces become

more widely used for teleoperating co-robots in the near future. We further investigate the physi-

cal fatigue developed across all the muscle groups in the dominant and non-dominant hand while

teleoperating with and without teleoperation assistance (shared autonomy) which can be used to ob-

jectively validate the effectiveness of interface design. We present a novel way of integrating the

identification of the ideal teleoperation interface for healthcare/nursing duties through user studies

and interviews, using EMG signals to identify the sources of physical discomfort and designing

teleoperation assistance based on the findings from the EMG signals.

Desirable Characteristics of Tele-nursing Robot Interface— Tele-nursing robots should prefer-

ably be efficient and accurate while being intuitive with bi-directional communication. These com-

ponents will increase the nursingworkers’ preference for using such robots as their proxy to perform

repetitive daily tasks so that the risks of disease infection, physical strain, and injuries are reduced.

However, the increased functionality also increases the complexity of the tele-nursing robot hard-

ware and software. It is important to implement a suitable control interface for nursing workers who

usually have limited experience with robot control or limited engineering expertise. Right now, the

current and future population of nursing workers is pre-dominantly made of women and the female-

to-male ratio is about 9:1 [157, 158]. The average age of the current nursing population is around

49 years [159]. About 50% of full-time nursing faculty are 50 years or older [160]. Research has
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consistently shown that women and elders tend to perform worse in tasks that require spatial skill

[161, 162], which is used to estimate robot teleoperation skills [163, 164, 165, 166, 167]. Elders

also tend to have less experience with newer technology [168, 169] and are less willing to adopt

them [170, 171, 172, 173, 174, 175, 176, 177]. Gender stereotypes are often perpetuated because

women may not be included in the design process or test populations [178, 179, 180]. The lack

of transparent and intuitive interfaces leads to not only low task performance of nursing tasks, but

also creates intimidating cognitive and physical efforts for the users. The negative experience with

traditional and contemporary robot interfaces may further reinforce the age and gender biases that

discourage current and future nursing workers to envision the future of human-robot teaming in a

nursing workplace, and integrating robots into nursing education.

We showed the advantage of using human motion mapping as the tele-nursing robot control

interface by comparing it with a handheld gamepad and stylus-based device (User Study I). The

lower learning effort among nursing workers new to robot operation and the intuitive freeform

motion control could also make the teleoperation experience more immersive. Interestingly, from

the post-study interview, the participants stated that they felt the operational effort was reduced

because they were able to simultaneously control manipulation and navigation when using the

motion mapping interface. The interviews also mentioned that participants appreciated being able

to control the robot arms to perform complex orientations with ease. It is understandable that

in a realistic patient-caring scenario, nursing workers often need to take care of multiple tasks

simultaneously. Nevertheless, we noticed that the control interface using a gamepad is suitable

for more structured tasks since it can precisely and slowly control each motion for each degree of

freedom. Interviews of the participants indicated that the ability to use different buttons to control

different functions of the robot made teleoperation simpler. They felt this would prevent unintended

motions of the arms or the base. The participants also stated that the ability to move the robot

in small discrete increments via the joystick input gave them more confidence while performing
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delicate operations like picking up objects. This is unlike the motion control observed with the

Vicon interface and the stylus-based interface where precise control is harder to achieve. On the

other hand, when the workspace of the task is limited to a certain area, the stylus device will be a

good fit to control the robot to perform taskswith small movements. Additionally, the buttons on the

stylus hardware help integrate discretized base and arms control while also enabling teleoperation

through intuitive motion mapping of the stylus. Compared to the gamepad interface the motion

mapping of the stylus interface was reported as being more intuitive to use according to some

participant surveys. However, for nursing tasks that involve an unstructured and large range of

movement (e.g. laundry in a cluttered environment), freeform control (human motion mapping) is

preferred.

The work can be enhanced by exploring other wearable/portable interfaces for whole-body

motion mapping. Although motion capture systems are accurate for human motion tracking, the

cost of hardware and the effort required to set them up makes them less desirable. We also noticed

that the teleoperation performance and nursing workers’ preference might be affected by lots of

factors (e.g. age, gender, gaming experiences, spatial skills, etc.). Investigating the impact of each

identified factor to further the development of desirable teleoperation interfaces is another way

of improvement. A user study will also be devised to study how immersive each teleoperation

interface will be as immersion will play a great role in improving the situational awareness of the

operator while teleoperating. Through the three user studies presented in this chapter, we have

verified the usability of our interface design and evaluation framework. To quantitatively evaluate

the usability of the different interfaces, we will also work on developing a user study where the

performance of these teleoperation interfaces for a diverse array of tasks will be analyzed.

Teleoperation Assistance for Reducing Physical Workload — Motion mapping as a teleopera-

tion interface proves to be the most intuitive and preferred means of teleoperation. However, the

physical fatigue developed from using this interface cannot be ignored and can result in the rejec-
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tion of this interface as a means of everyday sustained use. As identified in this chapter (User Study

II), physical fatigue is developed primarily in the Anterior Deltoid, Trapezius, and Biceps muscle

groups due to teleoperation actions like steady arm postures for camera control and small-object

manipulation. The squatting action was performed only when the operator had to pause teleopera-

tion which only occurred at the start and end of the trials. Thus, the EMG signals of the leg muscles

were not monitored for analyzing the physical workload. However, since standing for an extended

duration might be a possible source of fatigue, monitoring the EMG signals to verify this aspect of

teleoperation can be an interesting direction for future research.

We used a shared autonomous control interface to tackle the issue of physical fatigue. Nurs-

ing tasks require a lot of decision-making skills and occur in an unstructured environment. As a

result, the entire task cannot be automated as current automation techniques do not capture the nu-

ances of operator-controlled teleoperation. In this chapter (User Study III), we have proposed how

automating reach-to-grasp reduces physical effort and fatigue in the operator and improves their

perception of teleoperation. Aspects of teleoperation like locomotion and gross manipulation are

left to the operator while the finer manipulation involved with object grasping is automated and

can be triggered on and off base on the operator’s needs.

We have demonstrated that augmenting the direct, freeform interfaces for robot control with a

little bit of robot autonomy will lead to flexible and reliable robot control for complex tasks. Our

proposed robot autonomy effectively reduced the operator’s physical workload in the control of

reaching-to-grasp motions. The work can be made stronger by developing a variety of robot auton-

omy to other fine motor skills necessary for quarantine patient care (see the fine manipulation tasks

listed in [181]). We will also explore how to design robot autonomy to be fatigue-adaptive, such

as triggering the autonomous function based on task context, inferred user intents, and estimated

physical fatigue level.

Evaluation Metrics for Nursing Workers and Tasks — The general framework (in User Study
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I) of the current human-robot teaming evaluation system we used in this chapter evaluates the

robot task performance and human workload. The different levels of controllability, efficiency,

accuracy, intuitiveness, and effort will affect the users’ preference and attitude toward using tele-

nursing technologies. Among the nursing workers, the weight of each teleoperation factor may

change depending on the usage. For instance, most of the registered nurses from the post-study

interview reported that the operational workload is their highest priority since they work in a tense

environment where they handle multiple inputs and outputs in a nurse-patient interaction. In this

chapter, we demonstrated the effectiveness of using evaluation-in-the-loop in the evolution of tele-

operation interface design. We focused on the teleoperation interface with a lower mental workload

(humanmotionmapping) and tried to learn more about its limitations by evaluating physical fatigue

through the use of sEMG sensors.

The use of sEMG sensors helps us monitor the physical workload objectively. In this chapter,

we showed the potential for sEMG as an offline analysis tool that can evaluate physical workload.

It helped us to identify the fatigue-causing factors (User Study II) and helped us generate a novel

objective index to evaluate physical fatigue. These results helped us identify the direction in which

the shared autonomy must be designed (as seen in User Study III). Our work is similar to [8] in

that we prioritize reducing muscle efforts in human-robot collaborative tasks. However, we focus

on tasks that involve more complex motor skills and dynamic muscle contractions.

To reinforce the work, we will incorporate more advanced methods for the accurate estimation

of physical fatigue. Traditionally, physical fatigue is measured using amplitude-based parameters

and time-frequency distributions of non-linear parameters. These metrics are suitable for evaluat-

ing isometric fatigue. We will consider the novel approaches which are more suitable for assessing

dynamic muscle fatigue. These approaches may utilize dynamic muscle fatigue model, differen-

tial equations, mechanomyography [182], inertial measurement unit (IMU) measurements [183],

power spectral indices and kinetics and kinematics [184] from motion data.



Chapter 3

Perception-Action Coupling in Active

Telepresence

3.1 Motivation

Contemporary tele-robotic systems (e.g., for nursing assistance [1], surgery [185], manufactur-

ing [186], etc) are usually equipped with multiple active telepresence cameras to provide the tele-

operator sufficient perception of the remote environment and the tasks. Deciding how to select

and control them to acquire the desirable camera motion and viewpoint could be as difficult as

controlling the freeform dexterous tele-manipulation, given that the remote cameras may be lo-

cated at the robots head, the manipulators for task operation or camera assistance, the mobile base,

or standalone in the workspace and can be moved as required (see Figure 3.1 [1] for example).

When focusing on the tele-manipulation tasks, teleoperators often neglect effective control of the

active telepresence cameras to avoid the additional cognitive workload. Although robot autonomy

for camera assistance is necessary, ill-designed camera assistance, which do not account for the

natural preference of human visual perception and visual comfort, may confuse and frustrate the

teleoperators, and reduce their performance and trust in robot autonomy.

The remote control of active telepresence cameras is difficult because the robot teleoperators

need to develop novel motor skills to control the unfamiliar viewpoint of the robots, which are

different from human eyes and their viewpoint in their displacements, motion capabilities, depth

65
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perception, and field of view (FOV) [84]. Controlling this foreign viewpoint of the robot is counter-

intuitive to humans who are used to the location, perception capabilities, and natural viewpoint con-

trol motions of human eyes. To assist the teleoperators to utilize the active telepresence cameras

better, prior research efforts have developed 1) interfaces (e.g., via head/gaze tracking [24, 187])

for intuitive camera viewpoint and motion control, and 2) robot autonomy for autonomous dynamic

viewpoint selection and camera motion control [25]. However, the design of interfaces and auton-

omy for camera assistance is mostly hand-engineered and based on empirical experience, rather

than the in-depth understanding of human natural behavior and preference of perception-action

coupling, which has a strong influence on how humans prefer to coordinate the remote camera

control and robot motions and actions. They are also mostly designed for single camera robotic

systems and are not capable of handling active telepresence via multiple cameras.

Figure 3.1: Nursing robot teleoperation via a freeform interface with feedback frommultiple active
telepresence cameras attached to head, torso, and wrists.

In this chapter, a novel experimental paradigm is proposed to study perception and action cou-

pling in terms of vision-motion coupling, haptic-motion coupling, and vision-haptic coupling of

sensory integration. Based on the results of the user study, it can be inferred that an effective active
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perception camera control design would incorporate shared autonomy for camera selection, as well

as an intuitive assisted teleoperation interface.

3.2 Literature Review

Active Telepresence for Tele-robotic Systems— The usage of multi-camera telepresence has en-

abled tele-robotic systems to operate in complex environments and perform tasks that require high

dexterity and mobility while under the control, guidance, or supervision of remote human users.

Many contemporary tele-robot systems integrate multiple cameras to increase the field of view, or

to provide the additional viewpoint of robot, tasks, and environments [188]. For example, Nguyen

et al recently integrated an array of four cameras to provide a wider field of view, such that remote

users could assist with wheelchair navigation [189]. Compared to panoramic cameras, the integra-

tion of multiple telepresence cameras can provide a sufficiently wide camera view at lower cost and

energy consumption. On the other hand, Whitney et al proposed to display the 2D video from hand

cameras of a humanoid robot along with the point cloud from its head camera. Teleoperators use

both the global and local task views to efficiently control the robots to perform dexterous manip-

ulation tasks such as laundry folding [190]. An interactive detail-in-context telepresence interface

displays the pan-and-tilt view from a narrow camera (in robot head) inside of a wider pannable

view (attached to a pole extended from the robot back), such that the teleoperators can zoom in on

details of a selected region [191, 192]. Indeed, a multi-camera telepresence system can integrate

the displays from the cameras of different robots. For instance, De León et al proposed a design

of multi-camera telepresence to increase the navigation capabilities of multi-robot systems in dis-

aster response [191]. The robot primarily responsible for the mission is provided with the external

viewpoints from the cameras of the other robot teammates, in addition to the onboard camera it

carries. The feed from multiple cameras on the robot can be provided simultaneously or be relayed
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as active camera feedback where the different viewpoints can be individually controlled. As pre-

sented by Seo et al [192], the ability to go back and forth between multiple camera views being

relayed to them at the same time will let the operator get more information about the workspace at

the same time and corroborate information about the workspace by going back and forth between

views. However, displayingmultiple camera views at the same time can cause information overload

overwhelming the operator and thus affecting their ability to perform [193]. Additionally, to fully

utilize the potential of simultaneous multi-camera feeds requires the ability to spatially correlate the

events between different viewpoints. However, this ability is dependent on the spatial reasoning

skills of participants which are highly user-specific and as a result can result in increased cognitive

workload for operators with limited spatial reasoning skills [194, 195]. With an active multi-camera

telepresence network there are improved remote perception capabilities of tele-robotic systems and

improved situational awareness among the robot teleoperator or supervisors. However, tracking,

managing, and controlling the feed from multiple cameras also demands additional cognitive and

operational efforts. In general, related work in literature addresses this limitation by the design of:

1) control interfaces that use head motions and/or gaze for intuitive camera control [24, 196, 197],

and 2) robot autonomy for camera assistance that autonomously adjust the camera viewpoint to

track the object of interest [198, 199, 200], the robot end-effectors or tools [25, 31], or the features

critical to task performance [201, 202, 203]. The autonomy for camera assistance can also be used

to optimize the camera motions for visual comfort [204, 205, 206], or optimize camera viewpoint

for information gain [207, 208], aesthetics [209, 210, 211], viewpoint familiarity [212] or other

considerations. Nevertheless, these control interfaces and camera assistance are limited because:

1) they were mostly designed for single-camera systems, and 2) the strategy for camera viewpoint

and motion control was proposed and evaluated case-by-case, based on empirical experience and

hand-engineered criteria, instead of systematic understanding of human behavior and preference

for the selection and control of active telepresence cameras.
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Vision-Motion Coupling — If a human is subjected to a foreign viewpoint, like if the visual per-

spective was from their torso or hands, with limited haptic sensation from touch, then the human

would have to adapt novel ways to use this foreign vision and haptic sensation to interact with

the environment. Fortunately, we are confident that the human motor system is able to re-develop

a “new normal” to best utilize the new perception and action capabilities, as seen in motor skill

training [213] and rehabilitation [214, 215].

The temporal and spatial coordination of vision and movements, namely the visuomotor co-

ordination, is essential to human motor control. The human behavior and underlying human mo-

tor control strategies of the vision-motion coupling [216] have been extensively investigated in

various human motor skills. Specifically, many human factor experiments have studied the gaze

pattern, visual control, or eye-hand/eye-foot/eye-head coordination in the tasks including active

perception (e.g., visual search [217], target selection [218], target tracking [219, 220], scene view-

ing [221]), manipulation (e.g., reaching [222, 223], reaching-to-grasp [224, 225], grasping [226],

interception [227, 228], bimanual coordination [229], object manipulation [230]), and locomotion

(e.g., walking [231, 232], navigation [233, 234], driving [235]), tool and interface operation (e.g.,

laparoscopic surgery [236], video game [237]), and learning of motor skills (e.g., [238]). Such ex-

perimental studies reveal that human gaze and visual control in daily activities can be influenced not

only by the salient features [239] and surprising stimuli [240] in the task environment, but also by

the action and behavior goals [216] (and their associated intrinsic [241, 242] and explicit [243, 244]

rewards), the benefits of collecting additional information to reduce the uncertainty in task environ-

ments [245, 246], the memory of task-relevant objects or context cues in the environment [216], and

the predicted visual state in action control [247, 248, 249]. In more recent literature, frameworks

such as probabilistic decision theory [216, 250], stochastic optimal control [251, 252] have been

used to explain the vision-motion coupling of human motor control, while computational models

are also developed to explain, predict, and render human (-like) gaze/visual attention/active per-
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ception behavior (e.g., [253, 254]).

The natural behavior and preference of vision-motion coupling not only influence how humans

perform various motor skills in daily activities (e.g., [255, 256]), but also influence how humans use

robot teleoperation interfaces. In robot teleoperation, whether teleoperators can make motion con-

trol decisions depend on howwell they can perceive, comprehend and predict the remote task being

operated [257], which further relies upon how well they can select and control the remote cameras

in coordination with their tele-actions [258]. In the usage of a teleoperation interface, teleopera-

tors will have less cognitive workload and better situational awareness, if the telepresence interface

allows them to control the remote cameras similar to their natural gaze control, and if the robot au-

tonomy for camera assistance can provide camera viewpoints and motions can accommodate their

needs for performing tele-action and visual comfort [259, 260]. Such interface and autonomy are

also important to the learning of robot teleoperation interfaces because it facilitates the development

of spatial skills, including spatial visualization (perceiving objects among cluttered environments),

mental rotation (rotation and visualization of an object to form different configurations), and per-

ceptive taking (visualizing objects in different frames of reference) [88, 261].

Multi-sensory Integration—Another important human factor we need to investigate is the multi-

sensory integration in the usage and learning of robot teleoperation interfaces. Similar to vision-

motion coupling, the integration of visual and haptic feedback [6, 262] are also natural and essen-

tial to human motor control. The effects of haptic perception and visual-haptic sensory integration

have also been investigated in various human motor behavior and motor learning processes (e.g.,

[263, 264]). For example, prior research has shown that haptic perception can disambiguate visual

perception of 3D shape [265] and facilitates the identification of objects [262, 266]. The integration

of visual and haptic feedback also facilitates the learning of tool usage [267], laparoscopic surgery

skills [268]. In many multi-sensory tasks (e.g., grasping small objects), visual and haptic inputs

are weighted based on the reliability of individual cues [6]. The framework of Maximum Likeli-
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hood Estimation (MLE) has been used to explain the weighted integration of multi-sensory cues

(e.g., visual and haptic cues), in natural and synthetic environments [6, 269]. The haptic feedback

provided by robot teleoperation interfaces, although limited in its accuracy, transparency, and sen-

sitivity, can still be leveraged to compensate for lost information in the visual feedback via remote

cameras.

3.3 Simulated Active Telepresence Setup

In direct robot teleoperation, natural perception-action coupling in human motor control cannot

be preserved due to the dissimilarity of human and robot embodiment. The added complexity of

controlling the robot and vision through a motion capture system [1] might make active camera

selection and control during teleoperation harder. The strong spatial skills and high mental effort

required to expertly perform vision control during teleoperation might set up high barriers to en-

try to teleoperation. As a result, we studied human perception-action coordination in a simulated

telepresence setup, where participants wearing a head-mounted display received video feeds from

cameras attached to their own bodies, thereby trivializing the manipulation component of the task

to encourage active camera selection and control.

Explore Environment Gross Manipulation Fine Manipulation

Figure 3.2: A representation of the experimental paradigm. The three images show the sequence
of actions the subject uses to stack a cup while performing the experiment.

We present a novel experimental paradigm to study the perception-action coordination in the
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usage of active telepresence through the stacking of cups as seen in Figure 3.2. The participants

wore thick gloves to dampen haptic perception in the hands and hinder their sensation of friction

for grasping and in-hand manipulations. This paradigm is designed to trivialize motion control

for manipulation, locomotion, and active telepresence, while preserving the essential perception

capabilities and challenges of remote robots (e.g., 2D display, limited visual range, haptic feedback,

unnatural control of camera motions). Voice commands via a wireless microphone were used to

switch cameras to make this operation as straightforward as possible without interfering with the

experiments. The camera switch is automated based on the command received from the participant.

Participants naturally reveal effective perception-action coordination strategies as they adapt to the

camera configuration and discover their preferred camera selection and control. Since the task of

stacking cups is simple and straightforward, experience or skill played little role in the successful

completion of the task.

Head Camera

Clavicle Camera

Action Camera

Perception Camera

Robot Platform - TRINA

Workspace Camera

Figure 3.3: The camera set-up on the operator (right) is similar to the camera set-up seen on the
TRINA humanoid robot (left). The two wrist cameras correspond to perception and action hand
cameras. The gloves are used to dampen haptic perception in the hands while performing the
experiments.

The participants were instructed to perform a cup-stacking task with the camera views from
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various wearable and standalone cameras streamed to a VR headset. While the simultaneous dis-

play of visual feedback side by side from multiple telepresence cameras is a solution, the cognitive

workload and distraction caused by this implementation can prove to be a major obstacle for tele-

operators [270]. Shown in Figure 3.3, these telepresence cameras were chosen to simulate the per-

ception cameras equipped on a mobile humanoid nursing robot, which can perform manipulation

and navigation tasks under direct teleoperation [1].

The cameras available to the participants are shown in Figure 3.4 and detail listed below.

Head Camera (Chead) — This camera was attached to the front of the VR headset using a strap,

matching natural human eyesight.

Clavicle Camera (Cclavicle) — This camera was attached to the chest above the sternum and be-

tween the underarms via a strap and mimicked the limited degrees of freedom and range of motion

of a robot head camera.

Action Camera (Caction) & Perception Camera (Cperception) — These cameras were mounted on

the 3D printing camera mount and then attached to the dominant hand primarily responsible for

manipulation and the non-dominant hand that assists manipulation using straps, respectively.

Workspace Camera (Cworkspace) — This camera was located across the workspace from the par-

ticipant on a stationary tripod.

The head, perception, and action hand cameras were the Logitech C310 HD web-camera [271]

which has a maximum resolution of 1280 x 720 pixels at 30 frames per second and a diagonal field

of view of 60◦. The workspace camera was a AUSDOM AW615 webcamera [272] which has a

maximum resolution of 1280 x 720 pixels at 30 frames per second with a field of view of 65◦.

The Google Daydream VR headset with an iPhone 8 mobile phone for the display was used as the

Virtual Reality headset for the experiment.
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𝐶𝐻𝑒𝑎𝑑 𝐶𝑊𝑜𝑟𝑘𝑠𝑎𝑝𝑐𝑒𝐶𝐶𝑙𝑎𝑣𝑖𝑐𝑙𝑒 𝐶𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝐶𝐴𝑐𝑡𝑖𝑜𝑛

Figure 3.4: The demonstration of the video streams from head, clavicle, perception, action, and
workspace cameras.

3.4 Human Experiment

3.4.1 Participants and Tasks

Our study recruited 16 healthy participants (8 males, 8 females, average age = 23.4 ± 3.6) including

student and general populations. The experimental protocol was approved by WPI’s Institutional

Review Board.

We designed the task to be simple to understand and perform. The stacking task involved three

distinct actions: (1) world exploration to observe the environment without interaction, (2) gross

manipulation to reach for and carry objects, and (3) fine manipulation of objects with hands. These

actions, and combinations thereof, span a wide variety of tasks a tele-manipulation system may

need to perform. The cups were easy to grasp and manipulate, yet their low-friction surface and

light weight made manipulation errors easy to observe.
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3.4.2 Experimental Procedure

Before the experiment, the experimenter equipped the participant with wearable cameras, a VR

headset, a microphone, and gloves, and introduced the task of stacking lightweight plastic cups

into a pyramid. Also, participants were allowed to make small adjustments to the camera field of

view to their preference. The available camera adjustments include:

Head Camera (Chead) — The angle between the front of the VR headset and the camera lens.

Clavicle Camera (Cclavicle)— The angle between the sternummounting strap and the camera lens.

Action Camera (Caction) & Perception Camera (Cperception) — The location on the forearm (be-

tween the elbow and the wrist), the rotation of the mounting bracket around the forearm, and the

angle between the mounting plate and the camera lens.

Workspace Camera (Cworkspace) — The location of the camera tripod relative to the participant

and workspace, the angle between the tripod mount and the camera lens, and the focal length of

the camera image. The Cworkspace image was flipped horizontally based on user feedback during a

pilot study.

Participants were first asked to stack six cups using the feedback from the telepresence cameras

(single camera trials = 2 trials × 5 cameras). For each camera, a participant had a three-minute prac-

tice section to get familiar with the selected camera view. The first completed trial was extracted

to represent the trial before practice (training phase). This second trial (performing phase) is used

to evaluate the operator’s skill and workload using the selected camera. The order of camera se-

lection was randomized for each participant to minimize task-learning effects. Camera adjustment

was permitted before, during, and after the practice trial, but the wearable camera locations and

angles with the mounting point remained static during the performance trial. The participants were

asked to prioritize the speed of completing the task (without compromising on comfort) and avoid
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errors, like knocking over cups, and misaligning while stacking, when performing the task.

For the final trial, participants were instructed to stack ten cups and were able to use and switch

the camera view at will (multi-camera trial). This trial did not include the head camera (Chead)

because, in practice, VR telepresence systems may be uncomfortable to use for long periods of

time like traditional healthcare worker schedules [84]; we used the Chead condition to represent an

ideal camera control baseline against which the other cameras can be compared. The participants

were allowed to select the starting camera view of their own preference and were instructed to

perform the final trial at a comfortable pace. Before the final trial, participants practiced using

voice commands to switch cameras.

3.4.3 Data Collection and Processing

The methodology used while annotating the user study videos for identifying strategies developed

with regard to perception-action coupling and human adaptation towards camera control while

teleoperating will be expanded upon in the following sections. The annotation of user study videos

involved two observers and one supervisor. The supervisor frequently held group discussions to

address any conflicts in observations and converge on a conclusion.

General Task Performance — The overall task performance was measured by recording the du-

ration of task completion, frequency of errors, and camera view utilization.

• Task Completion Times: The time taken to perform the experimental tasks during both

the single and multi-camera trials was recorded. The task completion times help us get an

objective evaluation of how a particular camera feed aids in performing a task efficiently and

intuitively.

• Number of Errors: The number of errors that occurs during the practice and performance
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phases of the single andmulti-camera trials was recorded. These errors include misalignment

of cups and knocking down of cups while stacking. Misalignment of cups implies cups

were placed in the wrong location while stacking due to lost information from the camera’s

video feed. These errors help us objectively evaluate how a camera feed enables the correct

performance of the tasks with sufficient visual feedback provided.

• Camera Selection: During the multi-camera trials the number of camera switches between

the various camera views was counted. These results can help identify the preferences of the

participant for completing the task and help objectively validate the responses provided by

the participants’ responses to the post-study survey.

Human Behavior — The observed behavior was classified into the following categories:

• Instinctive Head Movement: Participants tended to try and control their camera/vision us-

ing their head motion even when the camera is not connected to the head. The head motion

was counted as a non-trivial rotation when it is along the transverse and longitudinal axes.

