
Passive Accousitc Detecion System

A Major Qualifying Project Report:

 submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Boris Tolpin

Date: April 26, 2007

Professor Susan Jarvis, Project Advisor

1

Abstract

This report outlines a passive acoustic detection system (P.A.D.S.). This system is able to
detect large objects (i.e. airplanes, tanks, motorcycles and cars) at various distances
within its hearing radius despite the visual conditions. These detection signals are
transmitted wirelessly to a display unit, which can potentially be located out of sight of
the sensor. The P.A.D.S. is composed of two main units. The first of these units is the
actual acoustic detection system, which is composed of a microphone, a microprocessor
and a wireless transmitter. The second of these units is composed of a receiver unit, a
microprocessor and three LED’s which alert the user as to the level of detection reached,
ranging from no detection to definite detection.

2

TABLE OF CONTENTS

I. Introduction..5
1. Basic Design of the P.A.D.S..5
2. Responsibilities of the PICs...9
3. Testing of the Product..13
4. Parts to be Used...17
 II. Noise Level Readings & Microphones...19
1. Describing noise levels..19
2. Microphone Specifications..23
1.Microphone circuit..24
2.Microphone circuit..27
III. A/D converter...28
1. Describing The Analog To Digital Converter...28
2. Programming the Analog to Digital Converter..30
3. Testing The Analog To Digital Converter...36
IV. Setting A Threshold...38
V. Finding The Average..40
VI. Comparing to the Threshold..42
VII. Orange LED...44
VIII. Red LED...45
IX. Green LED...46
X. New_Val_Red...47
XI. Transmitter...48
XII. Catcher..49
XIII. Conclusion..50
Appendix A:...52
 ...55
Appendix B:...56
Appendix C:...57

3

Table of Figures

Figure 1: Top Level Design of the Transmitter Unit ...……………………………….…5
Figure 2: Top level Design of the Receiver Unit ...………………………………….…..7
Figure 3: Mathematical form of standing noise…………………………………….……8
Figure 4: PIC functions from inside the transmitter………………………………….….10
Figure 5: Diagram of Display……………………………………………………………11
Figure 6: Picture of the wireless technology…………………………………………….17
Figure 7: This figure shows mathematically that the DB equation is exponential………18
Figure 8: Mathematical proof that the DB equation in terms of
voltage is equal to the DB equation in terms of power…………………………………..19
Figure 9: DB levels of certain objects……………………………………………………21
Figure 10: The circuit used to peak detect and amplify………………………………….25
Figure 11: The result of the Peak detection and amplification…………………………..25
Figure 12: Assembly code that sets the second bit of the register ADCON0……………28
Figure 13: Process for finding the required acquisition time, along with notes from the

Datasheet……………………………………………………………………..30
Figure 14: Code used for waiting required acquisition delay……………………………31
Figure 15: Chart from datasheet describing how to select the reference voltages……….32
Figure 16: Table from datasheet showing how to select values for ADCS<2:0>…….....33
Figure 17: An illustration of how shifting a binary number to the left affects the

 number………………………………………………………..………...37
Figure 18: Code to set theThreshold……………………………………………………..37
Figure 19: Averaging formula and example average calculations……………………….38
Figure 20: Diagram describing Decision making in PIC………………………………...41
Figure 21: Tool that allows the user to manipulate variables during simulation……...…49

4

I. Introduction

1. Basic Design of the P.A.D.S.

The Passive Acoustic Detection System (PADS) has been designed using a

microphone, two microprocessors, a wireless transmitter and receiver unit and two LED

displays. The system is made of two separate modules. One of these modules detects

sound levels and sends information to the other module, which receives the signal and

turns on the proper LED’s. The first of these two modules, the transmitter module, is the

more complicated of the two to design and program. Figure one shows a top-level design

of this transmitter module. The task of the transmitter on power up is to determine an

ambient noise reading in the area in which it is operating. This is just one of the many

functions that take place inside of the microprocessor. The rest of these functions will be

discussed later.

5

Microprocessor

Transmitter

Microphone

Wireless
Signal

Figure 1: Top level design of the Transmitter unit

The microprocessor that is used in this design is microchip’s PIC16F877a. The

reason that this is used is that it has a sufficient amount of memory (8K word x 14 bits), it

can be programmed in the programmer located inside of the Atwater Kent building

(where the majority of the programming has been done), and that it has a large number of

input/output pins (30). The programming of the PIC has been the most difficult, as well

as the most time consuming aspect of the entire project. The PIC itself is responsible for

6

all of the “thinking” and “decision making” in the system. The rest of the components in

the project all either receive data from the PIC or are intended to give data to the PIC.

Another of the components in the “pitcher unit” is the microphone, which gathers

all of the noise readings in the area. These readings are then sent to an A/D converter so

that they can be made into digital readings so that the PIC can compare them to the

ambient noise levels. This A/D converter is an internal component of the 16F877a device.

The PIC then must decide which LED it is that must be activated and send this

information to the input pin of the transmitter, which wirelessly sends the data to the

receiver unit. This will only work if the transmitter is properly configured, which is also

the responsibility of the microprocessor.

The receiver unit of the device is considerably more basic then the transmitter

unit. The job of the receiver module is to receive the data, send it to another PIC whose

purpose is to turn on the proper LED. Figure 2 is a top-level block design of the receiver

unit.

7

Wireless
Signal

Reciever

Control Circuit

Display

Figure 2: Top level design of the receiver unit

8

2. Responsibilities of the PICs

As previously mentioned the programming of the PIC inside of the transmitter has

been the most difficult and time-consuming portion of the entire project. The reason that

this is so complex is that the PIC is responsible for multiple processes in the overall

system. As mentioned previously the PIC is initially responsible for finding the ambient

noise level. This is done by first receiving a reading from the microphone and storing its

numerical value to a variable when the P.A.D.S is initially turned on. Then when the next

reading is received it will be offset and added to an offset version of the previous

average. This is a concept called exponential averaging. This process will repeat itself

until at least 255 readings have been averaged. One step in this process is shown

mathematically in figure 3. This step is repeated for all 255 readings that are received.

