


Abstract

Recently, sequencing technologies have generated massive and heterogeneous data sets.
However, interpretation of these data sets is a major barrier to understand genomic hetero-
geneity in complex diseases. In this dissertation, we develop a Bayesian statistical method for
single nucleotide level analysis and a global optimization method for gene expression level
analysis to characterize genomic heterogeneity in mixed samples.

The detection of rare single nucleotide variants (SNVs) is important for understanding
genetic heterogeneity using next-generation sequencing (NGS) data. Various computational
algorithms have been proposed to detect variants at the single nucleotide level in mixed sam-
ples. Yet, the noise inherent in the biological processes involved in NGS technology neces-
sitates the development of statistically accurate methods to identify true rare variants. At the
single nucleotide level, we propose a Bayesian probabilistic model and a variational expec-
tation maximization (EM) algorithm to estimate non-reference allele frequency (NRAF) and
identify SNVs in heterogeneous cell populations. We demonstrate that our variational EM
algorithm has comparable sensitivity and specificity compared with a Markov Chain Monte
Carlo (MCMC) sampling inference algorithm, and is more computationally efficient on tests
of relatively low coverage (27× and 298×) data. Furthermore, we show that our model with
a variational EM inference algorithm has higher specificity than many state-of-the-art algo-
rithms. In an analysis of a directed evolution longitudinal yeast data set, we are able to identify
a time-series trend in non-reference allele frequency and detect novel variants that have not
yet been reported. Our model also detects the emergence of a beneficial variant earlier than
was previously shown, and a pair of concomitant variants.

Characterization of heterogeneity in gene expression data is a critical challenge for per-
sonalized treatment and drug resistance due to intra-tumor heterogeneity. Mixed membership
factorization has become popular for analyzing data sets that have within-sample heterogene-
ity. In recent years, several algorithms have been developed for mixed membership matrix
factorization, but they only guarantee estimates from a local optimum. At the gene expression
level, we derive a global optimization (GOP) algorithm that provides a guaranteed ε-global
optimum for a sparse mixed membership matrix factorization problem for molecular subtype
classification. We test the algorithm on simulated data and find the algorithm always bounds
the global optimum across random initializations and explores multiple modes efficiently. The
GOP algorithm is well-suited for parallel computations in the key optimization steps.
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Chapter 1

Introduction

The progression from human genome sequence to bedside of patients has shown accom-
plishments of human genomics research from the basis genomes knowledge to health care
applications [1]. Since 2011, genomic discovery is progressively boosting the science of
biomedicine. Beyond 2020, it will improve effective treatment and help identify the emer-
gence of chemotherapy resistance [1]. Recently, sequencing technology provides large-scale
data sets that have the potential to quantify the genomic changes that drive development of
many diseases. By analyzing the genomic data sets, researchers have revealed tumor hetero-
geneity in the clinical samples at diagnosis and treatment. However, statistically accurate and
efficient methods are needed to translate the complex and mixed data sets into knowledge.

1.1 Overview

Research has been focusing on rare variant detection in heterogeneous samples in recent years,
as clinical samples are often heterogeneous. Primary tumor samples can be heterogeneous
mainly because of contamination from normal cells and genetic sub-populations in a tumor
tissue [2]. Immune genomics samples, like leukemic cell free DNA, are heterogeneous, which
could be used to detect clonal chromosome abnormalities [3]. Therefore, in these and many
other fields where the sample has high impurity, sensitive variant detection tool is more than
desirable.

Intra-tumor heterogeneity can contribute to treatment failure and drug resistance [4]. For
example, primary breast tumors have been classified into five genomic subtypes, luminal
A, luminal B, normal like, basal like, and HER2 overexpression, based on gene expression
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data [5, 6]. Furthermore, The Cancer Genome Atlas (TCGA) group has revealed four molecu-
lar subtypes, classical, proneural, neural, and mesenchymal in glioblastoma tumors [7]. Thus,
detection of these distinct genomic subtypes within a tumor is needed because it will lead to
an improved combinatorial chemotherapy.

The long term-goal of my research is to develop statistical and computational algorithms to
interpret massive biomedical and biological data sets to improve the diagnosis and treatment
of cancer. To achieve this goal, the overview of my current research focuses on statistical
methods development for characterizing genomic heterogeneity in mixed samples. My back-
ground in computer science, statistics, and genetics helped me contribute to two interesting
research projects in large-scale clinical data analysis.

First, for single nucleotide level analysis, we develop a probabilistic statistical model and
a variational inference algorithm for rare variant detection in next-generation sequencing data.
This method is demonstrated to be sensitive for rare variant detection and it has comparable
sensitivity and specificity when compared with other state-of-the-art methods. It is helpful to
detect genomic variants that can cause genetic diseases or drug resistance.

Second, for gene expression level analysis, we develop a deterministic global optimiza-
tion algorithm for a sparse mixed membership matrix factorization problem to identify both
the underlying genetic subtype signatures and the distributions over these subtypes in mixed
tumor samples. Knowing the distribution of subtypes for a given patient is critical because
the mixture of genetic subtypes effects treatment. So, we will be able to predict the genomic
subtypes and subtype distributions accurately using this novel algorithm.

1.2 Outline of dissertation

The remaining of this dissertation is organized as follows. In Chapter 2, we discuss the recent
progress made in variant detection. We also survey and classify the state-of-the-art methods
into categories. A common Bayesian probabilistic framework for single nucleotide variant
detection is summarized. In Chapter 3, we propose and describe a novel Bayesian statistical
model and a variational expectation maximization (EM) algorithm for rare variant detection
in deep, heterogeneous NGS data. The performance of this variational EM algorithm is eval-
uated on both a synthetic data set and a real longitudinal data set. In Chapter 4, we develop
a global optimization framework for a sparse mixed membership matrix factorization prob-
lem for genomic subtypes classification. We show empirical accuracy of the algorithm and
evaluate the performance by both theoretical analysis and empirical measurements of the time
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complexity. In Chapter 5, we summarize the major contributions of this dissertation and dis-
cuss the challenges and opportunities for statistical methods for characterization of genomic
data sets.
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Chapter 2

Review of Rare Variant Detection
Methods for DNA Next-generation
Sequencing Data

2.1 Introduction

The overall pipeline for analyzing large-scale next-generation sequencing (NGS) data consists
of five steps: quality control, preprocessing, alignment, post-alignment processing, and vari-
ant analysis [8, 9]. The last stage, variant analysis, can be further divided into three steps:
variant detection, annotation, and visualization. In this review, we focus on single nucleotide
variant detection in heterogeneous NGS data, which is crucial for NGS data analysis towards
discovering disease-causing sequence variations and identifying known variants present at low
population levels in mixed samples.

Identification of rare variants that are present at low frequency in heterogeneous samples is
challenging because sequencing errors can overwhelm the true signal from the variant. While
resolution required varies by application, here, we define variants with minor allele frequency
of less than 1% as rare variants by convention [10, 11, 12]. For example, one study showed
an oseltamivir resistance variant, H275Y, existed in a fraction of 0.18% in a H1N1 clinical
sample [13]. Since it can be expensive to detect a rare variant event with allele frequency
of less than 1% by deep whole-genome sequence (WGS) or whole-exome sequence (WES)
on multiple samples due to the sequencing depth required, it is important to extract as much
information from the data as possible to avoid missed detections and false positives. Therefore,
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sensitive computational methods are needed for rare variant detection.

Significant progress has already been made towards improving the power of variant detec-
tion methods. Early variant detection method was based on genotyping subtraction between
tumour and normal samples [14, 15]. Recent variant detection algorithms are developed using
advanced statistical methods, including Bayesian statistics [16, 17, 18, 19, 20] and Fisher’s
exact [21, 22].

Statistical accuracy is one of the most important concerns for method development for rare
variant detection in impure samples. Simple strategies based on setting cut-offs for counting
alleles are not robust to sample variations for variant detection in low or moderate sequencing
read depths. To improve robustness, statistical and probabilistic methods have been devel-
oped and are more reliable in providing measures of uncertainty for genotype inference in
variant detection [23]. Specifically, Bayesian statistical methods have been popular for the
development of sensitive variant detection tools by incorporating proper prior probabilities of
possible genotypes to then predict the true genotype using a maximum a posteriori (MAP)
probability. Several studies have used a binomial probabilistic distribution to model sequenc-
ing error distributions that can be further used to differentiate true biological variants from
errors [13, 20, 24, 25].

Rare variant detection is important for several research and clinical application areas – in
particular in cell-free DNA (cfDNA)-based diagnostics. Recently, advanced statistical meth-
ods have enabled the detection of rare variants in low fractions of cfDNA and the detected ge-
netic variants can be taken as potential biomarkers for early cancer detection and anti-cancer
treatment monitoring [26, 3]. It has been demonstrated that cfDNA sequencing is able to
detect tumour-derived variants with high sensitivity and specificity in the frequently mutated
genes in pancreatobiliary tumour samples [27]. A “liquid biopsy” extraction method has been
used to identify variants at allele frequency of 2% with high sensitivity and specificity within
the circulating cfDNA of tumours [28]. Furthermore, a pilot study reveals the feasibility of
this idea using leukemic cfDNA in resolving DNA abnormalities [3].

The purpose of this article is to review the state-of-the-art in rare variant detection methods
and to provide a framework for comparing methods. First, in Section 2.2, we discuss key
attributes of variant detection methods including: accuracy, scalability, and robustness. Then,
in Section 2.3, we discuss the factors that could effect the power of variant detection methods
(Figure 2.1). In section 2.4, we summarize current state-of-the-art variant detection methods.
Finally, we discuss the challenges and opportunities of statistical methods for variant detection
for the future.
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Figure 2.1: An overview of attributes of variant detection methods and factors that influence
the power of variant detection. The details of attributes (accuracy, scalability, and robust-
ness) are described in Section 2.2 and the potential factors (quality control, depth of coverage,
sequencing errors, and sample size) are described in Section 2.3.

2.2 Attributes of variant detection methods

2.2.1 Accuracy

Accurate detection of SNVs is essential because the detected variants may modulate chemother-
apy resistance that could help discover novel variants in clinical cancer samples and lead to
improved therapies. To this end, accuracy is normally considered a primary criteria for evalu-
ating the performance of variant detection methods. Simulated sequencing data sets are gen-
erally used to evaluate accuracy to test variant detection methods since the underlying truth is
known. In some cases, benchmarking data sets with well-recognized sequencing samples can
also be performed to validate the methods.

Performance metrics are commonly used to understand the basic values of true positive
(TP), false positive (FP), true negative (TN), and false negative (FN) in variant detection.
We list several common metrics for evaluating the accuracy of variant detection methods in
Table 2.1. Receiver operating characteristic (ROC) curves can also be useful to visualize and
interpret the performances of various methods as shown by [29, 30, 31]. Since each metric
has its uncertainty and is related to the sequence context, selection of desired metrics relies on
specific purposes. A discussion about selecting metrics for accuracy evaluation is covered in
detail by [32].
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Ideally, an accurate variant detection method should perform with high sensitivity and
specificity with a low false discovery rate to identify variants within a practical level of mu-
tant allele frequencies. Since it is difficult for statistical methods to be perfectly accurate in
all circumstances, at a minimum, reliable variant detection methods should be capable of de-
tecting true variants by keeping the false positive rate as low as possible within an acceptable
accuracy for a particular dataset of interest.

Table 2.1: Metrics for accuracy evaluation of variant detection methods.

Metrics Explanation Derivation

Sensitivity true positive rate TP
TP+FN

Specificity true negative rate TN
FP+TN

FPR false positive rate FP
FP+TN

FDR false discovery rate FP
FP+TP

PPV positive predicted value or precision TP
TP+FP

NPV negative predicted value TN
TN+FN

ACC accuracy TP+TN
TP+FP+TN+FN

MCC Matthews correlation coefficient TP∗TN−FP∗FN√
P1∗P2∗N1∗N2

TP, true positive; FP, false positive; TN, true negative; FN, false
negative; P1, TP+FP; P2, TP+FN; N1, TN+FP; N2, TN+FN.

2.2.2 Scalability

Much effort is being devoted to improve scalability in analyzing a broad sequence coverage.
For example, reliable variant detection within a genome-wide sequence scale would surpass
traditional low-coverage diagnostics of a few specific sites. Since detecting variants in WGS
and WES data sets is mostly time-consuming, application of large-scale genomic data is hin-
dered by lack of scalable and efficient algorithms. Advanced statistical methods with high
scalability are more than desirable to detect true variant alleles.

Performing statistical inference and estimation for statistical variant detection methods,
such as Bayesian and heuristic methods, requires a process of drawing conclusions of ab-
normally high non-reference variants from large sequencing data. The Markov Chain Monte
Carlo (MCMC) sampling algorithm is comprehensively used for statistical inference, but the
inherent limitation of MCMC is that the time for converging is long and the convergence can
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be hard to diagnose. Alternatively, a variational approximation algorithm converges faster
than the MCMC sampling algorithm because it yields deterministic approximation that pro-
vides bounds on probability of interest, which accelerates the variant detection process [33].
For example, the mean field algorithm is a type of variational approximation method that has
been demonstrated to be 10 to 30 times faster than MCMC sampling while producing the
same accuracy [34]. A variational algorithm is used to estimate the model for chemogenomic
profiling [35]. However, even though sampling-based methods are computationally slow, they
can be easy distributed to multiple computing cores in parallel for faster yield. This type of
trade-off between accuracy and scalability is expected, since accurate solutions may often be
balanced with efficiency.

2.2.3 Robustness

The design of statistical methods typically limits the number of errors received in variant
detection. Method robustness is important to evaluate the ability of variant detection in the
presence of noise and contaminated sequencing samples. For example, robust Bayesian anal-
ysis is often conducted to study the uncertainty of prior distributions for model robustness
assessment. A prior assignment in an empirical Bayesian method can be subjective, which
may cause bias in the probabilistic distribution prediction of the allele frequency for a site in
the sequence. This will result in the miscalling of a variant when comparing the allele fre-
quencies of one site in a control to the case pairing. A good variant detection method should
be insensitive to changes of priors or parameters of the model system that should generate
consistent results.

2.3 Factors that affect the ability of variant detection

Next-generation sequencing data is massive and heterogeneous and many factors could influ-
ence the performance of variant detection methods, which we outline and discuss below.

2.3.1 Quality control

The quality of the data can effect variant detection, so checking the quality of the raw data and
filtering the low-confidence alleles in advance will improve the accuracy of variant detection.
FastQC is a standard tool that has been implemented for assessing the quality of data by
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generating analytical graphs. Also, low-confidence alleles can be trimmed using a standalone
tool, NGS QC Toolkit [36], to prevent from making wrong variant calls. Although filtering
low-confidence alleles helps with read alignment, it is possible that false positives could be
introduced for high-coverage data sets [37]. Therefore, it is important to also consider the read
depth of coverage in order to ensure the accuracy of variant detection in addition to quality
control in the read mapping step.

2.3.2 Depth of coverage

Sequencing depth of coverage, number of times that each base pair has been sequenced, con-
tributes to the overall result from variant detection methods because sufficient depth of cover-
age is necessary to support an accurate variant call. Due to the relatively high cost of sequenc-
ing, the depth of coverage is typically low (less than 10×) and the distribution of the read
depth over each site is not generally uniform. Low depth coverage will pose the challenge
for detecting the low fraction of circulating cfDNA from tumor cells and the normal DNA
in the blood may further complicate the variant detection. Previous studies have shown the
effect of coverage and revealed that high coverage data normally leads to high sensitivity for
variant detection [38, 39, 40]. The false discovery rate of variant detection using GATK [17]
decreased as the depth of coverage increased [41]. Generally, a minimum coverage for a het-
erozygote non-reference allele is 20× [42]; the minimum coverage for a single nucleotide
polymorphism is 50×, while some applications may need higher coverage [43]. It is reason-
able that if you desire to detect a rare variant of 0.1% allele frequency, the required depth
of coverage is 1, 000×. Furthermore, unmatched sequencing read depths of case and control
samples will generate increased false positives [44].

2.3.3 Sequencing errors

Intrinsic errors from next-generation sequencing platforms exist during sample processing and
sequencing [32]. The non-reference allele errors in the process of library preparation, PCR
amplification, and sample sequencing are not in an uniform distribution due to the influence
of the operation of sequencing-by-synthesis [45, 46]. The presence of insertions/deletions,
structural variants, and copy number variations may introduce false positive variants that pose
the challenge for accurate variant detection [47]. It is especially critical when identifying vari-
ants with a minor variant allele frequency (VAF) making it difficult to differentiate a true rare
variant (VAF < 1%) from a common sequencing error. A common sequencing error rate is
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reported to be from 1% to 3% in the initial release of raw sequencing data [48]. However,
when evaluating a synthetic DNA sequencing data set the sequencing error rate using NGS
technology is less than what is reported for non-synthetic samples [13], which makes detec-
tion more difficult. To estimate the sequencing errors and show accurate estimation of error
rate on mock microbial genetic marker sequencing samples, a web server, NGS-eval [49],
was developed. This application helps estimate the sequencing quality of the NGS data and
quantify the ability of variant detection methods.

2.3.4 Sample size

Pooled sequencing on multiple samples has enabled the identification of more rare variants
than individual samples [9, 37]. It has been shown that when comparing strategies of single
and multiple samples [41], GATK gives higher sensitivity for variant detection in a multiple-
sample strategy than a single-sample strategy, but the specificity decreased. The reason may be
that more false positives are called in larger data sets with the multiple samples [23]. However,
if the coverage of the multiple samples is low, the false discovery rate for variant detection
could increase compared to the case when using high coverage [40]. Another observation [50]
showed that a large data set of multiple sequencing samples at low coverage (4-6×) yields
higher capability of rare variant detection compared to a small data set of less sequencing
samples at high coverage.

2.4 Classification for variant detection methods

In this section, we classified the state-of-the-art variant detection methods into two categories:
probabilistic methods, and non-probabilistic, or other combination. We outlined the category
and subcategory, functions, platform, and software implement for each method.

2.4.1 Probabilistic methods

The underlying concept of probabilistic methods for variant detection is by modeling uncer-
tainty given the sequencing data. To understand how probabilistic methods are developed
for variant detection, we summarize 25 variant detection methods that are built based on the
probabilistic strategies. We discuss each method from three aspects: specific purpose of the
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method, method category, and metrics or related applications. A summary of the state-of-the-
art probabilistic methods for variant detection is shown in Table 2.2.

GATK [17] is designed for detecting germline variants in homogeneous samples. It uses
a simple Bayesian genotyper to calculate the posterior distribution of each genotype given
mapped reads over each site [51]. It adopted a MapReduce system to facilitate processing
large-scale sequencing data in parallel and has been involved in The 1000 Genomes Project
and The Cancer Genome Atlas.

MuTect [16] is a method to detect germline and somatic variants with low allele frequen-
cies at various sequencing read depths in mixed tumour samples. It is built on a Bayesian
classifier to calculate a log-likelihood ratio that can be used as a threshold for variant detec-
tion in matched tumour and normal samples. It has been shown that MuTect is more sensitive
than other competing methods in detecting somatic variants within low fraction of tumour
cells, which enables us to discover subclonal drivers for tumour progression.

Mapping and assembly with quality (MAQ) [52] is a probabilistic method that uses a fixed
prior for estimation of non-reference allele probabilities. SAMtools [53] is a revised MAQ
model to manipulate genomic sequences in the SAM and BAM format. Similar to GATK,
SAMtools computes the likelihood of each possible genotype using a naive Bayesian model to
then identify germline variants using BCFtools [54]. It has been demonstrated for comparable
accuracy in real data for allele count estimation, allele frequency estimation, and association
mapping. glftools [55] is a revised version of SAMtools to generate genotype likelihood files.
Single individual, glfSingle and multiple individuals, glfMultiples are developed for genotype
calling as well.

FamSeq [56] is a family-based sequencing program for variant detection in data derived
from family members. FamSeq uses a Bayesian network to yield posterior probabilities for
measure of genotype calls and a MCMC sampling method to derive posterior probabilities.
This method integrates Mendelian inheritance and sequencing data of family members to re-
duce false positives and false negatives for variant detection.

JointSNVMix [57] was developed to discover somatic variants and to distinguish germline
from somatic events. It applies two novel Bayesian probabilistic models to jointly analyze the
allelic count of tumour and normal samples. Concordance is used as a probabilistic threshold
to measure the performance of variant detection. It has been demonstrated that joint modeling,
JointSNVMix, has higher specificity than its independent analogue with guaranteed sensitiv-
ity.

11



Ta
bl

e
2.

2:
A

su
m

m
ar

y
of

th
e

st
at

e-
of

-t
he

-a
rt

pr
ob

ab
ili

st
ic

m
et

ho
ds

fo
rv

ar
ia

nt
de

te
ct

io
n

an
d

th
e

ca
te

go
ry

cl
as

si
fic

at
io

ns
of

th
em

.

C
at

eg
or

y
Su

bc
at

eg
or

y/
M

et
ho

d
Fu

nc
tio

ns
Pl

at
fo

rm
So

ur
ce

C
od

e
R

ef

Pr
ob

ab
ili

st
ic

B
ay

es
ia

n
D

ec
is

io
n

R
ul

es
G

A
T

K
SN

V
s,

in
de

ls
Ja

va
ht

tp
s:

//w
w

w
.b

ro
ad

in
st

itu
te

.o
rg

/g
at

k/
[1

7]
M

ut
ec

t
SN

V
s

Ja
va

ht
tp

://
w

w
w

.b
ro

ad
in

st
itu

te
.o

rg
/c

an
ce

r/
cg

a/
m

ut
ec

t
[1

6]
SA

M
to

ol
s

SN
V

s,
in

de
ls

C
ht

tp
://

sa
m

to
ol

s.
so

ur
ce

fo
rg

e.
ne

t/
[5

3]
Fa

m
Se

q
SN

V
s

C
++

ht
tp

://
bi

oi
nf

or
m

at
ic

s.
m

da
nd

er
so

n.
or

g/
m

ai
n/

Fa
m

Se
q

[5
6]

M
A

Q
SN

V
s

Pe
rl

ht
tp

://
m

aq
.s

ou
rc

ef
or

ge
.n

et
/

[5
2]

Jo
in

tS
N

V
M

ix
SN

V
s

Py
th

on
ht

tp
://

co
m

pb
io

.b
cc

rc
.c

a/
so

ft
w

ar
e/

jo
in

ts
nv

m
ix

/
[5

7]
B

ay
es

ia
n

V
ir

m
id

SN
V

s
Ja

va
ht

tp
s:

//s
ou

rc
ef

or
ge

.n
et

/p
ro

je
ct

s/
vi

rm
id

/
[5

8]
E

M
-S

N
P

SN
V

s
R

ht
tp

://
w

w
w

-r
cf

.u
sc

.e
du

/f
su

n/
Pr

og
ra

m
s/

E
M

-S
N

P/
E

M
-S

N
P.

ht
m

l
[5

9]
So

m
at

ic
Sn

ip
er

SN
V

s
Pe

rl
ht

tp
://

gm
t.g

en
om

e.
w

us
tl.

ed
u/

pa
ck

ag
es

/s
om

at
ic

-s
ni

pe
r/

[1
9]

St
re

lk
a

SN
V

s,
in

de
ls

Pe
rl

ht
tp

s:
//s

ite
s.

go
og

le
.c

om
/s

ite
/s

tr
el

ka
so

m
at

ic
va

ri
an

tc
al

le
r/

[1
8]

RV
D

/R
V

D
2/

V
IR

V
D

SN
V

s
Py

th
on

ht
tp

://
ge

no
m

ic
s.

w
pi

.e
du

/r
vd

2/
[3

1]
Fr

ee
B

ay
es

SN
V

s,
in

de
ls

Py
th

on
ht

tp
s:

//g
ith

ub
.c

om
/e

kg
/f

re
eb

ay
es

[6
0]

E
B

C
al

l
SN

V
s,

in
de

ls
R

ht
tp

s:
//g

ith
ub

.c
om

/f
ri

en
d1

w
s/

E
B

C
al

l
[2

0]
D

ee
pS

N
V

SN
V

s
R

ht
tp

://
w

w
w

.b
io

co
nd

uc
to

r.o
rg

/p
ac

ka
ge

s/
re

le
as

e/
bi

oc
/h

tm
l/d

ee
pS

N
V.

ht
m

l
[2

4]
E

B
M

SN
V

s
R

ht
tp

s:
//s

ite
s.

go
og

le
.c

om
/s

ite
/z

ho
ub

y9
8/

eb
m

[6
1]

Sn
ap

e
SN

V
s

C
ht

tp
s:

//c
od

e.
go

og
le

.c
om

/a
rc

hi
ve

/p
/s

na
pe

-p
oo

le
d/

[6
2]

SN
V

M
ix

SN
V

s
C

ht
tp

://
co

m
pb

io
.b

cc
rc

.c
a/

so
ft

w
ar

e/
sn

vm
ix

/
[6

3]
SO

A
Ps

np
SN

V
s

C
,C

++
ht

tp
://

so
ap

.g
en

om
ic

s.
or

g.
cn

/s
oa

ps
np

.h
tm

l
[6

4]
Se

ur
at

SN
V

s,
in

de
ls

Ja
va

ht
tp

s:
//s

ite
s.

go
og

le
.c

om
/s

ite
/s

eu
ra

ts
om

at
ic

/
[2

5]
L

ik
el

ih
oo

d-
ba

se
d

gl
fT

oo
ls

SN
V

s
C

,C
++

cs
g.

sp
h.

um
ic

h.
ed

u/
/a

be
ca

si
s/

gl
fT

oo
ls

/
[5

5]
Po

ly
M

ut
t

SN
V

s,
in

de
ls

C
++

ht
tp

://
ge

no
m

e.
sp

h.
um

ic
h.

ed
u/

w
ik

i/P
ol

ym
ut

t
[6

5]
L

ar
ge

D
ev

ia
tio

n
T

he
or

y
SN

PS
ee

ke
r

SN
V

s
C

ht
tp

://
ge

ne
tic

s.
w

us
tl.

ed
u/

rm
la

b/
so

ft
w

ar
e/

[6
6]

SP
L

IN
T

E
R

SN
V

s,
in

de
ls

C
,C

++
av

ai
la

bl
e

on
re

qu
es

t
[6

7]
L

in
ea

r
C

la
ss

ifi
er

Q
Q

-S
N

V
SN

V
s

Pe
rl

ht
tp

s:
//s

ou
rc

ef
or

ge
.n

et
/p

ro
je

ct
s/

qq
sn

v/
[6

8]
C

on
tin

ge
nc

y
Ta

bl
e

C
R

IS
P

SN
V

s
Pt

yt
ho

n
ht

tp
s:

//s
ite

s.
go

og
le

.c
om

/s
ite

/v
ib

an
sa

l/s
of

tw
ar

e/
cr

is
p

[6
9]

C
at

eg
or

y
an

d
su

bc
at

eg
or

y
of

ea
ch

va
ri

an
t

de
te

ct
io

n
m

et
ho

d
is

cl
as

si
fie

d.
SN

V
s,

si
ng

le
nu

cl
eo

tid
e

va
ri

an
ts

;
in

de
ls

,
in

se
rt

io
ns

/d
el

et
io

ns
.

