
Towards Mental Workload Time Series Classification and Interpretation for
Real-Time Feedback in Brain-Computer Interfacing Video Games

By

Shreya Milind Mhalgi

MS Thesis submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

EXAMINED AND APPROVED ON:

12/14/2022
APPROVED BY:

Advisor: Professor Rodica Neamtu, Professor of Teaching

Reader: Professor Erin Solovey, Associate Professor

Professor Craig Shue, Department Head Computer Science Department

Abstract:
One of the important factors contributing to the creation of engaging and pleasurable video game
experiences is immersion. New Brain-Computer Interfaces (BCIs) enable the computer interfaces to
engage with the player’s mind such as detecting the player’s real-time mental status (high/low mental
workload) and using it as a real-time input for an immersive game experience. First, this research aims to
find the most suitable classifier with the objective of classifying high and low mental workload by tuning
numerous machine learning algorithms on the mental workload time series (fNIRS) dataset using our
customized classification tool NaML. Second, this research aims to explore high and low workload
intensity clusters using our novel brain signal exploration tool BrainEx to enhance our understanding of
the dataset. Contributions to this research introduce a dashboard, NeuroHub, which will enable
researchers who do not have an extensive Computer Science or Data Science background to conduct
data parsing, data mining, and machine learning efficiently on the Functional Near-Infrared Spectroscopy
(fNIRS) data. The results from this research lay a foundation for using exploratory insights to improve the
classification of time series brain data.

Keywords: Brain-Computer Interfaces, fNIRS, Machine Learning on time series, cognitive workload, user
experience

2

Acknowledgments

I acknowledge my advisor, Professor Rodica Neamtu, and my reader Professor Erin Solovey, for their
encouragement, patience, and support throughout this research. I am grateful to Alicia Howell-Munson
(Ph.D. student in BCB at WPI), Christopher Micek (Ph.D. student in CS at WPI), and Max Chen (Ph.D.
student in IMGD at WPI) for helping and mentoring me. Lastly, I would like to thank my family and friends
for their constant support and for celebrating every accomplishment along the way with me.

3

Table of Contents

1. Introduction 5

2. Background 6
2.1 Functional Near Infrared Spectroscopy (fNIRS) 6
2.2 Sktime 7
2.3 NirsAutoML (NaML) - a Machine Learning Framework 8
2.4 Machine Learning approaches for BCI classification 9
2.5 BrainEx 10
2.6 Analytic tool for fNIRS 11

3. System Overview - NeuroHub 11

4. Proposed Approach 14
4.1 Dataset 14
4.2 Task Design 14

5. Experimental Evaluation 15

6. Experimental Results and Discussion 16
6.1 Classification using NaML 16
6.2 Cluster Exploration and similar sequence search in BrainEx 18

6.2.1 High Workload Cluster Exploration 19
6.2.2 Low workload cluster exploration 20
6.2.3 Dataset Trends 22

7. Limitations of our existing tools 23
7.1 Duplicates in NaML 23
7.2 Null values in Sktime 24
7.3 Curating the data manually 24

8. Conclusion and Future Work 25

References 26

Appendix 29
A. Preparing the dataset for NaML 29
B. Default parameters of classifiers in NaML 29
C. Results for parameter tuning in NaML for each classifier 31

4

1. Introduction
The amount of mental work that an individual performs compared to the amount of mental work that an
individual is capable of doing is referred to as cognitive load [1]. The cognitive load is connected to task
difficulty which means, increasing task complexity leads to an increase in cognitive load [2]. According to
research in ergonomics, the mental workload may essentially be a measurement of mental activity from
such complex tasks [3]. In some safety-critical operating contexts, one or a few operators may be in
charge of the safety, and even the lives, of a large number of people. For instance, the Aviation Safety
Network recorded 19 incidents with 960 casualties and in most of the cases problems were linked to a
higher mental workload as one of the contributing factors [4][5]. The potential for errors due to higher
workload: thus it necessitates the study of cognitive workload.
Apart from studies in ergonomics and research in other safety-critical contexts, the mental workload is
present in the applications enhancing the usability of interactive systems [14]. Brain-Computer Interfaces
(BCIs) were and continue to be utilized in medical applications [7] but also have applications used for
recreational purposes like brain-controlled installations [8], brain-controlled movies [9], as well as BCI
games [10]. BCI shows the potential of determining the player's current mental state, which may be
utilized as a unique input for an immersive gaming experience.

In computer systems and data visualization, visual embellishments are the design elements that support
the information that needs to be delivered [30]. These embellishments can be typically used to engage
the audience, and reduce emotional response by producing confusion, creating distracting visual artifacts,
and causing the loss of meaningful information. In immersive video gaming experiences, these effects do
not directly affect the gameplay but affect the player’s perception of the game world [31]. Traditionally, this
process of adjusting rendering effects is done carefully by the game development team, while the players
trigger the effects when a certain activity happens. BCI shows the prospect for detecting the player’s
real-time mental status and the game generates personalized content based on the player’s experience
model. Existing BCI games are designed to test a BCI paradigm, which has oversimplified gameplay
mechanics[32]. It is possible to bridge the gap between gameplay mechanics and BCI with the use of
noninvasive technologies like fNIRS.

Declining costs, availability of brain signal datasets, and technological advances in non-intrusive brain
monitoring systems outside clinical settings are promoting research and applications of Brain-Computer
interfaces [11, 12]. The tools available for brain signal analysis are moreover directed toward engineers,
scientists, and technicians where the data is gathered in a controlled experimental setting. Although the
research data analyzed by such a team of experts in experimental settings are the key to discoveries in
BCI, the same practices do not work that well in real-world contexts. Exploring the brain signals with a
data-driven approach to find similar patterns will be valuable in real-world contexts to get a better
understanding of the dataset and discover patterns that might indicate changes in cognitive workload [13].
Our novel web-based, brain data analytics platform - BrainEx [13] is developed with data mining
approaches for interactively exploring similar patterns in large fNIRS datasets and built with a core design
policy “exploration at every stage”.

A hypothetical neuroscientist could be only interested in knowing the final classification output of a time
series (fNIRS) dataset which can be obtained by exploiting some machine learning approaches on that
dataset. Although python toolboxes like sktime [14] have introduced state-of-art libraries for implementing
machine learning algorithms on time series data, neuroscientists will have to spend some time
understanding how to preprocess the data to apply these algorithms to their data and then derive the
required insights. Our customized tool for BCI classification named NaML eases this process of applying

5

machine learning approaches for obtaining classification results without any prior knowledge of Computer
Science or Data Science fundamentals.

BrainEx and NaML are two separate tools hosted in different containers on a server. They both need input
in a specific format, which is provided by preprocessing tools. We introduce our novel tool NeuroHub
which incorporates state-of-the-art tools for brain signal exploration, namely BrainEx and our customized
classification tool named NaML along with the other supporting tools like BCI data parser and data
converter for input format matching. NeuroHub is a web-based interactive dashboard that integrates data
parsing, data exploration, and machine learning tools to facilitate fNIRS research and analysis. This tool
enables the user to access all the tools from a single platform that is equipped with instructions for fNIRS
data processing and it makes NeuroHub efficient and user-friendly.
This research presents a two-fold case study using this novel tool NeuroHub and the contributions to this
research are as follows:

● Training and tuning multiple machine learning algorithms implemented in our customized BCI
classification tool NaML to achieve better classification results on the “fNIRS to Mental Workload
dataset” from Tufts University [15]. The classification results from this experiment have the
potential to improve the BCI-driven mechanics for a real-time video game.

● Using the interactive visualization and sequence similarity exploration tool - BrainEx, this
research aims to discover patterns and similar sequences in the fNIRS to Mental Workload
datasets from Tufts University [15] and then use the exploration to create clusters of high and low
mental workloads. These representative clusters can then be used to gain insights into the
patterns and similarities in the data representing either workload intensity.