The descriptions of how these offsets are determined and more detail on this process is

described in a later section.

Figure 3: Mathematical form for ambient noise level where x = the new noise reading

and Y = the previously stored noise reading.

Once the ambient noise level is found we can begin searching for noise readings

above this reference level. The new noise level that we are now checking our readings

against is called the threshold level. The PIC must continue to receive signals from the

microphone block and anytime that a reading is above this threshold level the PIC must

9

send a message to the transmitter to send out a signal to turn on the orange LED, which

represents some activity. Also when reading above the threshold is detected a counter is

decremented. This is done until the counter reaches zero, and only then can the red LED

be activated. This is an error checking mechanism, if the noise lasts for a specified

amount of time we know that there has been a definite detection and a second signal must

be sent out signaling that it is now time to turn on the red LED. The PIC then continues to

sample until the noise level returns to normal, at which time the PIC sends out a signal to

turn on the green LED.

Every time that a reading below the threshold level is recorded the PIC takes the

reading and uses it to get a better estimate of the ambient level. This is how we ensure the

most accurate and the most current ambient level is being used. Figure 4 shows the

functions that will constantly go on inside of the control circuit, (the PIC). One additional

responsibility of the PIC that is not shown in the figure is the smoothing of the results.

The microphone, through the A/D converter will be sending more readings per second

then are necessary, as a result only a certain number of readings per second will be used

in any of the calculations. This will mean that it will take a specified amount of time to

find the standing noise level after the P.A.D.S. is turned on, and during this time the

device will obviously not output accurate data. Also it is important to note that we can

not sample at just any rate. There must be at least twice the number of readings as the

period of the signal that we are sampling in order to get an accurate result. Sampling at

twice speed of the period of a signal is called sampling at the Nyquist rate. If we do not

sample at this rate then it is possible that the largest point in a given signal will not be

sampled and the results we get will be inaccurate.

10

 Figure 4: PIC functions from inside the transmitter

The microprocessor located inside of the receiver has considerably less to do in

the system. Its job is to receive the signal from the receiver and determine what to do

with it. For example, if the signal representing an orange light is received then the PIC

will put the specified input pin to logic high. This will automatically turn the green LED

off and turn the orange LED on. If for example the next received signal is to turn the red

LED on then the PIC will turn the orange LED off and turn the red LED on. Figure 6

shows a diagram of what the final display looks like.

11

Figure 5: Diagram of Display

12

3. Testing of the Product

The final product, the smaller sub-blocks, and the individual components all have

to be tested to make sure that the system is built correctly. If for example a sub-block is

not acting as is intended, it is essential to know that the reason for this error is not a faulty

part. Likewise, if the final product is not working correctly it is essential that all of the

sub-blocks have been tested so that the entire design does not have to be reanalyzed. In

order to optimize time during the construction and programming of the P.A.D.S. system,

the test procedures have been developed prior to the actual construction of the device.

The most basic components to test are the actual parts. A basic test program can

be flashed on to the PIC to make sure that the PIC is functional. This program can be as

basic as setting all of the registers as output registers and then outputting a high byte.

Either an oscilloscope or a function analyzer can be used to make sure that the proper

data is being outputted. This test shows us that the PIC programmer that was used is

working correctly, and that neither the PIC pins nor the internal circuitry has been

damaged in transit. Since both the PIC in the pitcher and the PIC in the catcher are the

same model both of them can be given the same test program and tested in the same

manner.

The LED display was the easiest component to test. The actual LED’s can be

tested by placing them onto a test circuit with a resistor and a power source and seeing if

they light up.

To test the microphone a noise sample has been recorded of a car driving down a

quiet street. This sample has been later played for the small microphone, which is

13

attached to an oscilloscope. The curve from the oscilloscope is compared to the curve that

is designed in Matlab of the original noise sample. These curves are virtually identical to

one another so it is safe to say that the microphone is operational. These curves are not

100% identical because the microphone is recording different background noise then

computer. In addition, the computer is recording the signal directly from the car while the

smaller microphone is recording the signal of the car from speakers, which do not

produce as clear a sound. This accounts for some of the differences between the two

recordings, however that being said they are still very similar to one another.

The wireless transceiver can only be tested after the PIC has been tested. After

both the transceiver and PIC are wired together, a test message is sent from the PIC to the

transmitter for transmission. This test message is one byte long and alternates between

high and low bits. An oscilloscope probe is attached to the transmitting pin of the

transmitter. The signal being sent should be visible and should be 8 bits in duration,

alternating between low and high. A second oscilloscope probe is attached to the pin on

the PIC that receives the signal from receiver. This oscilloscope reading should be the

same as the message that was sent. This test has not only be done when the catcher and

the pitcher are right next to each other but also when the two units are on different floors

or are at a distance of at least 400 feet away from one another. The data sheet on the

transceiver specifies that the device should work at a range of 500 feet.

When testing the sub-blocks of the design the block that is the largest is the

programming of the PIC. There are two PICs being used in the design and both must

work correctly. Since it takes time to program the PICs and to place them into the

completed circuit I have used the microchip simulation tools. This has sped up the

14

process of testing the PIC. In order to make sure that the ambient noise level is being

found correctly the sample that was recorded of the car going was used. Since the PIC has

an internal A/D converter, digital noise readings can be found from the sample. Once a

final ambient reading was detected, it was trivial to compare it to the ambient reading that

can be deduced from a limited number of samples by hand or graphically. This will be

explained further in a later section.