Fu
nc

tio
ns

fo
r

id
en

tif
yi

ng
SN

V
s

an
d

in
de

ls
ar

e
di

st
in

gu
is

he
d.

Pl
at

fo
rm

s
of

la
ng

ua
ge

an
d

so
ur

ce
co

de
ar

e
pr

ov
id

ed
.

12



Strelka [18] is an algorithm for somatic variant detection through a joint analysis of
matched tumour and normal samples. It is a Bayesian method that models the joint proba-
bilistic distribution of continuous allele frequencies. Strelka is capable of maintaining high
sensitivity in low purity tumour samples.

Virmid [58] has been implemented for somatic variant detection by estimating the level
of sample contamination. Maximum likelihood estimation is used for sample impurity esti-
mation and joint genotype probability estimation, and Bayesian inference is used for variant
detection by Virmid. The strategy of estimating the level of contamination helps to increase
computational speed and accuracy.

EM-SNP [59] can be used for allele frequency estimation, SNVs detection, and associ-
ation study in pooled sequencing data. Their team developed an expectation maximization
algorithm to approximate the maximum likelihood of the parameters for estimation of minor
allele frequencies. It has been shown that EM-SNP outperforms SNVer [70] in rare variants
detection in type 1 diabetes pooled sequencing data by comparison of dbSNP and transition/-
transversion ratio metrics.

SomaticSniper [19] detects somatic variants by directly comparing the joint diploid geno-
type likelihoods for a tumour-normal pair. The genotype likelihood is calculated by the MAQ
method [52], which incorporates the dependency of the genotypes between tumour and normal
samples. Sensitivity and precision were used to evaluate the performance of variant detection
on a simulated data set.

FreeBayes [60] is a haplotype-based variant detection method for short read DNA se-
quencing data. It is a generalization of a Bayesian statistical method [71] to detect variants
in both individual and pooled samples. A gradient ascent method is employed to establish a
maximum a posteriori estimate of the genotype for each sample. This framework is able to
identify longer and multi-alleles by modeling multiallelic sites.

EBCall [20] is proposed to detect somatic variants by purposely incorporating sequencing
errors as prior information into the model. It is developed based on an empirical Bayesian
framework where a beta-binomial distribution is used to depict sequencing errors. EBCall has
been shown to detect somatic variants of less than 10% allele frequencies in tumour subclones.

DeepSNV [24] is a powerful statistical method for detecting SNVs in ultra-deep sequenc-
ing data. This algorithm is built on a hierarchical beta-binomial model, and a likelihood ratio
test is calculated for each base for comparison with a control or a reference sequence. Deep-
SNV is validated on subclonal diverse tumour samples of renal cell carcinoma and has revealed
an agreement of variant allele frequencies of the variants found by the original work [24].
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EBM [61] aims to detect SNVs in pooled sequencing data by accurately estimating the
sequencing error distribution across multiple sequencing pools and genomic positions. It is
a empirical Bayes mixture model that uses an expectation-conditional maximization (ECM)
algorithm for model inference and parameter estimation. Its usability was demonstrated with
lower sum of squared errors of the estimated allele frequencies compared with a naive estima-
tor.

Snape [62] is built to detect SNVs in pooled samples. It is a Bayesian method that con-
siders different priors to estimate the posterior frequency probability of SNVs. Snape outputs
a low false discovery rate with high power on a simulated data set generated by ART [72].

SNVMix [63] is a probabilistic method to detect SNVs from tumour NGS data. It is devel-
oped based on Binomial mixture models to which an expectation maximization algorithm is
used to obtain model parameters to predict allele frequencies. It demonstrates high sensitivity
and specificity using a breast cancer data set of > 40× of which the ground truth of SNVs is
known.

SOAPsnp [64] is a variant detection method designed for massively parallel sequencing-
by-synthesis Illumina Genome Analyzer data. It uses a Bayesian statistical model to infer the
likelihood of each possible genotype and outputs the genotype with highest posterior probabil-
ity for each site. It achieves high accuracy in human genome deep resequencing data. Incor-
porating dbSNP genotypes as prior information into SOAPsn helps identify real heterozygotes
in low read depth data.

Seurat [25] aims to detect somatic events, including SNVs, insertion/deletions, and struc-
tural variations, within tumours in paired tumour and normal samples. Seurat is a generalized
Bayesian framework that uses a beta-binomial distribution to model the probability of a so-
matic event. Seurat outputs a high transition/transversion ratio, low non-synonymous/synonymous
ratio, and low dbSNP rate on a lymphoma tumour data set.

PolyMutt [65] is a likelihood-based method to detect novel SNVs in samples of families.
PolyMutt models the likelihood of reads in pedigrees using the Elston-Stewart algorithm [73].
In a simulation study, it was shown that the information from families helps improve the
specificity of SNVs detection.

SNPSeeker [66] uses large deviation theory to detect SNVs from a large pool of multiple
individuals. Negative control data is necessary for model estimation and it is capable of de-
tecting SNVs that present with lower allele frequencies than the error rate of the sequencing
platform.
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SPLINTER [67], like SNPSeeker, is also based on the large deviation theory to detect
rare alleles in pooled sequencing samples. This research shows that over 500× coverage is
guaranteed as an ideal performance of detecting low frequency variants (25% − 2.5%) on a
synthetic DNA mixture of HapMap samples. It was also shown that SPLINTER has acceptable
specificity and positive predictive value (PPV) in clinical sequencing regions.

QQ-SNV [68] was developed to differentiate true SNVs from errors using the quartiles
from quality scores. Instead of modeling the position-specific allele frequency, a logistic re-
gression classifier model is used to classify a position as a variant or an error by incorporating
the Illumina quality scores. QQ-SNV shows a sensitivity of 100% and a specificity of 100%

when tested on a paired-end HCV clinical sample where the true frequency of the lowest
spiked-in is 0.5%.

CRISP [69] identifies both rare and common variants in pooled sequencing samples. It is
a probabilistic method that computes a contingency table P-value and a quality-based P-value
that represent the probability of the absence of a variant, which can be used to differentiate
true variants from sequencing errors. CRISP is able to detect a 2% allele frequency event in a
data set of two pools with 25 individuals each.

We previously developed a beta-binomial model, RVD [13], to characterize error rate dis-
tribution of each site of next-generation sequencing data. RVD is able to detect a 0.1% variant
allele frequency event in a synthetic DNA data set. From this, we developed RVD2 [31] that
improved RVD by adding priors to tie parameters across sites and derived a Markov Chain
Monte Carlo sampling algorithm for posterior inference. Based on this improvement, RVD2
can handle low read depth sequencing data and manipulate multiple replicates. Furthermore,
we proposed a variational inference expectation maximization algorithm, VI RVD [74], for the
former Bayesian statistical model to detect single nucleotide variants in heterogeneous sam-
ples. The variational inference algorithm demonstrates comparable sensitivity and specificity
compared to other state-of-the-art algorithms and can track non-reference allele frequency in
a real time-series sequencing data set.

2.4.2 Non-probabilistic methods

In this section, we summarize five variant detection methods that were developed based on
non-probabilistic or other combination methodologies (Table 2.3).
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SNVer [70] is a common and rare variant detection method for both individual and pooled
sequencing data that is scalable for whole genome sequencing data. This is a frequentist
method that reports overall P-values for every site without discarding bases with low read
depth. SNVer uses transition/transversion ratio, genotype concordance, and dbSNP as metrics
for evaluating the quality of variant calls in a real pooled sequencing data [51].

VarScan2 [21] has been demonstrated for detecting somatic variants, loss of heterozygos-
ity, and germline variants in exome sequencing data. VarScan2 uses a heuristic method and a
Fisher’s exact test by comparing tumour and normal samples based on several thresholds, such
as the number of allele counts and variant allele frequency. In a test of 151 ovarian tumour
samples from the TCGA data set, VarScan2 identified 7,790 validated somatic variants with
93% sensitivity and 85% precision.

Shimmer [22] is a method to identify somatic changes in normal-tumour samples. It uses
a Fisher’s exact test with Benjamini-Hochberg [78] for multiple testing correction to control
the false discovery rate (FDR). This method is sensitive enough for the detection of variants
in highly heterogeneous stromal contaminated data.

Atlas2 [75] aims to detect SNVs in whole exome sequencing (WES) data from the plat-
forms of SOLiD, Illumina, and Roche 454. Atlas2 uses a logistic regression model to detect
SNVs that pass several heuristic filters. It has been integrated into the Genboree to streamline
the processing of next-generation sequencing data on a web-based platform.

Feature-based classifiers [76], such as random forests, Bayesian additive regression trees,
support vector machines, and logistic regression, can also be used to detect somatic variants
in tumour-normal paired data sets. Supervised machine learning algorithms are trained on the
ground truth data set of∼ 3400 positions from 48 breast cancer exome sequences and a cross-
validation analysis is used to measure accuracy. This development shows that the feature-
based machine learning algorithms outperform SAMtools and GATK in both sensitivity and
specificity in this synthetic data set.

Cake [77] integrates four variant detection methods, Bambino, CaVEMan, SAMtools-
mpileup, and VarScan2, together with post-processing filters to detect somatic variants. Cake
outperforms any single algorithm with higher accuracy on two data sets, human hepatocellular
carcinoma data and human breast cancer exome data, and also functions with WGS and WGE
sequencing data using a standalone application.
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2.4.3 Overall Bayesian framework for variant detection

Most current variant detection methods are developed based on Bayesian Theorem. Because
of this, we describe an overall workflow for developing Bayesian-based methods for variant
detection in Figure 2.2. First, control (normal sample) and case (tumour sample) sequencing
data are commonly required to identify variants in the case. Then, control and case samples
will be fed into a Bayesian probabilistic model independently for comparison. In addition
to the sample data, a prior probabilistic distribution is needed to be defined for empirical
Bayesian models. The prior distribution captures the population knowledge of the parame-
ters, like genotype information of the data, within the Bayesian statistical model. Since the
prior distribution affects the posterior distribution substantially, comparing posteriors under
different plausible choices of prior distribution is important. Once a model is defined, model
inference via Bayes’ rule based on the prior and the likelihood of the data is implemented,
and the posterior distribution is a compromise of the prior distribution and the data. As an
outcome of model inference, posterior distributions for control and case are obtained to detect
variants. Finally, variants are detected by hypothesis testing between the posterior distribu-
tions of control and case. Since hypothesis testing across regions of interest is multiple and
independent for each site, appropriate error rate control is needed. The Benjamini-Hochberg
method for false discovery rate (FDR) control and Bonferroni correction for family-wise error
rate (FWER) are routinely used in the large-scale testing problems [79].

Figure 2.2: Bayesian probabilistic framework for variant detection in NGS sequencing data.
The control sample is shown in black and the case sample is shown in red. The posterior
distribution (green) is propotional to the prior distribution (blue) and the likelihood of the data
distribution (yellow).
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A major benefit of Bayesian-based methods is the flexibility of multiple levels of random
variables in measuring sources of uncertainty of underlying genotypes. The Bayesian frame-
work has become a prevailing method to identify variants in NGS data, but several difficulties
still remain. First, computational calculation for Bayesian inference is normally difficult in
the integration step. Also, accurate specification of prior probability in the model structure
and model evaluation for fitness assessment are challenging.

2.4.4 Advantages and disadvantages of different methods

Current efforts are focusing on comparing the performance of current variant detection meth-
ods in different applications based on specific interests and requirements. We summarize eight
comparative analyses on variant detection methods in tumour-normal paired NGS data in Ta-
ble 2.4. We propose that this summary of method comparisons is helpful to select appropriate
methods for their specific purposes. These comparisons focus mostly on the performances
of VarScan, MuTect, GATK, SAMtools, JointSNVMix, SomaticSniper, EBCall, and Strelka.
Synthetic or real WGS/WES data are used as benchmarking data sets for method validation.
Results of this comparative analysis show that SAMtools and GATK are not able to call rare
variants in heterogeneous samples. VarScan2 can detect more variants than other methods,
but may yield more false positives [80, 67], while Strelka returns a low number of variants in
a conservative way [81]. Although Strelka is able to call variants in heterogeneous samples,
it has lower accuracy than MuTect [80]. EBCall and MuTect are robust to the changing of
read depth and perform very well in a study of somatic variant detection in real exome and
targeted deep sequencing data [81]. Overall, MuTect outperforms other tested methods in
detecting rare variants with low allele frequency and shows high sensitivity at different dilu-
tions [80, 29]. Since performance depends on the quality of specific data sets and the ability
of methods in calling variants in heterogeneous samples, it is thought that a combination of
several state-of-the-art methods could be used together to generate an intersection of sets of
the candidate variants for consistency [41]. Previously, a unified framework has been provided
for combining the detected variants from multiple variant detection methods with improved
performance over each individual method [82].
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2.4.5 The potential of deep learning in variant detection

Recently, deep learning has become involved in addressing limitations in computational bi-
ology, and multiple layers of the neural networks are proposed to dissect the structure of
high-throughput sequencing data [83]. Most current statistical methods are developed based
on prior knowledge for sequencing data analysis. For example, a prior probability was pre-
defined for the allelic diversity for Snape [62]. In variant detection using SOAPsnp, the prior
for homozygous variant rate is set as 0.0005, and 0.001 for the heterozygous rate [64]. The
prior probabilities were also set for both haploid and diploid genotypes according to the tran-
sition and transversion values in the study of dbSNPs alleles [84]. Contrarily, deep learning
networks can learn directly from the data without assigning a prior. A deep learning method,
called DeepBind, was proposed to uncover the role of DNA/RNA binding proteins and also
able to discover disease-related variants in sequencing data [85]. Deep learning methods may
be advantageous for enabling direct training of the model on the sequencing samples. There-
fore, deep learning could be a promising direction for variant detection to yield more accurate
predictions.

2.5 Conclusions

In this review, we addressed the necessity of sensitive variant detection methods and com-
mon challenges for rare SNVs detection in DNA NGS data. We classified 30 state-of-the-art
methods to different categories based on the methodology. A Bayesian framework, as a lead-
ing method for current variant detection, was summarized to guide current researchers during
the development of probabilistic statistical methods for variant detection. Finally, we antic-
ipate that this review will help further the understanding of current methods for rare variant
detection for biologists and bioinformaticians alike, and accelerate the interpretation of next-
generation sequencing data involved with clinical studies and genetic-based research.

Single nucleotide variant detection using statistical methods is being actively developed in
the characterization of genomic heterogeneity in clinical samples. A number of statistical or
computational methods have been developed for variant detection in the NGS data, but high
sensitive variant detection methods are still in demand. As we discussed in this chapter, the
biological and statistical limitations that hinder effective variant detection are points of fo-
cus for developing sensitively accurate, scalable, and robust methods. Current methods have
progressed quickly from standard cut-off threshold methods, genotypes subtraction methods,
to now advanced Bayesian statistical methods. Among these advanced methods, the prob-
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abilistic statistical pipelines are built to handle uncertainty in probabilistic analogues. The
un-probabilistic methods are employing and evaluating the frequentist, heuristic, and other
machine learning methods. Regardless, each method type has mathematical problem formula-
tion as well as their inherent advantages and disadvantages; hence, accurate variant detection
highly relies on the characteristics of the driving statistical methods. In all, the development of
more sensitive statistical methods will remain an essential factor in the fundamental research
of human genetics for clinical disease monitoring and the advancement of treatments.
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Chapter 3

Variational Inference for Rare Variant
Detection in Heterogeneous
Next-generation Sequencing Data

3.1 Background

Massively parallel sequencing data generated by next-generation sequencing technologies is
routinely used to interrogate single nucleotide variants (SNVs) in research samples [86]. For
example, deep sequencing confirmed the degree of genetic heterogeneity of HIV and in-
fluenza [13, 87]. Intra-tumor heterogeneity has been revealed by next-generation sequenc-
ing [88]. Whole genome sequencing has revealed that many beneficial mutations of minor
allele frequencies are essential to respond to dynamic environments [89]. However, rare SNV
identification in heterogeneous cell populations is challenging, because of the intrinsic error
rate of next generation sequencing [48]. Thus, there is a need for accurate and scalable statis-
tical methods to uncover SNVs in heterogeneous samples.

A number of computational methods have been developed to detect SNVs in large scale
genomic data sets. These methods can be roughly categorized as probabilistic or heuristic or
some combination. Among all of the current probabilistic methods, the Bayesian probabilistic
framework has been increasingly used to estimate unobserved quantities such as variant allele
frequency given observed genomic sequencing data.

GATK [17] and SAMTools [53] use a naive Bayesian decision rule to call variants. EBCall
models sequencing errors based on a Beta-Binomial distribution, where the parameters and
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latent variables are estimated from a set of non-paired normal sequencing samples [20]. How-
ever, the error rate of normal sequencing samples could be unmatched with the error rate of
the target samples, which may cause a problem of making false negatives calls [80]. CRISP
compares aligned reads across multiple pools to obtain sequencing errors, and then distin-
guishes true rare variants from the sequencing errors [69]. However, the bottleneck of CRISP
is its low computational efficiency due to a calculation of a large number of contingency tables.
JointSNVMix introduces two Bayesian probabilistic models (JointSNVMix1 and JointSNVMix2)
to jointly analyze a tumour-normal paired allelic count of NGS data [57]. JointSNVMix de-
rives an expectation maximization algorithm to calculate maximum a-posteriori (MAP) es-
timate of latent variables in a particular probabilistic graphical model. Furthermore, they
showed that the joint modeling method, JointSNVMix1, observes 80-fold reduction of false
positives compared with its independent analogue (SNVMix1) [57]. SomaticSniper mod-
els the joint diploid genotype likelihoods for both tumour and normal samples [19]. Strelka
models the joint probabilistic distribution of allele frequencies for both tumour and normal
samples, which is demonstrated to be more accurate compared with the methods based on the
estimated allele frequency tests between tumour and normal samples [90]. SNVer focuses on
a frequentist method that is able to calculate P -values, but [70] pointed out that this approach
fails to model sampling bias that will reduce the power of detecting true rare variants. VarScan
compares tumour and normal samples thresholding on variant allele frequency and a number
of allele counts then uses Fisher’s exact test to estimate sample allele frequencies [91].

In previous work, we developed a Beta-Binomial model to estimate a null hypothesis error
rate distribution at each position. Using this rare variant detection (RVD) model, we call rare
variants by comparing the error rate of the sample sequence data to a null distribution obtained
from sequencing a known reference sample [13]. RVD can identify mutant positions at a 0.1%
fraction in mixed samples using high read depth data.

An improvement of that work, RVD2, uses hierarchical priors to tie parameters across
positions to detect variants in low read depth data [31]. We derived a Markov Chain Monte
Carlo sampling algorithm for posterior inference. However, the main limitation of MCMC
is that it is hard to diagnose convergence and may be slow to converge [33]. An alternative
inference method, that we explore here, is to use variational inference, which is based on a
proposed variational distribution over latent variables. By optimizing variational parameters,
we fit an approximate distribution that is close to the true posterior distribution in the sense
of the Kullback-Leibler (KL) divergence. Variational inference can now handle nonconjugate
distributions and tends to be more computationally efficient than MCMC sampling [34].

Here, we propose a variational EM algorithm for our Bayesian statistical model to detect
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rare SNVs in heterogeneous NGS data. We show that variational EM algorithm has compa-
rable accuracy and efficiency compared with MCMC in a synthetic data set. In Section 3.2,
we define the model structure, and derive our variational EM algorithm to approximate the
posterior distribution over latent variables. Then, we call a variant by a posterior difference
hypothesis test between the key model parameters of a pair of samples. In Section 3.3, we
compare the performance of the variational EM inference algorithm to the MCMC sampling
method and the state-of-the-art methods using a synthetic data set. We also show that our vari-
ational EM algorithm is able to detect rare variants and estimate non-reference allele frequency
(NRAF) in a longitudinal directed evolution experimental data set.

3.2 Methods

3.2.1 Model structure

Our Bayesian statistical model is shown as a graphical model in Figure 3.1A. In the model, rji
is the number of reads with a non-reference base at location j in experimental replicate i; nji
is the total number of reads at location j in experimental replicate i. The model parameters
are:

− µ0 a global non-reference read rate that captures the error rate across all the positions,
−M0 a global precision that captures the variation of the error rate across positions in a

sequence, and
−Mj a local precision that captures the variation of the error rate at position j across different

replicates.

The latent variables are:

− µj ∼ Beta(µ0,M0) a position-specific non-reference read rate for position j, and
− θji ∼ Beta(µj,Mj) the non-reference read rate for position j in replicate i.

In Figure 3.1B, γ is the parameter for the variational distribution for latent variable µ, and
δ is the parameter for the variational distribution for latent variable θ. We describe q(µ) and
q(θ) in detail in section 2.2.2.

The model generative process is as follows:

1. For each location j ∈ [1, . . . , J ]:
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Figure 3.1: Graphical model. A. Graphical model representation of the model. B. Graphical
model representation of the variational approximation to approximate the posterior distribu-
tion. Observed random variables are shown as shaded nodes and latent random variables are
unshaded. The object of inference for the variational EM algorithm is the joint distribution
p(µ, θ|r, n).

(a) Draw an error rate µj ∼ Beta(µ0,M0)

(b) For each replicate i ∈ [1, . . . , N ]:

i. Draw θji ∼ Beta(µj,Mj)

ii. Draw rji|nji ∼ Binomial(θji, nji)

The joint distribution p(r, µ, θ|n;φ) given the parameters can be factorized as

p(r, µ, θ|n;φ) = p(r|θ, n)p(θ|µ;M)p(µ;µ0,M0). (3.1)

3.2.2 Variational expectation maximization (EM) inference

We developed a non-conjugate variational inference algorithm to approximate the posterior
distribution,

p(µ, θ|r, n;φ) =
p(r, µ, θ|n;φ)

p(r|n;φ)
, (3.2)

where the parameters are φ , {µ0,M0,M}.
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3.2.2.1 Factorization

We propose the following factorized variational distribution to approximate the true posterior
over latent variables µj and θji. Here, q(µj) approximates the variational posterior distribution
of µj , which represents the local error rate distribution at position j across different replicates;
and q(θji) approximates the posterior distribution of θji, which is the error rate distribution at
position j for replicate i.

q(µ, θ) = q(µ)q(θ) =
J∏
j=1

q(µj)
N∏
i=1

q(θji). (3.3)

3.2.2.2 Evidence lower bound (ELBO)

Given the variational distribution, q, the log-likelihood of the data is lower-bounded according
to Jensen’s inequality,

log p (r|n;φ) = log

∫
µ

∫
θ

p (r, µ, θ|n;φ) dθdµ

= log

∫
µ

∫
θ

p (r, µ, θ|n;φ)
q (µ, θ)

q (µ, θ)
dθdµ

>
∫
µ

∫
θ

q (µ, θ) log
p (r, µ, θ|n;φ)

q (µ, θ)
dθdµ

= Eq [log p (r, µ, θ|n;φ)]− Eq [log q (µ, θ)]

, L(q, φ).

(3.4)

The function L(q, φ) is the evidence of lower bound (ELBO) of the log-likelihood of the
data, which is the sum of q-expected complete log-likelihood and the entropy of the variational
distribution q. The goal of variational inference is to maximize the ELBO. Equivalently, q is
chosen by minimizing the KL divergence between the variational distribution and the true
posterior distribution.

Since θ and r are conjugate pairs, the posterior distribution of θji is a Beta distribution,

p(θji|rji, nji, µj,Mj) ∼ Beta(rji +Mjµj, nji − rji +Mj(1− µj)). (3.5)
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Therefore, we propose a Beta distribution with parameter vector δji as variational distribution,

θji ∼ Beta(δji1, δji2).

The posterior distribution of µj is given by its Markov blanket,

p(µj|θji,Mj, µ0,M0) ∝ p(µj|µ0,M0)p(θji|µj,Mj). (3.6)

This is not in the form of any known distribution. But, since the support of µj is [0, 1], we
propose a Beta distribution with parameter vector γj as variational distribution,

µj ∼ Beta(γj1, γj2).

Each component of ELBO is derived in Appendix A.1.

3.2.2.3 Variational EM algorithm

Variational EM algorithm maximizes the ELBO of the likelihood by alternating between max-
imization over q (E-step) and maximization over φ = {µ0,M0,M} (M-step). We update the
variational parameters and the model parameters iteratively by numerically optimizing each
problem using Sequential Least SQuares Programming (SLSQP) [92].

(E-step): Updating the variational distributions The terms in the ELBO that depend on
q(θji|δji1, δji2) are

L[q(θji)] =
J∑
j=1

N∑
i=1

{rjiEq [log θji] + (nji − rji)Eq [log(1− θji)]}

+
J∑
j=1

N∑
i=1

{MjEq [µj]Eq [log θji]− Eq [log θji]}

+
J∑
j=1

N∑
i=1

{(Mj − 1−MjEq [µj])Eq [log (1− θji)]}

−
J∑
j=1

N∑
i=1

Eq [log q(θji)]

(3.7)
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We update the variational parameters by numerically optimizing

δ̂ji1, δ̂ji2 = arg max
δji1,δji2

L[q(θji)] (3.8)

subject to the constraints that δji1 > 0 and δji2 > 0 and conditioned on fixed values for
the other model and variational parameters using Sequential Least SQuares Programming
(SLSQP).

