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Abstract

In this research, we develop methods for single image super-resolution by combin-

ing ideas inspired by compressive sensing with super-resolution neural networks and

ensemble learning. We are interested in problems where large data sets are not avail-

able such as healthcare and aerospace applications. The essence of our work is to use

ideas similar to those leveraged by compressive sensing, namely sparse representations,

for a robust model accommodating small training data. We develop and demonstrate

techniques for combining classic sparse representations with modern ideas in deep neu-

ral networks, such as neural network ensembles, to improve the performance of image

super-resolution task. Particularly, we report here a successful application of our model

to improve the resolution of areal density maps of carbon nanotube sheets generated

by a beta particle transmission system. We show that applying our models can reveal

finer details in the material texture, helping to improve the detection of manufactur-

ing defects and improving the quality control capabilities for carbon nanotube sheet

production.
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Executive Summary

Our work has been inspired by a real-world material science problem, and has been funded

through the generosity of Nanocomp Technologies, Inc. The application goal of this research

is to deliver high-resolution areal density maps of Nanocomp’s MIRALON carbon nanotube

sheet material with minimized time required to scan the articles to aid in quality control for

the manufacturing process. From the perspective of data science, this is equivalent to a single

image super-resolution problem. However, there are three major challenges that arise from

the specific application that make this research stand apart from other algorithms. First,

there were no high-resolution ground truth scans available for supervised training based al-

gorithms. Our collaborators from Nanocomp were able to provide a small collection of

training data for the neural work. However, the data is far from the required amount that

can be sufficient for the deep image super-resolution neural works, which is not uncommon

for machine learning problems in the physical sciences. Accordingly, one of the key con-

tributions of this thesis is the development of image super-resolution algorithms

that are effective in the low-data limit. Second, unlike the camera measurements for

standard visual imagery, we not only need to determine the image compressive measurement

from the mathematical functions in the camera, but also the emitter trajectory and beta

particles’ behavior from the beta transmission equipment. The compressive measure-

ment is very complex due to the settings on the equipment and, as far as we are aware,

image super-resolution techniques have not been previously applied in such com-

plex measurement environments. Third, the MIRALON sheet areal density map is a

2-dimensional projection of the density distribution. However, the compressive measurement

has depth dependency in 3-dimensional space due to the interactions of the beta par-

ticles through the thickness of the sheet. As far as we are aware, this thesis presents

the first application of deep learning to volumetric super-resolution problems,

especially as applied to real-world materials.

To address the above challenges with deep super-resolution neural networks, we develop

methods by combining ideas inspired by compressive sensing and ensemble learning. The

fundamental of our work is to use the idea of classic sparse representations that are lever-

aged by compressive sensing for a robust model accommodating small training data. We

developed five models which are reflected in five papers from this research. The first model

is SparseFnet, in which the neural network can only access the information on the Fourier

domain. We demonstrate that with the help of sparse representations, the neural network

could be sufficiently trained even when the size of the training data is very small. In addition,

we indicate that instead of numerous deep layers, a shallower architecture in the frequency
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domain is more efficient and can guarantee a more stable performance. The development of

this model resulted in CNNs in the frequency domain for image super-resolution, published

in 2019 International Conference on Image and Video Processing, and Artificial Intelligence.

Nevertheless, there are many sparsifying transformations that are competitive choices for

image processing problems [1]. As the optimal choice depends on the specific image content,

the best-suited transformation may differ for different application fields, different compres-

sive measurements and even different sub-areas of a single image [2]. As shown in Figure

1, the frequency and pixel correlations differ from sub-areas in the same image. Accord-

ingly, the optimal choice of transform domains for sub-patches are different. Therefore, we

introduce multiple wavelet transformations into SparseFnet to develop an ensemble model

which is called ESnet. ESnet makes multiple high-resolution reconstructions with the basic

SparseFnet on different transform domains and then combines the results, delivering an op-

timal combination of those reconstructions. Our ensemble method has a robust performance

on limited available data. The ensemble decides the best choice of transform domains for

each sub-image patch and combines the patches to provide a general optimal solution for the

entire image. This work is in proceeding in the conference of ICMLA 2020: International

Conference on Machine Learning and Applications, as Ensemble CNN in Transform Domains

for Image Super-resolution from Small Data Sets. Although ESnet significantly improves the

performance compared with SparseFnet, it is a ’reconstruct-then-ensemble’ 2-stage model.

We believe that by simplifying the architecture in a more uniform fashion, the result would

be more accurate. There are two models, EWnet and EnsemNet, proposed as improved ver-

sions of ESnet from two different aspects. EWnet increases the efficiency by extracting sparse

features across different transform domains. As developed here, the model performs across

multiple wavelet domains and outputs a high-resolution reconstruction in the space domain.

EWnet not only simplifies the training procedure but also further improves the reconstruc-

tion quality. Instead of focusing on feature extraction, EnsemNet ensembles reconstructions

from benchmark algorithms which are performed on different domains to further improve

the robust performance. This work is reflected in the conference paper Ensemble Image

Super-resolution CNNs for Small Data and Diverse Compressive Models which is submitted

to ADMA 2022: International Conference Advanced Data Mining and Applications. The

advantages of our innovative models compared with other recent works in the image super-

resolution field are demonstrated on standard visual imagery in the 2-dimensional space.

After validation, we apply the algorithms to the initial challenge of reconstructing the areal

density maps of MIRALON sheets. EnsemNet is the latest version of the algorithms that

leverages all the advantage simultaneously, including sparse representations, shallow archi-

tectures, high-performance benchmark networks and ensembles. We adapt it into a semi-3D
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Figure 1: The frequency and pixel correlations differ from sub-areas in the same image. The optimal
choice of transform domains for the sub-areas are different.

voxel-based structure to accommodate the depth dependency in beta transmission images.

To separate the two-part challenge of understanding how the instrument processes the

collected signal from determining the real variation in areal density of a MIRALON sheet,

the initial experiments are conducted on training data collected from a standard shim-stock

material. Shim-stock is a readily available plastic material of uniform known thickness that

we assume will have a uniform areal density due to how it is made. We can then generate

a reasonable set of training data, including scans where known figures and patterns are cut

in to it to assess the response of the detector. While still small, this set of training data is

larger than would have been available if only the small pieces of uniform MIRALON sheet

were used instead of shim-stock. One thing unknown at the start was if the compressive

measurement from the instrument would be the same for shim-stock and the MIRALON

sheets. Additionally, the beta particles could not be assumed to have a uniform interaction

with the sheet (MIRALON or shim-stock) at any height between the source and the detector.

To solve these two problems, we extend our work into a semi-3D voxel-based design and

involve further data augmentations to enrich the data set. Taking advantage of different

transform domains, the ensemble method and additional engineering measurements in semi-

3D space, our research reveals finer details in the material texture. Figure 2 shows a preview

of the reconstruction result. The defective spots on a MIRALON sheet are easier to identify

after super-resolution of 4 times in both the x and y dimension. The semi-3D method is

reflected in two papers: (1) Voxel based Deep Learning for Image Super-resolution of Areal

Density Maps of Carbon nanotube Sheets. in ICMLA 2021, and (2) the book chapter Multi-

layer Wavelet Transformations for Image Super-resolution: Applications to Voxel-based Deep

Learning and Areal Density Maps of Carbon-nanotube Sheets. in Deep Learning Applications,
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Figure 2: Defective spots on a MIRALON® sheet. The image from the original beta transmis-
sion areal density maps is heavily down-sampled. The super-resolution results from the proposed
experiment recover fine texture details.

Volume 4.

In this work, we have developed image super-resolution neural networks with sparse

representatives, the ensemble method and advanced engineering measurements in semi-3D

space. Our study stands apart from previous algorithms by adapting different image content,

complex compressive measurements and the restriction of small training data. Our work is

novel in four ways.

1. First, our method stands on the assumption that high-resolution images can be recon-

structed more effectively when the image super-resolution neural network is trained in

the transform domain. Even with a shallower architecture, sparse representatives help

to capture the features of an image more efficiently than the original space domain.

Therefore, we can overcome the challenge of a small amount of training data.

2. Second, the optimal choice of transform domains is not identical for not only different

types of images but also different sub-areas in a single image. A universal best choice

of transform domain does not exist that can be most effectively processed by CNNs for

all types of images and all types of compressive measurements. Our ensemble model

learns properties of both the images and transform domains to make the best choice.
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3. Third, the best-suited sparsifying transformation may vary from different sub-areas in

the entire image and different compressive measurements. Based upon advantageous

properties of different transform domains, our ensemble models combine the results

from different domains for sub-image patches with different characteristics. A robust

solution to image super-resolution is therefore provided.