2. Background
The two-fold case study proposed in this document utilizes a novel tool NeuroHub that brings
together the tools required for brain signals data parsing, exploration, visualization, and machine
learning that focus on functional near-infrared spectroscopy (fNIRS) research and analysis. This
section provides background on fNIRS, Sktime, NaML, Machine Learning approaches for BCI
classification, BrainEx, and other analytic tools for fNIRS.

2.1 Functional Near Infrared Spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) is a noninvasive form of neuroimaging that provides
multivariate time series data by observing brain activity and measuring the changes in concentration of
micromolar hemoglobin in the brain. These time series represent oxygenated and deoxygenated
hemoglobin. fNIRS is typically gathered using a montage affixed to a cap on the participant’s head for
data measuring brain activity that detects changes in hemoglobin species in the brain via optical
absorption differences [16] at the location where the channel is placed on the head. The montage
consists of multiple channels, detectors, and emitters that use near-infrared light that can penetrate
biological tissues and get absorbed chromophores, such as oxyhemoglobin and deoxyhemoglobin [16].

6

Figure 1. A picture of an fNIRS montage on an fNIRS cap. The montage is the series of red and blue
optodes on top of the helmet/skullcap which is the fNIRS cap.

The oxy-deoxy measures enable researchers to compare brain activity across different regions at the
same time [27]. fNIRS are useful because of their accuracy, non-invasiveness, mobility, and potential for
long-term monitoring [20][13]. Usually, fNIRS datasets are associated with other data that describe sensor
locations, the study participant identifier, demography of the participants, activity during the events, etc
[13][15]. Researchers mainly look for patterns in brain data that reflect a certain cognitive state using
these multivariate time series and the associated data mentioned above. This may be accomplished by
using statistical techniques to detect significant variations between two sets of labeled sequences- high
mental workload and low mental workload. Machine Learning models commonly use such labeled data
for training to predict unknown labels in the future. It is especially difficult to apply the general machine
learning approaches to fNIRS time series brain data since the brain signal waves could have different
lengths and scales. There are, however, more recent prospects for using machine learning algorithms and
performing analytics on brain data.

2.2 Sktime

Sktime [14] provides an open-source unified framework for machine learning on time series data. This is
based on a python library that provides a toolbox that extends current machine learning capabilities to
work with univariate and multivariate time series data. Univariate time-series data refers to a time series
consisting of observations of a single variable recorded in equal time increments[17]. Multivariate data is
composed of several observations gathered over time[18]. Sktime offers a single API for processing any
machine learning time series required and extensive parameter customization for more control over data
analysis. In addition, sktime has numerous features like forecasting and regression. Multivariate time
series data is generated using fNIRS. Measurements from many channels measuring different areas of
the brain are recorded at each time period. Since data points inside a channel must keep both sequence
order and order of values within each sequence, standard machine learning methods are not suitable to
classify fNIRS data. Because of the data's intricacy, a tool like sktime is required. A representation of
fNIRS data can be seen below.

7

Figure 2. The three colored lines represent time series measurements in blood oxygenation variations
seen in three channels. The green highlighted bars represent a five-second interval before and after
the occurrence of an event. There is an overlap between the event periods due to the test framework,
as indicated by the areas of greater opacity green coloring.

Sktime has various functions for time series data, such as forecasting and regression; nevertheless,
this research focuses particularly on time series classification and transformation. A machine learning
classifier uses dataset features as input to identify which class a target feature belongs to. Classifiers
are categorized according to their type composition, dictionary, distance, feature, hybrid, interval,
kernel, and shapelet [14].
Selecting the appropriate classifier for a particular scenario is not an easy task. This is because there
is a rising number of algorithms from various families available and a lack of approaches that may
assist in selecting a certain family of algorithms in advance for a specific type of dataset [19]. Our
customized classification tool- NaML assists to select the best classifier for any particular brain data
and gives the user the ability to change the default parameters such as random_states, n_splits, and
n_jobs to provide better classification metrics.

2.3 NirsAutoML (NaML) - a Machine Learning Framework

A framework developed using React, Django and Postgres is designed to make use of the sktime python
library more efficiently. NaML's user interface is created as a single-page application in React (Figure 3)
and is implemented on a remote server using a Docker container that allows NaML to work in a separate
environment, avoiding conflicts with other tools or services hosted on the same server. NaML is intended
to make better use of the sktime python library and reduce the barrier to entry for researchers by
providing them with more advanced tools for analyzing and interpreting the fNIRS time series data. NaML
has 12 out of 27 sktime classifiers implemented that allow for classification to run on a channel-to-channel
basis using a ColumnConcatenator or a ColumnEnsembleClassifier. ColumnConcatenator can be used to
split multivariate time series data columns and concatenate them into a single univariate channel before

8

applying a classifier to the concatenated data. On the other hand, ColumnEnsembleClassifier works by
applying univariate methods to singular channels/columns rather than concatenating several columns into
a single long univariate variable [20][21]. In the case of NaML, the latter method is preferred since the
ensemble methods maintain the data structure closer to the original format. The following table shows the
classifier families and the classifiers implemented in NaML -

Classifier family Classifiers

Composition ColumnEnsembleClassifer (CEC)

Dictionary-based IndividualBOSS, BOSSEnsemble, ContractableBOSS,
WEASEL, IndividualTDE,

TemporalDictionaryEnsemble

Distance-based KNeighborsClassifier

Interval-based TimeSeriesForestClassifier,
RandomIntervalSpectralForest,

SupervisedTimeSeriesForest

Shapelet-based ShapeletTransformClassifier

Figure 3. NaML user interface that enables the user to run tests using sktime machine learning classifiers.

2.4 Machine Learning approaches for BCI classification

Classification pipelines can be categorized into two parts, hand-designed or learned representations and
cross-subject pipelines that use multiple data sources for the training data [15]. Hand-designed features
refer to the properties derived from the information using various algorithms. The common approach in
BCI classification is feature-then-classify (hand-designed) where the first feature selection stage utilizes
each univariate time series and transforms it into a fixed-size feature vector through the use of

9

manually-designed summary functions like mean, variance, slope, etc. The second classification stage
employs a standard classifier that utilizes the features gathered from stage one. However, recent BCI
makes use of learned features automatically extracted through the Neural Networks models and do not
have to be supplied with hand-crafted features as they are able to learn the best features from the data.
These models are more flexible and overcome the limitations of the common approaches that have a
limited capacity [15][22]. Some other works from the BCI literature focus more on improving
generalization on multiple subjects by utilizing approaches based on contrastive learning [23] and domain
generalization [24].

2.5 BrainEx

BrainEx [13] is a novel visual exploratory tool for brain data that combines brain sensing research with
time series data mining and visualization research to address issues in brain signal analytics, with a
particular emphasis on functional near-infrared spectroscopy (fNIRS) utilized in BCI settings.
Similarity search is widely used in many other applications, for example, search engines and weather
predictions also rely on discovering the most similar sequences given a query. In BCI, finding similar
fNIRS data sequences is an essential step for finding brain signals that may be indicative of a type of
cognitive workload. The BrainEx website interface which the user accesses and is developed in HTML,
CSS, React, and D3.js. The BrainEx Engine Server is developed in Python and usable with Linux OS,
and the RESTAPI preprocesses datasets, performs similarity searches, and clusters data which is
implemented with Django. BrainEx makes use of algorithms that allow for fast exploration of complicated,
large time series data. It is also an easy-to-use visual tool, that allows researchers to do similarity
searches, study feature data and natural grouping, and select sequences of interest for future searches
and exploration.[13]

Figure 4. BrainEx [13] web-based analytic tool displaying 50 similar sequences.