In order to make sure that the PIC is taking the current noise readings and

interpreting it correctly, the same recording that has been used to test both the

microphone and the ambient noise level was used. This recording should start in the

“green” area and as the car approaches should jump to the “orange” area and then after

the noise has been present for approximately 2 seconds should jump to the “red” area. As

the car gets further away from the microphone, the sound should diminish and the alert

level should go directly back to the “green” level. Determining what alert should be

activated and then transmitting this information is the job of the pitcher, however turning

on these lights is the job of the catcher.

Once we know that the data is being received by the receiver, we must make sure

that the PIC is getting the data and that it is interpreting it appropriately. Before we can

make sure that the PIC is getting the proper data, we must first make sure that the PICs

interpretation of the data is accurate. We can do this using the simulation tools. We can

simulate the data being received by placing the proper signals in the registers that in our

actual PIC would be connected to the receiver and making sure that the proper lights are

being turned on. For example if we receive a signal to turn on a “green” LED we should

see in the simulator that the pin that the green LED is attached to is pulled high. We

15

should also be able to see the change in signal if we change the input data to turn on an

Orange LED or a red LED.

The final product test is the most basic of all of the tests. It is extremely similar to

the microphone test. When a car drives past our device on a quiet night, we will be able to

see the display switching from the “green” level, to the “orange” level, and then to the

“red” level and then back to the “Green” level after the car is out of range. This had to be

done with different size cars, which will make different amounts of noise as they drive

past the device. The LED display is placed approximately 400 feet away from the Pitcher

to make sure that the wireless range is as advertised.

16

4. Parts to be Used

The PICs that are used are the PIC16F877a, produced by microchip. Microchip

offers free samples of there products, as well as free shipping and handling. The wireless

transmitter and receiver pair that can be interfaced with the microprocessors can be found

at sparkfun.com. This product is numbered RF-KLPA-315, and it costs approximately

$15.00. At least three sets of transmitter/Receiver packages were ordered as they are

extremely easy to damage. The range of this product according to its data sheet is 500

feet. This provides an adequate distance for anyone who will be using the P.A.D.S. to be

completely out of sight and still be able to monitor the area. The microphone that was

used is made by Knowles acoustics and is sold at Digikey.com. Digi-key offers products

such as the Knowles Acoustics BL-21785, which is an extremely small high sensitivity

microphone. This would be the potential high end of the microphone spectrum and it

costs upwards of $75 placing it well within the specified budget of $150. It would make

an excellent upgrade for the second generation of this device. The microphone that was

used in this prototype however is the 9745APA-1. This is an omni directional

microphone. One of the disadvantages of using this microphone is that it will not put out

much voltage and for this reason there is a considerable amount of analog circuitry that

amplifies the signal to a level that the PIC is better equipped to handle. This analog

circuitry also peak detects the signal so that there is no fear of getting a bad reading. This

will be discussed at length in a later section.

 The particular microphone used for this device costs less then $2.00 and as a

result multiple microphones were purchased. The rest of the parts were purchased in

17

Worcester Polytechnic Institute’s ECE shop. Figure 6 is a picture of the wireless

transmitter and receiver set that was discussed previously. As mentioned, these two parts

are sold together as a set. The quarter gives an accurate approximation of the size of the

product. Since one of the benefits of the P.A.D.S. system is that it is small enough to

conceal easily, having a transceiver set that is this small is a major benefit.

Figure 6: Picture of the wireless technology

18

II. Noise Level Readings & Microphones

1. Describing noise levels

A microphone can represent a constantly changing noise level by outputting a

constantly changing voltage level. Noise levels however are not measured with voltage;

they are measured in decibels (DB). “One decibel is one tenth of a Bel, named for

Alexander Graham Bell.” A decibel describes a ratio between two levels, either a

reference and a voltage level, or a reference and a power level. It is not however a linear

ratio, it is an exponential ratio. This is shown in figure 7. Figure 8 shows that the decibel

equation for both voltage and power are equal.

1 . X Db 10log
P1

PREF

2 . IF 10x P1

PREF

Then

3 .101 10
P1

PREF

When X=1

4 .102 100
P1

PREF

When X= 2

5 .103 1000
P1

PREF

When X=3

Figure 7: This figure shows mathematically that the DB equation is exponential.

19

 Line 1 in figure 7 is the DB equation in terms of power, and X is the numerical

measure of the DB level. P1 is the measured power and PREF is the reference power

that is necessary for determining a DB level. Line 2 simply shows line 1 manipulated

slightly using basic logarithmic rules. By plugging in values for X we can see that the

resulting power ratio goes up by factors of 10. We can also use the equations in lines 3

through 5 to demonstrate that because PREF is set to a specific reference level we would

need to raise Pi (i=1,2,3) by a factor of 10 to raise X by 1.

1 . Db=20log
V1

V REF

2 . Db=10log
P1

PREF

3 . P=
V 2

R

4 .
P1

PREF

V 2

R

V REF
2

R

v
V REF

2

5 . Db=10log
v
V REF

2

6 . Db=2 10log
v
V REF

7 . Db=20 log
v
V REF

8 . Db=20 log
v
V REF

10log
P1

PREF

Figure 8: Mathematical proof that the DB equation in terms of voltage is equal to the

DB equation in terms of power.

20

There are myriad of reasons as to why understanding the concept of DB is important.

On of these reasons is that the data sheet for the microphone being used in the P.A.D.S.

system describes its output (as most microphones do) in DB. The “sensitivity level” of

the microphone is -41 DB with a 3 DB error. What this means will be described in a later

section but for now it is important to understand that a negative DB level simply means

that the voltage output will be less then 1 Volt. We can use similar equations to the ones

in line 2 in figure 7 to show this. We simply see that if 10 41 V
V REF

 and V REF is set

then V must be less then 1 because a base to a negative exponent is simply
1

baseexponent .

21

Figure 9: DB levels of certain objects

It is also important to note that a lot of objects create very specific DB levels. Figure

9 shows some noise producing objects and the DB levels that they produce. While the

table is not exact as all trucks for example make slightly different noises it gives us a

good idea of how much noise 90 DB represents, for example.

