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Abstract

Reliable wireless networks for high speed trains require a significant amount of data

communications for enabling safety features such as train collision avoidance and railway

management. Cognitive radio integrates heterogeneous wireless networks that will be de-

ployed in order to achieve intelligent communications in future railway systems. One of

the primary technical challenges in achieving reliable communications for railways is the

handling of high mobility environments involving trains, which includes significant Doppler

shifts in the transmission as well as severe fading scenarios that makes it difficult to estimate

wireless spectrum utilization. This thesis has two primary contributions: (1) The creation

of a Heterogeneous Cooperative Spectrum Sensing (CSS) prototype system, and (2) the

derivation of a Long Term Evolution for Railways (LTE-R) system performance analysis.

The Heterogeneous CSS prototype system was implemented using Software-Defined Radios

(SDRs) possessing different radio configurations. Both soft- and hard-data fusion schemes

were used in order to compare the signal source detection performance in real-time fading

scenarios. For future smart railways, one proposed solution for enabling greater connectiv-

ity is to access underutilized spectrum as a secondary user via the dynamic spectrum access

(DSA) paradigm. Since it will be challenging to obtain an accurate estimate of incumbent

users via a single-sensor system within a real-world fading environment, the proposed co-

operative spectrum sensing approach is employed instead since it can mitigate the effects of

multipath and shadowing by utilizing the spatial and temporal diversity of a multiple radio

network. Regarding the LTE-R contribution of this thesis, the performance analysis of high

speed trains (HSTs) in tunnel environments would provide valuable insights with respect

to the smart railway systems operating in high mobility scenarios in drastically impaired

channels.
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Chapter 1

Introduction

1.1 Motivation

We are gradually moving towards context awareness among land transportation systems

where the vehicles are aware of their environment. In modern railway applications, a signif-

icant amount of wireless communications is used for safety features, such as train collision

avoidance and railway management [4]. To enhance the reliability and safety of railway sys-

tems while increasing accessibility and productivity, modern railway operations rely on an

ever increasing amount of information exchange between different trains, i.e., train-to-train

(T2T) and train-to-ground (T2G). The integration of all of these heterogeneous wireless

networks deployed in the railway domain constitutes a key technical challenge. These chal-

lenges can potentially be answered by Cognitive Radio (CR) technologies, which can offer

interoperability, reliability, dynamic spectrum access, and both lower deployment and main-

tenance costs. Two research projects that focus on enabling cognitive radio-based railway

communication include the following:

• Cognitive Radio for Railway Through Dynamic and Opportunistic Spectrum Reuse

(CORRIDOR) [5] is a French research project that targets opportunistic spectrum

access for railways. Due to the rapid increase in demand for future railways in terms

of control operations, as well as providing high speed internet connectivity to the pas-

sengers, more bandwidth and spectrum is needed to support railway communications.
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• Rail-CR project [6] is a US-based railway system project where the main effort is

focused on implementing a positive train control (PTC) technology designed to equip

trains with wireless communication capabilities. The project aims to allow trains

to communicate with wayside wireless stations while moving to supply important

information, such as speed and direction, in order to improve safety and operations

of the railway system.

In this thesis, we have designed and implemented two experimental prototypes to further

the advancement of smart railway communication systems. In the first test-bed, we have

analyzed the performance of high speed train (HST) systems in a tunnel environment. In

recent years, the use of trains have witnessed significant growth due to their high speeds,

which has led to the demand for reliable wireless communication systems with these land

transportation systems. The development of a reliable wireless network for high speed trains

is not a simple task and it is still an emerging technology. Global System for Mobile Com-

munication for Railways (GSM-R) [7], was a wireless communications standard designed

for high speed trains, but it turned out not to be reliable enough and possess several lim-

itations. Subsequently, LTE-R [4] proposed a promising solution for achieving broadband

data rates in high speed trains that can overcome the various GSM-R limitations [8, 9].

LTE-R is a high speed communication standard based on the existing LTE system

architecture [9]. There has been several studies regarding the assessment of LTE-R as a

viable choice for next generation high speed communications for railway applications [10,11].

Most LTE systems operate at 1.8 GHz – 2.6 GHz bands, which possesses a high propagation

loss and severe fading effects. Highly mobile trains inside tunnel environments makes the

design of reliable communication links very challenging. To achieve reliable radio coverage

inside tunnels, leaky feeder cables have been proposed [12]. With Leaky Coaxial (LCX)

cable, more uniform coverage can be achieved and installation is also comparatively simple.

Each slot in the cable is equivalent to an antenna, which can transmit and receive signals.

Figure 1.1 shows the LOS propagation environment inside a tunnel for a high speed train

with velocity v.

The second proposed contribution of this thesis is the design and implementation of a
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Figure 1.1: High speed train inside a tunnel for LTE-R. DLOS is the distance between

transmitter and receiver, d is the distance between the LCX cable transmission slots.

GNU Radio based software-defined radio (SDR) network performing cooperative spectrum

sensing. Smart railway communication systems require large amounts of bandwidth in order

to support high data-rate applications. One potentially viable solution for this scenarios

is to employ dynamic spectrum access (DSA), [13, 14] which is a technology already being

implemented for efficient utilization of spectrum resources in order to sustain billions of

Internet of Things (IoT) devices. There has been a significant increase in the study of

cognitive radios for efficiently utilizing the electromagnetic spectrum [3]. It has been ob-

served that the spectrum occupancy is not uniform across all frequency bands, resulting in

numerous spectral white spaces [3]. To opportunistically access these idle channels, spec-

trum sensing is considered to be one of the technologies needed for enabling DSA. Although

several spectrum sensing techniques have been proposed in the open literature, energy de-

tection is widely used due to its low implementation complexity [15]. Several spectrum
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sensing techniques to be considered include the following:

• In energy detection (ED) [15], the energy of the signal is detected in the frequency

location and based on the threshold value we decide whether the signal is present or

absent.

• Cyclostationary Feature Detection [16] is a complex scheme to implement relative to

ED and it is mostly used when we need to also classify the signal present based on

their modulation scheme.

• When secondary user has apriori knowledge of primary user signal, matched filter

(MF) [17] detection is applied. Detection by using matched filter needs less detection

time compared to ED but primary user information is required.

These spectrum sensing techniques can be used in a non-cooperative manner, but it

is very challenging to obtain an accurate estimate using a single-sensor system within a

practical fading environment. Various non-idealities, such as shadowing, multipath, and

fluctuating noise variance, can make it difficult to detect the primary user [18, 19]. Coop-

erative spectrum sensing can mitigate the effects of multipath and shadowing by utilizing

the spatial and temporal diversity of a multiple radio network [20, 21]. For cooperative

spectrum sensing, each sensor node collects the spectral data and transmits it to a fusion

center (FC) for decision making. Figure 1.2 shows how a heterogeneous sensor network

exploits the spatial diversity.

1.2 State of the Art

In the open literature, most channel modeling techniques have considered only open

operating environments for high speed trains [10,11], while relatively little research has been

conducted for trains operating in tunnel environments. Due to various challenges presented

by tunnel environments, it is important to derive a channel model for LTE-R involving

high speed trains. In this thesis, we analyze the effects of high Doppler shift and multipath

propagation due to tunnel environments. Experimental studies conducted inside tunnel

environments have shown that the field amplitude distribution fits smoothly over a Rician



5

Figure 1.2: Heterogeneous sensor network employing cooperative spectrum sensing. RFFEi

and SRi represents different front end and sampling rates for the SDR units.

distribution [22]. Several research efforts have been conducted for large-scale and small-scale

fading characteristics for wideband communication systems inside tunnel environments. To

the best of the authorś knowledge, none of these studies have been conducted for LTE-

R, which employs Orthogonal Frequency Division Multiplexing (OFDM) signals for data

transmission inside tunnels [23]. The large Doppler shifts caused by high speed trains will

potentially lead to ambiguity when extracting the carrier frequency, which can potentially

increase the BER [24]. Therefore, it is important to study the effects of high Doppler

shift and multipath fading for LTE-R communications in tunnel environments such that

equalizers can be efficiently design.

The cooperative spectrum sensing testbed using normalized energy detection has been

implemented and compared with both soft and hard data fusion schemes. Both soft data

fusion and hard data fusion have been extensively studied in the literature [25–27], with

several algorithms being implemented for each scheme. In a hard decision approach, each

local decision statistic from a sensor node is transmitted to an fusion center (FC) via

overhead channels. The FC merges the sensing data and makes a global decision based on

various algorithms such as majority rule, OR rule, and AND rule [28]. For a soft decision

scheme, each sensor unit (SU) sends its local sensing data to the FC, which makes decision
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based on a global test statistic G. Soft decision combining improves the cooperative gain

but it also possesses several limitations. With an infinite bandwidth, the real floating values

can be transmitted to the FC, which can lead to a reliable decision mechanism. However,

due to bandwidth constraints, we have to quantize the data and this operation leads to

error in the energy values. In hard decision combining, we can just transmit the decisions

of the sensor nodes to the FC, which can be binary values with ”1” indicating that signal

source is present and ”0” indicating that a signal source being absent.

1.3 Thesis Contributions

This thesis possesses the following contributions to the cognitive radio communications

and railway communications field:

• A novel performance assessment and simulation of LTE-R communications in a tunnel

environment experiencing severe fading is conducted.

• The dynamic K-factor of a tunnel environment is derived using the classical two-ray

propagation model [29], which is used to build a Rician fading model for the tunnel.

• A new cooperative spectrum sensing hardware prototype with normalized energy de-

tection using both soft data fusion and hard data fusion is implemented using a variety

of software defined radios.

• For soft data fusion, Maximum Normalized Energy (MNE) and Equal Gain Combi-

nation (EGC) algorithms are employed in a novel manner. Hard data fusion is also

implemented using majority rule, AND, and OR approaches. Both USRP N210s [30]

and RTL-SDRs [31] are employed in this implementation of the heterogeneous sensor

network.

1.4 Thesis Organization

This thesis is organized into the following chapters: Chapter 2 discusses the smart rail-

way communication system in detail and provides details about LTE-R communication
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systems, positive train control (PTC), wireless broadband (WiBro), and spectrum regula-

tion. Chapter 3 provides background knowledge about heterogeneous cooperative spectrum

sensing and focuses on heterogeneous networks, cooperative spectrum sensing, and software-

defined radios. Chapter 4 presents the proposed LTE-R implementation and its results in

a tunnel environment. Channel impairments and two-ray propagation model are also dis-

cussed in details. In Chapter 5, the proposed implementation of a heterogeneous cooperative

spectrum sensing (CSS) test-bed and results are discussed. Chapter 6 concludes this thesis,

summarizing the accomplishments, and outlines possible future work.

1.5 List of Related Publications

The following publications resulted from the activities of this thesis research:

• K. S. Gill and A. M. Wyglinski, ”Heterogeneous Cooperative Spectrum Sensing Test-

Bed Using Software-Defined Radios,” in Vehicular Technology Conference (VTC Fall),

2017 IEEE 86th, Sept 2017.

• K. S. Gill, P.V.R Ferreira and A. M. Wyglinski, ”Performance Analysis of High Speed

Railways Communications Inside a Tunnel Using LTE-R,” in Vehicular Technology

Conference (VTC Fall), 2017 IEEE 86th, Sept 2017.
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Chapter 2

Smart Railway Communication

System

There has recently been growing interest in high speed railway (HSR) communication

systems. This growing demand in HSR communication has led to significant activity with

respect to next generation wireless communication systems applied to railway environments.

Current GSM-railway (GSM-R) technology is not sufficient for satisfying the demand for

large data rate applications and quality-of-service (QoS) requirements, which has subse-

quently led to development of Long Term Evolution for railways (LTE-R) [23]. LTE-R is

based on the LTE architecture [23] and has been championed as the future of the smart

railway communication systems. LTE-R provides a more efficient network architecture com-

pared to GSM and has a reduced packet delay. It is also based on a well-established and

off-the shelf communication system that provides standardized interworking mechanisms

and compatibility with GSM-R. In the following sections, we discuss positive train con-

trol (PTC), wireless broadband (WiBro), train-to-train (T2T), and train-to-ground (T2G)

communication, Long Term Evolution for Railways (LTE-R) communication system, spec-

trum regulation for railway communication systems, LTE-R services for railways, and leaky

coaxial cable (LCX), all of which are important technologies for achieving smart railway

transportation system.
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2.1 Positive Train Control

Positive Train Control (PTC) is designed for the monitoring and controling of train

movements in order to provide advanced safety operations with the help of modern wireless

communication technology. The key idea behind PTC is the constant flow of information

to the train about its location as well as warning engineers about train speeds in order

to prevent derailment [32]. Managing track occupancies through centralized route and

interlocking logic, enforcing permanent and temporary speed limits for the train, and real-

time localization of the train are some of the basic features implemented in PTC.

Figure 2.1: Architecture of Positive Train Control consisting of wayside units, central office

and real-time GPS information. All these technologies assist PTC in achieving advance

control and safety of the trains.

Figure 2.1 provides a generalized viewpoint of the PTC architecture; where the train

receives the flow of information through various systems using wireless communication links.

The primary means of determining location for the train is by using differential GPS, which

can continuously compare its position with the stored position of speed restriction and work

zones [33]. The Central Office (CO) regularly monitors trains, exchanging information with

train management computers (TMC), and gathering precise speed and position information.

The CO also collects information regarding train orders, number of cars, weight, route

and track characteristics along the route, including speed restrictions, curves, grades and
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crossing. All wayside equipment are continuously monitored by PTC, where they issue

alerts in cases when an automatic crossing gate is not working or a hot box detector senses

several axles slightly above a certain temperature level. It also applies corrective action in

cases where there are reports of a possible track breakage due to extreme heat or a flood.

2.2 Wireless Broadband (WiBro)

Wireless Broadband (WiBro) is a mobile broadband wireless access (BWA) service which

had its first public demonstration in December 2005 and has been in service in South Korea

since June 2006. WiBro was developed as a mobile BWA solution in Korea and was based

on the IEEE 802.11e WiMax standard [34]. It is a subset of the consolidated version of

the IEEE Standard 802.16-2004 (fixed wireless specifications), P802.16e (enhancements to

support mobility), and P802.16-2004/Cor1 (corrections to IEEE Standard 802.16-2004).

The profiles and test specifications of WiBro have been harmonized with the WiMAX

Forum’s mobile WiMAX profiles and test specification, resulting in a convergence of the

two standards.

