Toward Improving Effectiveness of Crowdsourced, On-Demand Assistance From Authors in Online Learning Platforms

by

Aaron Haim

A Thesis Proposal

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master in Science

in

Computer Science

April 2022

Approved:

Professor Neil T. Heffernan, Thesis Advisor

Professor Jacob R. Whitehill, Thesis Reader

Professor Craig A. Shue, Head of Department

Abstract

In this experiment, we have a set of **authors** made up of teachers and undergraduate college students who we paid to write *student-supports*, which are typically hints and explanations, to be given to students on-demand while solving problems assigned by their teachers in the ASSISTments platform¹. We want to see if we can tell which authors are, on average, producing *student-supports* that cause better student learning. We conducted a month-long intervention where students were exposed to support from different authors. In this experiment and its replication, we randomized the authors of the *student-supports* and analyzed a set of pairwise comparisons between authors. We failed to find evidence that we can reliably tell the difference between authors. It could be that our authors produce equally effective *student-supports*, or it could be that this work was underpowered, and we failed to recruit enough students to discover existing differences. All data and analysis being conducted can be found on the Open Science Foundation website².

¹ <u>https://www.assistments.org</u>

² <u>https://osf.io/zcbjx/</u>

Acknowledgements

We would like to thank the NSF (e.g., 2118725, 2118904, 1950683, 1917808, 1931523, 1940236, 1917713, 1903304, 1822830, 1759229, 1724889, 1636782, & 1535428), IES (e.g., R305N210049, R305D210031, R305A170137, R305A170243, R305A180401, & R305A120125), GAANN (e.g., P200A180088 & P200A150306), EIR (U411B190024 & S411B210024), ONR (N00014-18-1-2768), and Schmidt Futures. None of the opinions expressed here are that of the funders. We are funded under an NHI grant (R44GM146483) with Teachly as a SBIR.

Table of Contents

Abstract	ii
Acknowledgements	111
Table of Contents	iv
Illustrations	v
Nomenclature	vi
Introduction	7
Background	7
Methodology	9
Analysis	11
Results	13
Conclusion	15
References	17
Appendix	17
Appendix A: RQ1 Results for Study 1 and 2	17
Appendix B: RQ2 Results for Study 1 and 2	25
Appendix C: Author Code to Author Identifier	33
Appendix D: Consort Data Flow Plan for Dataset A	34
Bibliography	35

Illustrations

Fig. 1: A set of hints (Left) and an explanation (Right) for the sample problem in the ASSISTments platform.	8
Table 1: Timeline of the study breakdown of the data collection and method used to select the student-support to deliver to the student on request.	he 9
Fig. 2: The percentage of <i>student-supports</i> each author has generated within the ASSISTme platform.	ents 11
Fig. 3 : Model for the main effect, Dataset A Study 1 (the feature "author" is a categorical variable representing the first author in the <i>student-supports</i> author pairs i.e., author A).	13
Fig. 4 : A matrix of all possible pairwise comparisons between any two authors for Study 1 (I and Study 2 (right). Author identifiers can be translated using Appendix C.	eft) 14
Table 2: Study 1 overview of main effects.	15
Table 3: Study 2 overview of main effects.	15

Nomenclature

- Author: A creator of *student-supports* within the ASSISTments platform.
- **Student-Support:** A piece of feedback created by an author, typically a hint or explanation.
- *Star-Author:* An author whose *student-supports* can be seen by any student in the ASSISTments platform.
- **Single-Support Randomization:** A randomization method that occurs when only one *student-support* can be selected from for a problem. 90% of the time, the *student-support* can be requested by the student. The other 10%, only the answer can be requested by the student.
- **Problem-Based Randomization:** A randomization method that occurs when only multiple *student-supports* can be selected for a problem. A *student-support* is randomly selected from a list of *student-supports* available.
- **Author-Based Randomization:** A randomization method that occurs when multiple *student-supports* can be selected for a problem. A *student-support* is selected according to a priority list of *star-authors* assigned to the student.
- **Next Problem Correctness:** A boolean dependent measure used in previous works that is true if the student answered the next problem after receiving a *student-support* correct on the first try without viewing another *student-support*.
- **Dataset A:** The initial dataset containing the data for the two authors used to select the features for the OLS model.
- **Dataset B:** The main dataset containing the data for all remaining pairwise comparisons of authors.

Introduction

Studies have proven that providing on-demand assistance and additional instruction on a problem when a student requests it improves student learning in online learning environments. Additionally, crowdsourced, on-demand assistance generated from authors in the field is also effective. However, these studies conduct problem-based randomization where each condition represents different student-support for every problem encountered. As such, claims about a given author's effectiveness are provided on a per-student-support basis and not easily generalizable across all students and problems.

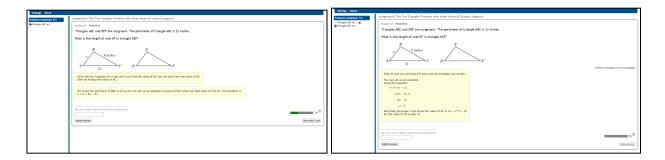
The ASSISTments project is trying to be the premier digital platform that supports high-quality studies in authentic, digital classroom environments. We can do this because thousands of teachers use ASSISTments to assign their classwork and homework, and we design numerous randomized controlled trials to learn what helps students learn. The science on the principles of learning always has a give and take between collecting observation data, engaging in theory building, and mixing in some amount of experimentation. For instance, we can take the principles to design and execute experiments to study their effect on learning.

Experiments using theory have a role to play in science. They generally manipulate a single variable simultaneously and help build new theories. But there is also a role of observing what works and then hypnotizing why something might be working. In this experiment, we are trying to see if we can detect a reliable difference in student learning between author. After we do that, we should be left with a set of content from authors that work well and a set of supports that don't work as well, and we can hypothesize what features of authors' *student-supports* are most effective and then use the E-TRIALS infrastructure to build two sets of student supports that differ only by that feature (Krichevsky, 2020).

As such, this experiment aims to answer the following questions:

- RQ1 When comparing two authors, which is the most effective at generating *student-supports (i.e., who causes the biggest gain on the post-test)*?
- RQ2 When comparing authors, are there reliable differences based upon demographics? (i.e., do lower knowledge students perform better with *student-supports* generated by author X compared to Y? Does one author write feedback that is better for females? Does one author write feedback that is better for students in rural schools?)

Background


As online learning platforms expand their content base, the need to generate on-demand assistance grows alongside it (Patikorn & Heffernan, 2020). Crowdsourcing provides an effective method to generate new assistance for students (Heffernan & Heffernan, 2014). As on-demand assistance generally improves student learning, authors and their assistance must be evaluated to maintain or improve the current level of quality of effectiveness (McLaren et al., 2016; Razzaq & Heffernan, 2009; Wood et al., 1976).

In 2003, Neil T. Heffernan and Cristina Heffernan developed ASSISTments: a free, online learning platform providing feedback and insights on students to better inform teachers for classroom instruction (Heffernan & Heffernan, 2014). ASSISTments provides problems and

assignments from open source curricula, the majority of which is K-12 mathematics, which teachers can select and assign to their students. Students complete assigned work within ASSISTments. For most problem types, students receive immediate feedback when a response is submitted for a problem, which tells the student whether the answer is correct and, if not, allows the student to try again (Feng & Heffernan, 2006).

In 2017, ASSISTments deployed the Special Content System, formerly known as TeacherASSIST. Dr. Heffernan had met teachers who were writing hint messages for their own students, but Heffernan had not built support for this function into the platform, preventing other teachers from assigning these author-created messages. This new system we created allows authors whom we trust to have their content go "viral" across the system. The new system called the "Special Content System" allows authors to create on-demand assistance or *student-supports* within the platform. This allowed us to identify which authors are making good content.

When ONLY ONE *student-support* was available for a given problem, the Special Content System performed a **single-support randomization**, where a given student would have a 90% chance of receiving the *student-support* with a 10% chance of receiving no *student-support*. Single-support randomization was evaluated based on the student's ability to answer the next problem correctly on the first try, known as **next problem correctness**. Using single-support randomization, we found that delivering *student-supports* to students caused more student learning compared to immediately giving students the answer (Patikorn & Heffernan, 2020; Prihar et al., 2021).

Fig. 1: A set of hints (Left) and an explanation (Right) for the sample problem in the ASSISTments platform.

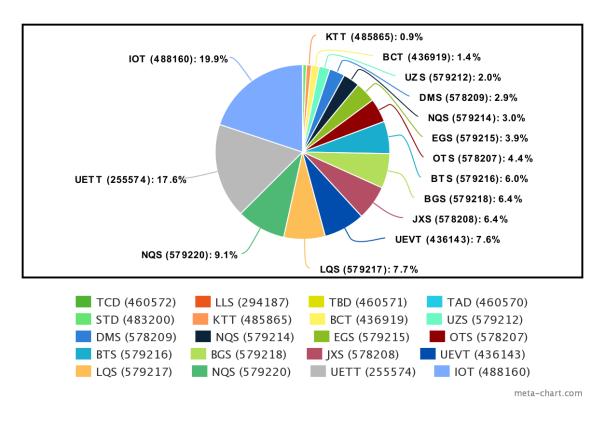
When TWO OR MORE *student-supports* were available for a given problem, the Special Content System performed a **problem-based randomization**, where a given student would be randomly assigned one of the available *student-supports*. Using problem-based randomization, we were able to assess which authors were more effective at improving student learning compared to other authors (Prihar et al., 2021). As such, claims about a given author's effectiveness are provided on a per-*student-support* basis– but we still don't know which author was generally better at improving student learning. In addition, students learn information cumulatively across problems (Lee, 2012), making it difficult to generalize this claim across all, or at least certain subsets, of students and problems within the platform.