Cluster Exploration: All clusters may be filtered based on the number of sequences in the cluster and the
sequences of equal lengths in each cluster.
Furthermore, the user can select clusters based on the values of specified user-customized properties.
Participant name, event name, and channel name are typical characteristics in brain signal datasets that
can be used to filter the clusters. [13]

10

Similar sequences functionality: The similarity search feature allows the end user to provide a search
query in the form of a time series, and BrainEx checks the representative of each cluster. If a
representative falls under the similarity threshold of the time series used for the query, our system will
query every other time series within that cluster to determine the similarity between them. In the end,
BrainEx returns comparable sequences from the dataset. [13]

2.6 Analytic tool for fNIRS

A lot of specialized tools such as HomER, NIRS-KIT, and Turbo Satori [25-27] have been developed for
fNIRS brain data analysis. HomER is a MATLAB-based graphical user interface application that supports
concepts like generic linear modeling and enables easy visual interactions with the fNIRS data. Usually, in
neuroscience experiments, the stimuli have precisely timed onsets and are of the same length. HomER
works on these assumptions from the experimental settings which is restrictive for a lot of real-world
applications. with a requirement that stimuli have perfectly timed onsets and are all the same length
[13][25]. NIRS-KIT is another offline, MATLAB toolbox used for analysis that enables researchers to
analyze resting-state fNIRS data. It also supports task-driven data similar to HomER [26]. In general, both
of these tools support numerous filtering and signal processing techniques along with the calculation of
oxy-deoxy hemoglobin. Turbo Satori on the other hand is a real-time analytics software that includes most
of the features of the other two tools but offers real-time visualization and classification of brain signals
[27]. All of these tools are useful and frequently employed in specific use cases, but they are all intended
for researchers with specialized knowledge. Making brain data exploration less tedious is especially
important today, to enable more robust analysis across larger datasets collected in various contexts so
that researchers may examine brain signal data collected by other researchers to be able to gain valuable
insights across diverse contexts. However, there are not many tools available that allow you to browse the
relationships and structures inside fNIRS datasets or to get a general understanding of the same.
However, our novel brain signals exploration tool BrainEx overcomes these limitations.

3. System Overview - NeuroHub

The NeuroHub dashboard is a web-based tool created to facilitate data parsing, data exploration, and
machine learning on the fNIRS data. In Software Engineering terms, Neurohub is a frontend/user
interface built in ReactJS and utilizes Rest API through the Node.js(Express.js) server, for the BCI Data
Parser and format matcher scripts.
NeuroHub is an interactive platform along with some instruction and feedback that currently provides a
gateway to access BCI Data Parser, BrainEx, NaML, an input format converter with just a button click,
and directions to use the MATLAB GUI for raw data processing.
The following workflow represents two pipelines of NeuroHub that enables data processing on the data
collected at WPI and also any public datasets. Steps 1 and 2 are data collection steps and steps 3,4,5
represent preprocessing and exploration/classification steps. The use of raw data workflow for the
NeuroHub is designed considering the brain data collection process in WPI’s BCI lab. NeuroHub focuses
on steps 3,4 for raw data processing (figure 5).

11

Figure 5. NeuroHub workflow shows the processing of raw and preprocessed data

BCI Data Parser, MATLAB GUI, BrainEx, and NaML function independently. However, the inputs for
BrainEx and NaML are dependent on the output from MATLAB GUI. And the MATLAB GUI takes the
parsed data files uploaded to the database by the BCI Data parser as input. All of these components were
not integrated and required manual intervention and monitoring at every stage. The NeuroHub dashboard
is created to integrate this workflow, minimize manual intervention and make all the tools easily
accessible.

Figure 6. Screen 1 of the NeuroHub User Interface, hosted locally. This image displays the steps
represented as ‘Raw Data Processing’ in the workflow above

If researchers are working on a publicly available dataset or already have preprocessed data and are
solely interested in conducting some similarity search and classification with BrainEx and NaML,
NeuroHub has a feature to make this easier. NeuroHub also allows working with open access/public

12

datasets/preprocessed data with its input format conversion feature. Other datasets may require
conversion into a tool-friendly format specifically for using BrainEx and/or NaML.
For instance, NaML requires datasets to include at least one value column and five feature columns.
Name, event, channel, start time, and finish time are the feature columns in sequence. When identifying
rows, NaML is solely concerned with different start timings, thus as long as the chunks begin at different
times, the dataset will be appropriately structured. The value columns are a set of columns sorted
chronologically that show the measurement of variations in micromolar hemoglobin in that place at that
time.

Figure 7: An example dataset used with NaML demonstrating the required feature columns and a subset
of value columns. This dataset is from the “fNIRS to Mental Workload” datasets from Tufts University [15]

NeuroHub offers a format conversion feature available via a button click for this purpose, which is used to
package the data for usage by these tools (BrainEx/NaML). NeuroHub’s input format converter is a
python script integrated with a REST API call to the script from the Node.js backend.

Figure 8. Screen 2 of the NeuroHub User Interface. This image displays step 2 from ‘Preprocessed data’
from the workflow above and the gateway to data exploration and machine learning components.

13

4. Proposed Approach

4.1 Dataset

fNIRS to Mental Workload dataset [15], an open-access dataset from the researchers at Tufts University
will be used for this project. The dataset consists of brain activity recordings from 68 healthy participants
(no reported neurological, psychiatric, or other brain-related diseases that might affect the result), during a
series of controlled n-back experimental tasks designed to induce working memory workloads of varying
relative intensity. The dataset intended for benchmark classifiers can be used to distinguish between high
and low mental workloads with higher accuracy. There are two versions of the data available namely, raw
and preprocessed. This research plans to use the preprocessed slide window data which is offered in
window sizes and timestamps of 10/15/50/100/150/200 and 2/5/10/20/30/40 seconds respectively. The
window stride of the sliding window is given as 3. The readings for each subject in the trial, with a
sequence time of five seconds and sequence length of 25 measurements. This provides 2143 evenly
distributed events across four labels, 0, 1, 2, and 3. This dataset comprised 10 columns, eight of which
were permutations of the brain region, measurement type, and blood oxygenation concentration of
interest. These correspond to various channels in the available NaML datasets. The following columns
are chunk and labeled. A NaML dataset's label column correlates to the event column. Chunk denotes a
series, and the sequence length is 25. The readings for each channel are appended as a new column for
each chunk of 25 rows, and the chunk number leads to the generation of start and end timings.

Figure 9. Screenshot of de-identified data sample [15]

4.2 Task Design

A set of 40 numbers appeared on the screen, one after another. Some of the numbers were targets. For a
1-back task, a number is only a target if it is identical to the number 1 step back. The participants were
asked to press the left arrow key for all the targets and the right arrow key for all the non-targets. To
identify the correct target numbers, the participants had to remember the numbers that were n-steps
back, which induces a mental workload in the working memory. The following figure represents a 2-back
task inducing a low mental workload. Green cards represent targets, and the rest represent non-targets.

Figure 10. Representation of mental workload inducing 2-back task [15]

14

A total of 16 rounds were conducted to complete n-back tasks where n could be either 0,1,2 or 3 and
before each round, the participants were given instructions to find the target numbers for the current n.
The mental workload induced on the participants increases with n (0,1,2,3).

In the experiment conducted by z. Huang et. al [15], for each subject, the data collected during the tasks
produces fNIRS recordings lasting over 20 minutes. Researchers in [15] used a sliding window approach
to extract the exact duration windows from the n-back tasks. Z. Huang et al. extracted overlapping
windows with a stride of 0.6 seconds with regular predictions every 0.6 seconds. Classifiers such as
Logistic Regression, Deep ConvNet, and EEG Net were used with hyperparameters and tested for
fixed-duration multivariate time series windows such that each classifier consumes an fNIRS window and
each n-back was assigned to 1 split.
Conclusions from their experiments suggest that the 30-second window combined with the generic
paradigm for training data gives better accuracy.