Figure 2.2 describes the architecture of BWA-based WiBro communication system in the

Phase I standardization [34]. TheWiBro network consists of Access Control Routers (ACR),

which connects the backbone network with a Radio Access Station (RAS). The RAS is the

interface between the mobile nodes and the core network at the physical layer, and it controls

the radio resources at the data link layer in conjunction with an ACR. The key distinction of

WiBro from conventional cellular networks is that the Internet Protocol (IP) is used between

an ACR and RASs, as well as between ACRs. WiBro uses Time Division Duplexing (TDD)

or Frequency Division Duplexing (FDD) for duplexing and Orthogonal Frequency Division

Multiple Access (OFDMA) for robustness against fast fading and narrow-band co-channel

interference.
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Figure 2.2: Korean Wireless Broadband (WiBro) system architecture for high speed internet

connectivity. WiBro is an all IP-based network, which uses ACRs to connect the backbone

network with radio access station.

2.3 LTE-R Communication System

The development of a reliable wireless network for high speed trains is not a simple task

and it is still an emerging technology. Global System for Mobile Communication for Rail-

ways (GSM-R) [7] was a wireless communications standard designed for high speed trains,

but it turned out not to be reliable enough and possessed several limitations. The data

rates for voice services, which can reach up to 9.6 kbps, was unable to meet the increas-

ing demands of high-rate data transmission for railways communication. Furthermore, the

limited data rate and quality of service (QoS) requirements were not sufficient to support

cellular communications. Subsequently, LTE [4] proposed a promising solution for achiev-

ing broadband data rates, flexible bandwidth allocation, and high spectral efficiency in high

speed trains that can overcome various GSM-R limitations [8, 9].

LTE-R is a high speed communication standard based on the existing LTE system
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Figure 2.3: Proposed LTE-R Architecture for next generation High-speed Railways consist-

ing of EPA and E-UTRAN.

architecture [9]. There has been several studies regarding the assessment of LTE-R as a

viable choice for next generation high speed communications for railway applications [10,11].

Conventional LTE includes an Evolved Packet Core (EPC) network and a radio access

network referred to as an Evolved Universal Terrestrial Radio Access Network (E-UTRAN).

The Internet Protocol (IP)-based EPC supports seamless handovers for both voice and

data to cell towers, and each E-UTRAN cell will support high data and voice capacity by

high-speed packet access (HSPA). As a candidate for the next-generation communication

system of HSR, LTE-R inherits all the important features of LTE and provides an extra

radio access system to exchange wireless signals with onboard units (OBUs) and to match

HST-specific needs. Figure 2.3 shows the proposed architecture of LTE-R according to [4],

which shows the core network of LTE-R is backward compatible with GSM-R. The network

architecture of LTE-R is similar to that of LTE/SAE, with Evolved Universal Terrestrial

Radio Access Network (E-UTRAN) being the access network structure of LTE-R. The

Evolved-Node B (eNodeB) units communicate directly with UEs in a similar fashion to a

base transceiver station (BTS) in GSM networks. It performs the transmission and reception
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of data packets using Orthogonal Frequency Division Multiplexing Access (OFDMA) for

downlink and Single Carrier Frequency Division Multiple Access (SC-FDMA) for uplink

across the PHY layer. At the same time, as without the base-station controller (BSC), it also

has radio resource control and wireless mobility management functions. The eNodeB units

can be connected to the network router directly without additional intermediate control

nodes, such as the BSC in GSM-R [35]. The main difference between EPC and the core

network of GSM-R is that the EPC is an all-IP mobile core network.

Table 2.1: Comparison of system parameters between GSM-R , LTE and LTE-R.

System Parameters GSM-R LTE LTE-R

Frequency
Uplink: 876–880 MHz
downlink: 921–925 MHz 800, 1800, 2600 MHz 450, 800, 1400, 1800 MHz

Capacity 0.2 MHz 1.4-20 MHz 1.4-20 MHz

Modulation GMSK QPSK/16-QAM/64-QAM QPSK/16-QAM

MIMO No 2x2, 4x4 2x2

Cell Range 8 Km 1-5 Km 4-12 Km

Data Rates (DL/UL) 172/172 Kbps 100/50 Mbps 50/10 Mbps

Conventional LTE networks are different compared to LTE-R in several ways, such as

architecture, system parameters, network layout, services, and quality of service (QoS).

Table 2.1 summarizes the LTE-R parameters and describes the differences between LTE,

GSM-R, and LTE-R. Since the LTE-R environment possesses very severe fading and high

Doppler shift, it is configured for QoS rather than higher data rates. Therefore, QPSK

modulation is used for most sub-carriers, and the number of packet re-transmissions must

be kept low, which is achieved with the User Datagram Protocol (UDP).

2.4 Spectrum Regulation for LTE-R

Departing from the technical issues for a moment, we will now discuss the important

interactions that smart railways will encounter with respect to spectrum policy and alloca-

tion defined by the Federal Communications Commission (FCC). The spectrum allocated

for cellular technologies is already saturated in peak markets due to massive amounts of
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wireless services and networks. Figure 2.4 illustrates the issue of potential spectrum scarcity

in the wireless cellular bands using the frequency allocation chart of the United States [1].

Frequencies located at the lower portion of the spectrum can be used for wide coverage, mo-

bility support, and control signaling while the higher portion of frequencies can be used for

high data rate applications. This requires a new approach to spectrum policy and allocation

methods for smart railway standardization.

Figure 2.4: Federal Communications Commission (FCC) spectrum allocation chart [1].

Cognitive radio is a promising technology that can solve the spectrum shortage problem

resulting from the rapid increase in wireless networks and mobile devices. Recent advance-

ments in software-defined radio technology and edge computing have enabled new Cognitive

Radio Network (CRN) capabilities and, along with some adjustments in its operation, will

be a key technology for LTE-R heterogeneous network deployment. Cognitive Radio using

software defined radio technology is considered to be one of the key technologies for im-

proving the utilization of congested radio spectrum [36]. Integrating CR technology into

an LTE-R system is motivated by the fact that a large portion of the radio spectrum is
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underutilized most of the time [23]. For achieving data rates on order of gigabits per sec-

ond, we need to make efficient use of the available spectrum, which can be achieved by

using CRNs. CRNs are a secondary wireless access system that can share frequency bands

with the incumbent primary wireless access system, either on an interference-free basis or

an interference-tolerant basis. The CRN should be aware of the surrounding radio envi-

ronment and be capable of regulating its transmission accordingly. For interference-free

CRNs, CR users are allowed to borrow spectral resources only when licensed users do not

use them. The key for enabling interference-free CRNs is figuring out how to detect the

spectrum holes (white spaces) that are located across the spectrum and enable dynamic

spectrum access (DSA) [37].

CR receivers should first monitor and allocate the unused spectrum via spectrum sens-

ing (energy detection (ED), covariance absolute value (CAV) detection, etc.) [37] or by

combining spectrum usage from geolocation databases and feed this information back to

the central CR controller. A coordinating mechanism is required for multiple CRNs where

they all try to access the same spectrum in order to prevent users colliding with each other

while accessing the same spectrum holes. For interference-tolerant CRNs, CR users can

share the spectrum resources with a licensed system while keeping the interference be-

low a threshold. In comparison with interference-free CRNs, interference-tolerant CRNs

can achieve enhanced spectrum utilization by opportunistically sharing the radio spectrum

resources with licensed users, and can also achieve better spectral and energy efficiency.

However, it has been shown that the performance of CR systems can be very sensitive to

any slight change in user density, interference threshold, and transmission behavior of the

licensed system [38]. However, the spectral efficiency can be improved by either relaxing

the interference threshold of the primary system or considering only the CR users having

short distances to the secondary BS (utilizing the spatial gain). Hybrid CRNs have been

proposed in [39] for adoption in cellular networks in order to explore additional bands and

expand the capacity. CRNs can only prove beneficial if the spectrum policies related to

LTE-R are implemented in a robust manner.
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2.5 Train-to-train (T2T) Railway Communication

The development of driverless cars has imposed several strict requirements for the safety

of passengers and pedestrians. For safety-critical applications, transmission delays need to

be less than 10 ms, which is required for intelligent transportation systems (ITS) and ve-

hicular networks [40]. While communications for road traffic has been well investigated,

with the first standards being defined for smart vehicles (ITS-G5), railway communications

have mainly focused on train-to-ground (T2G) communication using GSM-R and LTE-R.

Nevertheless, there are still several challenges involved in train-to-train (T2T) communica-

tions for frequencies above 1 GHz and high speed operations (up to 500 Km/h), which can

potentially lead to severe fading. In [41], a measurement campaign was performed focusing

on wagon-to-wagon measurements (intra-consist) with one high speed train (HST), as well

as T2T measurements with two HSTs. A survey of channel measurements and models are

presented in [42]. Various simulation and experimental results revealed a trade-off between

the proposed performance metrics and system parameters, such as base station (BS) and

vehicle densities, radio coverage, and the maximum number of hops in a path. With LTE

communication technologies being integrated into vehicular networks, the interference will

cut down the performance of LTE vehicular networks. When vehicle density is high, the

beaconing signals of the vehicular safety applications may easily overload the responsible

eNodeB. To handle this issue, these signals should be handled directly between vehicles

without having to go through the eNB. In LTE-Advanced (LTE-A), device-to-device (D2D)

communications is considered, where direct message delivery between terminals in proximity

to each other is permitted in order to decrease the load of the eNB [43].

The infrastructure-aided D2D technologies can serve as a natural approach for enabling

reliable and efficient T2T communications without negatively affecting existing cellular

systems. To meet the expected performance requirements, such as low transmission delay

and high throughput, a new architecture for LTE-R vehicular communication is required.

Figure 2.5 illustrates how railway communications using the D2D strategy can offload the

computation from remote road side units (RRU) to the trains in order to increase spectral

efficiency. The communication environment in T2T is different than in D2D due to the high
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Figure 2.5: Vehicular communication using D2D 5G cellular communication technology.

mobility (Doppler shift) of the high speed trains. Network connectivity plays a important

role in T2T communication relative to D2D when comparing system throughput. These

features can significantly affect D2D resource allocation strategies and system parameters,

and thus should be modified for railway communication.

2.6 LTE-R Services

LTE-R provides services to improve security, quality of service (QoS), and efficiency for

high speed railways. Several key services include the following:

• Train Control : Train control (TC) continually monitors trains, exchanges information

with Train Management Computers (TMC), and gathers precise speed and position

information. TC will have a copy of train orders, number of cars, weight, route and

track characteristics along the route, including speed restrictions, curves, grades and

crossings. Track authority, i.e., permission to occupy and move on a sector of track,

is continuously updated as train control computers issue or modify train orders.

• Real-time monitoring : LTE-R should provide video monitoring of railway track con-

ditions (flaw detection and temperature), as well as railway infrastructure, in order to

avoid accidents. The information should be transmitted in real-time with both central

controller and HST with minimum delay possible.
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• Railway Emergency Communications: Whenever there is any natural calamity or an

emergency situation, an establishment of immediate communications between accident

site and rescue center is of the utmost importance. Railway emergency communica-

tions systems use railway private networks to ensure rapid deployment and faster

responses compared to the existing technologies such as GSM-R.

• Real-time Localization for Trains: LTE-R should be able to relay the real-time lo-

calization information to the central controller such that the efficiency of scheduling

trains can be improved. With accurate localization information, train collisions can

be avoided and better overall service can be provided to the passengers.

• Railway IoT : With railway Internet-of-Things (IoT), LTE-R can provide services such

as real-time query and tracking of trains and goods. It helps to improve the transport

efficiency and extend service range. Railway IoT can also help in augmenting the

railway safety features.

2.7 Leaky Coaxial Cable for LTE-R

Leaky Coaxial Cable (LCX) [44] is an antenna technology designed to deliver radio

services in tunnel environment. It consists of small periodic slots to allow radio frequency

(RF) signals to escape, which act as extended antenna elements. LCX cables were invented

to provide the uniform signal coverage in underground mines where radio coverage can

potentially be very limited due to the mine environment [2]. Recently, leaky coaxial cables

have been widely used in the field of railway communication, especially in tunnels [2]. Leaky

feeders are constructed from coaxial cable, where the outer shield has a series of holes

with different shapes and different distances amongst them. The coaxial cable is usually

on the order of hundreds of metres long, and it can be installed throughout a building

or a tunnel. So far, LCX have been only used to supplement wireless communication

systems between a BS and trains, mostly transmitting voice signals. LCX are being used

as an alternative solution to distributed antenna systems in indoor environments such as

commercial buildings [45, 46] and university buildings, high speed trains, and cars. The
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LCX radio system is almost noise free and has enough bandwidth to support multiple RF

signals carrying voice and data simultaneously. Figure 2.6 shows the conventional leaky

coaxial cable along x-axis with periodic radiating slots and wave propagation along z-

axis. Generally, it consists of three parts: Inner conductor, Dielectric material, and inner

conductor. LCX has a dual functionality i.e., they can transmit and receive RF signals

using their slots. The frequency range for a leaky cable is given by [47]:

c
√

εr − 1)d
≥ f ≤ c√

εr + 1)d
. (2.1)

where c is the speed of light in m/s, d is the length of the LCX cable, and εr is the relative

permittivity of the tunnel walls.

Figure 2.6: Leaky Coaxial Cable used for uniform radio coverage in a Tunnel environ-

ment [2].

A radio system based on LCX has been deployed in Japan for high speed railways ”Series

N700” [48] to connect the train to the ground network. Wi-Fi access points are chosen for in-

train communications with peak data rates of 2 Mbps for uplink and downlink. Although

current technologies can provide wireless communication services in HSTs, the capacity

of communication system is very low (1–4 Mbps). These data rates are insufficient for
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next generation wireless communication system where the peak data rates of 0.5 – 5 Gbps

are expected. LTE-R communication system can be implemented for achieving high data

rates but it cannot be achieved by using conventional cellular systems. The penetration

loss due to the tunnel walls is very high and secondly, the fast moving trains cause large

Doppler shifts leading to poor connectivity due to retransmissions. Hence, leaky coaxial

cable is potentially the best candidate for achieving extensive internet access inside a tunnel

environment for high speed railways.

2.8 Summary

This chapter outlined and examined the topics of positive train control, WiBro, LTE-R

communication system and provided a foundation for smart railway communication system.

We also discuss the spectrum regulation for LTE-R, T2T railway communication, various

services required in LTE-R and finally leaky coaxial cables (LCX) for uniform coverage in

a tunnel environment. Next in this thesis, we consider heterogeneous cooperative spectrum

sensing (CSS) and how it can be use to augment smart railways. After CSS, we discuss

the implementation and results of our proposed test-bed for high speed train and software-

defined radios.
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Chapter 3

Heterogeneous Cooperative

Spectrum Sensing (CSS)

This chapter provides the background information needed to understand and implement

cooperative spectrum sensing. It examines the basic outlines of a heterogeneous networks

and how cooperative spectrum sensing (CSS) can help in enhancing the accuracy of signal

source estimation. The fusion center (FC) collects the data from the sensor node network

and processes it to make a reliable decision. This chapter also investigates various algorithms

that can be used in heterogeneous network to estimate signal source. Finally, the necessary

hardware and software tools used in the implementation of heterogeneous CSS prototypes

is provided.