The data ASSISTments collects from these various random control trials are highly valuable. We examined overall trends across various experiments, presenting the results of 50+ experiments involving over 50,000 students that tested many different ideas, including 1) giving student choices, 2) motivational messages, and 3) fill-in-the-blank versus multiple choice (Prihar, Syed, et al., 2022). We failed to find a main effect of giving students choices and surprisingly found that giving motivational messages backfired and was associated with poorer performance. Finally, we found that fill-in-the-blank answer types caused reliably better student learning.

As the ASSISTments platform determines which student-supports for a given problem are the most effective at improving student learning in general, there has been additional research to personalize which student-supports are better for a given student (Prihar et al., 2022)-shifting from problem-focused support to student-focused support. If ASSISTments chooses to develop a personalized learning approach for delivering student-supports to students, then it would be more difficult for the platform to evaluate new student-supports or authors without negatively impacting a student's learning. For example, let's say that for 40 students, we know which student-support for a specific problem will improve their performance the greatest. If another author added a new student-support for the given problem, we would have a high potential to detriment the students' learning without any prior data about whether the given student-support or any of its contributing factors are effective. By evaluating the general effectiveness of an author, new student-supports from effective authors could be introduced into the personalization model without majorly disrupting a student's learning. In addition, new students may receive student-supports more often from a given author in addition to the most effective student-support written for a problem to more efficiently determine which student-support would be more effective for a particular student.

Methodology

This experiment modified the Special Content System to use either problem-based randomization or author-based randomization over the course of three-and-a-half months. During this period, the initial study, known as **Study 1**, and a replication study, known as **Study 2**, delivered *student-supports* to students via author-based randomization across *star-authors* for the course of a month. To measure the performance of a given student, there was a two-week interval before Study 1, known as the **Pre-Test**, a two-week period in-between Study 1 and Study 2, known as the **Mid-Test**³, and a two-week period after Study 2, known as the **Post-Test**. During the test phases, we still gave students *student-supports*; it was just random. The tests will be treated as the initial state and the dependent measure to determine a student's growth in learning during the period of the author-based randomization.


³ The Mid-Test will act as a posttest to Study 1 and a pretest to Study 2.

Phase	Length of Time	Selection Mechanism
Pre-Test	2 Weeks Feb 16, 2022, to Feb 28, 2022	Problem-Based Randomization
Study 1	1 Month March 1, 2022, to March 31, 2022	Author-Based Randomization
Mid-Test	2 Weeks April 1, 2022, to April 15, 2022	Problem-Based Randomization
Study 2	1 Month April 16, 2022, to May 15, 2022	Author-Based Randomization
Post-Test	2 Weeks May 16, 2022, to June 1, 2022	Problem-Based Randomization

Table 1: Timeline of the experiment breakdown of the data collection and method used to select the student-support to deliver to the student on request.

Study 1: Author-Based Randomization

Study 1 will use author-based randomization over a period of a month. Ideally, every student could be assigned to a particular star-author. However, authors have the choice to write one student-support per problem for any problems they wish. As such, star-authors can generate student-supports across any number of problems with as much or as little overlap with other star-authors. As shown in Fig. 2, in ASSISTments, twenty star-authors have collectively generated 53,817 student-supports; however, four star-authors have generated over 50% of the available student-supports, with only two generating above 10% of the total pool.

Fig. 2: The percentage of student-supports each author has generated within the ASSISTments platform.

If an author has not written a student-support for the problem the student is solving and another author has, the Special Content System should provide one of the available student-supports. As such, assigning a single author to a given student would prevent students from receiving student-supports from authors who wrote a small number of them.

To mitigate the issue, a random ordering of all available star-authors was assigned to each student across the experiment period. This allowed a student to remain in condition with a given author for as long as possible. When a student requested a student-support for a given problem, the student will receive a student-support from the **topmost** author in their list ordering, who has written a student-support for a problem. For example, if there are three authors in the ordering B, A, and C, we first examine whether author B has written a student-support for that problem. If not, we examine author A and so on until an author has written a student-support for the problem or there are no student-supports.

Study 2: Author-Based Randomization with Reversed Ordering

Study 2 will also use an author-based randomization following the two-week interval known as the Mid-Test. Compared to Study 1, students will be provided a student-support from the **bottommost** author in their list ordering, which has written a student-support for a problem. Using the previous example with the author ordering B, A, C, we first examine whether author C has written a student-support for that problem. The Mid-Test will be treated as the pretest for Study 2 to account for the changes in performance gained across Study 1.

Power Analysis

We conducted a power analysis in R using the pwr package (Team, R.C., 2013; Champely, 2020), assuming that our intervention would double the normative expectation of change. Lipsey et al. (2012) suggest using a standardized instrument for the normal amount of change for 7-8th graders, which corresponds to an effect size of d = 0.32. To achieve 80% power, with alpha = 0.05, we will need a total of n = 310 students.

Analysis

We preregistered the conditions in our experiment, but since we had not written any analysis code at the time, we stated in our first pre-registration that we would pull down a small sample of about 10% of the collected data, then use that to create an analysis plan to analyze the remaining 90% of the data (we call the first dataset, **Dataset A** and we call the primary dataset, **Dataset B**). After using Dataset A, we will never again look at Dataset A.

To be precise, our criterion for analysis was two-fold: 1) that at least 1,000 students were exposed to a randomized controlled comparison between a given pairwise group of authors and 2) since we did not want to confound the type of student support (whether they wrote hints or an explanation) we only wanted to compare authors who wrote the same type of supports. Based on prior months, only 35% of students requested a student-support. As such, since we tried to observe as little data as possible, we calculated that each pairwise comparison should have at least 886 students. We then rounded-up the value to 1,000 students to account for potentially lost data and overlap between conditions.

Inclusion Criteria

To generate the initial model, we used Dataset A, allowing us to solidify the method for handling Dataset B. Dataset A included students who viewed a problem during the Study 1 time period, and they requested a *student-support* and could have received either author in the pair BCT (436919) and EGS (579215)⁴. In the case of three or more author conditions, the student had to be randomly assigned to one of the authors in the comparison (e.g., BCT or EGS). We then looked at the two-week period prior to the study, referred to as the Pretest. Students who did not complete at least one problem during the Pretest period were excluded from the study. Similarly, students who were not assigned any problems during the study posttest period were excluded from the study.

For the BCT vs EGS comparison, 1,073 students met the initial eligibility requirements. 345 students did not complete any pretest problems and were excluded leaving 728 students randomized between BCT and EGS: 373 to BCT and 355 to EGS. In the BCT condition, 316 students were excluded: 305 did not ever request a *student-support* during the study period, and 11 more were not assigned a problem during the post-test period. In the EGS condition, 297 were excluded, 282, due to not ever requesting a *student-support*, and 15 were not assigned a problem during the post-test. (To be clear, if a student never asks for *student support*, they have no idea what condition they would have gotten, so it's very reasonable to drop all students who never requested a *student-support*.) This left 57 students in the BCT condition and 58 students

⁴ A breakdown of which Author Code belongs to which Author Identifier can be found in Appendix C.

in the EGS condition to generate the model. We used this pair to create the model, but since the total number of students was under 310, it would not pass the criteria for our power analysis. But that was the point: pull a small amount of data to make Dataset A that we can use to write a precise data filtering and analysis plan to preregister. The flow diagram showing this enrolment cascade is in Appendix D.

The Preregistration of Analysis Plan using Dataset A

For each student, we collected statistics prior to the experiment period, the author condition they were assigned to during the course of the study, and the average partial credit score across all problems on the pretest and posttest. We then used the statistics, author condition, and average partial credit score on the pretest as the initial feature set to fit an Ordinary Least Squares (OLS) mode and observe the exact coefficient on the author condition. The average partial credit score on the posttest acted as the dependent measure.

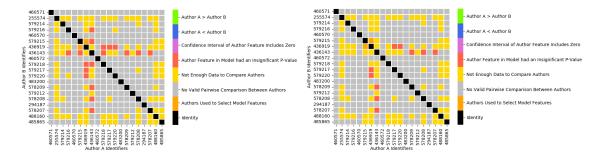
Using the initial feature set and the analysis model, we first screened features for collinearity. If the correlation between a pair of features was greater than 0.95 in absolute value, one feature of the pair (chosen arbitrarily) was dropped. Afterward, the remaining features in the model were removed one at a time using a backward stepwise regression. The regression would remove the feature that was the most insignificant. The author condition and average partial credit score across the pretest were static features and were not removed from the model (using our step-wise process). The remaining features were then fixed in the model to generate the interaction effects and removed high correlations and insignificant ones. The model is shown in Fig. 3.