4. Fourths, the beta transmission areal density map is a 2D projection of the MIRALON

sheet where the reported areal density is dependent on where the sheet is placed in the

space between the source and the detector. Multiple transform domains, the ensemble

method, the advanced engineering measurement and data augmentation allow us to

extend the work into 3D space, providing an accurate reconstruction for MIRALON

sheet areal density map applications.
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Research Road-map

Figure 3: Summary of our research progress. The orange box states the application problem,
goal and the research field of our studies. The progress of theory development between application
challenges and the corresponding machine learning solutions are listed. Dark blue boxes indicate the
essential challenges that make our study different than ordinary image super-resolution problems.
Light blue boxes are intermediate problems which need to be addressed. The novel contributions
are highlighted with dark green boxes as key features, while other improvements are shown in light
green boxes. The associated publications can be found in the yellow boxes.
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1 Introduction

Compressive sensing and convolutional neural networks (CNN) are both popular techniques

for high-resolution image reconstruction. Compressive sensing is a classical approach which

solves the problem by using bases in which signals can be sparsely represented, and such

methods allow one to reconstruct the high-resolution image with only a small number of non-

zero coefficients in the sparse representation domain [3, 4]. Herein we develop and demon-

strate techniques for combining classic sparse representations with modern ideas in deep

neural networks such as neural network ensembles, to improve the performance of image

processing tasks such as image super-resolution. In particular, we demonstrate how our pro-

posed techniques improve over standard baseline techniques for visual imagery, with a focus

on the ability of our approach to function even in the presence of small data sets. While

image processing of visual imagery is often done in the presence of large sets of training

data, there are many important image processing problems that do not benefit from such

large collections of training data. To that end, we also demonstrate the effectiveness of

our techniques on an important problem in material manufacturing, namely the analysis of

areal density maps arising from beta-particle transmission imaging of a macro-scale sheet

composed of nano-scale carbon nanotubes.

Another popular technique for image-related problems is convolutional neural networks

(CNNs). In the past few years, the availability of large numbers of training images have

led to numerous deep neural network models, which have been developed for image de-

noising [5–7] and super-resolution [8,9]. Later, a breakthrough was made by Dong et al [10]

when they developed a single image super-resolution CNN (SRCNN), making CNNs practical

for image super-resolution problems, and numerous studies have been developed to improve

the reconstruction quality. A study of sparse priors shows that domain expertise can help to

achieve improved results [11], and residual neural networks like SRResNet [12] and EDSR [13]

provided improved results with the help of deep architectures.

Transform domains are widely used for signal reconstruction. In particular, the connec-

tion between low-resolution images and high-resolution images can often be clearly rep-

resented in some transform domain where, for example, the spatial redundancy in the

original image is reduced in the frequency domain. The Fourier domain and higher-order

wavelet sparsifying transform domains are both competitive choices for image processing

problems [1]. Reducing memory requirements and computational cost compared with other

types of Fourier transformations, DCT is one of the most popular selections in the Fourier

family as it considers only the real part of the series [14] and many algorithms were devel-

oped in the Discrete Cosine Transform (DCT) domain before the recent breakthroughs in
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image super-resolution neural networks [15–17]. Wavelet transformations have also drawn

substantial interest over many years as there exists a large selection of wavelet families and

bandwidths, which allows researchers to make an optimal choice based on specific image con-

tent, and wavelets have been adapted into image super-resolution neural networks to improve

performance [18,19]. One of the advantages of wavelet transformations over the DCT is that

researchers can decompose the image into desired sub-bands of a given image signal. This

specificity comes at a price though, as the performance of wavelets depends on how well the

selected wavelet transformation suits the particular application [20], and unlike DCT there is

not a ”one-size-fits-all” best solution. For choosing the wavelet family, although both general

guidelines [21–23] and suggestions toward specific areas [24, 25] are available, properties of

different wavelets should be studied before making a selection. In real-world applications

however, there are many cases where only a small collection of data is available. It can

be difficult to understand the distribution of images well enough to select the appropriate

wavelet a priori as the sample may not be representative of the entire population. Moreover,

the compressive measurements are complex and diverse according to the application field.

To overcome the limitation of small training data sets and the complexity of the compres-

sive measurements, we propose an ensemble CNN for image super-resolution problems. Our

new method provides a universal solution for choosing between DCT and different wavelet

transformations, and gives a more robust result when compared with other advanced models

in the original space domain. The neural network ensemble can learn the properties of the

specific sub-image patch and matches it to the appropriate transform domain.

In this research, we demonstrate these techniques on both standard visual imagery as

well as the application of reconstructing beta transmission areal density maps of MIRALON

sheets. MIRALON sheets, made by Nanocomp Technologies, Inc. (Nanocomp), a wholly-

owned subsidiary of Huntsman Corporation, are a non-woven material made from carbon

nanotubes. Such sheets have impressive physical properties, and they provide sustainable and

effective solutions to some of the toughest industry challenges involving the aerospace, en-

ergy, and electronics domains. As shown in Figure 4 (a), the seamless cylindrical hollow tube

is a single-layer lattice of covalently-bonded carbon atoms [26]. These strong chemical bonds

play a key role in the exceptional mechanical properties of carbon nanotube materials [27],

which are further enhanced by the high length-to-diameter aspect ratio [28]. Figure 4 (b)

gives a picture of the carbon nanotube network generated by an electron microscope. Formed

by depositing layers directly from the furnace as they are grown, carbon nanotube sheets are

not only environmentally resistant and lightweight, but also possess impressive properties

including strength, thermal and electrical conductivity, high-temperature resistance, electro-

magnetic interference and electrostatic dissipation. The tangled carbon nanotube networks
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Figure 4: (a) Schematic structure of a carbon nanotube and (b) the MIRALON material under
an electron microscope. The cylindrical hollow structured fiber gives MIRALON material various
properties, i.e., strong, lightweight and conductive. Electrons help the long fibers stick together
naturally and form a tangled network.

can be difficult to manipulate [29], and MIRALON sheets in particular, are expected to be

uniform for the best performance in applications. Therefore, the quality control for a sheet

with minimum areal density variation is crucial. One of the tasks in the quality control

process is to generate a clear picture of areal density variation in every sheet. As shown in

Figure 5, the Mahlo QMS-12 Qualiscan Beta Transmission System is designed to reproduce

the general texture of a MIRALON sheet. The transmission system functions as an X-ray

Camera to the sheets. As the sensing head moves over the surface, the emitter releases beta

particles over an area in each picture frame. The total number of particles which reach the

detector under the sheet is converted into a measurement for an areal density map of the

sheet. However, the original beta transmission areal density map is insufficient to identify

variation and defects at the level required in many applications. As shown in Figure 6, the

distribution patterns (i.e. width and thickness of valleys and hills) and the shape and area

of defects are hard to measure from the original areal density map. In this study, we propose

to reconstruct a high-resolution areal density map with single image super-resolution neural

networks.

However, all of the image super-resolution literature are not directly applicable in our

domain for two reasons. First, the nature of the application results in a small training data

task with complex camera measurement. Second, the areal density has depth dependency in

the thickness direction, related to where the material is in the gap between the source and

detector during the measurement. The first reason rises since there are no ground truth of

high-resolution areal density maps. Using the unsupervised compressive sensing technique

would require extensive knowledge of the detector on the beta transmission equipment, in-

cluding how the response changes with different materials and thicknesses. However, we

would like to provide a general solution for any settings of the equipment rather than re-
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Figure 5: Mahlo QMS-12 Qualiscan Beta Transmission equipment for imaging the MIRALON sheet
areal density. As the sensing head moves across the surface, the source in the upper portion releases
beta particles. The number of particles which reach the detector beneath the sheet in each 20ms
window is converted into a measurement.

Figure 6: Areal density map of a MIRALON sheet. The transmission sensor measures the material
density with a low sampling rate. The original image is insufficient to identify variation and defects
at the level needed.

Figure 7: The designed shim-stock and its beta transmission areal density map
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modeling the solution each time when changing the data collection setting. Therefore, we

convert the problem into a supervised problem. We substitute a piece of shim-stock to ob-

tain the ground truth of high-resolution areal density maps. Figure 7 shows the shim-stock

and its beta transmission areal density map. An assumption of uniform areal density is

made for the shim-stock. Geometric figures of different dimensions and orientations were

laser-cut from the shim-stock. Then, using the same parameters used for MIRALON sheets,

an areal density map was generated. This data gathering task demonstrates the need for

a close collaboration between the team developing the super-resolution methodologies and

the team performing the physical measurements1. Nevertheless, the amount of training data

is under the requirement for training regular deep image super-resolution neural networks.

We adapt the transform domain to extract more representing features from the limited in-

formation, and then use shallow architectures for more stable and efficient performances.

Moreover, there are many types of transform domains that are competitive choices for image

processing problems. In particular, wavelet transformations have drawn our interest since

they allow researchers to make an optimal choice based on specific image content. We aim

to take advantage of different transform domains for a more robust performances adapting

various images with different features. Therefore, we propose ensemble CNNs, which assem-

ble multiple sparse representatives in different transform domains for an optimal combined

result. The second reason rises since the areal density is inherently a 3D phenomena. The

penetrating behavior of the beta particles which are released from the transmission equip-

ment contribute to the measurement regarding to different materials. As shown in Figure

8, the movement of the particles does not follow a linear trajectory because there are den-

sity patterns and defects in the thickness direction. Therefore, the change of density as a

function of depth in the sheet is critical to estimate. Accordingly, we propose a voxel-based

architecture and advanced training approach. Through a special 3-layer voxel experiment

which is particularly designed for the MIRALON problem, we can gather a limited set of

training data for which the true areal density is known. Given the semi-3D data, we develop

a super resolution architecture and training paradigm which is simultaneously efficient in its

data needs as well as being sensitive to density changes as a function of depth.