3.1 Spectrum Sensing

Spectrum sensing plays a key role in the decision-making part of cognitive radio net-

works(CRNs). It is required by the CR to detect the presence of spectrum white spaces and

also to accurately estimate the presence of incumbent users (PUs). Since the PUs have the

incumbent rights to the frequency band usage, it is important to avoid interfering with the

PU when performing dynamic spectrum access (DSA). Thus, it is very challenging to get

an accurate estimate under a practical fading environment based on conventional spectrum
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sensing techniques. Various non-idealities such as shadowing, multipath, and fluctuating

noise variance can make it difficult to detect the PU. In the case of fast varying channels

over time, several works have focused on improving the performance of the spectrum sens-

ing and signal identification [49–51]. To combat the Doppler shift caused by high-speed

environments, algorithms [52] have been proposed for channel estimation and equaliza-

tion. Cooperative spectrum sensing [53] can be use to address many of these problems

resulting from multipath, shadowing, and high Doppler shift. In this thesis, we evaluate

the performance of cooperative spectrum sensing using soft and hard data fusion schemes

via software-defined radio prototype hardware. The experiment confirmed that coopera-

tion among sensor nodes will improve the spectrum sensing performance due to increased

spatial-temporal diversity of the received signal source. The various types of spectrum

sensing schemes available are discussed below in the following subsections.

3.1.1 Energy Detection

In energy detection (ED) we use the energy spectra of the received signal and compare

it against a predefined threshold level to estimate the presence of the signal. In an ED

scheme, we only rely on the energy of the signal in the frequency channel and no phase

information is required. The key advantage of the ED scheme is that it does not require

any prior information of the signal, i.e., type of modulation scheme, phase information, or

any other signal parameter. Energy detection can be considered as a binary hypothesis

testing scheme and is given by [15]:

y(n) =











w(n), H0

s(n) + w(n), H1

(3.1)

where y(n) represents the received signal, s(n) represents the signal source (PU), and w(n)

is the white Gaussian noise w(n) ∼ N(0, σ2
n). H0 describes the hypothesis when there is

no signal present, while the hypothesis H1 is the presence of signal. Figure 3.1 explains

the energy detection scheme in the form of a block diagram. First, the analog signal x(t) is

converted into digital domain via analog-to-digital (ADC) converter, then the Fast Fourier

Transform (FFT) block converts the signal from time domain to frequency domain. We
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then calculate the magnitude square of the signal and finally we take the average over the

N values to compute the decision statistic δ. The δ is compared with the threshold to

estimate the presence or absence of the signal.

Figure 3.1: The block diagram describing the working of energy detection scheme [3].

The decision whether the signal is present or absent is decided by evaluating a local

test statistic L to see whether it is above or below certain fixed threshold τ . The local test

statistic L, which is the complex-magnitude squared of the FFT samples, is compared with

τ using:

L =

M
∑

n=1

|y(n)|2 =











< τ, H0

> τ, H1

(3.2)

where |y(n)|2 is the energy of a specific FFT bin and n = 1, 2, 3...M are the number of

samples received. The probability of false alarm Pfa and probability of detection Pd are

given by [15]:

Pf = Q

(

τ −M(2σ2
n)√

M(2σ2
n)

)

, (3.3)

Pd = Q

(

τ −M(2σ2
n)(1 + γ)

√

M(1 + 2γ)(2σ2
n)

)

. (3.4)

where Mr is the number of samples used to estimate the power of the signal source in the

node, σn,r is the noise variance and τ is the threshold.

3.1.2 Cyclostationary Method

There are several applications where it is required to perform the modulation recognition

and signal classification. Communication signals can be more accurately described as statis-

tical processes which repeats themselves cyclically or periodically rather than a stationary

process. Mathematically, Cyclostationary feature detection scheme can be described by [3]:
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Figure 3.2: The block diagram describing the working of cyclostationary feature detection

scheme.

Rx(t, τ) = E

{

x

(

t+ τ

)

x∗
(

t− τ

)

}

=
∑

{α}

Rα
x(τ)e

j2παt (3.5)

where Rx is the cyclic autocorrelation function, α is the fundamental cyclic frequency. The

Eq. (3.5) shows the autocorrelation of the observed signal x(t) with periodicity τ , E{.}
is the expectation operator, {α} is the set of Fourier components, and Rα

x is the cyclic

autocorrelation function (CAF) which is given by:

Rα
x = lim

T→inf

∫ T/2

−T/2
Rx(t, τ)e

−j2παt. (3.6)

Figure 3.2 shows the block diagram implementation of cyclostationary feature detection

scheme, where we correlate the frequency domain signal and then pass it to the cyclic

frequency detection block and perform the signal classification.

3.1.3 Matched Filter Detection

In the matched filter detection method, a known signal is correlated with an unknown

signal captured from the available radio resource to detect the presence of pattern in the

unknown signal. It is an optimal filter that projects the received signal in the direction of

the pilot signal xp(n) [54]. The test statistic is given by:

TMD =
∑

N

y(n)x∗p(n). (3.7)

where y(n) is the received signal. The test statistic TMD is compared with a particular

threshold to decide whether the signal is present or absent.The probability of detection Pd
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and probability of false alarm Pfa can be expressed as:

Pd = Q

(

λ− E
√

Eσ2
n,r

)

, (3.8)

Pfa = Q

(

λ
√

Eσ2
n,r

)

. (3.9)

where E is the energy of the signal source, λ is the detection threshold, and σn,r is the

noise variance. The use of matched filter is very limited due to the requirement of a priori

information which is not feasible in most cases.

3.2 Cognitive Radio

Cognitive Radio (CR) [55] is a communication systems paradigm that focuses on em-

ploying highly agile, environmentally aware, intelligent wireless platforms in order to au-

tonomously select and configure device operating parameters based on the prevailing radio

and network environmental conditions [3]. In general, CR leverages many parameters in its

operation, such as channel occupancy rate, available channels, bandwidth required for data

transmission, and the modulation types that may be used. It must also satisfy the regulatory

requirements defined by the Federal Communications Commission (FCC). Software-defined

radio (SDR) technologies has primarily been responsible for making cognitive radios used

in wireless communications system a reality. SDR provides the potential for personalize

services, and they make the process of modifying the radio characteristics simpler.

To facilitate the intelligent decision making capabilities in these cognitive radio systems,

machine learning algorithms have been proposed in the literature [38, 56–58] in order to

automate the reconfiguration process. Figure 3.3 describes the various building blocks of a

cognitive radio system. The spectrum sensing is performed to estimate the spectrum holes

in the band and after the analysis the decision strategy is prepared. The radio is configured

with the new parameters based on the radio environment and the spectrum decision made.
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Figure 3.3: The block diagram explaining the basic parts of CR system. The operating

parameters are configured based on the characterization of the wireless environment.

3.3 CSS in Heterogeneous Networks

In Heterogeneous CRNs, each radio is equipped with a different numbers of antennas,

sampling rates, and RF characteristics. Additionally, each sensor node may experience dis-

tinct channel fading and suffer from different noise levels due to their respective locations

and device performances, such as amplifiers and analog-to-digital convert (ADCs). As a

result, each node may have different sensing capabilities and reliability values. This is a

universal and fundamental characteristic of a heterogeneous CRN, which requires robust

algorithms to achieve a high level of accuracy when performing signal source detection for

estimating the presence of a primary user [59]. In this thesis, we investigate the coopera-

tive spectrum sensing in heterogeneous networks with a centralized Fusion Center (FC), a

transmitter acting as a signal source, and four sensor nodes. As explained earlier, we are

using energy detection as one of the spectrum sensing techniques since it possesses a very

low implementation complexity [15]. The energy detection scheme detects the presence or

absence of a signal source based on its intercepted energy signature. If the energy of the
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signal is higher than a certain threshold, this indicates that the channel is occupied.

In cooperative spectrum sensing, each sensor node transmits the local sensing data to

the fusion center for signal source detection. The local sensing data has to be quantized,

thus yielding quantization errors. In order to minimize the quantization error in local test

statistic L and to reduce the effect of noise variance, the energy of the received signal y(n)

is normalized [59]. The local test statistic L for the rth sensor node is given as:

Lr =
1

Mrσ2
n,r

Mr
∑

r=1

|y(n)|2 (3.10)

where Mr is the number of samples used to estimate the power of the signal source in the

node, σn,r is the noise power variance.

In Eq. (3.1), s(n) is considered to be a deterministic signal and w(n) is a Gaussian

random variable with a variance of σ2
n. Based on the Central Limit Theorem, Lr will have

a following distribution [20]:

Lr =















N(1,
1

Mr
), H0

N(γr + 1,
1 + 2γr
Mr

), H1

(3.11)

where γr is the received Signal-to-Noise Ratio (SNR) of the rth SU. The local decision

statistic Lr is quantized before transmission due to the bandwidth constraint, and this can

lead to quantization errors. The values of Lr received by FC can be modeled as:

βr = Lr + wq,r, (3.12)

where βr is the decision statistic received by the FC and wq is the noise added to the signal

due to fading and quantization error. In [60], the wq is modeled as a Gaussian noise with

zero mean and σ2
q variance.

3.4 Software Defined Radios

We have already discussed about the concept of cooperative spectrum sensing in hetero-

geneous networks. In this section, we will now look at the radio platforms needed to test
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Figure 3.4: Software defined radio pushes all the adaptive elements and data manipulation

operation into software. The goal of SDR is to provide or define all of the radio operation

in software.

the CSS algorithms. The radio platform technology that we use is called Software-Defined

Radio (SDR).

Mitola coined the term Software Defined Radio, which he described as a of digital signal

processing (DSP) primitives, a meta-level system for combining the primitives into commu-

nication system (Tx, channel model, Rx, etc.), functions, and a set of target processors on

which the software radio is hosted for real-time communications [61]. Mitola explains in his

thesis how the software provides the flexibility of wireless operations that are not achievable

with hardware alone.

SDR technology has existed since the 1970s [3] but the key milestone in the advancement

of SDR technology took place in the early 1990s with the U.S. military initiative called

SpeakEasy I/II. The SpeakEasy project was implemented using programmable processing

in order to emulate more than ten existing military radio standards, operating in frequency

bands between 2 MHz and 2 GHz [62]. With SpeakEasy, the operator could talk to ten

radios operating under different standards with any hardware modifications. With all of

these features, unfortunately, there were some shortcomings which left much to be desired.

The device was large enough to fit on the back of a pickup truck [62], which is good for

ground station but not if the mobility is an important factor. In 1992 the field programmable

gate arrays (FPGA) were not computationally efficient, hence required a large amount of

time to change their operating characteristics.



29

In this thesis, two software-defined radios have been used to conduct the proposed

research, namely the Universal Software Radio Peripheral (USRP N210) and the RTL-

SDR R2832U. In the subsequent subsections, we discuss the two SDR platforms and the

supporting software in detail.

3.4.1 USRP N210 and RTL-SDR

The USRP N210 and RTL-SDR are two different SDR platforms when compared with

each other, as shown in Table 3.5. The USRP N210 provides a high bandwidth, dynamic

range processing capability. The product architecture includes a Xilinx Spartan 3A-DSP

3400 FPGA [63], 100 MS/s dual ADC, 400 MS/s dual DAC, and gigabit ethernet connec-

tivity to stream data to and from host processors. A modular design allows the USRP

N210 to operate from DC to 6 GHz, while an expansion port allows multiple USRP N210

series devices to be synchronized and used in a MIMO configuration. An optional GPSDO

module can also be used to discipline the USRP N210 reference clock to within 0.01 ppm

of the worldwide GPS standard. The USRP N210 can stream up to 50 MS/s to and from

host applications. Users can implement custom functions in the FPGA fabric, or in the

on-board 32-bit RISC softcore. The FPGA offers the potential to process up to 100 MS/s

in both the transmit and receive directions. The FPGA firmware can be reloaded through

the Gigabit Ethernet interface [30].

Table 3.1: Comparing different technical specifications of USRP N210 and RTL-SDR

Specifications USRP N210 RTL-SDR

Maximum Sampling Rate 100 Msps 3.2 Msps

ADC Resolution 14 bits 8 bits

Frequency Range 400 MHz–4.4 GHz 24 MHz–1766 MHz

RTL-SDR is a relatively inexpensive software defined radio that uses a DVB-T TV tuner

dongle based on the RTL2832U chipset. With the combined efforts of Antti Palosaari, Eric

Fry, and Osmocom, it was found that the signal I/Q data could be accessed directly, which

allowed the DVB-T TV tuner to be converted into a wideband software defined radio via



30

(a) RTL-SDR (b) USRP N210

Figure 3.5: RTL-SDR and USRP running a GNU Radio flow-graph and performing spec-

trum sensing at 450 MHz using normalized energy detection.

a new software driver. Consequently, this means that a $20 TV tuner USB dongle with

the RTL2832U chip can be used as a computer based radio scanner. This sort of scanner

capability would have cost hundreds or even thousands of dollars just a few years ago. The

RTL-SDR is also often referred to as RTL2832U, DVB-T SDR, RTL dongle or the ”$20

Software Defined Radio” [64]. Figure 3.5 shows the RTL-SDR and USRP N210 running a

GNU Radio flowgraph and performing spectrum sensing.

3.4.2 GNU Radio and MATLAB

We have used both GNU Radio [65] and MATLAB [66] software packages in the the-

sis in order to implement the cooperative spectrum sensing for both hard decision and soft

decision schemes. GNU Radio is an open source development toolkit that provides reconfig-

urable signal processing blocks to implement and test out software-defined radios and signal

processing systems. GNU Radio allows for SDR developers to develop unique signal pro-

cessing blocks and SDR systems. GNU Radio was started in 2001, originally forked from the

SpectrumWare project developed at the Massachusetts Institute of Technology [67]. Since

2001, the code base has undergone significant changes, containing almost no code from
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the original SpectrumWare project [68]. Physically, the code consists of three languages:

Python, C++, and SWIG. Python provides the overarching control of the system or pro-

gram, while C++ provides the actual signal processing blocks and mathematics. SWIG is

a wrapper for C++ that allows Python to dynamically wrap around C++ and control or

compile with it. Figure 3.6 better illustrates this architecture used by GNU Radio. It is also

important to mention that there are significant paradigm shifts in the community, pushing

more and more code into the Python realm rather than C++ due to its easier programming

syntax and structure [69]. In Figure 3.7, we implemented a simple energy detection scheme

by using available signal processing blocks in GNU Radio.