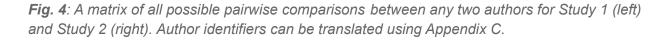
							=	
	average_problem_acc		R-squa			0.389		
Model:		OLS		-squared	:	0.36		
Method: Date:	Least Sq Thu, 28 Jul		F-stat		1. J X			
Date: Time:								
No. Observations:	11:	115	ATC:	Log-Likelihood: -0.67835 AIC: 11.36			-	
Df Residuals:						25.0		
Df Model:		4	BIC:			23.0	0	
Covariance Type:		HC1						
		со	ef s	td err	Z	P> z	[0.025	0.975
const		0.68	43	0.092	7.452	0.000	0.504	0.86
author				0.047	-1.163	0.245	-0.146	0.03
pretest_avg_problem					3.020		0.099	
student_std_attempt		0.59			2.258			
student_std_attempt	ed_before_support	-1.08	45	0.221	-4.914	0.000	-1.517	-0.65
Omnibus:	0.859	Durbi	n-Watso	n:		2.303		
Prob(Omnibus):	0.651	Jarqu	e-Bera	(JB):		0.965		
Skew:	-0.187	Prob (JB):			0.617		
Kurtosis:	2.752	Cond.	No.			16.4		

Fig. 3: Model for the main effect, Dataset A Study 1 (the feature "author" is a categorical variable representing the first author in the Student-Supports author pairs i.e., author A).

We "burned" (i.e., we used some data to generate an analysis plan that we then never used again) this one pairwise comparison (BCT vs. EGS) to write code to analyze the other pairwise comparisons in Study 1 and Study 2. To avoid p-hacking, we ran the analysis a single time, only touching the data once, to generate the necessary results.

The Main Dataset: Dataset B


The selected features were then used to fit an OLS model for the remaining pairwise comparisons of author-pairs. If the author-pair condition was significant and the confidence interval did not include zero, then we could claim that one author outperformed the other. The author's condition was significant if the p-value, corrected by Benjamini-Hochberg, was less than 0.05.


Demographic Results

In addition to the author condition model, a separate OLS model was fitted with the selected features and three demographic features along with their interactions with the author condition. The demographic features collected were the inferred gender of the student, whether the school the student attended was in an urban, suburban, or rural setting, and whether the student was in the top third, middle third, or lower third of students based on the average partial credit score across the posttest.

Results

After running the analysis, Study 1 only had nine pairwise comparisons that met the initial inclusion criteria, while Study 2 only had five. This can be seen in Fig. 4, where the nine red boxes show the valid pairwise comparisons. The summarized results of Study 1 and Study 2 which met the inclusion criteria can be seen in Table 2 and Table 3, respectively. The full results can be found in Appendix A.

The power analysis suggested that we needed 310 students, so we only looked at experiments where the number of students was over 310. However, since 1) many of the students did not complete a problem during the two-week pretest period and 2) only 35% of students asked for a *student-support* during the month of the study, many of the pairwise comparisons did not have enough students to be considered significant. Out of the nine comparisons on Study 1, only three have over 310 students, and none of those experiments suggested a difference between authors. In Study 2, we found only one student with over 310 students, and that study also failed to find a main effect between authors.

	se Group ID or A vs. B)	P-Value (Corrected)	Effect Size Estimate	Number of Observations	Meet Power Analysis (n>310)	Demographic
UEVT	OTS			286	No	
UEVT	JXS	.274 (0.739)	.0281	420	Yes	No reliable interactions.
UEVT	DMS			245	No	
UEVT	EGS			165	No	
UEVT	BTS			125	No	
UEVT	BGS			129	No	
BCT	_LQS	.106 (.739)	.0367	533	Yes	No reliable interactions.
ВСТ	BGS			247	No	
ВСТ	_NQS	.562 (.778)	0159	361	Yes	No reliable interactions.

Table 2: Study 1 overview of main effects.

	e Group ID	P-Value	Effect Size			Demographic
(Autho	or A vs. B)	(Corrected)	Estimate	Observations	Analysis (n>310)	
UEVT	OTS			101	No	
UEVT	JXS		-	114	No	
UEVT	DMS			123	No	
вст	LQS	.340 (.965)	.0268	364	Yes	A reliable interaction.
BCT	NQS			242	No	

Table 3: Study 2 overview of main effects.

For RQ2, we looked to see if the four comparisons had reliable interactions with demographic features and conditions. We found that in Study 1, across the three comparisons, there were none (summarized in the right column of Table 2), while in Study 2, only one comparison found a reliable effect of locale. This was interpreted to mean that for students in a school located in an urban district, they performed reliably better with one of the authors. However, given that in Study 1, we did not find that effect for the same pair of authors (436919 - 579217), so we are not making much of that finding. The full results can be found in Appendix B.

Conclusion

In this experiment, using the dynamically selected model, we failed to find evidence that we can find reliable differences in student learning. That does not mean there is no difference and authors are equally good; we can only conclude that this plan failed to find differences. A couple of significant differences were found within the demographic model, but they are likely to be attributed to the variance of the feature set. We could try to run a planned comparison to see if those interactions could be replicated.

Limitations

We had 140,365 students use ASSISTments since July 1, 2021. We had 32,057 middle school students using ASSISTments during the period of the study, but we are reporting on experiments with just hundreds of students. We were surprised that the n-sizes in our experiments were so small. But we wrote ahead of time a detailed pre-registration specifying who qualified to participate. Since we only allowed students that attempted one problem during

the pretest period, we lost subjects. They also had to ask for a *student-support* during the study. Therefore we lost many users as they never asked for help (so they never saw the conditions).

We also suffered from having 20 different authors write content, so there were too many author-pair conditions to have a lot of subjects per condition. One thing we want to change in this next round is to get more statistical power to detect differences. In this past study, the students were divided into many different conditions making the total for each condition lower than we would have liked.

References

Appendix

Appendix A: RQ1 Results for Study 1 and 2

This section shows the nine different regression results for Study 1 for models with main effects. These are the models that relate to RQ1. Table 2 summarized a few key results from the below nine regressions.

i. UEVT (436143) vs OTS (578207)

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	average_problem_accu Least Squ Thu, 28 Jul 11:1	OLS Lares 2022	Adj. 1 F-stat Prob Log-L:	R-squared: tistic:	cic):	0.241 0.230 20.06 1.51e-14 -1.8209 13.64 31.92		
		co	ef :	std err	z	P> z	[0.025	0.975]
const author pretest_avg_problem student_std_attemp student_std_attemp		-0.01 0.18 -0.51	50 45 10	0.029 0.082 0.247	-0.517 2.261 -2.070	0.000 0.605 0.024 0.038 0.000	-0.072 0.025 -0.995	0.042 0.345 -0.027
Omnibus: Prob(Omnibus): Skew: Kurtosis:	22.872 0.000 -0.659 3.703	Jarqu	JB):			====== 1.691 26.590 68e-06 20.2		

ii. UEVT (436143) vs JXS (578208)

Dep. Variable: a	average problem acci	iracy R.	-squared:		0.20	7	
Model:	<u> </u>		ij. R-squared	:	0.20	0	
Method:	Least Sq	lares F	-statistic:		28.4	5	
Date:	Thu, 28 Jul	2022 P:	cob (F-statis	tic):	6.58e-2	1	
Time:	11:	10:51 Lo	og-Likelihood	:	-35.55	9	
No. Observations:		420 A	EC:		81.1	2	
Df Residuals:		415 B	EC:		101.	3	
Df Model:		4					
Covariance Type:		HC1					
		coef	std err	Z	P> z	[0.025	0.975]
const		0 5664	0.060	9 / 8 8	0 000	0 449	0.683
author		0.0281					
pretest avg problem	accuracy		0.056				
student std attempte			0.183				
student_std_attempte							
Omnibus:	24.832	Durbin-	Vatson:		1.790		
Prob(Omnibus):	0.000	Jarque-1	Bera (JB):		27.637		
Skew:	-0.618	Prob(JB)	:	9.	97e-07		
Kurtosis:	3.223	Cond. No	o.		18.0		

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

iii. UEVT (436143) vs DMS (578209)

	OLS Reg	ressior	1 Resu	lts			_	
Dep. Variable:	average problem accu	uracy	R-sq	uared:		0.12	6	
Model:				R-squared:	:	0.11	1	
Method:	Least Squ	lares	F-st;	atistic:		9.18	8	
Date:	Thu, 28 Jul	2022	Prob	(F-statist	cic):	6.36e-0	7	
Time:	11:3	10:52	Log-	Likelihood:	:	-21.15	4	
No. Observations:		245	AIC:			52.3	1	
Df Residuals:		240	BIC:			69.8	1	
Df Model:		4						
Covariance Type:		HC1						
		cc	ef	std err	Z	P> z	[0.025	0.975]
const		0.65	575	0.082	7.984	0.000	0.496	0.819
author		-0.01	17	0.034	-0.342	0.732	-0.079	0.055
pretest_avg_problem						0.027		
student_std_attemp						0.821		
student_std_attemp	ted_before_support	-0.57	78	0.224	-2.579	0.010	-1.017	-0.139
Omnibus:	24.999	Durbi	n-Wat:	son:		1.912		
Prob(Omnibus):	0.000	Jarqu	ue-Ber;	a (JB):		29.418		
Skew:	-0.815				4	.09e-07		
Kurtosis:	3.473	Cond.	No.			19.8		
Notes:								

[1] Standard Errors are heteroscedasticity robust (HC1)

iv. UEVT (436143) vs EGS (579215)

	OLS Reg	ression	n Resul	ts			=	
Dep. Variable:	average_problem_acc	uracy	R-squ	ared:		0.18	7	
Model:		OLS	Adj.	R-squared:	:	0.16	7	
Method:	Least Sq					9.25	-	
Date:	Thu, 28 Jul	2022	Prob	(F-statist	cic):	9.43e-0	7	
Time:	11:		2	ikelihood:	:	-13.91		
No. Observations:			AIC:			37.8	-	
Df Residuals:			BIC:			53.3	5	
Df Model:		4						
Covariance Type:		HC1						
		===== С(e=====================================	std err	z	============= P> z	======================================	0.975]
const				0 000		0.000		0 070
author			351			0.393		
	m accuracy							
student std attemp						0.397		
student_std_attemp	ted_before_support	-0.70	015	0.221	-3.174	0.002	-1.135	-0.268
Omnibus:	5.634					1.862		
Prob(Omnibus):	0.060	-		(JB):		5.605		
Skew:	-0.413		. , ,			0.0607		
Kurtosis:	2.637	Cond	. NO.			16.2		
						=		
Notes:								
[1] Standard Error	s are heteroscedasti	city ro	obust (HC1)				

v. UEVT (436143) vs BTS (579216)