We update the variational distribution q(µj) using the partial ELBO depending on γj from
each position j (3.9).

L[q(µj)] = N

J∑
j=1

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))

)]

+
J∑
j=1

N∑
i=1

{MjEq [µj]Eq [log θji]− Eq [log θji]}

+
J∑
j=1

N∑
i=1

{(Mj − 1−MjEq [µj])Eq [log (1− θji)]}

+ J log
Γ(M0)

Γ(µ0M0)Γ(M0(1− µ0))

+
J∑
j=1

{(M0µ0 − 1)Eq [log µj] + (M0(1− µ0)− 1)Eq [log(1− µj)]}

−
J∑
j=1

Eq [log q(µj)]

(3.9)

Again, we update the variational parameters by numerically optimizing

γ̂j1, γ̂j2 = arg max
γj1,γj2

L[q(µj)] (3.10)

subject to the constraints that γj1 > 0 and γj2 > 0 and conditioned on fixed values for the
other model and variational parameters using SLSQP. The computational cost of optimizing
(3.9) is high because of the quadrature of Eq

[
log
(

Γ(Mj)

Γ(µjMj)Γ(Mj(1−µj))

)]
in (A.8).

(M-step): Updating the model parameters We can write out the ELBO as a function of
each model parameter µ0, M0, and Mj as follows.
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The ELBO with respect to µ0 is

L[µ0] = −J ∗ log Γ(µ0M0)− J ∗ log Γ(M0(1− µ0))

+M0µ0

J∑
j=1

{Eq [log µj]− Eq [log(1− µj)]} .
(3.11)

The ELBO with respect to M0 is

L[M0] = J ∗ log
Γ(M0)

Γ(µ0M0)Γ(M0(1− µ0))

+M0

J∑
j=1

{µ0Eq [log µj] + (1− µ0)Eq [log(1− µj)]} .
(3.12)

The ELBO with respect to Mj is

L[Mj ] = N ∗
J∑
j=1

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))

)]

+Mj

J∑
j=1

N∑
i=1

{Eq [µj]Eq [log θji] + (1− Eq [µj])Eq [log (1− θji)]} .

(3.13)

We also use SLSQP to optimize the ELBO function with respect to each parameter, µ0, M0,
and Mj . It is computationally easy to optimize µ0 (3.11) and M0 (3.12). However, it is costly
for optimizingMj (3.13) because the quadrature is needed to calculateEq

[
log
(

Γ(Mj)

Γ(µjMj)Γ(Mj(1−µj))

)]
using (A.8).

There is no analytical representation for

Eq

[
log
(

Γ(Mj)

Γ(µjMj)Γ(Mj(1−µj))

)]
, which is required to update variational distribution for µj

and model parameter M . So, we must resort to numerical integration,

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ((1− µj)Mj)

)]
=∫ 1

0

q(µj; γj1, γj2) log

(
Γ(Mj)

Γ(µjMj)Γ((1− µj)Mj)

)
dµj.

(3.14)

Unfortunately, this numerical integration step is computationally expensive.

The variational EM algorithm is summarized using pseudocode in Algorithm 1.
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Algorithm 1 Variational EM Inference

1: Initialize q(θ, µ) and φ̂
2: repeat
3: // E-step
4: repeat
5: for j = 1 to J do
6: for i = 1 to N do
7: Optimize L(q, φ̂) over q(θji; δji) = Beta(δji)
8: end for
9: end for

10: for j = 1 to J do
11: Optimize L(q, φ̂) over q(µj; γj) = Beta(γj)
12: end for
13: until change in L(q, φ̂) is small
14: // M-step
15: Set φ̂← arg max

φ
L(q̂, φ)

16: until change in L(q̂, φ) is small

3.2.3 Hypothesis testing

The posterior distribution over µ4j | rcase, rcontrol , µj|rcase − µj|rcontrol is the distribu-
tion over the change in the non-reference read rate at position j between a case and control
sample. Since the variational approximate posterior distributions in the difference are Beta
distributions, the distribution of the difference is not analytically known. In order to compute
the statistic of interest, we approximate µj|rcase and µj|rcontrol with univariate Gaussian dis-
tributions by matching the first two moments of the variational Beta distributions. Then, the
difference is a Gaussian distribution. As we show in section 3.2.2 the Gaussian approximation
is empirically reasonable.

Under the variational approximation,

Eq[µj|rcase] =
γcasej1

γcasej1 + γcasej2

(3.15)

Varq[µj|rcase] =
γcasej1 γcasej2

(γcasej1 + γcasej2 + 1)(γcasej1 + γcasej2 )2
(3.16)

for µj|rcase and likewise for µj|rcontrol. We approximate the posterior for the case sample as

µj|rcase ∼ N (Eq[µj|rcase],Varq[µj|rcase]) (3.17)
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and likewise for the control. Then,

µ4j | rcase, rcontrol ∼
N (Eq[µj|rcase]− Eq[µj|rcontrol],Varq[µj|rcase] + Varq[µj|rcontrol]).

(3.18)

Now, we can approximate the posterior probability of interest,

Pr(µ4j > τ | rcase, rcontrol), (3.19)

that is, the posterior probability that the difference in the non-reference read rate is greater
than a fixed effect size τ (e.g. zero) for a one sided test. For a two sided test, we compute the
approximate probability

Pr(|µ4j | > τ | rcase, rcontrol). (3.20)

A position is called a provisional variant if Pr(|µ4j | > τ | rcase, rcontrol) > 1 − α/2, where
the probability is approximated as described.

It is possible that a position is called a variant due to a differential non-reference read count,
but no particular alternative base is more frequently observed than the others. In this case, the
likely cause is a sequencing error that indiscriminately incorporates a non-reference base at the
position. To discriminate this non-biological cause from the interesting true variants we use a
χ2 goodness-of-fit test for non-uniform base distribution [79, 31]. For each provisional variant,
if we reject the null hypothesis that the distribution is uniform, we promote the position to a
called variant.

3.3 Experiments and results

3.3.1 Data sets

We validate the performance of our method on a synthetic DNA sequence data set and further-
more apply it on a longitudinal yeast data set.

3.3.1.1 Synthetic DNA sequence data

The data set we use to assess sensitivity and specificity is described and made available else-
where [13]. Briefly, we performed an in-vitro mixture of two DNA sequences to test the
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sensitivity and specificity of our approach. Two 400bp DNA sequences were chemically syn-
thesized. One sample has 14 variant loci and is taken as the case and the other without variants
is taken as the control. Case and control DNA samples were mixed in-vitro to yield defined
NRAF of 0.1%, 0.3%, 1.0%, 10.0%, and 100.0%. The synthetic DNA dataset was downsam-
pled by 10×, 100×, 1, 000×, and 10, 000× using picard (v 1.96). The final data set contains
read pairs for six replicates for the control and cases at different NRAF levels.

3.3.1.2 Longitudinal directed evolution data

The longitudinal yeast data comes from three strains of haploid S288c which were grown for
448 generations under limited-glucose (0.08%). The wild-type ancestral strain GSY1136 was
sequenced as a reference. Aliquots were taken about every 70 generations and sequenced.
The detail of library sequencing is described in [89], [69], and [93]. The Illumina sequencing
data is available on the NCBI Sequence Read Archive (SRA054922)[89]. For this study, we
received the original BAM files from one of the authors. The aligned BAM files have 266

– 1, 046× coverage. We used samtools (v 1.1) with -mpileup -C50 flags to convert
BAM files to pileup files. Then, we generated depth chart files, which are tab-delimited text
tables recording in each element of the table the count of a nucleotide at a genomic position.
We ran our variational inference algorithm on the depth chart files to identify SNVs.

3.3.2 Performance on synthetic DNA data

3.3.2.1 Comparison of sensitivity and specificity

The performance of variational EM algorithm is shown in receiver-operating characteristic
curves (ROCs) for a broad range of median read depths and NRAFs in Figure 3.2. The results
in the ROC curves are generated by varying parameter α in the posterior distribution test. It
shows that the performance improved with read depth and true mutant mixtures.

Furthermore, we evaluated the performance by using both the posterior distribution test
with α = 0.05 and the χ2 test to detect variants, and compared the performance with the
MCMC sampling algorithm in terms of sensitivity and specificity (Table 3.1). The variational
EM algorithm shows higher sensitivity and specificity than the MCMC algorithm in the events
when NRAF is 0.1%. The variational EM algorithm has a higher specificity compared with
the MCMC algorithm for a median read depth of 41, 472× at 0.3% NRAF and 55, 489× at
1.0% NRAF, but the sensitivity is slightly lower due to false negatives.
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Figure 3.2: ROC curves with varying median read depths and NRAFs.
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Table 3.1: Sensitivity/Specificity comparison of variational EM algorithm with MCMC algo-
rithm.

True NRAF Median Depth Sensitivity Specificity

MCMC Variational MCMC Variational

0.1% 39 0.00 0.00 1.00 1.00
408 0.00 0.07 1.00 1.00

4129 0.14 0.29 1.00 1.00
41449 0.86 1.00 0.97 1.00

0.3% 36 0.00 0.00 1.00 1.00
410 0.00 0.00 1.00 1.00

4156 1.00 1.00 0.99 0.98
41472 1.00 0.93 0.85 0.91

1.0% 53 0.00 0.00 1.00 1.00
535 0.21 0.29 1.00 1.00

5584 1.00 1.00 0.98 0.98
55489 1.00 0.93 0.87 0.95

10.0% 22 0.00 0.57 1.00 1.00
260 1.00 1.00 1.00 1.00

2718 1.00 1.00 1.00 1.00
26959 1.00 1.00 1.00 1.00

100.0% 27 1.00 1.00 1.00 1.00
298 1.00 1.00 1.00 1.00

3089 1.00 1.00 1.00 1.00
30590 1.00 1.00 1.00 1.00

3.3.2.2 Comparison of approximated posterior distribution

Figure 3.3 shows the approximate posterior distribution of the variational EM algorithm and
samples of the MCMC algorithm. One variant position is taken as an example to show the
comparison of the approximated posteriors. The variational EM and MCMC algorithms both
identify all the variants when NRAF is 10.0% and 100.0%. The variational EM algorithm calls
90 false positive positions without a χ2 test when NRAFs are 0.1% and 0.3% for low median
read depth (30× and 400×). This is to be expected because it is highly unlikely to correctly
identify a variant base with a population frequency of 1 in 1, 000 with less than a 1, 000× read
depth.

A false positive, a non-mutated position that is called by the variational EM algorithm
but not called by the MCMC algorithm, is shown in Figure 3.4. The variance of the MCMC
posterior estimate is higher than that of the variational posterior estimate. We tested 10 random
initial values variational inference algorithm and found the approximate posterior distributions
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from the variational EM algorithm are essentially equivalent for all random initializations. It
is notable that the shape of the proposed Beta variational distribution is well approximated by
a Gaussian.

Figure 3.3: Approximated posterior distributions by the variational EM and MCMC algo-
rithms on a true variant position (85) when the median read depth is 5, 584×.

Figure 3.4: Approximated posterior distribution by the variational EM and MCMC algorithms
on a non-variant position (160) that was not called by the MCMC algorithm (true negative),
but was called by the variational EM algorithm (false positive) with a median read depth of
410×.
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3.3.2.3 Comparison to the state-of-the-art methods

We compared the performance of our variational EM algorithm with the state-of-the-art vari-
ant detection methods, SAMtools [53], GATK [17], CRISP[69], VarScan2 [91], Strelka [90],
SNVer[70], MuTect [16], and RVD2 [31], using synthetic DNA data set (Table 3.2). Among
all of the methods compared, our variational EM algorithm has a higher sensitivity and speci-
ficity for a broad range of read depths and NRAFs. Our variational EM algorithm shows higher
specificity than all the other tested methods at a very low NRAF (0.1%) level. However, our
algorithm has a slightly lower specificity than the MCMC algorithm when the median read
depth is 4, 156× at 0.3% NRAF, and a slightly lower sensitivity than the MCMC algorithm
when the median read depth is 41, 472× at 0.3% NRAF and a median read depth of 55, 489×
at 1.0% NRAF. The performance of other methods is stated in detail in [31].

3.3.2.4 Comparison of timing

The computational time for approximating the variational posterior distribution is increased
by expanding the length of region and the median read depth (Figure 3.5). Our variational
EM algorithm is faster than the MCMC algorithm at the low median read depths of 27× and
298×, and slower for the high median read depths of 3, 089× and 30, 590×.

Table 3.3 shows the timing profile for each part of our variational EM algorithm when
median read depth is 3, 089×. Optimizing γ in the E-step and optimizing Mj in the M-step
takes more than 95% of the time of one variational iteration in a test of a single processor,
since the integration (3.14) is needed.

Table 3.3: Timing profile of variational EM algorithm when median depth is 3, 089×.

E-step M-step

Computation Region Optimize Optimize Update Optimize Optimize Optimize Update Total
resource length γ δ ELBO µ0 M0 M ELBO time (s)

100 617.7 (63%) 4.232 10.42 0.264 0.159 332.8 (34%) 10.29 976.0
single 200 1124 (65%) 8.936 18.64 0.418 0.256 570.0 (33%) 18.37 1741

processor 300 1728 (65%) 13.27 27.81 0.445 0.400 851.5 (32%) 27.65 2649
400 2433 (66%) 17.99 38.55 0.737 0.635 1176 (32%) 38.17 3705

100 29.93 (41%) 0.2470 11.67 0.3070 0.1890 19.56 (26%) 11.98 73.89
60 200 44.69 (40%) 0.4170 22.14 0.5230 0.3040 24.04 (21%) 22.24 114.3

processors 300 63.47 (40%) 0.7160 33.31 0.5620 0.5040 29.41 (18%) 33.24 161.2
400 94.66 (43%) 0.7270 42.78 0.8200 0.7060 40.04 (18%) 44.28 219.7

Timing profile of 4 significant figures for one iteration of variational EM algorithm when median read depth is 3, 089×. Single
and multiple processors are both tested to estimate timing. Time for optimizing γ in the E-step and optimizing M in the M-step is
highlighted in percentage.
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Figure 3.5: Timing comparison for the variational EM algorithm and MCMC sampling algo-
rithm. Sixty processors are used to estimate the model on the synthetic data set.

3.3.3 Variant detection on the longitudinal directed evolution data

3.3.3.1 Detected variants

We applied our variational EM algorithm to the MTH1 gene at Chr04:1,014,401-1,015,702
(1,302bp), which is the most frequently observed mutated gene by [89]. Our algorithm de-
tected the same variants that were found by [89] (shown as highlighted in Table 3.4 and Table
3.5). Additionally, we detected 81 novel variants in 8 timepoints that the original publication
did not detect. In Additional file 2, G7 is the baseline NRAF as the control sample when com-
paring with G70, G133, G266, G322, G385, and G448 in the respective hypotheses testing.
The corresponding NRAFs of called variants at different time points are given by the estimate
of the latent variable, µ̂j = Eq[µj|r].

All of these variants, except the variant at position Chr04:1,014,740, decrease in NRAF
following a maximum. The allele at position Chr04:1,014,740 is a beneficial variant that arises
in NRAF to 99.6% at generation 448 within a constant glucose-limited environment. More-
over, we identified the first emergence of this beneficial variant as early as 0.5% in generation
133. We detected 22 variants (NRAF < 1.0%) early (at generation 70) in the evolutionary
time course. Given that the median read depth is 1, 649×, we have some confidence these are
bona-fide variants.

39



Table 3.4: Identified variants on the longitudinal data set.

Allele frequency of generation (%)

Index Position Ref Alt G7 G70 G133 G196 G266 G322 G385 G448

1 1014407 T C 0.127 0.620
2 1014408 A G 0.083 0.374
3 1014422 C G 0.160 1.036 7.431
4 1014434 T C 0.161 0.042
5 1014436 A G 0.161 0.127
6 1014447 A C 0.086 0.837 0.642
7 1014455 C T 0.044 0.345
8 1014456 T G 0.073 0.644 1.154
9 1014457 G T 0.031 0.777 2.675

10 1014561 T C 0.059 0.444
11 1014580 A G 0.161 0.096 0.168 0.481 0.088 0.038 0.081
12 1014582 T C 0.161 0.149
13 1014583 G A 0.039 0.405 1.171 0.366
14 1014595 A G 0.065 0.096
15 1014607 T A 0.039 0.292 0.443
16 1014615 G T 0.079 0.865 1.327
17 1014651 C T 0.210 0.723
18 1014689 T A 0.161 0.101
19 1014691 G A 0.056 0.308
20 1014698 C T 0.160 0.13 0.629 0.565 0.767
21 1014701 T C 0.160 0.120
22 1014707 A C 0.160 0.825 1.461 7.434 6.920 0.176
23 1014712 C A 0.160 0.116 1.429 0.350 1.104
24 1014740 G C 0.158 0.522 23.849 98.286 99.715 99.603
25 1014741 C T 0.028 0.997 1.622 0.780
26 1014751 C A 0.017 0.896
27 1014765 A C 0.159 0.431
28 1014770 G T 0.159 0.758 13.820 0.727 1.671
29 1014791 C T 0.014 0.918
30 1014823 C A 0.059 0.171
31 1014856 T C 0.160 0.119
32 1014867 A G 0.098 0.584 0.562 0.371 0.360 0.404
33 1014877 T A 0.039 0.449
34 1014920 G C 0.049 0.324
35 1014930 G T 0.010 0.303
36 1014958 C A 0.160 1.884 1.036
37 1014971 T C 0.030 0.445
38 1014968 A T 0.037 0.316 3.446 1.462
39 1014978 A C 0.011 1.430
40 1014997 G A 0.008 0.368 2.287 2.564
41 1015004 A G 0.160 0.127
42 1015036 G A 0.026 0.640
43 1015043 C T 0.047 0.399
44 1015051 G A 0.161 0.084
45 1015069 T C 0.162 0.027
46 1015074 A T 0.002 0.400 0.510
47 1015077 G T 0.047 1.06
48 1015078 A G 0.186 0.689
49 1015086 T C 0.055 0.525 0.437 0.307
50 1015092 A C 0.003 0.424

Identified variants and corresponding NRAFs in gene MTH1 on Chromosome 4. A blank cell indicates that the
position of that time point is not called significantly different than G7. The positions highlighted as blue were also
identified by Kvitek, 2013. The other 81 positions are novel identified variants in 8 timepoints.
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Table 3.5: Identified variants on the longitudinal data set (continued).

Allele frequency of generation (%)

Index Position Ref Alt G7 G70 G133 G196 G266 G322 G385 G448

51 1015190 A C 0.160 0.459 0.545
52 1015220 G A 0.161 0.061
53 1015222 T C 0.161 0.040 0.067
54 1015228 T A 0.054 0.293
55 1015236 A C 0.095 0.935 2.211 1.425 1.100
56 1015247 A G 0.060 0.142
57 1015276 T C 0.109 0.519
58 1015280 T A 0.519 1.108
59 1015284 G A 0.159 0.190
60 1015317 G C 0.160 0.168 0.306
61 1015321 G A 0.059 0.803
62 1015322 A T 0.013 0.519 0.488
63 1015360 C A 0.161 0.067
64 1015368 C T 0.064 0.147
65 1015370 T C 0.161 0.149
66 1015371 G C 0.062 0.147
67 1015386 G T 0.047 0.375 3.012 2.098 1.022
68 1015411 A G 0.042 0.214
69 1015423 G A 0.161 0.159
70 1015424 T C 0.050 0.194
71 1015434 A T 0.161 0.151
72 1015477 C A 0.043 0.440
73 1015478 C T 0.161 0.162
74 1015512 G T 0.161 0.006
75 1015519 T C 0.161 0.080
76 1015521 G A 0.018 0.371
77 1015522 A G 0.040 0.343
78 1015539 G C 0.040 0.618
79 1015555 G A 0.160 0.110
80 1015556 A G 0.161 0.117
81 1015563 G A 0.041 0.247
82 1015623 T G 0.034 0.194
83 1015627 T C 0.161 0.060
84 1015657 G T 0.032 0.740 0.583 0.461
85 1015666 G A 0.065 0.091 0.105
86 1015681 C T 0.161 0.030
87 1015691 T C 0.037 0.358
88 1015699 A G 0.161 0.068
89 1015700 C A 0.015 0.949 1.965 1.044 0.379
90 1015701 A G 0.161 0.068

Identified variants and corresponding NRAFs in gene MTH1 on Chromosome 4. A blank cell indicates that
the position of that time point is not called significantly different than G7. The positions highlighted as blue
were also identified by Kvitek, 2013. The other 81 positions are novel identified variants in 8 timepoints.
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3.3.3.2 Sensitivity analysis

The global precision hyper-parameter M0 could influence the estimate of µj due to its regu-
larization effect. We show the influence of different M̂0 on variant position Chr04:1,014,740,
q(µ1,014,740|r) in Figure 3.6. We see that as we decrease the prior precision parameter M̂0,
µ̂1,014,740 increases as expected. But the effect of changing M̂0 over several orders of magni-
tude does not change µ̂j greatly. Here M̂0 = 1.752 in this dataset.

Figure 3.6: Influence of M0 on the estimate of µj . Posterior distributions of the variant at
position Chr04:1,014,740, µ̂1,014,740, with different M̂0 are shown.

3.3.3.3 Concomitant variants detection

We identified a pair of variants, Chr04:1,014,740 in gene MTH1 and Chr12:200,286 in gene
ADE16, that increase in NRAF together in time (Figure 3.7).

We hypotheses that the variants are concomitant in the same clone. In this pair of genes,
gene MTH1 is a negative regulator of the glucose-sensing signal transduction pathway, and
gene ADE16 is an enzyme of de novo purine biosynthesis. Glucose sensing induces gene
expression changes to help yeast receive necessary nutrients, which could be a reason for this
pair of genes to mutate together [94]. Further experimental validation of this hypothesis would
be required to definitively show that the mutations are concomitant.
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Figure 3.7: The NRAF trend of concomitant variants in gene MTH1 and ADE16. The 95%
Bayesian credible intervals are shown.

3.4 Conclusions

We propose a variational EM algorithm to estimate the non-reference allele frequency in the
RVD2 model to identify rare nucleotide variants in heterogeneous pools. Our results show
that the variational EM algorithm (i) is able to identify rare variants at a 0.1% NRAF level
with comparable sensitivity and specificity to a MCMC sampling algorithm; (ii) has a higher
specificity in comparison with many state-of-the-art algorithms in a broad range of NRAFs;
and (iii) detects SNVs early in the evolutionary time course, as well as tracks NRAF in a real
longitudinal yeast data set.

We have chosen parametric forms for the variational distributions. This choice has left
us with a complex integral in our variational optimization problem. In future work, we plan
to explore other approximations of the variational distributions that render the integral easier
to compute. One could use cubic splines to numerically approximate the function and then
integrate that surrogate [95]. Another strategy is to consider a Laplace approximation for the
variational distribution, as we and others have done previously [96, 97].

Improving the speed of the estimating algorithm enables us to interrogate whole-genome
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sequencing data. By doing this, we hope to reveal the dynamics of arising variants at the
genome-wide scale to show the genetic basis of clonal interference. Our method could be ex-
tended to study drug resistance by characterizing tumor heterogeneity in targeted anti-cancer
chemotherapy samples, or to find the causative variants that lead to drug resistance and under-
stand the causes of resistance at the single nucleotide level.
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Chapter 4

Sparse Mixed Membership Matrix
Factorization using Global Optimization
for Molecular Subtypes Classification

4.1 Background

Mixed membership matrix factorization has been used in document topic modeling [98], col-
laborative filtering [99], population genetics [100], and social network analysis [101]. The
underlying assumption is that an observed feature for a given sample is a mixture of shared,
underlying groups. These groups are called topics in document modeling, subpopulations in
population genetics, and communities in social network analysis. In bioinformatics applica-
tions the groups are called subtypes and we adopt that terminology here. Mixed membership
matrix factorization simultaneously identifies both the underlying subtypes and the distribu-
tion over those subtypes for each individual sample.

4.1.1 Mixed membership model

The mixed membership matrix factorization problem can equivalently be viewed as infer-
ence in a particular statistical model [102]. These models typically have a latent Dirichlet
random variable that allows each sample to have its own distribution over subtypes and a
latent variable for the feature weights that describe each subtype. The inferential goal is to
estimate the joint posterior distribution over these latent variables and thus obtain the distri-
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bution over subtypes for each sample and the feature vector for each subtype. Non-negative
matrix factorization techniques have been used in image analysis and collaborative filtering
applications [103, 99]. Topic models for document clustering have also been cast as a matrix
factorization problem [104].

The basic mixed membership model structure has been extended a variety of ways. A hi-
erarchical Dirichlet prior allows one to obtain a posterior distribution over the number of sub-
types [105]. A prior on the subtype variables allows one to impose specific sparsity constraints
on the subtypes [106, 107, 108]. Correlated information may be incorporated to improve the
coherence of the subtypes [109].

Sampling or variational inference methods are commonly used to estimate the posterior
distribution of interest for mixed membership models, but these only provide local or ap-
proximate estimates. A mean-field variational algorithm [98] and a collapsed Gibbs sampling
algorithm have been developed for Latent Dirichlet Allocation [110]. However, Gibbs sam-
pling is approximate for finite chain lengths and variational inference is only guaranteed to
converge to a local optimum.

4.1.2 Benders’ decomposition and global optimization

In many applications it is important to obtain a globally optimal solution rather than a local
or approximate solution. Biconvex optimization problems may have a number of local min-
ima. However, it is possible that convex substructures of a biconvex optimization problem
can be exploited to find solutions more efficiently than general nonlinear optimization meth-
ods might. In this way, biconvex optimization problems inhabit an interesting place between
convex optimization problem where the local optimum is the global optimum and general non-
linear optimization problems that can be arbitrarily pathological. We expect that by exploiting
the structure of a particular biconvex optimization problem, we might develop a determin-
istic global optimization algorithm that is scalable and efficient. Recently, there have been
significant advances in deterministic optimization methods for general biconvex optimization
problems [111, 112]. Here, we show that mixed membership matrix factorization can be cast
as a biconvex optimization problem and an ε-global optimum can be obtained by these deter-
ministic optimization methods [113].