Figure 3.6: Block diagram describing the flow of information between GNU Radio and USRP

N210. USRP N210 has in-built Xilinx Spartan 3A FPGA for designing reconfigurable SDR

test-beds.

The GNU Radio software provides the framework and tools for building and running

SDR systems or just perform general signal processing applications. The GNU Radio ap-

plications themselves are generally known as ”flow-graphs”, which are a series of signal

processing blocks connected together. GNU Radio provides a very structured framework
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Figure 3.7: GNU Radio flow-graph for spectrum sensing using energy detection using RTL-

SDR source.

of flow design. Data processing segments are highly self contained in order to minimize

error propagation during system debugging. Since the software is open-source, full access

to all code is provided, giving low-level access to all operations within GNU Radio. Most

of the applications can be implemented with the limited knowledge of the lower layers, but

if specific actions are required for an application then serious depth or knowledge is needed

about the overall projects structure.

MATLAB is a well known engineering, mathematical, biological, and financial software

package. In this thesis, we use MATLAB for post-processing operations, where the results

are later used in a manner similar to an operation of a FC. The decision is based on

the global test statistic for both hard and soft data fusion mechanism. Spectrum sensing

data collected by the sensor nodes is dumped into static files, which are later processed in

MATLAB to make decisions. Figure 3.8 shows the MATLAB editor where we computing

the Receiver Operating Characteristics (ROC) characteristics of soft and hard decision

combining schemes. The plots are also generated to compare both the schemes by data files
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Figure 3.8: Screen capture of MATLAB editor running a code for computing receiver op-

erating characteristics of soft decision combining scheme.

collected in GNU Radio.

3.5 Summary

In this chapter, we provided a brief introduction to the heterogeneous cooperative spec-

trum sensing and examined various spectrum sensing techniques. We also discussed cog-

nitive radios, CSS in heterogeneous networks, and SDR technology. We discussed three

popular spectrum sensing techniques, as well as described the software-defined radio plat-

forms USRP N210 and RTL-SDR. Finally, we briefly studied the GNU Radio and MATLAB

software tools used in the thesis to implement the proposed CSS test-bed.
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Chapter 4

Proposed LTE-R Channel Model

and Framework

This chapter proposes a new model for LTE-R communication system operation in tunnel

environments. Severe channel impairments inside a tunnel such as high Doppler shift caused

by the high velocities of trains and harsh multipath fading environment are incorporated in

the proposed model. In particular, a two-ray propagation channel model is discussed and

mathematical derivations of the K-factor is described. The LTE-R test-bed implementation

in MATLAB is presented and a performance comparison is conducted for QPSK, 16QAM

and 64QAM modulation schemes in a tunnel environment. The results of K-factor variation

in a tunnel environment for a high speed trains. Using the K-factor, we can implement our

channel model, which also takes into effect the high Doppler shift due to the mobility of the

train. The bit-error rate curves are generated for the LTE-R modulation schemes for the

proposed channel model of a high speed train in a tunnel. Finally, we show a time-varying

BER curve for high speed train moving with the velocity v at discrete timesteps.

4.1 Channel Impairments Inside a Tunnel

Tunnel environments are affected by multipath and diffraction effects due to multiple

reflections from the tunnel walls, which leads to a substantial fading environment. By
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deploying LCX cables, we can eliminate the large penetration loss due to tunnel walls.

However, small-scale fading can still cause a large amount of errors and decrease the QoS

for a communication link. High velocity trains experience very high Doppler shifts and

fast fading. These problems can lead to significant BER degradation of the LTE system.

The frequency shifts caused by the Doppler phenomenon can lead to shifts in the sub-

carrier frequencies for Orthogonal Frequency Division Multiplexing (OFDM), which leads

to synchronization errors [24]. The maximum Doppler shifts for a train traveling at 500

km/h is 2.314 kHz for a 5 GHz carrier frequency. This large Doppler shift can also lead

to significant drops in the quality of wireless signals and increase the bit error rate. Thus,

to develop an efficient and reliable communication link inside tunnels, we need to properly

model this channel impairment and build our proposed channel model by taking into account

these tunnel phenomena.

Wireless signals reflect off the objects in path while traveling from the transmitting

antenna to the receiving antenna, creating multiple paths of the wireless signal. This leads

to multipath in the wireless communication system. The following time-varying multipath

channel impulse response considers the effects of Doppler shift and scattering [70]:

h(τ, t) =
L
∑

k=0

hk(t)e
−j2πfcτk(t)δ[τ − τk(t)], (4.1)

where τ is the path delay, t is time in seconds, δ[τ − τk(t)] is the impulse response, fc is

the carrier frequency, hk(t) is the envelope of the time-varying channel and consists of both

large and small-scale fading components. Since the structure of LCX is almost the same

as a leaky waveguide, the large scale fading of channel can be modeled linearly [2]. There

is also no signal shadowing and the line-of-sight (LOS) signal component is always present

along the tunnel. This type of channel fading can be best described by a Ricean fading

model. The probability density function p(α) of a Rician fading model is given by [71]:

p(α) =
2α(1 +K)

Ω
I0

(

2α

√

K +K2

Ω

)

e

−K − α2(1 +K)

Ω , (4.2)

where K is the Rician factor and α is the complex amplitude of the channel response

function that has a unity second moment, i.e., Ω ≡ E[α2] = 1.
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The Doppler effect is observed whenever the signal source is moving with respect to the

receiver. When the signal source is approaching the receiver there is a positive frequency

drift, and negative frequency drift when the source is moving away. The 3GPP channel

model [72] is used for its Doppler shift profile in high speed railway environment. The

measurements obtained for the Doppler frequency shift are implemented for two scenarios.

The first scenario is for an open space while the second scenario is for high speed trains.

Doppler shift is not taken into consideration. There exists a third scenario for tunnels using

multiple antennas. Since the slots of the LCX can be modeled as multiple antenna system,

we use this Doppler shift profile for our proposed channel. The Doppler shift variation fs(t)

is described by:

fs(t) = fd cos θ(t), (4.3)

where fd is the maximum Doppler shift, θ is the elevation angle and cos θ(t) is given by:

cos θ(t) =
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v

(4.4)

where Ds/2 is the initial distance of the train from base-station, and Dmin is base-station

(BS)-Railway track distance, both in meters, v is the velocity of the train in m/s, and t is

time in seconds.

Figure 4.1 shows the Doppler spectrum for fc = 5 GHz and v = 300 Km/h, 400 Km/h

and 500 Km/h, and as we can see in the figure the maximum Doppler shift range is from

-2.314 kHz to +2.314 kHz. These ranges of Doppler shift values can lead to very high

bit-error rate and poor connectivity in communication system. In the following section,

we discuss our proposed channel model that consists of Doppler shift profile for high speed

train and dynamic K-factor for tunnel environment.
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Figure 4.1: Doppler spectrum for LTE-R at different train velocities v (km/h) = 300, 400

and 500 and fc = 5 GHz.

4.2 Proposed Channel Model

The tunnel measurement campaign conducted in the paper [22] shows that the amplitude

variation inside a tunnel follows Rician distribution. In the thesis, we apply the approach

used in [73] for single elevation angle θ and expand it to a time-varying case. In this

thesis, we model θ as a function of time and derive the time-series K-factor for the tunnel

environment. Figure 4.3 describes our proposed channel model, which is implemented using

dynamic K-factor and Doppler shift profile derived using Eq. (4.3). We now discuss the

classical two-ray propagation model and a mathematically derive dynamic K-factor for our

proposed channel model. Figure 4.2 describes the two ray propagation model in an open

free space path-loss environment where the transmitter is in direct line-of-sight (LOS) of

the receiver station.
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Figure 4.2: Two ray propagation model in an open free space path-loss environment.

Figure 4.3: HST channel model consisting of time-series K-factor and Doppler shift caused

due to velocity of the train.

The reflection coefficient Γ [74] as a function of time t is given by:

Γ(t) =
C sin θ(t)−

√

(εr − jχ(t)) − (cos θ(t))2

C sin θ(t)−
√

(εr − jχ(t)) − (cos θ(t))2
, (4.5)

where C = 1 is for horizontal polarization, and C = εr − jχ(t) for vertical polarization.

Furthermore, χ(t) is given by:

χ(t) =
σ

ω(t)ε0
=

σ

2πfr(t)ε0
=

1.8× 1010σ

fr(t)
. (4.6)

with ε0 = 8.854 × 10−12 F/m, and σ is conductivity of the tunnel. The frequency fr(t) is
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the resultant frequency caused by the Doppler shift and is given by:

fr(t) = fc(t)− fs(t) (4.7)

where fc(t) is the sub-carrier frequency, and fs(t) is the Doppler shift given by Eq. (4.3).

The phase difference function of t, ∆φ(t), between the two reflected paths is given by [29]:

∆φ(t) =
2π

λ(t)

(

√

D2
LOS + (ht + hr)2−

√

D2
LOS + (ht − hr)2

)

,

(4.8)

where λ(t) is the resultant time-varying wavelength at the receiver, DLOS is the distance

between the transmitter and receiver antennas which is changing dynamically with t, and

both ht and hr are the heights of the transmitter and receiver antennas, respectively.

The resultant received power pr(t) is given by the sum of the LOS received power plus

the received multipath power, yielding:

pr(t) = pt(t)

(

λ

4πd

)2

GtGr

[

1+

|Γ(t)|2 + 2|Γ(t)| cos(∠Γ(t)− ∠∆φ(t))

]

,

(4.9)

which is a function of the transmitter power pt(t) and the reflection coefficient Γ(t), where

Gt and Gr are the transmitter and receiver antenna gains, respectively. The K-factor is

defined as the ratio of the direct path power and the power in the scattered paths, and is

given as:

K(t) =
1

|Γ(t)|2 + 2|Γ(t)|cos(∠Γ(t)− Γ(t)∆Φ(t))
(4.10)

4.3 LTE-R Simulation Testbed in MATLAB

We have implemented the simulation testbed in MATLAB, consisting of a transmitter,

a channel, and a receiver. The K-factor values for the channel model are obtained from

Eq .(4.6) and are used to generate a time-series BER curve for different modulation schemes

used in LTE-R. The values used for the electrical material properties for tunnel walls [75]

and its specifications are given in Table 4.1. The relative permittivity for the tunnel walls

is taken as εr = 5 and σ is set to 0.1. The simulation is conducted for velocity of v = 300,
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Table 4.1: Tunnel and Tx/Rx Characteristics.

Dimensions Simulation Parameters

Tunnel Width = 8.6 m, Height = 7.3 m εr = 5, σ = 0.1 Sm−1

Leaky Feeder Cable (Tx) Height = 6.1 m fc (GHz) = 2, 3, 5

Train (Rx) Height = 4.2 m v (km/h) = 300, 400, 500

400 and 500 Km/h. Since the frequency band allocation for LTE-R will most probably be

from 2–6 GHz, hence the fc values chose are 2, 3 and 5 GHz. The height of the receiver is

assumed to be around the length of the train and height of tunnel is chosen as the size of

the leaky coaxial cable.

Figure 4.4: Block diagram of a communication system through a HST channel using QPSK,

16-QAM and 64-QAM.

Figure 4.4 shows the block diagram of the simulation test-bed used for the performance

analysis of LTE-R. The random source block generate the symbol between 0 and M −
1, where M = 4, 16, 64 for QPSK, 16QAM and 64QAM, respectively. The data is then

modulated with specific modulation type and then pass through the proposed HST channel
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model. The additive white Gaussian noise is added after applying the channel coefficients

to the signal data. We then demodulate the data packets and pass it to the ber calculator

object which then computes the bit-error rate. The simulations are run for SNR values

ranging from 0–20 dB and plots are generated for all three modulation schemes.

4.4 HST LTE-R in Tunnel Environments

Using the LTE System Toolbox [76] provided by MATLAB, we generated Figure 4.5,

which shows the received resource grid without equalization. The frame worth of data was

modulated with QPSK, 16QAM and 64QAM for equal number of subcarriers and mapped

to symbol in a subframe. We generate ten subframes individually and create one frame after

merging all subframes. The frame is passed through our proposed high speed train channel

model, with additive white Gaussian noise added. We can see that without equalization

the received resourced grid has lot of errors and will lead to numerous retransmissions.
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Figure 4.5: Received LTE-R OFDM signal under HST Ricean Fading Environment.

In Figure 4.6, we calculated the K-factor for the HST inside a tunnel with velocity v =
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500 km/h for different center frequencies. It shows the variation of the Rician K-factor with

the distance between the transmitter and receiver increasing as the train is moving through

the tunnel. We computed the K-factor for a leaky cable with periodic slots separated by

distance d in fixed time-steps. The plot shows the K-factor varies significantly over short

distances. Therefore, assuming a single K-factor for the channel model is not accurate, we

use time-series K-factor to do our channel modeling.
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Figure 4.6: K-factor versus DLOS for different center frequencies fc = 2, 3 and 5 GHz.

To show the impact of varying K-factor on the channel, we computed the BER curve

for different modulation schemes of LTE-R with different K-factors. Figure. 4.7a shows the

BER versus SNR performance for QPSK modulation for different K-factors of the tunnel

channel model. The figure demonstrates that for higher K-factor we have a better perfor-

mance while the performance degrades as K-factor decreases. Figure.4.7b shows the Eb/N0

versus BER for 16-QAM, which possesses a BER that is higher when compared to QPSK.

Figure. 4.7c shows the Eb/N0 versus BER for 64-QAM for different K-factors. Finally, we

compare all the modulation schemes for the best and worst K-factor in Figure. 4.7d.

In Figure. 4.8, we calculate the BER performance for a high speed train in discrete

time-steps. As the train moves towards the LCX slot, the SNR goes high and the SNR
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Figure 4.7: Comparison of Eb/N0 verus BER for LTE-R OFDM modulation with different

K-factors. The first three sub-figures shows the Eb/N0 versus BER for individual modula-

tion schemes employed in LTE-R and in last plot we compare all the modulation schemes

for different K-factors.

decreases as the train moves away. This trend can be observed in the plot, as we are

moving towards the LCX slot the BER decreases and once we move away from the slot

BER starts increasing. It is important to consider here that due to the varying nature of

theK-factor the BER curve also varies significantly. Hence, by considering the time-varying

nature of K-factor we can have a better performance analysis.
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Figure 4.8: BER variation with time for HST with different modulation schemes of LTE-R.

As the train moves towards the antenna the general trend of BER goes down with small-scale

fluctuations due to varying K-factor.