Dep. Variable:	average problem acc	uracv	R-sa	uared:		0.26	4	
Model:	avorago_prosrom_acc			R-squared:		0.23	-	
Method:	Least Sq		2	1		12.2		
Date:	Thu, 28 Jul				ic):	2.19e-0	8	
Time:	,			Likelihood:	,	-15.20		
No. Observations:			AIC:			40.4	2	
Df Residuals:		120	BIC:			54.5	6	
Df Model:		4						
Covariance Type:		HC1						
		C	bef	std err	Z	P> z	[0.025	0.975
const				0.110	7 409		0.598	1.02
author			104				-0.137	
pretest avg problem	accuracy						0.022	
student std attempt							-1.330	
student_std_attempt	ed_before_support						-1.306	
Omnibus:	2.896	Du mb				1 504		
Prob(Omnibus):	0.235					2.791		
Skew:	-0.363			a (UD):		0.248		
Kurtosis:	2.910		, .			15.9		
RUICOSIS:	2.910	Cona	. NO.			13.9		

[1] Standard Errors are heteroscedasticity robust (HC1)

vi. UEVT (436143) vs BGS (579218)

Dep. Variable:	average problem acc	uracv	R-sa	R-squared:			4		
Model:	a.ora30_prosrom_a00			R-squared:		0.12	-		
Method:	Least Sq			F-statistic:			6.636		
Date:	Thu, 28 Jul				ic):	7.14e-0	7.14e-05		
Time:	11:	10:55	Log-!	Log-Likelihood: -			3		
No. Observations:		129	AIC:	5			9		
Df Residuals:		124	BIC:			55.5	9		
Df Model:		4							
Covariance Type:		HC1							
		C(oef	std err	Z	=====================================	[0.025	0.975]	
const		0.5	 986	0.120	4.991	0.000	0.364	0.834	
author		0.0	548	0.051	1.069	0.285	-0.046	0.155	
pretest_avg_proble	m_accuracy	0.1	612	0.089	1.806	0.071	-0.014	0.336	
student_std_attemp							-0.373		
student_std_attemp	ted_before_support	-0.7\$	807	0.249	-3.130	0.002	-1.270	-0.292	
Omnibus:	======================================	Durb	======= in-Wat:	======================================	;=========	1.949			
Prob(Omnibus):	0.013	Jarg	ue-Bera	a (JB):		9.193			
Skew:	-0.652					0.0101			
Kurtosis:	2,905	Cond	. No.			15.7			

vii. BCT (436919) vs LQS (579217)

Den Wendelahler					-			
Dep. Variable: average Model:	e_problem_acc			quared: . R-squared:		0.24	-	
Model: Method:	Least Sq					44.6		
Date:	Thu, 28 Jul				ia).		•	
Time:	,			-Likelihood:	,	-41.75		
No. Observations:	11.		AIC			93.5	-	
Df Residuals:			BIC			114.	-	
Df Model:		4	DIC	•		111.		
Covariance Type:		HC1						
		C	bef	std err	Z	P> z	[0.025	0.975]
const		0.64	493	0.050	12.862	0.000	0.550	0.748
author				0.023				
pretest_avg_problem_accura	acy	0.22	271	0.050	4.509	0.000	0.128	0.326
student_std_attempted				0.147				
student_std_attempted_befo	ore_support	-0.93	141	0.111	-8.259	0.000	-1.131	-0.697
Omnibus:	17.976	Durb:	in-Wa	tson:		1.621		
Prob(Omnibus):	0.000	Jarqu	le-Be	ra (JB):		18.879		
Skew:	-0.452				7.	95e-05		
Kurtosis:	3.184	Cond	. No.			17.1		
Notes:								

viii. BCT (436919) vs BGS (579218)

Dep. Variable:	average problem acc	uracv	R-squa	ared:		0.26	4	
Model:	average_problem_acc			R-squared:		0.25	-	
Method:	Least So			-		20.4		
Date:					cic):	1.50e-1	4	
Time:				kelihood:		-16.43		
No. Observations:			AIC:			42.8	6	
Df Residuals:		242	BIC:			60.4	1	
Df Model:		4						
Covariance Type:		HC1						
		======						
		C	oef s	std err	Z	P> z	[0.025	0.975]
const		0.5	730	0.086	6.636	0.000	0.404	0.742
author						0.899		
pretest_avg_proble	m_accuracy	0.33	207	0.081	3.983	0.000	0.163	0.479
student std attemp	ted	-0.10	075	0.203	-0.529	0.597	-0.505	0.291
student_std_attemp	ted_before_support	-0.70	055	0.177	-3.995	0.000	-1.052	-0.359
Omnibus:	2.144	Durb	in-Wats			1.857		
Prob(Omnibus):	0.342	Jarg	ue-Bera	(JB):		1.737		
Skew:	-0.037					0.420		
Kurtosis:	2.596	Cond	. No.			14.5		

ix. BCT (436919) vs NQS (579220)

							=	
	average_problem_acc					0.28	•	
Model: Method:	I t - C		2	R-squared:	:	0.27 39.5		
Date:	Least Sq Thu, 28 Jul				i a) .			
Time:	-			(F-Statist Likelihood:		-19.21		
No. Observations:	11:		AIC:			-19.21		
Df Residuals:		356				67.8	-	
Df Model:		4	DIC.			07.0	1	
Covariance Type:		HC1						
==================								
		cc	ef	std err	Z	₽> z	[0.025	0.975]
const		0.70	95	0.066	10.755	0.000	0.580	0.839
author		-0.01	59	0.027	-0.580	0.562	-0.069	0.038
pretest_avg_proble		0.19	27	0.063	3.051	0.002	0.069	0.317
student_std_attemp						0.325		
student_std_attemp	ted_before_support	-1.01	.57	0.134	-7.586	0.000	-1.278	-0.753
Omnibus:	6.102	Durbi	.n-Wat	son:		1.687		
Prob(Omnibus):	0.047	Jarqu	le-Ber	a (JB):		6.244		
Skew:	-0.308	Prob(JB):			0.0441		
Kurtosis:	2.810	Cond.	No.			15.5		

The next section shows the five different regression results for Study 2 for models with main effects. Table 3 summarized a few key results from the below five regressions, and that none of them allow us to reliably say one teacher is better than another. Please note that the following indices use the same author pairs as in Study 1:

Study 1	Study 2
i	i
ii	ii
iii	iii
vii	iv
ix	V

i. UEVT (436143) vs OTS (578207)

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		OLS lares 2022 13:47 101	Adj. F-sta Prob Log-L	R-squared: tistic:	ic):	0.282 0.252 12.55 2.98e-08 -11.518 33.04 46.11		
		co	====== ef	std err	z	P> z	[0.025	0.975]
<pre>const author pretest_avg_proble student_std_attemp student_std_attemp</pre>	_ 1	0.00 0.33 -0.20	25 24 47	0.057 0.117 0.378	0.044 2.843 -0.541	0.000 0.965 0.004 0.588 0.002	-0.108 0.103 -0.946	0.113 0.562 0.537
Omnibus: Prob(Omnibus): Skew: Kurtosis:	3.688 0.158 -0.455 2.786	Prob (e-Bera JB):					

[1] Standard Errors are heteroscedasticity robust (HC1)

ii. UEVT (436143) vs JXS (578208)

Dep. Variable: a							-	
	verage_problem_acc					0.15	-	
Model:			2	R-squared:		0.12	-	
Method:	Least Sq					4.64		
Date:	Thu, 28 Jul							
Cime:	11:			Likelihood:		-18.71	-	
No. Observations:			AIC:			47.4		
Of Residuals:			BIC:			61.1	1	
Of Model:		4						
Covariance Type:		HC1						
		C	pef	std err	Z	P> z	[0.025	0.975]
const		0.7	 321	0.127	6.181	0.000	0.534	1.030
author							-0.132	
pretest_avg_problem_	accuracy	0.0	868	0.119	0.727	0.467	-0.147	0.321
student_std_attempte							-1.072	
student_std_attempte	d_before_support	-0.92	208	0.340	-2.709	0.007	-1.587	-0.255
 Dmnibus:	6.179	Durb	in-Wat	======================================		1 763		
Prob(Omnibus):	0.046							
Skew:	-0.561			a (02).		0.0412		
Kurtosis:	2.707					21.5		
			======					

iii. UEVT (436143) vs DMS (578209)

Dep. Variable:	average_problem_acc	uracy	R-squ	lared:		0.08	-	
Model:	—	OLS	Adj.	R-squared:	1	0.05	5	
Method:	Least Sq	Jares	F-sta	tistic:		2.72	8	
Date:	Thu, 28 Jul	2022	Prob	(F-statist		0.032	-	
Time:	11:	13:49	Log-L	ikelihood:	:	-17.22	2	
No. Observations:		123	AIC:			44.4	-	
Of Residuals:		118	BIC:			58.5	0	
Df Model:		4						
Covariance Type:		HC1						
		CC	bef	std err	Z	P> z	[0.025	0.975
const		0.6	103	0.101	6.055	0.000	0.413	0.80
author		0.05	146	0.051	0.286	0.775	-0.085	0.11
pretest_avg_proble							-0.052	
student_std_attemp	ted	-0.13	161	0.326	-0.356	0.722	-0.756	0.52
student_std_attemp	ted_before_support	-0.56	606	0.267	-2.096	0.036	-1.085	-0.03
======================================	9.901	Durb	======= in-Wats			-=====		
Prob(Omnibus):	0.007							
Skew:	-0.565			(02):		0.0134		
		Cond.				18.5		

iv. BCT (436919) vs LQS (579217)