The instances of these head motions were compared with task completion times to identify

how the user instinctively desires to move their head or go for their natural mode of per-

ception with the complexity of the camera view indicated by task completion time. These

motions were counted for the training and performing phase of single camera trials and for

all the camera feeds except the head and workspace camera.

• Body Coordination: In the performing phase of the Cclavicle camera experiment, the par-

ticipants moved their upper body or walked sideways to improve their field of vision. The

instances of torso motion and walking motion were counted.

• Bimanual Manipulation: Bimanual Manipulation is the efficient way of performing tasks

and thus the number of participants performing bimanual manipulation during the performing



78 Chapter 3. Perception-Action Coupling in Active Telepresence

phase of all the camera trials and in the multi-camera trial was counted. These motions were

counted for Cworkspace, Cclavicle, and Chead when both hands were used to gather and stack

cups.

• Fixed Elbow: During the performing phase of the Cperception, the time during which the

perception camera was stationary while performing the experiment was recorded from the

user study videos. This action usually involved the user holding a stationary pose for their

elbow on which the perception camera was mounted with respect to their body.

• Saccade Ahead: We observed that some participants looked ahead at the location of the

future cup placement before grasping it. This motion was counted for the training and per-

forming phase in single camera trials and for all the camera feeds except the action hand and

workspace camera.

• Touch to Locate: Even with limited haptic feedback, participants attempt to identify the

cup location and the position of their hands using their ability to touch surfaces. We counted

the number of times a hand was used to tap the bottom of the cup to identify the subject’s

reliance on haptic feedback. This motion was counted for the training and performing phase

in the single camera trials for all the camera feeds and in the multi-camera trial.

• Tentative Stacking: Participants also tended to stack tentatively by tapping the bottom of

the cup they are trying to stack against the surface where they intend to stack to precisely

align their cup while stacking. This motion was counted for the training and performing

phase in the single camera trials for all the camera feeds and in the multi-camera trial.

• Slide Cup on Table: We also counted the number of times the participants slid the cup across

the table’s surface rather than picking it up. This motion was counted for the training and

performing phase in the single camera trials for all the camera feeds and in the multi-camera

trial.
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• Touch for Alignment: While in the stacking phase, we noticed that participants try to use

one hand to hold the bottom cup and another hand to make the alignment. This motion was

counted for the training and performing phase in the single camera trials for all the camera

feeds and in the multi-camera trial.

Subjective Survey — The preference of participants for different camera views was verified by

the time they spent using different camera views while performing the multi-camera stacking trial.

A subjective camera preference survey was performed to record the participant’s perceived pref-

erences for different cameras while performing the various components involved in the stacking

operation like a choice of the camera in exploring, reaching, grasping, and for the overall per-

formance of the task. They were also asked to provide specific feedback about certain camera

viewpoints and configurations and their thoughts on improving the system. Additionally, the par-

ticipants also participated in a post-study interview at a later stage where the experimental video

was replayed to them and questions pertaining to their reasoning for performing the action.

3.5 Perception-Action Coupling

We analyzed the human behavior from the performing phase in the single camera trial and combined

the multi-camera trial to reveal the vision, haptic and motion coordination while performing the cup

stacking task for each camera usage.

3.5.1 Vision-Motion Coupling

We noticed that people attempt to adjust the camera view using their head not only for the head

camera but even for the action, perception, and clavicle cameras (see the head posture in Fig-

ure 3.5). The ANOVA analysis of the Instinctive Head Movement from the performing phase in
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the single camera trial shows that using an action camera causes significantly more frequent fu-

tile head motion than the clavicle (F (1,15)=24.4, p<0.01) and perception (F (1,15)=22.8, p<0.01)

cameras. We further examined the correlation between task performance (task completion time)

and the instances of head movements (see Figure 3.5). A significant linear regression was found

for clavicle (F (1,13)=12.8, p<0.01, with an R2 of 0.5), perception (F (1,13)=14.2, p<0.01, with

anR2 of 0.52) and action (F (1,13)=5.9, p<0.05, with anR2 of 0.32) cameras. Linear regression of

this data predicts that the expected task completion time increases by approximately 9.5 (clavicle),

4.6 (perception), and 4.7 (action) seconds for each occurrence of head movements. Our interview

reveals that not being able to control the camera viewpoint using their head movements caused a

lot of frustration for every participant. Some participants were able to remind themselves that head

movements are not effective for camera viewpoint control and try to suppress this instinct, while

others only realized the head movements are ineffective for camera viewpoint control until they

felt discomforts like motion sickness or physical fatigue due to activity. Overall, we found that it

is more difficult for the participants to realize and suppress the instinctive head movements when

the camera is considered more difficult to use.
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Figure 3.5: Compulsive head movement: (a) raise the head up; (b) hold head down; (c) turn head
side way. Task completion time versus the occurrences of head movement for the clavicle, percep-
tion, and action hand camera.

Based on the usage of the clavicle camera (Cclavicle), we found that the participants can be

separated into two groups by their Body Coordination. The result from the performing phase

(Figure 3.6(a)) shows that one group of participants tend to explore the environment through torso
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motions to control the camera view instead of walking around while the other group walked around

in the workspace for the same.
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Figure 3.6: (a) Two groups of the body coordination while using clavicle camera; (b) The fixed
elbow pose for perception camera control; (c) Duration of the arm fixation w.r.t. task completion
in perception camera usage.

As shown in Figure 3.6(c), the proportion of task time that the participants employed a Fixed

Elbow Posture (refer Figure 3.6(b)) while using the perception camera for the fixed camera trial

was 82.9 ± 12.7 percent. We also found that the majority of the participants (11 of 16) tend to

fix their shoulder joints and move their torso to control the perception camera viewpoint, thus

limiting the perception hand camera motions with respect to the base frame of the torso. Our

interview reveals that: most participants intentionally limit the elbow and shoulder motions of the

perception camera arm to better remember the spatial relationship of the perception hand camera

with respect to their body. This lets them coordinate the camera motions with the motions of their

manipulating hand, object, and workspace. Some participants indicated that they unconsciously

choose the elbow angle so that the perception camera is not too far away from their body, making it

easy and comfortable to move and look around the workspace. Overall, the situational awareness

of the perception camera pose with respect to their body is critical to the planning of coordinated

perception and manipulation actions.

Whenever possible, participants preferred Bimanual Manipulation, to speed up the task and

to increase their reach without moving the body. The usage of bimanual manipulation, in both sym-
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metric and asymmetric forms, is observed when using the head, clavicle, and workspace cameras,

for reaching to collect cups, and for placing/stacking the cups in the same row. We also found that

bimanual control/manipulation is more frequent with the head camera (13/16 participants) thanwith

the clavicle (3/16 participants) and workspace cameras (4/16 participants). Our interview shows

that bimanual manipulations are more difficult when using the clavicle camera because reaching

both hands forward to objects caused the torso to lean forward which reduces the viewpoint con-

trol of the clavicle camera. Compared to unimanual manipulation, bimanual manipulation is more

efficient yet more complex to plan.

3.5.2 Haptic-Motion Coupling

Our experimental paradigm limited the haptic perception of the participants so that they had to

rely mostly on the visual feedback from RGB cameras to perform the tasks. However, participants

still learned to utilize the limited haptic feedback received through the thick gloves they wore to

compensate for reduced visual feedback. Across all the participants and camera viewpoints, we

observed the participants 1) Touching to Locate the cups to build the contact sensation, 2) Sliding

Cup on the Table so that they can leverage the haptic perception of table constraints to better

control the moving motions, 3) Stacking Tentatively to get the better placement location and 4)

Touching for Alignment using the bottom of the cup.
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Figure 3.7: (a) Touching-to-locate, (b) sliding cups-on-table, (c) tentative-stacking and (d)
touching-for-alignment actions observed in the usage of the head (H), clavicle (C), perception (P),
action (A) and workspace (W) camera.
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The haptic-motion coupling actions like touch to locate, sliding the cup on the table, tentative

stacking, and touching for alignment were counted. Figure 3.7(a) shows the mean and standard

deviation of touch-to-locate occurrences across participants for different cameras. The ANOVA

analysis shows that using an action camera causes significantly more frequent (p < 0.01) touch-to-

locate actions than all other cameras. Also, touch-to-locate actions occurred the least (p < 0.01)

when using the head camera. These significant differences indicate that participants resort more to

haptic feedback for the cameras more difficult to use (as indicated in our survey feedback). Both the

observed human behavior and the interview feedback indicate that 1) touching-to-locate an object

is the most necessary haptic perception to complement the loss of depth information and limited

field of view while using active telepresence; 2) the haptic feedback does not have to be strong and

realistic if it can provide a sense of contact. We hypothesize that this can largely reduce the mental

workload and stress due to uncertainty in perception while improving task accuracy and efficiency.

In addition to touch-to-locate, participants also used touch-for-alignmentwhen tentatively stack-

ing, aligning, and sliding the cups on the table. Overall, haptic compensations were required for

the cameras identified as non-intuitive and inefficient to use. In Figure 3.7(b), sliding cups on the

table are observed the most in action hand camera usage. On the other hand, the tentative stacking

actions are used by 15 of 16 participants when working with the action hand camera, and by 2 of

16 participants when working with the head camera (see Figure 3.7(c)). While in Figure 3.7(d),

touch for alignment is observed in more than half of the participants for the workspace cameras

followed by action hand and clavicle cameras. The interview feedback reveals that: 1) The gloves

effectively damped most of their haptic perception; 2) the limited tactile sensing is still very helpful

to the task in many cases.



84 Chapter 3. Perception-Action Coupling in Active Telepresence

3.5.3 Vision-Haptic Coupling

In the single camera trial, the participant used the video feedback from a single camera to perform

the cup stacking task. This helps us compare the performance and human behavior across cam-

eras. Figure 3.8(a) shows the concept of vision-haptic coupling, where information gathering while

touching to locate is offset by the increased number of camera switches and vice-versa. Unlike the

single camera trial that receives vision feedback from one camera viewpoint, the multi-camera trial

allows participants to switch the viewpoint across cameras. The need for haptic compensation like

loss of depth information can be compensated by switching the camera view to a different view

like the perception hand camera. However, our interview feedback suggests that the cognitive

workload increases when having to involve more camera switches thus limiting the bandwidth to

perform other actions.
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3.6 Human Adaptation

We performed the analysis of human behavior in the single camera trial to investigate perception-

action coupling while using the active telepresence cameras. In this section, we further compare

the performance and the human behavior between the training and performing phases in the single
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camera trial to disclose the impact of the practice and motor learning process. We also combine

the information from the multi-camera trial to better understand how the skill sets learned from the

single camera trial transfer to the multi-camera trial.

3.6.1 General Performance

We compared the performance in terms of task completion time and number of errors between

the training and performing phase in the single camera trial. An error can occur when the cup

drops due to: 1) misalignment during stacking, and 2) collision while moving hands around. Fig-

ure 3.8(b) shows the comparison of the task completion times between the training and perform-

ing phases in the single camera trial. The ANOVA analysis shows that the completion time had

significantly reduced after practice while using the perception (F (1,30)=7.3, p<0.05) and action

(F (1,30)=5.6, p<0.05) hand camera. These significant differences indicate that the comprehensive

practice section is necessary for difficult cameras. In addition, Figure 3.8(c) shows the correlation

between task completion time and the number of camera switches in the multi-camera trial. Based

on the ANOVA analysis, the time needed to complete the task is significantly longer when partic-

ipants had the most number of camera switches than switches twice (F (1,4)=11.3, p<0.05), once

(F (1,3)=12.5, p<0.05) and none (F (1,5)=8.1, p<0.05).

Figure 3.9(a) shows that trials using the action hand camera had more participants who mis-

aligned cups compared to the other camera views and displayed limited improvement after practice

(11/16 to 9/16 participants). This implies the non-intuitive camera usage in terms of loss of depth

information which may lead to failure of the task despite the practice session. In Figure 3.9(b), the

action hand camera still caused most participants to knock down the cup while moving their hands

around. However, the practice helped prevent the collision with the cup when using: perception

(3/16 to 0/16 participants), action (8/16 to 4/16 participants), and workspace (4/16 to 2/16 partici-
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pants) cameras. This implies the narrow field of view and complex camera control can be adapted

to by practice.
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Figure 3.9: The errors occurred in the single camera trial in the type of (a) misalignment; (b)
colliding with the cup.

3.6.2 Motor Learning

We identified several actions that we constantly observed from both the training and performing

phases in the single camera trial. As shown in Figure 3.10(a), we found no significant differences

for the Instinctive Head Movement in the clavicle, perception, and action hand cameras between

the training and performing phase. This solidifies that it is difficult to suppress the head movement

though participants are able to realize that the camera cannot be controlled by the head during the

training phase. Figure 3.10(b) shows the duration (the proportion with respect to task completion

time) of fixing the elbow in a certain posture while using the perception hand camera (including the

training and performing phase). We found that the duration of the Fixed Elbow posture signifi-

cantly reduces (F (1,30)=13.5, p<0.01) after practice. This implies that the training session helped

improve the participant’s understanding of the spatial relationship of the perception of hand camera

with respect to their body. We noticed that some participants made a Saccade Ahead of the cup,

just before grasping it, to a location on the future placement. In Figure 3.10(c), there is a noticeable

increase in the participants (from 3/16 to 9/16) who looked ahead when performing pick-and-place
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motion in the perception hand camera trial after the practice session. This observation implies the

practice section can improve the cognitive bandwidth when controlling a non-intuitive camera.

0

2

4

6

8

Clavicle Perception Action

O
cc

u
rr

an
ce

s

Head Movement

Training Performing

0

25

50

75

100

Training Performing
P

ro
p

o
rt

io
n
 (

%
)

Fixed Elbow Pose

0

5

10

15

Head Clavicle Perception

N
u

m
b

er
 o

f 
S

u
b

je
ct

s

Saccade Ahead

*

(a) (b) (c)

Figure 3.10: The comparison of the human behavior between training and performing phase for:
(a) head movement, (b) arm fixation, and (c) looking ahead while using active telepresence camera.

We divided the Bimanual Manipulation into gathering (maneuvering multiple cups in the

workspace), picking/stacking (picking up and stacking actions of the cup in the workspace), and

holding the cup (holding and carrying a cup). Figure 3.11(a) and Figure 3.11(b) show the increase

in the number of participants who performed the bimanual gathering and picking/stacking after

practice in the head camera trial which was identified as the most intuitive camera view to con-

trol. However, lesser participants used both hands to hold the cup after practice while using the

workspace camera (see Figure 3.11(c)). Our interview feedback indicates that they try to eliminate

the mirror effect that occurs while the workspace camera by holding a cup with both hands.
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We also investigated the differences in Haptic Compensations between the training phase

and performing phase to better understand how humans adapt to the different active telepresence
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cameras usage. Figure 3.12(a) and Figure 3.12(b) show the mean and standard deviation of touch-

to-locate and slide-cup-on-table occurrences across participants for different cameras in the training

and performing phase. The ANOVA analysis indicates that using the perception (F (1,30)=9.5,

p<0.01) and action (F (1,30)=7.1, p<0.05) hand cameras significantly reduces the touch-to-locate

actions and perception hand camera significantly reduces (F (1,30)=5.9, p<0.05) the slide-cup-

on-table action after practice. These differences imply that haptic feedback helped improve the

usage of the more difficult, limited field-of-view cameras by virtue of being close to and focused

on the object of manipulation. Figure 3.12(c) and Figure 3.12(d) show the number of participants

who performed the tentative stacking and touch-to-alignment actions for different cameras in the

training and performing phase. We found a slight decrease in the participants who performed the

tentative stacking while using the perception hand camera and an increase in the participants who

performed the touch-for-alignment in the action hand camera after practice.
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Figure 3.12: Comparison of the haptic compensation between training and performing phase in-
cluding: (a) touch-to-locate, (b) slide cup on the table, (c) tentative stacking, and (d) touch-for-
alignment.

We further analyzed the identified actions including head movement, bimanual operation, and

haptic compensations in multi-camera trials to investigate the process of human adaptation in the
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usage of active telepresence cameras. As shown in Figure 3.13, more than half of the participants

use the touch-to-locate (16/16 participants), slide-cup-on-table (15/16 participants), bimanual ma-

nipulation (13/16 participants) and touch-for-alignment (9/16 participants) actions while using the

active telepresence cameras. Furthermore, we observed 13 out of 16 participants still tried to con-

trol the camera viewpoint using their heads.
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Figure 3.13: The number of subjects who performed the haptic compensation, head movement,
and bimanual manipulation in the multi-camera trial.

3.7 Camera Selection and Preference

We conducted the analysis of the camera preference as indicated by camera selection while per-

forming the multi-camera trial and post-study survey. Figure 3.14(a) shows the correlation between

the duration of camera usage and the number of camera switches in the order of total task comple-

tion time. We found that fewer camera switches and participants who had a higher proportion of

clavicle camera usage led to better performance (in terms of task completion time). These obser-

vations aligned with the recent study of multi-view interface design where it was observed that

autonomous switching might ease the control effort [273]. The camera preference survey indicates

that the workspace camera is preferred while exploring the environment and the perception hand

camera for gross and fine manipulation followed by the clavicle camera (see Figure 3.14(b)). It is

to be noted that the action hand camera was never selected during the multi-camera experiment.
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From a human action perspective, these results aligned with the findings from the recent design of

the adaptive viewpoint in telemanipulation where the performance was improved with the shared-

autonomous camera control [31].
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Figure 3.14: The subjective assessment about the camera selection and preference from the multi-
camera trial.

3.8 Summary and Outlook

In this chapter, we investigate how humans coordinate perception-action coupling during active

telepresence through a novel experimental paradigm that emphasizes limited haptic feedback. The

results from participant task performance, human motion analysis, and user feedback reveal the

integration of vision, motion and haptic feedback, human natural motor learning, and preferences.

The key findings and suggested designs are:

(1) Intuitive Control of Multi-Camera Active Telepresence — The instinctive head motion

we constantly observed to not only control the head camera but the cameras attached to their

torso and hands indicates the head should control for any camera selected for telepresence.

(2) Active Telepresence Assistance for Supervisory Control— The participants intended to

maintain the arm posture for better spatial awareness of camera pose implies that the motions
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of the shared autonomy camera should follow the simple translation or rotation to make it

easier to understand and predict by the users.

(3) The Need for Visuo-Haptic Sensory Integration — People tend to resort to using every

possible haptic sensation to compensate for the limitation of the visual feedback reiterating

the importance of integrating vision and haptic feedback in robot teleoperation interfaces.

We further discuss the implication of suitable camera control and selection as well as the prefer-

able robot teleoperation interface design.

Desirable Characteristics of Viewpoint Control and Selection — Tele-nursing robots need dif-

ferent viewpoints from strategically placed telepresence cameras to provide a comprehensive view

of the environment and the task workspace. A natural approach to control and select the cameras

are necessary to reduce the cognitive workload and increase the transparency in robot teleoperation.

The findings from our human motion analysis identify several components for camera control and

selection so that the perception-action coupling complies with the natural human motor control.

As human tracking technologies become more accurate, portable and affordable, head- and

gaze-control are getting increasingly adopted for the control of eye-in-hand cameras of manipulator

and continuum robots [274], and the head camera of mobile and humanoid robots [275, 276]. While

matching human eyes to robot eyes is considered to be a natural design choice, it is also not rare to

see remote cameras controlled by robot hands. When multiple cameras are available (as on many

commercial and prototype humanoid robot platforms [1, 3]), head and hand control are usually

only used for the head and eye-in-hand cameras, respectively. When a teleoperator switches their

primary viewpoint (i.e, the camera view they primarily rely upon to perform the task) from the head-

to-hand camera, adapting to control of camera viewpoint via hands always causes interruption of

task performance. Lessons learned from (tele-robotic) laparoscopic surgery training also indicate

that it takes much more training effort to learn to use hand-controlled cameras [277]. The intuitive
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nature of the head motion observed in the clavicle and hand camera trials, highlights the need for

egocentric control (usage of head to control gaze) to control any camera viewpoint selected as

the primary viewpoint. This head-controlled dynamic viewpoint aligned with the recent mobile

manipulator implementation [278].

In direct teleoperation, understanding the camera pose and motions is critical to control the

robot action components (e.g., end-effectors, mobile base). Even in supervisory control, lack of

spatial awareness due to sub-optimal camera pose will reduce the operator’s situational awareness

and capability to intervene if the robot autonomy is not reliable [279]. The elbow joint fixation

we observed from the single-camera trial highlights the strategy that humans adopted to maintain

the spatial awareness of the camera poses with respect to their bodies. A preferable method for

camera control thus should limit the degree of freedom to be controlled by simple translation or

rotation. In the case of supervisory control, the trajectory of the autonomous camera system should

be easy to understand and predictable for the operator. Learning preferences for camera viewpoints

for specific tasks increases situational awareness crucial for supervisory control of remote robots.

In the fixed camera usage, our study reveals that the camera which is intuitive to use is preferred

which leads to better performance (faster completion time and fewer errors) and lower cognitive

workload. When people havemore cognitive bandwidth, they are able to perform complexmotions.

This is supported by the fact that most participants perform bimanual operations and look-ahead

motions to place the cups when using the head camera. On the other hand, our camera preference

survey indicates the correlation between the purpose of the action and the preferred camera for

this action in a multi-camera setup. However, the camera choice in the multi-camera trial shows a

large variance with no consistency across participants. These outcomes imply that customization

of autonomous camera selection with respect to user groups, or even personalization, is necessary.

As part of our future work, we will further develop an intuitive method to control multi-camera

active telepresence. A user study will also be devised to investigate if the perception and action
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hand camera could be controlled using the head, hand, or a mixture of head and hand motions as

well as to understand the human behavior, preference, and rationals in the usage of a multi-camera

active telepresence system. The entire experiment was performed in a motion capture enclosure

with motion capture markers located on the VR headset, wrist camera mounts, and cups. However,

themotion capture data did not yield any significant results due to the lack of quality. Wewill further

utilize the VR trackers to get meaningful data to investigate human behavior objectively. We will

also explore the use of autonomous camera control and selection to reduce operator workload and

improve task performance in supervisory control.

Design Philosophy for Multi-sensory Integration — The experiment paradigm enables partici-

pants to manipulate the object with their own hands, which is more capable of moving and sensing

through proprioception. In object manipulation, the benefit of proprioception is limited because

visual information is still required to locate the target and a freely moving arm will not help in lo-

cating the object. The feedback from participants also indicated that they need to place their hand

in the view to better understand the relationship between the arm and the target object implying the

limited usage of proprioception during object manipulation. However, if proprioception combines

with the human’s memory of the workspace, it will indeed ease the effort in object manipulation

because the direction towards the target can be identified.

Our human motion analysis indicates that people tend to use haptic feedback to compensate for

the loss of depth information and narrow limited vision of the visual feedback via active telepres-

ence. The desire for haptic feedback ranges from precise or gross manipulation to general envi-

ronment exploration. Indeed, human motor control has the instinct to pursue visual-haptic sensory

integration when they perform tasks with their own bodies as well as via teleoperation interfaces.

Unfortunately, state-of-the-art haptic feedback rendering technologies cannot enable the teleopera-

tion interface to provide the most realistic haptic perception. The leverage between the complexity

and what is the suitable level of the haptic feedback to compensate for the limitation of active telep-
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resence visual feedback needs to be studied. Our study reveals that: 1) human motor control can

achieve very effective visual-haptic sensory integration with active telepresence visual feedback

and limited haptic feedback; 2) for general-purpose manipulation tasks, adding a little bit of haptic

feedback to indicate the contacts with the remote physical environment will be much more sim-

ple and effective than fabricating complicate strategies for the optimization of camera control and

selection.

Inspired by findings from our study, we propose a philosophy for visual-haptic sensory inte-

gration to re-establish the perception-motion coupling with the perception and action capabilities

of the remote robotic system. From a high-level perspective, there are three strategies to achieve

this goal. Take several designs in literature and our prior work for example: 1) we may restore the

lost haptic perception by adding vibrotactile feedback to indicate contacts with the remote envi-

ronment [280]; 2) we may also replace haptic display with augmented reality visual display [281];

3) we may delegate the task components that heavily rely upon haptic feedback to reliable robot

autonomy, to eliminate the need for remote perception-action coupling [282]. Our future work will

implement the proposed philosophy and conduct a user study to compare the efficacy of each haptic

compensation approach and user acceptance as well as preference for the use of robot teleoperation.

Considerations — The limitations of our current testing suggest many extensions.

• Advanced Gaze Analysis: There was no gaze detection used in this paper. Our future work

regarding perception studies will involve the utilization of a gaze tracker to accurately track

human gaze motion and collect more reliable data. This will help us accurately determine

where the operator is looking at different parts of the task improving our ability to draw

information regarding camera view usage.

• Influence of Human Sensation: The participants felt that the usage of multiple gloves effec-

tively reduced the haptic feedback while performing the task. However, a systematic manner
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to dampen the haptic sensation was not implemented. Studying the impacts of varying lev-

els of haptic dampening and their impact on camera interface control will be an interesting

avenue for future research.

• Integration with Teleoperation Systems: Ideal teleoperation needs to consider both remote

perception and robot control. As the first step, the proposed experiment paradigm provided

the simulated telepresence setting and retained the human’s ability to manipulate the object

which relaxed the control effort and focused on the investigation of active telepresence design

in remote perception. A further investigation of teleoperating the robot with the preferred

active telepresence design will be conducted along with the suitable robot control interface.



Chapter 4

Human-preferred Remote Manipulation

Assistance

4.1 Motivation

Contemporary motion tracking interfaces (e.g., HTC Vive virtual reality system [34]) enable ma-

nipulator robots to track the natural human arm and hand motions to perform more dexterous,

freeform manipulation. While human operators can efficiently and intuitively control gross ma-

nipulation (e.g., reaching to or moving an object), they may experience significant cognitive and

physical workload when controlling precise manipulation, such as carefully adjusting the robot

end-effector near an object for grasping or placing. This is usually because human operators can

not acquire the necessary sensory information (e.g., visual or haptic) to perceive and control the

remote tasks [35, 36]. For example, the operators may need the camera viewpoint from a differ-

ent perspective to perceive the depth information not available in the primary camera viewpoint.