According to Z. Huang et al.,[15] the generic paradigm for training the classifier that uses the available
labeled fNIRS recordings is dividing all the subjects into 17 buckets of four subjects each. And from these
17 buckets, 17 train/test splits were formed with each split using one bucket of subjects for the test and all
the other buckets combined to form a training data size of 64 subjects (out of a total of 68 subjects). The
training dataset was then randomly split into 75% training and 25% validation datasets. It was observed
that this generic paradigm for training the classifier outperformed the other two subject-specific and
fine-tuning paradigms. Below is the description of the other two paradigms used and evaluated by Z.
Huang et al.[15] -
1: Subject-Specific: In the process of finding the best classifier, [15] used only one participant’s data for
model training and no data from the other subjects. This paradigm trains a separate model for each
subject and each hyperparameter.
2: Generic + Fine-tuning: This paradigm aims to leverage both sources of training the model by first
pre-training the model on a large generic pool and then fine-tuning it on the target subject. The model that
has the best validation accuracy is selected to fine-tune the target subject data.[15]

5. Experimental Evaluation

The research question presented in this document is a two-part case study in which first we aim to find
the most suitable classifiers for a well-known dataset by running a comparative study of multiple
classifiers and then tuning their parameters to improve their performance, with the goal of finding high
workload vs low workload. Second, I use BrainEx to deepen our understanding of the dataset, by finding
clusters with the highest number of high and low workloads and exploring the metadata associated with
these sequences. To conduct this two-fold case study, I will use our novel tool NeuroHub to find the
classifier that best classifies high/low mental workload (NaML) and explore the mental workload dataset
[15] using the sequence similarity exploration tool (BrainEx).
Part one of this case study aims to improve the cross-subject generalization for classifying high mental
workload (2-back task) and low mental workload (0-back task) from the mental workload dataset by
utilizing the Sktime machine learning libraries implemented in NaML. According to the experiment by Z.
Huang et al.,[15], the thirty-second window with the generic paradigm (Task Design section 4.2) gave the
best classification results with the classifiers they used. In this research, I will train the initial pass on the
30-second window dataset across all the subjects using the default parameters of the classifiers. Based
on the classification results from the first pass, I will tune the parameters like max_ensemble_size for the
BOSSEnsemble classifier and n_estimators for the TimeSeriesForestClassifier [28], to analyze the

15

performance of the top three best-performing classifiers with the changed parameters. In this multivariate
time series dataset, the goal of part one of this experiment is to find which classification models work the
best for classifying cognitive workloads with the highest accuracy.
The second part of the case study will use cluster exploration and similarity search to find the clusters that
have the sequences with the highest workload and lowest workloads. This data will be further analyzed to
gain some insights into the data representing high or low workload intensity. To do so, I will utilize our
novel exploratory tool BrainEx for clustering the sequences having a high concentration of events (high
mental workload). Next, I will select the clusters to obtain the sequences across participants such that
several clusters will have the highest number of sequences with a high workload, and another set of
clusters will have the highest number of sequences with a low workload. These subsets of data
containing clusters with high and low mental workloads will be used to explore the mental workload
dataset[15] and discover the patterns in high and low mental workloads.

6. Experimental Results and Discussion

6.1 Classification using NaML

Workload classification on the 30-sec sliding window mental workload dataset [15] was started by running
all the Sktime classifiers implemented in NaML on this dataset using the default parameters (Appendix
section B). The preliminary results indicated Shapelet Transform as the best performer.
ShapeletTransform(69.67%), TimeSeriesForest (67.1%)TemporalDictionaryEnsemble(66.18%) are the
classifiers that performed better than the other classifiers while using the default parameters. Out of the
three best classifiers, ShapeletTransform returned a higher accuracy of approximately 70%. According to
L Ye et al., the Shapelet Classifier can perform well on binary data, since classification with a shapelet
and its corresponding split point produces a binary decision [29]. The mental workload dataset in this
experiment produces binary results (a low (0-back) or a high (2-back) mental workload) and that could be
a reason why the Shapelet Classifier performed well on this data.

Figure 11. Out of the six dictionary-based
classifiers implemented in NaML,
TemporalDictionaryEnsemble gave the highest
accuracy of 66.18%

Figure 12. Of the three interval-based classifiers
implemented in NaML, TimeSeriesForestClassifier
achieved the highest accuracy of 67.1% with the
default parameters.

16

Figure 13. ShapeletTransform is the only classifier
from the Shapelet family implemented in NaML
which gave the best results for the iteration of
workload classification. Accuracy = 69.67%

Figure 14. KNeighborsTimeSeriesClassifier is the
only classifier from the distance-based family,
implemented in NaML.

Further, in phase 2, better classification results were achieved by tuning the parameters of each of these
sktime classifiers implemented in NaML. Since the NaML GUI does not have support for running
classifiers with parameters other than the default ones, I used config files to run the classifiers on the
NaML backend. A config file is a JSON file used to run NaML jobs. Although NaML GUI does not provide
support for parameter tuning yet, the NaML server still makes it convenient to work with time series
classification. The NaML server is equipped with standardized reformatting scripts which enable
researchers to classify any balanced time series brain data using Sktime classifiers. Figure 15 shows a
sample config file used for running TimeSeriesForestClassifier on the NaML backend.

Figure 15. TimeSeriesForest Config file enables users to tune the parameters such as n_estimators,
n_jobs, and random_state to achieve a better model performance on classification

In the phase 2 classification with parameters tuning (Appendix section C), the shapelet classifier along
with the interval-based sktime classifiers - TimeSeriesForest classifier (TSF), and
SupervisedTimeSeriesForest classifier (STSF), gave a better classification accuracy compared to the first
iteration. TSF was found to be the best performer after tuning the parameters, resulting in
workload-intensity classification accuracy of 73.71%. TSF combines the advantage of calculating
temporal features over time series intervals, random feature sampling and uses Entrance (entropy and
distance) gain measures to evaluate high-quality splits. This makes the algorithm robust to handle the
distortion of the time axis and has a complexity of linear time in the time series length [33].
Comparing the results from phase 2 (parameter tuning iteration) of mental workload classification, with
the results from the experiments of Z. Huang et al., on a large pool of participants, the forest classifiers
beat all the other classifiers. Z. Huang et al. did not use any Sktime classifiers in their experiments.
However, among the classifiers used - Logistic Regression (LR), Random Forest (RF), Deep ConvNet,
and EEGNet, RF achieved the highest accuracy of 72% on a dataset of size 64 participants [15]. For this
research, I used all the Sktime classifiers implemented in NaML toward mental workload classification on

17

a pool of 68 participants. As shown in Figure 11, interval-based and shapelet-based families had better
average accuracy than all the other classifier families implemented in NaML. Among the interval-based
classifiers, TimeSeriesForestClassifier and SupervisedTimeSeriesForest resulted in an average of 72%
accuracy for certain parameters in the algorithm and the ShapeletTramsform classifier from the
shapelet-based family resulted in a higher accuracy of 70.9% after tuning the parameters. N_estimators
for TSF and STSF and n_shapelet_samples for ShapeletTransform were the parameters impacting the
classifier accuracy. Results after tuning the parameters for each of these Sktime classifiers are shown in
the chart below -

Figure 11. The highest and the average accuracy
with Sktime classification in this research on a pool

of 68 participants following the usual 75-25
train-test split.

Figure 12. The average accuracy with non-Sktime
algorithms from the experiments of Z. Huang et

al., with the generic paradigm (Task Design
section 4.2) on a pool of 64 participants.

Although Sktime provides state-of-art libraries for time series classification, there is nevertheless a lot of
preprocessing of fNIRS brain data required before using the dataset with the classifiers (Sktime libraries).
For instance, the NaML server reorders the channels, drops excess columns, and applies the
from_long_to_nested function to the dataset, so the table goes from long to nested and returns a
sktime-formatted dataset with individual dimensions represented by columns of the output data frame. In
addition, the NaML server can also validate the dataset for any null values/missing values that prevent
errors and unreliable results. These features of the NaML server let the user run a classifier on a brain
signals dataset (fNIRS) without concern for the Sktime-formatting. With these features, using NaML can
help to make the classification task uncomplicated and encourage researchers to focus more on the
areas like finding the parameters affecting the model generalization on brain data.
From the second iteration and the comparative study of Sktime classification with the results of Z. Huang
et al, we can conclude that forest classifiers perform well on this data. I was able to achieve these
comparative results in the second iteration of classification after tuning the parameters, which also led to
the determination of hyperparameters for the top three winner classifiers. Gaining insights into the data
can, however, help improve the accuracy of the model.