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	average_problem_acc Least Sq Thu, 28 Jul 11:	OLS uares 2022	Adj. F-sta Prob Log-I AIC:	R-squared: atistic:	ic):	0.16 0.15 18.8 4.37e-1 -35.05 80.1 99.5	4 6 4 0 0	
			====== ef	std err	Z	P> z	[0.025	0.975]
const author pretest_avg_proble student_std_attemp student_std_attemp		0.02 0.22 -0.35	68 62 91	0.028 0.054 0.225	0.955 4.209 -1.595	0.340 0.000 0.111	0.451 -0.028 0.121 -0.800 -0.723	0.082 0.332 0.082
Omnibus: Prob(Omnibus): Skew: Kurtosis:		Prob (e-Bera JB):					

v. BCT (436919) vs NQS (579220)

Dep. Variable:	average problem acc	uraqu	R-squ	larod.		0.17	6	
Model:	average_problem_acc	4	-	R-squared:		0.16	-	
Method:	Least Sq			*		14.7	-	
Date:	Thu, 28 Jul				ic).			
Time:	-			Likelihood:		-26.90		
No. Observations:	11.		AIC:	JIKCIIII000.		63.8	-	
Df Residuals:			BIC:			81.2	-	
Df Model:		4	D10.			01.2	0	
Covariance Type:		HC1						
			-=====		:===========			
		CC	bef	std err	Z	P> z	[0.025	0.975]
const		0 51		0 070	7 592	0 000	0.396	0.671
author					-0.304			
pretest avg proble					3.554		0.099	
student std attemp							-0.464	
student_std_attemp	ted_before_support	-0.61	150	0.160	-3.856	0.000	-0.928	-0.302
Omnibus:		Durbi				1.657		
Prob(Omnibus):		1		a (JB):				
Skew: Kurtosis:	-0.258	Prob Cond.				0.159 20.2		
Kurtosis:	2.687	Cona.	NO.			20.2		

Appendix B: RQ2 Results for Study 1 and 2

Recall that RQ2 is "When comparing authors, are there reliable differences based upon demographics?" To answer this question, we computed regressions that included both demographics and interaction terms. Not too surprisingly, the demographics features helped predict posttest scores, but the real question is about the interaction terms. If there are reliable interactions between authors and any of the demographics features, that would suggest that some group of students learn better with one of the teachers versus the other teacher. We have found little evidence to suggest any such reliable heterogeneous treatment effects.

Note that the number of observations appears lower. This is due to the fact that we are missing demographic information for some students. Please note that since this model has an intercept (labeled as const) representing an urban, high knowledge, female.

This section shows the nine different regression results for Study 1 for models with main effects. Table 2 summarized the results in the 'Demographic' column.

i. UEVT (436143) vs OTS (578207)

Thu, 28 Jul	OLS Adj Dares F-s 2022 Pro 11:04 Log 77 AIC 62 BIC 14 HC1	. R-squared tatistic: b (F-statis -Likelihood :	tic): :	8.002 14.0 49.1	4 57 66 00 55	
Thu, 28 Jul 11:	Jares F-s 2022 Pro 11:04 Log 77 AIC 62 BIC 14 HC1	tatistic: b (F-statis -Likelihood : :	tic): :	5.16 2.61e-0 8.002 14.0 49.1	7 6 0 0 5	
Thu, 28 Jul 11:	2022 Pro 11:04 Log 77 AIC 62 BIC 14 HC1	b (F-statis -Likelihood : :	:	2.61e-0 8.002 14.0 49.1	6 0 0 5	
11:	11:04 Log 77 AIC 62 BIC 14 HC1	-Likelihood : :	:	8.002 14.0 49.1	0 0 5	
	77 AIC 62 BIC 14 HC1	:		14.0 49.1	0 .5	
	62 BIC 14 HC1			49.1	.5	
	14 HC1				-	
	HC1					
		SCU EII	Z	₽> z	[0.025	0.975]
	0.9370	0.236	3.971	0.000	0.475	1.400
	-0.1161		-0.671		-0.455	
acy	-0.0612		-0.403		-0.359	0.23
		0.477	-1.106	0.269	-1.463	0.40
ore support	0.4635	0.557	0.832	0.405	-0.628	1.55
	0.0041	0.067	0.062	0.951	-0.127	0.13
	-0.4663	0.186	-2.502	0.012	-0.832	-0.10
	-0.2733	0.116	-2.352	0.019	-0.501	-0.04
	0.0392	0.143	0.274	0.784	-0.240	0.31
	-0.0055	0.104	-0.053	0.958	-0.208	0.19
	0.1192	0.163	0.729	0.466	-0.201	0.44
	-0.0776	0.187		0.677	-0.443	0.28
	0.1873	0.173		0.280	-0.152	0.52
	0.1465	0.136				0.41
	-0.0253	0.099			-0.219	0.16
0.000	Jarque-Be	ra (JB):		20.442		
-0.990	Prob(JB):		3.	64e-05		
4.566	Cond. No.			36.7		
	 16.509 0.000 -0.990	0.0041 0.4663 -0.2733 0.0392 -0.0055 0.1192 -0.0776 0.1873 0.1465 -0.0253 -0.0255 -0.0253 -0.0255 -0.0253	bre_support 0.4635 0.557 0.0041 0.067 -0.4663 0.186 -0.2733 0.116 0.0392 0.143 -0.0055 0.104 0.1192 0.163 -0.0776 0.187 0.1873 0.173 0.1465 0.136 -0.0253 0.099 16.509 Durbin-Watson: 0.000 Jarque-Bera (JB): -0.990 Prob(JB):	bre_support 0.4635 0.557 0.832 0.0041 0.067 0.062 -0.4663 0.186 -2.502 -0.2733 0.116 -2.352 0.0392 0.143 0.274 -0.0055 0.104 -0.053 0.1192 0.163 0.729 -0.0776 0.187 -0.416 0.1873 0.173 1.081 0.1465 0.136 1.081 -0.0253 0.099 -0.256 16.509 Durbin-Watson: 0.000 Jarque-Bera (JB): -0.990 Prob(JB): 3.	0.0041 0.067 0.062 0.951 -0.4663 0.186 -2.502 0.012 -0.2733 0.116 -2.352 0.019 0.0392 0.143 0.274 0.784 -0.0055 0.104 -0.053 0.958 0.1192 0.163 0.729 0.466 -0.0776 0.187 -0.416 0.677 0.1873 0.173 1.081 0.280 0.1465 0.136 1.081 0.280 -0.0253 0.999 -0.256 0.798 -1465 0.136 1.081 0.280 -0.0253 0.999 -0.256 0.798 -0.0253 0.999 -0.256 0.798 -0.090 Durbin-Watson: 1.755 0.000 0.190 Jarque-Bera (JB): 20.442 -0.990 Prob (JB): 3.64e-05	bre_support 0.4635 0.557 0.832 0.405 -0.628 0.0041 0.067 0.062 0.951 -0.127 -0.4663 0.186 -2.502 0.012 -0.832 -0.2733 0.116 -2.352 0.019 -0.501 0.0392 0.143 0.274 0.784 -0.240 -0.0055 0.104 -0.053 0.958 -0.208 0.1192 0.163 0.729 0.466 -0.201 -0.0776 0.187 -0.416 0.677 -0.443 0.1873 0.173 1.081 0.280 -0.152 0.1465 0.136 1.081 0.280 -0.152 0.1465 0.136 1.081 0.280 -0.199 -0.0253 0.099 -0.256 0.798 -0.219 -16.509 Durbin-Watson: 1.755 0.0442 -0.990 Prob (JB): 3.64e-05 3.64e-05

ii. UEVT (436143) vs JXS (578208)

Dep. Variable: average_proble Model:	em_accu		-squared: dj. R-squared		0.34		
	at Car		J. R-squared	:	0.28		
			ob (F-statis	tic).	3.60e-1	-	
Time:			og-Likelihood		19.98		
No. Observations:		173 AI		•	-9.96		
Df Residuals:			.c.		37.3		
Df Model:		14 IS			57.5		
Covariance Type:		HC1					
		coef	std err	Z	P> z	[0.025	0.975]
const		0.7387	0.116	6.350	0.000	0.511	0.967
author		-0.0986	0.083	-1.190	0.234	-0.261	0.064
pretest avg problem accuracy		0.2921		3.359	0.001	0.122	0.462
student std attempted		-0.2483	0.322	-0.772	0.440	-0.878	0.382
student_std_attempted_before_supp	port	-0.0799	0.322	-0.249	0.804	-0.710	0.550
gender		-0.0841	0.059	-1.421	0.155	-0.200	0.032
low knowledge		-0.1960		-1.963		-0.392	-0.000
mid knowledge		-0.0544		-0.991	0.322	-0.162	0.053
rural		-0.0719	0.068	-1.064	0.287	-0.204	0.060
suburban		-0.1258		-1.926		-0.254	0.002
author:rural		0.1416	0.090	1.580		-0.034	0.317
author:suburban		0.1074		1.109			0.297
author:low_knowledge		-0.0368		-0.356		-0.239	
author:mid_knowledge		-0.0689		-1.004		-0.203	
author:gender		0.0740	0.073	1.020	0.308	-0.068	0.216
		Durbin-V			1.724		
			Bera (JB):		7.686		
		Prob (JB)			0.0214		
	3.581	Cond. No			29.4		
Notes:							

iii. UEVT (436143) vs DMS (578209)