22

2. Microphone Specifications

The microphone that I have decided to use for the PADS system is the MD9745APA-

1. The reason that this particular microphone is good for that job that it is intended to do

is that it is omni-directional, it can receive a signal with frequency in the range of 100

HZ– 10 KHZ, and that it has a sensitivity of approximately -41 DB. What this means is

that it can detect changes in noise that are much smaller then 0 DB. Also since the

expected amplitude of the sound waves that I am looking for are approximately 3 KHZ

the range of possible amplitudes is sufficient. The datasheet for this microphone is

located in appendix A. It is also important to note that the microphone is extremely

simple to wire as is shown in the datasheet.

23

1. Microphone circuit

It is important to talk about the circuit that has to be in place between the microphone and

the PIC. The role of this circuit will be to trim the negative part of the microphone signal,

as well as amplify it and peak detect. This is a process called smoothing. Figure 10 shows

the circuit that was used to do smooth the output signal from the microphone, and figure

11 shows the signal after it has been clipped and low pass filtered so that the PIC can read

it accurately. The input signal that was smoothed in this example is a square wave with a

frequency of approximately 3 KHZ and peak to peak amplitude of approximately 10 milli

volts. As is seen in the circuit the gain coming out of the amplifier is 510. This means that

the signal passing through resistor U3 is 510 times larger then the signal passing through

the resistor U2. We can figure out what the gain of the circuit will be by using the game

equation for an operational amplifier. The equation is resistor2 divided by resistor 1. In

this case resistor 2 = 510 K ohms and resistor 1 = 1 K ohm, so the gain is equal to

510K/1K which equals 510.

The diode shown is used to clip the signal so that it can not be negative and then

the low pass filter shown smoothes this signal. The amplitude of the wave in the picture

is approximately 4 volts. The reason that the amplitude is so high is that after the signal

was amplified the amplitude on the original signal was raised to simulate a noise level

being raised. We could also have done all of the work on the signal in software, but it was

decided against.

24

Figure 10: The circuit used to peak detect and amplify a square wave with an amplitude

of approximately 10 microV

25

Figure 11: The result of the Peak detection and amplification and low pass filtering.

26

2. Microphone circuit

The microphone is one of the simpler components to test. The microphone datasheet

describes how the microphone must be wired. The output of the microphone was simply

attached to an oscilloscope and the top of the microphone was scratched to test whether

or not it would respond to the noise. After it passed this test, music was played directly

into the microphone, and again the microphone outputted showed the sound wave. This is

how we can tell that the microphone is working properly.

27

III. A/D converter

1. Describing The Analog To Digital Converter

 All of the processing that is done inside of the microcontroller requires a digital

signal. As a result, an analog to digital (A/D) converter is needed to convert the analog

input signal that the microphone block produces to the digital signal that is needed for all

of the processing and logic. One of the biggest advantages in using the PIC16F877a

microcontroller is that it contains an internal analog to digital converter, and that the

datasheet does an excellent job in explaining exactly how to use it.

According to the datasheet, there are four major “registers” that are allocated to

using the A/D converter. Two of these registers are used in the setup and operation of this

device, and the other two are used as a place to store the output. The A/D convert zero

register (ADCON0) and the A/D convert one register (ADCON1) both contain eight bits

that need to be filled with the appropriate values in order for the A/D converter to operate

as intended. The A/D result high register (ADRESH) and the A/D result low register

(ADRESL) are used internally by the device to store a digital result when the process is

complete. The reason that there are multiple “result registers” is that each register can

only store eight bits and the PIC contains a ten bit A/D converter, which means that it

converts an analog signal to a ten digit binary number. As a result one eight bit register

can not store this output by itself and a second register is needed. One helpful option that

we are provided with is the choice of which way to justify these 10 bits. This means that

28

we can either store the highest eight bits in one register (AHRESH) and the lowest two

bits in the other register (ADRESL), or we can store the lowest eight bits in the register

ADRESL and the highest 2 bits into ADRESH. This is the kind of information that we

must provide to the A/D converter in the ADCON0 and ADCON1 registers. In the

section entitled “Programming the Analog to Digital Converter”, the rest of the

information that we must provide to the A/D converter will also be described, as well as

the manner in which we must provide it.

29

2. Programming the Analog to Digital Converter

 As mentioned earlier, one of the biggest advantages in using the internal A/D

converter of the PIC microcontroller is the ease with which it can be programmed. The

data sheet clearly outlines what each of the bits in the two control registers (the ADCON0

and ADCON1) is responsible for and it is simply a matter of setting these bits

appropriately. Also the A/D converter has high and low voltage references that are

software selectable to some combination of VDD, ground or two other potential inputs

RA2 or RA3. These are also selected, as everything else is, by the ADCON0 and

ADCON1 registers.

In order to perform a conversion the following process must be followed. First the

ADCON0 and ADCON1 registers must be filled appropriately. Then we must delay for

an “Acquisition time”. This is to give the A/D converter time to initialize. At this point

the device should be on but not yet ready to be used as it should not be enabled. We are

specifically warned against both turning on the device and enabling it at the same time in

the data sheet. Our next step after we have implemented our software delay is to enable

the device, which starts the conversion process. We enable the device by setting the

“GO/DONE” bit, which is bit 2 in ADCON0. Since I have used assembly instead of C++

to program the PIC figure 12 shows the assembly language code for setting this bit. The

X’s in the figure are simply holding the place of other numbers which are not important

when setting the GO/DONE bit.

30

Figure 12: Assembly code that sets the second bit of the register ADCON0

Once the “GO/DONE” bit is set the conversion will begin. Once the conversion is

finished the “GO/DONE” bit will automatically be cleared (it will be 0). This is

extremely useful as all we have to do is poll this bit to see if it is 0, and when it is we

know that the conversion is completed and the results of the conversion are now in

ADRESH: ADRESL.