4.5 Summary

We analyzed the BER performance of a LTE-R system for high speed trains inside

tunnel environments using our proposed channel model. We derived the time-series K-factor

using the classical two-ray propagation model. Using the time-series K-factor we build our

channel model to test the LTE-R communication system for the HSR. We analyzed the

LTE-R performance under the channel model for different modulation schemes for various

K-factors.
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Chapter 5

Proposed Heterogeneous CSS

Prototype

This chapter outlines the implementation of heterogeneous test-bed for cooperative spec-

trum sensing using USRP N210 and RTL-SDR software defined radios. We start with het-

erogeneous cooperative spectrum sensing, where we first describe the experimental setup,

which is implemented using soft and hard fusion schemes. The sensor nodes, which consists

of three RTL-SDRs and one USRP N210, are placed in a controlled indoor laboratory envi-

ronment approximately 8-10 meters apart. The signal source is being simulated by another

USRP N210, which is transmitting a DQPSK signal at 450 MHz. The post-processing is

done on a Fusion Center (FC), which makes the decision based on global test statistic using

both soft and hard decision schemes. Finally, we discuss the results where the performance

of both the schemes are evaluated in a real fading scenario on a hardware test-bed.

5.1 Experimental Setup for Proposed Heterogeneous CSS

Prototype

The measurements are performed using software-defined radios (SDRs) and the post-

processing is conducted on desktop computers. The desktop computer consists of i7 Intel

processor with eight cores and 3.41 GHz clock cycle running Ubuntu 16.04. The sensor node
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network is implemented using RTL-SDR dongles and Ettus Research USRP N210 on GNU

Radio Software platform. The measurements are analyzed in MATLAB and measurement

plots are generated. Figure 5.1 presents a photograph of the actual proposed prototype

system, which consists of three RTL-SDRs and two USRP N210s. One USRP N210 (middle)

acts as a primary user while the other SDRs operate as sensor nodes. All the SDRs were

placed in a laboratory environment at least 5-6 meters away from the primary user.

These sensor nodes collect the spectral data, normalize it, and then transmit it to the FC

for the detection. For soft data fusion, the data is quantized in the local sensor nodes before

it is transmitted to FC due to the limited bandwidth of the overhead channel. The delays

caused by the different sensor nodes is ignored, as it would require extra computational

complexity and it is out of the scope of this thesis. The USRP N210 transmits a DQPSK

modulated signal with 4 samples per symbol with the alpha factor of the root raised cosine

filter set to 0.35. The transmitter gain and amplitude are varied in order to get different

SNR values for each node. The sensor nodes collect the data via 300,000 energy samples,

and each measurement is conducted three times in order to eliminate any irregularities.

The noise variance σ2
n for each SU is estimated by running each sensor node without any

transmission at 450 MHz. The flow-graph is executed multiple times to get a better estimate

of noise variance. Once the data is received from all the sensor nodes, the Probability of

Detection (Pd) is calculated for different received SNR values for all the sensor nodes. To

properly evaluate the performance of each of the cooperative spectrum sensing techniques,

the average Pd is calculated for each scheme.

All four sensor nodes have different sampling rates to model potential differences existing

within a heterogeneous environment. The USRP N210, which is also used as a 4th sensor

node, has a very low noise floor compared to the three other radios and hence can detect a

signal with very low SNR. This is a challenging factor for data fusion when the nodes have

different operating parameters and the FC has to make optimal decisions by combining this

varying data. Due to their spatial diversity, the node closest to the transmitter will have

different SNR compared to the other nodes. All these factors impact the data combining

at the FC. The GNU Radio flow-graph for the sensor nodes is shown in the Figure 5.3.

The same flow-graph is used for all sensor nodes with different operating parameters. For
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Figure 5.1: Experimental Test-Bed For Cooperative Sensing in Heterogeneous Network. Sensors 1, 2 and 4 are RTL-SDR units,

sensor 3 is USRP N210 and TX is another USRP N210 unit which is used as a signal source for this work.
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the USRP N210 node, we replaced the RTL-SDR source with UHD:USRP Source gnuradio

block. The central frequency is kept at 450 MHz and the operating parameters of each

sensor node is provided in Table 5.1. The values of the transmitter amplitude and gain

are varied to get the different sets of SNR values which are used for computing Pd values

for each node. The plots are generated in MATLAB by using the data files from the GNU

Radio platform.

To evaluate the performance of the cooperative spectrum sensing, the USRP N210 is

used as a transmitter, where its gain and amplitude are varied. Figure 5.2 shows the

flow-graph used for the transmitter. The flow-graph starts with the random source block,

which generates the random data between zero and three, and passes it to the differential

phase shift keying (DPSK) modulator block. The DPSK block modulates the signal with

differential quadrature phase shift keying (DQPSK) scheme, applies root raise cosine filter

with excess bandwidth value of 0.35, and passes it to a multiply const block. It is used

to control the SNR value and finally the data is dumped into the USRP N210 sink, which

transmits the data over the air where other sensor nodes can estimate the signal presence

using soft and hard decision schemes.

Figure 5.2: GNU Radio Flowgraph For Transmitter Running on USRP N210.

The sensor nodes are placed inside the laboratory and are connected to distributed

system. Figure 5.3 shows the flowgraph running on the receiver, for flow-graph running

on USRP we use UHD:USRP source instead of RTL-SDR source. The frequency around

450 MHz is sweeped in regular intervals and the continuous data stream is passed to FFT

block, which does the forward FFT operation with a Blackmann Harris window. The data
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Figure 5.3: GNURadio Flowgraph For USRP and RTL-SDR sensor nodes.

Table 5.1: Operating Characteristics of Sensor Nodes

Nodes Fs Gain FFT Size Bin Size

RTL-SDR-1 1.1 Msps 10 dB 512 2.148 KHz

RTL-SDR-2 1.8 Msps 10 dB 512 3.515 KHz

RTL-SDR-3 2.4 Msps 10 dB 512 4.687 KHz

USRP N210 7.2 Msps 10 dB 512 14.062 KHz

is first converted into parallel stream of the FFT size using stream to vector GNU Radio

block. The complex-to-magnitude block converts the complex values into float and take

their magnitude. The bin selector block is used to select the bin where the narrowband

signal is being transmitted. We then take the moving average of the values, normalize them

and then store it to the file sink. The normalized energy values are collected for each sensor

at different SNR values and then post processing is performed in MATLAB. The operating

parameters of each sensor node is provided in the Table 5.1.

5.2 Hard-Data Fusion Scheme

Cooperative spectrum sensing using hard-data fusion is a proven method for improving

the detection performance. In this scheme, all sensor nodes sense the signal source indi-

vidually and send their sensing decision in the form of 1-bit binary data. For hard data

fusion, the noise wq can be neglected since the sensor nodes can just transmit their decision
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statistic in an efficient way, where the floating values are not required. For example, the

SUs can just transmit ”1” and ”0” depending on whether the primary user is present or

absent. Furthermore, in the Fusion Center the decision can be made by using the OR, AND,

or majority rule algorithms. For the AND decision rule, the FC performs the logical AND

operation for all the local decisions and conducts the detection. Similarly, for the OR rule,

the logical OR operation is used to decide whether the signal is present or not. Finally, the

majority rule conducts majority vote and decides based on it [77,78]. The Pd for AND, OR

and Majority Rule for R = 4 sensor nodes is given by [79]:

Pd,AND = (Pd)
4

Pd,OR = 1− (1− Pd)
4 (5.1)

Pd,MJR = 6P 2
davg(1− Pdavg)

2 + 4P 3
davg(1− Pdavg) + P 4

davg

where Pdavg is the average probability of detection of the sensor units. Similarly, we can

calculate the Pfa for all three schemes by replacing Pdavg by Pfaavg in Eq (5.4).

Figure 5.4: Flowchart showing AND, OR and Majority Rule Fusion schemes.
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5.3 Soft-Data Fusion Scheme

In soft-data fusion based cooperative spectrum sensing, information from different CR

users is combined to make a decision on the presence or absence of the primary user. In

Section 5.2, we discussed the conventional hard combination, where each CR user feedbacks

one-bit message regarding whether observed energy is above a certain threshold. In this

section, we discuss soft combination of the local test statistic of each sensor nodes and

how it is combined to make the decision in the FC. Since in the soft combination accurate

energy values from different CR users are utilized to make a decision, this scheme is more

accurate and complex to implement. In this thesis, we discuss two popular soft decision

fusion schemes: Maximum Normalized Energy (MNE) scheme and Equal Gain Combining

(EGC) scheme.

For MNE, the local test statistic in each sensor node is computed and then transmitted

to FC after quantization. In this thesis, we are using four sensor nodes equipped with

different sensing abilities such as the sampling rates and noise floor. Therefore, the global

test statistic G can be modeled by:

GMNE = max{βr}. (5.2)

The Pfa and Pd values for the MNE-CS is given by [28]:

Pfa = 1−
R
∏

r=1

(

1−Q

(

τ − 1
√

1

Mr
+ σq,r

))

, (5.3)

Pd = 1−
R
∏

r=1

(

1−Q

(

τ − 1− γr
√

1 + 2γr
Mr

+ σq,r

))

, (5.4)

where τ is the global threshold for MNE, Mr is the number of samples for rth sensor node,

and σq,r is the noise variance for the received local test statistic. The algorithm for MNE-CS

is illustrated by the flowchart in Figure 5.5.

For EGC, the global decision statistic is the mean of the β values for all the sensor nodes.

It has been shown in [28] that the EGC scheme performs better than the MNE scheme in
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Figure 5.5: Flowchart describing Maximum Normalized Energy Scheme.

a noisy channel. The EGC scheme can be modeled by:

GEGC =
1

M

M
∑

r=1

βr, (5.5)

where GEGC is global test statistic of EGC scheme. The Pfa and Pd values for the EGC-CS

scheme are given by:

Pfa = Q

(

τ − 1
√

1

R2

∑R
r=1

(

1

Mr
+ σ2

q,r

)

)

, (5.6)

Pd = Q

(

τ − 1

R

∑R
r=1(1 + γr)

√

1

R2

∑R
r=1

(

1 + 2γr
Mr

+ σ2
q,r

)

)

. (5.7)

The algorithm for EGC-CS is also illustrated by the flowchart in Figure 5.6.
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Figure 5.6: Flowchart describing Equal Gain Combining Scheme.

5.4 Experimental Results

In this thesis, we implemented the heterogeneous cooperative spectrum sensing (CSS)

using both hard and soft data fusion schemes. We start by collecting the data across 450

MHz band for all sensor nodes in a distributed manner. The spectrum sensing data is nor-

malized for both soft and hard data fusion schemes using the same operational parameters

to compare their performance accurately. The measurements are performed using software-

defined radios (SDRs) and the post processing is conducted on desktop computers. The

desktop computer consists of an i7 Intel processor with eight cores and 3.41 GHz clock cycle

running Ubuntu 16.04. The sensor node network is implemented using RTL-SDR dongles

and Ettus Research USRP N210 on GNU Radio Software platform. These sensor nodes

collect the spectral data, normalize it and then transmit it to the FC for the detection. For

soft data fusion, the data is quantized in the local sensor nodes before it is transmitted to

FC due to the limited bandwidth of the overhead channel.
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Figure 5.7 shows the Pdavg versus SNRavg for all four sensor nodes when hard decision

combining is performed. It can be seen that OR performs the best, while AND performs

the worst in a fading channel. The SNR average was computed by taking the mean of all

the SNRs for the sensor nodes. The SNR was varied for each sensor node by varying the

transmitter amplitude and gain in the GNU Radio flow-graph.
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Figure 5.7: Probability of Detection versus SNRavg For Hard Decision Combining.

In Figure 5.8, the ROC characteristics for the hard decision combining at two different

SNRavg for all three hard data fusion schemes are provided. It is pretty evident from the

plot that the OR scheme performs better than both the AND and majority rule schemes.

The AND scheme performs the worst because it depends on all sensor nodes to have same

decision, which is very difficult in a real fading environment. For lower SNR values, OR

outperform the majority rule by a large margin but as we go to higher SNR values their

performance converges.

Figure 5.9 shows the Pdavg versus SNRavg for both soft and hard data fusion schemes.

MNE and OR schemes overlap on the plot because in MNE scheme we take the maximum
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normalized energy and compare it the global test statistic, whereas for the OR scheme we

estimate the signal source by either of sensor node decision. This makes both the scheme

almost same and this is visible in the results. The EGC scheme performs the best since it

takes into consideration all the sensor nodes and its global test statistic gives equal weight

to all sensor nodes. The AND scheme performs the worst as expected. It is very important

to understand that at higher SNR values, SNRavg > 2 dB, we see all schemes converging to

the same decisions. This tells us that in noiseless environment, we can choose hard fusion

schemes because of their implementation complexity and we can select soft fusion in severe

fading environment as they tend to be more accurate in these scenarios.

5.5 Summary

In this chapter, we described the test-bed setup using USRP N210 and RTL-SDR with

different operating characteristics. The proposed heterogeneous CSS performance for both

soft and hard data fusion approaches was derived at different SNR values. For soft-data
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fusion, scheme we use maximum normalized energy (MNE) and equal gain combining (EGC)

scheme, and for hard data fusion scheme we used AND, OR and Majority Rule approaches.

The results show that soft-data fusion scheme performs better than hard data fusion schemes

for low SNR values, but as we increase SNR both schemes converges to same values. We

learned that for severe environment, we can use soft-fusion and for noise-free environment

hard decision schemes can be used due to their low implementation complexity.
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Chapter 6

Conclusion

The research achievements of this thesis includes a simulation test-bed that is imple-

mented in MATLAB in order to assess the performance of LTE-R in our proposed channel.

The proposed channel is built on two-ray propagation model with time-series K-factor,

which we have derived mathematically and also uses Doppler shift profile for high speed

trains. We also presented the implementation of a hardware test-bed for cooperative spec-

trum sensing in heterogeneous networks, which employs both soft and hard data fusion

schemes in a real fading scenario.

6.1 Research Outcomes

• We analyzed the BER performance of a LTE-R system for high speed trains inside

tunnel environments using our proposed channel model. For the implementation of our

channel, we first derived the time-series K-factor function using the classical two-ray

propagation model.

• We analyzed the LTE-R performance under our channel model for different modu-

lation schemes for various K-factors. We also compared all the modulation schemes

under worst and best K-factor, and we observed that for low Eb/N0 sub-carriers must

be modulated with QPSK for maintaining reliable communication link.

• We also conducted an experimental study for cooperative spectrum sensing using
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normalized energy detection for both soft and hard decision combining techniques. It

was found that the soft fusion schemes works better than hard decision for real fading

environment with low SNR values. For higher values, all schemes converged to the

same decision which led us to conclude that hard fusion schemes pays better when

the environment is less noisy due to their low complexity as compared to soft fusion.

6.2 Future Work

• For future work we will use LTE toolbox in MATLAB which gives more realistic

picture of the simulation environment and we will expand the channel model to cover

more scenarios for high speed railway. We will also conduct the channel measurement

campaign inside tunnel to reinforce our simulation results.