	OLS Reg	ression Re:					
Dep. Variable:	average_problem_acc	uracy R-:	squared:		0.20	18	
Model:		OLS Ad	j. R-squared	:	0.05	68	
Method:	Least Sq	lares F-:	statistic:		4.86	59	
Date:	Thu, 28 Jul	2022 Pro	ob (F-statis	tic):	2.86e-0	6	
Time:	11:	11:07 Log	g-Likelihood	:	-6.686	51	
No. Observations:		89 AI	C:		43.3	37	
Df Residuals:		74 BI	C:		80.7	0	
Df Model:		14					
Covariance Type:		HC1					
		coef	std err	Z	₽> z	[0.025	0.975]
const		0.9761	0.224	4.365	0.000	0.538	1.414
author		0.0090	0.196	0.046	0.963	-0.376	0.394
pretest avg problem	accuracy	0.0483	0.122	0.395	0.693	-0.192	0.288
student std attempt		-0.1815	0.584			-1.327	0.964
student std attempt			0.534			-1.805	0.287
gender		-0.0926		-0.776			0.141
low knowledge		0.0573		0.347		-0.266	0.380
mid knowledge		-0.0282	0.160	-0.176		-0.342	0.286
rural		-0.2251	0.108	-2.079	0.038	-0.437	-0.013
suburban		-0.1215	0.152	-0.798	0.425	-0.420	0.177
author:rural		0.1876	0.130	1.448	0.148	-0.066	0.442
author:suburban		0.1127	0.183	0.615	0.538	-0.246	0.472
author:low knowledge	e	-0.2244	0.183	-1.227	0.220	-0.583	0.134
author:mid knowledge	e	-0.1868	0.170	-1.099	0.272	-0.520	0.146
author:gender		0.1002	0.138	0.725	0.469	-0.171	0.371
Omnibus:	5.939	Durbin-Wa	======================================		1.816		
Prob(Omnibus):	0.051	Jarque-Be	era (JB):		5.635		
Skew:	-0.614	Prob(JB)			0.0598		
Kurtosis:	3.105	Cond. No			35.6		
Notes:	are heteroscedasti	nitu voluusi	- (UC1)				

iv. UEVT (436143) vs EGS (579215)

Dep. Variable: ave: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Thu, 28 Jul 11:1	OLS Adj ares F-s 2022 Pro 1:08 Log 36 AIC 21 BIC 14 HC1	bb (F-statist g-Likelihood: C:	ic):	0.63 0.39 50.5 5.70e-1 17.05 -4.11 19.6	5 6 3 9 9 3	
		coef	std err	z	P> z	[0.025	0.975]
<pre>const author pretest_avg_problem_accuracy student_std_attempted student_std_attempted_before_support gender low_knowledge mid_knowledge rural suburban author:rural author:ruburban author:low_knowledge author:mid_knowledge author:mender</pre>		$\begin{array}{c} 1.2871\\ -0.2819\\ -0.0387\\ -0.4885\\ -1.3071\\ 0.3059\\ -0.3256\\ -0.7571\\ -0.3833\\ 0.6198\\ 0.3474\\ 0.1376\\ 0.2206\\ -0.1164 \end{array}$	0.128 0.661 0.515 0.135 0.145 0.097 0.114 0.222 0.188 0.140 0.266 0.177	-0.302 -0.739 -2.537 4.985 -0.294 -2.250 -7.832 -3.352 2.791 1.848 0.985	0.000 0.037 0.763 0.460 0.011 0.000 0.769 0.024 0.000 0.001 0.005 0.065 0.325 0.407 0.510	0.186 -0.304 -0.609 -0.947 -0.607 0.185	0.426 0.225 -0.042 -0.568 -0.159 1.055 0.716
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.637 0.727	Durbin-Wa	tson: era (JB):		1.548 0.675 0.714 35.9		

v. UEVT (436143) vs BTS (579216)

		ression Re				-	
Dep. Variable:	average problem acc	uracy R-	R-squared:			6	
Model:		OLS Ad			0.473		
Method:	Least So	uares F-	statistic:		11.1	.5	
Date:	Thu, 28 Jul	2022 Pr	ob (F-statis	tic):			
Time:	11:	11:09 Lo	g-Likelihood	:	25.95	4	
No. Observations:		66 AI	С:		-21.9	1	
Df Residuals:		51 BI	С:		10.9	4	
Df Model:		14					
Covariance Type:		HC1					
		coef	std err	z	P> z	[0.025	0.975]
const		0 9279	0.180	5 159	0 000	0.575	1.280
author			0.143				
	m 200117201	0.2151	0.143	1 933	0.053	-0.003	
student atd attemp	em_accuracy oted	-1 0641	0.256	_4 151	0.000	-1.567	
student_std_attempted before support -0.		-0.6074	0.250	-4.151	0.000	-1.560	
gender	ced_perore_support	0.0439			0.700		
low knowledge		-0.1542		-1.365		-0.376	
mid knowledge		0.0797	0 102	0 775	0.438	-0.122	0.281
rural		-0.0952	0.103	-0.921	0.357	-0.298	0.107
suburban		-0.0435	0.137	-0.318	0.357 0.750	-0.312	0.225
author:rural		0.1542	0.120	1 284	0.199	-0.081	0.389
author:suburban		0.0390	0 148	0.264	0.792	-0.251	0.329
author:low knowled	ne	0 1404	0.148				
author:mid knowled			0.125				
author:gender	ige -		0.125		0.389		0.137
Omnibus:	0 117	Durbin-W			1.588		
Prob(Omnibus):		Jarque-B			0.280		
Skew:		Prob (JB)			0.869		
Kurtosis:	2.720	Cond. No			31.4		
	2.720	========	• =============				

vi. UEVT (436143) vs BGS (579218)

Dep. Variable:	average problem acc				0.66		
Model:	average_problem_acc		. R-squared		0.40		
Method:	Least So	uares F-s		•	4.25		
Date:	Thu, 28 Jul			tic):	0.0020		
Time:			-Likelihood		6.326	9	
No. Observations:		34 AIC			17.3	5	
Df Residuals:		19 BIC	:		40.2	4	
Df Model:		14					
Covariance Type:		HC1					
		coef	std err	Z	₽> z	[0.025	0.975]
const		1.1220	0 295	3.798	0.000	0.543	1.701
author		-0.2801				-1.032	0.472
pretest avg problem	maccuracy	0 1 2 2 1	0.225	-0.730 0.592	0.554	-0.307	0.573
student std attemp	ted	-0.7434	0.773	-0.962	0.336	-2.258	0.77
student_std_attemp	ted_before_support	-3 0036	0.846	-3.548		-4.663	-1.34
gender	ccd_berore_buppore	0.1545	0.209		0.459	-0.255	0.56
low knowledge		0.7395		2.733		0.209	1.27
mid knowledge		0.6241		3.539		0.278	0.970
rural		-0.5736	0.206	-2.787	0.005	-0.977	-0.170
suburban		-0.5736 -0.6986	0.143	-4.900	0.000	-0.978	-0.41
author:rural		0.2008	0.400	0.502	0.616	-0.583	0.98
author:suburban		0.1304	0.377	0.346	0.729	-0.608	0.86
author: low knowled	ge	0.1224	0.413	0.296	0.767	-0.687	0.932
author:mid knowled	ge	0.1970	0.409	0.481	0.630	-0.605	0.99
author:gender		-0.0487	0.257	-0.190	0.850	-0.552	0.455
	3.050	Durbin-Wa			1.409		
Omnibus:	0 219	Jarque-Be	ra (JB):		2.741		
Omnibus: Prob(Omnibus):	0.210				0.254		
	-0.625	Prob(JB):					

vii. BCT (436919) vs LQS (579217)

	OLS Reg	gression Res				_	
	average_problem_acc Least Sc Thu, 28 Jul	curacy R-s OLS Adj quares F-s 1 2022 Pro	quared: . R-squared: tatistic: b (F-statist -Likelihood:	: tic):	0.38 0.35 13.0 6.10e-2 30.94 -31.8 24.4	2 4 4 2 8	
		coef				[0.025	
<pre>student_std_attemp gender low_knowledge mid_knowledge rural suburban author:rural author:suburban author:suburban author:mowled author:gender</pre>	oted_before_support	$\begin{array}{c} 0.0300\\ 0.2610\\ -0.2270\\ -0.7122\\ 0.0471\\ -0.1036\\ -0.0418\\ -0.1366\\ -0.0118\\ -0.0464\\ 0.0559\\ 0.0043\\ 0.0372\\ 0.0094 \end{array}$	0.080 0.051 0.066 0.258 0.237 0.040 0.038 0.057 0.043 0.057 0.043 0.064 0.054 0.051 0.054	8.643 0.583 3.951 -0.881 -3.004 1.164 -1.509 -1.100 -2.404 -0.274 -0.555 1.037 0.065 0.725 0.176	0.000 0.560 0.000 0.378 0.003 0.244 0.131 0.271 0.016 0.784 0.579 0.300 0.948 0.468 0.861	-0.732 -1.177 -0.032 -0.238 -0.116 -0.248 -0.096 -0.210	0.849 0.131 0.390 0.278 0.248 0.126 0.031 0.033 -0.025 0.073 0.117 0.161 0.135 0.138
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.000	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	ra (JB):		1.269 22.360 39e-05 34.2		

viii. BCT (436919) vs BGS (579218)