6.2 Cluster Exploration and similar sequence search in BrainEx

For the second part of the case study, For the second part of the case study, I utilized our novel
exploratory tool BrainEx [13] to find the clusters with the highest number of high workloads and low
workloads sequences. To investigate the patterns in the dataset that might give some insights into the
workload classification, I used the same 30-sec window dataset for cluster exploration and similarity
sequence search in BrainEx.

18

6.2.1 High Workload Cluster Exploration
To find the patterns in the sequences representing high workload, I explored clusters that had a larger
number of event 2 sequences. These were found in clusters of sizes ranging from 10 to 500. I explored all
the clusters of variable sequence length but having a percentage of high workload event sequences
greater than 66% (Refer to Figure 13). All the larger clusters had a 50-50 distribution of event 0 and event
2 sequences not making the cluster high/low workload cluster (Refer to Figure 14). The high workload
clusters contained sequences either from sub_86 or sub_91. For a large pool of 68 participants like this, a
cluster could have more participants involved in the high workload representation. However, sequences
only from two participants over a variety of clusters might indicate that a smaller cluster size could be
directly proportional to the association of lesser participants in the cluster. Furthermore, it was found that
the majority of the sequences in these clusters came from the CD_PHI_DO channel (with majority event 2
labels) while there were a few from CD_PHI_O (Refer to Figure 16).

Figure 13. Representing BrainEx cluster explorer, filtering the clusters with size set between 10-500 on
the left and displaying the clusters grouped by the sequence length and the class label (event 0/event 2)

on the right. The representative shape for the selected cluster suggests that the cluster contains
sequences having a similar shape.

19

Figure 14. This image shows that the larger clusters are not representative of either of the workloads
(event 0/ event 2).

Figure 15. Results from a high workload cluster representing subjects, events, and channels

6.2.2 Low workload cluster exploration
To find the patterns in the sequences representing high workload, I explored clusters that had a larger
number of event 0 sequences. These were found in the cluster size range of 10 to 1500 and 50 to 2000.
For low workload, I explored all the clusters of variable sequence length but had a percentage of low
workload event sequences greater than 74%. The low workload representative clusters were larger

20

compared to the event 2 clusters. These low workload clusters have a large number of sequences from
sub_52, however, there are also sequences from sub_13, sub_49, sub_58, sub_75, sub_86, and sub_91
(Refer to Figure 15). The tendency in the low workload clusters is that the channels and the labels are
common across all the clusters. Figure 16 portrays channels and labels for each subject that appeared in
the low workload cluster.

Figure 16. Results from a low workload cluster representing subjects, events, and channels

Low workload clusters had sequences from sub_86 and sub_91 however, a larger number of sequences
were from the channel CD_PHI_O. Interestingly, a pattern was found in the number of oxygenated
hemoglobin (oxy) and deoxygenated hemoglobin (deoxy) sequences in the clusters. For larger low
workload clusters (size = 72 and sequences from a couple of subjects), there were 52 oxy sequences and
20 deoxy sequences. And for smaller low workload clusters (size = 28 and sequences from only two
subjects 86, 91), there were 19 oxy sequences and 9 deoxy sequences. Another trend in the low
workload clusters was observed- though the smaller clusters of event 0 consisted of sequences only from
sub_91 and sub_86, most of the sequences were from the CD_PHI_O channel and the ones from
CD_PHI_DO were labeled event 0 (Refer to figure 18). This is contrary to the pattern from the high
workload clusters where almost all the sequences from sub_86 and sub_91 are deoxy from the channel
CD_PHI_DO.

21

Figure 17. This image shows the distribution of sequences over the channels and participants in a
low-workload cluster of size 72.

Figure 18. Represents the trend in the event of 0 clusters of smaller size (cluster size = 28)

6.2.3 Dataset Trends
The mental workload dataset [15] used in this research is limited in terms of racial diversity. Results from
the experiments of Z. Huang et al. suggest that a model trained on a dataset consisting of diverse racial
groups can generalize well compared to the models trained on homogenous data. Gaining inspiration
from these findings, I connected the demography of the participants in either workload cluster. It was
observed that the participants representing high workload clusters in this dataset belonged to the white
racial group while most of the participants representing low mental workload in this dataset were Asian.
The table below shows the racial origins of the participants from the respective intensity cluster.

22

High workload clusters Low workload clusters

Sub_91: White female
Sub_86: White male

Sub_91: White female
Sub_86: White male
Sub_75: Asian male
Sub_58: Hawaiian

Sub_52: Asian male
Sub_49: Asian male

Sub_13: Asian female

Figure 19. Racial distribution in the pool of 68
participants [15]

Results from the BrainEx exploration has sequences from only two participants in the high-workload
clusters, while the clusters representing low-workload intensity had sequences only from seven
participants. These sequences have similarities in channels and oxy/deoxy levels and establish that
further investigation on a larger and less skewed dataset might give some promising results which might
be effective toward workload classification. Also, the fact that the original data of 68 participants were
skewed on the White and Asian population might be impacting cluster exploration and the link with
demographics. Since these sequences representing workload intensities have only a few subjects from a
pool of 68 participants, the link between demography and workload representation is also non-conclusive
and needs further investigation.

7. Limitations of our existing tools
To benefit from the insights from BrainEx, I attempted to merge the low and high workload clusters. The
clusters obtained through cluster exploration in BrainEx were small compared to the pool of participants.
However, these clusters were representatives of the two workload intensities. Using the data from the
respective clusters, we are removing the sequences that are not representative of the intensities. With
such data, we can expect to get a better classification performance. However, in the process of using the
data from BrainEx in NaML, the following limitations were encountered -

7.1 Duplicates in NaML

The first two sequences in figure 20 are from the same subject with the same event label, same channel,
and different start times. This is a file exported from BrainEx, and it represents one of the low-workload
clusters. It is interesting to note that for sub_49 the signals coming from channel AB_I_O were prominent,
having the start times in a similar range. It is also important to note that, BrainEx chunks the sequences
into sub-sequences, and that is the reason we get sequences and clusters of all lengths. These two
signals could be sub-sequence of the same sequence from the master dataset, however, they are
representing two different time series of the same length in the low-workload cluster. While the first five
columns of these series are the same, the two columns relevant to BrainEx - Start Index (start index is a
starting point relative to the sequence) and End Index are different. Although these series are not
duplicates, NaML catches those as duplicates with respect to the first five columns. One way to address
this problem can be by removing one of the entries manually. But there can be multiple such sequences

23

and removing all of them to get rid of the null value error will lead to significant data loss. Another way to
address this problem can be jittering the start time values - manually adding the value of the start index
to the start time. Modifying the start times is one of the ways to deal with this problem but moreover, it is
an adjustment to make this data work in NaML and not a solution to this problem.

Figure 20. A screenshot of the data from a low-workload cluster CSV file exported from BrainEx.

7.2 Null values in Sktime

The last two sequences in figure 20 are from sub_52, and the sequences above those are from sub_49.
Here, the signals from sub_52 are coming from 2 channels - AB_I_DO and CD_I_O. However, all the
signals for sub_49 are from AB_I_O. All the sequences for sub_49 are 2 and all the labels for sub_52 are
0. So, again we have some interesting outcomes from the cluster exploration BrainEx. Looking only at this
low-workload cluster, we observe that 0 & 2 event signals are from different channels which could be a
valuable insight into the workload intensities. While attempting to classify this in NaML, Sktime is
assuming null values for the channels not having any data for that subject in that range of time. There can
be an adjustment to include the sequences from other channels in this dataset. And we can do this by
adding the sequences from the master dataset to this dataset.

7.3 Curating the data manually

The data exported from BrainEx cannot be used in NaML directly due to the stated limitations. However,
in order to make this data work NaML needs these manual adjustments. Reducing the task of curating the
data manually needs further investigation.