Benders’ decomposition exploits the idea that in a given optimization problem there are
often “complicating variables” – variables that when held fixed yield a much simpler prob-
lem, such as a linear program, over the remaining variables [114]. Benders developed a

46



cutting plane method for solving mixed integer optimization problems that can be so de-
composed. Geoffrion later extended Benders’ decomposition to situations where the primal
problem (parametrized by fixed complicating variable values) no longer needs to be a lin-
ear program [115]. The Global Optimization (GOP) approach is an adaptation of the original
Benders’ decomposition that can handle a more general class of problems that includes mixed-
integer biconvex optimization problems [116]. Here, we exploit the GOP approach for solving
a particular mixed membership matrix factorization problem.

We outline the general sparse mixed membership matrix factorization problem in Sec-
tion 4.2. In Section 4.3, we use GOP to obtain an ε-global optimum solution for the mixed
membership matrix factorization problem. In Section 4.5, we show empirical accuracy and
convergence time results on a synthetic data set. Finally, we discuss further computational
and statistical issues in Section 4.6. The details of problem conditions, convergence proper-
ties, and a full outline of the algorithm steps for the branch-and-bound version of the algorithm
are found elsewhere [116].

4.2 Problem formulation

The problem data is a matrix y ∈ RM×N , where an element yji is an observation of feature j
in sample i. We would like to represent each sample as a convex combination of K subtype
vectors, yi = xθi, where x ∈ RM×K is a matrix of K subtype vectors and θi is the mixing
proportion of each subtype. We would like x to be sparse for purposes of centroid signa-
ture interpretability. In the specific case of cancer subtyping, yji may be a normalized gene
expression measurement for gene j in sample i. We write this matrix factorization problem as

minimize
θ,x

‖yi − xθi‖2
2

subject to ‖x‖1 6 P (4.1)

θi ∈ ∆K−1 ∀i,

where ∆K−1 is a K-dimensional simplex.

Optimization problem (4.1) can be recast with a biconvex objective and a convex domain
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as

minimize
θ,x,z

‖y − xθ‖2
2

subject to
M∑
j=1

K∑
k=1

zjk 6 P (4.2)

− zjk 6 xjk 6 zjk ∀(j, k)

θi ∈ ∆K−1 ∀i, zjk > 0 ∀(j, k).

If either x or θ is fixed then (4.2) reduces to a convex optimization problem. Indeed, if x
is fixed, the optimization problem is a form of constrained linear regression. If θ is fixed, we
have a form of LASSO regression. We prove that (4.1) is a biconvex problem in Appendix B.2.
Since the problem with x fixed and the problem with θ fixed are both computationally simple,
we could take either x or θ to be the “complicating variables” in Benders’ decomposition and
we choose θ.

A common approach for solving an optimization problem with a nonconvex objective
function is to alternate between fixing one variable and optimizing over the other. How-
ever, this approach only provides a local optimum [117]. A key to the GOP algorithm is the
Benders’-based idea that feasibility and optimality information is shared between the primal
problems in the form of constraints.

4.3 Algorithm

We use the global optimization approach to solve for ε-global optimum values of x and θ [118,
116]. First, we partition the optimization problem decision variables into “complicating” and
“non-complicating” variables. Then, the GOP algorithm alternates between solving a primal
problem over θ for fixed x, and solving a relaxed dual problem over x for fixed θ. The primal
problem provides an upper bound on the original optimization problem because it contains
more constraints than the original problem (x is fixed). The relaxed dual problem contains
fewer constraints and forms a valid global lower bound. The algorithm iteratively tightens the
upper and lower bounds on the global optimum by alternating between the primal and relaxed
dual problem and tightening the relaxation in the relaxed dual problem at each iteration.
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4.3.1 Initialization

We start by partitioning the problem into a relaxed dual problem and a primal problem (Figure
4.1). Recall our decision that the relaxed dual problem optimizes over x for fixed values of
the complicating variables θ and the primal problem optimizes over θ. We also initialize an
iteration counter T = 1.

Figure 4.1: The GOP framework. The formulations for the primal problem and the relaxed
dual problem are described in detail in Section 4.3.2 and Section4.3.3, respectively.

At each iteration, the relaxed dual problem is solved by forming a partition of the domain
of x and solving a relaxed dual primal problem for each subset. A branch-and-bound tree data
structure is used to store the solution of each of these relaxed dual primal problems and we
initialize the root node n(0) where T = 0. The parents of n(T ) is denoted par(n(T )), the
set of ancestors of n(T ) is denoted anc(n(T )), and the set of children of n(T ) is denoted
ch(n(T )).

Finally, we initialize x at a random feasible point, xn(0), and store it in n(0) since we will
be starting the GOP iterations by solving the primal problem over θ for a fixed x.

4.3.2 Solve primal problem and update upper bound

The primal problem (4.2) is constrained to fixed value of x at n(T ), x(n(T )), so the primal
problem is
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Primal problem
(x fixed)

minimize
θ

‖y − xθ‖2
2

subject to θTi 1K = 1

θki > 0.

Since the primal problem is more constrained than (4.2), the solution, S(n(T )), is a global
upper bound. We store the value of the upper bound, PUBD ← min{PUBD, S(n(T ))}, where
PUBD stores the tightest upper bound.

4.3.3 Solve the relaxed dual problem and update lower bound

The relaxed dual problem is a relaxed version of (4.2) in that it contains fewer constraints than
the original problem. Initially, at the root node n(0) the domain of the relaxed dual problem
is the entire domain of x, X . Each node stores a set of linear constraints (cuts) such that when
all of the constraints are satisfied, they define a region in X . Sibling nodes form a partition
of parent’s region and a node deeper in the tree defines a smaller region than shallower nodes
when incorporating the constraints of the node and all of its ancestors. These constraints are
called qualifying constraints. Since the objective function is convex in θ for a fixed value of
x, a Taylor series approximation for linearization of the Lagrangian with respect to θ provides
a valid lower bound on the objective function. Finally, since the objective function is convex
in θ, the Taylor approximation is linear and the optimal objective is at a bound of θ. The GOP
algorithm as outlined in [111] makes these ideas rigorous.

The relaxed dual problem for the mixed membership matrix factorization problem (4.2)
for a node n(T ) is
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Relaxed Dual Problem
(θ fixed)

minimize
Q,x,z

Q

subject to
M∑
j=1

K∑
k=1

zjk 6 P

− zjk 6 xjk 6 zjk, zjk > 0

for t ∈ {anc(n(T )),n(T )} :
Q > L(x, θB(t), y, λt, µt)

∣∣lin
xt,θt

gtki
∣∣lin
xt

(x) 6 0 if θB(t)ki = 1

gtki
∣∣lin
xt

(x) > 0 if θB(t)ki = 0,

where L(x, θB(t), y, λt, µt)
∣∣lin
xt,θt

is the linearized Lagrangian of (4.2), gtki
∣∣lin
xt

(x) is the ki-
th qualifying constraint, and θB(t) is the value of θ at the bound such that the linearized
Lagrangian is a valid lower bound in the region defined by the qualifying constraints at node
t. The corresponding Lagrangian function L(x, θB(t), y, λt, µt)

∣∣lin
xt,θt

provides a lower bound
on Q in the relaxed dual problem. We have taken a second Taylor approximation with respect
to x to ensure the qualifying constraints are linear in x and thus valid cuts as recommended in
[111].

Construct a child node in the branch-and-bound tree. A unique region in X for the leaf
node ch(n(T )) is defined by the t-th row of θB derived from the primal problem at node n(T ).
We can express this region as the qualifying constraint set,

g
ch(n(T ))
ki

∣∣lin
xn(T )(x) 6 0 if θB(t)ki = 1

g
ch(n(T ))
ki

∣∣lin
xn(T )(x) > 0 if θB(t)ki = 0

First, we create the tth child node of n(T ) and populate it with this constraint set and θB(t)

which will be used in the construction of the Lagrangian function lower bound in the relaxed
dual problem.

Second, we construct and solve the relaxed dual problem at ch(n(T )). First, we add the
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qualifying constraint sets contained in each node along the path in the branch-and-bound tree
from ch(n(T )) to the root, inclusively. For example, the qualifying constraint set for a node
n′ along the path is

gn
′

ki

∣∣lin
xn′

(x) 6 0 if θB(n′)ki = 1

gn
′

ki

∣∣lin
xn′

(x) > 0 if θB(n′)ki = 0,

where gn′ki is the node’s kith qualifying constraint, xn′ is the node’s relaxed dual problem
optimizer, and θB(n′) is a 0-1 vector defining the unique region for node n′ since θki ∈ [0, 1].

Third, we add the Lagrangian function lower bound constraints constructed from each
node along the path in the branch-and-bound tree from ch(n(T )) to the root, inclusively. For
example the linearized Lagrangian function for node n′,

L(x, θB(n′), y, λ(n′), µ(n′))
∣∣lin
x(n

′),θ(n′)
.

Populate the child node with the linearized Lagrangian function and qualifying con-
straints. The Lagrangian function for the primal problem is

L(x, θ, λ, µ) =
N∑
i=1

L(x, θi, λi, µi)

=
N∑
i=1

(yi − xθi)>(yi − xθi)

− λi(θ>i 1K − 1)− µ>i θi

=
N∑
i=1

y>i yi − 2y>i xθi + θ>i x
>xθi

− λi(θ>i 1K − 1)− µ>i θi

(4.3)

with Lagrange multipliers µ ∈ RK×N
+ and λ ∈ RN .

The relaxed dual problem makes use of the Lagrangian function linearized about θ(t) which
we obtain through a Taylor series approximation,

L(x, θi, λi, µi)
∣∣lin
θ(t)

, L(x, θ
(t)
i , λ

(t)
i , µ

(t)
i )

+
K∑
k=1

g
(t)
ki (x) ·

(
θki − θ(t)

ki

)
,

(4.4)
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where the qualifying constraint function is

g
(t)
i (x) ,∇θiL

(
θi, x, λ

(t)
i , µ

(t)
i

) ∣∣
θ
(t)
i

= −2y>i x+ 2θ
(t)>
i x>x

− 1>Kλ
(k)
i − µ

(k)>
i .

(4.5)

The qualifying constraint g(t)
i (x) is quadratic in x. However, we require it to be linear in

x to yield a convex domain if g(t)
i (x) > 0 or g(t)

i (x) 6 0. So, we linearize the Lagrangian
first with respect to x about x(t) then about θi at θ(t)

i . While the linearized Lagrangian is not a
lower bound everywhere in x, it is a valid lower bound in the region bound by the qualifying
constraints with θi set at the corresponding bounds in the Lagrangian function.

The Lagrangian function linearized about x(t) is

L(yi, θi, x, λi, µi)

∣∣∣∣lin
x(t)

,yTi yi − θ>i x(t)>x(t)θi

− 2y>i xθi + 2θ>i x
(t)>xθi

− λi(θ>i 1K − 1)− µ>i θi.

(4.6)

Subsequently, the Lagrangian function linearized about (x(t), θ
(t)
i ) is

L(yi, θi, x, λi, µi)

∣∣∣∣lin
x(t),θ

(t)
i

, y>i yi + θ
(t)>
i x(t)>x(t)θ

(t)
i

− 2θ
(t)>
i x(t)>x(t)θi

− λi(1>Kθi − 1)− µ>i θi
− 2θ

(t)>
i x>x(t)θ

(t)>
i − 2y>i xθi

+ 2θ
(t)>
i (x(t)>x+ x>x(t))θi

, (4.7)

and the gradient used in the qualifying constraint is

g
(t)
i

∣∣lin
x(t)

(x) , ∇θi

[
L(yi, θi, x, λi, µi)

∣∣∣∣lin
x0

] ∣∣∣∣
θ
(t)
i

= −2x(t)>x(t)θ
(t)
i − 2x>yi

+ 2(x(t)>x+ x>x(t))θ
(t)
i − λi1K − µi.

(4.8)
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Solve the relaxed dual problem at the child node. Once the valid qualifying constraints
from the previous t = 1, . . . , T − 1 iterations have been identified and incorporated, the
constraint for the current T th iteration is

Q > L(x, θBT , y, λ(t), µ(t))
∣∣lin
x(t),θ(t)

g
(T )
ki

∣∣lin
x(t)

(x) 6 0 if θBT
ki = 1

g
(T )
ki

∣∣lin
x(t)

(x) > 0 if θBT
ki = 0.

The resulting relaxed dual problem is a linear program and can be solved efficiently using
the off-the-shelf LP solver Gurobi [119]. We store the optimal objective function value and
the optimizing decision variables in the node.

Update the lower bound. The global lower bound is provided by the lowest lower bound
across all the leaf nodes in the branch-and-bound tree. We store this global lower bound in
a variable, RLBD. Operationally, we maintain a dictionary where the value of a record is a
pointer to a branch-and-bound tree node and the key is the optimal value of the relaxed dual
problem at that leaf node. Using this dictionary, we select the smallest key and bound to the
node of the tree indicated by the value. This element is eliminated from the dictionary since at
the end of the next iteration, it will be an interior node and not available for consideration. We
increment the iteration count T ← T + 1 and we update the global lower bound RLBD with
the optimal value of the relaxed dual problem at the new node.

Check convergence. Since we always select the lowest lower bound provided by the re-
laxed dual problem, the lower bound is non-decreasing. If our convergence criteria PUBD −
RLBD 6 ε has been met, then we exit the algorithm and report the optimal θ from the node’s
primal problem and the optimal x from the node’s relaxed dual problem. Finite ε-convergence
and ε-global optimality proofs can be found in [116].

4.4 Computational improvements

In the relaxed dual problem branch-and-bound tree, a leaf node below the current node n(T )

is constructed for each unique region defined by the hyperplane arrangement. In the GOP
framework, there are KN hyperplanes, one of each so-called “connected variable” and all of
the KN elements of θ are connected variables. So, an upper bound on the number of regions
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defined by KN cuts is 2KN because each region may be found by selecting a side of each
cut. Thus we have the computationally complex situation of needing to solve a relaxed dual
problem for each of the 2KN possible regions.

Let an arrangement A denote a set of hyperplanes and r(A) denote the set of unique
regions defined by A. In our particular situation, all of the hyperplanes pass through the
unique point x(n(T )), so all of the regions are unbounded except by the constraints provided
in X . A recursive algorithm for counting the number of regions |r(A)| known as Zaslavsky’
Theorem, is outlined in [120]. Indeed, |r(A)| is often much less that 2|A|. However, due
to its recursive nature, computing the number of hyperplanes using Zaslavsky’s theorem is
computationally slow.

4.4.1 Cell enumeration algorithm

We have developed an A-star search algorithm for cell enumeration to simultaneously identify
and count the set of unique regions defined by arrangement A with sign vectors. First, we
preprocess the arrangement A to eliminate trivial and redundant hyperplanes. We eliminate
a hyperplane from A if the coefficients are all zero and eliminate duplicate hyperplanes in A
(see Appendix B.3). We are left with a reduced arrangement, A′.

Here we define two concepts, strict hyperplane and adjacent region. A strict hyperplane
is defined as non-redundant bounding hyperplane in a single region. If two regions exist that
have sign vectors differing in only one hyperplane, then this hyperplane is a strict hyperplane.
We define an adjacent region of region r as a neighbor region of r if they are separated by
exactly one strict hyperplane. The general idea of the A-star algorithm uses ideas from partial
order sets. We first initialize a root region using an interior point method and then determine
all of its adjacent regions by identifying the set of strict hyperplanes. This process guarantees
that we can enumerate all unique regions.

We define θB ∈ {0, 1}|r(A′)|×KN . The rows are regions and there are KN columns. Each
element of this matrix is either 0 or 1. The bth region in r(A′) is uniquely identified by the
zero-one vector in the bth row of θB. If the bth element of the kith row of θB is +1, then
gki 6 0. Similarly, if the bth element of the kith row of θB is 0, then gki > 0. The A-
star search algorithm completes the θB matrix for the current node n(T ) and a leaf node is
generated for each row of θB. Thus each unique region defined by the qualifying constraint
cuts provided by the Lagrange dual of the primal problem at the current node. The details of
the A-star search algorithm are covered in Section B.3.
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4.5 Experiments and results

In this section, we present our experiments on synthetic data sets and show accuracy and con-
vergence speed. Computational complexity is evaluated by both the theoretical and empirical
time complexity.

4.5.1 Illustrative example

We use a simple data set to show the operation of the algorithm in detail and facilitate visual-
ization of the cut sets. The data set, y, and true decision variable values, (x∗, θ∗), are

x∗ =
[

0, −1
]
, θ∗ =

[
1, 0, 0.5

0, 1, 0.5

]
,

y =
[

0, −1, −0.5
]
.

We ran the GOP algorithm with sparsity constraint variable P = 1 and convergence tol-
erance ε = 0.01. There are KN = 6 connected variables, so we solve at most 2KN = 64

relaxed dual problems at each iteration. These relaxed dual problems are independent and
can be distributed to different computational threads or cores. The primal problem is a sin-
gle optimization problem and will not be distributed. The optimal decision variables after 72
iterations are

x̂ = x(72) =
[

0.080, −0.920
]
,

θ̂ = θ(72) =

[
1.00, 0.080, 0.580

0.00, 0.920, 0.420

]
,

and the Lagrange multipliers are λ̂ = [−0.147, 0, 0] and µ̂ = [0, 0, 0; 0.160, 0, 0].

Figure 4.2 (a) shows the convergence of the upper and lower bounds by iteration. The
upper bound converges quickly and the majority of the time in the algorithm is spent proving
optimality. With each iteration regions of the solution space are tested until the lower bound is
tightened sufficiently to meet the stopping criterion. Figure 4.2 (b) shows the first ten x values
considered by the algorithm with isoclines of the objective function with θ∗ fixed. It is evident
that the algorithm is not performing hill-climbing or any other gradient ascent algorithm dur-
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ing its search for the global optimum. Instead, the algorithm explores a region bound by the
qualifying constraints to construct a lower bound on the objective function. We run it using
20 random initial values and the optimal objective functions for all random initializations are
all 0, which shows that the GOP algorithm found the globally optimal solutions of this small
instance. Furthermore, the algorithm does not search nested regions, but considers previously
explored cut sets (Figure 4.2 (b)).

Figure 4.3 shows the branch-and-bound tree and corresponding x-space region with the
sequence of cut sets for the first three iterations of the algorithm. One cut in Figure 4.3 (b, d,
f) is obtained for each of the KN qualifying constraints. We initialize the algorithm at x(0).
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(b) Optimal relaxed dual problem decision variables.

Figure 4.2: GOP inference optimal values and optimizing x variables.

We also compare the performance of the GOP algorithm with the variational and MCMC
algorithms in Figure 4.4. Here, we evaluate the summation of the estimated values for the
objective function and the sparsity term per iteration for each algorithm. For accuracy, the
GOP algorithm achieves the global optimal value of this summation at the last iteration. For
efficiency, the variational algorithm is less efficient than the other two algorithms. In the
application of this synthetic data set, the GOP algorithm is more accurate than the variational
and MCMC algorithms, but it is relatively inefficient.

4.5.2 Accuracy and convergence speed

We ran our GOP algorithm using 64 processors on a synthetic data set which is randomly
generated on the scale of one feature (M = 1), two subtypes (K = 2) and ten samples
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Figure 4.3: GOP branch-and-bound tree and corresponding x-space region. The gray node
indicates the current node. The numbers on the edges indicate the optimal value of the relaxed
dual problem.

(N = 10). Figure 4.5 (a) shows that our GOP algorithm converges very quickly to 0.17
duality gap (PUBD− RLBD) in the first 89 iterations in 120 seconds. The optimal x (x1, x2)

and θ (θ1, θ2) of each iteration are shown with a range of colors to represent corresponding
RLBD in Figure 4.5 (b, c). The dark blue represents low RLBD and the dark red represents
high RLBD. The RLBD of the initial x, x(0), is -59.87; The RLBD of iteration 89, x(89), is
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Figure 4.4: Method comparison of the GOP, variational, and MCMC algorithms.

-0.17. It demonstrates that the GOP algorithm can change modes very easily without getting
stuck in local optima.

4.5.3 Computational complexity

We evaluate the GOP algorithm by theoretical analysis and empirical measurements of the
time complexity on simulated data sets. The problem has four main components: primal
problem, preprocessing, unique region identification, and relaxed dual problems.

4.5.3.1 Theoretical time complexity

Primal problem The primal problem is a convex quadratic program with KN decision
variables. The time complexity for the primal problem solving is then O(K3N3) [121].

Preprocessing We address the cases of overlapping qualifying constraint cuts by sorting the
rows of the KN ·M qualifying constraint coefficient matrix and comparing the coefficients of
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(a) Duality gap through the first 120 seconds.

(b) Optimal x of each iteration. The true x is (0, -1). (c) Optimal θ of each iteration. The true θ is (0.22, 0.78).

Figure 4.5: Convergence and accuracy of our GOP algorithm on a synthetic data set on the
scale of one feature, two subtypes, and ten samples.

adjacent rows. We first sort the KN rows of the qualifying constraint coefficient matrix using
heapsort which takes O(KN · log(KN)) time on average. The algorithm subsequently passes
through the rows of the matrix to identify all-zero coefficients and duplicate cuts; each pass
takes O(KN) time. We define |A′| as the number of unique qualifying constraints.
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Unique region identification The interior point method that we used in the A-star search
algorithm is a linear program of size |A′| ·MK with the time complexity of O(|A′| ·MK).
The time complexity for enumerating the set of unique regions is O(|A′| · (|A′| ·MK)), which
exhibits polynomial behavior. The time complexity of the partial order A-star algorithm is
polynomial in the best case and exponential in the worst case, depending on the heuristic. We
define |r(A′)| as the number of identified unique regions.

Relaxed dual problems There are 2MK + 1 decision variables for each relaxed dual prob-
lem, so the time complexity for each is O(M3K3). The total time for solving the relaxed dual
problems is O(|r(A′)| ·M3K3), which depends on the number of relaxed dual problems.

4.5.3.2 Empirical timing results

We constructed 12 synthetic data sets in a full-factorial arrangement withM ∈ {20, 40, 60, 80},
K ∈ {2}, and N ∈ {4, 5, 6} and measured CPU time for each component of one iteration.
For each arrangement, each element of the true x∗ is:

x∗mk =


1 if 0 6 m < M/4, k = 0

−1 if M/4 6 m < M/2, k = 1

N (0, 0.52) if M/2 6 m < M,∀k
0 otherwise.

Here N (0, 0.52) is the sample from a Normal distribution by its mean 0 and standard
deviation 0.5. For the true θ∗, θ∗kn for k = 0 are n evenly spaced samples over the interval of
[0, 1]; θ∗kn for k = 1 are n evenly spaced samples over the interval of [1, 0].

Table 4.1 shows that the time per iteration increases linearly with M when K and N are
fixed. The time for solving all the relaxed dual problems increases as the number of samples
increases. Note that we need to solve at most 2KN relaxed dual problems per iteration, so the
time per iteration increases nearly exponentially with KN when M is fixed at the worst case.
Even though the step of solving all the relaxed dual problems takes more than 90% of the
total time per iteration when the number of samples is 6, our algorithm is easily parallelized to
solve the relaxed dual problems, allowing the algorithm to scale nearly linearly with the size
of the data set.
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Table 4.1: Timing profile of each component of the GOP algorithm for one iteration.

Scale Time (s)

M N Primal Pre URI Num Dual Total

20 4 0.10 1.69 1.29 200 1.54 (33%) 4.62
40 4 0.12 1.91 1.72 202 1.69 (31%) 5.44
60 4 0.12 2.03 1.11 202 1.77 (35%) 5.03
80 4 0.13 2.39 2.05 232 3.70 (45%) 8.27

20 5 0.11 1.99 1.31 456 11.26 (77%) 14.67
40 5 0.11 2.07 1.37 485 11.45 (76%) 15.00
60 5 0.11 1.86 1.41 558 12.33 (78%) 15.71
80 5 0.12 2.23 1.26 650 17.96 (83%) 21.57

20 6 0.14 2.21 2.50 1152 65.71 (93%) 70.56
40 6 0.13 2.83 2.49 1250 67.08 (92%) 72.53
60 6 0.12 3.45 2.80 1255 69.00 (92%) 75.37
80 6 0.12 3.15 2.80 1309 77.62 (93%) 83.69

Primal: primal problem. Pre: preprocessing. URI: unique region
identification. Num: number of relaxed dual problems. Dual:
relaxed dual problems. Total: total time of one iteration. Here
we have two subtypes. A single processor is used. Time for
solving relaxed dual problems is highlighted in percentage.

4.6 Conclusions

We have presented a global optimization algorithm for a mixed membership matrix factoriza-
tion problem. Our algorithm brings ideas from the global optimization community (Benders’
decomposition and the GOP method) into contact with statistical inference problems for the
first time. The cost of the global optimal solution is the need to solve a number of linear pro-
grams that grows exponentially in the number of so-called “connected” variables in the worst
case – in this case the KN elements of θ. Many of these linear programs are redundant or
yield optimal solutions that are greater than the current upper bound and thus not useful. A
branch-and-bound framework [116] reduces the need to solve all possible relaxed dual prob-
lems by fathoming parts of the solution space We further mitigate this cost by developing an
search algorithm for identifying and enumerating the true number of unique linear programs.

We are exploring the connections between GOP and the other alternating optimization al-
gorithms such as the expectation maximization (EM) and variational EM algorithm. Since
the complexity of GOP only depends on the connected variables, the graphical model struc-
ture connecting the complicating and non-complicating variables may be used to identify the
worst-case complexity of the algorithm prior to running the algorithm. A factorized graph
structure may provide an approximate, but computationally efficient algorithm based on GOP.

62



Additionally, because the Lagrangian function factorizes into the sum of Lagrangian functions
for each sample in the data set, we may be able to update the parameters based on GOP for
a selected subset of the data in an iterative or sequential algorithm. We are exploring the
statistical consistency properties of such an update procedure.