They may also need proprioceptive and haptic feedback to control the end-effector’s motions or

postures precisely. Besides the remote perception problems, the cognitive and physical workload

may also come from the difficulties in remote robot motion control. Freeform manipulation tasks

typically involve both gross and precise manipulation which can be difficult to perform efficiently

through interfaces designed around motion tracking. Changing the interface mapping and scaling

(from human-controlled inputs to robot motion outputs) based on task state or user input will be

96
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required to control the robot with efficiency and precision. Related work has proposed to various

approaches assist human teleoperators’ remote perception and motion control. The existing solu-

tions regarding the design of the tele-manipulation interfaces include the methods to: 1) improve

the capabilities of the interface to display additional sensory information (e.g., multi-camera view-

points, haptic interfaces [1, 283]); 2) Resort to alternative sensory feedback to present the missing

information, such as using augmented reality (AR) visual cues to represent the remote contact or

force feedback [284]; 3) Delegate the part of the tele-manipulation task difficult for humans to

capable and reliable autonomy [28] so that the interface only needs to present feedback on the au-

tonomy’s performance instead of the detailed sensory information. However, related work in the

literature mostly compares the same types of approaches to validate the effectiveness of their pro-

posed methods. There is still no work to compare different types of approaches, to inform how to

choose among or integrate them when multiple types of approaches are available.

Another problem we are concerned with is: how to combine human operator and robot auton-

omy to optimally control tele-manipulation? Our insight from the related work in the literature

is that: shared autonomy to assist tele-manipulation can be more effective if it is designed to en-

able an appropriate division of task and effort between the human and robot. Such task division

should allow humans to have sufficient freeform control to perform the unstructured parts of the

task and allow robot autonomy to handle the structured parts of the task with desired performance

(e.g., speed, accuracy, reliability). In recent related work, the shared autonomy to assist remote

manipulation is mostly designed to assist as much and as early as possible, based on the prediction

of human intents (e.g., target object [285], expected motion trajectory [286]). These shared auton-

omy designs are designed to minimize control inputs and efforts, and may not always be necessary

and effective to assist the operators who could prefer to have more freedom than assistance to con-

trol gross manipulation. While humans can easily perform freeform reaching motions to clearly

indicate the object they intend to grasp, the most effective way to reduce the human workload is
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to provide autonomy only to the part of the task that causes humans high cognitive or physical

workload. This chapter delves into the topic of reducing interface complexity and improving com-

munication between humans and robots during remote manipulation. To achieve this, we present

the effective techniques, which are:

• Multi-sensory Integration: This technique involves the use of haptic and augmented reality

visual cues to enhance the perception of the robot’s movements and the workspace.

• Perception Augmentation: By providing additional viewpoints, this technique allows for

different perspectives on visual feedback, thereby increasing the accuracy of the human’s

perception of the robot’s actions.

• Action Augmentation: This technique involves the use of assistive autonomy and con-

strained/scaled motion to enable more precise control over the robot’s actions.

• Augmentation Integration: By providing appropriate AR features tailored to varying levels

of robot autonomy, this technique enhances transparency in human-robot collaboration.

4.2 Literature Review

Multi-modal Sensory Integration — For decades, various haptic and AR visual cues have been

designed, evaluated, and compared for a wide range of robot teleoperation tasks. Overall, haptic

feedback (in terms of force and vibrotactile display) is usually used to communicate continuous

feedback that requires a time-critical response, yet the precision and the amount of information en-

coded are limited. On the other hand, AR visual cues can communicate very rich, detailed informa-

tion using a variety of colors, shapes, and displayed text. However, it takes more time for a human

to respond to visual feedback (around 500ms) andmay cause visual crowding and distract the user’s
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attention. As a result, haptic feedback has been widely used for driving assistance (e.g., safe lat-

eral control [287], braking assistance [288], cruise control [289], curve negotiation [290], avoiding

collision with obstacles and pedestrians [291, 292], etc) in terms of shared haptic control [293], as

well as teleoperation assistance for mobile/wheelchair robots (e.g., trajectory guidance [294, 295],

cooperative navigation [296, 297], etc.). For tele-manipulation tasks, haptic feedback in terms

of virtual fixtures [298, 299] has many benefits in terms of control precision and manipulation

safety [280, 283], user comfort [26], and coordination of multi-robot systems [300, 301, 302]. The

fusion of force and tactile feedback can also enhance the remote perception for unknown object

identification [303]. Meanwhile, AR visual cues are preferred to assist the estimation of spatial

relationship (e.g., gap estimation for driving assistance [304]), to direct and enhance visual atten-

tion (of drivers [305, 306], and video game players [307]). More recently, AR visual cues are used

to communicate the intent between humans and robots [7, 27, 308] and enable robot autonomy

to become more explainable [309]. The various designs of haptic and AR visual cues also enable

the integration of multi-modal sensory feedback, which is natural to human sensorimotor control.

Indeed, the integration of visual and haptic feedback is critical to the precise manipulation tasks,

because it plays an important role in the perception of object shape [262, 265, 266, 310] and object

dynamics [311], and in the performance of precise pointing and grasping movements [265, 312],

and in the usage of (articulated) tools [313, 314]. Related work in the literature has investigated the

dominance, weighting, and the roles of attention in human integration of visual and haptic feed-

back [6, 315], and compared haptic and visual feedback for their effectiveness on body posture guid-

ance [316], on the control of dexterous tele-manipulation [317], andmotor learning [318, 319, 320].

Recent designs of sensory integration have integrated AR visual displays which visualize robot

model and end-effector, or interaction force, with the haptic cues which indicate task guidance or

constraints [301, 321, 322, 323, 324, 325, 326, 327, 328, 329]. Although these designs of haptic

and AR visual cues, as well as their integration, have been validated to be effective in user stud-

ies, these designs and validations are mostly specific to tasks and robots. There is limited work
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that systematically investigated how the design of visual-haptic sensory integration depends on the

nature of conveyed information and the modality that the information is conveyed through [329].

It is also unclear how the design of sensory integration should be changed if the robot teleoper-

ator needs to perform secondary tasks that demand additional visual attention, awareness of the

haptic/vibrotactile feedback from other wearable interfaces, or efforts for critical thinking.

Action and Perception Augmentation — Table 4.1 categorizes the conventional and contempo-

rary control interfaces for assisted tele-manipulation that represent the state-of-the-art. Compared

to conventional interfaces, contemporary interfaces tends to: 1) improve the control dexterity of

high degrees-of-freedom motion coordination (e.g., multi-finger coordination, hand-arm coordina-

tion), and simultaneous position and orientation control; 2) improve the intuitiveness of manipu-

lation control, either by mapping natural human motions to robots, or replicating/representing the

controlled robots or the manipulated objects (e.g., using 3D-printed prototypes or virtual reality). 3)

improve control accuracy by providing (shared) autonomy with/out haptic feedback. Considering

the tele-manipulation assistance in recent related work, we also found that: while the action sup-

port that (partially) automates task-specific manipulation actions can improve the control accuracy

and are used more for structured tasks [330, 331], control augmentation, such as the design of in-

terface mapping and scaling, can better enhance the dexterity and intuitiveness, can be generalized

across various interfaces, and aremore used for freeformmanipulation [332]. While being intuitive,

motion tracking interfaces are generally limited in their control efficiency. This is a result of the

limited accuracy of human motions, and interference of intended and unintended motions due to si-

multaneous control of many Degrees of Freedom (DOFs). The efficiency of the controlled motions

can be improved by introducing constraints in terms of virtual fixtures [299] or autonomy for tele-

operation assistance (e.g. collision avoidance [325], motion guidance toward intended goal [9]).

From a more general perspective, the interfaces that map gestures or point-and-click actions to

autonomous robot motions or movement primitives [333] can all be considered as some kind of
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constraints that limit the extent to which human operator can control the robot motion freely. In

addition, motion constraints can also be introduced by the separation of degrees of freedom (DOFs)

in the design of interface mapping. For instance, people may use separate controllers to manipulate

a 3D object’s position and orientation, to avoid the interference of intended and unintended motion

control [333]. Some interface hardware, such as the trackpad of hand-held controllers, and the

joystick of gamepads, are naturally suitable for the separation of DOFs as they can clearly distin-

guish the control inputs for different motion directions based on the controlled axes. For screen-

or projection-based interfaces, interactive avatars such as the ring-and-arrow markers [334], the

virtual handlebar [335] enable the independent control of individual DOF(s) of the manipulated

(virtual) object or robot end-effector. The motion scaling ratio of the interface affects both the

control efficiency and accuracy of the tele-manipulation tasks. Scaling up the control motion can

increase robot motion speed and range but may compromise the accuracy of motion control. On

the other hand, scaling down the control motion will increase the motion control accuracy in the

concerned small-scale workspace, but may also improve efficiency by reducing operational errors.

The scaling ratios can be fixed (commonly used by tele-robotic laparoscopic or eye surgery in-

terfaces [336]), or vary with the user’s operating speed (e.g., PRISM method [337]) or regions of

operation [332]. Both fixed and varying scaling have pros and cons. Interfaces with varying scal-

ing ratios can better adapt to the control of fast and slow motions in a large or small workspace. In

contrast, interfaces with fixed scaling ratios tend to be more stable and predictable to the teleoper-

ator. The major concern in the design of interface scaling ratio is how to achieve the trade-off of

control efficiency, adaptability, and predictability. Related work in the literature proposed several

solutions to achieve such trade-off, which allows the user to: a) manually switch among several

pre-defined scaling ratios (suggested by task experts) depending on the types of operation or size of

the workspace [336]; b) manually adjust the scaling ratio as a continuous control parameter (e.g.,

by changing the distance between the controlling hands [335, 338]); c) autonomously adjust the

scaling ratio (e.g., according to the location of operation in the workspace [339]). While these rep-
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resentative designs balance the performance objectives to some extent, it was also revealed that:

1) Being able to adjust the scaling ratio (manually or autonomously) is useful overall but may lead

to a complicated interface design hard for users to learn; 2) The manual switching of scaling ratio

modes leads to more predictable interface behavior, but may increase the control efforts and men-

tal workload; 3) Autonomously adjusting the scaling ratio reduces the control efforts and cognitive

workload, but has to be carefully designed to the nature of the task and the preference of users.

Table 4.1: Conventional and contemporary control interfaces for assisted tele-manipulation.

Type Representative Interfaces

Conventional
Desktop Keyboard + mouse + point-and-click graphical user interface [22, 333, 340, 341]

Hand-Held Xbox gamepad [342, 343, 344], (Haptic) Joystick [198, 283, 333, 345, 346, 347], Cus-
tomized teleoperation console (e.g., Da Vinci Surgeon Console [348, 349])

Contemporary
Wearable Arm/hand exoskeleton [350], Data glove [351, 352], Soft haptic glove [353, 354]

Hand-Held Hand-held controllers of virtual reality systems (e.g., HTC Vive, Oculus) with trackpad
and buttons, Robopuppet [355], Chopstick [356], Haptic tweezer [357], Tangible inter-
face [358]

Motion /
Gesture

Touchless: Arm/hand motion tracking (e.g., vision-based [67, 333, 339, 359], marker-
based [18, 360], and IMU-based [122]), Mid-air gesture control [361, 362];
Touch-based: Touch-screen gesture control [363, 364, 365]

Human operators need to have visual information regarding the global, spatial relationship in

the workspace, and the detailed, local visual information of region-of-interest critical to the precise

operation. Realistic tele-manipulator robots also need to have multiple cameras dedicated to pro-

viding global and local viewpoints, or a single camera with sufficient mobility and motion of range

to serve both purposes. Related literature and our prior work proposed to present both (or switch

between) the global viewpoint from an onboard or standalone workspace camera, and the local

viewpoint from a high-mobility, eye-in-hand camera to focus on the region of interest (e.g., using

detail-in-context display [192, 366, 367]). However, for gross manipulation, humans may need to
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reach beyond the workspace covered by the workspace cameras. Providing a much-too-large cam-

era FOV is not efficient for limited communication bandwidth and may compromise the resolution

in visual display for the workspace of frequent manipulation operations. For precise manipulation,

an additional camera viewpoint from a different perspective may be necessary to confirm if the ma-

nipulation motion satisfies the task constraints in multiple degrees of freedom. Another problem

we have to address is the dilemma to retain human authority and freedom to control the camera

while reducing the human effort for camera control. The autonomy for dynamic camera viewpoint

control and optimization can reduce human camera control efforts, yet it may move the camera in

an unexpected and unpredictable way and disrupts the operator’s manipulation.

Physical and Cognitive Workload in Remote Manipulation —Maintaining human freedom in

motion control is essential to the freeform teleoperation of unstructured, unpredictable manipula-

tion tasks (e.g., including tele-robotic surgery [368], nursing assistance [1], manufacturing [369],

hazardous material handling [370], explosive ordnance disposal [371]). Such tele-manipulation

tasks are usually not feasible or error-prone for high-level robot autonomy (refer to the review on

the level of autonomy [63] ), and heavily depend on human knowledge, expertise, and robot control

dexterity. To assist freeform tele-manipulation, it is preferred to enable humans to efficiently and

intuitively control the remote robot and cameras, while having some low-level robot autonomy for

perception or action support to reduce human operator’s cognitive and physical workload. Consider

the various motion mapping interfaces (e.g., soft/hard exoskeletons [372], camera/IMU-based mo-

tion capture systems [18]) that can map the human body, arm and hand motions to efficiently and

intuitively control the freeform motions of manipulator robots. These interfaces tend to cause non-

trivial cognitive and physical workload [18], because precise control of manipulation motion or

posture could be difficult without the necessary haptic or proprioceptive feedback [194, 373]. The

remote visual perception problems, including the limited field of view, loss of depth information,

and unnatural camera viewpoint control (typically for eye-in-hand cameras), also contribute to the
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cognitive and physical workload. This cognitive and physical workload not only fatigues the tele-

operator if they use the interfaces for hours but may also lead to work-relatedmusculoskeletal injury

for the operator who uses the teleoperation interfaces on a daily basis. For the tele-manipulation

tasks that are designed for manipulation dexterity rather than handling heavy payload, the “assist-

as-need” action augmentation helps humans to efficiently and reliably complete the manipulation

actions clearly indicated by humans (e.g., by moving the end-effector close enough to the target

location or object). This will be more effective than the autonomy predicting human intents (e.g.

[28, 346, 374]) to assist as early and as much as possible. To effectively reduce the cognitive work-

load, perception augmentation can present additional visual information using the camera view-

point from a different perspective, or present AR visual cues to communicate the high-level task

and robot states so that human operators do not need to perceive and comprehend the low-level

feedback from various sensors [375].

Transparency in Human-Robot Collaboration — In the field of telemanipulation and human-

robot interaction, researchers have proposed various designs for robot autonomy that aim to ad-

dress the challenging aspects of dexterous manipulation [376] or take over repetitive tasks [377],

to improve efficiency, accuracy, safety, and ease effort from human operators. Such robot auton-

omy ranges from simple action support to full automation (see the categorization in [63]) and is

able to adapt to a wide range of applications (e.g., healthcare [378], exploration [379], and man-

ufacturing [377]). The design of various levels of robot autonomy may leverage the capabilities

of both humans and robots to better sense the workspace, make action decisions and execute the

planned motion. In such human-robot collaboration, effective communication is crucial, as a lack

of transparency can lead to confusion, resulting in reduced control efficiency and increased oper-

ational workload. Researchers have proposed varying sensory feedback to promote transparency

through auditory cues [330], haptic feedback [380], and AR visual displays [380], which can pro-

vide real-time information to the human operator. Unlike the limited channels in auditory and haptic
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feedback, the AR visual cues can convey rich and detailed information, such as the workspace envi-

ronment [381] and the robot’s state, actions, and intentions [382, 383]. We have built our AR visual

cues by leveraging the existing research and solutions that have addressed similar challenges. Our

approach incorporates three distinct representations to indicate the activation of autonomy and two

different types of information to illustrate the intent of autonomy. In addition, some situations may

require more human input whereas robot autonomy is impractical. Therefore, we extend our AR

visual cues to assist both large-scale movements or fine-tuned adjustments, while also allowing

for obstacle avoidance. Our insight from related work in literature is that telemanipulation with

various levels of robot autonomy can be advanced by introducing suitable AR visual cues to better

inform the autonomy intentions and aid human control when necessary. Conducting a systematic

investigation to identify the deciding factors for each type of AR feature at varying levels of robot

autonomy is crucial to enhance human-robot collaboration.

4.3 Haptic and Augmented Reality Visual Cues

Robot teleoperation benefits frommotion capture interfaces, which map human motions to the tele-

operated robots for freeform control. While being intuitive and efficient, such teleoperation inter-

faces are limited when required to control precise tele-manipulation tasks. Specifically, the precise

control of the position and orientation of the robot end-effector and the manipulated objects usu-

ally lead to a significant cognitive and physical workload and may exhaust and frustrate the users’

novice to robot teleoperation. To increase the control precision, haptic and augmented reality (AR)

visual cues can be introduced to communicate information critical to task performance, such as

direction and distance to target, contact with objects, and environmental constraints. Although re-

lated work has proposed, evaluated, and compared various designs of haptic and AR visual cues, as

well as their integration, there is still a lack of design theory about what (types) of information are
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preferred to be communicated in which modality of sensory feedback. Moreover, it is also unclear

how this preference will change in the presence of secondary tasks that demand additional cogni-

tive workload (in terms of visual attention, haptic/proprioceptive perception, or critical thinking).

Such design theory will contribute to the fundamental science of the design of multi-modal sensory

feedback, and enable the design of haptic and augmented reality visual feedback to be generalized

across robots, tasks, and interfaces. We first focus on the design of haptic and AR visual cues for

assisting the dexterous freeform tele-manipulation tasks, performed in the context of tele-nursing

assistance.

4.3.1 Teleoperation Interface and Assistance

Motion Tracking Interface via HTC Handheld Controller — Shown in Figure 4.1, we used

the hand pose tracked by the handheld controller of the HTC Vive virtual reality system to control

the end-effector of a Kinova Gen 3 robotic manipulator. The hand-held controller provides pro-

grammable vibrotactile feedback, while AR visual cues augment the video stream of the remote

workspace camera.

UI with AR Cue

Haptic Feedback

Figure 4.1: Tele-nursing assistance tasks may involve freeform, and dexterous manipulation (e.g.,
inserting a straw into the beverage container). Haptic and AR visual cues can be leveraged to
communicate task-critical information.
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Haptic and AR Visual Cues —We proposed the four types of tele-manipulation assistance based

on the findings from the human factor experiments [367, 384] presented in Chapter 3, which in-

vestigated the visual-haptic sensory integration in the usage of active telepresence. We observed

how the participants perform a general-purpose manipulation task that integrates reaching, moving,

grasping, and stacking actions, after adapting to the new visual and haptic feedback. We found out

that: 1) after some practice, participants can seamlessly integrate the usage of active telepresence

cameras with the actions to perceive haptic feedback; 2) the typical actions to leverage the lim-

ited haptic feedback include touching-to-locate objects, moving the objects on the table (instead of

above the table) to take advantage of the table constraints; 3) when performing the manipulation

tasks, participants leverage active telepresence cameras and haptic feedback to locate the target,

detect environment constraints, examine possible grasp, and confirm contact with an object.

These observations inspired the design of haptic and AR visual cues for sensory augmentation

(as shown in Figure 4.2), which include:

• Target Locator indicates the robot end-effector’s movement direction and distance to the

goal (i.e., the targeted object). As the robot end-effector approaches the targeted object, the

haptic cue decreases the strength of its continuous vibration, while the AR visual cue uses a

green vector to visualize the ideal direction of motion of the robot end-effector (the blue dot)

and its distance to the target (the distance in centimeters at the bottom left of the screen). The

marker on the robot end-effector will turn red and increase the diameter to alert the user that

the robot is out of view and provide the exact direction to support the self-correction.

• Constraint Alert alerts the teleoperator if the end-effector is about to violate any environ-

ment constraints (e.g., hitting the table), in which case the haptic cue vibrates the hand-held

controller, while the AR visual cue monitors the robot end-effector’s height from the table

and turns from green to red if too close to the robot. The height indicator bar also fills up
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Figure 4.2: Design of equivalent haptic and AR visual cues, for the target locator, constraint alert,
action affordance, and grasp confirmation.

with increased proximity to the table.

• Grasp Affordance indicates if the end-effector is posed to be ready to grasp the target object,

which can be generalized to indicate if the robot end-effector is ready to afford the action to

be performed. When the robot end-effector is ready to grasp, the hand-held controller will

stop to vibrate, while the AR visual cue will highlight two boxes if the end-effector is within

the target region and the height is low enough.

• Grasp Confirmation indicates that the robot end-effector has successfully grasped the target
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object, using a one-shot vibration of the hand-held controller, while the AR visual cue will

display “Grasp completed” and hide all the other AR visual cues. This indicator can be

generalized to confirm any completed action.

4.3.2 Experiment

3 Different 
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Operation Area

Figure 4.3: Experiment procedure.

Participants —We conducted two user studies (with the same 8 participants, 5 males, 3 females,

age = 30.5±3) to investigate: 1) How effective these haptic and AR visual cues can support tele-

manipulation? 2)Whichmodality of sensory feedback do people prefer to use to communicate what

types of information for tele-manipulation support? 3) How this preference will be influenced by

the different types of workload introduced by the secondary tasks performed along with the robot

teleoperation?

Experimental Procedure and Conditions — Figure 4.3 shows the experimental procedures for

User Study I and II. The User Study I includes a training phase and an evaluating phase. During

the training phase, participants first learned the baseline interface (i.e., tele-manipulation via hand

motion tracking), the haptic and AR visual feedback augmented interfaces from the verbal instruc-

tions and demonstrations of an experimenter and then practiced for five minutes each. During the

following evaluation phase, participants performed three sections of a reaching-and-grasp task, in



110 Chapter 4. Human-preferred Remote Manipulation Assistance

which they controlled the remote robot manipulator to grab a small wood block in the workspace

(see Figure 4.1). We randomized the order of the sections using different modes of sensory feed-

back, namely no feedback, haptic, and AR visual feedback. In each section, the robot end-effector

was set to be at three different starting locations, which were close to the target, far away from the

target, and out of the camera view, respectively. The participants manipulated the object for three

repetitions for each robot’s starting location. In User Study I, the participant performed a total of

27 trials (3 modes of sensory feedback × 3 robot starting locations × 3 repetitions).

In User Study II, participants teleoperated with the robot to perform the primary task of picking-

and-place an object into three different bins (shown in Figure 4.3), for two sessions. The partici-

pants performed the task first in Session 1 using the baseline interface (hand motion tracking with-

out haptic or AR visual feedback) and then performed the task again in Session 2 using their pre-

ferred form of sensory feedback for the four types of tele-manipulation assistance. In both Session

1 and 2, we introduced three types of secondary tasks to robot tele-manipulation in a randomized

order, to understand how they may change the performance, workload, and preference of sensory

feedback. As shown in Figure 4.4 (top), the haptic monitoring task requires the participants to

press the button of the controller held in their non-dominant hand within 1 second if they detect

any vibration from it. The one-shot vibration occurs randomly every 7 to 13 seconds during the

tele-manipulation task. The visual monitoring task (bottom in Figure 4.4) requires the participants

to monitor the simulated vital sign profile displayed in the second user interface. About every 5

seconds, the displayed vital sign goes beyond its normal range (60 to 100) and turns red, and the

participants have 1 second to press the button of the controller held in their dominant hand (same

controller for robot operation) to record this event. Moreover, we designed a critical thinking task

which requires the participants to verbally respond to simple math problems (only includes addition

and subtraction of one-digit numbers) continuously while performing the tele-manipulation task.

These secondary tasks were designed to simulate the additional cognitive workload that healthcare
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workers may experience when performing patient care tasks along with nursing robot teleopera-

tion, including the haptic perception for standing by the emergency on-call, the visual attention for

monitoring patient status, and the critical thinking for patient evaluation.

7 ~ 13 sec7 ~ 13 sec 7 ~ 13 sec

Non-Dominant Hand

Vibrate 1 second at random time intervals (7 ~ 13 sec)

Dominant Hand

Robot Control

1s 1s 1s

Haptic Monitoring Secondary Task

Visual Monitoring Secondary Task

Start

60 ~ 100 60 ~ 100 60 ~ 100

5 sec 5 sec 5 sec

> 100 > 100 > 100

1s 1s 1s

Figure 4.4: Secondary tasks that introduce additional cognitive workload for haptic monitoring
(top) and visual monitoring (bottom).
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4.3.3 Comparison of Sensory Feedback

Figure 4.5 to 4.7 compares tele-manipulation tasks performed with and without haptic or AR

visual cues. Figure 4.5 shows the mean and variance of the task completion time and trajec-

tory length across all the trials and participants, for different starting locations of the robot end-

effector. To some extent, the AR and haptic cues reduced the task completion time. Based on

the one-way analysis of variance (ANOVA), the haptic cues and AR visual cues significantly re-

duce the task completion time for far-away (F (1,46)=5.1, p<0.05) and out-of-view starting point

(F (1,46)=6.68, p<0.05), respectively. ANOVA analysis showed a significant difference in trajec-

tory length between baseline and with haptic feedback (F (1,46)=42.99, p<0.05) for close starting

location. While the AR visual cues had significantly shorter trajectory length than baseline and hap-

tic feedback for close (F (1,46)=63.49, p<0.05; F (1,46)=17.63, p<0.05), far-away (F (1,46)=4.87,

p<0.05; F (1,46)=3.39, p<0.05) and out-of-view (F (1,46)=5.2, p<0.05; F (1,46)=3.45, p<0.05)

starting locations.
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Figure 4.5: Task completion time and trajectory.

In Figure 4.6 we compared the total occurrence of errors from all the participants and tri-

als because the mean and variance of the error across participants and trials were consistently

small. For the table collision, the mean and standard deviation of occurrences for baseline, hap-

tic and AR visual cues are (close: 0.75±0.43, far-away: 0.88±0.44, out-of-view: 0.67±0.47),
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(close: 0.13±0.33, far-away: 0.08±0.27, out-of-view: 0.17±0.37) and (close: 0.42±0.49, far-

away: 0.54±0.49, out-of-view: 0.46±0.49). While for the hitting target object, the mean and

standard deviation of occurrences for baseline, haptic and AR visual cues are (close: 0.33±0.47,

far-away: 0.42±0.49, out-of-view: 0.33±0.47), (close: 0.2±0.41, far-away: 0.38±0.48, out-of-

view: 0.29±0.45) and (close: 0.04±0.19, far-away: 0.08±0.38, out-of-view: 0.04±0.2). Across

all the starting points, the haptic cues consistently performed better than AR visual cues in avoiding

the collision with the table, while the AR visual cues can better prevent hitting the targeted object

compared to the haptic cues. This implies that AR visual cues may be more suitable to avoid er-

rors in the operation of the target objects, which the teleoperator needs to continuously track with

visual attention, while the haptic cues are preferred to alert the teleoperator of the environmental

constraints as needed to avoid visual distraction.
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Figure 4.6: Occurrences of collision with table and hitting object.