1Thanks to the Nanocomp team for their data generation work
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Figure 8: The camera measurement relates to the penetrating behavior of the beta particles re-
garding to different density patterns.

2 Related Works

This research develops methods for recovering high-resolution images from low-resolution

images by combining ideas inspired by compressive sensing techniques with super-resolution

neural networks. Compressive sensing leverages the existence of bases in which signals can be

sparsely represented. Fourier and wavelet transformations are popular candidates since they

provide sparse image representations. The key idea is that the frequency domain, and other

transformed domains, where images can be presented sparsely can be used to ensemble a

robust model and improve the performance of super-resolution convolutional neural networks.

In this section we will discuss the fundamental background of compressive sensing techniques,

sparsifying transformed domains and super-resolution convolutional neural networks.

2.1 Compressive Sensing

Compressive sensing is a signal processing technique for acquiring signals at a low sampling

rate and reconstructing them to improve the resolution. It provides an efficient alternative

to traditional methods which require the acquisition of data with a high sampling rate.

Classically the Nyquist-Shannon sampling theorem states that a signal yt ∈ RN can be

reconstructed byM(M < N) linear measurements if the sampling rate is more than twice the

highest frequency. As expressed in equation (1), if the original signal yt is sparse in a certain

basis Ψ in which the restricted isometry property or similar assumptions hold, then it can be

reconstructed by the compressed signal ys and the sensing matrix R [4] [30]. For example,

choosing Ψ as the Fourier basis leads to many natural signals being sparse in that domain.

For R, the choice is crucial and it has been shown that Bernoulli and Gaussian random

matrices are good candidates [4] [30]. Based on these assumptions, standard approaches use
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Figure 9: Transformations separate frequencies in different ways. Sparse representatives can deliver
the information more efficiently with no loss to help with the small training data challenge.

l1 regularization and the desired sparse solution can be obtained by solving the optimization

problem

min
ω∈RM

∥ω∥1

s.t. RΨω = ys.
(1)

With the optimal solution ω∗, the original signal can be reconstructed as yt = Ψω∗. Classical

algorithms for compressive sensing solve the problem by iteratively reweighting the l1 mini-

mization [31] [32] [33] or other similar techniques. Improvements can be made by studying

the signal sparsity from prior knowledge of the image [34] [35] [36].

Reflecting on the success of compressive sensing methods, we are inspired to extend

current CNN based super-resolution techniques by leveraging appropriate sparse represen-

tations.

2.2 Transform Domains

Transform domains are widely used for signal reconstruction. In particular, the connection

between low-resolution images and high-resolution images can often be represented in some

transform domain where, for example, the spatial redundancy in the original image is reduced

in the frequency domain. The Fourier domain and higher-order wavelet sparsifying transform

domains are both competitive choices for image processing problems [1]. In particular, we

focus on DCT and several 2-level wavelet transformations in this study. As shown in Figure

9, transformations separate frequencies in different ways. Sparse representatives can deliver

the information more efficiently with no loss to help with the small training data challenge.

Fourier transforms decompose signals into frequencies. The Fourier transform of a func-

tion is a complex-valued function representing the complex sinusoids that comprise the orig-
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inal function. The general definition for the Fourier transformation of a function f(x) is

f̂(ξ) =

∫ ∞

−∞
f(x)e−i2πξxdx,∀ξ ∈ R, (2)

stating that the transformation of f(x) at frequency ξ is a complex number f̂(ξ). Writing

a signal in terms of a complex exponential (frequency component) not only helps to under-

stand the signal characteristics but also makes it easier to manipulate [37]. However, the

infinite integral cannot be applied directly in computational algorithms. To bring Fourier

transformation into real-world engineering applications, discrete Fourier transform (DFT)

was introduced by Shmuel Winograd in 1976 [38]. DFT deals with a finite amount of data

by converting a finite sequence of equally spaced samples into a same-length sequence. A

sequence of N complex numbers {xn} = x0, x1, . . . , xN−1 can be converted into another

sequence of complex numbers {Xn} = X0, X1, . . . , XN−1 by

Xk =
N−1∑
n=0

xn · [cos(
2π

N
kn)− i · sin(2π

N
kn)]. (3)

DFT has been widely implemented by fast Fourier transform (FFT) algorithms in digital

signal processing problems. When applied, the summation term is separated into a real part

and a complex part that need to be computed individually. Proposed in 1972 by Nasir Ahmed

[39], DCT is considered the most efficient encoder for image compression. It is capable of

compressing image data size by 8 times compared to the original signal. In 1995, the lossless

version of DCT was developed, making it a more efficient image compression algorithm than

entropy coding [40]. Reducing memory requirements and computational cost compared with

other types of Fourier transformations, DCT is one of the most popular selections in the

Fourier family for our research as it considers only the real part of the series [14] and many

algorithms were developed in the DCT domain before the recent breakthroughs in image

super-resolution neural networks [15–17]. Instead of using a summation of complex numbers

in DFT, DCT uses a sum of cosine functions. A finite sequence of data points can be

transformed into another sequence of real numbers oscillating at different frequencies. There

are several variants of the DCT definitions, and we use the most common Type II DCT in

this research. In particular, a sequence of N real numbers x0, x1, . . . , xN−1 can be converted

into another sequence of real numbers X0, X1, . . . , XN−1 by

Xk =
N−1∑
n=0

xn · cos[
π

N
(n+

1

2
)k)]. (4)

19



Alternatively, DCT can be interpreted as taking the DFT of a sequence y of length 2N which

is the concatenation of the original sequence with its reverse. Since y = x0, ..., xN−1, xN−1, ..., x0

is symmetric, its DFT contains only the real part.

Wavelet transformations have also drawn substantial interest over the last several years

as a large selection of wavelet families and bandwidths exist, which allows researchers to

select the optimal choice based on specific image content. Wavelets have been adapted

into image super-resolution neural networks to improve performance [18, 19]. ”Wavelet” in

wavelet transformation can be understood as ”oscillation”. Beginning at zero, a wavelet

is a wave-like oscillation with an amplitude that returns to zero one or more times. By a

certain orthonormal series generated from a wavelet, we can obtain a wavelet series as a

square-integrable function. In a square-integrable function, the integral of the square of the

absolute value is finite. Function ψ(x) is square-integrable on interval [a, b] if∫ b

a

|ψ(x)|2dx <∞. (5)

ψ(x) can be called an orthonormal wavelet if it can be used to define a Hilbert basis {ψjk :

j, k ∈ Z}. Then f(x) is a wavelet series if it can be be expanded in this basis as

f(x) =
∞∑

j,k=−∞

cjkψjk(x), (6)

where cjk are the wavelet coefficients.

The fundamental idea of using wavelet series is that by choosing suitable basis functions,

it allows only changes in time extension while the shape remains the same. Researchers can

choose the analysis frequency of the basis function by changing the time extension. In other

words, one of the advantages of wavelet transformations over the DCT is that researchers can

decompose the image into desired sub-bands of a given image signal. At specific frequencies,

wavelet transformations are less sensitive and have lower computational cost [1]. This may

help with our small training data challenge because we require a more robust algorithm that

is less sensitive as our training sample may not be representative of the entire population.

However, the performance of wavelets depends on how well the selected wavelet transfor-

mation suits the particular application [20]. For choosing the wavelet family, although both

general guidelines [21–23] and suggestions toward specific areas [24, 25] are available, prop-

erties of different wavelets should be studied before making a selection. For example, Figure

10 and Figure 11 show some wavelet transformations of f(x) = sin(x). In this research,

Daubechies [41], biorthogonal, and reverse biorthogonal for wavelet domains [23, 42, 43] are
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Figure 10: Examples of different wavelet transformation of f(x) = sin(x). A large selection of
wavelet families exists. Different wavelets transform the signal into different frequencies.

Figure 11: Examples of different bandwidths of Daubechies wavelet transformation of f(x) =
sin(x). Different bandwidths within a wavelet family exist.

considered. Figure 12 shows 2D wavelet representatives of a 10x10 pixel shim-stock patch

from different wavelet families. As shown in the example, there are multiple bandwidth to

choose from within each family. Figure 13 shows an example of first level wavelet transfor-

mations of an ordinary image. Daubechies 6 and biorthogonal 3.7 transformations separate

frequencies into detail coefficient matrices, providing frequency details differently.

In our study, we use multi-channel wavelet representations specifically. As illustrated in

Figure 14, a two-level wavelet transformation separates the horizontal, the vertical and the

diagonal details from the approximation. The entire image matrix can be divided into four

detail sub-matrices. We hope to avoid extracting features from the intersection of different

sub-matrices in order to improve the efficiency. The four detail sub-matrices are fold into a

4-channel representative. In this way, each feature in our model is extracted from only one

sub-matrix.
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Figure 12: 2D wavelet representatives of a 10x10 pixel patch from different wavelet families. There
are multiple bandwidth to choose from within each family.