One question that is still unanswered is how long the mandatory acquisition delay

must be, and why an acquisition time is needed in the first place. We can find the answers

to these questions in the PIC16F877a datasheet which tells us that “the charge holding

capacitor (CHOLD) must be allowed to fully charge to the input channel voltage (in our

case 5 volts) level”. The datasheet also provides us with an equation to figure out the

acquisition time delay. It then proceeds to show us how this is solved. This is shown in

figure 13. As we can clearly see a min acquisition time of approximately 20

microseconds must be delayed for. This can be done in software by the code shown in

figure 14.

31

Figure 13: Process for finding the required acquisition time, along with notes from the

Datasheet

Figure 14: Code used for waiting required acquisition delay

The last part of the A/D converter that is left to discuss is how the rest of the

ADCON0 and ADCON1 registers are to be set. For the most part the datasheet does a

good job of describing this. As a result only few of the parameters will be discussed

instead of describing how to set each and every bit. The necessary datasheet pages will

however be attached to this report in appendix A so that it will be easily accessible.

32

Immediately after this in appendix A, the code that runs the A/D converter is shown so

the reader will be able to see which bits were set and which bits were cleared.

One of the more important set of bits to understand how to set is the bits used to

set the reference voltages. The reference voltages that are employed are the VCC and

ground voltages that are already used to power the PIC. In order to do this “1110” must

be placed into the bits entitled PCFG<3:0> in the ADCON1 register. This comes directly

from the chart in figure 15 in the datasheet. The reason that the row with 1110 is the

correct row to use is not only because the reference voltages used are VDD and VSS

(ground), but also because the “AN0” pin on the microcontroller is the pin that the analog

input is connected to.

Figure 15: Chart from datasheet describing how to select the reference voltages.

33

Another important parameter that must be set in software is the clock conversion

time per bit. According to the datasheet “the A/D conversion time per bit is defined as

TAD. The A/D conversion requires a minimum of 12 TAD per 10 bit conversion”. What

this means is that a certain amount of time must be allotted for each bit that must be

converted. The value in TAD is this amount of time. This value will vary depending on the

frequency of the analog signal being examined. Clearly the higher the frequency of the

analog signal the smaller TAD will need to be. There are seven possible values for TAD that

the converter can assign. These values are shown in the leftmost column in figure 16. The

rest of the table (which is displayed in the datasheet) shows how to fill in the values

ADCS<2:0> which represent bits in the registers ADCON0 and ADCON1. Because the

P.A.D.S system will be monitoring large vehicles that are known to produce a sound

wave with a frequency no larger then 5 KHZ, the value 101 will be assigned to

ADCS<2:0>. The rest of the values of ADCON0 and ADCON1 are easily deciphered

from the datasheet and will not be discussed here for that reason. As mentioned earlier

however, the necessary pages of the datasheet are located in appendix A as is the code

that was used for programming and so the reader can easily examine the values that were

used.

34

Figure 16: Table from datasheet showing how to select values for ADCS<2:0>

It is also worth noting that the method described in this section is not the only possible

method for using the internal A/D converter. The device can also be used by setting and

reading certain interrupt flags but since that is not the way in which it was used in the

P.A.D.S system it will not be described in this document.

35

3. Testing The Analog To Digital Converter

 In order to test the A/D converter, that was programmed, a testing circuit was

assembled. The job of this circuit is to prove beyond any reasonable doubt that the A/D

converter is functioning properly. This can be accomplished by simply converting an

analog signal whose digital value is previously known such as 5 volts DC. The digital

signal of 5 Volts DC after conversion should be ‘11111111’.A basic laboratory power

source can be used to provide this input signal.

 The datasheet for the PIC microcontroller writes that the A/D is 10 bits. This means that

there are a total of 210 possible subdivisions that the digital signal can fall into. If we

convert this to a voltage, each subdivision will be represented by
5

210
. 0048 Volts . In

addition, because the microprocessor stores these values as binary numbers each

subdivision will be represented as a 10-bit binary number. Eight of these bits will be

stored in one 8-bit register, and the other two will be stored in another 8-bit register.

Because the volts per subdivision are so small (.0048) and our ability to filter our noise is

limited, it is safe to say that we will not get an exact conversion out of the A/D converter.

For this reason, we cannot trust the lower few bits of our results. Knowing this, only the

highest 8 bits in the ADRESH register were stored and the lowest 2 bits are completely

disregarded, as they are insignificant. Once these 8 bits are found it is possible to use a

‘mov’ command to output these bits using a free I/O register (PORTB).

36

Eight LED’s have connected to the pins that represent PORTB on the PIC. This

way as the voltage coming out of the power supply is adjusted, we can see the different

LED’s changing and can make sure that the A/D converter is functioning properly. When

the power source is set to 5 volts all eight LED’s are lit and we know that the A/D

converter is functioning properly. The A/D converter was also tested by lowering the

input voltage to 2.5 volts and seeing all of the LED’s except for the one in the most

significant bit light up.

37

IV. Setting A Threshold

 After using the A/D converter to convert the analog signal from the microphone to a

digital signal we must decide what to do with this signal. The first step in this process is

to determine if the newly acquired signal tells us that there is a potential vehicle

approaching. In order to do this we must determine how large signal’s amplitude must be

in order for there to be a possible detection based on the previous ambient noise level in

the surrounding area. After careful research and experimentation, and after taking into

account the advice of Professor Jarvis, it was decided to set the threshold at twice the

ambient noise level of the surrounding environment. This means that if the reading out of

the A/D converter for the ambient noise level were approximately 1.5 volts (out of a

possible five) then it would take a reading that produced a level of three volts from the

A/D converter for there to be detection.

The fact that the ambient noise level was simply doubled the, along with the fact

that all of the programming was done in assembly made this an extremely easy segment

of code to write. All that was needed was simply to shift the value of the “stored” value

(ambient noise level) to the left one slot, which in binary multiplies the number by2.