24

8. Conclusion and Future Work
This research builds a foundation for using exploratory insights with machine learning models to improve
classification accuracy on brain data. Using state-of-art libraries such as Sktime makes machine learning
on time series data efficient, especially for researchers without a background in Computer Science or
Data Science. Tuning parameters is worth spending time since it has the potential to improve the
classifier performance and can lead to the determination of hyperparameters for the classifiers. Finally,
insights from sequence metadata have the potential to improve model generalization by using the data
from BrainEx in NaML and running classification iterations on this dataset.
In this research, I used the 30-sec slide window data for the classification as well as cluster exploration.
The classification results were compared with the results from the researchers of Tufts University [15]
after parameter tuning. Although this 30-sec slide window data had a large pool of 68 participants, the
clusters obtained after cluster exploration were quite small and also had fewer participants in comparison
to the pool. Second, this benchmark dataset had the limitation of being skewed on two racial groups
which are influential for the behavior of the classifiers. Hence, using a large balanced dataset for cluster
exploration & classification is worth considering for future research.
This research used all the 12 Sktime classifiers implemented in NaML. an avenue for future work would
be to expand NaML to include the other Sktime classifiers. This will expose the researchers to more
classifiers to test their data and might get better classification models in the process.
In an attempt to improve the model generalization, this study met some limitations related to the tools,
especially in the area of data exported from BrainEx to NaML. Finding solutions to the problems (#
Limitations 1, 2) and figuring out a way to use the BrainEx insights into NaML has the potential to
introduce new perspectives to time series classification.

25

References

[1] Parasuraman, R., Sheridan, T. B., and Wickens, C. (2008). Situation awareness, mental workload, and
trust in automation: viable, empirically supported cognitive engineering constructs. J. Cogn. Eng. Decis.
Mak. 2, 140–160. DOI: 10.1518/155534308x284417

[2] McKendrick R and Harwood A (2019) Cognitive Workload and Workload Transitions Elicit Curvilinear
Hemodynamics During Spatial Working Memory. Front. Hum. Neurosci. 13:405. DOI:
10.3389/fnhum.2019.00405

[3] Babiloni, F. (2019). Mental Workload Monitoring: New Perspectives from Neuroscience. In: Longo, L.,
Leva, M. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2019.
Communications in Computer and Information Science, vol 1107Springer, Cham.
https://doi.org/10.1007/978-3-030-32423-0_1

[4] Arico, P., et al.: Human factors and neurophysiological metrics in air traffic control: a critical review.
IEEE Rev. Biomed. Eng. PP(99), 1 (2017)

[5] Borghini, G., Aricò, P., Di Flumeri, G., Babiloni, F.: Industrial Neuroscience in Aviation: Evaluation of
Mental States in Aviation Personnel. BIOSYSROB, vol. 18. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58598-7

[6] Longo L. Experienced mental workload, perception of usability, their interaction and impact on task
performance. PLoS One. 2018 Aug 1;13(8):e0199661. DOI: 10.1371/journal.pone.0199661. PMID:
30067747; PMCID: PMC6070185.

[7] Y. Yu et al., "FlyingBuddy2: a brain-controlled assistant for the handicapped," presented at the
Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, Pennsylvania, 2012.
[Online]. Available: https://doi.org/10.1145/2370216.2370359.

[8] Z. Chen et al., "Paint with Your Mind: Designing EEG-based Interactive Installation for Traditional
Chinese Artworks," presented at the Proceedings of the Fifteenth International Conference on Tangible,
Embedded, and Embodied Interaction, Salzburg, Austria, 2021. [Online]. Available:
https://doi.org/10.1145/3430524.3442455.

[9] R. Ramchurn, S. Martindale, M. L. Wilson, and S. Benford, "From Director’s Cut to User’s Cut: to
Watch a Brain-Controlled Film is to Edit it," presented at the Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, 2019.

[10] D. Marshall, D. Coyle, S. Wilson, and M. Callaghan, "Games, Gameplay, and BCI: The State of the
Art," IEEE Transactions on Computational Intelligence and AI in Games, vol. 5, no. 2, pp. 82-99, 2013,
DOI: 10.1109/tciaig.2013.2263555.

[11] M Ferrari and V Quaresima. 2012. A brief review on the history of human functional near-infrared
spectroscopy (fNIRS) development and fields of application. NeuroImage 63 (2012), 921–935

26

https://doi.org/10.1007/978-3-030-32423-0_1
https://doi.org/10.1007/978-3-319-58598-7
https://doi.org/10.1145/2370216.2370359
https://doi.org/10.1145/3430524.3442455

[12] Erin T. Solovey and Felix Putze. 2021. Improving HCI with Brain Input: Review, Trends, and Outlook.
Now Publishers Inc

[13] Alicia Howell-Munson, Christopher Micek, Ziheng Li, Michael Clements, Andrew C. Nolan, Jackson
Powell, Erin T. Solovey, and Rodica Neamtu. 2022. BrainEx: Interactive Visual Exploration and Discovery
of Sequence Similarity in Brain Signals. Proc. ACM Hum.-Comput. Interact. 6, EICS, Article 162 (June
2022), 41 pages. https://doi.org/10.1145/3534516

[14] Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., & Király, F. J. (2019). sktime: a unified
interface for Machine Learning with Time Series. LearningSys.

[15] Zhe Huang, Liang Wang, Giles Blaney, Christopher Slaughter, Devon McKeon, Ziyu Zhou, Robert J.
K. Jacob1, and Michael C. Hughes, “The Tufts fNIRS Mental Workload Dataset & Benchmark for
Brain-Computer Interfaces that Generalize”.

[16] Chen, W., Wagner, J., Heugel, N., Sugar, J., Lee, Y., Conant, L., Malloy, M., Heffernan, J., Quirk, B.,
Zinos, A., Beardsley, S. A., Prost, R., & Whelan, H. T. (2019). Functional Near-Infrared Spectroscopy and
Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Frontiers in
Neuroscience. https://doi.org/10.3389/fnins.2020.00724

[17] “6.4.4 Univariate Time Series Models”, “Engineering Statistics Handbook” nist.gov/

[18] Beeram, S.R., Kuchibhotla, S. (2021). Time Series Analysis on Univariate and Multivariate Variables:
A Comprehensive Survey. In: Satapathy, S.C., Bhateja, V., Ramakrishna Murty, M., Gia Nhu, N., Jayasri
Kotti (eds) Communication Software and Networks. Lecture Notes in Networks and Systems, vol 134.
Springer, Singapore. https://doi.org/10.1007/978-981-15-5397-4_13

[19] Laura Morán-Fernández, Verónica Bólon-Canedo, Amparo Alonso-Betanzos, How important is data
quality? Best classifiers vs best features, Neurocomputing, Volume 470, 2022, Pages 365-375, ISSN
0925-2312, https://doi.org/10.1016/j.neucom.2021.05.107.

[20] Ikram, F. (2019). NirsAutoML: Building an automated classification platform for fNIRS data. :
Worcester Polytechnic Institute.

[21] Buntel, E. (2020). Brain Wave Analysis. : Worcester Polytechnic Institute.

[22] Zabihi, Morteza & Ince, Turker & Kiranyaz, Serkan & Gabbouj, Moncef. (2017). Learned vs.
Hand-Designed Features for ECG Beat Classification: A Comprehensive Study.
10.1007/978-981-10-5122-7_138.

[23] Y. Cheng, H. Goh, K. Dogrusoz, O. Tuzel, and E. Azemi. Subject-aware contrastive learning for
biosignals. arXiv preprint arXiv:2007.04871, 2020

[24] K. Han and J.-H. Jeong. Domain Generalization for Session-Independent Brain-Computer Interface.
arXiv:2012.03533 [cs], 2020. http://arxiv.org/abs/2012.03533.