Figure 13: Wavelet detail coefficient matrices from first level Daubechies 6 and biorthogonal 3.7
transformations.
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Figure 14: Reprocessing wavelet representatives. A 2-level wavelet transformation gives four detail
sub-matrix. The multi-channel representative is obtained by folding the detail sub-matrix.

Figure 15: An illustration of sparse-coding-based methods in the view of a convolutional neural
network in SRCNN [10]. Each pixel in the high-resolution image can be reconstructed from a
neighborhood of several pixels in the low-resolution image.

2.3 Super-resolution CNNs

CNNs have become a very popular technique for image processing problems. They were

initially applied to image classification problems [44] and achieved success in many fields

such as facial recognition [45] and object detection [46]. Subsequently, residual learning and

auto-encoders were applied to studies of image denoising [6] [7]. Based on previous work,

Chao et al [10] proposed a single image super-resolution neural network (SRCNN), providing

an end-to-end mapping from low-resolution patch inputs to high-resolution pixel output. It

is demonstrated that the sparse-coding based algorithm, which is mathematically similar

to compressive sensing and can be used for finding the sparse base Ψ in Equation (1), can

be viewed as a convolutional neural network. As shown in Figure 15, SRCNN uses the

neural network as an optimized pipeline consisting of three operations; patch extraction and

representation; non-linear mapping in high dimensional space; and reconstruction of high

dimensional representations. Our model is inspired by, and benefits from, SRCNN.
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Following the breakthrough made by single image super-resolution neural networks, var-

ious authors have worked on adapting compressive sensing techniques to CNNs. Wang et

al [47] combine sparse coding with a CNN to improve the performance of the image super-

resolution problem. In this case the under-determined system is

yt = R−1ys + e (7)

where e is the measurement noise. With respect to an over-complete dictionaryD (equivalent

to the sparse base Ψ in Equation (1)), the image can be represented by sparse ’linear’

coefficients α. With a well-defined dictionary, yt can be recovered by solving Equation (8),

where λ is the regularization coefficient. However, since the convolution operation (with

activation functions) is nonlinear with respect to the entire image, the recovered sensing

measurement R is not necessarily linear.

ys = Dα

s.t. α = argmin
α

∥yt −R−1Dα∥22 + λ∥α∥1.
(8)

Subsequently, a simpler scalable single image super-resolution CNN was introduced by

Kulkarni et al [48]. Here a deep neural network is used in place of the traditional l1-

minimization method. They state that the image signal is not exactly sparse with respect to

the dictionary D. A convolutional architecture which refines the image estimation in each

iteration is efficient enough to estimate the sensing measurement R. From this work, Kulka-

rni et al developed a method called ReconNet. A significant benefit of ReconNet is better

performance with few parameters, somewhat reducing the computational cost. As shown

in Figure 16, a linear layer is used to up-scale the image patches and then fully connected

with convolutional layers for image reconstruction. This can also be interpreted as ReconNet

using both linear layers and nonlinear layers to recover the sparse base Ψ and the sensing

measurement R simultaneously. We propose to improve this model using frequency domains.

With the help of sparse representations in the frequency domain, a shallower architecture

with lower computational cost can result in better performance.

The development of single image super-resolution neural networks also progressed in a

different direction with residual neural networks. Residual neural networks use deep residual

block modules and skip connections to explore the feature space in depth to avoid vanishing

gradients. Numerous models have been developed increasing the accuracy of the recon-

struction i.e., SRResNet [12], EDSR [13], RCAN [49]. EDSR improves the deep residual

blocks in SRResNet by removing the batch normalization layers since they hurt the flexibil-

ity when normalizing the features. RCAN uses channel-attention residual blocks to increase
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Figure 16: The architecture of ReconNet [48]. A linear layer up-scales the image patches and then
fully connect to 6 convolutional layers with non-linear activation function for image reconstruction.

Figure 17: The architectures of EDSR [13] and RCAN [49] with corresponding featured residual
blocks. EDSR improves the deep residual blocks in SRResNet by removing the batch normalization
layers. RCAN uses channel-attention residual blocks to reduce the impact from abundant low-
frequency information and increase the network’s representational ability.

the network’s representational ability. Figure 17 shows the general architectures of EDSR

and RCAN with their featured residual blocks. Although these models may not be suit-

able for our problem since the gradient decent in deep architecture cannot be optimized on

small training data, we use these high-performance benchmark models as baselines to make

comparison in the experiments.
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3 Methodology for Data Science

In contrast to the ideas from Kulkarni et al for ReconNet [48], we propose a different expla-

nation for scalable single image super-resolution CNNs. The reason that the convolutional

architecture works well for the under-determined linear system is not in contrast to the pre-

defined sparsity assumption in the traditional method. The model is learning the sparsity

and the sensing measurement simultaneously by training parameters in R from equation (3).

In addition, we do have knowledge that common image signals are sparse in the Fourier

domain, and the high-resolution image can accurately be recovered from the low-resolution

image by their sparse representations [50]. Accordingly, we believe that the sparsity of our

target images in the frequency domain leads to better reconstruction for high-resolution

images, even when the neural network is trained on limited low-resolution frequency infor-

mation. Furthermore, we challenge the deep architecture used in previous studies. Numerous

convolutional layers suffer from exploding/vanishing gradients [51]. Unlike previous studies

on deep residual-learning and gradient clipping [52] [53], we propose to reduce the computa-

tional cost and increase the efficiency by a shallower architecture in the frequency domain.

Our model outperforms traditional compressive sensing methods by learning a non-linear

transformation instead of defining a linear sensing matrix R. It also improves upon previous

scalable single image super-resolution CNNs by learning the measurements in the sparsifying

transform domains. Previous studies used a fully connected layer between low dimensional

space domain and high dimensional feature domain. We propose to learn features from the

transform domain in order to increase the computational efficiency. The representation in

the transform domain can be easily found by

x = Fys, y = Fyt (9)

where F denotes the operation of the sparsifying transformation. Training the model for

y = R−1
f x+ ef (10)

can help to improve the performance. Here, ef is the measurement noise.

The Fourier domain and higher-order wavelet sparsifying transform domains are compet-

itive choices for image processing problems [1]. The researchers can choose desired transform

domains based on the image content and the particular application field. However, it is hard

to determine the best suited transform domain when the amount of training data is limited.

In our study, we focus on image super-resolution problems with small training data. The

available training data cannot be assumed to be representative of the entire population. In
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addition, as we have a particular interest in the beta transmission images for MIRALON

sheets, the compressive measurements are more complex than the cases for ordinary images.

Therefore, we propose an ensemble method with multiple transform domains to overcome

these challenges. Various sparsifiying representatives from multiple domains are provided

to the neural network at the same time. In other words, we manually transform the sig-

nal into different frequencies and directions to enrich the information so that the neural

network can choose the desired representatives automatically and process the signal more

efficiently. Furthermore, the neural network ensemble can learn the properties of the full

image and combines the results from different transform domains based on specific image

content, delivering a more robust algorithm.

In the following sections, we will introduce 5 models in the order of our developments,

illustrating the advantages of (1) sparsifying transform domains, (2) shallow architectures,

and (3) ensemble methods for solving image super-resolution problems with complex com-

pressive measurements where only a small collection of training data are available. The

study is conducted with five steps:

• First, we developed SparseFnet to prove that image representations in the frequency

domain can be more effectively processed by CNNs. It also shows that for the challenge

of small training data, a shallower architecture with sparse representations can provide

a more stable and efficient result or reconstruction.

• Second, we included more choices of sparsifying transformations for the ensemble to

consider, generating a more robust algorithm for providing a general solution to small

data image super-resolution problems for different image content in different applica-

tion fields. In addition to the Fourier transformation, multiple wavelet transformations

are considered by ESnet to improve the performance over single domain SparseFnet.

• Third, we developed EWnet as a more uniform version of ESnet. The best-suited

sparsifying transformations are determined for different sub-image-patches and differ-

ent compressive measurements at the same time as the training of Ssuper-resolution

CNNs.

• Next, we further expanded the ensemble method. We propose a model called Ensem-

Net to study the performance of combining different bench mark models in transform

domains to prove that the ensemble helps to improve the performance.

• Finally, we extended the study to a semi-3D model. We proposed a Voxel-design

with specific consideration of the beta transmission image applications. This considers
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the depth dependency of the compressive measurements. By introducing a 3-layer

template design, we successfully extended the previous results to 3D space.

3.1 The comparison between architectures of different algorithms

This section is a summary of the comparisons between our proposed algorithms. Figures

18, 19, 20 and 21 are simplified architectures of the algorithms highlighting the differences

and the key todosfeatures. The detailed architectures will be illustrated in the individual

sections for each algorithm. We did not include the figure for the last voxel-based design since

it is an application-driven modification of EnsemNet. There are several essential features in

this study for the challenges of small training data and complex compressive measurements.