• Currently, the Positive Train Control (PTC) is being investigated to provide advanced

safety operations for railway system in open space environment. We will simulate PTC

for LTE-R communication system in a tunnel environment using our channel model.

• In heterogeneous cooperative spectrum sensing, it is worth exploring an increase in the

number of nodes and adding mobility, for testing the performance of heterogeneous

networks in a time-variant channel.
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C. Cruces, J. Moreno, J. P. Garćıa-Nieto et al., “A survey of channel measurements and

models for current and future railway communication systems,” Mobile Information

Systems, vol. 2016, 2016.

[43] S. Mumtaz, K. M. S. Huq, and J. Rodriguez, “Direct mobile-to-mobile communication:

Paradigm for 5G,” IEEE Wireless Communications, vol. 21, no. 5, pp. 14–23, 2014.

[44] K. Noritaka, N. Takena, and N. Tsunw, “Leaky coaxial cable,” May 7 1974, US

Patent 3,810,186. [Online]. Available: https://www.google.com/patents/US3810186

[45] A. Motley and D. Palmer, “Directed radio coverage within buildings,” in Proc. IEE

Conf. Radio spectrum conversion techniques, 1983.

[46] A. A. Saleh, A. Rustako, and R. Roman, “Distributed antennas for indoor radio com-

munications,” IEEE Transactions on Communications, vol. 35, no. 12, pp. 1245–1251,

1987.

https://www.google.com/patents/US3810186


64

[47] H. Cao and Y. Zhang, “Radio propagation along a radiated mode leaky coaxial cable

in tunnels,” in Microwave Conference, 1999 Asia Pacific, vol. 2. IEEE, 1999, pp.

270–272.

[48] T. Takatsu, “The history and future of high-speed railways in japan,” Japan Railway

& Transport Review, vol. 48, pp. 6–21, 2007.

[49] K. Hassan, I. Dayoub, W. Hamouda, C. N. Nzeza, and M. Berbineau, “Blind digital

modulation identification for spatially-correlated MIMO systems,” IEEE Transactions

on Wireless Communications, vol. 11, no. 2, pp. 683–693, 2012.

[50] S. Kharbech, I. Dayoub, E. Simon, and M. Zwingelstein-Colin, “Blind digital modu-

lation detector for MIMO systems over high-speed railway channels,” in International

Workshop on Communication Technologies for Vehicles. Springer, 2013, pp. 232–241.

[51] K. Hassan, I. Dayoub, W. Hamouda, and M. Berbineau, “Automatic modulation recog-

nition using wavelet transform and neural network,” in Intelligent Transport Systems

Telecommunications,(ITST), 2009 9th International Conference on. IEEE, 2009, pp.

234–238.

[52] E. P. Simon and M. A. Khalighi, “Iterative soft-kalman channel estimation for fast

time-varying MIMO-OFDM channels,” IEEE Wireless Communications Letters, vol. 2,

no. 6, pp. 599–602, 2013.

[53] K. Gill and A. Wyglinski, “Heterogeneous cooperative spectrum sensing test-bed using

software-defined radios,” in 2017 IEEE 86th Vehicular Technology Conference (VTC-

Fall). IEEE, 2017.

[54] F. Weidling, D. Datla, V. Petty, P. Krishnan, and G. Minden, “A framework for RF

spectrum measurements and analysis,” in New Frontiers in Dynamic Spectrum Access

Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on. IEEE,

2005, pp. 573–576.

[55] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,”

IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, Aug 1999.



65

[56] B. Barker, A. Agah, and A. M. Wyglinski, “Mission-oriented communications proper-

ties for software-defined radio configuration,” Cognitive Radio Networks, p. 435, 2008.

[57] T. R. Newman, B. A. Barker, A. M. Wyglinski, A. Agah, J. B. Evans, and G. J. Min-

den, “Cognitive engine implementation for wireless multicarrier transceivers,” Wireless

communications and mobile computing, vol. 7, no. 9, pp. 1129–1142, 2007.

[58] T. R. Newman, R. Rajbanshi, A. M. Wyglinski, J. B. Evans, and G. J. Minden,

“Population adaptation for genetic algorithm-based cognitive radios,” Mobile networks

and applications, vol. 13, no. 5, pp. 442–451, 2008.

[59] G. Yang, J. Wang, J. Luo, O. Y. Wen, H. Li, Q. Li, and S. Li, “Cooperative spec-

trum sensing in heterogeneous cognitive radio networks based on normalized energy

detection,” IEEE Transactions on vehicular technology, vol. 65, no. 3, pp. 1452–1463,

2016.

[60] Y. Zeng and Y.-C. Liang, “Eigenvalue-based spectrum sensing algorithms for cognitive

radio,” IEEE transactions on communications, vol. 57, no. 6, 2009.

[61] J. Mitola, “Software radios-survey, critical evaluation and future directions,” in [Pro-

ceedings] NTC-92: National Telesystems Conference, May 1992, pp. 13/15–13/23.

[62] R. I. Lackey and D. W. Upmal, “Speakeasy: the military software radio,” IEEE Com-

munications Magazine, vol. 33, no. 5, pp. 56–61, May 1995.

[63] Xilinx-Spartan-3A. [Online]. Available: https://www.xilinx.com/products/silicon-devices/fpga/xa-spartan-

[64] 20$ RTL-SDR. [Online]. Available: https://www.rtl-sdr.com/about-rtl-sdr/

[65] GNU Radio. [Online]. Available: http://gnuradio.org/

[66] MATLAB2017a. [Online]. Available: https://www.mathworks.com/products/matlab.html

[67] D. L. Tennenhouse and V. G. Bose, “Spectrumware: A software-oriented approach to

wireless signal processing,” in Proceedings of the 1st Annual International Conference

on Mobile Computing and Networking, ser. MobiCom ’95. New York, NY, USA: ACM,

1995, pp. 37–47. [Online]. Available: http://doi.acm.org/10.1145/215530.215551

https://www.xilinx.com/products/silicon-devices/fpga/xa-spartan-3a.html
https://www.rtl-sdr.com/about-rtl-sdr/
http://gnuradio.org/
https://www.mathworks.com/products/matlab.html
http://doi.acm.org/10.1145/215530.215551


66

[68] V. Bose, M. Ismert, M. Welborn, and J. Guttag, “Virtual radios,” IEEE Journal on

selected areas in communications, vol. 17, no. 4, pp. 591–602, 1999.

[69] T. F. Collins, “Implementation and analysis of spectral subtraction and signal separa-

tion in deterministic wide-band anti-jamming scenarios,” Ph.D. dissertation, Worcester

Polytechnic Institute, 2013.

[70] M. Pätzold, Mobile radio channels. John Wiley & Sons, 2011.

[71] F. F. Digham, M.-S. Alouini, and M. K. Simon, “On the energy detection of unknown

signals over fading channels,” in Communications, 2003. ICC’03. IEEE International

Conference on, vol. 5. Ieee, 2003, pp. 3575–3579.

[72] 3rd Generation Partnership Project, “Technical specification group radio access net-

work; Spatial channel model for MIMO simulations,” 3GPP, Sophia Antipolis, France,

Tech. Rep. TR 25.996 V6.1.0, 2003.

[73] P. V. R. Ferreira and A. M. Wyglinski, “Performance analysis of UHF mobile satellite

communication system experiencing ionospheric scintillation and terrestrial multipath

fading,” in Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd. IEEE,

2015, pp. 1–5.

[74] D. Jordane et al., Electromagnetic waves and radiating systems. Prentice-Hall Of

Lndia Private Limited; New Delhi, 1967.

[75] K. Arshad, F. Katsriku, A. Lasebae et al., “Effects of different parameters on atten-

uation rates in circular and arch tunnels,” PIERS Online, vol. 3, no. 5, pp. 607–611,

2007.

[76] LTE System Toolbox. [Online]. Available:

https://www.mathworks.com/products/lte-system.html

[77] A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for opportunistic access

in fading environments,” in New Frontiers in Dynamic Spectrum Access Networks,

2005. DySPAN 2005. 2005 First IEEE International Symposium on. IEEE, 2005, pp.

131–136.

https://www.mathworks.com/products/lte-system.html


67

[78] J. Duan and Y. Li, “Performance analysis of cooperative spectrum sensing in differ-

ent fading channels,” in Computer Engineering and Technology (ICCET), 2010 2nd

International Conference on, vol. 3. IEEE, 2010, pp. V3–64.

[79] S. Nallagonda, S. D. Roy, A. Chandra, and S. Kundu, “Performance of cooperative

spectrum sensing in hoyt fading channel under hard decision fusion rules,” in Comput-

ers and Devices for Communication (CODEC), 2012 5th International Conference on.

IEEE, 2012, pp. 1–4.



68

Appendix A

Heterogeneous Cooperative

Spectrum Sensing Code

A.1 harddecisionpdroc.m

% Hard-Decision Combining Results For Sensor Nodes

clc;

close all;

clear all;

%% Parameter Initialization

N = 32;

k=4;%sensor nodes..

variance = 24.32e-9;

pfa = 0.05;

threshold = (qfuncinv(pfa)+sqrt(N)).*sqrt(N)*2*variance;

snrthreotical = -18:0.5:20;

snrlinear = 10.ˆ(snrthreotical/10);

%% SNR values from USRP and RTL-SDR

snrpracticalavg = [-18.23,-14.22,-13.1,-12.22,-10.35,-8.25,-5.3,-2.1,0.13,...

1.34,2.58,3.76,8.98,11.33,12.35,13.45,15.77];

snrlinearprac = 10.ˆ(snrpracticalavg/10);

%% Computing Detection Probability and ROC Characteristics
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pdprac = qfunc((threshold-2*N*variance.*(1+snrlinearprac))./...

(sqrt(N.*(1+2*snrlinearprac))*(2*variance)));

pdpracor = 1-(1-pdprac).ˆ4;

pdpracand = pdprac.ˆ4;

tmp1 = (1-pdprac).ˆ2;

tmp2 = (1-pdprac);

pdpracmjr = (6*pdprac.ˆ2).*tmp1+(4*pdprac.ˆ3).*tmp2+pdprac.ˆ4;

pfapracor = 1-(1-pfa).ˆ4;

pfapracand = pfa.ˆ4;

tmp1 = (1-pfa).ˆ2;

tmp2 = (1-pfa);

pfapracmjr = (6*pfa.ˆ2).*tmp1+(4*pfa.ˆ3).*tmp2+pfa.ˆ4;

%% ROC Characteristics...

figure(1)

hold on;

grid on;

plot(pfapracor,pdpracor(:,5),'-->','LineWidth',2,'MarkerFaceColor','auto');

plot(pfapracor,pdpracor(:,7),'-->','LineWidth',2,'MarkerFaceColor','auto');

plot(pfapracand,pdpracand(:,5),'-d','LineWidth',2,'MarkerFaceColor','auto');

plot(pfapracand,pdpracand(:,7),'-d','LineWidth',2,'MarkerFaceColor','auto');

plot(pfapracmjr,pdpracmjr(:,5),'--','LineWidth',2,'MarkerFaceColor','auto');

plot(pfapracmjr,pdpracmjr(:,7),'--','LineWidth',2,'MarkerFaceColor','auto');

xlabel('Average Probability Of False Alarm');

ylabel('Average Probability of Detection');

title('ROC Characterisitcs of Hard Decision Combining');

hold off;

set(gca,'fontsize',30,'box','on','LineWidth',2,'GridLineStyle','--','GridAlpha'

,0.7);

lgd = legend('OR SNR=-10.35dB','OR SNR=-5.3dB','AND SNR=-10.35dB',...

'AND SNR=-5.3dB','Majority SNR=-10.35dB','Majority SNR=-5.3dB');

lgd.FontSize=20;

%% Probability of detection

figure(2)

hold on;
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grid on;

plot(snrpracticalavg,pdpracor,'->','LineWidth',2);

plot(snrpracticalavg,pdpracand,'-<','LineWidth',2);

plot(snrpracticalavg,pdpracmjr,'-d','LineWidth',2);

xlabel('SNR {avg} in (dB)');

ylabel('Average Probability of Detection');

title('P {davg} vs SNR {avg} for Hard Decision Combining');

hold off;

set(gca,'fontsize',30,'box','on','LineWidth',2,'GridLineStyle','--','GridAlpha'

,0.7);

lgd = legend('OR Decision','AND Decision','Majority Rule Decision');

lgd.FontSize=20;

axis([-18.23 15.77 0 1])

A.2 softharddecisionpd.m

% Soft Decision Combining for sensor nodes...

%% Initializing parameters..

close all;

clear all;

N = [100,200,300,400];% Different sum factor

k=4;% Number of Sensor Nodes

variance = [24.025e-9,23.695e-9,25.678e-9,0.0323e-9];

pfa = 0.05;%Probability of false alarm

for i=1:4

threshold(i) = (qfuncinv(pfa)+sqrt(N(i)))*sqrt(N(i))*2*variance(i);

end

% SNR Values from four sensor nodes

snrpractical = [-21.45,-18.23,-15.45,-13.3,-12.67,-9.35,-2.23,-4.32,2.98,6.95,13

.57,21.78;...

-22.23,-20.22,-17.34,-15.32,-13.45,-11.27,-7.75,-5.67,2.53,4.78

,12.67,20.32;...

-25.34,-23.34,-21.67,-20.33,-16.76,-13.38,-8.56,-6.53,0.38,1.34

,7.89,16.54;...

-27.32,-24.97,-22.34,-22.23,-17.34,-14.32,-11.35,-7.85,-2.35,-0
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.98,2.38,5.98];

for i=1:4

snrlinearprac(i,:) = 10.ˆ(snrpractical(i,:)/10);

end

for i=1:4

pdprac(i,:) = qfunc((threshold(i)-2*N(i)*variance(i).*(1+snrlinearprac(i,:)))./

...