[25] Theodore J Huppert, Solomon G Diamond, Maria A Franceschini, and David A Boas. 2009. HomER:
a review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied optics 48, 10
(April 2009), D280—98. https://doi.org/10.1364/ao.48.00d280

27

https://doi.org/10.3389/fnins.2020.00724
https://doi.org/10.1007/978-981-15-5397-4_13
https://doi.org/10.1016/j.neucom.2021.05.107
http://arxiv.org/abs/2012.03533

[26] Xin Hou, Zong Zhang, Chen Zhao, Lian Duan, Yilong Gong, Zheng Li, and Chaozhe Zhu. 2021.
NIRS-KIT: a MATLAB toolbox for both resting-state and task fNIRS data analysis. Neurophotonics 8, 1
(January 2021), 010802. https: //doi.org/10.1117/1.nph.8.1.010802

[27] Michael Lührs and Rainer Goebel. 2017. Turbo-Satori: a neurofeedback and brain–computer
interface toolbox for real-time functional near-infrared spectroscopy. Neurophotonics 4, 4 (2017), 041504.

[28] Welcome to Sktime, https://www.sktime.org/en/stable/

[29] Lexiang Ye and Eamonn Keogh. 2009. Time series shapelets: a new primitive for data mining. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD '09). Association for Computing Machinery, New York, NY, USA, 947–956.
https://doi.org/10.1145/1557019.1557122

[30] Hicks, K., Gerling, K., Dickinson, P. and Vanden Abeele, V. Juicy game design: Understanding the
impact of visual embellishments on player experience. City, 2019

[31] Hunicke, R., LeBlanc, M. and Zubek, R. MDA: A formal approach to game design and game
research. City, 2004.

[32] Marshall, D., Coyle, D., Wilson, S. and Callaghan, M. Games, Gameplay, and BCI: The State of the
Art. IEEE Transactions on Computational Intelligence and AI in Games, 5, 2 (2013), 82-99.

[33] Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A Time Series Forest for Classification and
Feature Extraction. arXiv. https://doi.org/10.48550/arXiv.1302.2277

[34] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover,
Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2013. Addressing big data time series: Mining trillions of
time series subsequences under dynamic time warping. ACM Transactions on Knowledge Discovery from
Data (TKDD) 7, 3 (2013), 1–31.

[35] Link to NeuroHub github repo: https://github.com/WPIHCILab/NeuroHub/tree/version1_code

28

https://www.sktime.org/en/stable/
https://doi.org/10.1145/1557019.1557122
https://doi.org/10.48550/arXiv.1302.2277
https://github.com/WPIHCILab/NeuroHub/tree/version1_code

Appendix

A. Preparing the dataset for NaML

In this study, I used the preprocessed 30-sec sliding window dataset for classification and exploration
tasks. This section discusses the step that needs to be completed to make the dataset Sktime and NaML
compatible. NeuroHub has a format converter feature for using open-source datasets with BrainEx and
NaML. The script accesses a directory on the machine to combine and reformat the required CSVs. The
directory path can be changed according to the location. However, the compatible "NaMLCompatible.csv"
file gets downloaded under /downloads on the user's machine. This file can be uploaded to NaML for the
classification task.

B. Default parameters of classifiers in NaML

This section shows the classifiers implemented in NaML grouped by their classifier families with their
default parameters and classification results from the phase 1 classification of this study.

B.1. Dictionary-based classifiers
For time series classification, dictionary-based methods modify the bag of words paradigm,
which is frequently used in signal processing, computer vision, and audio processing. A series is
traversed by a sliding window of varying length. The real-valued series of length for each
window is turned into a symbolic string of length consisting of potential letters using
approximation and discretization procedures. Each occurrence of each 'word' from the dictionary
in a series is counted, and after the sliding window is complete, the series is turned into a
histogram. The histograms of the words derived from the series, rather than the raw data, are
used for classification [28].

BOSSEnsemble ContractableBOSS IndividualBOSS

threshold:0.92
max_ensemble: 500
max_win_len_prop: 1
min_window: 10
random_state: 0
n_jobs: 1
column: 0

Accuracy: 62.13%

n_parameter_samples: 250
max_ensemble_size: 50
max_win_len_prop: 1
min_window: 10
time_limit_in_minutes: 0
save_train_predictions: False
n_jobs: 1
random_state: 0
column: 0

Accuracy: 56.99%

window_size: 10
word_length: 8
norm: False
alphabet_size: 4
save_words: True
n_jobs: 1
random_state: 0
column: 0

Accuracy: 53.49%

IndividualTDE TemporalDictionaryEnsemble WEASEL

window_size: 10
word_length: 8
norm: False
levels: 1
Igb: False

n_parameter_samples: 250
max_ensemble_size: 50
max_win_len_prop: 1
min_window: 10
randomly_selected_params:

anova: True
bigrams: True
binning_strategy:
information-gain
window_inc: 4

29

alphabet_size: 4
bigrams: True
dim_threshold: 0.85
max_dims: 20
n_jobs: 1
random_state: 0
column: 0

Accuracy: 56.62%

50
bigrams:none
dim_threshold: 0.85
max_dims: 20

Accuracy: 66.18%

chi2_threshold: -1
random_state: 0
column: 0

Accuracy: 61.4%

B.2. Interval-based classifiers
Interval-based techniques examine the complete series' phase-dependent intervals, producing
summary statistics from selected sub-series for classification. These classifiers are decision tree
ensembles built of time-series intervals. Every algorithm's approach to selecting and building
ensembles on the intervals varies which makes these algorithms different [28].

TimeSeriesForestClassifier SupervisedTimeSeriesForest RandomIntervalSpectralEnsemble

min_interval: 3
n_estimators: 200
n_jobs: 1
random_state: 0
column : 0

Accuracy: 67.1%

n_estimators: 500
n_jobs: 1
random_state: 0
column : 0

Accuracy: 52.76%

min_interval: 16
n_estimators: 200
n_jobs: 1
random_state: 0
column : 0
acf_lag: 100
acf_min_values: 4

Accuracy: 65.62%

B.3. Shapelet-based classifiers
Shapelet is a time-series subsequence representing class membership and measure
phase-independent similarity between time series. The shapelet transform focuses on the
shape of the data and improves on the usage of shapelets by separating shapelet extraction
from the classification, then enabling interpretable phase-independent classification of time
series using any conventional classification technique such as random forest [28].

ShapeletTransformClassifier

n_shapelet_samples: 10000
max_shapelets: None
max_shapelet_length: None
estimator: None
transform_limit_in_minutes: 0
time_limit_in_minutes: 0
save_transformed_data: False
n_jobs: 1
batch_size: 100
column: 0
Accuracy: 69.67%

30

B.4. Distance-based classifiers
A time series version of the scikit-learn KNeighborsClassifier is the classifier
KNeighborsTimeSeriesClassifier in the distance-based family. The KNN Time Series Classifier
supports time series distance measurements [28].

KNeighborsTimeSeriesClassifier

n_neighbors: 1
weights: uniform
distance: dtw
distance_params: None
column: 0

Accuracy: 56.99%

C. Results for parameter tuning in NaML for each classifier

This section displays results for all iterations of parameter tuning for each Sktime classifier implemented
in NaML.