Figure 17 illustrates this concept. Figure 18 shows the code that sets the threshold for the

PADS device. The variable “lights” is where the threshold value is stored. It is also worth

noting that if doubling the stored value gives a result larger then can be attained from the

A/D converter then by default “lights” is set to the highest possible value, which in binary

is 11111111 which is equal to 255 in decimal or FF in hex.

38

Figure 17 is an illustration of how shifting a binary number to the left affects the number

Figure 18: Code to set the Threshold

39

V. Finding The Average

 Finding the ambient noise level is one of the most important functions of the

microcontroller in the pitcher. An exponential average was used to find the ambient level.

The formula that was used for this places seventy-five percent of the weight of the

average onto the stored value, and twenty five percent of the average onto the most

recently converted value from the A/D converter. Figure 19 shows the formula that has

been described along with the inputs used to test the averaging section.

Figure 19: Averaging formula and example average calculations

Using this formula is beneficial for two main reasons. The first is that if the noise

conditions change in the area in which the device is being used, the PADS system will

adjust extremely quickly as the newest results are weighted significantly higher then the

individual older results. In addition, this formula is extremely easy to program. The

reason for this is that in order to divide a binary number by two all we need to do is shift

the digits to the right one place. If we divide a number by 2 then we have 50 percent of

40

the original number. If we divide by 2 again then we can get 25% of the original number.

If we subtract this from the original number then we get 75% of the original number. We

can follow this exact process with the new number to get 25% of the new number. If we

add these two results, we find the new weighted average. The variable results is the new

value out of the A/D converter, and the variable stored is the previous weighted average.

It is important to note that stored starts with an initial value of 65 so that it will take less

repetitions to find a trustworthy ambient noise level. The code for finding the ambient

noise level is located in appendix A.

41

VI. Comparing to the Threshold

 Once we have a threshold set, we now must compare our most current results to it in

order to see if this threshold point has been crossed and it is time to turn on the orange

LED. What makes this difficult however is that there is no compare function in PIC

assembly code. Therefore, the only way to compare two numbers is to subtract one

number we are comparing from the other and see if a carry is required. If no carry is

required then the first number is bigger then the other, and if a carry bit is required then

the other number is bigger then the first. This way we can compare two numbers to see

which one is larger. Knowing this, we simply subtract the newest result from the variable

lights. If “lights” is larger then we know that the threshold has not been crossed and we

use the result to update our ambient noise level. If “lights” is smaller then we go and turn

on the orange LED and we do not update the average as this result does not help us find

the ambient noise level in the area in which the PADS device is being used. Figure 20 is a

diagram of what has just been described.

42

Figure 20: Diagram describing Decision making in PIC

43

VII. Orange LED

The orange LED is turned on immediately after a result from the A/D converter is

larger then the threshold. The previously described “compare” function takes care of

deciding when to turn this orange LED on. Once the orange LED is activated, some way

of keeping track of how long it has been on is needed. The variable Skip_orange was

used for this task. Every time the function Orange has been entered Skip_orange was

decrement, the second least significant bit in port B was set and then a new value was

taken from the A/D converter. Setting Port B to a value represents wireless transmission

in my code. This will be elaborated on further in a later section. Once the value in

Skip_orange has reached zero (it stars at 255) then it is assumed that the orange LED has

been on long enough for there to be a definite detection and we go into the function Red.

44

VIII. Red LED

The red LED section was perhaps the smallest and easiest to code. Skip_orange

was reset to the original value of 255 for the next time that orange is entered, and the

third least significant bit of port B was set. The last step was to simply call a function

called New_Val_Red. This function will be explained in a later section.

45

IX. Green LED
This function simply turns the green LED back on when the compare function

decides that there is no longer a value from the A/D converter that is larger then the

threshold value. It does this by simply setting the least significant bit of port B. This

function also resets the variable Skip_orange just incase it got decremented in the orange

section but the red section was never entered. This can happen if for example if

lightening strikes. The PADS system would register the initial noise and enter the orange

state, but there would be no more noise following the thunder so instead of entering the

red phase it would go back to the green phase.

46

X. New_Val_Red

This function is intended to prevent the program from entering into the compare

function when a red LED has been activated. The reason that we do not want to enter the

compare function is that there are only two possible places that compare can go to. One is

average, which if the result is larger then the threshold we do not want to enter, and the

other is orange. If a red LED is already on then we do not want to enter orange but

instead want to enter the red section. New_Val_Red simply makes sure that the call

compare command is skipped after the new value from the A/D converter is acquired and

instead does its own comparison and either calls the green section or the orange section.

47

XI. Transmitter

The only other segment left to talk about in the pitcher is the transmission

segment. The way that a transmission segment is supposed to work, as described by the

data sheet is that we are first supposed to set the baud rate to the proper value. Then we

are supposed to set the TXSTA and RCSTA based on the descriptions of these registers

provided to us in the data sheet. This description is available in appendix A. Once this is

complete, we are simply supposed to be able to store our desired transmission value into

an 8-bit register called TXREG. Then we should simply be able to delay until we are told

that the transmission is complete. We are told that transmission is complete when bit

TXIF in the PIR1 register is cleared. After doing some research it was discovered that

this is not all actually must be done in order to transmit over 1 wire. There is a set of 1-

wire routines, as they are called that we must also run in order to transmit data. After

countless attempts however, transmission of data from one PIC to the other remains

unsuccessful. Instead, the two units were connected into one for the purposes of testing

the rest of the features of the PADS device. The attempted code for the transmission is

located in Appendix C along with the descriptions of how to set the most important

registers.

48

XII. Catcher

Since the transmitter was not working properly this code was never implemented.