We use the weighted NASA-TLX scores to measure the subjective workload across baseline,

haptic, andAR visual cues. Theweighting coefficients were selected as follows: mental demand=5,

physical demand=1, temporal demand=0, performance=4, effort=3, frustration=2. Based on the

Wilcoxon rank sum test, the feedback from the NASA-TLX and the SUS survey (Figure 4.7) further

indicated that both the haptic and AR visual cues had significantly lower workload (p<0.05) and

higher usability scores (p<0.05) than the baseline condition without any sensory augmentation

cues. We also noticed a consistency in the preference of sensory feedback for different types of
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tele-manipulation assistance: 6 out of 8 participants prefer to use AR visual cues for the target

locator and grasp affordance, and use haptic cues for the constraint alert (7 out of 8 participants)

and grasp confirmation (6 out of 8 participants).
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Figure 4.7: Feedback of NASA-TLX, SUS and user preference survey.

4.3.4 Adaptation to Secondary Tasks

Figure 4.8 and 4.9 compared the performance of the primary and secondary tasks without the aug-

mented sensory cues, and with the user’s preferred sensory cues, for tele-manipulation performed

with different types of secondary tasks. Note that the participants can choose different sensory

modes for each of the four types of tele-manipulation assistance. Figure 4.8 shows the mean

and variance of the task completion time, which indicates significant performance improvement

(p<0.05) for all the secondary tasks using the preferred sensory modes. Moreover, the preferred

sensory mode reduced the total errors from all the participants in all the trials. The reduction for

the collision with the table is much more obvious compared to that for hitting the target object.

Figure 4.9 shows the preferred sensory modes also significantly improved (p<0.05) the perfor-

mance of the secondary tasks by 1) reducing the time to respond to the math problems simulating

the critical thinking workload, and 2) improving the success rate in the tasks of visual and haptic

monitoring.
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Figure 4.8: Primary task completion time and error occurrences.
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Figure 4.10: Preferred sensorymodes for target locator (TL), constraint alert (CA), grasp affordance
(GA), and grasp confirmation (GC).

Figure 4.10 shows the number of users that prefer haptic versus AR visual cues for each tele-

manipulation assistance when the tele-manipulation was performed with each secondary task. We

noticed that for critical thinking and haptic monitoring, the users’ preferences fell into two cate-

gories with a 5:3 or 4:4 ratio, while for visual monitoring there is a tendency that the users to prefer

haptic cues more than the AR visual cues, with 6:2 ratio for three out of four tele-manipulation
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assistance. This tendency in the preference may be because the haptic cues do not compete with

the primary task for visual attention.

4.4 Perception and Action Augmentation

Consider a comprehensive tele-manipulation task such as workspace organization, which may in-

volve control of reaching, grasping, moving, and placing of various kinds of objects. This task is

mostly unstructured and requires freeform control because it does not follow (and requires) any

procedure; What, when, and how to handle each object will be decided by the user on-the-fly as

the task goes on. Sufficient freeform control will also allow humans to improvise based on their

knowledge and experience (leveraging environmental constraints, physical properties of handled

objects, etc) to facilitate or enable some manipulation. To effectively assist tele-manipulation with-

out compromising the human’s control authority and freedom, the robot autonomy can provide an

additional camera viewpoint from a different perspective or AR visual cues, to augment their re-

mote perception and enable them to control the manipulation themselves. The robot autonomy can

also be different interface mappings or autonomous actions that can effectively perform the task.

As the human has moved the robot end-effector close enough to the target object or container to

place, it is easier for the robot to infer the human’s intent and assist in the structured component

(placing object) of the unstructured task using simple but effective autonomy.

To this end, we propose systematic approaches for action and perception augmentation. The

Action Augmentation allows humans to control the robot motions using hand pose tracking and a

trackpad available on the hand-held controller, for freeform or constrained motion control. It is

also implemented by dynamically adjusting the scaling of the operator to robot interface mapping

to support both gross and precise manipulation. For Perception Augmentation, we provide AR

visual cues to convey the visual information difficult to perceive in 2D cameras (e.g., the task
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and robot status, interface control mode, and autonomous action affordance). We also provide

a complementary camera viewpoint from a significantly different perspective, in which missing

visual information, like loss of depth perception, can be more easily perceived.

27-Inch Monitor Display

Gaze Tracking Device

(Tobii Pro Nano)

Robot Workspace

Video Stream

(RealSense)

Human Operator

(Vive Controllers & Trackers)

Figure 4.11: Overview of the tele-manipulation system.

We have implemented the proposed perception and action augmentation on a representative

interface. As shown in Figure 4.11, we used the HTC Vive hand-held controller to control robot

motion and used the desktop monitor to display the remote camera viewpoints and AR visual cues.

The robot could provide autonomous actions (e.g., grasping and placing actions) or switch to con-

strained motion control using a trackpad when humans operated the robot end-effector near the

target object or location to place. The implementation can be generalized to the teleoperation sys-

tem using various contemporary tele-manipulation control devices (e.g., hand-held, touch-based,

wearable), display (e.g., screen-based and head-mounted visual display). Note that we only pro-

vided the autonomous actions and motion constraints needed for the pick-and-place tasks, because

this chapter does not focus on how to predict human intents, or how to enable autonomy.

4.4.1 Interface and Evaluation Design

Here we present our proposed approaches for perception and action augmentation, and their imple-

mentation on a representative tele-manipulation system and for a general-purpose pick-and-place
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task. We further propose methods for the estimation of eye-tracking-based cognitive workload,

and motion-tracking-based physical workload to enable the evaluation of integrated interfaces in

the formal user study. We conducted three pilot user studies to (1) provide the reasoning for com-

plementary viewpoint design; (2) determine the effective integration of the perception and action

augmentation; (3) validate the physical workload estimation with sEMG data.

SystemOverview— Figure 4.11 shows the tele-manipulation system [380], which enables the de-

velopment of the perception and action augmentation proposed for this project. The robot platform

is a 7-DoF Kinova Gen 3 manipulator with a two-fingered Robotiq gripper that can detect contact

with the grasped object. Two RealSense Cameras (D435) were standing alone in the workspace for

primary and complementary remote perception.

For robotmotion control, we use an HTCVive hand-held controller (referred to as “controller”

in the rest of this paper) that allows human operators to control the freeform robot motions using

their natural hand motions and constrained motion using the controller’s trackpad. By default (i.e.,

Mode 1 of Figure 4.13), the linear velocity of the controller will be mapped to the linear velocity

of the robot. The input-to-output motion mapping ratio is 1:5 along the x-axis and 1:3 along the y-

and z-axis. We locked the robot’s rotational motions because this chapter focuses on developing

and comparing different modalities of teleoperation assistance instead of the capabilities of robot

control. To perform a tele-manipulation task, the operator will: 1) press the menu button on the

controller to send the robot to the home configuration, 2) press the menu button again to get the

robot ready, and press the grip (side) button to initiate the control.

For visual feedback, we used 1440 × 1080 pixel resolution Unity 3D window on a desktop

monitor to display the remote camera video stream (at 30 Hz frame rate) and to display augmented

reality visual cues. By default, the graphical user interface (GUI) will only display the robot’s

operation state. Specifically, the GUI will display: 1) “WAITING” when the tele-robotic system is

ready for operation and waiting for a control command; 2) “SENDING HOME” when the operator
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presses a controller button to set the robot to the default pose; 3) “READY” when the robot is

posed at the start position for the current task; 4) “TELEOPERATING” when the robot is being

teleoperated; 5) “PAUSED” when the robot is paused by the teleoperator. Figure 4.12 shows the

control architecture and data communication pipeline of the tele-manipulation system. A screen-

based eye tracker (Tobii Pro Nano) was attached below the monitor to track the human operator’s

gaze and eye movements (e.g., pupil diameter) at 60 Hz. The autonomy for perception and action

can detect the ArUco tags attached to the objects, container, and counter workspace [385, 386],

to estimate the information for the AR visual cues and control the robot’s autonomous actions for

precise manipulation (e.g., object grasping and placing).
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Robot Operating System 

(ROS melodic)

Unity 2019

KINOVA Gen3 Robotic Arm

RealSense Cameras

HTC Vive System

(Vive Controllers and Trackers)

Display MonitorTobii Pro Nano
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Graphical User Interfaces

Data Collection

Robot State | Vive Devices Data | Gaze/Eye Data

Control Interfaces

Video Stream

AruCo Detection

ROS Topics

Gstreamer (MIT license)User Datagram Protocol

Pose | Button

Windows 10

Ubuntu 18.04

Figure 4.12: System architecture.

AR Visual Cues and Assistive Autonomy — To assist robot remote manipulation, we imple-

mented systematic AR visual cues and user-triggered autonomous actions as the baseline repre-

senting the common solution for remote perception and action problems. We then develop, inte-

grate and compare different types of perception and action assistance upon the baseline AR visual

support and assistive autonomy, to discover new knowledge on optimal human-robot collaboration

for freeform tele-manipulation.
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Mode 1 – Baseline Mode 2 – AR Visual Cues Mode 3 – Assistive Autonomy

Figure 4.13: Visual interfaces for baseline, AR visual cues, and assistive autonomy.

ForARVisual Cues, we have presented four types of AR visual cues for freeform teleoperation

assistance, including: 1) theTarget Locator to indicate the robot’s movement direction and distance

to the targeted object or goal pose; 2) theAction Affordance to indicate if the robot is ready to afford

the action to be performed (e.g., grasping or stacking an object, with a good chance of success);

3) the Action Confirmation to indicate that the robot has successfully performed an appropriate

action; and 4) the Collision Alert to alert the teleoperator if the end-effector is about to violate any

environment constraints (e.g., hitting the table). Figure 4.13 (Mode 2) shows the implementation

of these AR visual cues to assist a pick-and-place task.

• The Height indicator shows the robot’s distance to the table surface. Besides the display of

numerical distance, the height bar display also turns from green to red if the robot is too close

(within 0.1 m ) to the table.

• The Alignment indicator (displayed as a dot-in-circle) shows if the robot is aligned with the

object to grasp or the container to place the object, in x- and y-direction. Once the blue dot

moving with the robot is aligned with the pick circle displayed on the object or containers,

the pink circle will change its color to light blue to indicate the operator can reliably close or

open the gripper to reliably grasp or drop the object into the container.

• The Grasping/Placing Hint includes two square-shape that turn on and off to show whether
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the robot is aligned with the object or the container so that the operator can confidently

close or open the gripper. It is designed to confirm the critical information conveyed in the

Alignment and Height cues.

• The Arrow with Distance indicator shows the distance (in cm) and direction (using the green

and pink arrows, respectively) to show the target object to grasp or container to place.

The proposed implementation of AR visual cues is refined based on the prior design and evalua-

tion results [380]. Specifically, we have: adjusted the Height indicator to be vertical instead of

horizontal for a more intuitive visual display. We grouped the Grasping/Placing Hint into a white

box and highlighted the boundary of the container to make them easier to spot at a glance. We also

extended the AR support to picking-and-placing as well.

ForAssistive Autonomy, we also provide autonomous actions to assist the operators to perform

precise manipulation (e.g., to pick and place an object) as shown in Figure 4.13 (Mode 3). The

robot autonomy can detect the human’s goal and action intents based on robot states, including the

distance to the object or container, and whether the gripper is open or closed. When the gripper

is open, we predict human intent to grasp the object if the robot is within the predefined distances

to the center of the object (0.05 m, 0.08 m, and 0.13 m in the x-, y- and z-direction). A hint of

”AUTONOMY” will be displayed to show the robot has detected the human’s goal and action

intent by filling the box when the robot can reliably perform the action. Humans therefore can

press the controller’s trigger to confirm the execution of the autonomous action, after which the

robot will autonomously reach to grasp the object and lift it to 0.2 m above the table surface. To

place an object, the operator needs to move the robot to be within a predefined distance (0.08 m,

0.08 m, and 0.15 m in the x-, y- and z-direction) to the center of the top of the container. Once

confirmed by the human, the robot will autonomously move to the top of the container and drop

the object into it reliably. Our proposed visual and action augmentation depends on the robot
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autonomy to predict human intents, determine action affordance and success, and detect and avoid

the collision. Here we implemented a simple design of autonomy that predicts the human’s intent

to grasp or place an object based on the robot’s state. Object detection, action affordance, and

collision are also simplified given that we know the location and geometry of the object and the

environmental constraints. Note that more advancedmethods to predict human intents, from human

control inputs [28, 67, 387], gaze [388, 389], or their fusion [390], can be integrated with our

proposed visual and action augmentation for more complexmanipulation tasks. Advancedmethods

to detect objects and their action affordance (e.g., using Sim2real approach [391], for unknown

objects [392]) can also be incorporated to enable more complicated precise manipulation and the

delicate control of interaction forces. Collision in dynamic and cluttered environments can be

detected using an advanced method such as generalized velocity obstacles [393].

Mode 1 – Baseline Mode 2 – AR Visual Cues Mode 3 – Assistive Autonomy

Figure 4.14: Complementary viewpoints in different interface modes.

Complementary Viewpoint for Perception Augmentation — We propose to leverage an addi-

tional workspace camera to provide a complementary viewpoint in which the operator can bet-

ter perceive the information missed in the primary workspace camera viewpoint. Shown in Fig-

ure 4.14, the GUI presents a picture-in-picture (PIP) display to embed the complementary viewpoint

into the primary viewpoint. The perception augmentation in form of the complementary viewpoint

can be presented always (i.e., the fixed viewpoint) or dynamically given the robot and task states

(i.e., dynamic viewpoint). It can also be augmented with different interface control modes. Here
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we present the pilot user study (Pilot Study I) we conducted for iterative design and evaluation.
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Figure 4.15: Complementary viewpoint filtering.

Q1 - Do we need multiple viewpoints? We conducted a pilot study with one expert participant (fe-

male, age=33, without visual or motor disability, 100+ hours experience with robot) to determine

the preferred viewing angle and distance of the complementary viewpoint. We follow the experi-

ment setup in the literature [394] and set up five workspace cameras (4 RealSense cameras and 1

Webcam) to observe the workspace from different perspectives (the front, back, left, right, and top).

Including the viewpoint from the eye-in-hand camera of the robot, we presented six viewpoints to

the user and tracked her gaze fixation on each viewpoint during the pick-and-place task. As shown

in Figure 4.15, the operator was asked to reach to grasp four blocks of different colors placed around

a red cup and place each into the cup. During the task, the participant used an HTC Vive controller

to control the robot’s motions. For the pilot study, the head-mounted display of the HTC Vive Pro

Eye system is used to display graphical user interfaces and track human gaze. In Figure 4.15, the
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camera viewpoints that the human looked at are compared between different manipulation actions,

and compared between the manipulation of different objects. The operator’s gaze fixation mostly

switched between the back view that looks at the workspace from the operator’s standing point

and the viewpoint in which she could observe the object to pick up with minimal occlusion. We

also found that the participant spent more time looking at the back view than any other viewpoint,

which implies that we need to distinguish the primary and complementary viewpoints based on the

duration of their fixation.
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Figure 4.16: Gaze fixation on each camera viewpoint.

Q2 - Which camera is preferred for the complementary viewpoint? We conducted another round of

the pilot study with the same participant to determine the preferred camera view for a complemen-

tary viewpoint. Based on the result from Q1, we implemented a picture-in-picture multi-viewpoint

display. By default, we displayed the back view camera to be the primary viewpoint and the front

view camera to be the complementary viewpoint. The complementary viewpoint system was se-
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lected since the back viewwas utilized themost with different viewpoints used onlywhen additional

information was required. This implied that only one additional viewpoint to the primary viewpoint

would be required. As shown in Figure 4.16, the operator could also press the controller’s button to

switch the complementary viewpoint to be from other workspace cameras. We recorded the robot

and task states and tracked the human gaze. We noticed that the operator preferred to only use the

left view camera for the complementary viewpoint, because: 1) it shows the additional objects not

visible in the back view, and 2) it is less occluded by the robot arm. The participant also mentioned

that manually switching the complementary viewpoint increased her cognitive workload and con-

trol efforts during a post-study interview. She also mentioned that the complementary view could

be improved with a zoom function to provide detailed information about the task and workspace.
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Figure 4.17: Complementary viewpoint with the adaptive field of view.

Q3 - Do we need to adjust the field of view for the complementary viewpoint? Based on the feed-

back from Q2, we enabled operator to use the controller’s trackpad to control the complementary

viewpoint to shift the center of the field of view (FOV), and to zoom in and out (Figure 4.17). We

found that during the same pick-and-place task, the operator still chose the complementary view-
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point cameras in a similar way, but preferred to zoom in and shift the FOV to make the target object

or container more centered and visible.

Dynamic Interface Mapping for Action Augmentation — Dynamic interface mapping, con-

trolled by humans or autonomy, enables humans to use different interface mappings or scaling

ratios to effectively control precise and gross manipulation. While manually adjusting the inter-

face mapping could be annoying and tedious, existing autonomy to adjust the interface mapping

[338, 395] tend to confuse humans because they do not intuitively inform human about this change,

due to which humans may find the interface inconsistent and unpredictable. Our recent work [34]

shows that humans can more efficiently control precise manipulation if the interface mapping: 1)

allows humans to constrain the motions to be only for the position or orientation control, and 2)

autonomously reduce the human-to-robot motion mapping ratio (which will reduce the robot mo-

tion speed) close to the objects and environment constraints. We propose to improve efficiency

to control precise, directional motions by: 1) allowing humans to use constrained motion control

input channels (e.g., the controller’s Trackpad) to control the motions of an individual DOF, and

2) reducing the scaling ratio only in the precise motion control direction.

Action Augmentation – Trackpad Action Augmentation – Scaling

Trackpad Motion Scaling

X-axis Controller Pose Slow

Y-axis Controller Pose Slow

Z-axis Touchpad Regular

Figure 4.18: Action augmentations using the trackpad and motion scaling.

Figure 4.18 shows the implementation of our two proposed action augmentation approaches. In

the “Trackpad” control mode, the human can still control the robot in the X- and Y-axis (horizontal

plane motion) using natural hand motions but will control the motion in the Z-axis (vertical motion)



4.4. Perception and Action Augmentation 127

using the controller’s trackpad (to avoid collision with the table and object to be grasped). When the

human controls the robot to move close to the object or containers, the corresponding AR visual cue

will turn from “MOCAP” (in green) to “TRACKPAD” (in red) to inform humans that the interface

mapping mode has changed. The trackpad control region for the object (container) is a 0.14 m ×

0.2 m × 0.6 m (0.2 m × X 0.26 m × 0.4 m) bounding box w.r.t. to the center of the object (top

of the container). In the “Scaling” mode, the interface will reduce the mapping ratio in the X- and

Y-axis to allow humans to precisely adjust the robot to align with the object or container, while

maintaining the scaling ratio to be “Regular” in the z-axis. We define the reduced scaling region

to be the same as the trackpad control region. The corresponding AR visual cue will turn from

”SPEED: REGULAR” in green to ”SPEED: SLOW” in red to inform the change in the scaling

ratio.

Integration of Perception and Action Augmentation —We conducted a pilot user study (Pilot

Study II) to understand human’s preferred combination of perception and action augmentation. In

total, we have 15 different experiment conditions, considering the three interface control modes

with different perception and action augmentation. Our pilot study involved 8 participants (4 male

and 4 female, 5 novices, and 3 participants who have used the same teleoperation system before).

The participants performed a single-object pick-and-place task once under every experimental con-

dition (the order of interfaces was randomized) and reported their preferred combinations of control

modes and perception/action augmentation after the experiments.

Table 4.2: Testing conditions with highlighted combinations preferred by the participants.
Baseline AR Visual Cues Assistive Autonomy
(Mode 1) (Mode 2) (Mode 3)

Default 1a: Single View 2a: Single View 3a: Single View

PA = Perception 1b: Fixed PIP (PA1) 2b: Fixed PIP (PA1) 3b: Fixed PIP (PA1)
Augmentation 1c: Pop-up PIP (PA2) 2c: Pop-up PIP (PA2) 3c: Pop-up PIP (PA2)

AA = Action 1d: Trackpad (AA1) 2d: Trackpad (AA1) 3d: Trackpad (AA1)
Augmentation 1e: Motion Scaling (AA2) 2e: Motion Scaling (AA2) 3e: Motion Scaling (AA2)
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AR Visual Cues – Mode 2

(Interface 2a + 2d)

Baseline – Mode 1

(Interface 1c + 1d)

Assistive Autonomy – Mode 3

(Interface 3b + 3e)

Figure 4.19: Integrated interfaces of perception and action augmentation.

Table 4.2 highlighted the augmentation combination preferred by the majority of the partici-

pants for each mode. In Mode 1 (i.e., the baseline control mode), 5 out of 8 participants preferred

to have the pop-up picture-in-picture (PIP) display of the complementary viewpoint (interface-1c)

and to use trackpad control (interface-1d). Some participants commented: ”...would like to have

the pop-up PIP display to provide more workspace information when needed and use a trackpad

to control the robot in a single direction for precise motion”. In Mode 2 when the interface can

display AR visual cues, 6 out of 8 participants preferred to use the single camera view display

(interface-2a) without any perception augmentation and trackpad control (interface-2d). Partici-

pants commented: ”...the PIP display overwhelms the user interface while the AR visual cues are

available”. In mode 3 (assistive autonomy), 7 out of 8 participants preferred to use the fixed PIP

display of the complementary viewpoint (interface-3b) and motion scaling (interface-3e). As the

participants commented: ”...the fixed PIP display increases the awareness of the region where au-
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tonomy is triggered” and ”...motion scaling prevents large movement that moves the robot out of

the autonomy zone”. The preferred combination of interface control modes with perception and

action augmentation will be further evaluated in our formal user study.

We further refine the interface display based on the freeform comments from the participants.

Shown in Figure 4.19, we use the sidebar in pink and green to prominently indicate the activation

of action augmentation. In Mode 3, we also highlight the region to activate the autonomous actions

in both the primary and complementary viewpoints. The corresponding AR visual cue (i.e., the

square around the object) will be turned from white to light blue color.

Estimation of Cognitive and Physical Workload — We estimate the cognitive workload using

the operator’s gaze and eye movement tracked by a Tobbi Pro Nano eye tracker. We also propose

a novel method to estimate the physical workload from human motion tracking.

Estimation of Cognitive Workload. Following the methods in the literature [396, 397, 398], we

estimate cognitive workload caused by stress Cstr, interface complexity Cint and task workload

Ctsk from the operator’s pupil diameter, gaze fixation and movements, and task duration. We track

the difference between the operator’s pupil diameter and estimate the cognitive workload caused

by stress as the difference between average pupil diameter (Dtsk during a task and the operator’s

calibrated pupil diameter Dcal before the task start, and normalize with respect to the maximum

cognitive workload among all the participants, i.e., Cstr =
Dtsk−Dcal

max
p=p1,...,pn

(Dtsk−Dcal)
. Prior literature sug-

gests that [396, 397, 398] pupil dilates with the increased workload, thus increasing the difference

between the average pupil diameter during a task (Dtsk) and the operator’s calibrated pupil diameter

(Dcal) prior to the start of the task. The cognitive workload caused by interface complexity Cint is

computed as the ratio between the average distance in pixels of the operator’s gaze fixation and the

center of visual display and the maximum distance in pixels (from edge to center of visual display

i.e., Stsk and Smax). Thus, the interface complexity can be calculated as, Cint = Stsk/Smax). To

compute the cognitive workload for each sub-task (e.g., picking-and-place one object), we also es-
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timate the cognitive workload caused by task complexity as the ratio between the time to complete

a sub-task and total task completion time (namely, Ctsk = Tsub/Ttotal). Thus, the cognitive work-

load for a sub-task can be computed as the average of Cstr, Cint, and Ctsk. We also contribute the

overall workload Ctask of the entire task caused the stress and interface complexity as the average

of Cstr and Cint, assuming they have equal contributions.

Estimation of Physical Workload. Surface Electromyography (sEMG) signals can provide more

accurate measurements of the muscle efforts and physical workload than using subjective feedback

(e.g., Rapid Upper Limb Assessment, namely RULA [399, 400, 401]). We used sEMG for the

objective but offline estimation of physical workload in robot teleoperation via whole-body motion

mapping [9, 18]. Here we propose to learn predictive models for the online, accurate muscle effort

prediction from human motion tracking data. Our prior work [18] shows that: the muscle efforts

of the anterior, lateral deltoid and bicep muscle groups, caused by shoulder flexion, abduction, and

elbow flexion, contributes most to the physical workload when human controls tele-manipulation

using their arm and hand motions.
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Figure 4.20: Vive trackers attachment and physical workload single joint mapping and validation.
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Shown in Figure 4.20, we thus attached 6 body trackers (Vive Tracker 3.0) to the upper arms,

forearms, chest, and waist of the human operator, to estimate the shoulder and elbow joint angles.

Specifically, the shoulder flexion (θSF ) is estimated on the sagittal plane as:

θSF = arccos(
T⃗ua · g⃗

||T⃗ua|| ||g⃗||
) (4.1)

which has T⃗ua to be the upper arm vector estimated from shoulder and elbow trackers, and the g⃗ to

be the gravity vector, both of which are projected on the sagittal plane (i.e., the X-Y plane).

The shoulder abduction θSA is estimated on the frontal plane as:

θSA = arccos(
T⃗vertical · T⃗ua

||T⃗vertical|| ||T⃗ua||
) (4.2)

which has T⃗vertical to be the vector perpendicular to the vector connecting two shoulder trackers,

and T⃗ua to be the vector of the upper arm formed by shoulder and elbow trackers, both of which

are projected on the frontal plane (i.e., the X-Z plane).

The elbow flexion θEF is estimated as

θEF = arccos(
T⃗ua · T⃗la

||T⃗ua|| ||T⃗la||
) (4.3)

which has the T⃗ua to be the upper arm vector, and T⃗la is the forearm vector estimated from the

elbow tracker and hand-held controller positions. Both these vectors are projected on the sagittal

plane (i.e., the Y-Z plane). Note that: 0◦ < θSF < 150◦, 0◦ < θSA < 120◦ and 0◦ < θEF < 150◦.