(sqrt(N(i)*(1+2*snrlinearprac(i,:)))*(2*variance(i))));

end

for i=1:12

snravg(i) = mean(snrpractical(:,i));

end

%% MNE based CS..

pdpracmne = 1-(1-pdprac(1,:)).*(1-pdprac(2,:)).*(1-pdprac(3,:)).*(1-pdprac(4,:))

;

pdpracand = mean(pdprac).ˆ4;

pdpracm = mean(pdprac);

pdpracor = 1-(1-pdpracm).ˆ4;

tmp1 = (1-pdpracm).ˆ(k-2);

tmp2 = (1-pdpracm);

pdpracmjr = (6*pdpracm.ˆ(k-2)).*tmp1+(4*pdpracm.ˆ(k-1)).*tmp2+pdpracm.ˆk;

figure(1)

hold on;

grid on;

plot(snravg,pdpracmne,'-<','LineWidth',2,'MarkerFaceColor','auto');

axis([-20 10 0 1])

%% EGC based CS..

snrlinearmean = 10.ˆ(snravg/10);

snrlinear = 10.ˆ(snrpractical/10);

pfa = 0.01;

M= mean(N);

threshold = mean(threshold);

for i=1:length(snravg)

num(i) = threshold-snrlinearmean(i);

den(i) = (1/16)*((1+2*snrlinear(1,i))/N(1)+variance(1)+(1+2*snrlinear(2,i))/

N(2)+variance(2)+(1+2*snrlinear(3,i))/N(3)+variance(3)+(1+2*snrlinear(4,

i))/N(4)+variance(4));
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pdegc(i) = qfunc(num(i)/sqrt(den(i)));

end

%% Plotting the data..

plot(snravg,pdegc,'-d','LineWidth',2,'MarkerFaceColor','auto');

plot(snravg,pdpracand,'-s','LineWidth',2,'MarkerFaceColor','auto');

plot(snravg,pdpracor,'-s','LineWidth',2,'MarkerFaceColor','auto');

plot(snravg,pdpracmjr,'->','LineWidth',2,'MarkerFaceColor','auto');

title('P {davg} vs SNR {avg} for Soft and Hard Decision Combining');

xlabel('SNR {avg} in (dB)');

ylabel('Average Probability of Detection');

set(gca,'fontsize',30,'box','on','LineWidth',2,'GridLineStyle','--','GridAlpha'

,0.7);

legend('MNE Combining','EGC Combining','AND Rule','OR Rule','Majority Rule');

A.3 spectrumsenseusrp.py

#!/usr/bin/env python

#

# Copyright 2005,2007,2011 Free Software Foundation, Inc.

#

# This file is part of GNU Radio

#

# GNU Radio is free software; you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation; either version 3, or (at your option)

# any later version.

#

# GNU Radio is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with GNU Radio; see the file COPYING. If not, write to
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# the Free Software Foundation, Inc., 51 Franklin Street,

# Boston, MA 02110-1301, USA.

#

from gnuradio import gr, eng notation

from gnuradio import blocks

from gnuradio import audio

from gnuradio import filter

from gnuradio import fft

from gnuradio import uhd

from gnuradio.eng option import eng option

from optparse import OptionParser

import sys

import math

import struct

import threading

from datetime import datetime

import time

from gnuradio.wxgui import stdgui2, fftsink2, form

import wx

sys.stderr.write("Warning: this may have issues on some machines+Python version

combinations to seg fault due to the callback in bin statitics.\n\n")

class ThreadClass(threading.Thread):

def run(self):

return

class tune(gr.feval dd):

"""

This class allows C++ code to callback into python.

"""

def init (self, tb):

gr.feval dd. init (self)

self.tb = tb

def eval(self, ignore):
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"""

This method is called from blocks.bin statistics f when it wants

to change the center frequency. This method tunes the front

end to the new center frequency, and returns the new frequency

as its result.

"""

try:

new freq = self.tb.set next freq()

while(self.tb.msgq.full p()):

time.sleep(0.1)

return new freq

except Exception, e:

print "tune: Exception: ", e

class parse msg(object):

def init (self, msg):

self.center freq = msg.arg1()

self.vlen = int(msg.arg2())

assert(msg.length() == self.vlen * gr.sizeof float)

t = msg.to string()

self.raw data = t

self.data = struct.unpack('%df' % (self.vlen,), t)

class my top block(gr.top block):

def init (self):

gr.top block. init (self)

usage = "usage: %prog [options] min freq max freq"

parser = OptionParser(option class=eng option, usage=usage)

parser.add option("-a", "--args", type="string", default="",

help="UHD device device address args [default=%default

]")
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parser.add option("", "--spec", type="string", default=None,

help="Subdevice of UHD device where appropriate")

parser.add option("-A", "--antenna", type="string", default=None,

help="select Rx Antenna where appropriate")

parser.add option("-s", "--samp-rate", type="eng float", default=1e6,

help="set sample rate [default=%default]")

parser.add option("-g", "--gain", type="eng float", default=None,

help="set gain in dB (default is midpoint)")

parser.add option("", "--tune-delay", type="eng float",

default=0.25, metavar="SECS",

help="time to delay (in seconds) after changing

frequency [default=%default]")

parser.add option("", "--dwell-delay", type="eng float",

default=0.25, metavar="SECS",

help="time to dwell (in seconds) at a given frequency

[default=%default]")

parser.add option("-b", "--channel-bandwidth", type="eng float",

default=6.25e3, metavar="Hz",

help="channel bandwidth of fft bins in Hz [default=%

default]")

parser.add option("-l", "--lo-offset", type="eng float",

default=0, metavar="Hz",

help="lo offset in Hz [default=%default]")

parser.add option("-q", "--squelch-threshold", type="eng float",

default=None, metavar="dB",

help="squelch threshold in dB [default=%default]")

parser.add option("-F", "--fft-size", type="int", default=None,

help="specify number of FFT bins [default=samp rate/

channel bw]")

parser.add option("", "--real-time", action="store true", default=False,

help="Attempt to enable real-time scheduling")

(options, args) = parser.parse args()

if len(args) != 2:

parser.print help()

sys.exit(1)
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self.channel bandwidth = options.channel bandwidth

self.min freq = eng notation.str to num(args[0])

self.max freq = eng notation.str to num(args[1])

if self.min freq > self.max freq:

# swap them

self.min freq, self.max freq = self.max freq, self.min freq

if not options.real time:

realtime = False

else:

# Attempt to enable realtime scheduling

r = gr.enable realtime scheduling()

if r == gr.RT OK:

realtime = True

else:

realtime = False

print "Note: failed to enable realtime scheduling"

# build graph

self.u = uhd.usrp source(device addr=options.args,

stream args=uhd.stream args('fc32'))

# Set the subdevice spec

if(options.spec):

self.u.set subdev spec(options.spec, 0)

# Set the antenna

if(options.antenna):

self.u.set antenna(options.antenna, 0)

self.u.set samp rate(options.samp rate)

self.usrp rate = usrp rate = self.u.get samp rate()

self.lo offset = options.lo offset
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if options.fft size is None:

self.fft size = int(self.usrp rate/self.channel bandwidth)

else:

self.fft size = options.fft size

self.squelch threshold = options.squelch threshold

s2v = blocks.stream to vector(gr.sizeof gr complex, self.fft size)

mywindow = filter.window.blackmanharris(self.fft size)

ffter = fft.fft vcc(self.fft size, True, mywindow, True)

power = 0

for tap in mywindow:

power += tap*tap

c2mag = blocks.complex to mag squared(self.fft size)

self.freq step = self.nearest freq((0.75 * self.usrp rate),

self.channel bandwidth)

self.min center freq = self.min freq + (self.freq step/2)

nsteps = math.ceil((self.max freq - self.min freq) / self.freq step)

self.max center freq = self.min center freq + (nsteps * self.freq step)

self.next freq = self.min center freq

tune delay = max(0, int(round(options.tune delay * usrp rate /

self.fft size))) # in fft frames

dwell delay = max(1, int(round(options.dwell delay * usrp rate /

self.fft size))) # in fft frames

self.msgq = gr.msg queue(1)

self. tune callback = tune(self) # hang on to this to keep it

from being GC'd

stats = blocks.bin statistics f(self.fft size, self.msgq,

self. tune callback, tune delay,

dwell delay)

self.connect(self.u, s2v, ffter, c2mag, stats)

if options.gain is None:

g = self.u.get gain range()

options.gain = float(g.start()+g.stop())/2.0
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self.set gain(options.gain)

print "gain =", options.gain

def set next freq(self):

target freq = self.next freq

self.next freq = self.next freq + self.freq step

if self.next freq >= self.max center freq:

self.next freq = self.min center freq

if not self.set freq(target freq):

print "Failed to set frequency to", target freq

sys.exit(1)

return target freq

def set freq(self, target freq):

"""

Set the center frequency we're interested in.

Args:

target freq: frequency in Hz

@rypte: bool

"""

r = self.u.set center freq(uhd.tune request(target freq, rf freq=(

target freq + self.lo offset),rf freq policy=

uhd.tune request.POLICY MANUAL))

if r:

return True

return False

def set gain(self, gain):

self.u.set gain(gain)
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def nearest freq(self, freq, channel bandwidth):

freq = round(freq / channel bandwidth, 0) * channel bandwidth

return freq

def main loop(tb):

def bin freq(i bin, center freq):

freq = center freq - (tb.usrp rate / 2) + (tb.channel bandwidth * i bin)

return freq

bin start = int(tb.fft size * ((1 - 0.25) / 2))

bin stop = int(tb.fft size - bin start)

fid = open("./usrp.dat","wb")

while 1:

m = parse msg(tb.msgq.delete head())

for i bin in range(bin start, bin stop):

center freq = m.center freq

freq = bin freq(i bin, center freq)

power db = 10*math.log10(m.data[i bin]/tb.usrp rate)

signal = m.data[i bin]/(tb.usrp rate)

if (power db > tb.squelch threshold) and (freq >= tb.min freq) and (

freq <= tb.max freq):

print freq,signal,power db

fid.write(struct.pack('<f',signal))

fid.close()#closing the file

if name == ' main ':

t = ThreadClass()

t.start()

tb = my top block()

try:

tb.start()

main loop(tb)

except KeyboardInterrupt:
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pass

A.4 gnuradiortlsdrsense.py

#!/usr/bin/env python2

# -*- coding: utf-8 -*-

##################################################

# GNU Radio Python Flow Graph

# Title: DTv Spectrum Sensing

# Author: Gill

# Description: Frequency Sweep for UHF White Spaces

# Generated: Fri Mar 10 14:30:20 2017

##################################################

if name == ' main ':

import ctypes

import sys

if sys.platform.startswith('linux'):

try:

x11 = ctypes.cdll.LoadLibrary('libX11.so')

x11.XInitThreads()

except:

print "Warning: failed to XInitThreads()"

from PyQt4 import Qt

from gnuradio import blocks

from gnuradio import eng notation

from gnuradio import fft

from gnuradio import gr

from gnuradio import qtgui

from gnuradio.eng option import eng option

from gnuradio.fft import window

from gnuradio.filter import firdes

from optparse import OptionParser

import numpy as np



81

import osmosdr

import sip

import sys

import time

class spectrum sensing(gr.top block, Qt.QWidget):

def init (self):

gr.top block. init (self, "DTv Spectrum Sensing")

Qt.QWidget. init (self)

self.setWindowTitle("DTv Spectrum Sensing")

try:

self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))

except:

pass

self.top scroll layout = Qt.QVBoxLayout()

self.setLayout(self.top scroll layout)

self.top scroll = Qt.QScrollArea()

self.top scroll.setFrameStyle(Qt.QFrame.NoFrame)

self.top scroll layout.addWidget(self.top scroll)

self.top scroll.setWidgetResizable(True)

self.top widget = Qt.QWidget()

self.top scroll.setWidget(self.top widget)

self.top layout = Qt.QVBoxLayout(self.top widget)

self.top grid layout = Qt.QGridLayout()

self.top layout.addLayout(self.top grid layout)

self.settings = Qt.QSettings("GNU Radio", "spectrum sensing")

self.restoreGeometry(self.settings.value("geometry").toByteArray())

##################################################

# Variables

##################################################

self.samp rate = samp rate = int(2e6)

self.freq = freq = 450e6

self.N = N = 1000
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##################################################

# Blocks

##################################################

self.rtlsdr source 0 = osmosdr.source( args="numchan=" + str(1) + " " +

'' )

self.rtlsdr source 0.set time source('external', 0)

self.rtlsdr source 0.set sample rate(samp rate)

self.rtlsdr source 0.set center freq(freq, 0)

self.rtlsdr source 0.set freq corr(0, 0)

self.rtlsdr source 0.set dc offset mode(2, 0)

self.rtlsdr source 0.set iq balance mode(0, 0)

self.rtlsdr source 0.set gain mode(True, 0)

self.rtlsdr source 0.set gain(15, 0)

self.rtlsdr source 0.set if gain(15, 0)

self.rtlsdr source 0.set bb gain(15, 0)

self.rtlsdr source 0.set antenna('', 0)

self.rtlsdr source 0.set bandwidth(0, 0)

self.qtgui freq sink x 0 = qtgui.freq sink c(

1024, #size

firdes.WIN BLACKMAN hARRIS, #wintype

0, #fc

samp rate, #bw

"Recieved Signal", #name

1 #number of inputs

)

self.qtgui freq sink x 0.set update time(0.10)

self.qtgui freq sink x 0.set y axis(-120, 0)

self.qtgui freq sink x 0.set y label('Relative Gain', 'dB')

self.qtgui freq sink x 0.set trigger mode(qtgui.TRIG MODE FREE, 0.0, 0,

"")

self.qtgui freq sink x 0.enable autoscale(True)

self.qtgui freq sink x 0.enable grid(True)

self.qtgui freq sink x 0.set fft average(1.0)

self.qtgui freq sink x 0.enable axis labels(True)

self.qtgui freq sink x 0.enable control panel(False)
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if not True:

self.qtgui freq sink x 0.disable legend()

if "complex" == "float" or "complex" == "msg float":

self.qtgui freq sink x 0.set plot pos half(not True)

labels = ['', '', '', '', '',

'', '', '', '', '']

widths = [2, 1, 1, 1, 1,

1, 1, 1, 1, 1]

colors = ["blue", "red", "green", "black", "cyan",

"magenta", "yellow", "dark red", "dark green", "dark blue"]

alphas = [1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0]

for i in xrange(1):

if len(labels[i]) == 0:

self.qtgui freq sink x 0.set line label(i, "Data {0}".format(i))

else:

self.qtgui freq sink x 0.set line label(i, labels[i])

self.qtgui freq sink x 0.set line width(i, widths[i])

self.qtgui freq sink x 0.set line color(i, colors[i])

self.qtgui freq sink x 0.set line alpha(i, alphas[i])

self. qtgui freq sink x 0 win = sip.wrapinstance(

self.qtgui freq sink x 0.pyqwidget(), Qt.QWidget)

self.top layout.addWidget(self. qtgui freq sink x 0 win)

self.fft vxx 0 = fft.fft vcc(1024, True, (window.blackmanharris(1024)),

True, 1)

self.blocks vector to stream 0 = blocks.vector to stream(gr.sizeof float

*1, 1024)

self.blocks stream to vector 0 = blocks.stream to vector(

gr.sizeof gr complex*1, 1024)

self.blocks moving average xx 0 = blocks.moving average ff(N, 1, 4000)

self.blocks file sink 2 0 = blocks.file sink(gr.sizeof float*1, '/home/

gill/Desktop/ms-thesis/gr-spectrumsensing/grc/rtl-sdr sensing/

Results/snr check.dat', False)
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self.blocks file sink 2 0.set unbuffered(False)

self.blocks complex to mag squared 0 = blocks.complex to mag squared

(1024)