Table 1 lists all the features across the different algorithms.

SparseFnet is an improved scalable single image super-resolution neural network in the

frequency domain. Inspired by the sparsity assumption in the Fourier domain from standard

compressive sensing methods, a new architecture is built. A primary feature of our model

is that the neural network uses Fourier loss. Illustrated in Figure 18, the neural network

is trained with respect to the difference between Fourier representatives rather than the

difference between the images in the space domain. Moreover, we simplify the architecture

of deep neural networks for image reconstruction problems. The shallower architecture

is demonstrated to be just as accurate with lower computational cost. Our experimental

results illustrate that the proposed SparseFnet significantly outperforms previous scalable

single image super-resolution neural networks.

Table 1: Essential features of the different algorithms developed in this work

Approaches Models
SparseFnet ESnet EWnet EnsemNet

Fourier loss function
Shallow architecture
Multiple sparsifying transforms
Ensemble method
Input sparse representatives
Output sparse representatives
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Figure 18: SparseFnet. Key features: (1) shallow architecture, (2) the model uses Fourier loss.
Input: sparse representative (Fourier). Output: high-resolution sparse representative (Fourier).

Figure 19: ESnet. Key feature: ensemble reconstruction from different SparseFnet results which
are determined in different domains. Input: the original low-resolution image and multiple sparse
representatives (Fourier and wavelets). Output: high-resolution reconstruction of the image.
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Figure 20: EWnet. Key feature: more robust extraction of features across different transform
domains than ESnet. Input: multiple sparse representatives (wavelets). Output: high-resolution
reconstruction of the image.

ESnet is an ensemble algorithm for selecting the appropriate sparse domain for the image

super-resolution problem. Instead of choosing the best-suited sparsifying transformation for

the entire image, our proposed ESnet leverages the advantages from multiple transform

domains across different sub-image patches. As shown in Figure 19, SparseFnets

reconstructions from several sparsifying domains are generated first. Then, an assigner

neural network assigns weights to the reconstruction patches from the different domains.

The combined result is a universal solution for various types of images. The advantages of

using ESnet are illustrated through experiments on both regular images and the areal density

maps of MIRALON sheets for different complex compressive measurements. Specifically,

ESnet provides a more robust solution for the limitation of small training data sets.

Similar to ESnet, EWnet leverages the advantages from multiple transform domains

across different sub-image patches but works in a more concise fashion. Figure 20 gives

the simplified architecture. Sparse representatives from multiple domains are fed into a

shallow SparseFnet. Unlike the basic SparseFnet that outputs high-resolution Fourier rep-

resentatives, EWnet directly outputs the high-resolution reconstruction of the image. As

such, EWnet provides a more robust and efficient solution even with the limitation of small

training data sets. The advantages of using EWnet are illustrated through experiments on

both regular images and the areal density maps of MIRALON sheets for different complex

compressive measurements. We reveal additional texture of the carbon nanotube sheets by

applying EWnet to MIRALON areal density maps in the next section.

EnsemNet is another improved version of ESnet. EWnet improves the robust perfor-

mance by leveraging the advantages from sparsifying features across multiple transform
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Figure 21: EnsemNet. Key feature: improved version of ESnet focusing on ensemble, the initial
algorithm for the voxel-based semi-3D method. Input: the original low-resolution image and the
sparse representative (wavelets). Output: high-resolution reconstruction of the image.

domains, while EnsemNet increase the robust performance by an ensemble from different al-

gorithms. A more general solution is provided for various types of applications by combining

the output from different benchmark models which are performed on transform domains.

As illustrated in Figure 21, two shallow versions of benchmark neural networks in differ-

ent transport domains are performed, and the output is an element-wise summation of the

two reconstructions. EnsemNet provides a more robust and efficient solution for the image

super-resolution problem with small training data sets and diverse compressive models.

Finally, in order to identify variation and defects in the areal density maps of MIRALON

sheet at the required level, we need sufficient accuracy in the thickness direction. Current 2D

super-resolution neural networks cannot provide enough information. Therefore, we propose

a 3-layer voxel representation to adapt previous ensemble CNNs in transform domains

to the particular application of MIRALON sheets. EnsemNet is adapted into this method.

Using our proposed techniques, a high-resolution areal density map, which is rich in 3D

information, can be obtained by leveraging 2D image super-resolution CNNs.
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Figure 22: The shallow architecture of our proposed models. The first linear layer maps input
patches to high dimensional feature space. The second convolutional layer extracts features non-
linearly. The third convolutional layer acts as an averaging filter of features and reconstructs high
dimensional patches.

3.2 SparseFnet: Shallow Super-resolution CNN in the Frequency

domain

Taking advantage of signal sparsity, we developed a model in the frequency domain with

shallow architecture called SparseFnet. It improves the performance of previous image

super-resolution neural networks. Performing the operation on a small number of non-zero

coefficients in the frequency domain, SparseFnet provides a more stable model that effec-

tively increases the accuracy and lowers the computational cost. Herein, we introduce three

proposed models, shallow neural network (Shallownet), sparse domain neural network in the

frequency domain with spatial cost (SparseSnet), and sparse domain neural network in the

frequency domain with frequency cost (SparseFnet). We use similar architectures for these

three models in different domains to demonstrate the advantage of SparseFnet.

The architecture of SparseFnet

The framework of our models is shown in Figure 22. Before training the model, we pre-

process the data by extracting overlapped patches from the entire image. The model is then

trained ont these small image patches. The framework contains a linear layer Φ1(·) and

convolutional layers Φ2(·). The linear layer takes small patches from the low dimensional

space as inputs and feeds preliminary reconstructed patches on the high dimensional space

to the convolutional layers. Then the convolutional layers apply nonlinear filters to further

improve the reconstruction accuracy.
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The first layer in the neural network is a fully connected linear layer. A compressed signal

x ∈ Rn1×n2 (N = n1 × n2) is projected to the high dimensional space by a linear mapping

function Φ1(·). A preliminary reconstructed signal y1 ∈ Rm1×m2 (M = m1 ×m2) is obtained

by

y1 = Φ1(x)

Φ1(x) = W1 · x+ b1
(11)

where W1 is a M ×N dimensional linear filter and b1 is a M dimensional bias vector. Note

that Φ1(·) is not necessarily representative of the sensing measurement. It only represents

projections between different domains in the neural network.

The convolutional part of our architecture, Φ2(·), has two convolution layers, G1(·) and
G2(·), which are both in the projected high dimensional space. These two layers are used

for feature extraction and patch reconstruction respectively. The first layer G1(·) extracts

k1 features from the preliminary reconstructed signal y1 by non-linear filters, and ReLU is

chosen as the activation function. The layer is expressed as

y2 = G1(y1)

G1(y1) = max(0,W2 · y1 + b2)
(12)

where W2 contains k1 filters of size g1 × g1 and b2 is a k1 × g1 × g1 dimensional bias vector.

Then G2(·) acts as an averaging filter for patch reconstruction. The output of the second

non-linear layer is the final reconstructed patch y ∈ Rm1×m2 . Each pixel in y can be viewed

as a weighted average of the k1 features from the previous layer G1(·). We define this layer

by

y = G2(y2)

G2(y2) = W3 · y2 + b3
(13)

where W3 contains k2 filters of size g2 × g2, and b3 is the corresponding bias vector of size

m1 × m2. The settings for these parameters in our experiments are k1 = 64, g1 = 9, k2 =

1, g2 = 5.

The fundamental structure of our models consist of the previously introduced linear

and convolutional layers. We adapt this structure to construct Shallownet, SparseSnet and

SparseFnet with different settings.

Shallownet is the baseline of our proposed models. It can be viewed as a simplified

version of ReconNet using the framework shown in Figure 22. The low-resolution patch is

processed by the linear layer and two convolutional layers sequentially, then a high-resolution

patch is output for reconstructing the whole image. We do not apply additional operations

other than the operations illustrated in Figure 22. The input signal x and the output y
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are both image patches in the space domain. Suppose the operation of the network can be

written as Φθ = Φ2(Φ1(·)) ∈ RM×N where θ denotes the parameters in the network. The

high-resolution patch can be recovered by

y = yt, x = ys

y = Φθ(x)

min
θ
∥A− Φθ(x)∥22

(14)

where ys and yt are the compressed patches and the reconstructed patches in the space

domain respectively and A is the ground truth for the high-resolution patches. In the case

where the neural network is equivalent to regular compressive sensing approaches, Φθ for

Shallownet can be expressed as a sparse sensing matrix. In other words, the network learns

the projection for the sparsity domain and the sensing measurement simultaneously. If

the sparsity projection is given, then the algorithm can be more efficient with the same

architecture. Thus, we propose SparseSnet and SparseFnet in the frequency domain.

As described above, the Fourier transformation is a good candidate for the sparsity

domain. For both SparseSnet and SparseFnet, the input and the output patches are pre-

processed by the Discrete Cosine Transformation (DCT) operation F . SparseSnet performs

the optimization in the space domain, while SparseFnet optimizes in the frequency domain

directly.