Shown in Figure 4.21 (Left), before tele-manipulation, we asked the human operator to perform

a compound arm exercise that involves the active coordination of the anterior and lateral deltoid

and the bicep muscle groups. The participants held one HTC Vive controller in each hand and
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Figure 4.21: Physical workload estimation via Vive trackers.

move their shoulder and elbow from fully extended to fully flexed for 20 seconds at the speeds

and angular velocities for typical robot control motions. We computed the joint angles of shoulder

flexion, abduction, and elbow flexion from the body and arm motions tracked by the HTC Vive

trackers, and used the corresponding sEMG data to estimate the offline muscle efforts [18]. For

the offline workload estimation, we used a band pass filter to extract the 40 Hz-700 Hz EMG

signals from the wireless sEMG sensors (Delsys Trigno Avanti Sensors) attached to the anterior,

lateral deltoid, and bicep muscle groups. We pre-processed the data using a high pass filter (cutoff

frequency 10 Hz) to remove the soft tissue artifact and offset the frequency baseline, and use a full-

wave rectification then a sixth-order elliptical low pass filter (cutoff frequency 50 Hz) to remove

noise and transients and develop a linear envelope of the EMG signals, following the method in

the literature [153] but choose tunable parameters for our own task and data. The shoulder muscle

efforts were computed using the weighted sum of the anterior and lateral deltoid (at the ratio of 3:4

based on their capabilities of force generation [402]), while the elbow efforts were calculated from

the bicep flexion. The muscle efforts were computed by normalizing the processed EMG data with
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respect to the person’s maximum voluntary contraction following the standard procedure in the

literature [154]. We averaged the shoulder and elbow muscle efforts for each arm, and estimate the

operator’s overall physical workload as the weighted sum of muscle efforts from the dominant and

non-dominant arm (at the ratio of 9:1), for the tasks that operators extensively move their dominant

arms for robot motion control:

Poverall = 0.9× (
PDS + PDE

2
) + 0.1× (

PNDS + PNDE

2
) (4.4)

where PDS and PNDS are the shoulder muscle efforts of the dominant and non-dominant arms,

while the PDE and PNDE are the elbow muscle efforts. A set of injunctive mapping functions were

learned to predict the muscle efforts based on the arm joint angles with good accuracy. Figure 4.20

shows that our predictive model can estimate the sEMG-based physical workload based on the joint

angles in isolation exercises, comparable to literature results [400, 401]. For compound exercises,

Figure 4.21 (Right) shows an example of the prediction accuracy of our simple models for one

male (32 years old) and 1 female (33 years old) of functional upper extremities and normal body

mass index. The root mean square errors (RMSE) between the proposed method and EMG data

are 3.68, 4.52, 4.63, and 3.78 for male and 4.97, 3.81, 4.12, and 4.37 for female participants for the

left should, left elbow, right shoulder, and right elbow.

4.4.2 User Study

We conduct a user study to investigate: 1) what aspects of dexterous tele-manipulation are im-

proved while using generally preferred improvements upon freeform teleoperation? 2) how do the

different types of augmentation impact performance, workload, and preference? 3) when should

the teleoperators be provided with the visual and action augmentation to increase task performance

and decrease operational workload? 4) who should be provided with what type of augmentation
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for freeform teleoperation?

Experiment Setup — Figure 4.11 shows the tele-manipulation system used for our experiments.

The participants were instructed to control the Kinova Gen 3 manipulator robot to perform a single-

object pick-and-place task using an HTC Vive hand-held controller. Two RealSense D435 cameras

were set up to provide the primary and complementary viewpoints, to provide the back view and

left side view of the workspace, while a desktop monitor was used to display the GUI (with camera

viewpoints and AR visual cues) to the operator. HTC Vive body trackers and hand-held controllers

were used to tracking their body and arm motions for online physical workload estimation. The

Tobii Pro Nano screen-based eye tracker attached to the desktop monitor display was used to track

the operator’s gaze and eye movements for cognitive workload estimation. Unlike the pilot study,

for this user study, a screen-based tracker was used because the visual interface was relayed on a

computer screen as opposed to a head-mounted display.

Participants — Our experiments include N=23 participants (28± 10 years old) diverse in gender,

technological and professional experience. The participants were divided into several user groups

based on the factors including:

• Gender: Based on gender, participants comprised of 14 male and 9 female participants.

• Background: The 23 participants comprised of 5 nurses and 18 users who do not have a

nursing background. Participants were determined to have a nursing background if they are

nursing students or registered nurses. Participants with nursing backgrounds were recruited

in order to incorporate our intended future users for a teleoperation platform nursing in the

development stage.

• Proficiency: The participants could be divided into 9 experienced and 14 inexperienced

users based on their experience in having used the teleoperation system. Users were classified

as experienced users if they had more than one hour of experience controlling the robot via
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teleoperation. They must have also teleoperated the robot within one year to the day of their

participation in the user study. The experienced users included participants of the pilot study

for this user study, in addition to other experienced participants from prior user studies for

different experiments.

• Gaming: The participants were divided into 16 infrequent video game players and 7 frequent

video game players. Participants who spent less than 5 hours a week playing video games

were classified as infrequent video game players.

• Spatial: Based on their spatial reasoning skills (via a spatial test fromAssessmentDay [403]),

the 23 participants were divided into 10 people with low spatial reasoning skills and 13 people

with high spatial reasoning skills. The participants’ spatial reasoning skill was evaluated

using a spatial reasoning test that was part of the pre-user study survey. Participants who

scored less than the 60 percentile on the test were evaluated to have low spatial reasoning

skills.

• ModeOrder: The participants were also divided based on the order in which the participants

used the interface modes. 8 users used the interface modes in the 1→ 2→ 3 order. 7 users

used the interface modes in the 2→ 3 → 1 order. 8 users used the interface modes in the 3

→ 1→ 2 order.

Task — The participants performed the same single-object pick-and-place task in all the trials. To

focus on the comparison of different augmentation approaches, we simplify the task of picking up

and dropping a block object into the container, which does not involve the control of robot/object

orientation. The robot, object, and container were set to the same positions at the start of each

trial (Figure 4.22.a). This task involves general-purpose manipulation actions and requires both

gross and precise manipulation. Specifically, each task can be decomposed to four action phases

(Figure 4.22.b and Figure 4.22.c), including: 1)Reaching to the object from the robot start position
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to within 0.3 m from the target object; 2) adjust the robot pose forGrasping the object; 3)Moving

the grasped object to be 0.15 m from the container; 4) adjust the robot pose for Placing the object

to the container. Note that the tele-manipulation tasks could be more diverse and difficult than the

single-object pick-and-place, our event-based robot autonomy, and augmentation (perception and

action) can still adapt to different purpose tasks (e.g., assist the object alignment in the stacking

task or interact with multi-target workspace in correct order).

Reach-to-Grasp

(0, 0, 0)

(0.5, 0.3, 0.6)

in meters

(0.35, 0.45, 0.15)

in meters

X

Y

Starting Configuration Move-to-Place

(a) (b) (c)

Figure 4.22: Robot starting configuration and task.

Experiment Conditions — In each mode, a participant performed the task twice: 1) without any

augmentation (Default), 2) with each perception augmentation (PA1 and PA2), 3) with each action

augmentation (AA1 and AA2), and 4) using the preferred combination identified in Pilot Study II.

The total trials for each participant is 36 = 2 repetitions× 3 modes× (1 default + 2 PAs + 2 AAs +

1 preferred integration). To avoid the learning effects, participants performed a random selection

of one of the three mode orders mentioned above.

Experiment Procedure — The experiment consists of a training section and performing section.

In the training section, the experimenter explained and demonstrated how to use the default interface

of the selected starting mode, to perform the tele-manipulation task without any robot autonomy

and interface augmentation for perception and action. The participants could practice the task (for a

maximum of 15 min). The participants who felt confident to perform the task after practice would

perform the practiced task under the aforementioned experiment conditions. Every participant
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stated they felt confident in using the teleoperation interface within the allocated practice time. We

recorded the task performance (e.g., task completion time, types, and occurrence of errors) during

both the training and performing sections. Before the experiments, participants filled in a survey to

report their experiences in video games, virtual reality environments, and spatial reasoning (via a

spatial test fromAssessmentDay [403]). Before the performing section, we asked the participants to

look at the monitor for 30 seconds and recorded their pupil diameters, for the calibration required to

estimate their cognitive workload. After completing the trials in each control mode, the participants

filled in generic surveys, including NASA-TLX and System Usability Survey (SUS), and report

their rating for each of the six interface conditions. After the experiment, the participants also

filled in a customized questionnaire to report their preference for the control mode and interface

conditions.

Data Analysis — Our data analysis considered interface conditions and action phases to be the

independent variables, and considered the task performance, workload, and user preference to

be the dependent variables. We measured the task performance objectively using the completion

time, robot trajectory length, and types and occurrence of errors, for the entire task and for each

action phase. We consider the physical and cognitive workload estimated using the methods men-

tioned previously and reported in the NASA-TLX survey. We also consider the user’s preference

inferred from the gaze fixations and distributions on the interfaces and reported in the SUS and the

customized surveys. For all the comparisons, we analyzed data from all dependent variables using

one-way repeated-measures analysis variance (ANOVA), including control modes, augmentations,

action phases, and user groups, as a within-participants variable. All pairwise comparisons used

Holm-Bonferroni correction to control for Type I error in multiple comparisons.



138 Chapter 4. Human-preferred Remote Manipulation Assistance

4.4.3 Effects of AR Visual Cues and Assistive Autonomy

From the comparison between different control modes (without any perception or action augmenta-

tions), we have the following results regarding the task performance, cognitive and physical work-

load. As shown in fig:results5-1, we found that: 1) using autonomous actions can significantly

reduce the occurrence of errors; 2) using AR visual cues can significantly reduce cognitive work-

load; 3) the overall preference of the participants for each mode was Mode 3 > Mode 2 > Mode

1.
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Figure 4.23: Comparison of task performance, workload, and preference between control modes.

Task Performance — The task completion time for Mode 1 (baseline), Mode 2 (with AR visual

cues), and Mode 3 (with autonomous actions) were on average 33.3 ± 7.7, 30.6 ± 8.7 and 29.2 ±

4.3 seconds for all the participants. The participants completed the task faster (by 8% and 12%)

with the assistive AR visual cues or autonomous actions than in Mode 1. The total trajectory

lengths of the robot during the task for Mode 1, 2, and 3 are 1.99 ± 0.53, 1.76 ± 0.53, and 1.78

± 0.59 meters, respectively. The trajectory lengths were shorter in Modes 2 and 3 (by 12% and

11%) than in Mode 1. The occurrence of errors during the task were 4.86 ± 1.38, 3.93 ± 0.91,

and 0.15 ± 0.14 occurrences, for Mode 1, 2, and 3, respectively. The ANOVA analysis showed
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no significant differences in the task completion time or the total trajectory lengths. However, post

hoc comparisons showed that the occurrence of errors using Mode 3 (with autonomous actions)

was significantly lower (p < .01) than using Mode 1 and 2, by 97% and 96%, respectively.

Workload — The physical workload while using Mode 1, 2, and 3 were on average 49.3 ± 4.7,

45.8 ± 1.2, and 49.7 ± 2.8 percent of the muscle capabilities. Mode 2 (with AR visual cues) led

to a lower physical workload than Mode 1 (baseline) and Mode 3 (with autonomous actions) but

without significant differences. The cognitive workloads were on average 59.3 ± 11, 50 ± 18.9

and 54.2 ± 10.9, respectively, when using Mode 1, 2, and 3. Post hoc comparisons showed that

Mode 2 (with AR visual cues) led to a significantly lower (p < .05) cognitive workload compared

to the other Modes.

Preference — Our post-experiment survey asked the participants ”Overall, how much do you pre-

fer to use this interface for controlling the robot on a daily basis for your work?”. The participants

rated their preference for each mode using the Likert scale from 1 (the least) to 5 (the most). Mode

3 was the most preferred (with the highest score of 4.6 ± 0.8), while the scores for Mode 2 and 1

were 3.8 ± 1 and 2.1 ± 1.3, respectively.

4.4.4 Effects of Various Perception and Action Augmentation

From the comparison between different augmentations (perception, action, and integration), we

have the following results regarding task performance and workload. Table 4.3 compares the per-

formance and workload between the interfaces for each mode. The green (red) color indicates the

best (worst) case among all the augmentation interfaces for each mode. We found that: 1) using

Fixed PIP (PA 1) can improve the performance of task completion time and total trajectory lengths;

2) using Trackpad (AA 1) can reduce the occurrence of errors; 3) using the Integrated interface

can reduce the cognitive workload. Table 4.6 compares the subjective feedback from NASA-TLX
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and SUS forms between the interfaces for each mode. We found that: 1) using Trackpad (AA 1)

results in higher mental and physical workload; 2) using Scaling (AA 2) results in higher overall

workload and lower SUS score. Moreover, the analysis of gaze fixation indicates that: 1) partici-

pants tend to check on the PIP more for all perception augmentations in Mode 1; 2) the perception

augmentations reduce the usage of the AR visual cues in Mode 2.

Table 4.3: Task performance and overall workload for all interfaces with mean and standard devi-
ation. The green (red) color indicates the best (worst) case among all the augmentation interfaces
for each mode.

Default

(Single View)

Perception Augmentation (PA) Action Augmentation (AA) Integrated

(PA + AA)Fixed PIP Pop-up PIP Trackpad Scaling

Time (s)

Mode 1 33.3 (7.7) 28.4 (5.8) 28.8 (8.6) 36.6 (4.8) 34.5 (2.3) 36.2 (7.9)

Mode 2 30.6 (8.7) 31.4 (7.8) 28.9 (6) 40.6 (9.7) 36.5 (3.1) 34.6 (9.3)

Mode 3 29.2 (4.3) 27 (4) 28.8 (4.7) 36.7 (3.4) 32.1 (7.1) 31.7 (3.1)

Trajectory (m)

Mode 1 1.99 (0.53) 1.75 (0.39) 1.75 (0.49) 1.74 (0.3) 1.83 (0.1) 1.76 (0.31)

Mode 2 1.76 (0.53) 1.58 (0.31) 1.62 (0.48) 1.73 (0.21) 1.6 (0.19) 1.61 (0.37)

Mode 3 1.78 (0.59) 1.56 (0.37) 1.64 (0.52) 1.59 (0.21) 1.64 (0.32) 1.65 (0.37)

Error (num.)

Mode 1 4.86 (1.38) 5.3 (1.77) 4.61 (2.1) 3.14 (0.85) 5.63 (1.39) 3.7 (1.26)

Mode 2 3.93 (0.91) 4.39 (1.42) 4.29 (2.06) 1.93 (0.79) 3.96 (1.44) 2.01 (0.42)

Mode 3 0.15 (0.14) 0.54 (0.42) 1.27 (1.09) 1.78 (1.59) 1.59 (1.23) 2.33 (1.22)

Physical (%)

Mode 1 49.3 (4.7) 48.2 (2.3) 48.6 (1.8) 51 (1.3) 49 (1.7) 50.6 (2.9)

Mode 2 45.8 (1.2) 48.6 (2.3) 51 (2.2) 52.5 (2.4) 50 (2.3) 51 (1.8)

Mode 3 49.7 (2.8) 50.5 (2.5) 51 (3.1) 51.1 (1.4) 50 (2) 48 (2.5)

Cognitive (%)

Mode 1 59.3 (11) 50.9 (12.8) 51.5 (11.7) 55.5 (10.5) 55.3 (11.1) 47.6 (12.4)

Mode 2 50 (18.9) 46 (16.8) 45.1 (18.1) 47.8 (18.1) 49.3 (13) 48.7 (15.1)

Mode 3 54.2 (10.9) 48.9 (12.7) 45.4 (19.3) 50.2 (16) 48.2 (15.1) 43.3 (13.7)

*Mode 1: baseline | Mode 2: AR visual cues | Mode 3: assistive autonomy

Task Performance and Workload — Based on Table 4.3, we conducted multiple post hoc com-

parisons: 1) between the best and worst case for each mode, and 2) of the best and worst case across
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three modes (Figure 4.24). The significant differences we found include:

Task Completion Time. In Mode 1, the interface with Fixed PIP outperforms the interface with

Trackpad, with p < .05; In Mode 2, the interface with Pop-up PIP outperforms the interface with

Trackpad, with p < .05; In Mode 3, the interface with Fixed PIP outperforms the interface with

Trackpad, with p < .01; The ANOVA analysis showed no significant difference for the compar-

isons of the best and worst cases across three modes.

Total Trajectory Length — The ANOVA analysis showed no significant difference for the com-

parisons between the best and worst interface in each mode as well as of the best and worst cases

across three modes.

Occurrence of Errors — In Mode 1, the interface with Trackpad outperforms the interface with

Scaling, with p < .01; In Mode 2, the interface with Trackpad outperforms the interface with

Fixed PIP, with p < .01; In Mode 3, the Default interface outperforms the interface with Preferred

Integration of PA and AA, with p < .01; For the best interfaces in each mode, the ANOVA analysis

showed a significant difference between modes and the post hoc comparisons indicated theDefault

in Mode 3 outperforms the Trackpad in both Mode 1 and 2, with p < .05. For the worst interfaces

in each mode, the ANOVA analysis showed a significant difference between modes and the post

hoc comparisons indicated the Integrated in Mode 3 outperforms the Scaling in Mode 1 and Fixed

PIP in Mode 2, with both p < .05.

Physical Workload — In Mode 2, the Default interface outperforms the interface with Trackpad,

with p < .05; The ANOVA analysis showed no significant difference for the comparisons of the

best and worst cases across three modes.

Cognitive Workload— In Mode 1, the interface with preferred Integration of PA and AA outper-

forms the Default interface, with p < .01; In Mode 3, the interface with preferred Integration of

PA and AA outperforms the Default interface, with p < .01; For the worst interfaces in each mode,
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the ANOVA analysis showed a significant difference between modes and the post hoc comparisons

indicated the Default in Mode 2 outperforms the Default in both Mode 1 and 3, with both p < .05.
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Figure 4.24: Comparison of task performance and workload for augmentations.

Usage of Complementary View and AR Visual Cues— Table 4.4 shows the duration of the gaze

fixation on the complementary viewpoint (measured by the percentage of task completion time).

Note that we only count the gaze fixation longer than 0.1 sec on a particular interface feature. We

found that with perception augmentations including PA 1 (Fixed PIP), PA 2 (Pop-up PIP), and

Integrated, the time that participants spent looking at the complementary viewpoint is longer (yet

not significantly) in Mode 1 than in the other two modes.

Table 4.4: Duration of gaze fixation on the complementary viewpoints (w.r.t task completion time).

PA 1 PA 2 Integrated

Mode 1 29 (16) 17 (9) 21 (13)
Mode 2 16 (13) 10 (9) –
Mode 3 17 (16) 10 (11) 12 (15)

Table 4.5 compares the gaze fixation duration on the different AR visual cues (measured by the

percentage of task completion time). It shows that the height bar, the hint boxes, and the distance
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box were the least used because the participants only glanced at them to find out the action affor-

dance and confirmation. On the other hand, the object and box AR features were much more used.

This is because the participants need to look at them to control the continuously performed reach-

ing and moving motions, and to precisely adjust the robot position for grasping or placements.

Table 4.5 also shows that the perception and action augmentations may change the participants’

reliance and usage of the AR visual cues. Post hoc comparisons showed that PA 1 (Fixed PIP) sig-

nificantly reduced the use of the “object” AR visual cue (p < 0.05), compared to AA 1 (Trackpad)

or the integrated interface. However, the perception and action augmentations have no significant

impacts on the use of the “box” cue.

Table 4.5: Duration of gaze fixation on the AR visual cues (w.r.t task completion time).

AR Visual Cues
Object AR Box AR Height Bar Hint Boxes Distance

Default 33 (12) 26 (12) 2 (4) 0.8 (1) 0.3 (1)
PA 1 30 (12) 19 (11) 1 (3) 0.3 (0.9) 0.2 (0.6)
PA 2 32 (13) 22 (13) 0.2 (0.5) 0.2 (0.5) 0.8 (1)
AA 1 34 (12) 25 (13) 2 (3) 0.2 (0.6) 0.2 (0.6)
AA 2 31 (11) 28 (13) 0.7 (1) 0.5 (2) 0.3 (2)
Integrated 36 (12) 25 (13) 0.3 (1) 0.4 (2) 0.6 (2)

Subjective Feedback — Table 4.6 compares the reported mental and physical workload from the

NASA-TLX survey between the augmentation interfaces for each mode, and the reported usabil-

ity from the SUS. We also compare the overall NASA-TLX score, using the coefficients of: 5 for

mental demand, 4 for physical demand, 0 for temporal demand, 2 for performance, 3 for effort, and

1 for frustration. The weighting coefficients were generated by choosing from a series of pairs of

rating scale factors that were deemed to be important based on the official instructions. Similar to

Table 4.3, the green (red) color indicates the best (worst) case for each mode. We conducted multi-

ple post hoc comparisons between the best and worst case for each mode. Here are the significant

differences we found from the comparisons:



144 Chapter 4. Human-preferred Remote Manipulation Assistance

Table 4.6: NASA-TLX and SUS subjective feedback. The green (red) color indicates the best
(worst) case among all the augmentation interfaces for each mode.

Default

(Single View)

Perception Augmentation (PA) Action Augmentation (AA) Integrated

(PA + AA)Fixed PIP Pop-up PIP Trackpad Scaling

Mental Demand (NASA-TLX)

Mode 1 41 (14) 34 (2) 33 (3) 55 (11) 54 (8) 53 (17)

Mode 2 31 (2) 33 (3) 32 (10) 49 (17) 52 (13) 48 (12)

Mode 3 24 (2) 25 (3) 27 (5) 58 (11) 47 (5) 42 (10)

Physical Demand (NASA-TLX)

Mode 1 39 (4) 33 (11) 32 (11) 48 (10) 41 (8) 42 (11)

Mode 2 28 (11) 30 (11) 30 (12) 51 (7) 42 (15) 42 (15)

Mode 3 40 (9) 25 (4) 27 (4) 45 (11) 40 (11) 23 (5)

Overall Workload (NASA-TLX)

Mode 1 39 (9) 33 (3) 31 (4) 50 (11) 54 (7) 48 (7)

Mode 2 30 (3) 32 (2) 32 (7) 48 (6) 53 (10) 45 (7)

Mode 3 42 (12) 26 (3) 28 (4) 50 (13) 46 (8) 24 (4)

SUS

Mode 1 73 (2) 81 (3) 82 (2) 51 (13) 49 (7) 55 (12)

Mode 2 81 (1) 76 (4) 76 (3) 57 (14) 56 (10) 61 (15)

Mode 3 84 (3) 81 (2) 77 (5) 50 (10) 61 (6) 65 (10)

*Mode 1: baseline | Mode 2: AR visual cues | Mode 3: assistive autonomy

Mental Demand. In Mode 1, the interface with PA 1 (Fixed PIP) significantly outperforms the

interface with AA 1 (Trackpad), with p < .01; In Mode 2, the Default interface significantly

outperforms the interface with AA 2 (Scaling), with p < .05; In Mode 3, the Default interface

significantly outperforms the interface with AA 1 (Trackpad), with p < .01.

Physical Demand. In Mode 2, the Default interface significantly outperforms the interface with

AA 1 (Trackpad), with p < .05; In Mode 3, the Integrated Interface significantly outperforms the

interface with AA 1 (Trackpad), with p < .01;

Overall Workload. In Mode 1, the interface with PA 2 (Pop-up PIP) significantly outperforms

the interface with AA 2 (Scaling), with p < .01; In Mode 2, the Default interface significantly

outperform the interface with AA 2 (Scaling), with p < .01; In Mode 3, the integrated interface
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significantly outperforms the interface with AA 1 (Trackpad), with < .05;

SUS. In Mode 1, the interface with PA 2 (Pop-up PIP) significantly outperforms the interface with

AA 2 (Scaling), with p < .01; In Mode 2, the Default interface significantly outperforms the inter-

face with AA 2 (Scaling), with p < .05; In Mode 3, the Default interface significantly outperforms

the interface with AA 1 (Trackpad), with p < .01;

4.4.5 Effects on Different Action Phases

We further analyze the interface modes and perception/action augmentation on the performance

and workload for the different action phases. From the comparison between different action phases

in each mode, we have the following results regarding the task performance, cognitive and physical

workload. As shown in Figure 4.25, we averaged the data from all augmentation interfaces (default,

PAs, AAs, integrated) for each action phase (i.e., reaching, grasping, moving, and placing) in each

mode (i.e., baseline, AR visual cues, and assistive autonomy). The ANOVA analysis and multiple

post hoc comparisons showed that: 1) the action phase of grasping takes a significantly (p <

.01) longer time than the reaching phase in all modes; 2) the action phase of placing results in a

significantly (p < .01) higher physical workload in all modes; 3) the action phase of grasping and

placing results in a significantly (p < .05) higher cognitive workload than the reaching and moving

phases respectively in all modes.

0

5

10

15

20

R G M P R G M P R G M P

Mode 1 Mode 2 Mode 3

T
im

e 
(s

)

Completion Time

* * * * *
* *

0

25

50

75

R G M P R G M P R G M P

Mode 1 Mode 2 Mode 3

W
o

rk
lo

a
d

 (
%

)

Physical Workload

* * * * *
* *

*
*

0

20

40

60

R G M P R G M P R G M P

Mode 1 Mode 2 Mode 3

W
o

rk
lo

a
d

 (
%

)

Cognitive Workload

* * * * * *

*R: reaching | G: grasping | M: moving | P: placing

Figure 4.25: Comparison of completion time and workload between action phases for each mode.
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Task Completion Time. Table 4.7 shows the task completion time of each action phase for all

the interfaces of all the 3 modes. Post hoc comparisons showed that: The grasping action takes

significantly longer time than the reaching action, for all interfaces and all the modes, with p < .01.

The placing action also takes significantly less time than the moving action for all the interfaces of

Mode 1 and 2, but not for Mode 3, with p < .01. We noticed that the interface that takes the least

time for the grasping action is different for each mode. Specifically, it is the interface with PA 2

(Pop-up PIP) in Mode 1, the Default interface in Mode 2, and the interface with PA 1 (Fixed PIP)

in Mode 3. The interface with PA 1 (Fixed PIP) in Mode 3 takes the least time to grasp, across all

the modes and interfaces. We also noticed that the interface that takes the least time for the placing

action is different for each mode. Specifically, it is the interface with PA 1 (Fixed PIP) in Mode 1,

the interface with PA 2 (scaling) for Modes 2 and 3. The interface with PA 2 in Mode 2 takes the

least time to place, across all the modes and interfaces. Note that the interfaces that take the least

time for the grasping and placing action are highlighted in green in Table 4.7.

Table 4.7: Time of each action phase for all interfaces.