Finally, we have derived an algorithm for particular loss functions for the sparsity con-
straint and objective function. The GOP framework can handle integer variables and thus may
be used with an `0 counting “norm” rather than the `1 norm to induce sparsity. This would
give us a mixed-integer biconvex program, but the conditions for the framework. Structured
sparsity constraints can also be defined as is done for elastic-net extensions of LASSO regres-
sion. It may be useful to consider other loss functions for the objective function depending on
the application.
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Chapter 5

Conclusions and Outlook

5.1 Summary of contributions

This dissertation focuses on development of statistical and computational methods that address
challenges in characterizing genomic heterogeneity in DNA next-generation sequencing and
transcription data sets.

5.1.1 Rare variant detection

Next-generation sequencing enables the generation of thousands of millions of short reads in
parallel fashion to reveal genomic heterogeneity in disease samples like cancer. In Chapter 3,
we develop a novel hierarchical Bayesian statistical model and a variational EM algorithm to
identify rare variants in heterogeneous next-generation sequencing data. Our algorithm is able
to identify variants in a broad range of read depths and non-reference allele frequencies with
high sensitivity and specificity. We validate our algorithm on an empirical data set and show
comparable accuracy with other current variant detection methods. Furthermore, we apply our
algorithm on a real longitudinal data set to detect variants in different time points in the course
of yeast growth with limited glucose.

5.1.2 Intra-tumor heterogeneity

In Chapter 4, we derive a GOP algorithm that brings the global optimization algorithm into
contact with the mixed membership matrix factorization problem. This includes a branch-
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and-bound GOP algorithm that improves computational efficiency. As experimental results,
we show that the GOP algorithm achieves the true optimal values on a simulated data set. We
are able to distribute the relaxed dual problems that need to be solved per iteration to multiple
processors and each relaxed dual problem can be solved in less than 1 second using any linear
programming solver. Thus, the GOP algorithm can be run in parallel in key optimization steps,
which allows the algorithm to scale nearly linearly with the scale of the data set. The GOP
algorithmic development will generalize an exact statistical inference to a broad category of
mixed membership models. It will be significant to understand the molecular mechanisms of
subtype co-occurrence pattern and thus bring insights into personal-medicine treatment based
on the distribution over multiple cellular subpopulations in an individual sample.

5.2 Challenges and opportunities for rare variant detection

A critical challenge for current statistical methods in rare variant detection is to reduce false
positive calls. It is difficult to discern a true positive variant through statistical methods when
the allele frequency of a true positive variant is close to the fraction of sequencing errors. In-
creasing the depth of coverage may reduce this false positive rate, but it can not be guaranteed.
A possible solution is to estimate the pattern of sequencing errors as EBCall [20] has shown to
distinguish false positives from true rare variants. Post-call filtering that consider parameters
cut-offs may also be useful as VarScan2 [21] attempted.

Another challenge is to improve the efficiency of statistical methods on whole genome-
wide sequence analysis. The size of whole-genome sequencing and whole-exome sequencing
is considered large-scale and difficult to analyze, yet the value of this information and their
applications are being successfully integrated to the clinical diagnostics and development of
precision medicine [122, 123]. Inefficient variant detection in genome-wide sequencing data
will prevent the effectiveness of translating the sequencing data into useful clinical knowl-
edge. To approach this challenge, computational parallelization may largely help to enhance
efficiency by distribution of multiple computing cores, but there remains room for improve-
ment of scalability of statistical methods intrinsically.

Besides the challenges of accuracy and efficiency, another bottleneck for variant detection
methods is reproducibility. It is difficult to test and reproduce the results of variant detection
due to the insufficient information of input data, source code, and parameters settings [124].
For example, several issues, like the quality control of the data, the read depth requirements,
and the confidence level in a statistical test, may influence the results of variant detection in
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the NGS data.

In summary, accurate detection of rare variants is important since rare variants will con-
tribute to phenotypic divergence and complex diseases. Each detected variant can be either
risk, protective, or neutral for a specific disease. Grouping of rare variants across genes
has been used for rare variant association study to achieve high confidence level of disease-
associated variants [125]. Recently, many studies have shown that rare variants are beneficial
for clinical applications [126]. For example, rare variants identified by deep sequencing tech-
nologies were demonstrated to be associated with inflammatory bowel disease [127]. Another
study revealed that multiple rare variants in PCSK9 contribute to high-density lipoprotein
cholesterol [128]. A therapeutic interference strategy targeting PCSK9 has indicated a way of
translating rare variants to the clinic [129].

5.3 Challenges and opportunities for genomic subtypes clas-
sification

Mixed membership models, such as the Gaussian Laplace Dirichlet model [96], and standard
decomposition methods, such as non-negative matrix factorization [130], have been developed
to discover the underlying genomic subtypes and infer the cooperativity and interference in
molecular pathways. However, many of these algorithms only provide a local optimum or
an approximated solution depending on random initializations. Thus, a major challenge is
to provide an accurate estimation, i.e. a global optimum, of genomics subtypes for mixed
samples.

Several open questions have been proposed and not yet been fully solved for molecular
subtypes classification [6]. The tumor subtypes are determined by intra-tumor heterogeneity
and evolutionary progression. But, the number of distinct molecular subtypes within a cancer
type is still unclear. Also, intra-tumor heterogeneity is not only caused by distinct genomic
subtypes, but is also influenced by stochastic factors, such as epigenetic events and protein
instability. Another question is that how to demonstrate if a classification algorithm is more
robust than alternative competing algorithms [131]. Cross validation can be used to evaluate
the class assignment, but it is difficult to examine the performance of class discovery [6].
For example, research on classifying and clustering primary breast tumors by the TCGA has
shown multiple results of subtypes for the same data set [132]. A cluster algorithm revealed
13 subtypes, while another algorithm based on semi-supervised PAM50 method revealed five
subtypes [133]. Therefore, larger genomics data sets are required to quantitatively validate the
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performance of classification methods and interpret the answers.

In summary, heterogeneous tumor samples can be categorized using classification or clus-
tering methods because tumor samples often consist a finite number of subclones and the
molecular subtype signatures for each subclone can be computationally decomposed using
their gene expression data. The clusters obtained by statistical or computational methods
could present biologically meaningful subtypes. The genomic signatures of these subtypes
can be used to enrich the previously discovered diseases-associated genes and establish path-
ways for different subtypes. In clinic, the dissected genomic subtype signatures will provide
insights for clinicians to help improve prognostic and develop precision medicine. Several
possible ways could help translate genomics research findings into clinical practice. First, de-
velopment of robust statistical methods will pave the way for accurate predictions for genomic
subtypes. Second, considerable large cohorts of longitudinal tumor samples will help robustly
capture more distinct subtypes and more phenotypic heterogeneity [6]. Third, collection of
multiple omics data types, such as RNA-seq, gene expression, and epigenetic level features,
will assist to dissect novel molecular subtypes for clinical use. Thus, both improvement of sta-
tistical methods and generation of sufficient genomic data sets will help decipher the impact
of genomic subtypes and develop effective ways for therapeutic treatment.
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Appendix A

Derivation of the Variational EM
Inference Algorithm

A.1 Evidence lower bound

The ELBO can be expanded as

L(q, φ) = Eq [log p (r, µ, θ|n;φ)]− Eq [log q (µ, θ)]

= Eq [log p (r|θ, n)] + Eq [log p (θ|µ;M)] + Eq [log p (µ;µ0,M0)]

− Eq [log q (µ)]− Eq [log q (θ)] .

(A.1)

We write out each component below.

Eq [log p (r|θ, n)] =
J∑
j=1

N∑
i=1

Eq [log p (rji|θji, nji)]

=
J∑
j=1

N∑
i=1

log

(
Γ(nji + 1)

Γ(rji + 1)Γ(nji − rji + 1)

)

+
J∑
j=1

N∑
i=1

{rjiEq [log θji] + (nji − rji)Eq [log(1− θji)]}

(A.2)
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Eq [log p (µ;µ0,M0)] =
J∑
j=1

Eq [log p (µj;µ0,M0)]

= J ∗ log
Γ(M0)

Γ(µ0M0)Γ(M0(1− µ0))

+
J∑
j=1

{(M0µ0 − 1)Eq [log µj]}

+
J∑
j=1

{(M0(1− µ0)− 1)Eq [log(1− µj)]}

(A.3)

Eq [log p (θ|µ;M)] =
J∑
j=1

N∑
i=1

Eq [log p (θji|µj;Mj)]

= N ∗
J∑
j=1

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))

)]

+
J∑
j=1

N∑
i=1

{MjEq [µj]Eq [log θji]− Eq [log θji]}

+
J∑
j=1

N∑
i=1

{(Mj − 1−MjEq [µj])Eq [log (1− θji)]}

(A.4)

Therefore, we need to compute the following expectations with respect to the variational
distribution: Eq [log θji], Eq [log (1− θji)] , Eq [log µj] , Eq [log(1− µj)], Eq [µj],

and Eq
[
log
(

Γ(Mj)

Γ(µjMj)Γ(Mj(1−µj))

)]
.

We select the functional forms for the variational distributions q(θ) and q(µ) to facilitate
these expected value computations.

A.2 Variational distributions

Since θ and r are conjugate pairs, the posterior distribution of θji is a Beta distribution,

p(θji|rji, nji, µj,Mj) ∼ Beta(rji +Mjµj, nji − rji +Mj(1− µj)). (A.5)
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Therefore, we propose a Beta distribution with parameter vector δji as variational distribution,

θji ∼ Beta(δji1, δji2).

The posterior distribution of µj is given by its Markov blanket,

p(µj|θji,Mj, µ0,M0) ∝ p(µj|µ0,M0)p(θji|µj,Mj). (A.6)

This is not in the form of any known distribution. But, since the support of µj is [0, 1], we
propose a Beta distribution with parameter vector γj as variational distribution,

µj ∼ Beta(γj1, γj2).

Given these variational distributions, we have

Eq [log θji] = ψ(δji1)− ψ(δji1 + δji2)

Eq [log (1− θji)] = ψ(δji2)− ψ(δji1 + δji2)

Eq [µj] =
γj1

γj1 + γj2

Eq [log µj] = ψ(γj1)− ψ(γj1 + γj2)

Eq [log(1− µj)] = ψ(γj2)− ψ(γj1 + γj2),

(A.7)

where ψ is the digamma function.

Since there is no analytical representation for Eq
[
log
(

Γ(Mj)

Γ(µjMj)Γ(Mj(1−µj))

)]
, we must re-

sort to numerical integration,

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ((1− µj)Mj)

)]
=∫ 1

0

q(µj; γj1, γj2) log

(
Γ(Mj)

Γ(µjMj)Γ((1− µj)Mj)

)
dµj.

(A.8)

Here q(µj; γj1, γj2) is the probability density function of the Beta distribution that is calculated
using the Python built-in function scipy.stats.beta.pdf,

and log
(

Γ(Mj)

Γ(µjMj)Γ((1−µj)Mj)

)
is calculated using the Python built-in function
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scipy.special.betaln. Unfortunately, this numerical integration step is computa-
tionally expensive. Finally, the entropy terms can be computed as follows,

Eq [log q (µ)] =
J∑
j=1

Eq [log q(µj)]

= −
J∑
j=1

{log(B(γj1, γj2))− (γj1 − 1)ψ(γj1)}

+
J∑
j=1

{−(γj2 − 1)ψ(γj2) + (γj1 + γj2 − 2)ψ(γj1 + γj2)} ;

(A.9)

and

Eq [log q (θ)] =
J∑
j=1

N∑
i=1

Eq [log q(θji)]

= −
J∑
j=1

N∑
i=1

{log(B(δji1, δji2))− (δji1 − 1)ψ(δji1)}

+
J∑
j=1

N∑
i=1

{−(δji2 − 1)ψ(δji2) + (δji1 + δji2 − 2)ψ(δji1 + δji2)} .

(A.10)
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Appendix B

GOP Inference Details

B.1 Derivation of relaxed dual problem constraints

We form the Lagrangian function for the primal problem that is presented in Section 4.3.2.
The derivation of the linearized Lagrangian function is used to create the constraint set of the
relaxed dual problem.

The Lagrangian function is the sum of the Lagrangian functions for each sample,

L(y, θ, x, λ) =
n∑
i=1

L(yi, θi, x, λi, µi), (B.1)

and the Lagrangian function for a single sample is

L(yi, θi, x, λi, µi) = yTi yi − 2yTi xθi + θTi x
Txθi − λi(θTi 1K − 1)− µTi θi. (B.2)

Here, the Lagrange multipliers are µ ∈ RK×N
+ and λ ∈ RN . We see that the Lagrangian

function is biconvex in x and θi. We develop the constraints for a single sample for the
remainder.

B.1.1 Linearized Lagrangian function with respect to x

Casting x as a vector and rewriting the Lagrangian function gives

L(yi, θi, x̄, λi, µi) = ai − 2bTi x̄+ x̄TCix̄− λi(θTi 1K − 1)− µTi θi, (B.3)
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where x̄ is formed by stacking the columns of x in order. The coefficients are formed such
that

a = yTi yi,

bTi x̄ = yTi xθi,

x̄TCix̄ = θTi x
Txθi.

The linear coefficient matrix is the KM × 1 vector,

bi = [yiθ1i, · · · , yiθKi] .

The quadratic coefficient is the KM ×KM and block matrix

Ci =

 θ2
1iIM · · · θ1iθKiIM

... . . . ...
θKiθ1iIM · · · θ2

KiIM

 .
The Taylor series approximation about x0 is

L(yi, θi, x̄, λi, µi)

∣∣∣∣lin
x̄0

= L(yi, x0, θi, λi, µi) + (∇xL
∣∣
x0

)T (x− x0). (B.4)

The gradient with respect to x is

∇xL(yi, θi, x̄, λi, µi) = −2bi + 2Cix̄. (B.5)

Plugging the gradient into the Taylor series approximation gives

L(yi, θi, x̄, λi)

∣∣∣∣lin
x̄0

= ai− 2bTi x̄0 + x̄T0Cix̄0−λi(θTi 1K − 1)−µTi θi + (−2bi + 2Cix̄0)T (x̄− x̄0).

(B.6)

Simplifying the linearized Lagrangian function gives

L(yi, θi, x̄, λi, µi)

∣∣∣∣lin
x̄0

= (yTi yi − x̄T0Cix̄0 − λi(θTi 1K − 1)− µTi θi)− 2bTi x̄+ 2x̄T0Cix̄. (B.7)
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Finally, we write the linearized Lagrangian using the matrix form of x0,

L(yi, θi, x, λi, µi)

∣∣∣∣lin
x0

= yTi y
T
i −θTi xT0 x0θi−2yTi xθi+2θTi x

T
0 xθi−λi(θTi 1K−1)−µTi θi. (B.8)

While the original Lagrangian function is convex in θi for a fixed x, the linearized La-
grangian function is not necessarily convex in θi. This can be seen by collecting the quadratic,
linear and constant terms with respect to θi,

L(yi, θi, x, λi, µi)

∣∣∣∣lin
x0

= (yTi y
T
i +λi) + (−2yTi x−λi1TK −µTi )θi + θTi (2xT0 x−xT0 x0)θi. (B.9)

Now, if and only if 2xT0 x− xT0 x0 � 0 is positive semidefinite, then L(yi, θi, x, λi, µi)

∣∣∣∣lin
x0

is

convex. The condition is satisfied at x = x0 but may be violated at some other value of x.

B.1.2 Linearized Lagrangian function with respect to θi

Now, we linearize (B.7) with respect to θi. Using the Taylor series approximation with respect
to θ0i gives

L(yi, θi, x, λi, µi)

∣∣∣∣lin
x0,θ0i

= L(yi, θ0i, x, λi, µi)

∣∣∣∣lin
x0

+

(
∇θiL(yi, θi, x, λi, µi)

∣∣∣∣lin
x0

∣∣∣∣
θ0i

)T

(θi − θ0i).

(B.10)

The gradient for this Taylor series approximation is

gi(x) , ∇θiL(yi, θi, x, λi, µi)

∣∣∣∣lin
x0

∣∣∣∣
θ0i

= −2xT0 x0θ0i− 2xTyi + 2(xT0 x+ xTx0)θ0i− λi1K − µi,

(B.11)
where gi(x) is the vector of K qualifying constraints associated with the Lagrangian function.
The qualifying constraint is linear in x.
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Plugging the gradient into the approximation gives

L(yi, θi, x, λi, µi)

∣∣∣∣lin
x0,θ0i

= yTi y
T
i − θT0ixT0 x0θ0i − 2yTi xθ0i + 2θT0ix

T
0 xθ0i − λi(θT0i1K − 1)− µTi θ0i

+ (−2xT0 x0θ0i − 2xTyi + 2(xT0 x+ xTx0)θ0i − λi1K − µi)T (θi − θ0i)

(B.12)

The linearized Lagrangian function is bi-linear in x and θi.

Finally, simplifying the linearized Lagrangian function gives

L(yi, θi, x, λi, µi)

∣∣∣∣lin
x0,θ0i

= yTi y
T
i + θT0ix

T
0 x0θ0i − 2θT0ix

T
0 x0θi − λi(1TKθi − 1)− µTi θi

− 2θT0ix
Tx0θ0i − 2yTi xθi + 2θT0i(x

T
0 x+ xTx0)θi.

(B.13)

B.2 Proof of biconvexity

To prove the optimization problem is biconvex, first we show the feasible region over which
we are optimizing is biconvex. Then, we show the objective function is biconvex by fixing θ
and showing convexity with respect to x, and then vice versa.

B.2.1 The constraints form a convex feasible region

Our constraints can be written as

||x||1 6 P (B.14)
K∑
k=1

θki = 1 ∀i (B.15)

0 6 θki 6 1 ∀(k, i). (B.16)

The inequality constraint (B.14) is convex if either x or θ is fixed, because any norm is
convex. The equality constraints (B.15) is an affine combination that is still affine if either x
or θ is fixed. Every affine set is convex. The inequality constraint (B.16) is convex if either x
or θ is fixed, because θ is a linear function.
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B.2.2 The objective is convex with respect to θ

We prove the objective is a biconvex function using the following two theorems.

Theorem B.2.1 Let A ⊆ Rn be a convex open set and let f : A→ R be twice differentiable.
Write H(x) for the Hessian matrix of f at x ∈ A. If H(x) is positive semidefinite for all
x ∈ A, then f is convex ([121]).

Theorem B.2.2 A symmetric matrixA is positive semidefinite (PSD) if and only if there exists
B such that A = BTB ([134]).

The objective of our problem is,

f(y, x, θ) = ||y − xθ||22 = (y − xθ)T (y − xθ) (B.17)

= (yT − θTxT )(y − xθ) (B.18)

= yTy − yTxθ − θTxTy + θTxTxθ. (B.19)

The objective function is the sum of the objective functions for each sample.

f(y, x, θ) =
N∑
i=1

f(yi, x, θi) (B.20)

=
N∑
i=1

yTi yi − 2yTi xθi + θTi x
Txθi. (B.21)

The gradient with respect to θi is

∇θif(yi, x, θi) = −2yTi x+ (xTx+ (xTx)T )θi (B.22)

= −2xTyi + 2xTxθi. (B.23)

Taking the second derivative with respect to θi to get Hessian matrix, we obtain

∇2
θi
f(yi, x, θi) = Oθi(−2xTyi + 2xTxθi) (B.24)

= 2Oθi(x
Txθi) (B.25)

= 2(xTx)T (B.26)

= 2xTx. (B.27)
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The Hessian matrix∇2
θi
f(yi, x, θi) is positive semidefinite based on Theorem B.2.2. Then, we

have f(yi, x, θi) is convex in θi based on Theorem B.2.1. The objective f(y, x, θ) is convex
with respect to θ, because the sum of convex functions,

∑N
i=1 f(yi, x, θi), is still a convex

function.

B.2.3 The objective is convex with respect to x

The objective function for sample i is

f(yi, x, θi) = yTi yi − 2yTi xθi + θTi x
Txθi. (B.28)

We cast x as a vector x̄, which is formed by stacking the columns of x in order. We rewrite
the objective function as

f(yi, x̄, θi) = ai − 2bTi x̄+ x̄TCix̄. (B.29)

The coefficients are formed such that

a = yTi yi, (B.30)

bTi x̄ = yTi xθi, (B.31)

x̄TCix̄ = θTi x
Txθi. (B.32)

The linear coefficient matrix is the KM × 1 vector

bi = [yiθ1i, ..., yiθKi]. (B.33)

The quadratic coefficient is the KM ×KM and block matrix

Ci =

 θ2
1iIM · · · θ1iθKiIM

... . . . ...
θKiθ1iIM · · · θ2

KiIM

 . (B.34)

The gradient with respect to x̄

∇x̄f(yi, x̄, θi) = −2bi + 2Cix̄. (B.35)
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Take second derivative to get Hessian matrix,

∇x̄2f(yi, x̄, θi) = 2CT
i (B.36)

= 2(θiθ
T
i )T (B.37)

= 2(θTi )T (θTi ). (B.38)

The Hessian matrix∇2
x̄f(yi, x̄, θi) is positive semidefinite based on Theorem B.2.2. Then, we

have f(yi, x̄, θi) is convex in x̄ based on Theorem B.2.1. The objective f(y, x, θ) is convex
with respect to x, because the sum of convex functions,

∑N
i=1 f(yi, x, θi), is still a convex

function.

The objective is biconvex with respect to both x and θ. Thus, we have a biconvex opti-
mization problem based on the proof of convexity of the constraints, and biconvexity of the
objective.

B.3 A-star search algorithm

In this procedure, first we remove all the duplicate and all-zero coefficients hyperplanes to get
unique hyperplanes. Then we start from a specific region r and put it into a open set. Open
set is used to maintain a region list which need to be explored. Each time we pick one region
from the open set to find adjacent regions. Once finishing the step of finding adjacent regions,
region r will be moved into a closed set. Closed set is used to maintain a region list which
already be explored. Also, if the adjacent region is a newly found one, it also need to be put
into the open set for exploring. Finally, once the open set is empty, regions in the closed set
are all the unique regions, and the number of the unique regions is the length of the closed set.
This procedure begins from one region and expands to all the neighbors until no new neighbor
existed.

The overview of the A-star search algorithm to identify unique regions is shown in Algo-
rithm 2.

Hyperplane filtering Assuming there are two different hyperplanes Hi and Hj represented
by Ai = {ai,0, ..., ai,MK} and Aj = {aj,0, ..., aj,MK}. We take these two hyperplanes dupli-
cated when

ai,0
aj,0

=
ai,1
aj,1

= ... =
ai,MK

aj,MK

=

∑MK
l=0 ai,l∑MK
l=0 aj,l

, aj,l! = 0 (B.39)
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Algorithm 2 A-star Search Algorithm
1: Sort the rows of the KN x M qualifying constraint coefficient matrix.
2: Compare adjacent rows of the qualifying constraint coefficient matrix and eliminate du-

plicate rows.
3: Eliminate rows of the qualifying constraint coefficient matrix with all-zero coefficients.
4: Determine the list of unique qualifying constraints by pairwise test.
5: Set S and |A′| to the set of unique, non-trivial qualifying constraints and the number of

them.
6: Initialize a region root using an interior point method (Algorithm 3).
7: Put region root into the open set.
8: if open set is not empty then
9: Get a region R from the open set.

10: Calculate the adjacent regions set R adj (Algorithm 4).
11: Put region R into the closed set.
12: for each region r in R adj do
13: if r is not in the open set and not in the closed set then
14: Put region r into the open set.
15: end if
16: end for
17: end if
18: Reflect the sign of the regions in the close set.
19: Get all the regions represented by string of 0 and 1.

This can be converted to

|
MK∑
l=0

ai,l · aj,n −
MK∑
l=0

aj,l · ai,n| 6 τ, ∀ nε[0,MK], (B.40)

where threshold τ is a very small positive value.

We eliminate a hyperplane Hi represented by Ai = {ai,0, ..., ai,MK} from hyperplane
arrangement A if the coefficients of Ai are all zero,

|ai,j| 6 τ, ∀ ai,jεAi, jε[0,MK] (B.41)

A′ is the reduced arrangement and A′x = b are the equations of unique hyperplanes.
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Interior point method An interior point is found by solving the following optimization
problem:

maximize z

subject to − A′ix+ z 6 bi, if θBi = 0 (B.42)

A′ix+ z 6 −bi, if θBi = 1 (B.43)

z > 0. (B.44)

Algorithm 3 Interior Point Method

1: Generate 2|A
′| different strings using 0 and 1.