However, if the transmission code had worked properly this code would have been used

to read the transmission and turn on the proper LED. The way in which it worked was

that it simply tested to see if the least significant bit was set, and then if it was, turned on

the proper LED. It did this for all three possible LED’s. The code to show this is located

in Appendix B.

49

XIII. Conclusion

The P.A.D.S. would be of interest to private citizens as well as to any corporation

that uses surveillance equipment such as the military and security companies for

example. One of the main benefits of this device is that it could eventually allow for

considerably fewer people to watch a large perimeter. The first generation of the P.A.D.S.

system however, does not fully have this capability because it transmits using a single RF

frequency. At this point multiple transmitters can not interact with one receiver. This is

only for prototyping purposes. However, the next device in the line could come with a

slightly more complex transceiver package that would allow multiple transmitters.

Other additions that could potentially be added to the PADS II would be the

ability for the user to communicate with the pitcher. A possible button on the catcher

could be added that would allow who ever was using the device the ability to check if the

pitcher was still operational. When this button on the catcher was pressed the pitcher

could blink all of the LED’s for example to show that it was still functional. Another

addition to the PADS II could be an LCD display instead of an LED display so that the

user could have some idea of just how far over the threshold level a detected signal could

be.

Textron makes a device similar to the PADS II system. This device is not

however available for commercial use as it is equipped with a grenade launcher, just in

case someone not only wants to know if a vehicle is present but also wants to remove the

vehicle from the area.

50

After spending a consider amount of time on this project it is fair to say that the

PADS system has a majority of the functions it was intended to have. While the PADS

was intended to have wireless transmission and at this point does not, it is useful in

identifying noise signals that are above the threshold level. A major difference that the

PADS II system would have is that it would be programmed in C code instead of in

assembly, as fewer and fewer people are using assembly in industry. Also C is a

considerably more user friendly language then assembly is. The only thing that made

using assembly bearable was the simulator that was available. This allows the user to set

variables as they please and simulate the desired program step by step. This served as an

excellent way to pin point errors in code, and correct them. Figure 21 shows where the

simulation tool allowed for the manipulation of variables.

Figure 21: Tool that allows the user to manipulate variables during simulation

It is also important to note that the only references that were used for this project were the

datasheets of the actual components, some of parts of these data sheets are attached while

other parts are too long to attach.

51

Appendix A:

Datasheet pages describing how to fill the values of ADCON1 and ADCON0:

52

A/D conversion code:
 recieve_data
; ***************** Configure Device **************************************

CLRW

BCF STATUS, RP1 ; Select bank 1
BSF STATUS, RP0

MOVLW B'00001110' ; (see datasheet for specifics on ADCON1);
MOVWF ADCON1

BCF STATUS, RP1 ; Select bank 1
BCF STATUS, RP0

MOVLW B'01000001' ;1 in LSB signifies the device is on/inactive
MOVWF ADCON0

53

;****************** Required Aquisition Delay *********************************
MOVLW H'5'
MOVWF del

LOOP
NOP
NOP ; 25 micro second

delay
DECFSZ del,1
GOTO LOOP

;******************* Start Conversion **

MOVLW B'01000101'
MOVWF ADCON0

;*******************Poll to see when done ***
LOOP1

NOP
BTFSC ADCON0, 2 ; polling
GOTO LOOP1

MOVLW H'0'
MOVWF SKIP

 ; variable skip is set to 0 so that receiver data is not called again

CLRW
MOVLW B'11111111'
ANDWF ADRESH, 0; ; copy results of ADRESH to W

MOVWF RESULTS ; store results

MOVLW B'00000000' ;0 in least sig bit turns the A/D
converter off

MOVWF ADCON0

return
;***
average

BTFSC SKIP_first_time,4
 ; skip decrement if fifth digit from lsb is 0 (makes sure it runs adequette amount of
times to find avg)

DECF SKIP_first_time,1
; Decrement SKIP_first_time and save result to SKIP_first_time

MOVLW B'11111111'
ANDWF STORED, 0 ; copy results to W
MOVWF STORE_OLD ; copy value of stored to store_old

BCF STATUS, C ; Clear carry flag
RRF STORE_OLD, 1 ; STORE_OLD is divided by 2.
BCF STATUS, C

; Clear carry flag
RRF STORE_OLD, 0

 ; STORE_OLD is divided by 2 so in total it has been divided by 4 and saved into the w
register

SUBWF STORED, 1
;STORE_OLD divided by 4 (.25*stored) is subtracted from stored.
(STORED-.25*STORED=.75*STORED=STORED)

BCF STATUS, C; Clear carry flag
RRF RESULTS, 1 ; RESULT is divided by 2.
BCF STATUS, C ; Clear carry flag
RRF RESULTS, 0

 ; STORE_OLD is divided by 2 again = RESULT/4=.25*RESULT and saved into the W register.

ADDWF STORED,1
; stored = .75*stored+.25*result = weighted average
 BCF STATUS, C ; Clear carry flag

movlw B'11111111'
movwf SKIP_orange
movlw B'00000001'
movwf PORTD

54

MOVLW H'1'
MOVWF SKIP

 ; variable skip is set to 0 so that new_val is called again
GOTO START

55

Appendix B:

Code for catcher
DET_State

 movlw b'00000010'
 movwf LED

green_Test
movlw b'00000001' ; store green val in w
andwf LED,0 ; mask green slot and LED
movwf SAVED ; copy contents of w reg to saved
btfsc SAVED,0 ; skip if green slot = 0
goto SET_GREEN ; jump to turn on green led

orange_Test
movlw b'00000010' ; store orange val in w
andwf LED,0 ; mask orange slot and LED
movwf SAVED ; copy contents of w reg to saved
btfsc SAVED,1 ; skip if orange slot = 0
goto SET_ORANGE ; jump to turn on orange led

red_Test
movlw b'00000100' ; store red val in w
andwf LED,0 ; mask red slot and LED
movwf SAVED ; copy contents of w reg to saved
btfsc SAVED,2 ; skip if red slot = 0
goto SET_RED ; jump to turn on red led