Default PA1 PA2 AA1 AA2 Integrated

Mode 1: Baseline

Reaching 7.2 (3.4) 5.5 (1.3) 6.1 (1.8) 4.4 (1.1) 3.4 (0.5) 3.7 (0.6)

Grasping 14.2 (3.4) 11.5 (2.5) 10.6 (3.8) 16.2 (1.1) 12.8 (2.6) 14.7 (2.3)

Moving 6.6 (2.8) 6.4 (2.7) 5.7 (1.8) 7.5 (3) 6.5 (1.4) 8.3 (3.6)

Placing 7.8 (0.6) 7.2 (1.6) 7.8 (2.7) 9.2 (2.1) 12.6 (4.3) 10.3 (4.5)

Mode 2: AR Visual Cues

Reaching 5.5 (1.4) 4.8 (0.7) 3.9 (0.9) 4.9 (0.2) 2.9 (0.4) 3.5 (0.9)

Grasping 9.7 (2.1) 12.6 (3.5) 11.9 (3.5) 14.3 (2.8) 13.2 (1.3) 13 (3.2)

Moving 6.1 (2.5) 5 (0.5) 5.2 (1) 7.6 (2.9) 7.3 (1.8) 6.8 (2.4)

Placing 10.7 (5.6) 10.4 (5.9) 9.1 (2.9) 15.5 (7.3) 14.2 (2.3) 12.6 (6.3)

Mode 3: Assistive Autonomy

Reaching 4.9 (1.1) 3.4 (0.3) 3.6 (0.8) 3.6 (0.2) 3.6 (0.5) 3.2 (0.4)

Grasping 9.5 (2.4) 8.6 (1.6) 9.6 (1.7) 16.1 (2.2) 11.7 (4) 12.6 (2.5)

Moving 7.6 (1.1) 8.7 (2.2) 9.3 (3.3) 8.2 (1.6) 9.6 (4.1) 8.6 (1.6)

Placing 8.6 (1.2) 8 (1.9) 7.1 (1.3) 10.4 (2.1) 9.7 (2.2) 9.7 (1.1)

*PA: perception augmentation | AA: action augmentation
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PhysicalWorkload. Table 4.8 shows the physical workload of each action phase for all the interfaces

of all the 3 modes. Post hoc comparisons showed that: The grasping action has a significantly

higher physical workload than the reaching action, for all interfaces and all themodes, with p < .05.

The placing action also has a significantly higher physical workload than the moving action for all

the interfaces of all the modes, with p < .01. We noticed that the interface that has the least physical

workload for the grasping action is different for each mode. Specifically, it is the interface with

PA 2 (Pop-up PIP) in Mode 1, the Default interface in Mode 2, and the interface with PA 1 (Fixed

PIP) in Mode 3. The interface with PA 1 (Fixed PIP) in Mode 3 takes the least time to grasp, across

all the modes and interfaces. However, the interface that has the least physical workload for the

placing action is the Default interface for all three modes. The Default interface in Mode 2 has

the least physical workload to place, across all the modes and interfaces. Note that the interfaces

that have the least physical workload for the grasping and placing action are highlighted in green

in Table 4.8.

Table 4.8: Physical workload of each action for all interfaces.

Default PA1 PA2 AA1 AA2 Integrated

Mode 1: Baseline

Reaching 8.5 (0.6) 7 (0.6) 7.9 (0.6) 5.9 (0.6) 4.9 (0.5) 5.5 (0.1)

Grasping 16.7 (0.9) 15 (1.4) 13.3 (1.4) 23.9 (3.6) 17.2 (3.7) 20.6 (3.1)

Moving 8.4 (1.2) 7.7 (0.8) 7.4 (1) 10.8 (2.3) 9 (0.6) 11.9 (2.6)

Placing 29.4 (4.9) 33 (5.2) 36.7 (2.4) 34.6 (2.8) 57.1 (5.1) 52.7 (2.8)

Mode 2: AR Visual Cues

Reaching 6.4 (0.3) 6.5 (0.6) 5.8 (0.9) 7.3 (1.2) 4.8 (1.3) 5 (1)

Grasping 11.9 (1.3) 15.7 (0.2) 13.9 (1.2) 20.2 (1.3) 20 (2.1) 20 (3.7)

Moving 7.3 (1.1) 7.4 (0.7) 8 (0.7) 11.3 (2.5) 10.1 (0.4) 9.8 (1.3)

Placing 17.4 (1.4) 35.4 (5.3) 42 (4.8) 42.6 (2.9) 53.7 (1.4) 51.3 (2.8)

Mode 3: Assistive Autonomy

Reaching 6.3 (0.6) 5.1 (0.4) 4.6 (0.6) 6.1 (1.6) 5.2 (0.9) 4.3 (0.7)

Grasping 12.8 (1.1) 11.9 (2) 12.8 (1.3) 21.4 (1.5) 15.6 (2.4) 15.9 (1.4)

Moving 12 (0.4) 11.9 (0.4) 12.5 (1.3) 11.9 (0.1) 12.5 (2) 12.4 (1.1)

Placing 32.6 (2) 38.9 (6.1) 40.8 (4.6) 43.6 (3.5) 54.8 (5.7) 55 (5.1)

*PA: perception augmentation | AA: action augmentation
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Cognitive Workload. Table 4.9 shows the cognitive workload of each action phase for all the in-

terfaces of all the 3 modes. Post hoc comparisons showed that: The grasping action has a signifi-

cantly higher cognitive workload than the reaching action, for all interfaces and all the modes, with

p < .01. The placing action also has a significantly higher cognitive workload than the moving

action for all the interfaces of all the modes, with p < .01. We noticed that the interface that has the

least cognitive workload for the grasping action is different for each mode. Specifically, it is the

integrated interface in Mode 1, the AA 2 (scaling) interface in Mode 2, and the integrated interface

in Mode 3. The integrated interface in Mode 3 takes the least cognitive workload to grasp, across

all the modes and interfaces. In terms of placing, PA 2 (pop-up PIP) caused the least cognitive

workload for Mode 1 and 2, and integrated interface caused the least cognitive workload for Mode

3. The PA 2 (pop-up PIP) interface in Mode 2 caused the least cognitive workload to place, across

all the modes and interfaces. Note that the interfaces that have the least cognitive workload for the

grasping and placing action are highlighted in green in Table 4.9.

Table 4.9: Cognitive workload of each action for all interfaces.

Default PA1 PA2 AA1 AA2 Integrated

Mode 1: Baseline

Reaching 37 (8.7) 34.7 (9.6) 37 (8.3) 31.3 (8.4) 29.7 (6.5) 28.7 (8.5)

Grasping 49.7 (7) 43.3 (7.6) 42.5 (9) 49 (7.9) 44.8 (8.4) 42.1 (8.4)

Moving 37.6 (10.6) 34.3 (10.4) 35.7 (7.9) 35 (7.4) 34.1 (9.2) 33.4 (10.7)

Placing 48 (9.8) 42.9 (9.9) 41.7 (8.2) 45.1 (8.7) 49.8 (9.8) 41.7 (8.6)

Mode 2: AR Visual Cues

Reaching 31.3 (12.2) 29.2 (11.4) 25.4 (13.3) 28.1 (10.7) 25.5 (10) 27.4 (8.1)

Grasping 42.2 (12.5) 41.6 (10.3) 39.9 (10.4) 41.3 (11.3) 39.9 (9.3) 43.3 (10.7)

Moving 33.3 (11.1) 30.5 (11.7) 31.8 (11.2) 32.4 (12.3) 35 (8.1) 32.1 (10)

Placing 43.2 (11.2) 39.9 (11.4) 39.6 (11.3) 42.1 (12.2) 45.9 (9.2) 43 (10.7)

Mode 3: Assistive Autonomy

Reaching 33.3 (8) 29 (8.8) 28.6 (11.8) 30.2 (9.7) 28 (8.4) 26.6 (8.2)

Grasping 44 (7.3) 40.3 (8.6) 38 (10.6) 44.1 (9.5) 40.5 (8.3) 37.7 (8.4)

Moving 37.2 (7.6) 34.4 (9.1) 33.6 (12.6) 31.7 (10.1) 33.1 (10.6) 31.4 (10.1)

Placing 47.7 (8.3) 45.7 (9.1) 42.4 (12.5) 46 (10.7) 45.4 (11.3) 41.2 (10.3)

*PA: perception augmentation | AA: action augmentation
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4.4.6 Effects of Other Human Factors

We further analyze the effects of several human factors, including gender, background, and ex-

perience with technology, on the performance and usage of the interfaces. The participants were

divided into groups based on conditions defined previously. the comparison between different user

groups, we have the following results regarding task performance in terms of completion time. As

shown in Figure 4.26, the ANOVA analysis and multiple post hoc comparisons showed that: 1)

users’ background impacts the task performance with more augmentation interfaces and control

modes; 2) using assistive autonomy can mitigate the gap between different user groups in task

performance.
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Figure 4.26: Indication of the significant differences in the comparison of completion time between
user groups for each mode.

Table 4.10 compares the task completion time between user groups of different gender, back-

ground, proficiencywith the tele-manipulation interface, gaming frequency, spatial reasoning level,

and mode order. We highlighted the identified significant differences, which indicate that the male,

non-nursing, experienced users, frequent video game players, and high-level spatial reasoning users

took less time to complete the task.

Table 4.11 compares the use of the complementary viewpoint between user groups, using the

duration of gaze fixation on the complementary viewpoint with respect to the total task completion

time. We found significant differences between the male and female user groups when using the

interface with PA 1 (Fixed PIP) and using the integrated interface in Mode 1. For both interfaces,
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Table 4.10: Comparison between groups: completion time.

Mode 1 Mode 2 Mode 3

Def. PA1 PA2 AA1 AA2 Int. Def. PA1 PA2 AA1 AA2 Int. Def. PA1 PA2 AA1 AA2 Int.

G .53 .30 .09 .40 .35 < .05 < .05 < .05 .31 .25 .50 .12 .45 .33 .37 .31 .28 .87

B < .05 < .05 < .01 .14 .50 < .01 < .01 < .05 .10 < .05 .32 < .05 .06 .07 .09 .15 < .05 .19

P .50 .19 .09 .08 .56 .08 < .05 .06 .06 .07 .91 < .01 .09 .06 .07 .11 .23 .55

F .63 .17 .10 < .05 .85 < .05 .11 .15 .61 .25 .14 .15 .24 .08 .27 .18 .28 .17

S .35 .36 < .05 .17 .52 < .05 .13 .10 .36 .06 .47 .38 .14 .32 .16 .92 .21 .87

M .97 .37 .28 .57 .83 .73 .64 .89 .75 .38 .79 .62 .67 .52 .95 .98 .48 .69

*PA: perception augmentation | AA: action augmentation

*G: gender | B: background | P: proficiency | F: gaming frequency | S: spatial reasoning level | M: mode order

the male participants used the complementary viewpoints more than the female participants by

13% and 8.7% on average, respectively. We also noticed that: in Mode 1, both PA 1 and PA 2

led to a significant difference in the use of complementary viewpoints between the users with and

without nursing professional experience, with p < .05 and p < .01, respectively. Participants

without nursing experience or training used the complementary viewpoint 13.4% more on average

for the interface with PA 1 (Fixed PIP), and 9.8% more on average for the interface with PA 2

(Pop-up PIP). Moreover, we found a significant difference between user groups of different spatial

reasoning skills in the use of complementary viewpoints in Mode 1 and Mode 3 when using the

integrated interface, with p < .01 and p < .05. In Mode 1 and Mode 3, when using the integrated

interface, participants with lower spatial reasoning skills use the complementary viewpoint more

by 10.3% and 9.2% on average.

Table 4.11: Comparison between user groups: use of complementary view.

Mode 1 Mode 2 Mode 3 Integrated

(Mode 1)

Integrated

(Mode 3)Fixed Pop-up Fixed Pop-up Fixed Pop-up

Gender < .05 .08 .21 .14 .12 .13 < .05 .47

Background < .05 < .01 .46 .90 .68 .10 .06 .21

Proficiency .58 .51 .36 .96 .89 .65 .43 .78

Gaming .71 .63 .80 .45 .60 .64 .80 .22

Spatial .17 .21 .21 .14 .41 .10 < .01 < .05

Mode Order .35 .22 .12 .09 .33 .60 .82 .08

Table 4.12 highlights the significant difference between user groups by the use of the “object”
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and “box” AR visual cues. In Mode 2, we found significant differences (p < .05) between users

of different background in the use of the “object” cue when using the interface with AA 1 (Track-

pad), and in the use of the “box” cue when using the Default interface. Specifically, the users

without nursing experience used the “object” cue more by 8% when using the interface with AA 1,

while the users with nursing experience use the “box” cue more by 10.3% when using the Default

interface. Regarding the factor of proficiency, we found that: in Mode 2, the participants with

prior experience of robot teleoperation used the “object” cue significantly more (with p < .05)

than the other group by 7.9%, when using the interface with PA 1 (Fixed PIP). We also found that

the high-proficiency group used the “object” cue significantly more (with p < .05 and p < .01)

than the other group by 8.8% and 9.0% when using the interface with AA 1 (trackpad) and AA 2

(scaling). Regarding the effects of gaming experience, we found that frequent video game play-

ers used the “object” cue significantly more (p < .01) than the other user group when using the

interface with AA 1 (Trackpad), by 10.3% on average. We also found that frequent video game

players used the “object” cue significantly more (p < .05) than the other user group when using

the integrated interface, by 7.3% on average. Regarding the factor of spatial reasoning skills, we

found that the participants with better spatial reasoning skills used the “object” cue significantly

more (p < .05) than the other users when using the interface with AA 1 (Trackpad), by 7.0% on

average. We also found that the participants with better spatial reasoning skills used the “box” cue

significantly less (p < .05) than the other users when using the interface with AA 1 (Trackpad, by

9.1% on average). Regarding the effects of mode orders, we found that the users performed the

mode in 3→ 1→ 2 order used the “box” cue significantly more (p < .05) than in 2→ 3→ 1 order

when using the Default interface, by 12.3% on average. We also found that the participants used

the mode in 1→ 2→ 3 order used the “box” cue significantly more (p < .05) than in 2→ 3→ 1

order when using the interface with PA 1 (Fixed PIP), by 10.8% on average.

Table 4.13 shows the trend in the use of the height bar, hint box, and distance between user
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Table 4.12: Comparison between user groups: use of object and box AR visual cues.

Def. PA1 PA2 AA1 AA2 Int. Def. PA1 PA2 AA1 AA2 Int.

Object AR Box AR

G .18 .09 .56 .55 .17 .15 .16 .29 .21 .66 .99 .56

B .42 .64 .98 < .05 .05 .23 < .05 .45 .42 .19 .95 .44

P .08 < .05 .15 < .05 < .01 .40 .59 .99 .23 .59 .73 .35

F .74 .17 .86 < .01 .22 < .05 .67 .92 .91 .69 .12 .85

S .82 .68 .37 < .05 .07 .33 .50 .73 .77 < .05 .75 .76

M .63 .85 .13 .64 .62 .34 < .05 < .05 .09 .53 .96 .34

*G: gender | B: background | P: proficiency | F: frequency of gaming | S: spatial | M: mode order

groups. The table presents a comparison of the total number of frames for each AR cue used while

performing the task across all the participants in the user group. We highlighted the user group that

used these features more, measured by the total number of frames.

Table 4.13: Comparison between user groups: use of height bar, hint boxes and distance AR visual
cues.

Def. PA1 PA2 AA1 AA2 Int. Def. PA1 PA2 AA1 AA2 Int. Def. PA1 PA2 AA1 AA2 Int.

Height Bar Hint Boxes Distance

G

B

P

F

S

M

*Highlighted: male (G); nurse (B); novice (P); low gaming (F); bad spatial (S); Order 1      and Order 2      (M)

4.5 Assistive Autonomy Levels and AR Preferences

To enhance remote perception, AR visual cues are overlaid on the video stream from remote cam-

eras to indicate the robot and task states, and the spatial relationship in a 3D environment, which

may be difficult for human operators to estimate precisely. They are also used to indicate the mo-
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tion, action, path, and task that robot autonomy plans to perform, in order to enhance human’s

understanding of the robot’s intent, behavior, and capabilities. Thus far, effective AR visual cues

are mostly developed case-by-case for remote robot manipulation under direct to supervisory con-

trol. It is still not clear what AR visual cues humans need or prefer to use to control a remote

manipulator robot with various levels of autonomy.

To this end, we proposed systematic AR visual cues for remote robot manipulation assistance.

These AR cues can guide human’s control of robot motion toward the target and around the ob-

stacles in a 3D workspace and indicate whether the robot autonomy is activated, and its planned

motion or action.

4.5.1 Control Modes for Remote Manipulation

Table 4.14: Human (H) and Robot (R) task division in each control mode.

Control Gross Obstacle Precise Autonomy
Mode Manipulation Avoidance Manipulation Activation

Direct H H H N/A
Assisted H/R H/R H/R Auto
Shared H/R R R Auto
Supervisory R R R Auto

Table 4.14 illustrates the human-robot task division in each control mode. In theDirect Control

mode, a human manually controls the robot through the entire task. In the Assisted Controlmode,

robot autonomy uses a virtual fixture to constrain human-controlled robot motion in directions

that avoid collision with environmental constraints and obstacles as well as move to grasp/place

an object. In the Shared Control mode, the robot assists human-controlled gross manipulation

motions (e.g., approaching or moving an object) with automated motions for collision avoidance,

and for precise manipulation (e.g., grasping or placing) when the robot end-effector is close enough

to the target object or location. In the Supervisory Controlmode, robot autonomy plans themotion
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for the entire pick-and-place task, while humans supervise its execution. The robot’s autonomous

perception using AruCo markers [404] are available for all the control modes, in order to locate

the target object, container, obstacle, and track the robot end-effector.

4.5.2 AR Features

Motion Guidance

Autonomy Intent

Local Global

Obstacle Indication Target Hint

Specific Affordance Highlight

Autonomy Activation

MediumLow High
Remote Manipulation

General

Figure 4.27: Proposed AR visual cues to assist humans to control or supervise remote robot ma-
nipulation, and to communicate the robot autonomy’s activation, capabilities, and intents.

Shown in Figure 4.27, we propose five types of AR visual cues and representation options:

• Motion Guidance indicates the robot’s instantaneous motion direction using a 3-axis arrows

overlaid on the robot end-effector or displays the robot’s suggested path [405].

• Obstacle Indication has the options to highlight close-to-collision features on the obstacle

(e.g., plane, edge, or vertex, as in [406]), and to display the obstacle’s 3D bounding box (as

in [407]).
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• Target Hint provides the grasp/place affordance [380] by changing the color of the square

around the target and the dot overlaid on the robot end-effector. Alternatively, the target can

be highlighted [282] to provide an intent inference to the user.

• Autonomy Activation indicates if the robot’s autonomy has been activated. We provide

three options for the representation of different visual salience, including a blue light (low

salience, as in [408]), text with “AUTO” (medium salience, as in [409]), and blue bars on

both sides of the camera view (high salience, as in [406]).

• Autonomy Intention has the option to indicate the robot’s motion, action, and path plan (as

in [408, 410]). The autonomy intention is displayed similarly to the visual cues used for

motion guidance.

Table 4.15: AR visual cue choices recommended by experienced users.

Control Motion Obstacle Target Autonomy Autonomy
Mode Guidance Indication Hint Activation Intention

Direct Arrow Planes Affordance – –
Assisted Arrow Box None Low Path
Shared Path None Highlight High Path
Supervisory – None None Medium Path

Our user study allows participants to choose the types and options of AR visual cues for each

control mode. Table 4.15 shows the choices recommended by experienced users.

4.5.3 User Study

We conduct a user study to investigate: 1) what AR visual cues do humans prefer when controlling

a robot with various levels of autonomy? 2) whether this preference can be influenced by the way

humans learn to use the interface.
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Participants and Task —We recruited 18 participants (13 male and 5 female, 25.4 ± 6.9 years)

from the WPI campus to perform a single object pick-and-place task with an obstacle between the

object and the box. A post hoc power analysis with (1-β) = 0.8 and α = 0.05 found an observed

power of 0.85 (d = -1.05) with this sample size. Shown in Figure 4.28, participants controlled the

robot to pick up an object on the other side of an obstacle (box of size 200 mm × 80 mm × 200

mm), and bring it back and place it in a small container. Participants performed the task under three

different initial task states: the object location remained the same, while the container and robot

were placed in three different ways such that the robot planned path would move around different

sides of the obstacle to reach the object and container.

Path 1 Path 2 Path 3

Figure 4.28: Workspace configurations for the pick and place experimental task.

Experiment Procedure — Participants were trained on the baseline control interface and three

levels of assistive autonomy before the experiment. The experimenter then provided video instruc-

tions to demonstrate each AR feature and gather their preferences (Preference 1) for each level of

autonomy. Participants performed a single trial of the task in Path 1 using their selected AR visual

cues for all control modes. Following the completion of the task in Path 1, participants were given

the opportunity to switch their preferences (Preference 2) based on their hands-on experience and

then perform the same task again with Paths 2 and 3 for one trial each. Lastly, participants were

required to perform the same task using the AR feature proposed by the experienced user for Paths

2 and 3 for one trial each and made their final selection of AR preferences (Preference 3). Note that

a trial was skipped if the preferred AR combination was the same between Preference 1, 2, and 3.
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Data Collection and Analysis — To assess control efficiency, we recorded the complete length

of the trajectory covered by the handheld controller. Previous research has shown that the size

of the pupil increases as the level of stress rises [398]. We utilized pupil diameter as a measure

for estimating subject-specific cognitive workload. To establish a baseline for each participant, we

instructed them to look at a blank screen for 30 seconds, assuming a stress-free state. The cognitive

workload was calculated by finding the average difference between real-time pupil diameter and

baseline value, which was then normalized by the maximum average distance between real-time

pupil diameter and baseline value across all trials for each participant. For the comparisons in

control efficiency and cognitive workload, we first used F-test to compare the variances of the two

sample groups and then used Student’s t-test (equal variance) and Welch’s t-test (unequal variance)

with p < .05.

4.5.4 AR Preferences for Each Level of Autonomy

Note that preferences 1, 2, and 3 are referred to as P1, P2, and P3. Figure 4.29.a presents partici-

pants’ final selection (after using the recommendation of experienced users, refer to as P3) of each

AR visual cue for different levels of robot autonomy.

Direct Control. Most of the participants (13 out of 18) selected local information (arrow) as a

preferred way to continuously guide their motion to perform the task and avoid an obstacle. All the

participants (18 out of 18) preferred having detailed (planes of the obstacle) information indicating

possible collisions and specific (target affordance) methods to indicate if the position of the robot

end-effector is good to perform the precise manipulation.

Assisted Control. Most of the participants (15 out of 18) still selected local information (arrow) as

a preferred way to guide their motion, especially in the aspect of explicitly showing the required

control direction while the assisted autonomy is activated. Half of the participants preferred no-
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tification of the activation of the autonomy with a low salience (light-up a small square) method

while using global information (path) to be informed of the autonomy intention had been selected

by most of the participants (14 out of 18). Most of the participants (11 out of 18) preferred having

a general obstacle indication (highlight with a red boundary) that potentially provides a reason for

the activation of assisted autonomy to avoid an obstacle. Most of the participants (11 out of 18),

however, preferred not to have AR visual cues for precise manipulation with grasping and placing

an object because they feel assisted autonomy will handle it and like to have minimal visual clutter

on the screen.

Shared Control. In contrast to the direct and assisted control, most of the participants (12 out of

18) selected global information (path) as a preferred AR visual cue to guide their motion to help

approach the autonomy zone around the targets and the obstacle. Almost all the participants (17 out

of 18) preferred the most salience (highlight the entire user interface with color and two thick bars)

method to indicate the activation of autonomy and global information (path) to indicate the intent

of autonomy. This way the participants could get a better sense of the timing of resuming control

when the autonomy was completed. Most of the participants (13 out of 18) preferred to have no

AR visual cue for obstacle indication as they feel the autonomy will handle it automatically, and

use general information (highlight the current target) to ensure the autonomy is being applied to

the correct target.

Supervisory Control. Most of the participants (13 and 16 out of 18 participants respectively) pre-

ferred having a medium salience (pop-up text) to indicate autonomy activation and global informa-

tion (path) to demonstrate the autonomy intention. No AR visual cues for obstacle indication and

target hint were selected as they were deemed not necessary by most of the participants (15 and 14

out of 18) as these will be handled by robot autonomy.
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Figure 4.29: a) The final selections of the participants for the different AR features for all the
control modes; b) The number of participants who selected the recommended AR feature for all
the control modes; c) The number of participants who changed their preferences from other AR
features to the recommended AR feature when moving from P1-2 and P2-3.

4.5.5 Influence of Interface Learning Method

Figure 4.29.b shows the users’ preference changes for each AR feature suggested by the experi-

enced user from P1 to P3.

Video Instruction-Based (Initial Selection). In direct control mode, half the participants se-

lected local and half the participants selected global information as their preferred motion guidance

indication. All the participants already preferred having detailed information (planes of possible

collision with the obstacle) for avoiding the obstacle and grasp/place affordance to assist precise

manipulation. In assisted control mode, half the participants selected local and half the partici-

pants selected global information as their preferred motion guidance indication. Few participants

selected the low salience (light-up small square) method to be informed of the autonomy activation

while most of the participants already chose the global information (planned path) to show the au-

tonomy intention. Similar to direct control, most of the participants still preferred having detailed
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information (planes) over the general method (highlight obstacle boundary) to avoid the obstacle.

Most of the participants chose grasp/place affordance to assist precise manipulation even if assisted

autonomy was provided. In shared control mode, half the participants selected local and half the

participants selected global information as their preferred motion guidance indication. Few of the

participants selected the high salience (highlight the entire screen with bars) method to show the

autonomy activation while most of the participants already chose the global information (planned

path) to show the autonomy intention. Most of the participants selected the general information

for obstacle avoidance, over having no AR visual cues, and grasp/place affordance to assist precise

manipulation. In supervisory control mode, most of the participants preferred having the most

salience method to indicate the activation of the autonomy while most of the participants already

chose the global information (planned path) to show the autonomy intention. Similar to direct con-

trol, most of the participants selected the general information for obstacle avoidance over having

no AR visual cues and grasp/place affordance to assist precise manipulation even the autonomy

will handle both obstacle avoidance and precise manipulation.

Hands-On Engagement-Based (Intermediate Selection). In direct controlmode, a few partici-

pants changed their preferences for motion guidance from global information to local information in

the form of arrows. The preferences for obstacle collision, and target grasping and placing largely

remained the same. For assisted control and shared control mode, the preferences for the AR

features for motion guidance, obstacle collision formation, target grasping/placing, and autonomy

indication and intent generally remained the same. This trend continued for supervisory control

mode as well with minimal changes in the selections for the AR features for obstacle collision

information and autonomy indication and intent from the previous selections.