OLS Regression Results							
Dep. Variable: aver Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		Uracy R-: OLS Ad Jares F-: 2022 Pr 11:15 Lo 169 AI 154 BI 14 HC1	squared: j. R-squared statistic: ob (F-statis g-Likelihood C: C:	: tic): :	0.30 0.24 6.66 1.81e-1 23.65 -17.3 29.6	6 3 2 0 8 8 2 3	
		coef	std err				0.975]
const author pretest_avg_problem_acc student_std_attempted_b gender low_knowledge mid_knowledge rural suburban author:rural author:suburban author:low_knowledge author:mid_knowledge author:gender	efore_support	0.2201 -0.6535 -0.0298 -0.0124 -0.0233 0.0223 -0.0771 0.0080 0.0776 -0.0143 -0.0244 0.0427	0.382 0.287 0.042 0.079 0.061 0.051 0.064 0.077 0.102 0.088 0.088 0.080	$\begin{array}{c} 0.577\\ -2.280\\ -0.715\\ -0.158\\ -0.385\\ 0.436\\ -1.212\\ 0.104\\ 0.759\\ -0.162\\ -0.303\\ 0.608 \end{array}$	0.564 0.023 0.474 0.875 0.700 0.663 0.226 0.917 0.448 0.871 0.762 0.543	-0.111 -0.166 -0.142	0.968 -0.092 0.052 0.142 0.096 0.122 0.048 0.158 0.278 0.158 0.133
Omnibus: Prob(Omnibus): Skew: Kurtosis: Notes: [1] Standard Errors are	9.765 0.008 -0.524 3.549	Durbin-W Jarque-B Prob(JB) Cond. No	atson: era (JB): :	C	1.489 9.851).00726 34.0		

ix. BCT (436919) vs NQS (579220)

Dep. Variable: Model: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Thu, 28 Jul 11:	OLS P uares F 2022 F 11:17 I 228 P 213 F 14 HC1	Adj. R-squared F-statistic: Prob (F-statis Jog-Likelihood AIC: BIC:	tic):	0.31 0.26 6.93 1.11e-1 36.70 -43.4 8.04	57 56 1 00 0	
		coef		Z	P> z	[0.025	0.975]
const author pretest_avg_problem student_std_attempte student_std_attempte dender low_knowledge rural suburban author:rural author:rural author:suburban author:low_knowledge author:mid_knowledge	ed_before_support	0.0820 0.1004 -0.4900 -0.4633 -0.1467 -0.1204 0.0298 -0.1204 0.0457 0.0405 -0.1999 -0.1360 -0.0408 -0.0408 -0.1360 0.0408 -0.1030 0.1146	7 0.039 4 0.074 8 0.054 7 0.051 5 0.052 9 0.087 0 0.069 8 0.086 0 0.78 0 0.056	0.992 1.690 -1.739 -3.720 -1.626 0.547 0.898 0.780 -2.302 -1.967 -0.473 -1.322 2.052	$\begin{array}{c} 0.321\\ 0.178\\ 0.091\\ 0.082\\ 0.000\\ 0.104\\ 0.584\\ 0.369\\ 0.435\\ 0.021\\ 0.049\\ 0.636\\ 0.186\\ 0.040 \end{array}$	-0.080 -0.046 -1.058 -0.985 -0.224 -0.265 -0.077 -0.054 -0.061 -0.370	0.244 0.247 0.078 0.059 -0.069 0.025 0.136 0.145 0.142
Omnibus: Prob(Omnibus): Skew: Kurtosis:	6.844 0.033	Durbin-	-Watson: -Bera (JB): 3):		1.243 6.569 0.0375 36.7		

The next section shows the five different regression results for Study 2 for models with main effects. Table 3 summarized the results in the 'Demographic' column.

i. UEVT (436143) vs OTS (578207)

	OLS Reg	ression F	Results			_	
Dep. Variable: Model: Mothod: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Thu, 28 Jul	OLS 7 Jares H 2022 H 13:53 I 43 7 28 H 14 HC1	A-squared: Adj. R-squared F-statistic: Prob (F-statis Log-Likelihood AIC: BIC:	tic):	0.63 0.45 11.8 2.69e-0 4.656 20.6 47.1	5 9 8 7 9	
		coef		Z	P> z	[0.025	0.975]
student_std_attemp	ted_before_support	-0.6684 0.6202 -0.8714 1.6548 0.0186 0.0751 -0.0331 -0.2351 -0.0484 0.1852 0.2762 0.2511 0.5618 0.0067	4 0.619 3 0.713 6 0.087 1 0.276 1 0.140 4 0.127 2 0.283 2 0.227 1 0.316 3 0.320 7 0.176	$\begin{array}{c} -2.750 \\ 3.109 \\ -1.407 \\ -2.320 \\ 0.215 \\ 0.272 \\ -0.236 \\ -1.611 \\ -0.382 \\ 0.653 \\ 1.219 \\ 0.794 \end{array}$	0.006 0.002 0.159 0.020 0.830 0.785 0.813	-1.145 0.229 -2.085 -3.053 -0.151 -0.466 -0.307 -0.521 -0.297 -0.370 -0.168 -0.369	1.146 -0.192 1.011 0.342 -0.257 0.188 0.616 0.241 0.051 0.200 0.741 0.720 0.871 1.188 0.353
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.986	Durbin- Jarque- Prob(JE Cond. N	-Bera (JB): 3):		1.463 0.121 0.941 31.8		
Notes: [1] Standard Error:	s are heteroscedasti	city robu	ıst (HC1)				

ii. UEVT (436143) vs JXS (578208)

	OLS Reg	ression Res	ults				
Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Thu, 28 Jul	OLS Adj Dares F-s 2022 Pro 13:55 Log 52 AIC 37 BIC 14 HC1	b (F-statis Likelihood :: ::	tic): :	0.44 0.22 4.58 0.00010 1.204 27.5 56.8	8 3 1 9 6	
		coef	std err	Z	P> z	[0.025	0.975]
<pre>const author pretest_avg_problem student_std_attempt student_std_attempt gender low_knowledge mid_knowledge mid_knowledge rural suburban author:rural author:rural author:low_knowledg author:id_knowledg author:gender </pre>	ed ed_before_support e e	0.0251 -0.0406 -0.3589 -0.3048 -0.0520 0.1809 0.0345 -0.0803 0.4632 0.0663	0.179 0.158 0.692 0.613 0.133 0.171 0.140 0.140 0.148 0.190 0.238 0.215 0.212 0.167	-1.923 -0.339 0.263 -3.047 0.188 -0.238 -2.558 -2.183 -0.351 0.952 0.145 -0.374 2.184 0.396	0.054 0.735 0.793 0.002 0.851 0.011 0.029 0.726 0.341 0.885 0.708 0.029 0.692	-0.634	0.286 0.294 -0.084
Omnibus: Prob(Omnibus): Skew: Kurtosis:	1.414 0.493	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	tson: ra (JB):		2.155 1.419 0.492 31.5		
Notes: [1] Standard Errors	are heteroscedasti	city robust	(HC1)				

iii. UEVT (436143) vs DMS (578209)

	OLS Reg:	ression Re	sults				
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Thu, 28 Jul	OLS Ad uares F- 2022 Pro	g-Likelihood C:	tic):	0.358 0.167 6.386 6.43e-07 5.3689 19.26 51.17		
		coef	std err		P> z	[0.025	0.975]
<pre>student_std_attemp student_std_attemp gender low_knowledge mid_knowledge rural suburban author:rural author:suburban author:low_knowled author:mid_knowled author:gender</pre>	ded_before_support	-0.2114 0.0801 -0.5430 -0.3587 -0.1147 -0.3938 -0.3569 -0.3312 -0.1502 -0.0059 -0.1626 0.2229 0.2229 0.1626	0.320 0.392 0.133 0.246 0.109 0.196 0.228 0.229 0.210 0.133 0.160	-0.825 0.515 -1.697 -0.916 -0.865 -1.601 -3.266 -1.691 -0.765 -0.026 -0.742 1.061 1.026 1.851	0.409 0.607 0.090 0.360 0.387 0.109 0.001 0.091 0.444 0.979 0.458 0.289 0.305 0.064	$\begin{array}{c} -0.225 \\ -1.170 \\ -1.127 \\ -0.375 \\ -0.876 \\ -0.571 \\ -0.535 \\ -0.535 \\ -0.453 \\ -0.592 \\ -0.189 \\ -0.124 \end{array}$	0.385 0.084 0.409 0.145 0.088 -0.143 0.053 0.235 0.441 0.267 0.635 0.396
Omnibus: Prob(Omnibus): Skew: Kurtosis:	3.646 0.162	Durbin-W Jarque-B Prob(JB) Cond. No	atson: era (JB): :		1.083 3.004 0.223 36.5		
Notes: [1] Standard Error	s are heteroscedasti	city robus	t (HC1)				

iv. BCT (436919) vs LQS (579217)