2: for each s in the strings do
3: Solve an optimization problem to get an interior point.
4: if Get a interior point then
5: Get the root region represented by 0 and 1.
6: end if
7: end for

Algorithm 4 Get Adjacent Regions
1: Initialize an empty set SH for strict hyperplanes.
2: Initialize an adjacent region set ADJ .
3: # Find out all the strict hyperplanes for region R.
4: for each hyperplane H of |A′| hyperplanes do
5: Pick one hyperplane H from all the hyperplanes defining region R.
6: Flip the sign of H to get ¬H .
7: Form a new hyperplane arrangement ¬A′ with ¬H .
8: Solve the problem to get an interior point constrained by ¬A′.
9: if the interior point is not Non then

10: H is a strict hyperplane and put into set SH .
11: else
12: H is a redundant hyperplane.
13: end if
14: end for
15: # Find out all the adjacent regions for region R.
16: for each strict hyperplane sh in set SH do
17: Take the opposite sign ¬sh of sh.
18: Form a adjacent region adj based on ¬sh and all the else hyperplanes.
19: Put adj into set ADJ .
20: end for
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Appendix C

Source Code

C.1 Variational inference RVD code

1 # -*- coding: utf-8 -*-
2 from __future__ import print_function
3 from __future__ import division
4
5 import numpy as np
6
7 import scipy.stats as ss
8 import scipy.optimize as so
9 from scipy.special import gammaln, psi, betaln

10 from scipy import linalg, integrate
11 from itertools import repeat
12
13 #import pandas as pd
14 import multiprocessing as mp
15 import h5py
16 import tempfile
17 import logging
18 import time
19 from datetime import datetime
20 from datetime import date
21 import warnings
22 import pdb
23 import re
24 from timeit import default_timer as timer
25
26 def main():
27 log_level = logging.DEBUG # default logging level
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28 logging.basicConfig(level=log_level, \
29 format=’%(levelname)s:%(module)s:%(message)s’)
30
31 ## Generate simulation data
32 J = 10 # number of positions
33 N = 3 # number of replicates
34
35 n = np.empty([N,J], dtype=np.int64)
36 n.fill(1000)
37
38 # Set model parameters
39 # can be estimated using function of "estimate_mom".
40 phi = {’M0’:100, ’mu0’:0.1, ’M’:[1000]*J}
41
42 ’’’ Case:
43 Variational EM algorithm for maximizing ELBO ’’’
44 (r, theta, mu)=generate_sample(phi, N, J, n, seedint=20150928)
45
46 (phiHat, qHat)=ELBO_opt(r, n, seed = 20150928, pool = 60)
47 save_model(’case_model.hdf5’, r, n, phiHat, qHat)
48
49 ’’’ Control:
50 Variational EM algorithm for maximizing ELBO ’’’
51 (r, theta, mu)=generate_sample(phi, N, J, n, seedint=20150928)
52
53 (phiHat, qHat) = ELBO_opt(r, n, seed = 20150928, pool = 60)
54 save_model(’control_model.hdf5’, r, n, phiHat, qHat)
55
56 ’’’ Hypotheses testing for variant detection’’’
57 test(’case_model.hdf5’,’control_model.hdf5’)
58
59
60 def test(caseHDF5Name, controlHDF5Name, alpha=0.05, tau=0, \
61 chi2=False, outputFile=None):
62 # pdb.set_trace()
63 caseR,caseN,casephi,caseq,loc,refb = load_model(caseHDF5Name)
64 casegam = caseq[’gam’]
65 controlR, controlN, controlphi, controlq, _, _ = \
66 load_model(controlHDF5Name)
67 controlgam = controlq[’gam’]
68
69 (N,J) = np.shape(caseR)[0:2]
70
71 def beta_mean(p):
72 return p[0]*1.0/np.sum(p)
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73
74 def beta_var(p):
75 s = np.sum(p)
76 return p[0]*p[1]/(s**2*(s+1))
77
78 # pdb.set_trace()
79 bayescall = []
80 for j in xrange(J):
81 mu = (beta_mean(casegam[j,:]) - casephi[’mu0’])- \
82 (beta_mean(controlgam[j,:])-controlphi[’mu0’])
83 sigma = np.sqrt(beta_var(casegam[j,:]) \
84 +beta_var(controlgam[j,:]))
85 z = (tau - mu)/sigma
86 p = ss.norm.cdf(z)
87 # pdb.set_trace()
88 bayescall.append(p[0]<alpha)
89
90 ## combine the chi2 goodness of fit test
91 if chi2:
92 chi2call, chi2P = chi2combinetest(caseR, caseN, bayescall)
93 call = np.logical_and(bayescall,chi2call)
94 else:
95 call = bayescall
96
97 if outputFile is not None:
98
99 vcfFilename = outputFile+’.vcf’

100
101 write_dualvcf(vcfFilename, loc, call, refb, controlR, \
102 controlN, caseR, caseN)
103 # output hdf5 file
104 h5Filename = outputFile +’.hdf5’
105 h5file = h5py.File(h5Filename, ’w’)
106
107 h5file.create_dataset(’call’, data=call)
108 h5file.create_dataset(’refb’, data=refb)
109 h5file.create_dataset(’loc’, data=loc,
110 chunks=True, fletcher32=True, compression=’gzip’)
111 h5file.create_dataset(’controlN’, data=controlN,
112 chunks=True, fletcher32=True, compression=’gzip’)
113 h5file.create_dataset(’caseN’, data=caseN,
114 chunks=True, fletcher32=True, compression=’gzip’)
115 h5file.create_dataset(’controlR’, data=controlR,
116 chunks=True, fletcher32=True, compression=’gzip’)
117 h5file.create_dataset(’caseR’, data=caseR,
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118 chunks=True, fletcher32=True, compression=’gzip’)
119 if chi2:
120 h5file.create_dataset(’chi2call’, data=chi2call,
121 chunks=True, fletcher32=True, compression=’gzip’)
122 h5file.create_dataset(’bayescall’, data=bayescall)
123 h5file.close()
124
125
126 ## output the results
127 def write_dualvcf(outputFile, loc, call, refb, controlR=None, \
128 controlN=None, caseR=None, caseN=None):
129
130 controlR = np.median(controlR,0)
131 caseR = np.median(caseR,0)
132 ’’’
133 Write high confidence variant calls from somatic test
134 when there are both control and case sample to VCF 4.2 file.
135 ’’’
136 J = len(loc)
137
138 today=date.today()
139
140 chrom = [x.split(’:’)[0][3:] for x in loc]
141 pos = [int(x.split(’:’)[1]) for x in loc]
142
143 vcfF = open(outputFile,’w’)
144
145 print("##fileformat=VCFv4.1", file=vcfF)
146 print("##fileDate=%0.4d%0.2d%0.2d" \
147 % (today.year, today.month, today.day), file=vcfF)
148
149 print("##source=rvd2", file=vcfF)
150
151 print(’##PosteriorTestSample= control-case-paired_sample.’, \
152 file=vcfF)
153
154 uniquechrom = set(chrom)
155 uniquechrom = list(uniquechrom)
156
157 for i in xrange(len(uniquechrom)):
158 seq = [idx for idx, name in enumerate(chrom) \
159 if name==uniquechrom[i]]
160 seqlen = len(seq)
161 print("##contig=<ID=%(chr)s,length=%(seqlen)d>" \
162 %{’chr’: uniquechrom[i],’seqlen’: seqlen}, file=vcfF)
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163
164
165 print("##INFO=<ID=COAF,Number=1,Type=Float, \
166 Description=\"Control Allele Frequency\">", file=vcfF)
167 print("##INFO=<ID=CAAF,Number=1,Type=Float, \
168 Description=\"Case Allele Frequency\">", file=vcfF)
169
170 print("##FORMAT=<ID=AU,Number=1,Type=Integer, \
171 Description=\"Number of ’A’ alleles\">", file=vcfF)
172 print("##FORMAT=<ID=CU,Number=1,Type=Integer, \
173 Description=\"Number of ’C’ alleles\">", file=vcfF)
174 print("##FORMAT=<ID=GU,Number=1,Type=Integer, \
175 Description=\"Number of ’G’ alleles\">", file=vcfF)
176 print("##FORMAT=<ID=TU,Number=1,Type=Integer, \
177 Description=\"Number of ’T’ alleles\">", file=vcfF)
178
179 print("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER \
180 \tINFO\tFORMAT\tNormal\tCase", file=vcfF)
181
182 for i in xrange(J):
183 # pdb.set_trace()
184 if call[i]:
185 # restore R
186 actg = [’A’,’C’,’G’,’T’]
187
188 idx = actg.index(refb[i])
189 caseR4 = np.zeros(4)
190 controlR4 = np.zeros(4)
191 caseR4[idx] = np.median(caseN[:,i])-np.sum(caseR[i,:])
192 controlR4[idx] = np.median(controlN[:,i]) \
193 -np.sum(controlR[i,:])
194 for d in xrange(idx):
195 caseR4[d] = caseR[i,d]
196 controlR4[d] = controlR[i,d]
197 for d in xrange(3-idx):
198 caseR4[d+idx+1] = caseR[i,d+idx]
199 controlR4[d+idx+1] = controlR[i,d+idx]
200
201 print ("chr%s\t%d\t.\t%s\t.\t.\tPASS\t.\tAU:CU:GU:TU\t\
202 %d:%d:%d:%d\t%d:%d:%d:%d" % (chrom[i], pos[i], \
203 refb[i], controlR4[0], controlR4[1], \
204 controlR4[2], controlR4[3], caseR4[0], \
205 caseR4[1], caseR4[2], caseR4[3]), file=vcfF)
206
207 vcfF.close()
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208
209
210 def chi2combinetest(R, N, bayescall = 1, pvalue = 0.05):
211
212 nRep = R.shape[0]
213 J = R.shape[1]
214 chi2Prep = np.zeros((J,nRep))
215 chi2P = np.zeros((J,1))
216 for j in xrange(J):
217 chi2Prep[j,:] = np.array([chi2test(R[i,j,:] ) \
218 for i in xrange(nRep)] )
219 if np.any(np.isnan(chi2Prep[j,:])):
220 chi2P[j] = np.nan
221 else:
222 # combine p-values using Fisher’s Method
223 chi2P[j]=1-ss.chi2.cdf(-2*np.sum(np.log \
224 (chi2Prep[j,:] + np.finfo(float).eps)), 2*nRep)
225
226 nbayescall = sum(bayescall)
227 if nbayescall < 1:
228 nbayescall = 1
229
230 #Benjamini-Hochberg method FWER control
231 if np.median(N) > 500:
232 chi2call = chi2P < pvalue/nbayescall
233 else:
234 chi2call = chi2P < pvalue
235
236 chi2call = chi2call.flatten()
237 chi2P = chi2P.flatten()
238
239 return chi2call, chi2P
240
241
242 def chi2test(X, lamda=2.0/3, pvector=np.array([1.0/3]*3)):
243 """ Do chi2 test to decide how well the error reads fits
244 uniform multinomial distribution. P-value returned.
245 lamda=1 Pearson’s chi-square
246 lamda=0 the log likelihood ratio statistic/ Gˆ2
247 lamda=-1/2 Freeman-Tukey’s Fˆ2
248 lamda=-1 Neyman modified chi-square
249 lamda=-2 modified Gˆ2
250 """
251 X=np.array(X)
252
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253 nsum=np.sum(X)
254 # return NaN if there are no counts
255 if nsum == 0: return np.nan
256 E=nsum*pvector
257
258
259 if lamda==0 or lamda==-1:
260 C=2.0*np.sum(X*np.log(X*1.0/E))
261 else:
262 C=2.0/(lamda*(lamda+1))*np.sum(X*((X*1.0/E)**lamda-1))
263
264 df=len(pvector)-1
265 #p=scipy.special.gammainc(C,df)
266 # p=1-gammainc(df/2,C/2)
267 p = 1 - ss.chi2.cdf(C, df)
268 return(p)
269
270
271
272 def generate_sample(phi, N=3, J=100, n=100, seedint=None):
273 """Returns a sample with n reads, N replicates, and
274 J locations. The parameters of the model are in the
275 structure phi.
276 """
277
278 if seedint is not None:
279 np.random.seed(seedint)
280
281 #TODO: test for size of n and make an array if a scalar
282
283 # Draw J location-specific error rates from a Beta
284 alpha0 = phi[’M0’]*phi[’mu0’]
285 beta0 = phi[’M0’]*(1-phi[’mu0’])
286 mu = ss.beta.rvs(alpha0, beta0, size=J)
287
288 # Draw sample error rate and error count
289 theta=np.zeros((N,J))
290 r = np.zeros((N,J))
291 for j in xrange(0, J):
292 alpha = mu[j]*phi[’M’][j]
293 beta = (1-mu[j])*phi[’M’][j]
294 theta[:,j] = ss.beta.rvs(alpha, beta, size=N)
295 r[:,j] = ss.binom.rvs(n[:,j], theta[:,j])
296 return r, theta, mu
297

87



298
299 ## compute sufficient statistics
300 def EqlogTheta(delta):
301 if delta[0] < np.finfo(float).eps:
302 delta[0] += np.finfo(float).eps
303 return psi(delta[0]) - psi(np.sum(delta))
304
305 def Eqlog1_Theta(delta):
306 if delta[1] < np.finfo(float).eps:
307 delta[1]+=np.finfo(float).eps
308 return psi(delta[1]) - psi(np.sum(delta))
309
310 def EqMu(gam):
311 return gam[0] / (np.sum(gam)) # eps?
312
313
314 def EqlogMu(gam):
315 if gam[0] < np.finfo(float).eps:
316 gam[0] += np.finfo(float).eps
317 return psi(gam[0]) - psi(np.sum(gam))
318
319 def Eqlog1_Mu(gam):
320 return psi(gam[1]) - psi(np.sum(gam))
321
322 def EqlogGamma(gam, M):
323 # Expectation of Beta function coefficient
324 logGamma = integrate.quad(kernel, 1e-3, 1-1e-3, \
325 args=(gam, M), full_output=1)
326 return logGamma[0]
327
328 def kernel(mu, gam, M):
329 return -ss.beta.pdf(mu, gam[0], gam[1])*betaln(mu*M, (1-mu)*M)
330
331
332 ## compute entropy
333 def BetaEntropy(x):
334 # To compute EqlogQmu and EqlogQtheta
335 return betaln(x[0], x[1]) - (x[0]-1) * psi(x[0]) - (x[1] - 1)\
336 * psi(x[1]) + (x[0] + x[1] -2) * psi(x[0] + x[1])
337
338 ## compute ELBO
339 def ELBO(r, n, M, mu0, M0, delta, gam):
340 if np.ndim(r) == 1:
341 N, J = (1, np.shape(r)[0])
342 elif np.ndim(r) == 2:
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343 N, J = np.shape(r)
344
345 # Compute the expectations
346 try:
347 Mu = np.array([EqMu(gam[j,:]) for j in xrange(J)])
348 except TypeError:
349 pdb.set_trace()
350 # Mu = np.array([EqMu(gam[j,:]) for j in xrange(J)])
351 logMu = np.array([EqlogMu(gam[j,:]) for j in xrange(J)])
352 log1_Mu = np.array([Eqlog1_Mu(gam[j,:]) for j in xrange(J)])
353
354 logTheta = np.zeros((N,J))
355 log1_Theta = np.zeros((N,J))
356
357 for j in xrange(J):
358 for i in xrange(N):
359 logTheta[i,j] = EqlogTheta(delta[i,j,:])
360 log1_Theta[i,j] = Eqlog1_Theta(delta[i,j,:])
361
362 # Eq[log p(r|theta, n)]
363 EqlogPr = 0.0
364 for j in xrange(J):
365 for i in xrange(N):
366 EqlogPr += -betaln(r[i,j] + 1, n[i,j] - r[i,j] +1) \
367 -np.log(n[i,j]+1)
368 EqlogPr += r[i,j]*logTheta[i,j] + (n[i,j] - r[i,j]) \
369 * log1_Theta[i,j]
370
371 # Eq[log p(theta|mu, M)]
372 EqlogPtheta = 0.0
373 for j in xrange(J):
374
375 EqlogPtheta += N*EqlogGamma(gam[j,:], M[j])
376 for i in xrange(N):
377 EqlogPtheta += (M[j]* Mu[j]- 1)*logTheta[i,j] +\
378 (M[j]*(1 - Mu[j]) - 1)*log1_Theta[i,j]
379 # Eq[log p(mu; mu0, M0)]
380 EqlogPmu = -J * betaln(mu0*M0, (1-mu0)*M0)
381 for j in xrange(J):
382 EqlogPmu += (M0*mu0-1)*logMu[j] + (M0*(1-mu0)-1)*log1_Mu[j]
383
384 EqlogQtheta = 0.0
385 for j in xrange(J):
386 for i in xrange(N):
387 EqlogQtheta -= BetaEntropy(delta[i,j,:])
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388
389 EqlogQmu = 0.0
390 for j in xrange(J):
391 EqlogQmu -= BetaEntropy(gam[j,:])
392
393 return EqlogPr + EqlogPtheta + EqlogPmu \
394 - EqlogQtheta - EqlogQmu
395
396
397 def ELBO_delta_ij(r, n, M, delta, gam):
398 ## partial ELBO from replicate i position j
399 ## ELBO used to optimize delta
400 ## Commented out all items that don’t depend on delta
401
402 Mu = EqMu(gam)
403 logTheta = EqlogTheta(delta)
404 log1_Theta = Eqlog1_Theta(delta)
405
406 EqlogPr = r*logTheta + (n - r)*log1_Theta
407
408 EqlogPtheta = (M*Mu - 1)*logTheta + (M*(1-Mu)-1)*log1_Theta
409
410 EqlogQtheta = -BetaEntropy(delta)
411
412 return EqlogPr + EqlogPtheta - EqlogQtheta
413 # return EqlogPr + EqlogPtheta
414
415 def neg_ELBO_delta_ij(logdelta, gam, r, n, M):
416 return -ELBO_delta_ij(r, n, M, np.exp(logdelta), gam)
417
418 def opt_delta_ij(args):
419 # pdb.set_trace()
420 r, n, M, delta, gam = args
421 # pdb.set_trace()
422 # limit delta to [0.001, 1000], np.log(delta) is [-6.9, 6.9]
423 #bnds = [[-7, 7]]*2
424 # limit delta to [0.0001, 10000], np.log(delta) is [-10, 10]
425 bnds = [[-10, 10]]*2
426 args=(gam, r, n, M)
427
428 # logging.debug(bnds)
429 # logging.debug(np.log(delta))
430 logdelta = opt_par(neg_ELBO_delta_ij, np.log(delta), \
431 args, bnds, ’delta’)
432 delta = np.exp(logdelta)
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433
434 return delta
435
436 def opt_delta(r, n, M, delta, gam, pool = None):
437 logging.debug("Optimizing delta")
438
439 if np.ndim(r) == 1: N, J = (1, np.shape(r)[0])
440 elif np.ndim(r) == 2: N, J = np.shape(r)
441
442 st = time.time()
443 if pool is not None:
444 for i in xrange(N):
445 args = zip (r[i,:], n[i,:], M, delta[i,:], gam)
446 temp = pool.map(opt_delta_ij, args)
447 delta[i,:] = np.array(temp)
448 else:
449 logging.debug(’Optimizing delta in single thread’)
450 for i in xrange(N):
451 for j in xrange(J):
452 logging.debug(’Optimizing position %d of %d \
453 and replicate %d of %d’ % (j,J,i,N))
454 args = (r[i,j],n[i,j],M[j],delta[i,j,:],gam[j,:])
455 delta[i,j,:] = opt_delta_ij(args)
456
457 logging.debug(’Delta update elapsed time is %0.3f sec for %d\
458 samples %d replicates.’ % (time.time() - st, J, N))
459 return delta
460
461 def ELBO_gam_j( M, mu0, M0, delta, gam):
462 ## partial ELBO depending on gam from each position j
463 ## ELBO used to gam
464
465 if np.ndim(delta) == 1: N = 1
466 elif np.ndim(delta) == 2: N= np.shape(delta)[0]
467
468 Mu = EqMu(gam)
469 logMu = EqlogMu(gam)
470 log1_Mu = Eqlog1_Mu(gam)
471
472 logTheta = np.zeros((N,1))
473 log1_Theta = np.zeros((N,1))
474
475 for i in xrange(N):
476 logTheta[i] = EqlogTheta(delta[i,:])
477 log1_Theta[i] = Eqlog1_Theta(delta[i,:])
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478
479 EqlogPtheta = N*EqlogGamma(gam,M)
480 for i in xrange(N):
481 EqlogPtheta += (M*Mu-1) * logTheta[i] + (M*(1-Mu)-1) \
482 *log1_Theta[i] ## I had a typo here (M->Mu)
483
484 EqlogPmu= -betaln(mu0*M0, (1-mu0)*M0)+ (M0*mu0-1)*logMu \
485 + (M0*(1-mu0)-1)*log1_Mu
486
487 EqlogQmu = -BetaEntropy(gam)
488
489 return EqlogPtheta + EqlogPmu - EqlogQmu
490 # return EqlogPtheta + EqlogPmu
491
492 def neg_ELBO_gam_j(loggam, delta, M, mu0, M0):
493 return -ELBO_gam_j(M, mu0, M0, delta, np.exp(loggam))
494
495 def opt_gam_j(args):
496 M, mu0, M0, delta, gam = args
497 # pdb.set_trace()
498 # limit gam to [0.001, 1000], np.log(gam) is [-6.9, 6.9]
499 #bnds = [[-7, 7]]*2
500 # limit gam to [0.0001, 10000], np.log(gam) is [-10, 10]
501 bnds = [[-10, 10]]*2
502 args = (delta, M, mu0, M0)
503
504 # def opt_par(func, x, args, bnds, parlabel):
505 loggam = opt_par(neg_ELBO_gam_j,np.log(gam),args,bnds,’gamma’)
506 gam = np.exp(loggam)
507 # logging.debug(bnds)
508 # logging.debug(loggam)
509 return gam
510
511 def opt_gam(M, mu0, M0, delta, gam, pool = None):
512 logging.debug("Optimizing gam")
513
514 if np.ndim(gam) == 1: J=1
515 elif np.ndim(gam) == 2: J=np.shape(gam)[0]
516
517 st = time.time()
518
519 if pool is not None:
520 args = zip( M, repeat(mu0,J), repeat(M0,J), \
521 np.transpose(delta,axes=(1,0,2)),gam)
522 gam = pool.map(opt_gam_j, args)
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523 gam = np.array(gam)
524
525 else:
526 for j in xrange(J):
527 # pdb.set_trace()
528 logging.debug("Optimizing gamma %d of %d" % (j, J))
529 args = ( M[j], mu0, M0, delta[:,j,:], gam[j] )
530 gam[j] = opt_gam_j(args)
531
532 logging.debug(’Gamma update elapsed time is %0.3f sec \
533 for %d samples.’ % (time.time() - st, J))
534 return gam
535
536 def ELBO_0(mu0, M0, gam):
537 ## Items in ELBO depends on mu0 and M0
538 ## FOr optimization of mu0 and M0
539
540 J = gam.shape[0]
541
542 logMu = np.array([EqlogMu(gam[j,:]) for j in xrange(J)])
543
544 log1_Mu = np.array([Eqlog1_Mu(gam[j,:]) for j in xrange(J)])
545
546 EqlogPmu = -J * betaln(mu0*M0, (1-mu0)*M0)
547 for j in xrange(J):
548 EqlogPmu += (M0*mu0-1)*logMu[j] + (M0*(1-mu0)-1)*log1_Mu[j]
549
550 return EqlogPmu
551
552 def neg_ELBO_mu0(mu0, M0, gam):
553 return -ELBO_0(mu0, M0, gam)
554
555 def opt_mu0(mu0, M0, gam):
556 logging.debug("Optimizing mu0")
557 #bnds = np.array([[0.01,0.99]])
558 bnds = np.array([[0.0,1.0]])
559 args=(M0, gam)
560 mu0 = opt_par(neg_ELBO_mu0, mu0, args, bnds, ’mu0’ )
561
562 return mu0
563
564 def neg_ELBO_M0(logM0, mu0, gam):
565 return -ELBO_0(mu0, np.exp(logM0), gam)
566
567 def opt_M0(mu0, M0, gam):
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568 logging.debug("Optimizing M0")
569
570 #bnds = np.array([[-7,7]])
571 bnds = np.array([[-10,10]])
572
573 args = (mu0, gam)
574 logM0 = opt_par(neg_ELBO_M0, np.log(M0), args, bnds, ’M0’ )
575 M0 = np.exp(logM0)
576 return M0
577
578 def ELBO_M_j(M, delta, gam):
579 ## partial ELBO depending on M from each position j
580 ## ELBO used to optimize M
581
582 if np.ndim(delta) == 1: N = 1
583 elif np.ndim(delta) == 2: N= np.shape(delta)[0]
584
585 Mu = EqMu(gam)
586
587 logTheta = np.zeros((N,1))
588 log1_Theta = np.zeros((N,1))
589
590 for i in xrange(N):
591 logTheta[i] = EqlogTheta(delta[i,:])
592 log1_Theta[i] = Eqlog1_Theta(delta[i,:])
593
594 EqlogPtheta = N*EqlogGamma(gam,M)
595 for i in xrange(N):
596 EqlogPtheta += (M*Mu-1) * logTheta[i] \
597 + (M*(1-Mu)-1)*log1_Theta[i]
598
599 return EqlogPtheta
600
601 def neg_ELBO_M_j(logM, delta, gam):
602 return -ELBO_M_j(np.exp(logM), delta, gam)
603
604 def opt_M_j(args):
605
606 (M, delta, gam) = args
607 #bnds = np.array([[-1, 11]]) # limit delta to [0.0001, 10000]
608 #limit delta to [0.0001, 10000], np.log(delta) is [-9.21, 9.21]
609 bnds = np.array([[-10, 10]])
610 M = np.array(M)
611 args = (delta, gam)
612
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613 logM = opt_par(neg_ELBO_M_j, np.log(M), args, bnds, ’M’)
614 M = np.exp(logM)
615
616 return M
617
618 def opt_M(M, delta, gam, pool = None):
619 # M = opt_M(M, delta, gam, pool = pool)
620 logging.debug("Optimizing M")
621
622 J= np.shape(M)[0]
623 # pdb.set_trace()
624 # M = np.array(M)
625
626 if pool is not None:
627 args = zip(M, np.transpose(delta, axes =(1,0,2)), gam)
628 M = pool.map(opt_M_j, args)
629
630 else:
631 for j in xrange(J):
632 args = (M[j],delta[:,j,:],gam[j,:])
633 M[j] = opt_M_j(args)
634
635 return M
636
637 def opt_par(func, x, args, bnds, parlabel):
638
639 # often the fastest method to minimize functions of many
640 # variables uses the Newton-Conjugate Gradient algorithm.
641 # A function which computes the Hessian must be provided.
642
643 # res = so.minimize(func, x,
644 # args=args, bounds=bnds,
645 # method=’Newton-CG’)
646
647 # logging.debug("Inside of optimize function. got res")
648 # Nelder-Mead is the simplest way to minimize a
649 # well-behaved function. Good for simple minimization
650 # problems. Does not use any gradient evaluations,
651 # might take longer.
652 # There is no bounds for Nelder-Mead method
653 # if res.success == False:
654 # logging.debug(2)
655 # res = so.minimize(func, x,
656 # args=args, bounds=bnds, method=’Nelder-Mead’)
657 # pdb.set_trace()
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658
659 ’’’res = so.minimize(func, x,
660 args=args, bounds=bnds,
661 method=’L-BFGS-B’ ) # limited memory BFGS method’’’
662
663 #if res.success == False:
664 # logging.debug(3)
665 res = so.minimize(func, x,
666 args=args, bounds=bnds, method=’SLSQP’) \
667 # Sequential Least SQuares Programming to minimize
668 # a function of several variables with any combination of
669 # bounds, equality and inequality constraints
670
671 if res.success == False and parlabel != ’M’:
672 logging.debug(1)
673 res = so.minimize(func, x,
674 args=args, bounds=bnds, method=’TNC’)
675 # truncated Newton algorithm to minimize a function
676 # with variables subject to bounds.
677
678 if res.success == False:
679 logging.debug(2)
680 res = so.minimize(func, x, args=args, bounds=bnds, \
681 method=’L-BFGS-B’ ) # limited memory BFGS method
682
683 # use the gradient of the objective function,
684 # which can be given by the user.
685 # quasi-Newton method of Broyden, et al.
686 if res.success == False:
687 logging.debug(3)
688 pdb.set_trace()
689 res = so.minimize(func, x, bounds=bnds,\
690 args=args, method=’BFGS’)
691
692 if res.success == False or np.any ( np.isnan(res.x) ) \
693 or np.any(np.isinf(res.x)):
694 logging.warning("Could not optimize %s or %s is NaN."\
695 %(parlabel, parlabel))
696 x = np.random.uniform(low=np.amin(bnds), \
697 high=np.amax(bnds), size = np.shape(x))
698 return x
699
700 return res.x
701
702 def beta_mean(p):
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703 return p[0]*1.0/np.sum(p)
704
705
706 def ELBO_opt(r,n,phi=None,q=None,seed=None,pool=None,vaf=None):
707
708 if pool is not None:
709 pool = mp.Pool(processes=pool)
710 # t = str(datetime.now)
711 f = open(’ELBO%s.txt’ % str(vaf).replace(".", "_", 1),’w’)
712 t = time.time()
713
714 if np.ndim(r) == 1: N, J = (1, np.shape(r)[0])
715 elif np.ndim(r) == 2: N, J = np.shape(r)
716 elif np.ndim(r) == 3:
717 r = np.sum(r, 2)
718 (N, J) = r.shape# sum over non-reference bases
719 # r = r.T
720 # n = n.T
721
722 if seed is not None: np.random.seed(seed = seed)
723
724 h5file = tempfile.NamedTemporaryFile(suffix=’.hdf5’)
725 logging.info(’Storing model updates in %s’ % h5file.name)
726 #temp = "tmp.hdf5"
727 #logging.info(’Storing model updates in %s’ % temp)
728
729 ## Define optimization stopping criterion
730 MAXITER = 80
731 ELBOTOLPCT = 0.001 *100
732 MAXVARITER = 80
733 NORMTOL = 0.1
734
735 ## Initialize model parameters
736 if phi is None:
737 phi, mu, theta = estimate_mom(r, n)
738 else:
739 _, mu, theta = estimate_mom(r, n)
740 mu0 = phi[’mu0’]
741 M0 = phi[’M0’]
742 M = phi[’M’]
743
744 ## Initialize the variational parameters
745 if q is None:
746 #delta=np.random.uniform(low=0.1,high=100,size=(N,J,2))
747 #gam=np.random.uniform(low=0.1,high=100,size=(J,2))
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748 delta=np.random.uniform(low=0.0001,high=10000,size=(N,J,2))
749 gam=np.random.uniform(low=0.0001,high=10000,size=(J,2))
750
751 else:
752 delta = q[’delta’]
753 gam = q[’gam’]
754
755 phi = {’mu0’:mu0, ’M0’:M0, ’M’:M}
756 q = {’delta’:delta, ’gam’:gam}
757 #save_model(’initial_value.hdf5’, r, n, phi, q)
758
759 ’’’# Look at the initial random value of \mu_j
760 logging.info("Initial gam: %s" % gam[344,:])
761 logging.info("Initial $\mu$: %s" % beta_mean(gam[344,:]))’’’
762 ## Initialize ELBO
763
764 elbo = [ELBO(r, n, M, mu0, M0, delta, gam)]
765 logging.info("Initial ELBO: %0.2f" % elbo[-1])
766
767 print("M-iter\tE-iter\tELBO\tInc_Per\tdelta-deltaprev \
768 \tgam-gamprev\tt-gam\tt-delta\tt-mu0\tt-M0\tt-M",file=f)
769
770 print("%d\t%d\t%0.2f\t%0.3f%%\t\t\t\t\t\t\t" \
771 %(0,0,elbo[-1],0),file=f)
772
773 # print("Initial \tELBO: \t%0.2f" % elbo[-1], file = f)
774
775
776 ## Optimization
777 moditer = 0
778 delta_elbo_pct = np.inf
779
780 while moditer<MAXITER and np.abs(delta_elbo_pct)>ELBOTOLPCT:
781 # E-step: Update the variational distribution
782 variter = 0
783 var_elbo = [ elbo[-1] ]
784 (norm_delta_delta, norm_delta_gam) = (np.inf, np.inf)
785 delta_varelbo_pct = np.inf
786 logging.info("E-step")
787 while variter < MAXVARITER \
788 and delta_varelbo_pct > ELBOTOLPCT \
789 and (norm_delta_delta > NORMTOL \
790 or norm_delta_gam > NORMTOL):
791
792 #Store the previous parameter values
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793 (delta_prev, gam_prev) = (np.copy(delta), np.copy(gam))
794
795 #Update the variational distribution
796 # pdb.set_trace()
797 t0=time.time()
798 # mu˜Beta(gam)
799 gam = opt_gam( M, mu0, M0, delta, gam, pool = pool)
800 t1=time.time()
801 # theta˜Beta(delta)
802 delta = opt_delta(r, n, M, delta, gam, pool = pool)
803 t2=time.time()
804
805 #Test for convergence
806 var_elbo.append(ELBO(r, n, M, mu0, M0, delta, gam))
807 delta_varelbo_pct = 100.0*(var_elbo[-1] - \
808 var_elbo[-2])/abs(var_elbo[-2])
809 logging.info("****Variational Iteration %d of %d****"\
810 % (variter+1, MAXVARITER))
811 logging.info("ELBO: %0.2f; Percent Change: %0.3f%%"\
812 % (var_elbo[-1], delta_varelbo_pct))
813
814
815 norm_delta_delta = linalg.norm(delta - delta_prev)
816 norm_delta_gam = linalg.norm(gam - gam_prev)
817 logging.debug("||delta - delta_prev|| = %0.2f;\
818 ||gam - gam_prev|| = %0.2f"
819 % (norm_delta_delta, norm_delta_gam))
820
821 print("%d\t%d\t%0.2f\t%0.3f%%\t%0.2f\t%0.2f\t%0.2f\t\
822 %0.2f\t\t\t" %(moditer, variter+1, var_elbo[-1],\
823 delta_varelbo_pct, norm_delta_delta,\
824 norm_delta_gam, t1-t0,t2-t1), file=f)
825 variter += 1
826
827 logging.info("M-step")
828 # M-step: Update model parameters
829 t0=time.time()
830 mu0 = opt_mu0(mu0, M0, gam)
831 t1=time.time()
832 M0 = opt_M0(mu0, M0, gam)
833 t2=time.time()
834 M = opt_M(M, delta, gam, pool = pool)
835 t3=time.time()
836
837 elbo.append(ELBO(r, n, M, mu0, M0, delta, gam))
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838 delta_elbo_pct = 100*(elbo[-1] - elbo[-2])/abs(elbo[-2])
839 moditer += 1
840
841
842 # ibic
843
844 # Display results for debugging
845 logging.info("----------Iteration %d of %d.----------" \
846 % (moditer, MAXITER))
847 logging.info("ELBO: %0.2f; Percent Change: %0.3f%%" \
848 % (elbo[-1], delta_elbo_pct))
849
850 print("%d\t%d\t%0.2f\t%0.3f%%\t\t\t\t\t%0.2f\t \
851 %0.2f\t%0.2f" %(moditer,0, elbo[-1],delta_elbo_pct, \
852 t1-t0,t2-t1,t3-t2), file=f)
853
854 logging.info("M0 = %0.2e" % M0)
855 logging.info("mu0 = %0.2f" % mu0)
856
857 ’’’# Store the model for viewing
858 phi = {’mu0’:mu0, ’M0’:M0, ’M’:M}
859 q = {’delta’:delta, ’gam’:gam}
860 save_model(h5file.name, r, n, phi, q)’’’
861
862 print("Total time is %0.3f seconds." %(time.time()-t), file=f)
863
864 f.close()
865 return(phi, q)
866
867 def estimate_mom(r, n):
868 """ Return model parameter estimates using method-of-moments.
869 """
870 # make sure this is non-truncating division
871 theta = r/(n + np.finfo(np.float).eps)
872 if np.ndim(r) == 1: mu = theta
873 elif np.ndim(r) > 1: mu = np.mean(theta, 0)
874
875 mu0 = np.mean(mu)
876 M0 = (mu0*(1-mu0))/(np.var(mu) + np.finfo(np.float).eps) \
877 + np.finfo(np.float).eps
878
879 # Estimate M.
880 # If there is only one replicate, set M as 10 times of M0.
881 # If there is multiple replicates, set M according to
882 # the moments of beta distribution
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883
884 if np.shape(theta)[0] is 1:
885 M = 10*M0*np.ones_like(mu)
886 else:
887 M = (mu*(1-mu))/(np.var(theta, 0) + np.finfo(np.float).eps)
888
889 J = len(M)
890 for i in xrange(J):
891 if M[i] < 1:
892 M[i] = 1
893
894 phi = {’mu0’:mu0, ’M0’:M0, ’M’:M}
895 return phi, mu, theta
896
897 def save_model(h5Filename, r, n, phi, q, loc=None, refb=None):
898
899 f = h5py.File(h5Filename, ’w’)
900
901 f.create_dataset(’r’, data=r)
902 f.create_dataset(’n’, data=n)
903
904 f.create_group(’phi’)
905 f[’phi’].create_dataset(’mu0’, data=phi[’mu0’])
906 f[’phi’].create_dataset(’M0’, data=phi[’M0’])
907 f[’phi’].create_dataset(’M’, data=phi[’M’])
908
909 f.create_group(’q’)
910 f[’q’].create_dataset(’delta’, data=q[’delta’])
911 f[’q’].create_dataset(’gam’, data=q[’gam’])
912
913 # Save the reference data
914 if loc is not None:
915 f.create_dataset(’loc’, data=loc,
916 chunks=True, fletcher32=True, compression=’gzip’)
917 if refb is not None:
918 f.create_dataset(’refb’, data=refb)
919
920 f.close()
921
922 def load_model(h5Filename):
923
924 f = h5py.File(h5Filename, ’r’)
925
926 out = []
927
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928 # pdb.set_trace()
929 r = f[’r’][...]
930 out.append(r)
931
932 n = f[’n’][...]
933 out.append(n)
934
935 phi = {}
936 phi[’mu0’] = f[’phi/mu0’][...]
937 phi[’M0’] = f[’phi/M0’][...]
938 phi[’M’] = f[’phi/M’][...]
939 out.append(phi)
940
941 q = {}
942 q[’delta’] = f[’q/delta’][...]
943 q[’gam’] = f[’q/gam’][...]
944 out.append(q)
945
946 if u"loc" in f.keys():
947 loc = f[’loc’][...]
948 out.append(loc)
949
950 if u"refb" in f.keys():
951 refb = f[’refb’][...]
952 out.append(refb)
953
954 f.close()
955 # pdb.set_trace()
956
957 return tuple(out)
958
959 def load_depth(dcFileNameList):
960 """ Return (r, n, location, reference base) for a list of
961 depth charts. The variable r is the error read depth
962 and n is the total read depth.
963 """
964 r=[]; n=[]
965 acgt = {’A’:0, ’C’:1, ’G’:2, ’T’:3}
966
967 loc = []
968 refb = {}
969 cd = []
970
971 # pdb.set_trace()
972
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973 for dcFileName in dcFileNameList:
974 with open(dcFileName, ’r’) as dcFile:
975 header = dcFile.readline().strip()
976 dc = dcFile.readlines()
977 dc = [x.strip().split("\t") for x in dc]
978 loc1 = [x[1]+’:’+str(x[2]).strip(’\000’) for x in dc \
979 if x[4] in acgt.keys()]
980 loc.append( loc1 )
981 refb1 = dict(zip(loc1, [x[4] for x in dc \
982 if x[4] in acgt.keys()]))
983 refb.update(refb1)
984 cd.append(dict(zip(loc1, [map(int, x[5:9]) for x in dc\
985 if x[4] in acgt.keys()])) )
986
987 loc = list(reduce(set.intersection, map(set, loc)))
988
989 def stringSplitByNumbers(x):
990 r = re.compile(’(\d+)’)
991 l = r.split(x)
992 return [int(y) if y.isdigit() else y for y in l]
993
994 loc = sorted(loc,key = stringSplitByNumbers)
995 logging.debug(loc)
996 refb = [refb[k] for k in loc]
997
998 J = len(loc)
999 N = len(dcFileNameList)