Expert Recommendation-Based (Final Selection) — For direct controlmode, minimal changes

happened across all the AR features between the intermediate selection and the final selection with

most of the participants selecting the local information for motion guidance and all the participants



4.5. Assistive Autonomy Levels and AR Preferences 161

wanting detailed information for obstacle collision (planes) and target grasp/place (affordance). For

the assisted controlmode, most of the participants selected local information in the form of arrows

for motion guidance with some participants changing their preferences from global information in

the form of path AR. Half the participants selected the low salience light notification for autonomy

indication with a few participants changing their choices from high salience to low salience when

moving from intermediate to final selection. Most participants continued to select the path AR to

provide global information about the intent of autonomy. For information about a collision with

the obstacle, most participants selected general information in the form of box AR. Finally, for

the target hint, most participants chose to have no hint to help with target grasp/place with nearly

half the participants changing their intermediate selections. Most of the participants selected global

information for motion guidance while making their final selection for shared control mode, with

some participants changing their selections from local information for motion guidance. Nearly

all the participants selected the high salience autonomy indication with nearly half the participants

changing their selections from the intermediate selection. Similar to assisted control, the selections

for autonomy intent remained largely unchanged, with nearly all the participants preferring to learn

about robot autonomy intent through the global information provided by path AR. More than half

the participants changed their preference for obstacle information, withmost of the participants now

preferring no information about the obstacle collision. Most of the participants prefer to highlight

the target while grasping or placing with half the participants changing their preference from the

previous intermediate selection. For supervisory control mode, most of the participants selected

the medium salience text indication for autonomy indication with half the participants changing

their selection to medium salience. Similar to both assisted and shared control, most participants

selected the global information via path AR for autonomy intent with minimal participants chang-

ing their preferences. Most of the participants preferred no information about collisions with the

obstacle with nearly half the participants changing their preferences from other AR features. Fi-

nally, most of the participants now preferred no information regarding the target with most of the
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participants changing their preferences from the intermediate selection.

4.6 Summary and Outlook

In this chapter, we first proposed a generalizable sensory feedback design to assist dexterous tele-

manipulation tasks. The designs well-supported the findings in the human factor experiment (Chap-

ter 3) that investigated the visual and haptic sensory integration in the usage of active telepresence

cameras for general-purpose manipulation. We also conducted a systematic evaluation to compare

the sensory augmentation using haptic and AR visual cues and investigate how the users’ prefer-

ence of sensory modality may be affected by the secondary tasks that introduced different types

of cognitive workload. Throughout the user studies, we found that there have been advantages in

the use of haptic and AR visual cues for sensory integration. However, despite good feasibility

and transparency, the workload arising from precise manipulation still poses a challenge. On the

other hand, although shared autonomy has been proposed as a solution to reduce operational effort

(Chapter 2), it falls short in terms of communication between humans and robots. We then proposed

a high-level terminology for these types of assistance, namely perception and action augmentation

that should be considered simultaneously for better results. The objective is to investigate the best

manner in which augmentation can be used or combined that improves transparency and reduces

the effort for remote manipulation via the motion mapping interface. Based on the user study, it

was found that most participants preferred a combination of perception and action augmentation.

Specifically, participants favored a shared autonomy control approach that incorporated AR visual

cues to indicate when autonomy was activated and the usable area. Additionally, they appreciated

the scaled motion feature which slowed down the robot’s actions within the usable area, provid-

ing a damping effect to avoid moving out of the usable area. To this end, the integration of the

perception and action assistance augmented the feasible interface with increased transparency and
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reduced control effort. Lastly in this chapter, we investigate the generalizability of the proposed

combination of robot autonomy and AR visual cues by providing various options for AR features

for different levels of assistive autonomy.

Benefits of Multi-sensory Feedback — In terms of objective task performance and subjective

workload evaluation, our results demonstrate the potential benefit of haptic and AR visual cues

to represent the information critical to the tele-manipulation task. Participants using haptic feed-

back significantly outperformed the baseline interface when the robot started from the far-away

condition, showing a 27% decrease in completion time. While the AR visual cues also signifi-

cantly outperformed the baseline interface when the robot started from the out-of-view condition,

showing a 32% decrease in time taken. This finding implies the desired autonomy in switching

the mechanism of sensory feedback based on the visibility of the robot platform in the remote user

interface. Whereas for the robot starting from the close condition and the rest of the comparison

not mentioned before, our work does not support a significant difference between the haptic, AR

visual cues, and baseline without any sensory feedback. It is possible that, for the close condi-

tion, the distance between the robot end-effector and the target object is not enough to exaggerate

the significant difference but the haptic cues still trended in the lowest completion time. As the

task performance has been improved by introducing the haptic and AR visual cues, our subjective

evaluation results show a comparable reduction in operational workload and an addition to system

usability and transparency.

We implemented the haptic and AR cues upon the baseline motion tracking teleoperation in-

terface to communicate four critical information of tele-manipulation tasks. We categorized the

information into two groups, the information needs the user to take immediate action (e.g., environ-

ment constraints, grasp confirmation), and the information to serve as the status monitoring (e.g.,

direction and distance to target, the affordance of grasping). Participants using haptic feedback

demonstrated the lowest accumulated occurrences of table collision across all the robot starting
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locations which was also supported by their subjective preference. Participants also reported that

using haptic feedback can increase the awareness of the sense that they grasp the object. While the

participants using AR visual cues significantly reduced the length of the robot’s trajectory and the

occurrences of hitting the object. Many participants reported that the AR visual cues transfer the

alignment of the grasping to a game-like task which simplifies the precise manipulation. The find-

ings helped us to conclude a philosophy for sensory augmentation design: the haptic/vibrotactile

feedback may encode the information that requires prompt attention and AR visual feedback may

present the continuous system status.

In practical healthcare settings, nurses often need to handle multiple requests and tasks simul-

taneously, which increases their cognitive workload. To explore how the preference for sensory

feedback is affected by different types of workloads, we conducted a study in which we introduced

three secondary tasks that simulate the additional workload that nursing applications may entail:

critical thinking (decision-making), haptic monitoring (other medical devices or emergency on-

call), and visual monitoring (patient vital signs). Our post-study preference survey revealed that

participants’ sensory feedback preferences shifted toward options that required less cognitive effort

to integrate with the secondary task. For instance, more participants preferred augmented reality

(AR) visual cues over haptic feedback when performing the haptic monitoring secondary task, and

vice versa. Many participants explicitly mentioned that using the same sensory feedback for both

the primary assistance and secondary task could lead to confusion and a higher mental workload.

These results highlight the importance of implementing multi-sensory feedback systems that can

adapt to the various types of secondary tasks that nursing workers may encounter. By tailoring the

sensory feedback to minimize cognitive load, we can reduce stress and fatigue on nurses, ultimately

improving their performance and the quality of patient care.

The Effective Integration of Perception and Action Augmentation— Related work in the liter-

ature has developed various augmented reality interfaces and shared autonomy for action supports,
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in order to assist remote perception and robot motion control [411, 412, 413], yet there are still

no comprehensive comparisons to evaluate their individual and integrated impacts on task perfor-

mance, workload, and user preference. To fill this gap, we first conducted a user study to compare

interfaces that only have the perception assistance (of AR visual cues) or the action assistance (of

autonomous actions), to the baseline interface without any assistance. Our results show that both

perception and action assistance can effectively reduce cognitive workload. Moreover, assistive

action can effectively reduce the occurrence of errors.

We further evaluated to what extent the additional perception and augmentations proposed in

this chapter can further assist the tele-manipulation. Our results show that the effectiveness of per-

ception and action assistance (and their integration) depends on the task performance objective.

Specifically, we found that: for the tasks that need to be completed as fast as possible, the integra-

tion of Fixed PIP display and autonomous actions is the most effective, because it led to the least

task completion time and motion efficiency (measured by the total robot trajectory length). As the

participants commented: “... the complementary viewpoint helped me to clearly understand the

relationship between robot and target so that can move faster in the right direction to active the

autonomy feature”. For the task that emphasizes the reliability and precision of motion control, the

interface that only provides autonomous actions for assistance turns out to be most effective, be-

cause the operators can focus more on the use of autonomous actions and will not be distracted by

other interface augmentation designed to enhance task efficiency or to reduce the workload. How-

ever, when the human workload and comfort are prioritized in the tele-manipulation, it is more

effective to provide only the AR visual cues and assistive autonomy integrated with Fixed PIP

interfaces, as they can effectively reduce human’s physical and cognitive workload, respectively.

These findings suggest the extension of the task- or goal-dependent perception and augment assis-

tance design, which will be intelligent to not only provide suitable augmentation but activate the

assistance based on the online estimation of human comfort. From the user preference and SUS, we
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also found that humans strongly prefer to use autonomy to assist their remote perception and action,

but only if they are reliable. Most of the participants commented that: “if the robot autonomy is

reliable, I would like to use it on daily bases”. Particularly, the nursing participants “... would like

the robot to be as autonomous as possible because we do not have more bandwidth to control the

robot during nursing duty”. However, the robot autonomy may not be consistently reliable due to

the perception and action uncertainty of the robots, as well as the complexity of the manipulation

tasks. It is still unclear how to adjust the level and type of robot assistance if the reliability of

the robot autonomy may vary. Our future work therefore will further investigate the impacts of

unreliable autonomy in human-robot collaboration for robot remote manipulation.

AR Features for Different Levels of Robot Autonomy — As the level of autonomy transitions

from direct to supervisory control, we found that: (1) humans’ priority for AR visual cues shifts

from guiding robot control to communicating autonomy activation and intention based on their

subjective feedback in Table 4.16; (2) humans’ preference for AR visual cues changes from provid-

ing local information to offering global guidance in robot control as indicated by a large portion of

participants (13 and 12 out of 18) selecting arrow for direct control and the path for shared control.

However, the use of global information to display the autonomy’s intention remains consistent

across all interfaces with autonomy, as more than 14 participants preferred having a planned path to

display it; (3) the efficacy of the AR features that share the same purpose as the robot autonomy

is decreased as observed by most of the participants preferring not to have any AR visual cues for

both obstacle indication and target hint in supervisory control mode.

Table 4.16: Usefulness of AR features for each control mode.

Interface Priority

Direct Motion Guidance>Obstacle>Target
Assisted Motion Guidance>Autonomy>Intent>Target>Obstacle
Shared Autonomy>Motion Guidance>Intent>Target>Obstacle
Supervisory Intent>Autonomy>Target>Obstacle
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Figure 4.30: Control efficiency evaluated by the handheld controller’s trajectory in direct control
and cognitive workload.

Regarding the influences of how participants learn to use the AR visual cues, we found that

participants’ preference for AR visual cues converged to the recommendation of experienced

users, which is observed by a large change after hands-on robot control using suggested AR fea-

tures (Figure 4.29.c) and most of the participants selecting the suggested AR features as their final

choice across all control modes. Additionally, the participants commented: ”...would like to have

clear guidance on how I should move the robot when not much robot autonomy is available.”which

was supported by the total trajectory lengths of the handheld controller being significantly shorter

(p < .05) while using the suggested AR visual cue (arrows) in direct control mode (Figure 4.30).

The participants also commented: ”...the most obvious way to inform the activation of the auton-

omy will be preferred for shared control so that I do not need to put too much effort when the

autonomy is on.” and this was supported by the significantly lower cognitive workload (p < .05)

while using the suggested AR visual cues in shared control (Figure 4.30). We also found that video

instruction and hands-on practice tend to provide sufficient information for the selection of AR

visual cues in direct control without autonomy while experience and proficiency play a role in

selecting suitable AR features when various autonomy is available. This is supported by the obser-

vation that participants’ final preference for AR visual cues remained consistent with their initial

selection when using direct control, but there were notable differences when using autonomy.



Chapter 5

Reliability of Robot Autonomy

5.1 Motivation

Teleoperation via human motion tracking interfaces (e.g., motion capture systems, exoskeletons,

hand-held controllers) enables humans to efficiently and intuitively control remote manipulator

robots to perform dexterous, freeform manipulations. To further reduce the operator’s workload,

robot autonomy has been leveraged to provide perception and action assistance, including the au-

tonomy to detect and recognize objects, infer human intents, and motion planning and control. The

assistive autonomy, which may vary in the levels of assistance (e.g., from shared to supervisory

control) and types of assistance (e.g., for perception, decision, and action), is expected to enhance

human-robot collaboration in remote robot control. However, the robot autonomy may not be con-

sistently reliable due to the perception and action uncertainty of the robots, as well as the complexity

of the manipulation tasks. It is still unclear how to adjust the level and type of robot assistance if

the reliability of the robot autonomy may vary.

This chapter aims to investigate how to adjust human-robot collaboration when robot autonomy

is unreliable to different extents (with respect to the task). We focus on the dexterous manipulation

tasks that rely on the general-purpose gross and precise manipulation actions for approaching, mov-

ing, grasping, and placing objects. The tasks are unstructured and may involve the manipulation of

unknown objects. They require humans to plan and control at least at action levels, e.g., by mov-

ing the end-effector close enough to the object to be manipulated during the task or selecting the

168
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sequence of objects and manipulation actions to be executed later under supervisory control. They

may also require humans to detect errors (e.g., due to the incorrect choice of object or action, low

precision of autonomous action execution) using the remote camera visual feedback, and correct

them using the control at the action or motion level.

Target Menu
Trigger

Menu
Pose

Auto-Reach

Auto-Move Confirm 

Grasping

Placing
Autonomy

Error

Shared Control

Supervisory Control

Target Trigger

Confirm 

Grasping

Placing

Menu

Pose

Manual

Resume

Error

Autonomy

Manual

Figure 5.1: Shared and supervisory control paradigms for assisted remote robot manipulation, and
how the errors were introduced.

We developed two human-robot collaboration (HRC) paradigms to effectively assist humans to

control robots to perform these dexterous manipulation tasks using a motion tracking interface. (1)

The shared control paradigm allows the robot autonomy to control the precisemanipulation actions

but relies on humans for the gross manipulation control and error correction; (2) The supervisory

control paradigm allows the robot autonomy to control both the gross and precise manipulation ac-

tions and only relies on humans for error correction. The shared control paradigm integrates robot

autonomy, including: (1) human goal intent inference based on human gaze, robot status, and task

states; (2) autonomous actions for the precise manipulation which tends to cause high cognitive and

physical workload for human control (e.g., object grasping and placing actions [9]). Our proposed

HRC paradigms were developed to be generalizable to incorporate other task-dependent assistive



170 Chapter 5. Reliability of Robot Autonomy

autonomy with intent inference, autonomous actions, and the methods for the estimation of human

cognitive workload and muscle efforts (e.g., based on gaze or motion tracking). We conducted

a user study to evaluate the effectiveness of the proposed HRC paradigms when the autonomy is

reliable (User Study I). We further investigated how the unreliable assistive autonomy (User Study

II) that results in errors of different types and frequencies during the tasks may influence the per-

formance, workload, human preference, and usage of autonomy between the two HRC paradigms.

Shown in the control flow in Figure 5.1, the errors may happen to the autonomous actions trig-

gered by the operator, at the action level (e.g., picking up the wrong object) or the motion level

(e.g., missing to grasp an object). The operator thus needs to switch to manual control to correct

the error.

5.2 Literature Review

Autonomy toAssistMotion Tracking Teleoperation—Humanmotion tracking interfaces enable

human operators to control the dexterous manipulation of remote robots (e.g., manipulators [414],

mobile manipulators [415] and humanoid robots [1]) using the natural motion coordination of their

body, arms, and hands. These motion tracking interfaces include various motion capture systems

(e.g., vision-based [416] vs IMU-based [417]), stylus/joysticks (e.g., stylus/joysticks [1]), exoskele-

tons (e.g., soft [418] and rigid [419], passive [420] vs actuated [421]), virtual reality gaming systems

(e.g., with hand-held controller and body trackers [34, 380]), and the customized integration of mul-

timodal control interfaces (e.g., [422]). Although these interfaces are more efficient and intuitive

for dexterous manipulation control than the alternatives, human operators still need assistive auton-

omy to enhance their control precision and reduce their control workload. Among all human-robot

collaboration paradigms (see the review on the levels of autonomy in [63]), shared autonomy [9]

and supervisory control [423] are both proven to be effective for handling the more complex, un-
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structured and error-prone manipulation tasks. However, during a comprehensive manipulation,

the operator’s preference for the level of assistive autonomy may vary with the reliability of the

autonomy with respect to ”the current sub-task” of the dexterous manipulation task. Investigat-

ing how this preference varies with the reliability of the autonomy will enable the design to adjust

the human-robot collaboration paradigms (more shared or supervisory control), and the types and

levels of assistive autonomy, in order to provide the best possible assistance to the operator.

Causes and Effects of Unreliable Autonomy — Related work in the literature has analyzed the

causes and effects of the failures in human-robot interactions and how to mitigate possible negative

impacts (see the review in [29]). In general, robot failures may differ in their functional severity, so-

cial severity, relevance to general or specific robot systems, frequency, condition (when the failure

happens), and symptoms (that indicate the failure). The failures of robots may affect task perfor-

mance (e.g., task completion time), human workload and comfort, and human perception of robot

intelligence, transparency, safety, and influence human’s trust, satisfaction, impression, and atti-

tude toward robots. When failures happen, robots are preferred to communicate the errors to help

humans to better perceive and comprehend the failures, and to leverage human help to resolve the

failures. In this chapter, we focus on the failures common to general-purpose robot manipulation

tasks, and common to both shared or supervisory control. At high-level, the robot may apply the

wrong action to the wrong object, due to errors in the prediction of goal or action intent [424], or

detection of object-action affordance [25]. At low-level, the robot may not successfully perform

the manipulation motions (e.g., missing to grasp or place an object) due to errors in perception,

motion planning, and execution. Thus far, it is still unclear how the types and frequency of errors

may affect human performance, workload, perception, and preference for the level of autonomy for

assistance. This chapter will fill the gap and inform the adaptive shared autonomy for dexterous

manipulation.
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5.3 Human-Robot Collaboration Paradigms

Remote Manipulation System— Figure 5.2 shows the tele-manipulation system we integrated to

perform the pick-and-place task. We used the hand-held controller of the HTC virtual reality sys-

tem to track human hand motion to control a 7-DOF (Degrees of freedom) Kinova Gen 3 robotic

manipulator with a two-fingered Robotiq gripper. The scaling of human-to-robot motion mapping

is 5:3:3 for the linear velocity in x-, y- and z-axis. We constrained the robot’s rotational motions

because this chapter focuses on investigating the impact of unreliable robot autonomy instead of the

controllability of teleoperation. A desktop monitor displayed a graphical user interface (GUI) of

Unity 3D window (1440× 1080 pixel) to stream the video from the workspace cameras (back and

side views, using picture-in-picture display to trivialize the impact of the loss of depth information)

at 30 Hz frame rate. The GUI also used overlay text to indicate the robot status (”TELEOPERAT-

ING”, ”EXECUTING”, ”PAUSED”) and sequence of objects to operate.

27-Inch Monitor Display

Gaze Tracking Device

(Tobii Pro Nano)

Robot Workspace

Human Operator
(Vive Controllers & Trackers)

Video Stream

(RealSense)

Figure 5.2: Assisted Tele-manipulation System.

Human-Robot Collaboration Paradigms — Table 5.1 shows the three HRC paradigms we de-

veloped for remote robot control based on task allocation between human and robot for sensing the

environment, making action decisions, and executing the planned motion [63, 425].

Shared Control. In shared controlmode, humans can use handmotions to control the robot to reach

the target object and to move it close to the desired location and can trigger a button to control
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Table 5.1: Human-Robot Collaboration Paradigms.

Autonomy Perception Decision Motion Planning
(Level) (Option) (Selection) (Action)

Manual Human Human Human
Shared Human/Robot Human Robot/Human

Supervisory Robot Robot/Human Robot

the robot’s actions to precisely grasp and place an object. This HRC paradigm, developed and

evaluated in our prior work in [9], enables humans and robots to complement each other’s skills

and strength to perform unstructured remote manipulation tasks: while humans can intuitively

and efficiently control the robot’s freeform gross manipulation motions to move the robot freely

across the cluttered workspace and approach the targets. The robot autonomy will perform precise

manipulation actions that cause significant human workload, based on inferred human goals and

action intent. We infer human goals and action intents, by tracking human gaze fixation (using

Tobii Pro Nano eye tracking device) and robot states (i.e., distances to each object and container in

the workspace, the opening and closing of the gripper). When the end-effector is close enough to

the target object to pick or location to place (within 50mm for our task), the robot will determine the

appropriate autonomous action and execute it after the operator triggers a button on the hand-held

controller to approve autonomous action. We trivialize object detection by pre-defining the object

and container locations. To correct the errors, humans can press the menu button on the controller to

undo a completed action or switch tomanual control mode to control the robot’s motions directly.

Supervisory Control. In the supervisory control mode, the robot performs all aspects of the task

which autonomously picks and places the object following a pre-planned sequence based on the

general procedure to perform this type of task. The human operator who supervised the robot

can confirm the robot’s selected actions if they are appropriate, or control the robot’s actions and

motions to correct any errors.
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5.4 Unreliability of Robot Autonomy

We manipulated the reliability of the robot autonomy by introducing the errors at the action- and

motion-level that are common to manipulation tasks (see Figure 5.3 (Bottom)). When a sequence

error happens, robot autonomy may pick up a wrong object (given the pre-defined object manip-

ulation sequence) or place it into a container that does not match its color. When a grasp/place

error happens, robot autonomy may miss to grasp an object or place the object with an offset from

the desired location. We also manipulated the frequency of errors that occur at least once and up to

three in six actions (three actions for both grasping and placing).

5.5 User Study

We conduct a user study to evaluate: 1) When the autonomy is reliable, the supervisory control

interface will have the best task performance, the lowest workload, and the highest user preference,

even with a loss of engagement; 2)When the robot autonomy is unreliable, a higher error frequency

will lead to worse performance and higher workload, and increases the operator’s preference and

usage of a lower level autonomy; 3) When the robot autonomy is unreliable, users will not lose the

preference for using the robot autonomy if the effort to correct the error is lower.

Participants and Tasks — We conducted two user studies (with the same 13 participants, 10

males, 3 females, age = 26±4) to investigate the effectiveness of the two proposed HRC paradigms

and evaluate the influence of different types and frequencies of the error on the tasks and human

operators. The experimental protocol was approved by WPI’s Institutional Review Board (IRB-

21-0004). As shown in Figure 5.3 (Top), participants were required to perform a general-purpose

multi-object manipulation task to collect objects and place them in the correspondingly colored box

in the sequence of green-yellow-red (User Study I) and red-green-yellow (User Study II). Note that
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Target sorting boxes
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R
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A6

A1

A2

A3

A4

User Study I User Study II

Sequence Error Grasp/Place Error

Figure 5.3: (Top) Task and action sequence in each user studies; (Bottom) Sequence and grasp/place
errors.

each object in the workspace requires 2 actions: reach-and-grasp (i.e., A1, A3, A5) and move-to-

place (i.e., A2, A4, A6).

Experimental Procedure—Before the user studies, the experimenter explained and demonstrated

how to control a robot manipulator using the motion tracking controller and how to trigger robot

autonomy. The participants practiced single object pick-and-place with manual, shared, and su-

pervisory control for maximally 10 minutes. The participants were then asked to look at a blank

screen for 30 seconds and had their pupil diameters recorded for the calibration required to esti-
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mate their cognitive workload. After User Study I and II, the participants answered generic surveys

(the NASA-TLX and System Usability Scale) and reported their preferred control interfaces via a

customized questionnaire.

User Study I. In the first user study, participants performed a multi-object sorting task, in which

they controlled the remote robot manipulator to grasp and place the objects in the box following the

green-yellow-red color sequence. The order of the interfaces was randomized of manual, shared,

and supervisory control. Note that the autonomy in this user study is reliable without errors. The

participants performed a total of 6 trials (3 interfaces × 2 repetitions). This user study aims to

investigate the effectiveness of the two HRC paradigms (shared and supervisory control) and build

up a sense of how robot autonomy influences the task.

1 Error 3 Errors0 Error
M Shared S

2 Errors
Shared Supervisory Shared Supervisory Shared Supervisory

User Study I User Study II

Figure 5.4: Experimental conditions for User Study I and II. The circles and squares represent the
reach-to-grasp actions and the move-to-place actions respectively. Yellow (Red) highlights denote
the sequence (grasp/place) errors, which may occur 1 to 3 times per trial.

User Study II. We further manipulated the reliability of robot autonomy by varying the type and

frequency of the errors and evaluated their influence on the tasks and human operators. Partici-

pants performed the same multi-object sorting task in a red-green-yellow color sequence by using
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the randomized order of the shared and supervisory control. Shown in Figure 5.4, we implemented

at least one and up to three errors in 6 actions for both the sequence (yellow marks) and grasp/place

type errors (red marks). The participants are allowed to correct the errors only before the confir-

mation of the grasping and placing action. If the participant grasped the wrong object and failed to

correct a sequence error, the subsequent placing box should be the same color as this object, and

the new color sequence would be reassigned based on the priority of the red-green-yellow sequence

after placing the object. The participants performed a total of 12 trials (2 interfaces× 3 frequencies

of the error × 2 types of the error).

Evaluation Metrics — In both user studies, we measured the task performance using task com-

pletion time and the length of the trajectory traveled by the robot end-effector (which indicates the

motion efficiency). We measured the users’ utilization in the robot autonomy objectively using

how many of the tasks the participants completed with autonomy and how many times the partic-

ipants switched from autonomy to manual control, assuming fewer human interventions indicated

more trust.

We also analyzed how participants’ behaviors change due to unreliable robot autonomy to es-

timate their levels of engagement in visual perception and actions to control robots. Shown in

Figure 5.5 (Left), we tracked human eye movements using Tobii Pro Nano and calculated the per-

centage of the task for which the gaze fixation was in the area of interest (i.e., targets and picture-

in-picture) to estimate visual engagement. To estimate the action engagement (level of activity),

we tracked the positions of the two handheld controllers and 6 body trackers (Vive Tracker 3.0)

attached to the operator’s upper arms, forearms, chest and waist to measure the shoulder and el-

bow joint angles (namely, shoulder abduction θSA on the frontal plane, shoulder flexion θSF on

the sagittal plane and elbow flexion θEF ) by inner product formula. Our prior work [18] shows

that: the muscle efforts of the anterior, lateral deltoid, and bicep muscle groups, caused by shoul-

der flexion, abduction, and elbow flexion, contributes most to the physical workload when human
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controls tele-manipulation using their arm and hand motions. Figure 5.5 (Right) shows the gesture

demonstrations and the threshold we defined for the low level of activity given the motion range

of each joint angle (0◦ < θSA < 120◦, 0◦ < θSF < 150◦, 0◦ < θEF < 150◦). The feedback from

the users indicated that humans tend to have more relaxed arm postures and are less ready for robot

control in such arm postures.

Shoulder 

Abduction
< 60° < 60°

Shoulder

Flexion
< 75° < 75°

Elbow

Flexion
< 90° ≥ 90°

Right Side View

Visual Engagement Action Engagement (Level of Activity)

Figure 5.5: Visual engagement and level of activity estimation.