The optimization of SparseSnet is

y = Fyt, x = Fys

y = Φθ(x)

min
θ
∥A− F−1Φθ(x)∥22.

(15)

The network uses the inverse DCT on high dimensional Fourier representative patches to

compute the cost. SparseSnet is in the frequency domain but uses gradient descent with

respect to the cost in the space domain.

SparseFnet is more straight forward in the frequency domain. The network learns Φθ

from
y = Fyt, x = Fys,Ω = FA

y = Φθ(x)

min
θ
∥Ω− Φθ(x)∥22.

(16)

Ω is the Fourier representation of the ground truth A. Here the cost in each iteration is

computed between Fourier representations directly. An estimate of Ω is output in the fre-
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Algorithm 1 SparseFnet
Input: ys ∈ Rn1×n2 , A ∈ Rm1×m2

Pre-training process: x = Fys, Ω = FA.
Initialize Φθ with randomly initialized parameters.
While epoch = True

for each iteration
y = Φθ(x)
Minimize ∥Ω− Φθ(x)∥22 using back-propagation.

end for
end while
Return y
Post-training process: yt = F−1y.
Output: yt ∈ Rm1×m2

quency domain after which the inverse DCT is applied to the estimate in order to recover

the representation in the space domain. Unlike SparseSnet, SparseFnet never sees the space

domain. This network is built on the assumption that the DCT projection provides an al-

ternative basis on which the signal is approximately sparse. The projection for the sparsity

domain is found during pre-training, and the operation Φθ learns only the sensing measure-

ment in the frequency domain. If the assumption of sparsity stands, then SparseFnet should

perform better than Shallownet and SparseSnet. The training pseudo-code for SparseFnet

is provided in Algorithm 1.

SparseFnet on ordinary image reconstruction

Several experiments were conducted on regular images to demonstrate the effectiveness of

our proposed techniques. The labels for training the neural network are the ground truth of

high-resolution images. We use mean square error (MSE) for the Peak Signal-to-Noise Ratio

(PSNR) statistic. The objective is

min
1

2N

N∑
i=1

∥f(xi)− xi∥22 (17)

where f represents the operation of the neural network and xi represents the input. PSNR

in decibels (dB) is defined as

PSNR = 10 log(
I2

MSE
), (18)
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where I is the maximum pixel value of the data type [54]. Here, we use an 8-bit image with

I = 255. The training data are generated from 300× 300 pixel images. We use the Python

package skimage to down-scale the images at measurement rates (MR) 0.25, 0.1 and 0.06

respectively. For example, for MR = 0.25 which corresponds to a reduction factor of 2 on

both the horizontal and vertical axes, the generated down-scaled image is 150× 150 pixels.

The compressed images for MR = 0.1 and MR = 0.06 are 100 × 100 pixels and 75 × 75

pixels, respectively. We then extract overlapped patches for the network. Patches of size

10× 10 pixels are extracted from compressed images and patches of size 20× 20 pixels (MR

= 0.25), 30× 30 pixels (MR = 0.1) and 40× 40 pixels (MR = 0.06) are extracted from the

original images. The neural networks are trained with the Adam optimizer. The learning

rate is set to be 10−3. The minibatch size is set to be 128. We train the neural networks for

100 epochs.

Two algorithms from the literature, ReconNet [48] and O-NL-SDA [55], are implemented

for comparison with our model and serve as baselines. We implement these algorithms on

the same platform as our algorithms to control the performing environment. The model

architectures strictly follow those of the respective authors with activation functions and

parameters chosen as suggested in their works. The performances are studied on three

aspects: the stability in the training progress, the reconstruction quality on testing images

and the running time.

As demonstrated with the architecture in Figure 22, representations provided by the

frequency domain result in more efficient outcomes with shallower architecture. Herein, we

study the progress of convergence for different algorithms to confirm the above statement.

Figure 23 shows the decay of MSE over training epochs for ReconNet, Shallownet, SparseSnet

and SparseFnet at different measurement rates. For all measurement rates, the convergence

progress of ReconNet shows the largest fluctuation. As the measurement rate decreases

from 0.25 to 0.06, the instability of ReconNet becomes more severe. On the contrary, our

models, which are in the frequency domain, have smoother MSE decay curves. Although

SparseSnet experiences slow convergence for a high measurement rate of 0.25, SparseFnet

has exceptional performance with rapid and stable convergence at all measurement rates.

Several experiments are conducted using standard images. Six testing images are re-

constructed at MR = 0.25, 0.1 and 0.06. In addition to baseline models and our proposed

models, we adapt the deep architecture of ReconNet’s to our frequency models SparseSnet

and SparseFnet which we name D-SparseSnet and D-SparseFnet. If the performance of these

deeper versions does not outperform their original shallower versions, then we can conclude

that the frequency domain and the shallower architecture result in better performance when

used together.
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Figure 23: Decay of training MSE(×10−3) for different algorithms at different measurement rates.
The baseline model ReconNet shows the largest fluctuation as measurement rate decreases, while
SparseFnet has rapid and stable convergence progress in the frequency domain.

Figure 24 shows the outcomes from different algorithms at MR = 0.1. The differences in

reconstruction quality can be recognized visually. SparseSnet and SparseFnet give sharper

details while models in the space domain suffer from blurring effects. Table 3 presents the

testing PSNR (in dB) from the seven algorithms at all three measurement rates. For all six

images, the highest PSNR are achieved by models in the frequency domain. Deeper archi-

tecture in the frequency domain performs the best in two out of the eighteen experimental

trials, with the shallower architecture performing best on the remaining sixteen trials. The

performances of SparseSnet and SparseFnet are similar with slight differences in general.

See Table 3 for details.

Table 2 shows the running time comparison for reconstructing a 300×300 pixel image.

We use a 2.6 GHz Intel core i7-8850H CPU with 16 GB memory to run the implementations.

At each measurement rate, the processing time reported for each algorithm is an average of 6

testing trials. Comparing between ReconNet and Shallownet, D-SparseSnet and SparseSnet

and D-SparseFnet and SparseFnet, the shallower architecture reduces the running time sig-

nificantly. On the other hand, the superior performance of SparseSnet and SparseFnet was

demonstrated in the previous section along with the slight differences between their testing

PSNR. Here, we show that SparseFnet is the optimal choice, considering both accuracy and

running time. Taking representations in the frequency domain as input, the major difference

between SparseSnet and SparseFnet is that errors in the space domain are used to train

SparseSnet, while they are not used to train SparseFnet. The operation for SparseFnet is

more straight forward while SparseSnet needs to fulfill the projection within the network.

Consequently, SparseFnet runs faster than SparseSnet. This point is confirmed in testing

results shown in Table 2. At all measurement rates, the processing time of SparseSnet is

greater than the processing time of SparseFnet.
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Figure 24: Reconstructed testing images with different algorithms at measurement rate of 0.1.
Sharper details are revealed by our proposed SparseSnet and SparseFnet.
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3.3 ESnet: Ensemble Super-resolution for CNNs in Transform

Domains

In the study of SparseFnet, we demonstrated that the sparsifying representative of image

signal could provide more efficient information to the neural network and help to overcome

the challenge of small training data for image super-resolution problems. In addition to the

Fourier transformation, there are other choices of transform domains. In this section, we will

introduce various types of sparsifying transformations to further enrich the information which

could be provided to the neural network. This way, more robust algorithms are developed

for a general solution based on different image content and applications.

The Fourier transformation and wavelet transformations are competitive choices for im-

age processing problems. A large selection of wavelet families and bandwidths for wavelet

transformations exists, which allows for the optimal transform selection based on specific

image content. Since our research is application-oriented, we would like to build a model

which not only improves the reconstruction quality of regular images in different categories

(i.e., portraits, scenes, and cartoons) but also can adapt to the areal density maps of MI-

RALON sheet material as well. Therefore, we start with the basic structure of SparseFnet,

and we introduce the ability to use multiple wavelet transform domains into the framework.

In real-world applications, there are many cases where only a small collection of data is

available. It is difficult to understand the distribution of images a priori as the sample may

not be representative of the entire population. Moreover, the compressive measurements

are complex and diverse according to the application field. To overcome the limitation of

small training data sets and the complexity of the compressive measurements, we propose

an ensemble CNN for image super-resolution problems. Including the frequency domain

(DCT) and multiple wavelet transform domains, allows this model to not only provide a

Table 2: Average running time (in seconds) for reconstructing a 300×300 image at differ-
ent measurement rates. Shallow architecture reduces running time approximately by half.
SparseFnet has lower running time between the best performing models (SparseSnet and
SparseFnet).