1000 for i in xrange(0, N):
1001 logging.debug("Processing %s" % dcFileNameList[i])
1002 c = np.array( [cd[i][k] for k in loc] )
1003 n1 = np.sum(c, 1)
1004 #r1 = np.zeros(J)
1005 refIdx=np.zeros(J)
1006
1007 for j in xrange(0,J):
1008 #r1[j] = n1[j] - c[j, acgt[refb[j]]]
1009 refIdx[j] = 4*j+acgt[refb[j]]
1010 c = np.delete(c, refIdx, None)
1011 c = np.reshape(c, (J, 3) )
1012 #r.append(r1)
1013 n.append(n1)
1014 r.append(c)
1015 r = np.array(r)
1016 n = np.array(n)
1017
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1018 return (r, n, loc, refb)
1019
1020 if __name__ == "__main__":
1021 main()
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C.2 GOP code

C.2.1 Main function

1 __author__ = ’Fan Zhang’
2 # GOP_main.py
3
4 import numpy as np
5 from multiprocessing import Pool
6 import h5py as h5
7 from tree import Tree
8
9 from time import time

10 import time
11 import parallel_cell_enumeration as p_cell
12 import parallel_masterprob as p_ma
13 import pre_process as pre
14 import subprob as sub
15
16
17 if __name__ == "__main__":
18
19 # Set a random seed
20 np.random.seed(19860522)
21
22 # Define global optimization parameters
23 #gb.setParam(gb.GRB.Param.Threads, NUM_THREADS)
24
25 NUM_CORES = 10
26
27 #Parallel
28 pool = Pool(processes=NUM_CORES)
29 pool = None
30
31 ################# Define the problem data. #############
32 ’’’M = 20
33 K = 2
34 N = 10
35 # make theta_star
36 x_star = np.random.normal(size=(M, K))
37 alpha = np.random.uniform(0,1,K)
38 theta = np.random.dirichlet(alpha, N)
39 theta_star = np.transpose(theta)
40 y = np.dot(x_star, theta_star)’’’
41
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42 # illustrate data
43 x_star = np.array([(0, -1)])
44 theta_star = np.array([ (1, 0, 0.5),
45 (0, 1, 0.5)])
46 y = np.dot(x_star, theta_star)
47
48 # Define the sparsity of x
49 # cons: used in the solve_master_s to constraint the sum of
50 # all the elements of |x_star|.
51 # It would be easier to set cons three times of the sum of
52 # all the absoute values for x.
53 cons = np.sum(abs(x_star))
54
55 (M, N) = np.shape(y)
56 (M, K) = np.shape(x_star)
57
58 #print M, K, N
59 print "Optimal ||y-x*theta||_2ˆ2 = %0.2f" \
60 % np.linalg.norm(y-np.dot(x_star, theta_star),2)**2
61
62 # Define the problem parameters
63 MAXITER = 2000
64 e = 0.01
65
66 # Initialize the problem parameters
67 x_stor = []
68 SUBD = np.inf
69 MLBD = -np.inf
70
71 # Initialize the problem decision variables
72 #xBar = x_star + 0.1*np.random.normal(size=(M,K))
73
74 # Randomly generate x between 0 and 1.
75 xBar = np.random.random_sample((M,K))
76 print "Initial x is: %s" %xBar
77
78 theta_U = np.zeros((K,N))
79 theta_L = np.zeros((K,N))
80 for i in xrange(N):
81 for j in xrange(K):
82 theta_U[j][i] = 1.0
83 theta_L[j][i] = 0.0
84
85 # record the optimal value
86 thetaBar = []
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87 lamBar = []
88 muBar = []
89 x_all = [xBar]
90 MLBD_Bar = []
91 SUBD_Bar = []
92 # record all the MLBD of the generated nodes
93 MLBD_all = []
94 # record the chosen nodes with the lowest MLBD per iteration
95 nodes_all = []
96 # record the time for each iteration
97 time_iteration = []
98
99 print "Start optimizing..."

100
101 index=0
102 global num_node
103 num_node = 0
104 current_node = 0
105
106 #Claim a tree
107 tree = Tree()
108 node = tree.add_node(current_node, theta_L, theta_U)
109 num_node = num_node + 1
110
111 start_all = time.clock()
112 print x_all[-1]
113
114 while index < MAXITER:
115 start = time.clock()
116 print "-------------iteration %d------------" % index
117
118 ’’’ Solve the primal problem ’’’
119
120 objOpt,thetaOpt,lamOpt,muOpt=sub.solve_subproblem(y, xBar)
121
122 thetaBar.append(thetaOpt)
123 lamBar.append(lamOpt)
124 muBar.append(muOpt)
125
126 SUBD = np.amin([objOpt, SUBD])
127
128 print "THETA"
129 print thetaOpt
130 print "X"
131 print xBar
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132
133 ’’’ Preprocessing:
134 1. remove duplicate hyperplanes;
135 2. remove all 0 coefficients hyperplanes.’’’
136
137 g_flag, replicated_marker, coefficients= pre.pre_process\
138 (xBar, thetaOpt, lamOpt, muOpt, y)
139
140 # print the flag and deplicate markers
141 # print "g_flag", g_flag
142 # print "replicated_marker", replicated_marker
143 # print len(coefficients)
144 # for co_index in xrange(len(coefficients)):
145 # print coefficients[co_index]
146
147 # Get all the unique hyperplanes and save the coefficients.
148 linker, unique_coefficients = pre.unique_coeff(g_flag,\
149 replicated_marker, coefficients, M, K, N)
150
151 # Set a threshold as the distance used in cell enumeration
152 distance = [np.spacing(1)]
153 for i in xrange(len(unique_coefficients)):
154 sum = 0.0
155 sum += unique_coefficients[i][-1]
156 for j in xrange(M*K):
157 sum += xBar[j/K][j%K]* unique_coefficients[i][j]
158 distance.append(np.fabs(sum))
159
160 # Take the maximum of the ’distances’ from the common point
161 # to all the hyperplanes.
162 # Make the threshold greater than or equal to np.spacing(1).
163 threshold = max(distance)
164
165 ’’’ Cell enumeration: Get the unique regions which are
166 represented by thetaB_list (using parallel)’’’
167
168 pre_thetaB_list = p_cell.parallel_cell_numeration \
169 (unique_coefficients, len(unique_coefficients), \
170 M*K, threshold, pool)
171
172 thetaB_list = pre.extend_back(pre_thetaB_list, linker, \
173 g_flag, replicated_marker, K, N)
174
175 print "\nthe length of thetaB_list is:", len(thetaB_list)
176
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177 ’’’ Solve the relaxed dual problems
178 defined by the thetaB_list ’’’
179
180 x_stor, Q_stor, next_node, num_node, MLBD_stor = \
181 p_ma.solve_master(tree, num_node, current_node, g_flag,\
182 thetaB_list, SUBD, coefficients, xBar, thetaOpt, \
183 lamOpt, muOpt, y, cons, i, pool)
184
185 MLBD_all.extend(MLBD_stor)
186
187 # Set the master problem lower bound and the next x value
188 current_node = tree.search_leaves(0, 0, np.inf)
189
190 nodes_all.append(current_node)
191 xBar = tree.nodes[current_node].xOpt
192 MLBD = tree.nodes[current_node].MLBD
193 tree.nodes[current_node].MLBD = np.inf
194
195 # Calculate the time for each iteration
196 end = time.clock()
197
198 # record the x_all, MLBD_Bar and SUBD_Bar of
199 # the chosen nodes with the lowest MLBD
200 x_all.append(xBar)
201 MLBD_Bar.append(MLBD)
202 SUBD_Bar.append(SUBD)
203
204 time_iter = ’%0.2f’ %(end - start)
205 print (’\nTime used for this iteration:%0.2f’%(end-start))
206 time_iteration.append(time_iter)
207
208 with h5.File(’test.hdf5’,’w’) as f:
209 f.create_dataset(’MLBD’, data=MLBD_Bar)
210 f.create_dataset(’SUBD’, data=SUBD_Bar)
211 f.create_dataset(’xOpt’, data=x_all)
212 f.create_dataset(’thetaOpt’, data=thetaBar)
213 f.create_dataset(’lamOpt’, data=lamBar)
214 f.create_dataset(’muOpt’, data=muBar)
215 f.create_dataset(’MLBD_all_nodes’, data=MLBD_all)
216 f.create_dataset(’selected_nodes’, data=nodes_all)
217 f.create_dataset(’time’, data=time_iteration)
218
219 print(’Current bounds: [%0.2f, %0.2f]’ % (MLBD, SUBD))
220
221 # Try another convergence:
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222 #close = np.fabs(np.dot(x_all[-2], thetaOpt) - y) < 0.05
223
224 # Set convergence of upper and lower bounds
225 if SUBD - MLBD <= e:
226 print "\n==========Optimal x*theta============"
227 print np.dot(x_all[-2], thetaOpt)
228 print "===============Exact y================="
229 print y
230 print "===============Optimal x==============="
231 print x_all[-2]
232 print "==================Exact x=============="
233 print x_star
234 print "==============Optimal theta============"
235 print thetaOpt
236 print "================Exact theta============"
237 print theta_star
238
239 index = MAXITER
240 end_all = time.clock()
241 print (’\nAll the iterations cost: %0.2f’\
242 %(end_all - start_all))
243 index += 1
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C.2.2 Primal problem

1 __author__ = ’Fan Zhang’
2 # subprob.py
3
4 import numpy as np
5 import gurobipy as gb
6 import itertools as it
7 import matplotlib.pyplot as plt
8 from multiprocessing import Pool
9

10 import h5py as h5
11
12 from time import time
13
14 def solve_subproblem(y, x):
15 ’’’Solve the GOP subproblem (dual) for a fixed value of x ’’’
16
17 (M, N) = np.shape(y)
18 K = np.shape(x)[1]
19
20 # Create a new model
21 m = gb.Model("sub")
22 m.setParam(’OutputFlag’, False)
23
24 # Create variables
25 theta = [[0 for i in xrange(N)] for k in xrange(K)]
26 for (k,i) in it.product(range(K), range(N)):
27 theta[k][i] = m.addVar(lb = -gb.GRB.INFINITY,
28 ub = gb.GRB.INFINITY, vtype = gb.GRB.CONTINUOUS,
29 name = "theta_%d_%d" % (k,i) )
30
31 #Integrate new variables
32 m.update()
33
34 #Construct the objective min_theta sum_i (y_i - x*theta_i)ˆ2
35 X2 = np.dot(x.T, x)
36
37 obj = gb.QuadExpr()
38 for i in xrange(N):
39 yx = np.dot(y[:,i], x)
40
41 # convert numpy.float64(0) to a native Python type.
42 obj.addConstant(np.asscalar(np.dot(y[:,i].T, y[:,i])))
43
44 for k1 in xrange(K):
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45 obj.addTerms(-2*yx[k1], theta[k1][i])
46 for k2 in xrange(K):
47 obj.addTerms(X2[k1][k2],theta[k1][i],theta[k2][i])
48
49 m.setObjective(obj, gb.GRB.MINIMIZE)
50
51 # Add constraint: sum_k theta_{ki} = 1 for all i
52 for i in xrange(N):
53 m.addConstr(gb.quicksum(theta[k][i] for k in xrange(K))==1)
54
55 # Add constraint: theta_{ki} >= 0 for all (k,i)
56 for (k,i) in it.product(range(K), range(N)):
57 m.addConstr(theta[k][i] >= 0)
58
59 # Optimize the model
60 m.optimize()
61 assert(m.getAttr(’Status’) == 2)
62
63 # Package the optimizing value of theta
64 thetaOpt = np.empty(np.shape(theta))
65 for (k,i) in it.product(range(K), range(N)):
66 thetaOpt[k,i] = theta[k][i].x
67
68 # Package the Lagrange dual variables values
69 lamOpt = np.empty(N)
70 muOpt = np.empty(shape=(K,N))
71 constrs = m.getConstrs()
72
73 for i in xrange(N):
74 lamOpt[i] = constrs[i].getAttr("pi")
75
76 for (k,i) in it.product(range(K), range(N)):
77 muOpt[k,i] = constrs[N+k*N+i].getAttr("pi")
78
79 # Return the objective(Upper bound), theta, lambda, mu
80 return m.objVal, thetaOpt, lamOpt, muOpt
81
82
83
84 if __name__ == ’__main__’:
85 pass
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C.2.3 Preprecessing

1 __author__ = ’Fan Zhang’
2 # pre_process.py
3
4 import numpy as np
5 import gurobipy as gb
6 import itertools as it
7 import sympy
8
9 def get_the_coefficient(g_expr, M, K, m):