C.1. BOSSEnsemble

Alphabet_size: 8
Min_window: 25

Accuracy: 50.37%

Alphabet_size: 8
Min_window: 15

Accuracy: 50.00%

Alphabet_size: 8
Min_window: 30

Accuracy: 50.37%

Alphabet_size: 10
Min_window: 20

Accuracy: 50.18%

Alphabet_size: 5
Min_window: 25

Accuracy: 52.76%

Alphabet_size: 12
Min_window: 35

Accuracy: 50.00%

C.2. ContractableBOSS

alphabet_size: 5
min_window: 20

Accuracy: 61.21%

alphabet_size: 5
min_window: 25

Accuracy: 61.58%

alphabet_size: 8
min_window: 35

Accuracy: 60.85%

alphabet_size: 8
min_window: 30

Accuracy: 64.34%

alphabet_size: 8
min_window: 25

Accuracy: 65.07%

alphabet_size: 5
min_window: 12

Accuracy: 62.13%

C.3. IndividualBOSS

window_size: 20
n_jobs: 6

window_size: 5
n_jobs: 6

window_size: 2
n_jobs: 8

31

norms: true
random_state: 37

Accuracy: 52.57%

norms: true
random_state: 37

Accuracy: 52.76%

norms: true
random_state: 37

Accuracy: 50%

window_size: 5
n_jobs: 6
norms: false
random_state: 37

Accuracy: 54.78%

window_size: 5
n_jobs: 6
norms: false
random_state: 37
alphabet_size: 8

Accuracy: 53.49%

window_size: 5
n_jobs: 6
norms: false
random_state: 37
alphabet_size: 16

Accuracy: 52.57%

C.4. IndividualTDE

window_size: 15
word_length: 8
alphabet_size: 4
n_jobs: 1
random_state: 0

Accuracy: 53.23%

window_size: 5
word_length: 8
alphabet_size: 4
n_jobs: 6
random_state: 37

Accuracy: 54.04%

window_size: 5
word_length: 6
alphabet_size: 4
n_jobs: 6
random_state: 24

Accuracy: 53.49%

window_size: 3
word_length: 6
alphabet_size: 4
n_jobs: 6
random_state: 24

Accuracy: 50.28%

window_size: 8
word_length: 6
alphabet_size: 4
n_jobs: 6
random_state: 24

Accuracy: 53.88%

window_size: 6
word_length: 8
alphabet_size: 4
n_jobs: 6
random_state: 37

Accuracy: 52.94%

C.5. TemporalDictionaryEnsemble

n_parameter_samples: 300
max_ensemble_size: 50
save_train_predictions: true
time_limit_in_minutes: 30

Accuracy: 64.71%

n_parameter_samples: 560
max_ensemble_size: 50
save_train_predictions: true
randomly_selected_params:5

Accuracy: 59.93%

n_parameter_samples: 350
max_ensemble_size: 10
save_train_predictions: true
time_limit_in_minutes: 30

Accuracy: 61.21%

n_parameter_samples: 350
max_ensemble_size: 50
randomly_selected_params:5
save_train_predictions: true
n_jobs:4

Accuracy: 61.58%

n_parameter_samples: 750
max_ensemble_size: 50
randomly_selected_params:25
save_train_predictions: true
n_jobs:4

Accuracy: 61.21%

n_parameter_samples: 250
max_ensemble_size: 50
save_train_predictions: false
n_jobs:1

Accuracy: 61.21%

32

C.6. WEASEL

anova: true
window_inc:5
random_state: 37

Accuracy: 58.82%

anova: true
window_inc:25
random_state: 37

Accuracy: 59.01%

anova: true
window_inc:30
random_state: 37

Accuracy: 58.09%

anova: false
window_inc:25
random_state: 25

Accuracy: 57.9%

anova: true
feature_selection:”random”
window_inc:25
random_state: 25

Accuracy: 58.96%

anova: true
feature_selection:”random”
window_inc:25
random_state: 25
n_jobs: 52.94%

Accuracy: 58.96%

C.7. TimeSeriesForestClassifier

N_estimators: 350
N_jobs: 1
Random_state: 42

Accuracy:
71.14%

n_estimators:450
n_jobs:1
random_state:42

Accuracy:71.88%

n_estimators:650
n_jobs:1
random_state:25

Accuracy:72.06%

n_estimators:650
n_jobs:2
random_state:32

Accuracy:66%

n_estimators:670
n_jobs:2
random_state:32

Accuracy:69.67%

n_estimators:680
n_jobs:2
random_state:32

Accuracy:73.53%

n_estimators:720
n_jobs:2
random_state:32

Accuracy:72.06%

N_estimators:770
n_jobs:2
random_state:32

Accuracy:73.71%

n_estimators:770
n_jobs:5
random_state:25

Accuracy:70.96%

n_estimators:1000
n_jobs:3
random_state:25

Accuracy:71.32%

n_estimators:750
n_jobs:4
random_state37:

Accuracy:69.85%

n_estimators:770
n_jobs:3
random_state:42

Accuracy:71.69%

n_estimators:750
n_jobs:2
random_state:32

Accuracy:72.24%

n_estimators:100
n_jobs:2
random_state:32

Accuracy:68.3%

n_estimators:770
n_jobs:2
random_state:25

Accuracy:72.61%

C.8. SupervisedTimeSeriesForest:

n_estimators:770
n_jobs:2
random_state:42

Accuracy: 67%

n_estimators:770
n_jobs:4
random_state:42

Accuracy:68.93%

n_estimators:820
n_jobs:4
Random_state:42

Accuracy:65.44%

n_estimators:750
n_jobs:4
Random_state:37

Accuracy:69.85%

n_estimators:735
n_jobs:4
Random_state:42

Accuracy:68.57%

n_estimators:735
n_jobs:6
Random_state:37

n_estimators:750
n_jobs:6
Random_state:37

n_estimators:250
n_jobs:6
Random_state:37

n_estimators:740
n_jobs:6
Random_state:37

n_estimators:735
n_jobs:8
Random_state:37

33

Accuracy:70.59% Accuracy:68.38% Accuracy:66.91% Accuracy:70.22% Accuracy:68.75%

n_estimators:735
n_jobs:2
Random_state:37

Accuracy:70.96%

n_estimators:745
n_jobs:6
Random_state:37

Accuracy:66.18%

n_estimators:780
n_jobs:6
Random_state:37

Accuracy:66.54%

n_estimators:735
n_jobs:7
Random_state:37

Accuracy:68.01%

n_estimators:760
n_jobs:4
Random_state:42

Accuracy:69.01%

C.9. RandomIntervalForestEnsemble:

n_estimators: 550
n_jobs: 4
Random_state:37

Accuracy: 63.97%

n_estimators: 735
n_jobs: 2
Random_state:37

Accuracy: 64.71%

n_estimators: 740
n_jobs: 6
Random_state:37

Accuracy: 66.37%

n_estimators: 740
n_jobs: 6
Random_state:37
acf_lag:50

Accuracy: 65.07%

n_estimators: 740
n_jobs: 6
Random_state:37
acf_lag:150

Accuracy: 62.68%

n_estimators: 735
n_jobs: 6
Random_state:37
acf_min_values:16

Accuracy: 63.6%

n_estimators: 770
n_jobs: 2
Random_state:37

Accuracy: 64.15%

n_estimators: 820
n_jobs: 2
Random_state:37

Accuracy: 63.6%

C.10. ShapeletTransformClassifier:

n_shapelet_samples:
10000

max_shapelets: 10
time_limit_in_minutes: 5

n_jobs: 4
batch_size: 20

Accuracy: 61%

n_shapelet_samples:
10000

time_limit_in_minutes:
5

n_jobs: 1

Accuracy: 62.23%

n_shapelet_samples:
8500

time_limit_in_minutes:
30

n_jobs: 1

Accuracy: 58.27%

n_shapelet_samples:
8000

n_jobs: 1

Accuracy: 69.3%

n_shapelet_samples:
8000

n_jobs: 4

Accuracy: 68.38%

n_shapelet_samples:
12000

n_jobs: 1

Accuracy: 70.4%

n_shapelet_samples:
14000

n_jobs: 1

Accuracy:69.69%

n_shapelet_samples:
11000

n_jobs: 1

Accuracy: 67.28%

34

C.11. KNeighborsTimeSeriesClassifier

n_neighbors: 2

Accuracy: 56.92%

n_neighbors: 5

Accuracy: 58.82%

n_neighbors: 10
Distance: “euclidean”
wgt: “distance”

Accuracy: 61.95%

n_neighbors: 35
distance: “euclidean”
wgt: “distance”

Accuracy: 59.93%

n_neighbors: 20

Accuracy: 62.13%

n_neighbors: 100

Accuracy: 58.82%

n_neighbors: 50
distance: “euclidean”
wgt: “distance”

Accuracy: 60.29%

n_neighbors: 35
wgt: “distance”

Accuracy: 60.85%

35