MR=0.25 MR=0.1 MR=0.06
ReconNet 19.08 19.46 18.47
Shallownet 9.80 9.06 8.34

D-SparseSnet 28.68 24.19 23.31
D-SparseFnet 19.69 17.62 17.35
SparseSnet 18.04 14.64 14.31
SparseFnet 9.23 9.22 8.62
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Table 3: Testing PSNR (in dB) with different algorithms at different measurement rates.
Models in the frequency domain (D-SparseSnet, D-SparseFnet, SparseSnet and SparseFnet)
yield better reconstruction quality in all the cases comparing with models in the space domain
(O-NL-SDA, ReconNet and Shallownet). Shallow architecture (SparseSnet and SparseFnet)
outperforms deep architecture (D-SparseSnet, D-SparseFnet) in 16 out of 18 trails.

Testing Images Algorithms MR=0.25 MR=0.1 MR=0.06
Rose O-NL-SDA 25.22 19.06 14.25

ReconNet 30.76 25.63 22.30
Shallownet 30.83 26.44 22.92

D-SparseSnet 33.64 29.19 25.36
D-SparseFnet 33.20 28.80 25.86
SparseSnet 33.73 29.25 26.08
SparseFnet 33.46 29.13 26.27

Flag O-NL-SDA 9.27 5.62 3.05
ReconNet 14.02 8.78 5.84
Shallownet 13.75 10.32 7.05

D-SparseSnet 17.62 11.92 8.69
D-SparseFnet 17.72 11.96 9.19
SparseSnet 17.85 12.11 9.32
SparseFnet 18.19 12.12 9.33

Flower O-NL-SDA 26.57 20.20 17.51
ReconNet 30.47 25.40 19.47
Shallownet 31.00 31.96 22.76

D-SparseSnet 32.67 29.16 25.77
D-SparseFnet 31.74 28.69 28.91
SparseSnet 30.43 29.36 28.06
SparseFnet 31.67 29.39 28.06

Building O-NL-SDA 13.85 7.36 5.61
ReconNet 20.55 14.94 8.70
Shallownet 20.51 16.01 9.20

D-SparseSnet 23.47 18.74 13.31
D-SparseFnet 23.78 19.03 13.50
SparseSnet 24.57 19.28 14.02
SparseFnet 24.72 19.25 14.04

Tree O-NL-SDA 15.05 12.66 10.78
ReconNet 19.70 15.78 13.86
Shallownet 19.85 15.61 13.90

D-SparseSnet 23.23 18.45 15.48
D-SparseFnet 23.18 18.33 15.39
SparseSnet 23.73 18.57 15.76
SparseFnet 23.78 18.53 15.84

Bell Tower O-NL-SDA 19.66 16.33 12.94
ReconNet 24.26 19.88 17.52
Shallownet 24.03 20.60 17.86

D-SparseSnet 26.73 22.46 19.39
D-SparseFnet 26.62 22.36 19.73
SparseSnet 26.62 22.59 19.97
SparseFnet 26.82 22.53 19.93
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universal solution for choosing between DCT and the different wavelet transformations but

also gives a more robust result when compared with other advanced models in the original

space domain. The neural network ensemble can learn the properties of the specific type of

sub-image patches and matches the patches to a suited transform domain.

We demonstrated with SparseFnet that a sparse domain for CNN-based super-resolution

can be effective. We assume that the sparse signal in a particular transform domain is

more representative when compared with the original space domain when the collection

of available data is small. However, the selection of transformation is crucial and varies

for different compressive measurements. The transform domain determines not only the

computational complexity but also the reconstruction quality [21]. As image super-resolution

neural networks classically work on overlapping sub-image patches instead of the entire

image, the image versus transform domain mismatch problems may be increased with the

wrong selection of transform. Additionally, the frequency distribution of a sub-image patch

may be far from the frequency distribution of another sub-image patch in the same image.

Therefore, making a single choice among the large family of transformations based on image

content and application cannot necessarily meet the demand of real-world images.

We propose an ensemble CNN for single image super-resolution problems, and we call it

ESnet. The ESnet considers reconstructions from multiple transform domains and assembles

the results using different weights. The model learns the characteristics of sub-image patches

and assigns different weights based on the contents of patches. The overall result should be

robust and have better quality than any of the reconstructions from a single transform

domain.

The architecture of ESnet

The architecture of ESnet is shown in Figure 25. The model first contains a part of basic

image processors in different transform domains, and then another neural network that works

as a combiner. Before training the combiner, we train the individual processors in the DCT

and wavelet domains from three different families. With the resulting DCT and wavelet

representations, the basic image processors increase the resolution of overlapped small image

patches which are extracted from the entire image. The combiner then takes the ground

truth of the high-resolution patch as input and learns the performances of different domains

with respect to the reconstruction quality. A weight is assigned to each individual processor

by the combiner. High-resolution image patches from different domains are simplified for

final output.

The settings of the basic image processors follow what is illustrated by Figure 26. The

shallow architecture is inspired by SparseFnet, where we modify two versions for the DCT
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Figure 25: The architecture for the ensemble model ESnet. Four individual processors in different
transform domains are utilized as image basic processors. A combiner using the framework of
ResNet is trained to assign weights to individual processors based on the characteristic of image
patches.
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domain and the wavelet domain respectively. In the DCT domain, a dense layer is in the

middle of four convolutional layers to map from low-dimensional feature space to high-

dimensional feature space. The first three convolutional layers have sixty-four 3×3 kernels

followed by the ReLU activation function, and the last convolutional layer has only one

5×5 kernel. In the wavelet transform domains, the multi-channel wavelet representation

first passes through a convolutional layer with sixty-four 3×3 kernels. A ReLU activation

function is placed before the dense layer to introduce a non-linearity measurement. After the

linear mapping, the features are processed by two hundred fifty-six 8×8 kernels and then one

5×5 kernel in the last convolutional layer. The individual basic processors with DCT and

wavelet transformations are trained purely in the transform domains and are never exposed

to the space domain. A deep residual neural network called ResNet [56] is adapted to be

the combiner. ResNet was originally designed for image recognition problems. Instead of

outputting classification labels, we modify the model to output weights. The target weights

for input image patches are defined as

w = {w1, w2, w3, w4, w5}

wi =
MSEmax

MSEi

− 1, i = 1, · · · , 5,
5∑

i=1

wi = 1
(19)

where MSEis are mean square errors from individual processors and MSEmax is the largest

value among them. The objective for the combiner is

ϵ = Ψη(x)

min
η

∥w − ϵ∥22
(20)

where Ψη(·) denotes the operation of the combiner, x represents the input image patch and

ϵ = {ϵ1, ϵ2, ϵ3, ϵ4, ϵ5} is the estimate of the weights.

The training pseudo-code for ESnet is provided in Algorithm 2.
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Figure 26: The architecture for basic image processors in DCT domain and wavelet transform
domains. In DCT domain, a dense layer is in the middle of four convolutional layers to linearly
map the features from low-dimensional space into high-dimensional space. Relu is applied after
the first three convolutional layers. In wavelet transform domains, the algorithm is performed on
multi-channel wavelet representations. A dense layer is applied after the first convolutional layers to
linearly map the features from low-dimensional space into high-dimensional space. Relu is applied
only to the first convolutional layer.

Algorithm 2 ESnet
Input: x ∈ Rn1×n2

Initialize Φi in individual SparseFnets with randomly
initialized parameters, i = 1, · · · , 5.
For i = 1, · · · , 5

hi = Φi(x)
Minimize ∥Ωi − Φi(x)∥22 using back-propagation.

end for
Return h = {h1, h2, h3, h4, h5},MSEi, i = 1, · · · , 5.
Set w with equation (5) for the combiner.
Initialize Ψη with randomly initialized parameters.
While epoch = True

for each iteration
ϵ = Ψη(x)
Minimize ∥w − ϵ∥22 using back-propagation.

end for
end while
Return ϵ
Output: y = ϵ · h, y ∈ Rm1×m2
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ESnet on ordinary image reconstruction

Our target is to obtain an algorithm that picks the most suited transform domains with

small numbers of the image signal for complex compressive measurements. We use standard

benchmark image data sets as training and testing data here. One out of 800 high-resolution

images from the DIV2K data set [57] is randomly drawn as the training data for each exper-

iment. Testing results are compared on data sets Set5 and Set14 which consist of natural

scenes. In previous studies, cubic interpolation is often chosen to be the standard compres-

sive measurement. However, the up-sampling convolutional layer within previous models

is mathematically similar to cubic interpolation. We believe it is more faithful to consider

more measurements. To present the complexity and diversity of compressive measurements

in real-world applications, twelve down-scaling procedures are carried out with different in-

terpolation methods, Gaussian blur models, and Gaussian pyramid degradation as shown in

Table 11. We use packages OpenCV and scikit-image in Python to implement the measure-

ments. Four down-scaling procedures are conducted with super-resolution factors of 2, 4,

and 6 respectively. In other words, a 100×100 image would be reconstructed to 200×200,

400×400, and 600×600. Each of the twelve down-scaling procedures consists of multiple

measurements. Suppose we have a 400×400 high-resolution image. In down-scaling proce-

dure No. 5 with a factor of 4, the image is compressed into 200×200 with linear interpolation

first. Then, a Gaussian blur is added to smooth the image. Finally, the image is compressed

into 100×100 with the nearest interpolation.