10 ’’’ Get the coefficients of one qualifying constraint.
11 More efficiently! We observe that VarName is named by "x_i_j".
12 Therefore, we can extract i and j from the name.’’’
13
14 num = g_expr.size()
15 x = [[m.getVarByName("x_%d_%d" % (j,k)) for k in xrange(K)] \
16 for j in xrange(M)]
17
18 coeff = np.zeros((M, K))
19 coeff_constant = g_expr.getConstant()
20 for index in xrange(num):
21 var_name = g_expr.getVar(index).VarName.encode(’ascii’, \
22 ’ignore’)
23 indexes = [ind for ind, ltr in enumerate(var_name) \
24 if ltr == ’_’]
25 i = int(var_name[indexes[0] + 1 : indexes[1]])
26 j = int(var_name[indexes[1] + 1 : ])
27 coeff[i][j] += g_expr.getCoeff(index)
28
29 coefficient = []
30 for i in xrange(M):
31 for j in xrange(K): #set the precision
32 coefficient.append(float(coeff[i][j]))
33 coefficient.append(float(coeff_constant))
34 return coefficient
35
36
37 def normalize_coefficient(coef):
38 ’’’Normalization is not used in the current version.’’’
39 ’’’Normalize the coefficients of Ab by the largest one of A.’’’
40
41 #get the largest magnitude of A
42 max_coef = max(coef[:-1])
43 min_coef = min(coef[:-1])
44 normalization = 0.0
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45 if np.fabs(max_coef) > np.fabs(min_coef):
46 normalization = np.fabs(max_coef)
47 else:
48 normalization = np.fabs(min_coef)
49 assert(normalization != 0.0), \
50 "normalization should not equal to zero"
51 #divide the largest magnitude
52 normalized_coef = []
53 for i in xrange(len(coef)):
54 normalized_coef.append(float(coef[i]/normalization))
55 return normalized_coef
56
57
58 def check_line(coeff, M, K):
59 #Since we used the truncation,
60 #we compare the coeff with 0.0001 directly.
61 for index in xrange(M*K + 1):
62 if np.fabs(coeff[index]) >= 0.0001:
63 return False
64 return True
65
66
67 def replicate_line_with_threshold(g_expr,g_expr_c,M,K,threshold):
68 ’’’Compare whether two lines are the same lines.’’’
69 coeffi_1 = np.zeros((M, K))
70 coeffi_2 = np.zeros((M, K))
71 coeff1_constant = g_expr[-1]
72 coeff2_constant = g_expr_c[-1]
73 #calculate the sum of all coefficients
74 sum_coeff1 = coeff1_constant
75 sum_coeff2 = coeff2_constant
76 for i in xrange(M):
77 for j in xrange(K):
78 coeffi_1[i][j] = g_expr[i*K + j]
79 coeffi_2[i][j] = g_expr_c[i*K + j]
80 sum_coeff1 += coeffi_1[i][j]
81 sum_coeff2 += coeffi_2[i][j]
82
83 #check constant
84 if np.fabs(sum_coeff1 * coeff2_constant \
85 - sum_coeff2 * coeff1_constant) > threshold:
86 return 0
87 #check all other coefficients
88 for i in xrange(M):
89 for j in xrange(K):
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90 if np.fabs(sum_coeff1 * coeffi_2[i][j] \
91 - sum_coeff2 * coeffi_1[i][j]) > threshold:
92
93 return 0
94 #1 represents the two lines are the same equation
95 return 1
96
97
98 def pre_process(xBar, thetaOpt, lamOpt, muOpt, y):
99 ’’’Preprocessing step’’’

100
101 (M, K) = np.shape(xBar)
102 (K, N) = np.shape(thetaOpt)
103 #qualify_flag: mark whether the coefficients of the qualifying
104 # constraint is all zero(0) or not(1)
105 qualify_flag = np.zeros((K, N))
106 #Coefficients: store the coefficients for KN lines.
107 # The size if KN * (MK + 1)
108 coefficients = []
109
110 #Create a new model without optimization
111 m = gb.Model("Just_get_the_coefficients")
112
113 #Add variables
114 x = [[0 for k in xrange(K)] for j in xrange(M)]
115 for (j,k) in it.product(range(M), range(K)):
116 x[j][k] = m.addVar(lb=-gb.GRB.INFINITY, ub=gb.GRB.INFINITY,
117 vtype=gb.GRB.CONTINUOUS, name="x_%d_%d" % (j,k) )
118 m.update()
119
120 #get the coefficients
121 x0_x = np.dot(xBar.T, x)
122 x0_x0 = np.dot(xBar.T, xBar)
123 x0_x_x = x0_x + x0_x.T
124 for i in xrange(N):
125 for k in xrange(K):
126 g_expr = gb.LinExpr()
127 g_expr.addConstant(-2* np.dot(x0_x0[:, k], \
128 thetaOpt[:,i]) - lamOpt[i] - muOpt[k,i])
129 S = 0
130 for j in xrange(M):
131 S += x[j][k] * float(y[j,i])
132
133 g_expr.add(-2*S)
134 g_expr.add(2 * np.dot(x0_x_x[:,k], thetaOpt[:,i]))
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135 coef = get_the_coefficient(g_expr, M, K, m)
136 # Check and mark if a line has all the 0 coefficients
137 Flag = check_line(coef, M, K)
138 if Flag:
139 qualify_flag[k][i] = 0 # zero line
140 coefficients.append(coef)
141 else:
142 qualify_flag[k][i] = 1 #not zero line
143 coefficients.append(coef)
144
145 # Check a pair of two lines are the same or not.
146 # Save the index of the duplicate qualifying constraints
147 # in the repli_marker.
148 repli_marker = [[] for x in xrange(N*K)]
149 for i in xrange(len(coefficients)):
150 if qualify_flag[i%K][i/K] != 0:
151 for j in xrange(i+1, len(coefficients)):
152 if qualify_flag[j%K][j/K] != 0:
153 if replicate_line_with_threshold\
154 (coefficients[i], coefficients[j], M, K, 1e-4):
155 repli_marker[i].extend([(j%K, j/K)])
156 repli_marker[j].extend([(i%K, i/K)])
157 return qualify_flag, repli_marker, coefficients
158
159
160 def unique_coeff(g_flag, repli_marker, coefficients, M, K, N):
161 ’’’Get the list of unique coefficients’’’
162
163 #Get the marker of the unqiue coefficient
164 marker = [0 for i in xrange(len(coefficients))]
165 for i in xrange(len(coefficients)):
166 if marker[i] == 0:
167 if g_flag[i%K][i/K] == 0:
168 marker[i] = -1
169 else:
170 ## repli_marker[i] == empty
171 if not repli_marker[i]:
172 marker[i] = 0
173 else:
174 for j in xrange(len(repli_marker[i])):
175 marker[repli_marker[i][j][0] \
176 + repli_marker[i][j][1]*K] = -1
177 #Get the unique coefficient based on the marker
178 linker = []
179 Unique_coefficient = []

116



180 for i in xrange(len(marker)):
181 if marker[i] == 0:
182 linker.append(i)
183 Unique_coefficient.append(coefficients[i])
184 return linker, np.array(Unique_coefficient)
185
186
187 def extend_back(thetaB_list, linker, g_flag, repli_marker, K, N):
188 ’’’change the formula of thetaB_list to the matrix.’’’
189
190 extend_list = []
191 for i in xrange(len(thetaB_list)):
192 thetaB = np.zeros( (K, N))
193 #set zero lines
194 for n in xrange(N):
195 for k in xrange(K):
196 thetaB[k][n] = -2
197 if g_flag[k][n] == 0:
198 thetaB[k][n] = -1
199 #set value
200 for j in xrange(len(linker)):
201 row = linker[j]/K
202 col = linker[j]%K
203 thetaB[col][row] = int(thetaB_list[i][j])
204 for j in xrange(len(repli_marker)):
205 if repli_marker[j] != []:
206 if thetaB[j%K][j/K] == -2:
207 for n in xrange(len(repli_marker[j])):
208 value = \
209 thetaB[repli_marker[j][n][0]][repli_marker[j][n][1]]
210 if value != -2:
211 thetaB[j%K][j/K] = value
212 extend_list.append(thetaB)
213 return extend_list
214
215 if __name__ == "__main__":
216 pass
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C.2.4 Cell enumeration

1 __author__ = ’Fan Zhang & Chuangqi Wang’
2 # parallel_cell_enumeration.py
3
4 import interior_point as IP
5 import copy
6 import numpy as np
7 from time import time
8 import time
9 from multiprocessing import Pool

10 import itertools
11
12 def reflection(thetaB):
13 ’’’ Get the thetaB for the reflected region: 0 ->1, 1->0
14 thetaB: the sign of hyperplane ’’’
15
16 ref_thetaB = []
17 for i in xrange(len(thetaB)):
18 ref_thetaB.append(thetaB[i])
19 if thetaB[i] == 1:
20 ref_thetaB[i] = 0
21 elif thetaB[i] == 0:
22 ref_thetaB[i] = 1
23 return ref_thetaB
24
25 def initialize_region(coefficients, nCuts, dim, threshold):
26 ’’’ Calculate the first feasible region
27 coefficients: the coefficients of all hyperplanes.
28 nCuts: the number of hyperplanes.
29 Dim: the dimension of space.
30 threshold: tolerance of the distance from the point to
31 a hyperplane’’’
32
33 #test the region one by one unitl one feasible is found
34 NBC = pow(2, nCuts)
35 for index in xrange(NBC):
36 thetaBstr = "{0:b}".format(index).zfill(nCuts)
37 marker = list(thetaBstr)
38 result = [int(i) for i in marker]
39 status, xOpt, obj = IP.interior_point(coefficients, \
40 nCuts, dim, result)
41 if status == 2 and obj >= threshold:
42 return result
43
44 def check_candidate_hyperplanes(coefficients, \
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45 candidate_hyperplanes, nCuts, dim, region, \
46 threshold, pool = None):
47 ’’’ Check if each candidate hyperplane is the strict hyperplane.
48 coefficients: the coefficients of all hyperplanes.
49 candidate_hyperplanes: check this hyperplane is strict/redundant.
50 nCuts: the number of hyperplanes.
51 Dim: the dimension of space.
52 region: the sign of the hyperplanes.
53 Adjacency regions of this region will be return.
54 threshold: tolerance of the distance from the point to
55 a hyperplane’’’
56
57 #non-redundant hyperplane
58 strict_hyperplanes = []
59
60 if pool == None:
61
62 #check the candidate hyperplanes
63 for can_hp in candidate_hyperplanes:
64 new_region = flip(region, can_hp)
65 status, xOpt, obj = IP.interior_point(coefficients,\
66 nCuts, dim, new_region)
67 if status == 2 and obj >= threshold:
68 strict_hyperplanes.append(can_hp)
69 else:
70 #Parallel
71 results = [pool.apply_async(check_interior_point, \
72 args = (coefficients, nCuts, dim, region, \
73 can_hp, threshold)) for can_hp \
74 in candidate_hyperplanes]
75 for p in results:
76 #result = [can_hp, True or false]
77 result = p.get()
78 if result[1]:
79 strict_hyperplanes.append(result[0])
80 return strict_hyperplanes
81
82 def check_interior_point(coefficients, nCuts, dim, region, can_hp,\
83 threshold):
84 ’’’ In order to parallel, we use this function to
85 check the new region exist or not’’’
86 new_region = flip(region, can_hp)
87 status, xOpt, obj = IP.interior_point(coefficients, \
88 nCuts, dim, new_region)
89 if status == 2 and obj >= threshold:

119



90 return can_hp, True
91 else:
92 return can_hp, False
93
94
95 def cal_adjacency_regions(coefficients, nCuts, dim, region, \
96 certain_hyperplane, threshold, pool =None, closedset=[]):
97 ’’’ Calculate the adjacency regions of the given region.
98 This function icludes two parts:
99 1) calculate the strict hyperplanes.

100 2) get the adjacency regions based on the strict hyperplanes.
101
102 coefficients: the coefficients of all hyperplanes.
103 nCuts: the number of hyperplanes.
104 Dim: the dimension of space.
105 region: the sign of the hyperplanes. Adjacency regions of
106 this region will be return.
107 certain_hyperplane: shows which hyperplane we are considering.
108 threshold: tolerance of the distance from the point to
109 a hyperplane’’’
110
111 #the calculated adjacency regions
112 adj_regions = []
113
114 #put all the hyperplanes into candidate_hyperplanes
115 candidate_hyperplanes = list(xrange(nCuts))
116
117 #test the other candidate hyperplanes.
118 strict_hyperplanes = check_candidate_hyperplanes(coefficients,\
119 candidate_hyperplanes, nCuts, dim, region, threshold, pool)
120
121 #flip the strict hyperplane to get the adjacency regions.
122 for i in strict_hyperplanes:
123 if i != certain_hyperplane:
124 flip_region = flip(region, i)
125 if flip_region not in closedset:
126 adj_regions.append(flip_region)
127
128 #return the adjacency regions
129 return adj_regions
130
131 def flip(region, index):
132 ’’’ flip the element of index. 1 -> 0, 0 -> 1
133 region: the sign of hyperplanes
134 index: the position should be fliped. ’’’
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135
136 flip_region = copy.copy(region)
137 if flip_region[index] == 0:
138 flip_region[index] = 1
139 elif flip_region[index] == 1:
140 flip_region[index] = 0
141 else:
142 assert(1 == 0), ’No 0 and 1 appears in the thetaB_list.’
143 return flip_region
144
145 def parallel_cell_numeration(coefficients, nCuts, dim, threshold,\
146 pool = None, certain_hyperplane = 0):
147 ’’’ Get the thetaB_list of all the regions.
148 coefficients: the coefficients of all hyperplanes.
149 nCuts: the number of hyperplanes.
150 Dim: the dimension of space.
151 threshold: the tolerance of the distance from the point
152 to a hyperplane.
153 certain_hyperplane: assume the sign of this hyperplane
154 does not change. ’’’
155
156 #sub_NUM_CORES = 10
157 #Parallel
158 #sub_pool = Pool(processes=sub_NUM_CORES)
159
160 thetaB_list = []
161 #the structure to manage the process of all the function.
162 #openset = Queue.Queue()
163 openset = []
164 closedset = []
165
166 Initialized_region = initialize_region(coefficients, \
167 nCuts, dim, threshold)
168
169 #openset.put(Initialized_region)
170 openset.append(Initialized_region)
171 print (’\nfinding adjacent regions...’)
172
173 # non-parallel
174 if pool == None:
175 while len(openset) != 0:
176 #get the region and delete it from the openset.
177 region = openset.pop(0)
178 closedset.append(region)
179
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180 #calculate the adjacency regions
181 adj_regions = cal_adjacency_regions(coefficients,
182 nCuts, dim, region, certain_hyperplane, threshold)
183
184 for region in adj_regions:
185 #if region never appears.
186 if region not in openset and region not in closedset:
187 openset.append(region)
188 # parallel
189 else:
190 start = time.clock()
191 while len(openset) != 0:
192 closedset.extend(openset)
193 results = [pool.apply_async(cal_adjacency_regions,\
194 args = (coefficients, nCuts, dim, region, \
195 certain_hyperplane, threshold, None, closedset)) \
196 for region in openset]
197
198 #set openset is empty
199 openset = []
200 #get the result
201 for p in results:
202 openset.extend(p.get())
203 #get the unique list
204 openset.sort()
205 openset=list(openset for openset, \
206 _ in itertools.groupby(openset))
207
208 end = time.clock()
209 time_adj_region = end - start
210 print (’\nFinish finding adjacent regions using: %0.2f’\
211 %(time_adj_region))
212
213 #Reflection
214 for region in closedset:
215 thetaB_list.append(region)
216 ref_thetaB = reflection(region)
217 thetaB_list.append(ref_thetaB)
218
219 return thetaB_list
220
221 if __name__ == "__main__":
222 pass
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C.2.5 Relaxed dual problems

1 __author__ = ’Fan Zhang’
2 # parallel_masterprob.py
3
4 import numpy as np
5 import gurobipy as gb
6 import itertools as it
7 from itertools import repeat
8 import time
9

10
11 def add_qualifying_constraint(m, coefficients, \
12 M, K, N, thetaB, g_flag, t):
13 ’’’ Add the qualifying constraints to model m. The qualifying
14 constraint is formed by linearizing the Lagrangian with
15 respect to x about x0. Then linearizing that with respect
16 to theta about thetat. ’’’
17
18 qualifying_constraint = []
19 x = [[m.getVarByName("x_%d_%d" % (j,k)) for k in xrange(K)] \
20 for j in xrange(M)]
21
22
23 for i in xrange(len(coefficients)):
24 #calcuate the qualifying constraint formula
25 g_expr = gb.LinExpr()
26 g_expr.addConstant(coefficients[i][-1])
27 for j in xrange(M*K):
28 g_expr.add(x[j/K][j%K]* coefficients[i][j])
29 qualifying_constraint.append(g_expr)
30 #add the qualifying constraints
31 if g_flag[i%K][i/K] != 0:
32 # Add constraints: g_expr
33 if thetaB[i%K][i/K] == 1:
34 m.addConstr(g_expr <= np.spacing(1), \
35 name="qc%d_%d_%d" % (t,k,i))
36 elif thetaB[i%K][i/K] == 0:
37 m.addConstr(g_expr >= -np.spacing(1), \
38 name="qc%d_%d_%d" % (t,k,i))
39 m.update()
40
41
42 #return qualifying constraints to calculate lagrange constraint
43 return qualifying_constraint
44
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45 def add_previous_lagrangian_constraint(m, lagrangian_coefficient,\
46 M, K, N, t):
47 ’’’Add previous linearized lagrangian constraints to model m.
48 ’’’
49
50 #Extract the variables from the model.
51 Q = m.getVarByName("Q")
52 x = [[m.getVarByName("x_%d_%d" % (j,k)) for k in xrange(K)] \
53 for j in xrange(M)]
54
55 #Initialize the constraint.
56 L = gb.LinExpr()
57 for j in xrange(M*K):
58 L.add(x[j/K][j%K] * lagrangian_coefficient[j])
59 L.addConstant(lagrangian_coefficient[-1])
60 m.addConstr(Q >= L, name = "Lagrangian_%d"%t)
61 m.update()
62
63
64 def add_lagrangian_constraint(m, qualifying_constraint, xt, \
65 thetat, thetaB, lam, mu, y, t):
66 ’’’ Add the linearized Lagrangian constraint to model m.
67 The lagrangian is linearized with respect to theta0\
68 and calculated at theta_i
69 ’’’
70
71 (M,N) = np.shape(y)
72 K = np.shape(thetat)[0]
73
74 # Extract the variables from the model
75 Q = m.getVarByName("Q")
76 x = [[m.getVarByName("x_%d_%d" % (j,k)) for k in xrange(K)] \
77 for j in xrange(M)]
78
79 # Initialize the constraint.
80 # The lagrangian constraint is linear in theta
81 L = gb.LinExpr()
82 x0_x = np.dot(xt.T, x)
83 x0_x0 = np.dot(xt.T, xt)
84
85 for i in xrange(N):
86 L0 = np.dot(y[:,i].T, y[:,i])
87 L0 += -np.dot(thetat[:,i], np.dot(x0_x0, thetat[:,i]))
88 L0 += -2 * np.dot( np.dot(y[:,i].T, x), thetat[:,i])
89 L0 += 2 * np.dot(thetat[:,i], np.dot( x0_x, thetat[:,i]))
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90 L.add(L0)
91
92 L.addConstant(-lam[i] * (np.sum(thetat[:,i]) - 1))
93 L.addConstant( -np.dot(mu[:,i].T, thetat[:,i]) )
94
95 for j in xrange(K):
96 L.add( qualifying_constraint[i*K + j] \
97 * (thetaB[j, i] - thetat[j, i]))
98
99 m.addConstr(Q >= L, name = "Lagrangian_%d" % t)

100 m.update()
101
102
103 #Get the coefficients of lagrangian constraints
104 num = L.size()
105 coeff_constant = L.getConstant()
106 coeff = np.zeros((M, K))
107 for index in xrange(num):
108 var_name = L.getVar(index).VarName.encode(’ascii’,’ignore’)
109 indexes = [ind for ind, \
110 ltr in enumerate(var_name) if ltr == ’_’]
111 i = int(var_name[indexes[0] + 1 : indexes[1]])
112 j = int(var_name[indexes[1] + 1 : ])
113 coeff[i][j] += L.getCoeff(index)
114
115 lagrangian_coef = []
116 for i in xrange(M):
117 for j in xrange(K):
118 lagrangian_coef.append(float(coeff[i][j]))
119 lagrangian_coef.append(float(coeff_constant))
120 return lagrangian_coef
121
122
123 def solve_master(tree, num_node, Current_node, g_flag, \
124 thetaB_list, SUBD, coefficients, xBar, thetaOpt, \
125 lamOpt, muOpt, y, cons, iteration, pool=None):
126 ’’’we solve the relaxed master problems based on thetaB_list,
127 then select the infimum of all minimum values.
128 Parameters:
129 About the tree : tree, Current_node
130 About the subproblem: SUBD, xBar, thetaOpt, lamOpt, muOpt, y
131 About the boundary: theta_L, theta_U’’’
132
133 (M, N) = np.shape(y)
134 K = np.shape(xBar[-1])[0]
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135
136 x_stor = None
137 Q_stor = np.inf
138 next_node = -1
139
140 #store all the MLBD
141 MLBD_stor = []
142
143 #store all the MLBD
144 if pool == None:
145 tree.nodes[Current_node].\
146 set_parameters_qualifying_constraint(lamOpt, thetaOpt, \
147 muOpt, xBar, SUBD, g_flag, coefficients)
148 # check whether the coefficients are already stored
149 # into the parents or not.
150
151 print (’\n%d master problems are solving...’ \
152 %len(thetaB_list))
153
154 for index in xrange(len(thetaB_list)):
155 thetaB = thetaB_list[index].copy()
156 status, objVal, xOpt, thetaB, lagrangian_coefficient =\
157 solve_master_s(tree, Current_node, coefficients, \
158 thetaOpt, xBar, lamOpt, muOpt, thetaB.copy(), \
159 y, g_flag, cons)
160 #print objVal, xOpt
161
162 if status == 2 and objVal < SUBD - np.spacing(1):
163 node = tree.add_node(num_node, 0, 1, Current_node)
164 node.set_parameters_thetaB(thetaB, xOpt, \
165 objVal, lagrangian_coefficient)
166 MLBD_stor.append(objVal)
167 if objVal < Q_stor:
168 Q_stor = objVal
169 next_node = num_node
170 x_stor = xOpt
171 num_node = num_node + 1
172
173 else:
174 tree.nodes[Current_node].\
175 set_parameters_qualifying_constraint(lamOpt, thetaOpt,\
176 muOpt, xBar, SUBD, g_flag, coefficients)
177 len_thetaB = len(thetaB_list)
178
179 print (’\n%d master problems are solving...’ %len_thetaB)
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180 results = [pool.apply_async(solve_master_s, args = (tree,\
181 Current_node, coefficients, thetaOpt, xBar, lamOpt, muOpt,\
182 thetaB.copy(), y, g_flag, cons)) for thetaB in thetaB_list]
183
184 #put all the result into the tree.
185 for p in results:
186 #result = [status, objVal, xOpt, thetaB]
187 result = p.get()
188 if result[0] == 2 and result[1] < SUBD - np.spacing(1):
189 node = tree.add_node(num_node, 0, 1, Current_node)
190 node.set_parameters_thetaB(result[3], result[2],\
191 result[1], result[4])
192
193 MLBD_stor.append(result[1])
194 if result[1] < Q_stor:
195 Q_stor = result[1]
196 next_node = num_node
197 x_stor = result[2]
198 num_node += 1
199
200 return x_stor, Q_stor, next_node, num_node, MLBD_stor
201
202 def solve_master_s(tree, Current_node, coefficients, thetaOpt, \
203 xBar, lamOpt, muOpt, thetaB, y, g_flag, cons):
204 ’’’Solve one master problem using Gurobipy’’’
205
206 (M, K) = np.shape(xBar)
207 (M, N) = np.shape(y)
208
209 ################# Create a new model ####################
210 m = gb.Model("master")
211
212 ############### Set optimization parameters #############
213 m.setParam(’OutputFlag’, False)
214
215 ########### Create decision variables ############
216 x = [[0 for k in xrange(K)] for j in xrange(M)]
217 for (j,k) in it.product(range(M), range(K)):
218 x[j][k] = m.addVar(lb=-100, ub=100,
219 vtype=gb.GRB.CONTINUOUS, name="x_%d_%d" % (j,k) )
220
221 # Create the slack variable for the objective
222 Q = m.addVar(lb=-gb.GRB.INFINITY, ub=gb.GRB.INFINITY, name="Q")
223
224 # Integrate decision variables
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225 m.update()
226
227 ################ Create the objective: min_x Q ##############
228 m.setObjective(Q, gb.GRB.MINIMIZE)
229
230 ################# Add constraints ########################
231 # Add the sparsity constraint
232 s = [[2 for k in xrange(K)] for j in xrange(M)]
233 for (j,k) in it.product(range(M), range(K)):
234 s[j][k] = m.addVar(lb=0.0, ub = gb.GRB.INFINITY, \
235 name="s_%d_%d" % (j,k) )
236 m.update()
237
238 for (j,k) in it.product(range(M), range(K)):
239 m.addConstr(x[j][k] <= s[j][k], name="L1ub_s_%d_%d" %(j,k))
240 m.addConstr(x[j][k] >= -s[j][k], name="L1_lb_s_%d_%d"%(j,k))
241
242 obj = gb.LinExpr()
243 for (j,k) in it.product(range(M), range(K)):
244 obj.add(s[j][k])
245 m.addConstr( obj <= cons, name="L1_sum" )
246 m.update()
247
248
249 #Compose the Lagrangian and qualifying constraints
250 identifier = Current_node
251 t = 0
252
253 while identifier != 0:
254 parent = tree.return_parent(identifier)
255 qualifying_constraint= add_qualifying_constraint(m,\
256 tree.nodes[parent].coefficients, M, K, N, \
257 tree.nodes[identifier].thetaB, tree.nodes[parent].g_flag,t)
258 add_previous_lagrangian_constraint(m, \
259 tree.nodes[identifier].lagrangian_coef, M, K, N, t)
260 identifier = parent
261 t += 1
262
263 qualifying_constraint = add_qualifying_constraint \
264 (m, coefficients, M, K, N, thetaB, g_flag, t)
265 lagrangian_coefficient = add_lagrangian_constraint \
266 (m, qualifying_constraint, xBar, thetaOpt, \
267 thetaB, lamOpt, muOpt, y, t)
268
269
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270 ############## Optimize the master problem ################
271 try:
272 m.optimize()
273 except gb.GurobiError as e:
274 print e.message
275
276 ############### Check optimization results #########
277 if m.Status == gb.GRB.OPTIMAL:
278 #Extract to optimal value and the optimum
279 xOpt = np.empty((M, K))
280 for (j, k) in it.product(range(M), range(K)):
281 xOpt[j, k] = round(x[j][k].x, 4)
282
283 return (m.Status, m.objVal, xOpt, \
284 thetaB, lagrangian_coefficient)
285 else:
286 return(m.Status, np.inf, np.nan, \
287 np.nan, lagrangian_coefficient)
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