We estimate the physical workload (i.e., EMG-based muscle efforts) based on human mo-

tions mentioned in Chapter 4. Similarly, we also estimated the cognitive workload caused by

stress (Cstr) and error complexity (Cerr) from the operator’s pupil diameter, gaze fixation, and

movements. We tracked variation in the operator’s pupil diameter and estimated the cognitive

workload caused by stress as the difference between average pupil diameter during a task (Dtsk)

and the operator’s calibrated pupil diameter (Dcal) calculated before the task’s start. Pupil diam-

eter is expected to increase with the increase in stress [396]. This result was normalized with

respect to the maximum cognitive workload across all the trials for that subject, such that Cstr =

(Dtsk −Dcal)/ max
p=p1,...,pn

(Dtsk −Dcal). The cognitive workload caused by error complexity (Cerr)

was computed as the ratio between the average distance in pixels of the operator’s gaze fixation

motion (Stsk) and the maximum distance of fixation motion across all the trials for the participant
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(Smax). Thus, the error complexity can be calculated as Cerr = Stsk/Smax. Complex errors are

expected to result in greater gaze motion distances as they are assumed to use other visual cues to

compensate. We also calculate the overall workload (Ctask) of the entire task as the average of the

workloads caused by stress (Cstr) and error complexity (Cerr), assuming their equal contributions.

For each user study, we collected the subjective feedback from the participants using a NASA-

TLX questionnaire on a scale from 1 to 20 and the System Usability Scale (SUS) survey on a

scale of 0 to 100. The NASA-TLX score is calculated as the overall workload by weighting six

sub-scales (mental demand=5, physical demand=4, temporal demand=0, performance=2, effort=3,

frustration=1). The weighting coefficients were generated by choosing from a series of pairs of

rating scale factors that were deemed to be important based on the official instructions. Participants

also answered our customized questionnaire on the preferred interfaces considering different factors

(i.e., reliability of robot autonomy, frequency, and type of error) at the end of the user study.

For all the comparisons, we analyzed data from all evaluation metrics using one-way repeated-

measures analysis variance (ANOVA), including HRC paradigms for user study I, and error fre-

quency and type for user study II, as a within-participants variable. All pairwise comparisons used

Holm-Bonferroni correction to control for Type I error in multiple comparisons.

5.6 Impacts of Unreliable Autonomy

Effectiveness of HRC Paradigms — Figure 5.6 compares the performance (completion time and

trajectory), workload (physical and cognitive), engagement (visual and action), and subjective feed-

back (NASA-TLX and SUS) of the manual, reliable shared, and supervisory control. The super-

visory control outperformed both shared and manual control with a significantly (p < .05) faster

task completion time, shorter traveled trajectory, lower physical, cognitive, and subjective overall

workload, and higher system usability score. The supervisory control has significantly (p < .05)
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lowest percentage of engagement than shared and manual control which implied the participants

prefer the high level of robot autonomy if guaranteed reliability. The preference results (Figure 5.9)

also supported this observation that 12 out of 13 participants rated the supervisory control as the

most preferred interface.
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Figure 5.6: User study I: comparison of manual, shared and supervisory control with reliable au-
tonomy.

Impacts of Error Frequency — Figure 5.7 indicates significantly (p < .05) longer completion

time, traveled trajectory, and higher physical workload with the 3 sequence errors condition for

both shared and supervisory control and 3 grasp/place errors condition for supervisory control.

The black and green lines indicate significant differences between different error frequencies and

types of errors, respectively. We found no significant difference in cognitive workload across

the different frequency of errors for both shared and supervisory control. In Figure 5.9, 12 out

of 13 participants reported they preferred the supervisory control if errors occurred occasionally.

However, when errors happened frequently, 5/13 participants prefer manual control and 5/13 par-

ticipants prefer supervisory control, which indicates that some people still try to use a high level

of autonomy even with frequent errors. We further analyzed the correlation between the usage of

robot autonomy and manual intervention (Figure 5.8). We noticed that participants tend to let robot

autonomy perform most of the actions (5-6 out of 6 actions) and only switch to manual control (1-3

depending on the frequency of the error) to correct the error if necessary while using supervisory

control. The correlation for shared control in fewer errors condition is similar to supervisory con-
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trol. This observation confirms that the participants might still utilize the high levels of autonomy

for reducing operational effort even with frequent errors. However, certain participants tended to

give up on the usage of autonomy (use autonomy for 1-2 out of 6 actions) and manually completed

the task if errors were frequent. To sum up, we found that the lower error frequency leads to better

performance, lower workload, higher preference and usage in high levels of autonomy; however,

the user’s preference and usage in the lower level of autonomy does not necessarily increase with

the error frequency. This might be because operators tend to be more relaxed (minimal workload

and engagement) if the tasks are not time sensitive or not extremely unreliable. As the partici-

pants commented: ”...would like to use supervisory control to mitigate the control effort unless the

success rate is less than 20 percent” and ”...the supervisory control or higher levels of autonomy

interface will be preferred so that I can focus on other duties no matter how many mistakes the

robot might cause.”.
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Figure 5.7: User study II: comparison of task completion time, end-effector trajectory, the physical
and cognitive workload for shared and supervisory control with different error frequencies and
types.

Impacts of Error Types —We also compared the impacts of error types across all the error fre-

quencies for both shared and supervisory control. Shown in Figure 5.7, the sequence error results

in a significantly (p < .05) longer traveled trajectory and higher physical workload for both shared

and supervisory control in most of the error frequencies which aligned with our assumption that the

effort to correct sequence errors is higher than grasp/place errors. The subjective feedback (Fig-
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Figure 5.8: User study II: robot autonomy andmanual intervention. Marker size indicates the group
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ure 5.9) also indicated that 12/13 participants have a higher preference in the usage of robot auton-

omy (shared and supervisory control) if the error is the grasp/place error instead of the sequence

error because it takes less effort to correct. This imply users’ preference for usage of autonomy

could be better retained if the effort for error correction is lower.
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5.7 Summary and Outlook

Effective HRC for Unstructured Remote Manipulation — The work in this chapter compared

twoHRCparadigms (i.e., shared vs supervisory control) that provide different levels of autonomy to

assist humans to control unstructured remote robotic manipulation tasks. The supervisory control

paradigm provides a higher level of assistive autonomy to plan and execute the entire task, but

allows humans to use freeform reaching and moving motions to re-select the target location and

objects during the task, and the action to apply. The shared control paradigm provides a lower level

of assistive autonomy to perform the human-intended precise manipulation actions which tend to be

difficult for human control, while the human operators use their hand pose to control the freeform

gross manipulation. Our user studies discovered new knowledge about the effectiveness of HRC

paradigms for unstructured remote manipulation: while the supervisory control paradigm with a

higher level of assistive autonomy outperformed the shared for all the measures, some participants

still had a similar rating for the supervisory and shared control, because they felt more engaged

when using the shared control making it easier to detect and respond to robot errors. We also found

the intent inference based multi-modal inputs (human gaze, task and robot states) are simple and

effective, and can be applied to various remote robot control and supervision.

While our user studies compared two generalizable shared and supervisory control paradigms,

we are aware of the various levels of robot autonomy and human-robot collaboration paradigms

(see the review in [63]) to be examined in future work. The levels of assistive autonomy may

be adjustable or even adaptive, which implies the dynamic role arbitration in the human-robot

collaboration [285]. Our user studies are also limited because most participants are experienced

video game players. A further study with users of diverse backgrounds, ages, gaming, and VR

interfaces is necessary for a holistic evaluation of the impacts of unreliable autonomy.

Influences of Unreliable Assistive Autonomys — In this chapter, we manipulated the error type
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and frequency and evaluate the impacts of unreliable autonomy on performance, workload, and user

preference. We found that in general, more frequent and severe errors havemore significant impacts

on task performance, human workload, and the operator’s preference to use autonomy (which may

imply the user’s trust). Particularly, we noticed that humans still prefer to use unreliable autonomy

if the errors are easy to correct, which implies that an effective mechanism for error recovery may

significantly improve the resilience and usability of robot autonomy. We also noticed that compared

to the shared control, supervisory control has significantly higher (p < .05) task performance

and physical workload but comparable cognitive workload. Because the robot control in our task

heavily relied on remote camera visual feedback, it is likely that a more unreliable robot autonomy

has more adverse impacts on the cognitive workload (to track the task more carefully and detect

the errors) than the physical workload (to correct the errors).

Besides error types and frequency, we noticed other factors that may influence the users’ per-

ception of robot autonomy, and preference to use a higher level of autonomy. Our post-study survey

shows that the participants always choose to use the supervisory control (with a higher level of as-

sistive autonomy) when it is reliable, but only occasionally if the autonomy is unreliable. However,

we also found most participants (9 out of 13) would still prefer using a higher level of robot auton-

omy if the errors happened at a later stage of the task, which implies the perception of the robot

autonomy depend not only on the frequency and types of errors but also when the errors are likely

to happen. Moreover, some participants (3 out of 13) indicated they preferred not using a higher

level of robot autonomy since it is tedious to switch to a lower level of autonomy when they have

to correct the error. Our future work will address the limitation of this chapter by examining the

influence of these additional factors on human perception and trust in robot autonomy. Because

trust is a complex construct that needs iterative establishment over time, we will choose objective

measurements to assess trust. Moreover, we will refer to the related work that summarizes the

attributes of robot autonomy (see the review in [426]), consider a more systematic approach to
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manipulate the errors, and consider errors caused by unreliable robot perception, decision-making,

and action.

Estimation of Human Workload and Engagement — This chapter presented a novel approach

to achieve the objective and accurate estimation of physical workload, cognitive workload, and

engagement based on human gaze and motion tracking. Our proposed approach can be used to

assess the usability and comfort of a wide range of physical human-robot interactions and interfaces

and has the potential to be converted from offline to online estimation to enable shared autonomy

to adapt to the human workload.

In this chapter, our proposed approach was used to estimate physical and cognitive workload in

the post-study offline evaluation. Thus far, we have developed the predictive model for the online

estimation of physical workload. Our future work will develop the predictive model for the online

estimation of cognitive workload. We also need to validate the effectiveness and accuracy of these

models in future user studies.



Chapter 6

Conclusion

This dissertation delves into a series of interrelated challenges in the realm of remote manipulation

for tele-nursing robots. Specifically, it focuses on (1) developing teleoperation interfaces that adapt

to workload demands, enabling efficient, intuitive, and effortless control, (2) designing remote ma-

nipulation assistance in the form of perception and action augmentation based on natural human

perception-action coordination, and (3) investigating the impact of reliability of teleoperation as-

sistance in workload and user preference.

6.1 Summary of Findings and Main Contributions

In this dissertation, we have presented findings on effective and user-friendly approaches for re-

motely controlling tele-nursing robots. Our research focuses on achieving key design objectives

in terms of efficiency, intuitiveness, and ergonomic usability, which are essential for the seamless

integration of these robots into the workflow of nursing professionals, as well as enhancing the

experience of future end-users. Building upon the insights gained from our research on effective

and effortless control of tele-nursing robots, we have developed novel methods that address the

issue of limited sensory feedback in remote manipulation. Our proposed approach is based on nat-

ural human behaviors and systematic perception and action augmentation. By integrating these

methods, we aim to enhance user adaptivity and establish human-preferred remote manipulation

assistance. Additionally, this dissertation takes a preliminary step toward evaluating the impact

186
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of unreliable robot execution. The developed human-robot interfaces ensure effectiveness and are

generalizable to various remote manipulation systems that may differ in robot platform, control

input, and feedback mechanism.

In Chapter 2, our general evaluation found that: whole-body motion mapping interfaces have

the best task performance and learning efforts among freeform teleoperation interfaces for nursing

robots. However, it may cause non-negligible physical fatigue and prevent users from teleoperating

with the robots for a long time. Our integrated participant interview and survey also identified and

ranked the fatigue-causing factors, including maintaining steady postures for wrist camera controls

and adjusting arm posture for stable object grasping. Our robot autonomy design and specialized

evaluation focused on reducing the physical workload of the interface and improving its ergonomics

of the interface. For the specialized evaluation, we proposed a novel EMG-based muscle effort

index, to provide a more detailed, objective, and accurate physical workload assessment. The

outcomes of the specialized evaluation validated the efficacy of our robot autonomy design, as

well as our proposed framework for interface evaluation and evolution. We believe the proposed

framework, including most of the evaluation metrics, applies to human-robot teaming interfaces

beyond teleoperation. The main contributions of this chapter are:

An Evaluation Framework and Methods — A proposed hierarchical framework that evaluates

a human-robot interface from general to specific characteristics; The specific evaluation focuses

on addressing the limitation of the characteristics of the interface, rather than augmenting the task-

specific robot autonomous functions.

Integrated Design Evaluation and Evolution — Apply the proposed evaluation framework to

the interface design evolution of general-purpose tele-nursing robots. We focus on the skill sets

necessary for freeform teleoperation instead of evaluating a large variety of specific nursing tasks;

We also consider the needs of the primary user population, the nurses.
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In Chapter 3, we aim to transform the design philosophy for tele-robotic interfaces, based

on a deep understanding of the perception-action coupling of cyber-human systems. Among the

many aspects of motion control, the coordination between perception and action is most critical

to tele-nursing task performance. Knowledge about perception-action coupling has been lever-

aged in human-robot interaction to a limited extent and has already yielded effective models and

approaches for predicting human intent [30], optimizing camera motions and viewpoints [31], in-

teractive perception [32], and sensory augmentation of human-robot interfaces for motor skill train-

ing and rehabilitation [33]. While remote robots limit human perception and motion capabilities,

they also provide opportunities for the human motor system to explore. Novel perception-action

coupling skills do not exist in the repertoire of human motor control, yet are critical for robot tele-

operation. Through the robot teleoperation interface, the human and the robot are closely coupled

as an integrated cyber-human system, and novel perception-action coordination needs to be devel-

oped to adapt this system’s new perception and action capabilities. To facilitate this adaptation,

both robot teleoperation interface and assistive autonomy need to be designed based on the human

behavior and preference of perception-action coupling, which has been studied extensively in hu-

man movement science [216, 318], but not at all for cyber-human systems. The research efforts in

this chapter aim to bridge this gap, by proposing a novel experimental paradigm that can simu-

late human natural behavior and preference in the usage of active telepresence. We further conduct

comprehensive user studies with this experimental paradigm to 1) discover the perception-action

coupling of a coupled human-robot system, and 2) reveal its implications to the design of robot tele-

operation interface and assistive autonomy. The key findings of this chapter suggest that the head

should control the camera selected for telepresence, and the shared autonomy camera’s movements

should be simple and predictable for the users, such as translations or rotations. Additionally, this

chapter highlights the importance of integrating vision and haptic feedback in robot teleoperation

interfaces. These insights can be used to improve the design of telepresence systems and enhance

the user experience. The main contribution of this chapter is:
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Novel Experimental Paradigm — The novel experimental paradigm we proposed was designed

to study the perception-action coordination, human adaptation, and preference in the usage of active

telepresence cameras. To eliminate the effort of controlling the robot, the experimental paradigm

provided a simulated telepresence setting with video streams from the cameras attached to the

user’s head, torso, dominant and non-dominant hands as well as a standalone workspace camera

while retaining the humans’ ability to perform object manipulation. These video streams were used

by the participants to stack lightweight plastic cups into a pyramid.

InChapter 4, we first proposed a generalizable sensory augmentation design to assist dexterous

tele-manipulation tasks. The designs well supported the findings in our human factor experiment

that investigated the visual and haptic sensory integration in the usage of active telepresence cam-

eras for general-purpose manipulation. We found out that transparency, performance, and work-

load were improved with the haptic and AR visual cues over the baseline without sensory feedback.

Also, the preference for sensory integration tended to avoid feedback overlap when involving the

different types of secondary tasks. Secondly, we proposed perception and action augmentation on

a representative interface. We used the HTC Vive hand-held controller to control robot motion and

used a desktop monitor to display the remote camera viewpoints and AR visual cues. The robot

could provide autonomous actions (e.g., grasping and placing actions) or switch to constrained mo-

tion control using a trackpad when humans operated the robot end-effector near the target object or

location to place. The implementation can be generalized to the teleoperation system using various

contemporary tele-manipulation control devices (e.g., hand-held, touch-based, wearable), display

(e.g., screen-based and head-mounted visual display). Our comprehensive user study shows that

the effectiveness of and preference for the perception and action augmentation depend on the task

performance objective, the user’s need for assistance, and the types of users. Lastly, we presented

multiple control modes with varying levels of autonomy for a pick-and-place remote robot manipu-

lation task. We also provided several AR features that participants could select to create their ideal
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visual interface for each control mode. Our user study investigated how participants select AR cues

based on the level of robot autonomy. The participants’ priority for AR visual cues shifted from

guiding human motion for robot control to communicating autonomy activation and intention as

the level of autonomy transitioned from direct to supervisory control. With the increasing levels of

autonomy, their preference for AR cues shifted from providing local information to global guidance

for robot control. Additionally, AR cues that served the same purpose as the robot autonomy had

reduced efficacy and was generally not preferred by the participants. Our user study also identified

that the participant’s preference for AR visual cues tended to converge to the recommendation of

experienced users with hands-on experience using the visual interfaces regardless of their initial

selections based on video instructions. The main contributions of this chapter are:

Assist-as-Needed Shared Autonomy— A novel shared autonomy to leverage human capabilities

of freeform control and an assist-as-needed robot autonomy for effective, intuitive, and ergonomic

human-robot collaboration to perform tele-manipulation tasks.

Generalizable Sensory Feedback — A generalizable design of haptic and AR visual cues to pro-

vide the information critical to the precision and performance of the remote manipulation.

Systematic Perception and Action Augmentation— The integration and comparison of different

types of perception and action augmentation to discover new knowledge on optimal human-robot

collaboration for freeform tele-manipulation.

Objective Physical andCognitiveWorkload Estimation—Anovel approach for objective phys-

ical and cognitive workload estimation based on human motion and eye tracking devices.

In Chapter 5, we compared the human-robot shared and supervisory control of the remote

robots for dexterous manipulation and investigated how the reliability of the robot autonomy can

influence the human operator’s performance, workload, and preference for robot assistance. Specif-

ically, we proposed two human-robot collaboration (HRC) paradigms for remote manipulation: (1)
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the shared control paradigm allows humans to control gross manipulation and the robot autonomy

to control the precise manipulation actions, and (2) the supervisory control paradigm allows the

robot autonomy to control both the gross and precise manipulation actions but relies on humans

to detect and correct the manipulation errors. We conducted two user studies: one to compare the

two HRC paradigms and characterize their effectiveness when the assistive autonomy is reliable;

and the other to investigate how the type and frequency of the errors affect the tasks and human

operators in the two HRC paradigms when assistive autonomy is not reliable. Our results show

that: (1) the interface with a higher level of reliable autonomy yields significantly better perfor-

mance, lower workload, and higher user preference but lower engagement, and (2) the frequency

and type of the error have significant impacts on the task performance and human workload but

only partially affects the operator’s preference and usage of autonomy. The main contributions of

this chapter are:

Human Goal Intent Inference — We infer human goals and action intents, by tracking human

gaze fixation (using Tobii Pro Nano eye tracking device) and robot states (i.e., distances to each

object and container in the workspace, the opening and closing of the gripper).

Objective Visual and Action Engagement Monitoring — We tracked human eye movements

and calculated the percentage of the task for which the gaze fixation was in the area of interest (i.e.,

targets and picture-in-picture) to estimate visual engagement. To estimate the action engagement

(level of activity), we tracked the positions of the two handheld controllers and 6 body trackers

(Vive Tracker 3.0) attached to the operator’s upper arms, forearms, chest, and waist to measure the

shoulder and elbow joint angles by inner product formula.
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6.2 Proceeding Work

In this section, we first present a summary of several ongoing research efforts that have resulted

from the collaborative works of the author. The examples mentioned herein are potential areas for

further exploration, building upon the topics covered in this dissertation.

Online Workload Estimation — Chapters 4 and 5 centered on our proposed approaches for esti-

mating physical and cognitive workload in the post-study offline evaluation. Our implementation

could be extended to online prediction through the use of learned predictive models and novel def-

initions of gaze behaviors for real-time physical and cognitive workload estimation. Figure 6.1

depicts the preliminary implementation of online instantaneous and cumulative physical workload

estimation. The approach employs a predictive model of joint angle-EMG and an algorithm that

employs control speed as the threshold to initiate cumulative instant physical workload measure-

ment. This framework captures physical workload during both dynamic and stationary arm mo-

tions. Figure 6.2 highlights three independent aspects of cognitive workload that capture stress,

operational concentration, and user interface complexity.

Low Instant Physical Workload (Slow Accumulation) High Instant Physical Workload (Fast Accumulation)

Figure 6.1: Real-time instantaneous and cumulative physical workload based on human motion
tracking and control speed.

Integrating online workload estimation into the workload-adaptive control interface would en-

hance its capabilities to include workload-based action and perception assistance. This would in-
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Figure 6.2: Real-time cognitive physical workload based on pupil size, gaze fixation, and distribu-
tion. T refer to as time, L as length, and Lprev as all the length from the pre-defined window.

volve utilizing real-time physical workload data and stress levels to activate robot autonomy or

action augmentation, and adjusting the type and degree of perception augmentation in response

to online cognitive workload estimation, such as gaze motion and fixation. This would enable an

assist-as-needed mechanism for advanced remote manipulation assistance.

Intuitive Viewpoints Control — Chapter 3 presented our investigation into human-preferred per-

ception and action coordination, revealing that intuitive control should be applied to the selected

viewpoint. Figure 6.3 showcases the initial implementation of the head-controlled primary view-

point when using a head-mounted display as the visual device and the gaze-controlled primary

viewpoint when using a monitor display as the visual device.

Head-Controlled (Head-Mounted Display) Gazed-Controlled (Monitor Display)

Figure 6.3: Head- and gaze-controlled primary viewpoint for head-mounted and monitor display.



194 Chapter 6. Conclusion

To enhance the usability of screen-based remote manipulation and incorporate a complemen-

tary perspective into the visual interface, various levels of camera autonomy can be applied to

both primary and complementary viewpoints to enable intuitive camera control. The framework

of different levels of camera autonomy, ranging from direct control to full automation for primary

viewpoint control, is illustrated in Figure 6.4. Apart from direct control using a trackpad and gaze,

the shared autonomy paradigm can detect the robot’s status (end-effector location) and map it to

camera tilt and pan control. Furthermore, the full automation paradigm can adjust the camera pose

to focus on the target object based on the task state. This approach offers users greater flexibility

and control, allowing them to manipulate the camera with ease and precision.

Shared Autonomy Full AutomationDirect Control

Trackpad Gaze

Figure 6.4: Primary viewpoint control spectrum.

6.3 Limitations and Future Directions

Previously, we discussed the research directions that we are currently exploring. In the following

context, we outline additional potential avenues for future research that we have yet to pursue but

we believe are highly pertinent to the results presented in this dissertation.

Motion Tracking Interface — In this dissertation, we employed two different approaches to con-

trol remote manipulation. Firstly, we used the Vicon system to generate a complete human skeleton,

which served as the baseline for manipulation, perception, and navigation through the motion map-

ping algorithm discussed in Chapter 2. Secondly, we leveraged the portable HTC Vive system to

control the KINOVE Gen3 robot through a handheld controller in Chapter 4 and 5. This alterna-
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tive approach was implemented to address the relative complexity associated with the preparation

requirements of the Vicon system. However, the use of the handheld controller came at the cost

of sacrificing the advantages of tracking natural human posture. Tracking natural human posture

has the potential to enable joint space control for the robotic arm, generating human-like postures

that can avoid unacceptable motion and even robot singularity. An intriguing avenue for future

research would be to explore joint space control by integrating motion trackers, such as IMUs, to

create a human motion model as an extension of the motion tracking interface via the HTC Vive

handheld controller. This could potentially enhance the naturalness of the robot’s movements and

improve its ability to mimic human-like postures.

Tele-nursing Robot Control — Controlling a tele-nursing robot demands the proper coordination

of manipulation, perception, and navigation. In Chapter 2, we introduced a whole-body motion

mapping interface for teleoperating the tele-nursing robot. While we subsequently advanced the

motion tracking interface to a handheld controller in Chapter 4, we have yet to test this new interface

for controlling the tele-nursing robot in its entirety. Instead, our focus has been primarily on the

robot manipulator. An intuitive extension of the HTC Vive handheld controller interface would

be to leverage the pose and buttons of two controllers for coordinating bimanual manipulation,

navigation, active telepresence, and assistive autonomy activation. This could potentially enhance

the robot’s capability to perform complex tasks and improve the telepresence experience.

Haptic Feedback — In this dissertation, we extensively investigated and utilized perception aug-

mentation, such as augmented reality visual cues. This technology provides rich information and

enables transparent communication between human users and robot platforms, ultimately enhanc-

ing the telepresence experience. Chapter 4 showcased the benefits of using haptic feedback to aid

in remote manipulation. However, the implementation of this technology was limited by hardware

constraints. The device we used was only capable of conveying a single-channel vibration that

could vary in magnitude and frequency, thus restricting the range of feedback that could be pro-
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vided to the operator. Integrating more sophisticated haptic devices (e.g., multiple tactile sensors or

detailed haptic gloves) could provide a potential solution to the limitations of our previous imple-

mentation. By comparing the effectiveness of these devices with the AR interfaces proposed in this

dissertation, we could potentially identify suitable methods for integrating multi-sensory feedback.

General-purposeManipulation Task—Remote manipulation encompasses a wide range of tasks

with varying levels of difficulty, which can be affected by multiple factors such as the workspace

(e.g. cluttered or simple, small or large), robot capability (e.g. gripper setup), object properties (e.g.

solid, deformable, fragile), and objectives (e.g. efficiency, precision). Throughout the dissertation,

we conducted several user studies that utilized different types of remote manipulation tasks. These

included nursing-related tasks in Chapter 2, high-complexity dexterous tasks in Chapter 3, widely

used single object pick-and-place tasks in Chapter 4, and multi-object sorting tasks in Chapter 5.

However, there are many more manipulation tasks that could be considered, and it is impractical to

test them all to ensure generalizability. One possible approach is to identify a set of sub-tasks that

could generate the majority of manipulation tasks by combining them in a certain sequence.

User Groups — Involving target or end-users in design leads to wider acceptance, better satisfac-

tion, and improved usability. User input helps identify issues and suggest unconsidered improve-

ments. To this end, we recruited nursing professionals as participants in Chapters 2 and 4 to gather

their feedback and conducted comprehensive post-study discussions and interviews with them.

Throughout our user studies, we discovered that there are many human factors that can impact

performance, preference, and usability. For example, participants who had prior gaming experi-

ence demonstrated better situational awareness when controlling the remote perception, resulting

in outstanding performance. To ensure a comprehensive evaluation of the remote manipulation

system, it is necessary to conduct further studies with users of diverse backgrounds, ages, gaming

experiences, and VR experiences. This can help identify any potential biases or limitations in the

current system and ensure that it is accessible and usable for a wider range of users.
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