;***
SET_GREEN

movlw B'00000001' ; set green pin in port D as output
movwf PORTD ; active low

goto wait_for_next
SET_ORANGE

movlw B'00000010' ; set orange pin in port D as output
movwf PORTD ; active low

goto wait_for_next
SET_RED

movlw B'00000100' ; set orange pin in port D as output
movwf PORTD ; active low

goto wait_for_next

;***
wait_for_next

nop
nop
nop

loop
goto loop

return
;***

56

Appendix C:
;***

; ***
; Dallas Semiconductor 1-Wire ROUTINES
; ***
WAIT5U:
;This takes 5uS to complete
 NOP ;1µs
 NOP ;1µs
 DECFSZ TMP0,F ;1µs or 2µs
 GOTO WAIT5U ;2µs
 RETLW 0 ;2µs
; --
OW_RESET:
 OW_HIZ ; Start with the line high
 CLRF PDBYTE ; Clear the PD byte
 OW_LO
 WAIT .500 ; Drive Low for 500µs
 OW_HIZ
 WAIT .70 ; Release line and wait 70µs for PD Pulse
 BTFSS PORTB,DQ ; Read for a PD Pulse
 INCF PDBYTE,F ; Set PDBYTE to 1 if get a PD Pulse
 WAIT .400 ; Wait 400µs after PD Pulse
 RETLW 0
; --
DSRXBYTE: ; Byte read is stored in IOBYTE
 MOVLW .8
 MOVWF COUNT1 ; Set COUNT equal to 8 to count the bits
DSRXLP:
 OW_LO
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP ; Bring DQ low for 6µs
 OW_HIZ
 NOP
 NOP
 NOP
 NOP ; Change to HiZ and Wait 4µs
 MOVF PORTB,W ; Read DQ
 ANDLW 1<<DQ ; Mask off the DQ bit
 ADDLW .255 ; C=1 if DQ=1: C=0 if DQ=0
 RRF IOBYTE,F ; Shift C into IOBYTE
 WAIT .50 ; Wait 50µs to end of time slot
 DECFSZ COUNT1,F ; Decrement the bit counter
 GOTO DSRXLP
 RETLW 0
; --
DSTXBYTE: ; Byte to send starts in W
 MOVWF IOBYTE ; We send it from IOBYTE
 MOVLW .8
 MOVWF COUNT1 ; Set COUNT equal to 8 to count the bits
DSTXLP:
 OW_LO
 NOP
 NOP
 NOP ; Drive the line low for 3us
 RRF IOBYTE,F
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BTFSC STATUS,C ; Check the LSB of IOBYTE for 1 or 0
 BSF TRISB,DQ ; HiZ the line if LSB is 1
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 WAIT .60 ; Continue driving line for 60µs
 OW_HIZ ; Release the line for pullup
 NOP
 NOP ; Recovery time of 2µs
 DECFSZ COUNT1,F ; Decrement the bit counter
 GOTO DSTXLP
 RETLW 0
;--

57

trans_nums
movf RESULTS, W
;movlw 0xAA
movwf TXREG

waitTX
btfss PIR1, TXIF
GOTO waitTX

return

;---
setup_ds:
 CALL OW_RESET ; Send Reset Pulse and read for Presence
Detect Pulse
 MOVLW SKPROM
 CALL DSTXBYTE ; Send Skip ROM Command (0xCC)
 MOVLW convert

 CALL DSTXBYTE
SETUPDS_here
 CALL DSRXBYTE ; Read the DS2761 Current Register MSB

 MOVF IOBYTE,W
 ADDLW 0XFF
 btfss STATUS, C
goto SETUPDS_here

 CALL OW_RESET ; Send Reset Pulse and read for Presence
Detect Pulse
 MOVLW SKPROM
 CALL DSTXBYTE

 movlw readscratchpad
 CALL DSTXBYTE ; Send Read Data Command (0x69)

 CALL DSRXBYTE ; Read the DS2761 Current Register MSB
 MOVF IOBYTE,W

 MOVWF NUMBER_L

 CALL DSRXBYTE ; Read the DS2761 Current Register LSB
 MOVF IOBYTE,W

 MOVWF NUMBER_H
RETURN

;***
init_trans

banksel SPBRG
movlw d'207' ; set baud rate to 300
movwf SPBRG ; set baud rate to 300

movlw 0x20 ;
movwf TXSTA ;

banksel RCSTA
movlw 0x80 ;
movwf RCSTA ;

BCF STATUS, RP0 ; Select bank 0
BCF STATUS, RP1
return

;***
START

BTFSC SKIP, 0
goto recieve_data ; turn on A/D converter and recieve

data
;__

trans_process

call init_trans
call setup_ds
call trans_nums

 movlw d'100'
movwf transmission_done

delay_4_trans
WAIT .1000
decfsz transmission_done
goto delay_4_trans
goto START
END

58

;__

recieve_data

movlw b'01010101'
movwf RESULTS
goto trans_process

Txsta and Rcsta descriptions:

59

60

	I. Introduction
	1. Basic Design of the P.A.D.S.
	2. Responsibilities of the PICs
	3. Testing of the Product
	4. Parts to be Used
			II. Noise Level Readings & Microphones
	1. Describing noise levels
	2. Microphone Specifications
	1.Microphone circuit
	2.Microphone circuit
	III. A/D converter
	1. Describing The Analog To Digital Converter
	2. Programming the Analog to Digital Converter
	3. Testing The Analog To Digital Converter
	IV. Setting A Threshold
	V. Finding The Average
	VI. Comparing to the Threshold
	VII. Orange LED
	VIII. Red LED
	IX. Green LED
	X. New_Val_Red
	XI. Transmitter
	XII. Catcher
	XIII. Conclusion
	Appendix A:
	
	Appendix B:
	Appendix C:

