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Abstract

Deep learning often relies on the availability of a large amount of high-quality labeled

data, which can be very limited in novel domains. To address such data scarcity, domain

adaptation is one promising approach that allows for deep networks to leverage large

amounts of available data from a source domain to enhance the model’s efficacy on the

target domain of interest. However, while there is a plethora of alternate models for domain

adaptation proposed over many years in the literature, there is a dearth of studies that

objectively compare the relative effectiveness of these models in a rigorous, empirical

study. To fill this gap, we provide a thorough, unbiased, empirical study of five state-of-

the-art (SOTA) deep domain adaptation models proposed over the past 6 years whose

codes are publicly available. Models are evaluated on the complex and diverse domain

adaptation tasks featured in the DomainNet benchmark dataset as well as the popular

Office-31 dataset. Our results suggest that (1) all 5 models perform similarly, on average,

and do not even significantly beat the oldest model, and (2) counter to their intended

purpose, the transfer loss functions in the literature do not contribute significantly to

learning transferable representations. Our observations suggest that domain adaptation

research needs to more thoroughly compare newly proposed models against existing works,

along with assessing their loss functions’ utility thoroughly. We will release our code and

data splits for reproducibility of results by the community.
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Chapter 1

Introduction

1.1 Background

A primary influence on the effectiveness of deep learning is the availability of data,

specifically high quality labeled data. It could be relatively simple for many industries or

organizations to generate a lot of unorganized or unlabeled data, but providing labels for

large quantities of data requires costly, both in time and money, human intervention. Worse

yet, such human-generated labels are subject to human bias and errors. For each new

problem, one would expect that a new model needs to be trained with new data for each

task due to dataset bias between the distribution of data used for training vs. testing. Over

the past few years, transfer learning approaches have thus been developed to exploit large

labeled datasets (such as ImageNet) to learn high-level features of images and thereafter

fine-tune models for new problems by additional training on new targeted task-specific

datasets. However, it is often difficult to have enough data to properly tune a model for

specific tasks [5, 27].

Domain adaptation (DA), a subfield in transfer learning, primarily assumes that there

are two or more similar but distinct sets of data (domains) called source domain and target

domain. Generally, the task for each of these datasets is the same (e.g. classification of
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planes) but there exists a domain shift between the domains (e.g. photos of planes v.s.

drawings of planes). A domain shift can exist for several reasons: the data is captured

via different modalities (infrared vs visual spectrum images), changes in pose, changes

in object background, variations in color, dimensionality differences, or any combination,

and more. The goal of DA is two-fold, namely, to learn a model that can both perform a

task on the source data well and simultaneously learn a transferable representation of the

data such that the source and target domains are indistinguishable. This then would allow

for good performance of the task on the target domain as well.

Within the field of DA, we distinguish between different approaches depending on

the availability of data: supervised, semi-supervised, and unsupervised. In this work, we

focus on unsupervised DA (UDA), arguably the most popular in literature. In UDA, during

training, both labeled source examples and unlabeled target examples are utilized. We

focus on five core models spanning the 6 recent years in the literature. These models all

have two core loss components, namely, a classification loss and a transfer loss. The latter

is introduced to align the source and target domains.

1.2 Applications

Domain adaptation has potential utility in many application areas, with two important ones

being self-driving cars [24, 26, 36] and medical imaging [9, 22, 32], as described below.

For self-driving cars, unforeseen environmental factors, different road layouts, and

robust pedestrian identification are some of the many hurdles to overcome. Training data

for self-driving cars may not be able to capture every potential environmental scenario,

roads from one country may differ from another, and pedestrians being in unforeseen,

dangerous scenarios in the real-world. All these are examples of domain shifts between

training and testing and ultimately deployment. Thus, domain adaptation may be a potential

solution.
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For medical imaging, consensus for diagnoses across patients’ anatomy and medical

devices (scanners, MRI, CT) is critical. Depending on the cohort of training data, identi-

fying anatomical structures is complicated due to the variety of anatomy present in each

dataset. Further, depending on a hospital’s scanning parameters and device choices, model

predictions are subject to variability across devices. Finally, if a model is trained on data

from one modality (MRI), but it is desired to then perform a diagnosis on another (CT), it

is difficult to achieve reliable results. These challenges could potentially be addressed with

domain adaptation.

1.3 Our Approach and Contributions

We note that a plethora of UDA models have been proposed in the literature, each making

claims of better performance than the previous and proposing alternate variations of

transfer loss functions to align domains. While categorizations of these DA models

have been provided in survey papers [2, 9, 18, 25, 31], there is a scarcity of unbiased,

comprehensive analyses of DA models needed to gain an objective understanding of their

relative effectiveness. Given the importance of this task for the community at large, both

future model developers and practitioners, we provide an in-depth evaluation in this work.

In particular, we conduct a comprehensive experimental study of 5 SOTA UDA models.

Our empirical evaluation study rests upon several important pillars. First, we conduct

an unbiased, thorough experimental study of popular UDA models on varying amounts of

training data (from big to small, more limited data sets) and for a diverse set of domain

types and tasks. Second, we utilize open-source, benchmark datasets to assure open access

to our models and experimental data. Third, we provide an analysis of the utility of the

proposed transfer loss functions in the DA literature, assessing their relative contribution

(or lack thereof) to learning an effective classifier. Our results are two-fold. (1) All 5 models,

regardless of when they were released, perform similarly, on average. Interestingly, we find
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that none of the newer models significantly beats even the oldest model. (2) Surprisingly,

the proposed transfer loss functions across these models do not significantly contribute

to learning transferable representations. This result is in contradiction to their proposed

functionality. Given our findings, we recommend to the DA research community that a

more careful and fair comparison of newly proposed models against the existing literature

be conducted, and in particular, proof of domain alignment is shown. Further, we suggest

to practitioners looking to adopt DA models that well-established older models are worth

to consider and try out on their applications, as they may be more robust to different data

scenarios.
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Chapter 2

Related Work

2.1 Domain Adaptation Models

There exists a large body of literature on domain adaptation models – all proposing new

ways in which we can tackle the problem of domain shift via learning similar represen-

tations between domains with new loss functions. These works reflect several areas of

domain adaptation, namely, single-source closed-set DA [6, 7, 13–16, 19, 28–30, 33, 35, 38],

multi-source DA [12,20,34,39], multi-target DA [21], open-set DA [17], partial DA [1,37],

and other subset fields of domain adaptation. In our work, we focus on one of the founda-

tional settings of domain adaptation: unsupervised, single-source, single-target, closed-set

domain adaptation with two loss components. When a new model is proposed in the

literature and compared against baselines, they are subject to unintentional bias. In our

work, we have no preference to any one model and thus can be fully objective in our

analysis.
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2.2 Survey Papers

This work is similar to survey-style work [2, 9, 18, 25, 31] as it discusses existing models.

However, in these works, they only catalogue a large history of domain adaptation and

transfer learning models. Results reported in these works are generally taken from existing

manuscripts, are not thorough model investigations under varied data scenarios, nor are

comparative in nature. In this work, we take an in-depth, empirical approach and provide

a thorough evaluation of a set of SOTA domain adaptation models on a diverse set of

adaptation tasks. We further deeply investigate the effectiveness of transfer loss functions

proposed in the literature.

2.3 Experimental Analysis

Other than survey work, there is one notable work that compares UDA models [3]. How-

ever, a large portion of this work is spent on the design of a new model and a new dataset,

with evaluation on their new dataset. Further, they do not explicitly compare UDA models

in the literature. Instead, they restrict their comparison to shallow and deep DA models

under different weight sharing strategies.
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Chapter 3

Evaluated Models

Model/Paper Publication year

Domain-Adversarial Training of Neural Networks (DANN) [6, 7] 2016
Deep Transfer Learning with Joint Adaptation Networks (JAN) [16] 2017
Conditional Adversarial Domain Adaptation (CDAN) [14] 2017
Larger Norm More Transferable: An Adaptive Feature Norm Approach for UDA (AFN) [35] 2019
Minimum Class Confusion for Versatile Domain Adaptation (MCC) [11] 2020

Table 3.1: 5 UDA models studied in this work with publication years.

In this section, we introduce the 5 UDA models investigated in this study, as seen in

Table 3.1, and point out their respective uniqueness as well as commonalities between

them. The 5 models, introduced over the past 6 years, were selected based on the following

criteria: (1) highly cited, recent or established models in literature, (2) models that have

been compared against in a large majority of the domain adaptation literature, and (3)

models that match our foundational scenario of being single-source, single-target, closed-

set DA with two primary loss components. To implement these models, we use a public

DA library [10]. We utilize this framework and 5 of its models and update codes according

to the datasets we use and metrics we record. Code for the models we have updated will

be provided along with access to data for reproducibility 1

1https://github.com/njosselyn13/Empirical-Study-Domain-Adaptation
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3.1 DANN

Domain-Adversarial Training of Neural Networks [7] is a highly cited UDA model intro-

duced in 2016 that is commonly used as a representative baseline. DANN introduces a

gradient reversal layer to promote alignment of the source and target domain represen-

tations with respect to a domain discriminator. DANN consists of a label predictor that

predicts the class label of the source data during training and subsequently target data

during testing. Further, DANN incorporates a domain discriminator that discriminates

between source and target data during training. The training procedure aims to minimize

the loss of the label predictor and maximize the domain confusion loss of the discriminator

via an adversarial approach with the gradient reversal layer. With this, there are two main

loss components: a classification loss for the label predictor and a transfer loss for the

domain discriminator.

3.2 JAN

Deep Transfer Learning with Joint Adaptation Networks [16], a UDA model introduced in

2017, aims to reduce the shifts in joint distributions across domains. Typically, the Maxi-

mum Mean Discrepancy [8] is used to measure the discrepancy in marginal distributions

between domains. For this, JAN formulates a function to measure the discrepancy between

the joint distributions between domains across multiple CNN layers. In measuring the

discrepancy of the joint distributions, the authors argue that they can overcome the residual

joint distribution shifts not addressed in other domain adaptation models. In this model,

a classification loss for assessing the labeled source data remains. The proposed joint

distribution alignment corresponds to their metric for transfer loss.

8



3.3 CDAN

Conditional Adversarial Domain Adaptation [14], a UDA model introduced in 2017, was

inspired by the advances in conditional generative adversarial networks (CGANs). CGANs

make use of discriminative features between real and fake data and incorporate them in a

conditional manner into the generator and discriminator networks. In CDAN, a similar

approach is taken by conditioning the domain discriminator with the cross-covariance

of domain-specific feature representations and classifier predictions. Additionally, the

discriminator is conditioned based on the uncertainty of the classifier predictions – thus

allowing the discriminator to prioritize easy-to-transfer examples. In this model, there is

still a classification loss for assessing the labeled source data. Also, the proposed transfer

loss is fairly similar to DANN and its discriminator, simply now with the inclusion of

conditioning.

3.4 AFN

Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised

Domain Adaptation [35], a UDA model introduced in 2019, proposes a novel method for

aligning domains based on statistical criterion different from the literature. That is, they

suggest that a better way to align domains is via finding a shared, average feature norm

(length of the feature vector) between the two domains. They note that the target domain

feature norms are typically much smaller than the source feature norms. They conjecture

that this may complicate the adaptation. By adapting the feature norms of both domains to

a large range of scalars, they expect they can achieve better adaptation. There is again a

classification loss, while transfer loss is the feature norm loss.
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3.5 MCC

Minimum Class Confusion for Versatile Domain Adaptation [11], a UDA model introduced

in 2020, does not aim to explicitly align two domain feature spaces, but instead it aims

to reduce class confusion in the label space. MCC is versatile because its approach is

suitable for a variety of DA settings such as: closed-set, partial-set, multi-source, and

multi-target DA. In our work focused on comparing single-source/single-target solutions,

we leverage MCC just for this particular single-source and single-target setup. MCC claims

to outperform prior models including the models we study here, namely, DANN, JAN,

CDAN, and AFN. In MCC, there are two main loss components, classification loss for the

source data and transfer loss designed to minimize the number of misclassifications in the

target domain.
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Chapter 4

Dataset and Experimental Protocol

In this section, we provide details on the experimental methodology to compare the 5 UDA

models, including datasets, data preparation, training setup, and more.

4.1 Datasets and Preparation

In this work, we focus on two benchmark domain adaptation image datasets: the popular

Office-31 dataset [23], and the largest, most diverse and complex dataset, DomainNet [20].

4.1.1 DomainNet

Figure 4.1: Images from the DomainNet dataset. Airplane class for all 6 domains shown.

Published in 2019, DomainNet is the largest domain adaptation benchmark dataset

containing 586,575 images across 6 distinct and uniquely challenging domains with 345

11



Clipart Infograph Painting Quickdraw Real Sketch Total
Subset-20 5,516 5,953 8,286 19,320 19,455 7,851 66,381
Subset-50 13,485 14,483 20,270 48,300 48,432 19,354 164,324

Full 26,820 28,818 40,358 96,600 96,725 38,570 327,891

Table 4.1: Amount of training data for each of the 6 domains in DomainNet for each of
the 3 data subsets used.

classes in each domain. The 6 domains are: clipart, infograph, painting, quickdraw, real,

and sketch images. This allows for 30 adaptation tasks to be evaluated (single-source,

single-target DA setup). In each domain, diverse classes such as airplane, toothpaste,

dragon, rabbit, ear, etc. exist. An example of images for each domain are shown in Figure

4.1. More examples can be found in the supplementary material.

In our study, we distinguish between 3 training scenarios based on the amount of

training data provided, namely, large, medium, and small datasets. We investigate varying

training data scenarios in order to assess the robustness of each model to data availability.

Using the original split for DomainNet defined in [20] and the VisDA-2019 competition

(with small modifications due to some classes not being assigned images in the original

release), 30% of the data is partitioned into a held-out test set. Details on rectifying these

small inconsistencies can be found in the supplementary material. The remaining 70% of

data is designated for training (and validation). We break this remaining 70% of data into

3 distinct datasets: the full amount of data (full), 50% of the data per class per domain

(subset-50), and 20% of the data per class per domain (subset-20). For this data sub-setting,

a hard minimum of 6 images per class was enforced to allow for cross-validation to be

performed. Then, for each of the 3 subsets of training data, 5 stratified cross-validated

folds of training and validation data are generated with 20% being held for validation and

80% for training. In Table 4.1 we provide statistics on how many images are available for

training for each of the 6 domains over all 345 classes. All data subsets will be released to
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assure reproducibility.

4.1.2 Office-31

Figure 4.2: Images from the Office-31 dataset. Backpack class for all 3 domains shown.

The Office-31 dataset consists of 3 domains of office-space image data taken from

Amazon, a DSLR camera, and a webcam camera, allowing for 6 adaptation tasks (single-

source, single-target DA setup). There are a total of 4,110 images across all 3 domains. In

each domain there are 31 classes, including, back packs, scissors, trash cans, etc. Examples

can be seen in Figure 4.2. Additional images can be seen in the supplementary material. In

the Amazon domain, there are 2,817 images. The Amazon domain provides images with

clean backgrounds and a uniform scale. In the DSLR domain, there is a total of 498 images.

The DSLR domain provides images with low noise and high resolution. The webcam

domain, with a total of 795 images, presents images with low resolution, significant noise,

and color and white balance artifacts. The Office-31 dataset is considered a small-scale

domain adaptation dataset with small domain shifts, particularly between webcam and

DSLR domains.

To assure a comprehensive analysis of model performance, we assess all 5 models on

the full Office-31 dataset, which differs widely in tasks and data types from DomainNet.

Unlike DomainNet, we do not subset the Office-31 dataset to smaller training scenarios as

it is already a smaller-scale dataset.

We split the Office-31 dataset into training, validation, and testing sets. We split
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15% of the data to a held-out test set with the remaining 85% of data being split into 5

cross-validated folds; 70% held for training and 30% held for validation.

4.2 Experimental Protocols

In this section, we first outline our methodology for establishing a lower bound for domain

adaptation performance, i.e., the performance of models without domain adaptation on

a set of transfer tasks. Then, using the 3 subsets of DomainNet data and the Office-31

dataset, we describe our experimental methodology for comparing and tuning the 5 UDA

models and for the assessment of the impact transfer loss has on learning.

4.2.1 Baseline Transfer Tasks

As a first step, we conduct baseline experiments to confirm that indeed a classifier trained

on one domain of data with no domain adaptation, when applied to a similar but different

domain of data, will perform poorer than when using domain adaptation models.

For this, we first train 6 classifiers on the full DomainNet dataset using classical single-

domain models. That is, no domain adaptation is used. Similarly, we train 3 classifiers on

the Office-31 dataset using classical singe-domain models. For each of these classifiers,

we tune the learning rate and weight decay and select the model with highest validation

accuracy. We sample learning rate and weight decay values of 0.1, 0.01, and 0.001. Once

an optimal model for each classifier is chosen, it is then applied to the 5 (for DomainNet)

or 2 (for Office-31) other target domain test data sets.

4.2.2 Model Comparison

For each of the 5 UDA models, 5-fold cross-validation experiments are conducted on the

Office-31 dataset and each of the 3 subsets of the DomainNet dataset. Experiments are

conducted for all 30 domain adaptation tasks in the DomainNet dataset and all 6 adaptation
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tasks in the Office-31 dataset. When a domain (e.g. clipart) is selected as the source

domain for a model and dataset pair (e.g. JAN and full DomainNet dataset), the labels are

made available to the model at train time. When a domain (e.g. infograph) is selected as

the target domain for a model and dataset pair, the labels are not available to the model

during training. The target domain data for the corresponding validation and test sets are

then used to be tuned and evaluated on, respectively.

For each model and dataset experiment pair, and each adaptation task, test set accuracies

are reported over the 5 cross-validation folds. Additionally, we compute for each model and

dataset pair an average test accuracy over all adaptation tasks. An additional step-by-step

procedure is included in the supplementary material. Code and data for reproducibility

will be made available.

4.2.3 Hyperparameter Tuning

Extensive hyperparameter tuning was conducted to give each model a fair chance at

maximizing their performance on the DomainNet or Office-31 datasets. All experiments

run for 30 epochs. The test accuracy where the max validation accuracy is observed is

reported, thus implementing an early stopping approach. We experimented with longer

training times (100 epochs) with a subset of 5 adaptation tasks from DomainNet (clipart

as source). We did not observe significant improvement in accuracy to warrant running

longer than 30 epochs. Additionally, we tuned each model’s learning rate, weight decay,

and the loss trade-off hyperparameters. The loss trade-off weighs how much to focus

on classification loss vs each model’s respective transfer loss. This trade-off is seen in

Equation 4.1.

loss = cls_loss+ transfer_loss ∗ trade_off (4.1)

For each model, we tune hyperparameters on the full DomainNet dataset, for a subset

of 5 adaptation tasks (clipart as source). For the Office-31 dataset, we perform tuning
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for each model over all 6 adaptation tasks. Learning rate and weight decay combinations

explored for each model were: 0.1, 0.01, 0.001, 0.0001, and original code defaults. Loss

trade-off values explored for each model were: 0.25, 0.5, 0.75, 2, 5, 10, 20, 50, and original

code defaults. Larger values mean giving more relative weight to the transfer loss. All

final hyperparameters are specified in the supplementary material.

Finally, for the most recent MCC model, after much experimentation, we found it

to be one of the poorer performing models on DomainNet. Thus, we reached out to the

MCC authors and took their advice to tune the temperature hyperparameter with suggested

values of 0.25, 0.5, 1, 2, and 3.

4.2.4 Transfer Loss Analysis

To assess the utility of proposed transfer loss functions in DA models and their contribution

to learning an effective target domain classifier, we examine training loss curves for each

model for each loss trade-off hyperparameter we worked with. We observe how the

classification and transfer losses evolve over the 30 training epochs independently. We

then conclude whether any amount of weighting for the transfer loss (via the loss trade-off

hyperparameter) leads to significant learning during training with respect to the transfer

loss. We show, for each model, the lack of learning occurring with respect to the transfer

loss and discuss potential reasons for this observation.

For these experiments, we use optimal hyperparameters determined previously on the

DomainNet dataset. We only vary the loss trade-off value. We observe loss curves for the

full DomainNet dataset and the first cross-validation fold.

Next, we use the trained models with optimal hyperparameters, from the first cross-

validation fold, to generate T-SNE plots. These plots show the learned distributions of each

model-adaptation task pair for one class (airplane). We extract the features before the final

classification layer for either the source or target data and reduce them to 2 dimensions via
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T-SNE. This allows us to visualize how much the representations between two domains

have been transformed to be similar.
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Chapter 5

Experimental Results

In this section, we first establish a lower bound baseline (no domain adaptation) for the

DomainNet and Office-31 datasets’ transfer tasks. Then, we discuss results for our two

proposed contributions in Chapter 1: (1) model comparisons and robustness, and (2) the

utility of transfer loss functions proposed in the DA literature.

5.1 Baseline Transfer Tasks

Results using the full DomainNet dataset with no domain adaptation are presented in

Table 5.1. On average, over all 30 adaptation tasks, this baseline approach achieves only

23.4% test accuracy. We see later in Table 5.3 (test results also using the full DomainNet

dataset) that this performance is lower than that for all 5 domain adaptation models. In fact,

this performance is lower than all 5 models when only 50% of the training data is used.

Furthermore, in Table 5.2 we show baseline results on Office-31 and achieve an average

performance over all 6 tasks of 72.8% test accuracy. As we later see in Table 5.6, this is

less than all 5 domain adaptation models as well. This confirms what has been observed in

the literature: domain adaptation outperforms the simple application of trained models to

related but different domains.
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clp inf pnt qdr rel skt
clp - 29.2 29.7 8.1 44.4 46.3
inf 15.9 - 15.7 0.6 19.0 13.4
pnt 35.3 27.4 - 1.0 45.1 32.4
qdr 9.1 2.6 2.9 - 4.1 11.1
rel 49.6 43.9 44.4 2.4 - 45.3
skt 37.0 22.8 27.2 5.9 32.0 -

Table 5.1: Baseline transfer task test accuracies on the full DomainNet dataset. (Columns
= source, rows = target)

Amazon DSLR Webcam
Amazon - 55.3 53.7
DSLR 72.0 - 96.0

Webcam 65.0 95.0 -

Table 5.2: Baseline transfer task test accuracies on the Office-31 dataset. (Columns =
source, rows = target)

5.2 Model Comparison Analysis

We present results obtained on the DomainNet dataset for all 5 UDA models, followed by

results on Office-31.

5.2.1 DomainNet

Addressing the first objective of model robustness in our work, we first present 5-fold

cross-validation results on the test dataset (for each target domain) for all 5 UDA models

for a diverse set of 30 adaptation tasks from the DomainNet dataset in Tables 5.3, 5.4,

and 5.5. Each column designates a source domain and each row a target domain. Table

5.3 reports results on the full dataset, Table 5.4 on the subset-50 dataset, and Table 5.5

on the subset-20 dataset. Additionally, each table presents the average accuracy over all

adaptation tasks for each model as is typically done in the DA literature to provide a

summary of model performance overall. We include additional tables in the supplementary
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DANN [7] clp inf pnt qdr rel skt JAN [16] clp inf pnt qdr rel skt
clp - 27.0 37.3 18.7 47.6 50.8 clp - 28.1 38.5 15.3 46.6 48.5
inf 19.1 - 18.6 3.9 22.7 19.3 inf 17.2 - 17.3 2.4 20.6 16.5
pnt 34.3 25.9 - 7.9 47.7 41.4 pnt 33.9 26.6 - 6.7 46.6 39.2
qdr 12.7 5.5 5.8 - 6.5 12.4 qdr 11.4 4.7 4.8 - 4.6 10.1
rel 50.4 36.9 51.8 12.7 - 50.8 rel 49.5 39.4 51.5 11.7 - 47.0
skt 40.7 22.6 33.5 13.0 37.4 - skt 40.2 24.0 35.7 10.9 36.5 -

CDAN [14] clp inf pnt qdr rel skt AFN [35] clp inf pnt qdr rel skt
clp - 26.6 37.2 19.9 49.3 51.0 clp - 29.1 38.9 17.3 43.9 49.6
inf 18.7 - 18.4 4.0 22.7 18.8 inf 15.8 - 16.5 2.8 17.6 15.6
pnt 35.0 25.2 - 7.1 49.0 42.0 pnt 36.0 32.5 - 6.6 46.6 42.6
qdr 10.1 4.7 4.7 - 4.5 9.3 qdr 11.3 3.1 4.7 - 4.8 11.1
rel 52.6 37.0 51.6 14.4 - 51.1 rel 51.9 45.7 53.9 11.8 - 51.9
skt 40.9 22.0 34.8 13.8 38.7 - skt 41.2 25.0 36.4 9.3 34.4 -

MCC [11] clp inf pnt qdr rel skt Averages:
clp - 31.1 43.0 11.6 51.2 53.6 DANN (2016) 27.2
inf 13.5 - 14.8 1.1 17.7 13.8 CDAN (2017) 27.2
pnt 33.4 28.7 - 2.6 46.1 39.8 AFN (2019) 26.9
qdr 12.9 2.7 3.7 - 4.0 11.7 JAN (2017) 26.2
rel 49.0 43.7 52.5 7.0 - 49.1 MCC (2020) 26.0
skt 39.3 22.7 36.1 7.9 35.1 -

Table 5.3: Mean target domain test accuracy over 5-cross-val folds for all models for all
30 adaptation tasks on the full dataset. Average test accuracies over all 30 tasks reported in
bottom right. (Columns = source domain, rows = target domain)

material that reports standard deviations for each adaptation task for each model as well.

In Table 5.3, results for all models on the full dataset are shown. We observe that

for 9/30 adaptation tasks, DANN performs best, for 9/30 tasks AFN performs best, for

8/30 tasks CDAN performs best, for 5/30 tasks MCC performs best, and for 0 tasks JAN

performs best. Note that for the real-to-infograph task, DANN and CDAN tie. Over all 30

adaptation tasks, for all models, the standard deviations over the 5 cross-validation folds

ranges from 0.1 to 1.1. With respect to averages over all 30 adaptation tasks, DANN and

CDAN beat the other 3 models with 27.2% test accuracy, with AFN as a close second with

26.9%. We note that the oldest method (DANN) is performing best for a diverse set of

challenging adaptation tasks; with the most recently published method (MCC) performing

the poorest. This is of particular interest as it raises concerns over the current trend in

proposing new domain adaptation methods, and the rigor with which new models should

be tested against baselines to assure their robustness in performance in practice.
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DANN [7] clp inf pnt qdr rel skt JAN [16] clp inf pnt qdr rel skt
clp - 22.9 34.1 17.9 45.3 45.9 clp - 24.0 35.4 14.8 44.6 44.4
inf 17.1 - 17.0 3.9 21.6 17.5 inf 15.4 - 16.0 2.6 19.5 14.7
pnt 32.0 23.0 - 7.5 46.2 38.7 pnt 31.5 23.3 - 6.9 45.5 36.2
qdr 11.8 5.2 5.3 - 6.6 11.2 qdr 10.5 4.3 4.2 - 4.6 9.5
rel 46.8 33.6 49.7 12.8 - 48.1 rel 46.6 35.2 50.1 12.1 - 44.6
skt 37.3 19.8 30.9 12.5 35.4 - skt 36.5 20.0 33.1 11.2 34.6 -

CDAN [14] clp inf pnt qdr rel skt AFN [35] clp inf pnt qdr rel skt
clp - 22.4 34.7 19.1 47.1 46.2 clp - 27.0 36.5 17.3 43.2 47.2
inf 16.9 - 17.1 4.0 21.8 17.1 inf 14.8 - 15.8 2.8 17.2 15.0
pnt 32.2 21.7 - 6.9 47.8 39.0 pnt 34.2 29.6 - 6.7 45.9 41.0
qdr 8.4 4.3 3.9 - 3.6 8.5 qdr 10.5 3.2 4.2 - 4.5 10.6
rel 49.1 33.9 50.3 13.8 - 48.5 rel 49.9 42.5 52.8 12.2 - 50.3
skt 37.1 18.7 31.8 13.4 36.4 - skt 38.2 22.0 34.3 9.2 33.7 -

MCC [11] clp inf pnt qdr rel skt Averages:
clp - 26.4 38.1 11.9 47.2 49.4 AFN (2019) 25.7
inf 11.7 - 13.2 1.2 16.8 12.4 DANN (2016) 25.2
pnt 29.6 24.5 - 2.9 43.3 37.0 CDAN (2017) 25.2
qdr 12.0 2.7 4.0 - 4.7 11.2 JAN (2017) 24.4
rel 45.1 38.6 49.0 6.6 - 46.1 MCC (2020) 23.8
skt 34.9 19.0 32.5 7.4 33.2 -

Table 5.4: Mean target domain test accuracy over 5-cross-val folds for all models for all
30 adaptation tasks on the subset-50 dataset. Average test accuracies over all 30 tasks
reported in bottom right. (Columns = source domain, rows = target domain)

In Table 5.4, results for all models on the subset-50 dataset are shown. We observe that

for 7/30 adaptation tasks DANN performs best, for 11/30 tasks AFN performs best, for

8/30 tasks CDAN performs best, for 5/30 tasks MCC performs best (tied with DANN for

sketch to quickdraw task), and for 0 tasks JAN performs best. Over all 30 adaptation tasks,

for all models, the standard deviations over the 5 cross-validation folds ranges from 0.0

to 0.9. With respect to averages over all 30 adaptation tasks, AFN just slightly wins with

25.7% test accuracy, but is closely followed by DANN and CDAN with 25.2%. Again we

observe that the oldest of the methods (DANN) is performing near the top, and the newest

of the methods (MCC) is performing at the bottom. We begin to observe a trend of model

robustness across training data availability; DANN, CDAN, and AFN perform well with

the full amount of training data and with 50% of the training data.

In Table 5.5, results for all models on the subset-20 dataset are shown. We observe

that for 10/30 adaptation tasks, DANN performs best, for 15/30 tasks, AFN performs
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DANN [7] clp inf pnt qdr rel skt JAN [16] clp inf pnt qdr rel skt
clp - 17.5 29.0 16.4 41.0 39.0 clp - 18.5 30.5 13.7 40.3 37.6
inf 14.1 - 14.9 3.8 19.9 14.8 inf 12.8 - 14.0 2.6 17.8 12.3
pnt 27.1 18.3 - 7.2 43.0 34.2 pnt 26.7 19.9 - 6.6 43.0 31.6
qdr 9.9 3.9 5.0 - 6.1 9.6 qdr 7.9 3.1 4.1 - 3.9 7.7
rel 42.2 28.3 46.3 12.4 - 43.5 rel 40.8 31.0 47.3 11.3 - 39.5
skt 30.8 15.0 27.1 11.2 32.7 - skt 29.7 15.4 28.4 9.9 30.8 -

CDAN [14] clp inf pnt qdr rel skt AFN [35] clp inf pnt qdr rel skt
clp - 16.7 30.3 16.1 42.3 38.9 clp - 21.4 32.7 17.0 40.7 41.2
inf 13.7 - 14.9 3.6 20.0 14.0 inf 13.2 - 14.7 2.8 16.7 13.0
pnt 25.3 18.9 - 6.2 44.6 34.1 pnt 30.3 24.8 - 6.2 44.7 36.8
qdr 4.8 2.2 2.5 - 3.3 5.4 qdr 8.9 2.4 3.3 - 3.8 9.5
rel 42.1 29.8 47.8 12.2 - 44.1 rel 45.3 35.9 50.7 11.8 - 45.9
skt 28.1 12.3 27.4 11.7 33.0 - skt 32.5 17.5 30.4 8.7 31.8 -

MCC [11] clp inf pnt qdr rel skt Averages:
clp - 19.0 30.6 11.6 40.6 40.3 AFN (2019) 23.2
inf 8.7 - 10.7 1.2 15.0 9.6 DANN (2016) 22.1
pnt 22.5 18.4 - 3.1 39.6 31.0 CDAN (2017) 21.6
qdr 9.6 2.9 4.3 - 4.9 9.8 JAN (2017) 21.3
rel 37.8 30.6 44.3 7.2 - 39.6 MCC (2020) 19.8
skt 26.4 13.5 26.1 7.9 27.9 -

Table 5.5: Mean target domain test accuracy over 5-cross-val folds for all models for all
30 adaptation tasks on the subset-20 dataset. Average test accuracies over all 30 tasks
reported in bottom right. (Columns = source domain, rows = target domain)

best, for 1 task, MCC performs best, and JAN and CDAN never perform best. For the

painting-to-infograph task, DANN and CDAN tie. Over all 30 adaptation tasks, for all

models, the standard deviation over the 5 cross-validation folds ranges from 0.1 to 0.9.

With respect to averages over all 30 adaptation tasks, AFN performs best with 23.2% test

accuracy, with DANN coming in second again with 22.1%. Again we see MCC perform

towards the bottom of the model list. We further observe the same trend that AFN and the

oldest model DANN perform best for a wide variety of adaptation tasks and for all 3 sizes

of training data.

5.2.2 Office-31

To further evaluate model robustness, we present results on the Office-31 dataset. We show

5-fold cross-validation results on the test set (for each target domain) for all 5 models for

all 6 adaptation tasks in Table 5.6. Each column denotes a source domain, and each row
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DANN [7] Amazon DSLR Webcam JAN [16] Amazon DSLR Webcam Averages:
Amazon - 69.8 70.0 Amazon - 70.1 68.6 MCC (2020) 89.5
DSLR 91.7 - 99.7 DSLR 92.5 - 100.0 AFN (2019) 86.8

Webcam 89.2 97.5 - Webcam 90.0 97.5 - JAN (2017) 86.5
CDAN [14] Amazon DSLR Webcam AFN [35] Amazon DSLR Webcam DANN (2016) 86.3

Amazon - 69.9 65.9 Amazon - 70.3 70.2 CDAN (2017) 85.8
DSLR 91.7 - 100.0 DSLR 93.1 - 100.0

Webcam 89.7 97.3 - Webcam 89.2 98.2 -
MCC [11] Amazon DSLR Webcam
Amazon - 74.7 77.2
DSLR 94.7 - 100.0

Webcam 92.2 98.3 -

Table 5.6: Mean target domain test accuracy over 5-cross-val folds for all models for all 6
adaptation tasks on the Office-31 dataset. Average test accuracies over all 6 tasks reported
in far right. (Columns = source domain, rows = target domain)

a target domain. We present the average performance over all 6 tasks for each model to

provide a summary of the model performance. We again include additional tables in the

supplementary material that reports standard deviations for each adaptation task for each

model as well.

In Table 5.6 we observe that for all 6 adaptation tasks, the MCC model performs best

and has the highest overall average performance of 89.5%. For all 5 models and for all 6

adaptation tasks, the standard deviations over the 5 cross-validation folds range from 0.0

to 2.9. We observe that with Office-31, MCC is now the top performing model and DANN

is toward the bottom. However, all 5 models still perform close on average, with the AFN

model still a top performing model.

This relative change in model performance order points at the importance of needing to

tune the MCC model significantly. As another set of experiments, we also run all 5 models

for all 6 adaptation tasks from the Office-31 dataset without any tuning of hyperparameters.

Instead, we simply take the best hyperparameters from the DomainNet tuning and apply

them when using the Office-31 dataset. When doing this, we observe that the DANN,

JAN, CDAN, and AFN models still obtain fairly comparable average test performances of:

86.9%, 86.5%, 88.1%, and 86.4%, respectively. However, the MCC model only achieved
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A2D A2W D2A D2W W2A W2D
DANN 20.43 22.97 18.59 22.12 18.24 3.00
JAN 19.61 18.29 16.80 6.66 16.20 3.21
CDAN 22.09 22.32 22.59 24.79 19.12 25.29
AFN 35.05 34.15 25.81 14.79 22.01 7.50
MCC 27.64 27.36 26.44 28.92 26.35 28.18

Table 5.7: Standard deviation of validation accuracies achieved for each model and each
adaptation task for a variety of learning rate and weight decay hyperparameter combinations
tried (A=Amazon, D=DSLR, W=Webcam; A2D is "Amazon source adapted to DSLR
target")

an average test accuracy of 24.1%; drastically less than the tuned average test accuracy. A

full set of these results on Office-31 using DomainNet hyperparameters can be found in

the supplementary material.

Additionally, over all learning rates and weight decay combinations explored for

each model and all 6 adaptation tasks, we calculate standard deviations of the validation

accuracies achieved to get a sense of model sensitivity with respect to hyperparameters;

standard deviations are found in Table 5.7. We observe that for 4 out of 6 of the tasks,

the MCC model has the highest variability in performance when varying learning rates

and weight decays. Note that these standard deviations are fairly high in all cases because

there are a few hyperparameter combinations that fail drastically for all models such as

learning rate and weight decay of 0.1. These two pieces of evidence lead us to conclude

that the MCC model is fairly unstable across datasets and requires careful, time-consuming

hyperparameter tuning for each new dataset in order to assure that it outperforms other

models in the case of Office-31. However, in the case of DomainNet as previously noted,

even with careful hyperparameter tuning, MCC performs the poorest in our study.
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(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 5.1: Classification loss curves for varied loss trade-off values (y-axis log-scale).
Clipart to painting task for full dataset.

5.3 Transfer Loss Analysis

Next, we present results on classification loss, transfer loss, and classification accuracy

curves for all 5 models. Then, we visualize learned feature spaces for a set of adaptation

tasks.

5.3.1 Loss Curve Analysis

Addressing the second objective of transfer loss utility in our work, we present classification

and transfer loss curves in Figures 5.1 and 5.2, respectively, for a variety of loss trade-off

hyperparameter values as mentioned in Section 4.2. Loss curves are shown for just the

clipart-to-painting adaptation task for the full dataset. Four additional adaptation task loss

curves are shown in the supplementary material (all with clipart as the source domain) and

all show similar trends. The default trade-off value for all models except AFN is 1.0, AFN

had a default value of 0.05. All default values are plotted in magenta in Figures 5.1 and

5.2. Loss values are plotted on a log-scale. In Figure 5.2, for the AFN model, the y-axis is

all 0.693 as changes in the transfer loss vary only to the seventh decimal place over the 30

epochs; meaning, very little learning occurring. In Figure 5.3, we also present the target

domain (painting) test accuracy plots for each model for each loss trade-off value.

In Figure 5.1, across all 5 models, we generally see the classification loss steadily

decreasing and flattening out during training. The exception is with trade-off value of 50

(heavily weighting transfer loss) for JAN and CDAN where the classification loss increases
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(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 5.2: Transfer loss curves for varied loss trade-off values (y-axis log-scale). Clipart
to painting task for full dataset.

or stays flat. For AFN, for the majority of trade-off values, the classification loss increases

except for the default trade-off value and small trade-off values. Even for larger trade-off

values that weigh transfer loss more of 10.0 and 20.0 for DANN, JAN, CDAN, and MCC

and 50.0 for MCC, we still observe a decreasing classification loss, indicating learning

with respect to the classification loss.

An interesting observation we make is with respect to the transfer loss curves for each

model depicted in Figure 5.2. For JAN, CDAN, AFN, and DANN we observe little to no

learning occurring with respect to the transfer losses proposed for each model. Each

model claims that their transfer loss function would be aligning domains. We should

observe this as an improvement in learning via the transfer loss curve. However, even

though we vary the weighting of the two losses during training, we consistently observe

that transfer loss changes are minimal and sometimes even experience increases, even

when heavily weighting it with values up to 50. Given this observation, for a variety of loss

trade-off values and models, the utility of DA transfer loss functions may not be achieving

the goal they are designed for: a full alignment of domains. Given that the inclusion of

transfer loss functions in domain adaptation models leads to improvement over traditional

transfer learning, we speculate that these transfer loss functions may be simply acting as a

regularization technique to generalize better to the target domain data.

The only model whose transfer loss curves appear to be decreasing to some degree

is the MCC model. However, the actual decrease over 30 epochs is approximately 0.08,

a small fraction of the overall loss decrease that occurs during training. Although, even
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(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 5.3: Target domain test accuracies for varied loss trade-off values. Clipart to
painting task for full dataset.

with the transfer loss decreasing only slightly for MCC, we have consistently seen MCC

perform the poorest.

In Figures 5.1 and 5.2 we demonstrate that classification loss is the dominating factor

in learning, while transfer loss is not contributing to learning during training. This raises

concern over the utility of the proposed transfer loss functions in that they are not helping

much to learn a transferable representation between source and target domains.

Further, when we compare the loss curves to what we observe with respect to the target

domain test accuracy curves in Figure 5.3, we see that for a majority of trade-off values,

the test accuracies continue to increase even when the corresponding transfer loss curves

remain unchanged or even start to increase. This further supports the observation that the

classification loss, regardless of trade-off weight, is the dominating factor in learning. To

summarize, given that the inclusion of a transfer loss has been shown to still improve target

domain classification over traditional transfer learning, this leads us to suggest that these

transfer loss functions may be acting simply as regularization techniques.

5.3.2 Feature space alignment

We present T-SNE plots showing feature distributions for 5 adaptation tasks for 2 models

in Figure 5.4. We select the DANN model, a consistently top performing model, and the

MCC model, the newest albeit poorest performing model to show in Figure 5.4. We show

the 5 adaptation tasks with clipart used as the source domain and all other domains used as

target. Additional plots for other models can be found in the supplementary material. For
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(a) C2I (b) C2P (c) C2Q (d) C2R (e) C2S

Figure 5.4: T-SNE plots for the airplane class. Top: DANN, Bottom: MCC. Red is
the clipart source domain, blue is the target domain. a-e are 5 of 30 adaptation tasks.
(C=clipart, I=infograph, P=painting, Q=quickdraw, R=real, S=sketch)

each adaptation task, we plot the learned representations of data for each domain, with red

indicating source domain, and blue the target domain, for a single class (airplane).

When transferring knowledge between domains, we anticipate overlapping distribu-

tions of data representations for the same class. With Figure 5.4, we can check on the

effectiveness of each transfer loss function for a variety of transfer tasks by observing

if the two domains have overlapping distributions. For a majority of the tasks we see a

visual separation of the source (red) and target (blue) domain representations. The test

accuracies for these 5 tasks, left to right, for DANN were: 19.1%, 34.3%, 12.7%, 50.4%,

and 40.7%. And for MCC they were: 13.5%, 33.4%, 12.9%, 49.0%, and 39.3%. We

see in particular that for the clipart-to-quickdraw (C2Q) transfer task, a fairly noticeable

separation between domains remains. Correspondingly, we see fairly low accuracies of

∼ 12%. For the clipart-to-infograph (C2I) task, DANN has a higher performance of 19.1%

compared to MCC’s 13.5%. Correspondingly in Figure 5.4 there is a slightly larger overlap

of distributions for DANN than observed for MCC for the C2I task. With this separation

of domains remaining even after applying domain adaptation, this is further evidence

that supports that the transfer loss functions are not necessarily achieving their goal of

aligning domains. However, since accuracies are boosted with domain adaptation, transfer
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loss functions are indeed having some impact, possibly as regularization.
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Chapter 6

Discussion and Conclusion

In this work, we provide a detailed, unbiased empirical evaluation of 5 state-of-the-art

deep unsupervised DA models to assess model robustness across different benchmark

domain adaptation tasks and datasets. This work provides a valuable objective empirical

analysis for model choice for a variety of data scenarios. Surprisingly, we observe that

AFN and DANN, the oldest model, are consistently top performers for all 3 training data

availability scenarios on the DomainNet benchmark. Interestingly, one of the oldest UDA

methods, DANN, outperforms newer models; most notably the 2020 MCC model, with the

latter performing at or near the bottom for a majority of adaptation tasks. This observation

suggests that future DA research thoroughly evaluate baseline models under a rich variety

of conditions when comparing them to newly proposed models.

Furthermore, we show that for Office-31, while MCC becomes the top-performing

model, all 5 models on average remain close in performance to one another. We observe,

however, that the MCC model is more sensitive to hyperparameter choice across datasets,

requires careful tuning for new datasets, and is not guaranteed to be the best model even

when tuned (i.e. on DomainNet). This suggests that the newest model is not the most

robust choice for practitioners and more careful analysis needs to be done when proposing

new models.
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Another important take-away of our study is that the dominating factor to learning

is the classification loss, even when weighting the two losses (classification and transfer

loss) with a wide range of weight values. The transfer loss curves indicate that little to

no learning occurs during training. We thus speculate that their effectiveness in target

domain classification is due more to them acting as a regularizer instead of truly aligning

domains. Future work is thus needed to confirm the usefulness of the proposed transfer

loss functions.

Further, as illustrated by visual inspection of T-SNE plots, the learned representations

for a (source, target) pair of domains are not mapped to a significantly overlapping feature

space - as would have been expected from DA models.
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Chapter 7

Future Work

As a potential future direction, we would like to explore comparing domain adaptation

models with a two-stage training approach. We would take the same proposed domain

adaptation models in literature, but first train them to solely be good classifiers, freeze that

model, and then subsequently attempt to learn to align the two domains with the respective

proposed transfer loss functions in each method. We would want to observe whether the

joint training, which involves complex hyperparameter tuning, may cause a disadvantage

to model performance.

Additionally, another avenue to pursue in investigating the effectiveness of domain

adaptation models is the data imbalance present both between classes of one domain and

between the domains. Overfitting to one domain due to an excess of data in one class

or domain is a possible hurdle in adapting across domains. We would like to look into

possible data imbalance techniques available in literature and apply them to the domain

adaptation setup.

Finally, as a result of this study, we not only provide a thorough empirical investigation

of domain adaptation models, but we also gain insight into what models may work well

for a variety of training scenarios and data types. We observed that the AFN and DANN

models are robust models and maintain high performance even under more limited data
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scenarios. This observation gives us a starting point for more applied work to be done on

real-world datasets with limited data and label availability. One specific application task

we would like to explore is in conjunction with the Army Research Lab (ARL) and our

mission to automatically assess the level of corrosion present for various anti-corrosive

materials that are subjected to two environments (two domains) of testing: indoor and

outdoor testing.
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Chapter 8

Supplementary Material

8.1 Office-31 Dataset

We provide some additional images in 8.1 from the Office-31 dataset [23] to show a few

more of the 31 classes present in the 3 domains: Amazon, DSLR, and Webcam.

Figure 8.1: Images from the Office-31 dataset. Each row is a domain, 3 sample classes
(backpack, scissors, trash can) are shown.
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8.2 DomainNet Dataset

8.2.1 DomainNet Examples

We provide some additional images in Figure 8.2 from the DomainNet dataset [20] to

show a few more of the 345 classes present in the 6 domains: clipart, infograph, painting,

quickdraw, real, and sketch.

Figure 8.2: Images from the DomainNet dataset. Each row is a domain, 3 sample classes
(airplane, dragon, toothpaste) are shown.

8.2.2 Dataset Preparation

There were a few inconsistencies identified with the original split of the DomainNet dataset

as originally defined in [20] and the VisDA-2019 competition that had to be rectified for

the purpose of the experiments to be conducted. We had to insure that there existed images

in each class, something we found to be a problem with the original split released, and had

to insure that we had enough images of each class present for each of the data subsets and

35



train/validation/test sets we were creating for our experimental design.

The inconsistencies specifically occurred in the painting domain. In the painting domain

test set, no images were assigned to the class "syringe" when images were available in the

dataset to be assigned there. Therefore, we assigned the 4 available images to the painting

domain syringe class in the test set. In the painting domain training set, no images were

assigned to the class "t-shirt" when images were available in the dataset to be assigned

there. Therefore, we assigned the 10 available images not already assigned to the test set

for "t-shirt" class here.

Additionally, in order to run 5-fold cross validation, a 6 image per class minimum

was enforced for all 3 subsets of the DomainNet dataset such that when creating the

cross-validated folds enough images would be available for splitting. This required adding

images previously not used in the defined 70-30 split (yet available in the dataset) to classes

that did not have 6 images assigned per class. We added to the original 70% of training

data in the painting domain 4 images to the "stereo" class, 3 images to the "underwear"

class, 4 images to the "waterslide" class, 10 images to the "toe" class, and an additional 6

images were moved from the test set to the training set for the "syringe" class.

8.3 Experiment Protocol

We provide an additional step-by-step procedure for how experiments were conducted to

fairly compare models and then present the optimal hyperparameters found for each model

on the DomainNet and Office-31 datasets.

8.3.1 Step-by-Step Procedure

1. Domain adaptation model is chosen (e.x. JAN)

2. Data subset is chosen (full, subset-50, subset-20, or Office-31)
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3. Source domain is chosen (clipart, infograph, painting, quickdraw, real, sketch,

amazon, dslr, or webcam)

4. Target domain is chosen, different than the source domain (clipart, infograph, paint-

ing, quickdraw, real, sketch, amazon, dslr, or webcam)

5. 5-fold cross validation is run

6. Choose new target domain

7. Repeat steps 5 and 6 until all domains are used as target

8. Choose new source domain

9. Repeat steps 4-8 until all domains are used as source

10. Choose new data subset

11. Repeat steps 3-10 until all data subsets chosen

12. Choose new domain adaptation model

13. Repeat steps 2-12 until all domain adaptation models chosen

8.3.2 Optimal Hyperparameters

In Tables 8.1, 8.2 we show the optimal values for the tuned hyperparameters on the

DomainNet and Office-31 datsets, respectively. We report: learning rate, weight decay,

loss trade-off, and temperature with a few other hyperparameter values. Pre-trained ResNet-

50 models are pre-trained on ImageNet [4]. All other default hyperparameter values will

be in the released code.

8.4 Supplemental Results

In this section we first show additional tables for all 5 models, for all 3 data subsets, for all

30 adaptation tasks on the DomainNet dataset but with standard deviations over the 5 cross-

validation folds for each adaptation task. Then we show additional tables for the Office-31

dataset, for all 6 adaptation tasks but with standard deviations over 5 cross-validation
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DANN JAN CDAN AFN MCC
Pre-trained (backbone) ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50

Batch Size 32 32 32 32 36
Momentum 0.9 0.9 0.9 0.9 0.9

Learning Rate 0.01 0.01 0.01 0.001 0.1
Weight Decay 0.001 0.001 0.003 0.001 0.0001
Loss Trade-off 1.0 1.0 2.0 0.05 5.0
Temperature - - - - 2.0

Table 8.1: Optimal hyperparamters for each model for the DomainNet dataset.

DANN JAN CDAN AFN MCC
Pre-trained (backbone) ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50

Batch Size 32 32 32 32 36
Momentum 0.9 0.9 0.9 0.9 0.9

Learning Rate 0.001 0.001 0.001 0.001 0.005
Weight Decay 0.01 0.01 0.001 0.01 0.001
Loss Trade-off 0.5 0.75 1.0 0.05 0.5
Temperature - - - - 2.0

Table 8.2: Optimal hyperparamters for each model for the Office-31 dataset.
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folds. We then include a set of tables with standard deviations over 5 cross-validation folds

for the Office-31 dataset but without the tuned hyperparamters on the Office-31 dataset,

instead showing the results on Office-31 when using the tuned hyperparameters found

on DomainNet; this table is shown to emphasize the sensitivity of the MCC model to

hyperparameter tuning. We then show additional classification and transfer loss curves for

4 more adaptation tasks and their corresponding test accuracy curves. Finally, we show

additional T-SNE plots for all 5 models for 5 adaptation tasks (clipart as source).

8.4.1 Model Comparisons

In Tables 8.3, 8.4, and 8.5 we show 5-fold cross-validated test set accuracies (means and

standard deviations) for each of the 30 adaptation tasks on DomainNet for all 5 models for

the full, subset-50, and subset-20 datasets, respectively.

In Table 8.6 we show 5-fold cross-validated test set accuracies (means and standard

deviations) for each of the 6 adaptation tasks on Office-31 for all 5 models with the tuned

hyperparameters on the Office-31 dataset.

In Table 8.7 we show 5-fold cross-validated test set accuracies (means and standard

deviations) for each of the 6 adaptation tasks on Office-31 for all 5 models with the tuned

hyperparameters from the DomainNet dataset.

8.4.2 Transfer Loss Analysis

In this section we provide the classification and transfer loss curves for the remaining 4

adaptation tasks where clipart is the source domain (infograph, quickdraw, real, and sketch

as target domains) as well as the test accuracy curves for each of the 4 adaptation tasks.

These results are also only for the full dataset and cross-validation fold 1. Refer to Figures

8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, and 8.11 for classification and transfer loss curves. Refer

to Figures 8.12, 8.13, 8.14, and 8.15 for test accuracy curves.
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8.4.3 Feature space alignment: T-SNE

Here we show in Figure 8.3 T-SNE plots for all 5 models for 5 adaptation tasks where

clipart is always the source domain.
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DANN clp inf pnt qdr rel skt
clp - 27.0 ± 0.2 37.3 ± 0.2 18.7 ± 0.2 47.6 ± 0.4 50.8 ± 0.3
inf 19.1 ± 0.2 - 18.6 ± 0.2 3.9 ± 0.2 22.7 ± 0.1 19.3 ± 0.1
pnt 34.3 ± 0.2 25.9 ± 0.2 - 7.9 ± 0.3 47.7 ± 0.2 41.4 ± 0.2
qdr 12.7 ± 0.5 5.5 ± 0.3 5.8 ± 0.3 - 6.5 ± 0.8 12.4 ± 0.2
rel 50.4 ± 0.2 36.9 ± 0.4 51.8 ± 0.2 12.7 ± 0.3 - 50.8 ± 0.3
skt 40.7 ± 0.1 22.6 ± 0.4 33.5 ± 0.5 13.0 ± 0.3 37.4 ± 0.3 -

JAN clp inf pnt qdr rel skt
clp - 28.1 ± 0.2 38.5 ± 0.5 15.3 ± 0.6 46.6 ± 0.3 48.5 ± 0.3
inf 17.2 ± 0.3 - 17.3 ± 0.2 2.4 ± 0.1 20.6 ± 0.1 16.5 ± 0.3
pnt 33.9 ± 0.3 26.6 ± 0.9 - 6.7 ± 0.3 46.6 ± 0.1 39.2 ± 0.5
qdr 11.4 ± 0.2 4.7 ± 0.2 4.8 ± 0.3 - 4.6 ± 0.2 10.1 ± 0.4
rel 49.5 ± 0.4 39.4 ± 0.4 51.5 ± 0.3 11.7 ± 0.7 - 47.0 ± 0.3
skt 40.2 ± 0.2 24.0 ± 0.1 35.7 ± 0.2 10.9 ± 0.3 36.5 ± 0.5 -

CDAN clp inf pnt qdr rel skt
clp - 26.6 ± 0.1 37.2 ± 0.2 19.9 ± 0.6 49.3 ± 0.3 51.0 ± 0.1
inf 18.7 ± 0.2 - 18.4 ± 0.3 4.0 ± 0.1 22.7 ± 0.2 18.8 ± 0.1
pnt 35.0 ± 0.2 25.2 ± 0.3 - 7.1 ± 0.2 49.0 ± 0.2 42.0 ± 0.2
qdr 10.1 ± 0.3 4.7 ± 0.4 4.7 ± 0.2 - 4.5 ± 0.5 9.3 ± 0.3
rel 52.6 ± 0.2 37.0 ± 0.3 51.6 ± 0.2 14.4 ± 0.2 - 51.1 ± 0.2
skt 40.9 ± 0.2 22.0 ± 0.4 34.8 ± 0.4 13.8 ± 0.5 38.7 ± 0.4 -

AFN clp inf pnt qdr rel skt
clp - 29.1 ± 0.5 38.9 ± 0.2 17.3 ± 0.6 43.9 ± 0.5 49.6 ± 0.4
inf 15.8 ± 0.2 - 16.5 ± 0.2 2.8 ± 0.1 17.6 ± 0.2 15.6 ± 0.2
pnt 36.0 ± 0.2 32.5 ± 0.5 - 6.6 ± 0.3 46.6 ± 0.2 42.6 ± 0.4
qdr 11.3 ± 0.2 3.1 ± 0.2 4.7 ± 0.1 - 4.8 ± 0.2 11.1 ± 0.2
rel 51.9 ± 0.3 45.7 ± 0.3 53.9 ± 0.4 11.8 ± 0.4 - 51.9 ± 0.4
skt 41.2 ± 0.4 25.0 ± 0.1 36.4 ± 0.1 9.3 ± 0.3 34.4 ± 0.3 -

MCC clp inf pnt qdr rel skt
clp - 31.1 ± 0.4 43.0 ± 0.4 11.6 ± 0.6 51.2 ± 0.6 53.6 ± 0.4
inf 13.5 ± 0.4 - 14.8 ± 0.4 1.1 ± 0.1 17.7 ± 0.3 13.8 ± 0.3
pnt 33.4 ± 0.6 28.7 ± 0.1 - 2.6 ± 0.4 46.1 ± 0.2 39.8 ± 0.3
qdr 12.9 ± 0.8 2.7 ± 0.4 3.7 ± 1.0 - 4.0 ± 0.7 11.7 ± 0.5
rel 49.0 ± 0.4 43.7 ± 0.6 52.5 ± 0.3 7.0 ± 0.4 - 49.1 ± 0.5
skt 39.3 ± 0.1 22.7 ± 0.7 36.1 ± 0.5 7.9 ± 0.8 35.1 ± 0.3 -

Table 8.3: Mean and standard deviation target domain test accuracy over 5-cross-val folds
for all models for all 30 adaptation tasks on the full dataset. (Columns = source domain,
rows = target domain)
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DANN clp inf pnt qdr rel skt
clp - 22.9 ± 0.4 34.1 ± 0.2 17.9 ± 0.3 45.3 ± 0.5 45.9 ± 0.4
inf 17.1 ± 0.2 - 17.0 ± 0.2 3.9 ± 0.3 21.6 ± 0.1 17.5 ± 0.1
pnt 32.0 ± 0.3 23.0 ± 0.3 - 7.5 ± 0.2 46.2 ± 0.2 38.7 ± 0.1
qdr 11.8 ± 0.3 5.2 ± 0.5 5.3 ± 0.5 - 6.6 ± 0.2 11.2 ± 0.4
rel 46.8 ± 0.3 33.6 ± 0.5 49.7 ± 0.1 12.8 ± 0.2 - 48.1 ± 0.2
skt 37.3 ± 0.3 19.8 ± 0.4 30.9 ± 0.4 12.5 ± 0.5 35.4 ± 0.5 -

JAN clp inf pnt qdr rel skt
clp - 24.0 ± 0.4 35.4 ± 0.1 14.8 ± 0.4 44.6 ± 0.3 44.4 ± 0.5
inf 15.4 ± 0.2 - 16.0 ± 0.3 2.6 ± 0.1 19.5 ± 0.3 14.7 ± 0.2
pnt 31.5 ± 0.4 23.3 ± 0.2 - 6.9 ± 0.3 45.5 ± 0.2 36.2 ± 0.4
qdr 10.5 ± 0.4 4.3 ± 0.2 4.2 ± 0.2 - 4.6 ± 0.3 9.5 ± 0.6
rel 46.6 ± 0.3 35.2 ± 0.4 50.1 ± 0.3 12.1 ± 0.7 - 44.6 ± 0.1
skt 36.5 ± 0.4 20.0 ± 0.4 33.1 ± 0.5 11.2 ± 0.3 34.6 ± 0.4 -

CDAN clp inf pnt qdr rel skt
clp - 22.4 ± 0.2 34.7 ± 0.2 19.1 ± 0.5 47.1 ± 0.2 46.2 ± 0.3
inf 16.9 ± 0.2 - 17.1 ± 0.1 4.0 ± 0.2 21.8 ± 0.1 17.1 ± 0.3
pnt 32.2 ± 0.7 21.7 ± 0.3 - 6.9 ± 0.5 47.8 ± 0.2 39.0 ± 0.2
qdr 8.4 ± 0.5 4.3 ± 0.2 3.9 ± 0.3 - 3.6 ± 0.5 8.5 ± 0.7
rel 49.1 ± 0.3 33.9 ± 0.8 50.3 ± 0.2 13.8 ± 0.4 - 48.5 ± 0.2
skt 37.1 ± 0.2 18.7 ± 0.2 31.8 ± 0.5 13.4 ± 0.5 36.4 ± 0.2 -

AFN clp inf pnt qdr rel skt
clp - 27.0 ± 0.2 36.5 ± 0.4 17.3 ± 0.5 43.2 ± 0.4 47.2 ± 0.1
inf 14.8 ± 0.1 - 15.8 ± 0.2 2.8 ± 0.1 17.2 ± 0.2 15.0 ± 0.2
pnt 34.2 ± 0.3 29.6 ± 0.2 - 6.7 ± 0.2 45.9 ± 0.1 41.0 ± 0.2
qdr 10.5 ± 0.3 3.2 ± 0.2 4.2 ± 0.2 - 4.5 ± 0.1 10.6 ± 0.1
rel 49.9 ± 0.3 42.5 ± 0.3 52.8 ± 0.2 12.2 ± 0.3 - 50.3 ± 0.1
skt 38.2 ± 0.4 22.0 ± 0.2 34.3 ± 0.3 9.2 ± 0.3 33.7 ± 0.2 -

MCC clp inf pnt qdr rel skt
clp - 26.4 ± 0.4 38.1 ± 0.5 11.9 ± 0.4 47.2 ± 0.2 49.4 ± 0.3
inf 11.7 ± 0.2 - 13.2 ± 0.2 1.2 ± 0.1 16.8 ± 0.3 12.4 ± 0.3
pnt 29.6 ± 0.4 24.5 ± 0.7 - 2.9 ± 0.0 43.3 ± 0.2 37.0 ± 0.4
qdr 12.0 ± 0.5 2.7 ± 0.3 4.0 ± 0.4 - 4.7 ± 0.4 11.2 ± 0.5
rel 45.1 ± 0.6 38.6 ± 0.7 49.0 ± 0.3 6.6 ± 0.5 - 46.1 ± 0.5
skt 34.9 ± 0.5 19.0 ± 0.5 32.5 ± 0.3 7.4 ± 0.9 33.2 ± 0.4 -

Table 8.4: Mean and standard deviation target domain test accuracy over 5-cross-val folds
for all models for all 30 adaptation tasks on the subset-50 dataset. (Columns = source
domain, rows = target domain)
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DANN clp inf pnt qdr rel skt
clp - 17.5 ± 0.5 29.0 ± 0.4 16.4 ± 0.6 41.0 ± 0.3 39.0 ± 0.4
inf 14.1 ± 0.1 - 14.9 ± 0.2 3.8 ± 0.1 19.9 ± 0.1 14.8 ± 0.3
pnt 27.1 ± 0.3 18.3 ± 0.8 - 7.2 ± 0.2 43.0 ± 0.2 34.2 ± 0.3
qdr 9.9 ± 0.1 3.9 ± 0.2 5.0 ± 0.4 - 6.1 ± 0.6 9.6 ± 0.2
rel 42.2 ± 0.5 28.3 ± 0.3 46.3 ± 0.2 12.4 ± 0.4 - 43.5 ± 0.3
skt 30.8 ± 0.3 15.0 ± 0.3 27.1 ± 0.4 11.2 ± 0.2 32.7 ± 0.2 -

JAN clp inf pnt qdr rel skt
clp - 18.5 ± 0.7 30.5 ± 0.5 13.7 ± 0.5 40.3 ± 0.4 37.6 ± 0.4
inf 12.8 ± 0.2 - 14.0 ± 0.2 2.6 ± 0.2 17.8 ± 0.1 12.3 ± 0.2
pnt 26.7 ± 0.3 19.9 ± 0.3 - 6.6 ± 0.2 43.0 ± 0.3 31.6 ± 0.3
qdr 7.9 ± 0.5 3.1 ± 0.1 4.1 ± 0.3 - 3.9 ± 0.4 7.7 ± 0.5
rel 40.8 ± 0.5 31.0 ± 0.3 47.3 ± 0.3 11.3 ± 0.6 - 39.5 ± 0.6
skt 29.7 ± 0.3 15.4 ± 0.5 28.4 ± 0.3 9.9 ± 0.4 30.8 ± 0.3 -

CDAN clp inf pnt qdr rel skt
clp - 16.7 ± 0.2 30.3 ± 0.7 16.1 ± 0.7 42.3 ± 0.2 38.9 ± 0.3
inf 13.7 ± 0.1 - 14.9 ± 0.1 3.6 ± 0.1 20.0 ± 0.1 14.0 ± 0.1
pnt 25.3 ± 0.2 18.9 ± 0.6 - 6.2 ± 0.3 44.6 ± 0.1 34.1 ± 0.5
qdr 4.8 ± 0.6 2.2 ± 0.4 2.5 ± 0.3 - 3.3 ± 0.2 5.4 ± 0.5
rel 42.1 ± 0.6 29.8 ± 0.7 47.8 ± 0.3 12.2 ± 0.6 - 44.1 ± 0.4
skt 28.1 ± 0.5 12.3 ± 0.3 27.4 ± 0.4 11.7 ± 0.3 33.0 ± 0.3 -

AFN clp inf pnt qdr rel skt
clp - 21.4 ± 0.4 32.7 ± 0.2 17.0 ± 0.6 40.7 ± 0.3 41.2 ± 0.2
inf 13.2 ± 0.3 - 14.7 ± 0.2 2.8 ± 0.1 16.7 ± 0.1 13.0 ± 0.2
pnt 30.3 ± 0.4 24.8 ± 0.1 - 6.2 ± 0.3 44.7 ± 0.2 36.8 ± 0.3
qdr 8.9 ± 0.3 2.4 ± 0.3 3.3 ± 0.2 - 3.8 ± 0.3 9.5 ± 0.1
rel 45.3 ± 0.4 35.9 ± 0.6 50.7 ± 0.3 11.8 ± 0.3 - 45.9 ± 0.3
skt 32.5 ± 0.2 17.5 ± 0.3 30.4 ± 0.2 8.7 ± 0.3 31.8 ± 0.0 -

MCC clp inf pnt qdr rel skt
clp - 19.0 ± 0.5 30.6 ± 0.4 11.6 ± 0.3 40.6 ± 0.3 40.3 ± 0.6
inf 8.7 ± 0.3 - 10.7 ± 0.2 1.2 ± 0.1 15.0 ± 0.3 9.6 ± 0.2
pnt 22.5 ± 0.4 18.4 ± 0.5 - 3.1 ± 0.3 39.6 ± 0.3 31.0 ± 0.6
qdr 9.6 ± 0.2 2.9 ± 0.6 4.3 ± 0.3 - 4.9 ± 0.6 9.8 ± 0.6
rel 37.8 ± 0.3 30.6 ± 0.4 44.3 ± 0.4 7.2 ± 0.9 - 39.6 ± 0.3
skt 26.4 ± 0.7 13.5 ± 0.5 26.1 ± 0.3 7.9 ± 0.5 27.9 ± 0.5 -

Table 8.5: Mean and standard deviation target domain test accuracy over 5-cross-val folds
for all models for all 30 adaptation tasks on the subset-20 dataset. (Columns = source
domain, rows = target domain)
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DANN Amazon DSLR Webcam
Amazon - 69.8 +/- 1.0 70.0 +/- 1.7
DSLR 91.7 +/- 2.6 - 99.7 +/- 0.6

Webcam 89.2 +/- 1.3 97.5 +/- 0.6 -
JAN Amazon DSLR Webcam

Amazon - 70.1 +/- 0.5 68.6 +/- 0.6
DSLR 92.5 +/- 1.2 - 100.0 +/- 0.0

Webcam 90.0 +/- 1.8 97.5 +/- 0.6 -
CDAN Amazon DSLR Webcam

Amazon - 69.9 +/- 2.9 65.9 +/- 1.0
DSLR 91.7 +/- 1.5 - 100.0 +/- 0.0

Webcam 89.7 +/- 1.5 97.3 +/- 0.4 -
AFN Amazon DSLR Webcam

Amazon - 70.3 +/- 0.8 70.2 +/- 1.0
DSLR 93.1 +/- 0.6 - 100.0 +/- 0.0

Webcam 89.2 +/- 0.8 98.2 +/- 0.4 -
MCC Amazon DSLR Webcam

Amazon - 74.7 +/- 1.8 77.2 +/- 0.6
DSLR 94.7 +/- 2.5 - 100.0 +/- 0.0

Webcam 92.2 +/- 1.9 98.3 +/- 0.6 -

Table 8.6: Mean and standard deviation target domain test accuracy over 5-cross-val folds
for all models for all 6 adaptation tasks with tuned hyperparameters on the Office-31
dataset. (Columns = source domain, rows = target domain)
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DANN Amazon DSLR Webcam
Amazon - 72.5 +/- 1.4 74.2 +/- 1.2
DSLR 89.3 +/- 2.5 - 99.7 +/- 0.6

Webcam 88.0 +/- 2.0 97.5 +/- 1.0 -
JAN Amazon DSLR Webcam

Amazon - 69.2 +/- 0.5 69.9 +/- 0.7
DSLR 89.3 +/- 0.9 - 99.7 +/- 0.6

Webcam 94.0 +/- 2.6 96.7 +/- 0.6 -
CDAN Amazon DSLR Webcam

Amazon - 72.2 +/- 2.6 71.3 +/- 2.1
DSLR 93.3 +/- 1.9 - 100.0 +/- 0.0

Webcam 93.3 +/- 1.1 98.0 +/- 0.7 -
AFN Amazon DSLR Webcam

Amazon - 69.9 +/- 0.8 70.3 +/- 1.1
DSLR 92.0 +/- 1.6 - 100.0 +/- 0.0

Webcam 88.3 +/- 0.6 98.2 +/- 0.4 -
MCC Amazon DSLR Webcam

Amazon - 8.7 +/- 1.7 12.3 +/- 1.0
DSLR 10.7 +/- 1.6 - 56.3 +/- 4.8

Webcam 9.3 +/- 1.4 47.2 +/- 3.9 -

Table 8.7: Mean and standard deviation target domain test accuracy over 5-cross-val folds
for all models for all 6 adaptation tasks with tuned hyperparameters from the DomainNet
dataset. (Columns = source domain, rows = target domain)

45



DANN

JAN

CDAN

AFN

(a) C2I (b) C2P

MCC

(c) C2Q (d) C2R (e) C2S

Figure 8.3: T-SNE plots for the airplane class only. Red represents the clipart source
domain, blue represents the target domain. a-e represent 5 of the 30 adaptation tasks where
clipart is always the source domain. (C=clipart, I=infograph, P=painting, Q=quickdraw,
R=real, S=sketch) Each row is a model, top to bottom: DANN, JAN, CDAN, AFN, MCC.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.4: Classification loss curves for varied loss trade-off hyperparameters (y-axis
log-scale). Clipart to infograph adaptation task for full dataset.
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(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.5: Transfer loss curves for varied loss trade-off hyperparameters (y-axis log-scale).
Clipart to infograph adaptation task for full dataset.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.6: Classification loss curves for varied loss trade-off hyperparameters (y-axis
log-scale). Clipart to quickdraw adaptation task for full dataset.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.7: Transfer loss curves for varied loss trade-off hyperparameters (y-axis log-scale).
Clipart to quickdraw adaptation task for full dataset.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.8: Classification loss curves for varied loss trade-off hyperparameters (y-axis
log-scale). Clipart to real adaptation task for full dataset.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.9: Transfer loss curves for varied loss trade-off hyperparameters (y-axis log-scale).
Clipart to real adaptation task for full dataset.
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(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.10: Classification loss curves for varied loss trade-off hyperparameters (y-axis
log-scale). Clipart to sketch adaptation task for full dataset.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.11: Transfer loss curves for varied loss trade-off hyperparameters (y-axis log-
scale). Clipart to sketch adaptation task for full dataset.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.12: Target domain test accuracies for varied loss trade-off hyperparameters.
Clipart to infograph adaptation task for full dataset.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.13: Target domain test accuracies for varied loss trade-off hyperparameters.
Clipart to quickdraw adaptation task for full dataset.

(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.14: Target domain test accuracies for varied loss trade-off hyperparameters.
Clipart to real adaptation task for full dataset.
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(a) DANN (b) JAN (c) CDAN (d) AFN (e) MCC

Figure 8.15: Target domain test accuracies for varied loss trade-off hyperparameters.
Clipart to sketch adaptation task for full dataset.
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