##################################################

# Connections

##################################################

self.connect((self.blocks complex to mag squared 0, 0), (

self.blocks vector to stream 0, 0))

self.connect((self.blocks moving average xx 0, 0), (

self.blocks file sink 2 0, 0))

self.connect((self.blocks stream to vector 0, 0), (self.fft vxx 0, 0))

self.connect((self.blocks vector to stream 0, 0), (

self.blocks moving average xx 0, 0))

self.connect((self.fft vxx 0, 0), (self.blocks complex to mag squared 0,

0))

self.connect((self.rtlsdr source 0, 0), (self.blocks stream to vector 0,

0))

self.connect((self.rtlsdr source 0, 0), (self.qtgui freq sink x 0, 0))

def closeEvent(self, event):

self.settings = Qt.QSettings("GNU Radio", "spectrum sensing")

self.settings.setValue("geometry", self.saveGeometry())

event.accept()

def get samp rate(self):

return self.samp rate

def set samp rate(self, samp rate):

self.samp rate = samp rate

self.rtlsdr source 0.set sample rate(self.samp rate)

self.qtgui freq sink x 0.set frequency range(0, self.samp rate)

def get freq(self):

return self.freq

def set freq(self, freq):
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self.freq = freq

self.rtlsdr source 0.set center freq(self.freq, 0)

def get N(self):

return self.N

def set N(self, N):

self.N = N

self.blocks moving average xx 0.set length and scale(self.N, 1)

def main(top block cls=spectrum sensing, options=None):

from distutils.version import StrictVersion

if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"):

style = gr.prefs().get string('qtgui', 'style', 'raster')

Qt.QApplication.setGraphicsSystem(style)

qapp = Qt.QApplication(sys.argv)

tb = top block cls()

tb.start()

tb.show()

def quitting():

tb.stop()

tb.wait()

qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting)

qapp.exec ()

if name == ' main ':

main()
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Appendix B

LTE-R Analysis Code

B.1 kfactordist.m

% Calculating K-factor for the tunnel environment for HST

clear all;

close all;

clc;

%% Creating a doppler profile for high speed raiway scenario..

Ds = 30;%Initial Distance between tx and rx times 2..

Dmin = 2;% Distance between raiway tracks and leaky feeder cables...

Kf = [];

fc = 3e9;%center frequency..

c = 3e8;

v = 138.9;%300;

t = linspace(0,(2*Ds)/v(1),100);

fd = (v*fc)/3e8;%maximum doppler frequency...

costheta = zeros(size(t));%angle between BS and MS

d1 = [];

for i=1:length(t)

d1(i) = sqrt(2ˆ2+(Ds/2-v(1)*t(i))ˆ2);%distance between tx and rx..

if t(i) >=0 && t(i)<= (Ds/v)

costheta(i) = ((Ds/2)-v*t(i))./sqrt(Dminˆ2+(Ds/2-v*t(i))ˆ2);
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elseif t(i) > (Ds/v) && t(i)<=(2*Ds)/v

costheta(i) = (-1.5*Ds+v*t(i))./sqrt(Dminˆ2+(-1.5*Ds+v*t(i))ˆ2);

end

end

fs = fd*costheta;

thetadeg = acosd(costheta);

fc wds = fc-fs;

lambda = c./fc wds;

Cin = 5-((0.1*1.8e10)./fc wds)*1j;

C = Cin;

gammanum = C.*sind(thetadeg)-sqrt(Cin-(cosd(thetadeg)).ˆ2);

gammaden = C.*sind(thetadeg)+sqrt(Cin-(cosd(thetadeg)).ˆ2);

gamma = gammanum./gammaden;

ht = 6.1;%height of feeder cable

hr = 4.2;%height of the train

var1 = sqrt(d1.ˆ2+(ht+hr)ˆ2);

var2 = sqrt(d1.ˆ2+(ht-hr)ˆ2);

phase = ((((2*pi)./lambda).*(var1-var2))*180)/pi;

gammad = atan2d(imag(gamma),real(gamma));

phasegamma = abs(cosd(gammad-phase));

K = abs(gamma).ˆ2+2*abs(gamma).*phasegamma;

Kf = 10*log10(1./K);

B.2 bercalculation.m

% Demonstration of Eb/N0 Vs SER for M-QAM modulation scheme

clc;

load Kf;

load t;

%---------Input Fields------------------------

%% QPSk

bitsperframe=1e3; %Number of input symbols

EbN0dB = [linspace(0,20,50) fliplr(linspace(0,20,50))]; %Define EbN0dB range for

simulation

M=4; %for QPSk modulation.



88

hMod = comm.RectangularQAMModulator('ModulationOrder',M);

const = step(hMod,(0:3)');

%---------------------------------------------

refArray =1/sqrt(2)*const';

k=log2(M);

totPower=15; %Total power of LOS path & scattered paths

EsN0dB = EbN0dB + 10*log10(k);

biterrsim = zeros(size(EsN0dB));

%---Generating a uniformly distributed random numbers in the set [0,1,2,..,M-1]

data=ceil(M.*rand(bitsperframe,1))-1;

s=refArray(data+1); %QPSK Constellation mapping with Gray coding

%--- Reference Constellation for demodulation and Error rate computation--

refI = real(refArray);

refQ = imag(refArray);

%---Place holder for Symbol Error values for each Es/N0 for particular M value--

index=1;

u=1;

% Kf = 4.9;

K = 10.ˆ(Kf/10);

for x=EsN0dB

sn=sqrt(K(u)/(K(u)+1)*totPower); %Non-Centrality Parameter

sigma=totPower/sqrt(2*(K(u)+1));

h=((sigma*randn(1,bitsperframe)+sn)+1i*(randn(1,bitsperframe)*sigma+0));

numerr = 0;

numBits = 0;

while numerr < 100 && numBits < 1e7

%-------------------------------------------

%Channel Noise for various Es/N0

%-------------------------------------------

%Adding noise with variance according to the required Es/N0

noiseVariance = 1/(10.ˆ(x/10));%Standard deviation for AWGN Noise

noiseSigma = sqrt(noiseVariance/2);

%Creating a complex noise for adding with M-QAM modulated signal

%Noise is complex since M-QAM is in complex representation

noise = noiseSigma*(randn(size(s))+1i*randn(size(s)));

received = s.*h + noise;
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%-------------I-Q Branching---------------

received = received./h;

r i = real(received);

r q = imag(received);

%---Decision Maker-Compute (r i-s i)ˆ2+(r q-s q)ˆ2 and choose the

smallest

r i repmat = repmat(r i,M,1);

r q repmat = repmat(r q,M,1);

distance = zeros(M,bitsperframe); %place holder for distance metric

minDistIndex=zeros(bitsperframe,1);

for j=1:bitsperframe

%---Distance computation - (r i-s i)ˆ2+(r q-s q)ˆ2 --------------

distance(:,j) = (r i repmat(:,j)-refI').ˆ2+(r q repmat(:,j)-refQ').

ˆ2;

%---capture the index in the array where the minimum distance occurs

[dummy,minDistIndex(j)]=min(distance(:,j));

end

y = minDistIndex - 1;

%--------------Symbol Error Rate Calculation

-------------------------------

dataCap = y;

numerr = sum(dataCap~=data)+numerr;

numBits = numBits+bitsperframe;

disp(numerr);

end

symErrSimulatedqpsk(1,index) = numerr/numBits;

biterrsim(1,index) = symErrSimulatedqpsk(1,index)/k;

index=index+1;

% u=u+1;

end

%% 16 QAM

bitsperframe=1e3; %Number of input symbols

EbN0dB = [linspace(0,10,50) fliplr(linspace(0,10,50))]; %Define EbN0dB range for

simulation

M=16; %for QPSk modulation.

hMod = comm.RectangularQAMModulator('ModulationOrder',M);
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const = step(hMod,(0:M-1)');

%---------------------------------------------

refArray =1/sqrt(10)*const';

k=log2(M);

totPower=10; %Total power of LOS path & scattered paths

EsN0dB = EbN0dB + 10*log10(k);

biterrsim = zeros(size(EsN0dB));

%---Generating a uniformly distributed random numbers in the set [0,1,2,..,M-1]

data=ceil(M.*rand(bitsperframe,1))-1;

s=refArray(data+1); %QPSK Constellation mapping with Gray coding

%--- Reference Constellation for demodulation and Error rate computation--

refI = real(refArray);

refQ = imag(refArray);

%---Place holder for Symbol Error values for each Es/N0 for particular M value--

index=1;

u=1;

K = 10.ˆ(Kf/10);

for x=EsN0dB

numerr = 0;

numBits = 0;

while numerr < 100 && numBits < 1e7

sn=sqrt(K(u)/(K(u)+1)*totPower); %Non-Centrality Parameter

sigma=totPower/sqrt(2*(K(u)+1));

h=((sigma*randn(1,bitsperframe)+sn)+1i*(randn(1,bitsperframe)*sigma+0));

%-------------------------------------------

%Channel Noise for various Es/N0

%-------------------------------------------

%Adding noise with variance according to the required Es/N0

noiseVariance = 1/(10.ˆ(x/10));%Standard deviation for AWGN Noise

noiseSigma = sqrt(noiseVariance/2);

%Creating a complex noise for adding with M-QAM modulated signal

%Noise is complex since M-QAM is in complex representation

noise = noiseSigma*(randn(size(s))+1i*randn(size(s)));

received = s.*h + noise;

%-------------I-Q Branching---------------
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received = received./h;

r i = real(received);

r q = imag(received);

%---Decision Maker-Compute (r i-s i)ˆ2+(r q-s q)ˆ2 and choose the

smallest

r i repmat = repmat(r i,M,1);

r q repmat = repmat(r q,M,1);

distance = zeros(M,bitsperframe); %place holder for distance metric

minDistIndex=zeros(bitsperframe,1);

for j=1:bitsperframe

%---Distance computation - (r i-s i)ˆ2+(r q-s q)ˆ2 --------------

distance(:,j) = (r i repmat(:,j)-refI').ˆ2+(r q repmat(:,j)-refQ').

ˆ2;

%---capture the index in the array where the minimum distance occurs

[dummy,minDistIndex(j)]=min(distance(:,j));

end

y = minDistIndex - 1;

%--------------Symbol Error Rate Calculation

-------------------------------

dataCap = y;

numerr = sum(dataCap~=data)+numerr;

numBits = numBits+bitsperframe;

disp(numerr);

end

symErrSimulatedqam(1,index) = numerr/numBits;

biterrsim(1,index) = symErrSimulatedqam(1,index)/k;

index=index+1;

u=u+1;

end

%% 64 QAM Modulation...

bitsperframe=1e3; %Number of input symbols

EbN0dB = [linspace(0,10,50) fliplr(linspace(0,10,50))]; %Define EbN0dB range for

simulation

M=64; %for QPSk modulation.

hMod = comm.RectangularQAMModulator('ModulationOrder',M);

const = step(hMod,(0:M-1)');
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%---------------------------------------------

refArray =1/sqrt(42)*const';

k=log2(M);

totPower=10; %Total power of LOS path & scattered paths

EsN0dB = EbN0dB + 10*log10(k);

biterrsim = zeros(size(EsN0dB));

%---Generating a uniformly distributed random numbers in the set [0,1,2,..,M-1]

data=ceil(M.*rand(bitsperframe,1))-1;

s=refArray(data+1); %QPSK Constellation mapping with Gray coding

%--- Reference Constellation for demodulation and Error rate computation--

refI = real(refArray);

refQ = imag(refArray);

%---Place holder for Symbol Error values for each Es/N0 for particular M value--

index=1;

u=1;

K = 10.ˆ(Kf/10);

for x=EsN0dB

sn=sqrt(K(u)/(K(u)+1)*totPower); %Non-Centrality Parameter

sigma=totPower/sqrt(2*(K(u)+1));

h=((sigma*randn(1,bitsperframe)+sn)+1i*(randn(1,bitsperframe)*sigma+0));

numerr = 0;

numBits = 0;

while numerr < 100 && numBits < 1e7

%-------------------------------------------

%Channel Noise for various Es/N0

%-------------------------------------------

%Adding noise with variance according to the required Es/N0

noiseVariance = 1/(10.ˆ(x/10));%Standard deviation for AWGN Noise

noiseSigma = sqrt(noiseVariance/2);

%Creating a complex noise for adding with M-QAM modulated signal

%Noise is complex since M-QAM is in complex representation

noise = noiseSigma*(randn(size(s))+1i*randn(size(s)));

received = s.*h + noise;

%-------------I-Q Branching---------------

received = received./h;

r i = real(received);

r q = imag(received);
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%---Decision Maker-Compute (r i-s i)ˆ2+(r q-s q)ˆ2 and choose the

smallest

r i repmat = repmat(r i,M,1);

r q repmat = repmat(r q,M,1);

distance = zeros(M,bitsperframe); %place holder for distance metric

minDistIndex=zeros(bitsperframe,1);

for j=1:bitsperframe

%---Distance computation - (r i-s i)ˆ2+(r q-s q)ˆ2 --------------

distance(:,j) = (r i repmat(:,j)-refI').ˆ2+(r q repmat(:,j)-refQ').

ˆ2;

%---capture the index in the array where the minimum distance occurs

[dummy,minDistIndex(j)]=min(distance(:,j));

end

y = minDistIndex - 1;

%--------------Symbol Error Rate Calculation

-------------------------------

dataCap = y;

numerr = sum(dataCap~=data)+numerr;

numBits = numBits+bitsperframe;

disp(numerr);

end

symErrSimulatedqam64(1,index) = numerr/numBits;

biterrsim(1,index) = symErrSimulatedqam64(1,index)/k;

index=index+1;

u=u+1;

end

%%

fig = figure;

semilogy(t*1e3,symErrSimulatedqpsk(1,:),'-d','LineWidth',2);

hold on;

grid on;

semilogy(t*1e3,symErrSimulatedqam(1,:),'-d','LineWidth',2);

semilogy(t*1e3,symErrSimulatedqam64(1,:),'-d','LineWidth',2);

xlabel('Time (ms)');

ylabel('Bit Error Rate (Pb)');

title(['BER For OFDM Under Rician Fading Environment Inside Tunnel']);
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set(gca,'fontsize',30,'box','on','LineWidth',2,'GridLineStyle','--','GridAlpha'

,0.7);

axis([0 max(t)*1e3 10e-7 0])

lgd = legend('QPSK','16QAM','64QAM');

lgd.FontSize=20;
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