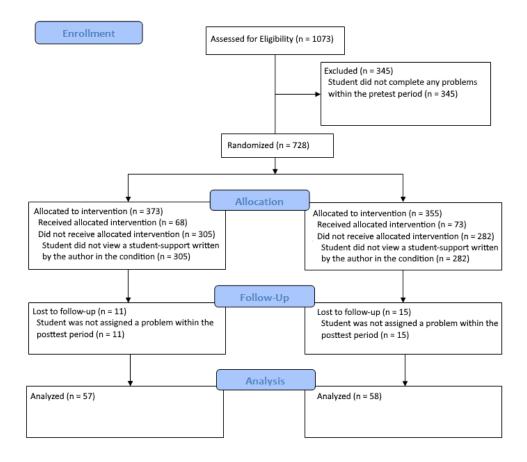
Dep. Variable: average_problem_acc Model: Method: Least Sq Date: Thu, 28 Jul Fime: 11: No. Observations: Df Residuals:					0.321 0.280 11.15 2.32e-19 15.757 -1.514 51.07		
Df Model: Covariance Type:							
		coef	std err	Z	P> z	[0.025	0.975]
const		0.9999					1.220
author		-0.2430		-2.616			
pretest_avg_problem	n_accuracy	0.0612	0.061	1.008	0.313	-0.058	0.180
student_std_attempted		-1.0015	0.333	-3.006	0.003	-1.654	-0.349
student_std_attempted_before_support		-0 1197	0 263	-0.455	0.649	-0.635	0.396
gender		0.0781	0.056	1.399		-0.031	0.187
low_knowledge		-0.1600		-1.885		-0.326	
mid_knowledge		-0.0570		-0.824		-0.193	
rural		-0.4125				-0.528	
suburban		-0.3296		-6.254	0.000	-0.433	-0.226
author:rural		0.3642		5.169	0.000	0.226	0.502
author:suburban		0.4636 0.0730	0.069	6.726	0.000	0.329	0.599
author:low_knowledg		0.0730	0.089	0.824	0.410	-0.101	0.246
author:mid_knowledg	je	-0.0260		-0.315		-0.188	
author:gender		-0.1400	0.072	-1.939		-0.282	0.002
Omnibus:	1.255	Durbin-Wa	atson:		1.478		
Prob(Omnibus):		Jarque-Be			1.032		
Skew:	-0.151	Prob(JB):			0.597		
Kurtosis:	3.094	Cond. No.			34.1		

v. BCT (436919) vs NQS (579220)

	OLS Regr		esults				
Dep. Variable: average_pr Model: Method:	oblem_accu Least Squ u, 28 Jul 11:1	Tracy F OLS A Nares F 2022 F 3:59 I 135 A 122 F 12 HC1	A-squared: dj. R-squared -statistic: Prob (F-statis og-Likelihood LIC: LIC:	: tic):	0.32 0.25 129. 8.81e-6 18.90 -11.8 25.9	55 4 55 55 31	
		coef		Z	₽> z	[0.025	0.975]
<pre>const author pretest_avg_problem_accuracy student_std_attempted student_std_attempted_before_ gender low_knowledge mid_knowledge rural suburban author:rural author:rural author:low_knowledge author:mid_knowledge author:gender </pre>	support	0.4379 0.0950 0.0882 0.2674 -0.0773 0.0821 -0.2602 -0.1675 0.1346 0.3033 0.1184 -0.0233 0.0208 0.0711 -0.2832	$\begin{array}{c} 0.088\\ 0.061\\ 0.431\\ 0.306\\ 0.049\\ 0.074\\ 0.057\\ 0.035\\ 0.042\\ 0.053\\ 0.065\\ 0.096\\ 0.125\\ \end{array}$	$\begin{array}{c} 7.258\\ 1.079\\ 1.449\\ 0.620\\ -0.253\\ 1.686\\ -3.523\\ -2.939\\ 3.821\\ 7.235\\ 2.221\\ -0.361\\ 0.216\\ 0.567\\ -2.516\end{array}$	0.000 0.281 0.147 0.535 0.800 0.092 0.000 0.003 0.000 0.000 0.026 0.718 0.829 0.571 0.012	$\begin{array}{c} 0.320\\ -0.078\\ -0.031\\ -0.578\\ -0.677\\ -0.013\\ -0.405\\ -0.279\\ 0.066\\ 0.221\\ 0.014\\ -0.150\\ -0.168\\ -0.175\\ -0.504 \end{array}$	0.556 0.268 0.208 1.113 0.522 0.178 -0.115 -0.056 0.204 0.385 0.203 0.103 0.210 0.317 -0.063
Omnibus: Prob(Omnibus): Skew: Kurtosis:	3.557 0.169 -0.278 3.487	Durbin- Jarque- Prob(JE Cond. N	Bera (JB):	5	1.446 3.073 0.215 .70e+16		
Notes: [1] Standard Errors are heter	oscedastic	ity robu	ust (HC1)				

[2] The smallest eigenvalue is 1.33e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Appendix C: Author Code to Author Identifier


Author codes are a sequence of three or four characters to uniquely identify a *star-author* in the ASSISTments platform without the need for an identifier. The identifiers are linked below for easy reference to other ASSISTments papers which use the same *star-authors* and to the data above.

Author Code	Author Identifier
TBD	460571
UETT	255574
NQS	579214
BTS	579216
TAD	460570
EGS	579215
BCT	436919
UEVT	436143
TCD	460572
BGS	579218
LQS	579217
NQS	579220
STD	483200
DMS	578209
UZS	579212
JXS	578208
LLS	294187
OTS	578207
IOT	488160
КТТ	485865

Appendix D: Consort Data Flow Plan for Dataset A

CONSORT 2010 Flow Diagram

Bibliography

- 1. Adams, D.M., McLaren, B.M., Durkin, K., Mayer, R.E., Rittle-Johnson, B., Isotani, S., Van Velsen, M. (2014). Using erroneous examples to improve mathematics learning with a web-based tutoring system. *Computers in Human Behavior 36*, 401–411.
- Feng, M. & Heffernan, N.T. (2006). Informing teachers live about student learning: Reporting in the ASSISTment system. Technology Instruction Cognition and Learning 3(1/2), 63.
- 3. Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. *International Journal of Artificial Intelligence in Education*, *24*(4), 470-497.
- 4. Lee, J. (2012). Cumulative learning and schematization in problem solving. Universität Freiburg (2012).
- McLaren, B.M., van Gog, T., Ganoe, C., Karabinos, M., Yaron, D. (2016). The efficiency of worked examples compared to erroneous examples, tutored problem solving, and problem solving in computer-based learning environments. *Computers in Human Behavior 55*, 87–99.
- Patikorn, T., & Heffernan, N. T. (2020, August). Effectiveness of crowd-sourcing on-demand assistance from teachers in online learning platforms. In *Proceedings of the Seventh ACM Conference on Learning@ Scale* (pp. 115-124). <u>https://doi.org/10.1145/3386527.3405912</u>.
- 7. Prihar, E., Botelho, A.F., Jakhmola, R., Heffernan, N.T. (2021). *Assistments 2019-2020 school year dataset.* <u>https://doi.org/10.17605/OSF.IO/Q7ZC5</u>, osf.io/q7zc5
- 8. Prihar, E. & Gonsalves, M. (2021). Assistments 2020-2021 school year dataset. osf.io/7cgav
- Prihar, E., Patikorn, T., Botelho, A., Sales, A., Heffernan, N. (2021). Toward personalized students' education with crowdsourced tutoring. In: *Proceedings of the Eighth ACM Conference on Learning@Scale*, 37–45. L@S '21, Association for Computing Machinery, New York, NY, USA (2021). <u>https://doi.org/10.1145/3430895.3460130</u>.
- 10. Razzaq, L.M. & Heffernan, N.T. (2009, June). To tutor or not to tutor: That is the question. In: AIED. pp. 457–464.
- 11. Whitehill, J. & Seltzer, M. (2017). A crowdsourcing approach to collecting tutorial videos–toward personalized learning-at-scale. In *Proceedings of the Fourth ACM Conference on Learning@Scale*, 157–160.
- 12. Wood, D., Bruner, J.S., & Ross, G. (1976). The role of tutoring in problem solving. *Child Psychology & Psychiatry & Allied Disciplines.*
- Prihar, E., Haim, A., Sales, A., & Heffernan, N. (2022, June). Automatic Interpretable Personalized Learning. In *Proceedings of the Ninth ACM Conference on Learning@Scale* (pp. 1-11). Winner of Best Dataset Award. <u>https://doi.org/10.1145/3491140.3528267</u>
- 14. Team, R. C. (2013). R: A language and environment for statistical computing. <u>https://www.R-project.org/</u>.
- 15. Champely, S. (2020). pwr: Basic Functions for Power Analysis. R package version 1.3-0, https://CRAN.R-project.org/package=pwr.

- Lipsey, M. W., Puzio, K., Yun, C., Hebert, M. A., Steinka-Fry, K., Cole, M. W., ... & Busick, M. D. (2012). Translating the Statistical Representation of the Effects of Education Interventions into More Readily Interpretable Forms. *National Center for Special Education Research*. <u>https://ies.ed.gov/ncser/pubs/20133000/pdf/20133000.pdf</u>
- Prihar, E., Syed, M., Ostrow, K., Shaw, S., Sales, A. & Heffernan, N. (2022). Exploring Common Trends in Online Educational Experiments. *Proceedings of the 15th International Conference on Educational Data Mining*, 27–38. <u>https://doi.org/10.5281/zenodo.6853041</u>
- Krichevsky, N., Spinelli, K., Heffernan, N., Ostrow, K., & Emberling, M. R. (2020). E-TRIALS (Doctoral dissertation, Worcester Polytechnic Institute). <u>https://core.ac.uk/download/pdf/343944397.pdf</u>