Six algorithms are implemented as baselines. SRResNet [12] and EDSR [13] are high-

performance benchmark deep residual neural networks in the original space domain from

the literature. Basic image processors illustrated in Figure 26 are individually performed

in four different transform domains. We include DCT for Fourier domain, Daubechies [41],

biorthogonal, and reverse biorthogonal for wavelet domains [23,42,43]. Due to the small size

of the training data set, we use the same method to process image patches in the experiments.

SRResNet and EDSR are adapted to corresponding input and output image shapes.

Twelve experiments on two testing data sets at three different super-resolution factors

are conducted to compare the performance of ESnet with baseline models. To demonstrate

the effectiveness of ensemble over selecting a most-suited sparse domain, we choose DCT,

db6 from the Daubechies wavelet family, bior5.5 from the biorthogonal wavelet family, and

rbio6.8 from reverse biorthogonal wavelets family for individual baseline models as well

as for basic processors in ESnet. Packages SciPy and PyWavelets in Python are used to

implement the transformations. Numerical PSNR (in dB) values from baseline models,

individual processors, and ESnet are listed in Table 16. The best and the second best PSNR

values are labeled in red and blue respectively.
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Table 4: 12 down-scaling procedures with multiple measurements. Lanczos: Lanczos inter-
polation; Cubic: cubic interpolation; Nearest: nearest interpolation; Linear: linear interpo-
lation; Gaussian: Gaussian Pyramid; GB: Gaussian Blur.

Super-
resolution
Factors

Down-scaling Procedure No.: Measurements

x2 1: Lanczos x1.4 + GB + Nearest x1.4
2: Gaussian x2+ GB
3: Gaussian x1.4 + Nearest x1.4 + GB
4: Gaussian x1.4 + GB + Gaussian x1.4 + GB

x4 5: Linear x2 + GB + Nearest x2
6: Lanczos x2 + Nearest x2 + GB
7: Gaussian x4 + GB
8: Gaussian x2 + GB + Gaussian x2 + GB

x6 9: Lanczos x2 + GB + Linear x3 + GB
10: Gaussian x6 + GB
11: Gaussian x3 + GB + Cubic x2 + GB
12: Gaussian x2 + GB + Gaussian x3 + GB

The best-suited transform domain varies from different testing data sets and different

compressive measurements. It shows that selecting a single type of sparsifying transformation

based upon the image content and the specific application cannot guarantee an optimal

solution. In contrast, the reconstruction quality from our ensemble model is always better

than that of individual processors. ESnet combines reconstructed sub-image patches based

on the performances of different transform domains. The contribution ratio (weight) of each

domain is customized for each patch and specific compressive measurements. By making

different selections for different sub-image patches, the overall outcome is more accurate

than that from the best-suited sparsifying transformation for the entire image.

The performance of SRResNet and EDSR varies from different procedures. They de-

pend on the randomly drawn small training image as well as the ’unknown’ compressive

measurements. For instance, SRResNet has competing performance for procedures No. 1,

4, 6, 9, 10, and 11. However, procedures No. 2, 3, 7, and 12, give low PSNR values, even

lower than individual basic processors in single transform domains. The instability of small

training data sets and complex compressive measurements is also shown between SRResNet

and EDSR. SRResNet generates the second-best results while EDSR has the worst results

for procedure No. 6, but for procedure No. 7, the situation is reversed. In contrast, the

ensemble model ESnet has a more stable performance. Figure 30 plots the performance
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Table 5: Testing PSNR (in dB) with different models for different Super-resolution Factors
(SF). DCT, db6, rbio and bior are individual basic image processors in transform domains.
The measurements for each procedure can be found in Table 11 with the corresponding
Procedure Number (PN). Every measurement is tested on Set 5 and Set 14. For each of
the 24 procedures, the red reflects the highest PSNR values and the blue reflects the second
highest PSNR values. The ensemble model ESnet outperforms comparing models in 18
procedures.

SF PN Test Set SRResNet EDSR DCT db6 rbio bior ESnet
x2 1 Set5 24.925 24.512 24.518 24.322 24.328 24.206 24.562

Set14 22.973 22.625 22.526 22.471 22.439 22.378 22.595
2 Set5 25.503 26.480 26.219 26.286 25.803 25.812 26.564

Set14 23.540 24.131 23.838 24.011 23.434 23.691 24.155
3 Set5 23.907 23.367 23.675 24.130 24.260 23.638 24.262

Set14 22.265 21.970 22.120 22.207 22.468 22.161 22.717
4 Set5 23.697 23.632 23.013 23.100 23.748 23.338 23.808

Set14 22.105 22.040 21.571 21.774 22.062 21.871 22.186
x4 5 Set5 22.999 23.032 23.103 22.479 22.606 22.547 23.211

Set14 21.209 21.325 21.352 20.862 20.997 20.967 21.378
6 Set5 23.171 22.543 23.117 22.711 22.943 22.708 23.226

Set14 21.142 20.885 21.133 20.909 20.827 20.935 21.152
7 Set5 24.248 26.466 23.732 24.521 24.569 24.841 24.683

Set14 22.255 23.857 22.008 22.548 22.621 22.794 22.728
8 Set5 23.622 23.444 22.860 24.038 24.064 24.209 24.355

Set14 22.023 21.843 21.356 22.218 22.236 22.420 22.445
x6 9 Set5 21.407 21.178 20.951 20.368 20.706 20.751 21.431

Set14 20.416 20.447 20.109 19.722 19.928 19.882 20.448
10 Set5 23.282 23.407 22.036 23.036 23.022 22.980 23.213

Set14 21.636 21.820 20.832 21.512 21.517 21.548 21.707
11 Set5 22.278 22.264 19.835 21.570 21.788 21.585 22.346

Set14 21.071 21.012 19.143 20.541 20.660 20.533 21.106
12 Set5 19.070 19.638 17.912 20.051 20.159 20.227 20.623

Set14 18.783 18.788 17.457 19.307 19.417 19.426 19.739
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Figure 27: Reconstructed testing images from procedure No.8. The super-resolution factor is 4.
ESnet provides the highest PSNR values and the sharpest details.

ranking of ESnet, SRResNet, and EDSR on Set 5 and Set 14. For both testing data sets, the

benchmark comparing models show instability from procedure to procedure. Our proposed

ESnet is more robust and always yields high rankings. On the other hand, visual differences

in reconstruction quality among baseline models and ESnet can be recognized in Figure 27.

Two images from procedure No. 8 are given. The enlarging windows present some outcome

of instability. When the ’unknown’ compressive measurement is very complex, and the small

training data set does not well represent the entire population, benchmark models may suffer

from blurring and deformation. As ESnet considers the different separation of frequencies

in transform domains, it robustly recovers better details.
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Figure 28: The ablation study of ESnet. Replace the SparseFnet with Benchmark algorithms EDSR
and RCAN to measure the impact of the basic image processor on the performance of ESnet.

The ablation study of ESnet

In ESnet, multi-channel representations are used in the basic image processor using wavelet

transform domains to improve the efficiency of extracting features. Starting from this point,

we look for more efficient methods for multi-channel feature extraction. The first attempt to

improve the performance of ESnet is to replace the SparseFnet with benchmark algorithms

as the basic image processor. As illustrated in Figure 32, experiments are conducted with

EDSR and RCAN. Since the deep residual blocks in EDSR and RCAN suffer from gradient

explosion when the training data is extremely small, we reduce the number of residual blocks

to be 20. If EDSR can generate more accurate results than single domain SparseFnet, then

replacing SparseFnet with EDSR in ESnet should help with the performance.

As EDSR has better performance than individual shallow basic image processors in single

transform domains (refer to Table 16), the deep ESnet model has the potential for outper-

forming regular ESnet. However, the experimental results shown in Table 6 suggest that

shallow architecture is actually superior in the presence of small amounts of training data.

In this table, shallow models are in original architectures, deep models are EDSRs per-

forming on wavelet transform domains, and EDSR-embedded ESnet. The best PSNR values,

compared between shallow and deep architectures, are labeled in orange in the table. For

both basic image processors in a single transform domain and ensemble models in multi-

ple domains, the shallow architecture has better performance. The performance of EDSR

drops when it performs on the sparse transform domain instead of the space domain. For

both single sparse domains db6 and bior5.5, EDSR has lower PSNR values than our origi-

nal SparseFnet. This may not only be due to the deep architecture but also be related to

the nature of sparse representatives. EDSR may pay more attention to the low-frequency
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Table 6: Testing PSNR (in dB) for down-scaling Procedure No. (PN) 5-8 with shallow and
deep architectures from single wavelet domains and ESnet. Shallow models are the same as
illustrated in the previous section. Deep models replace the basic image processor in Figure
32 with EDSR.

db6 bior5.5 ESnet
PN Test Set shallow deep shallow deep shallow deep
5 Set5 22.479 22.44 22.606 22.536 23.211 23.092

Set14 20.862 20.976 20.997 20.987 21.378 21.359
6 Set5 22.711 22.515 22.708 22.658 23.226 23.062

Set14 20.909 20.836 20.935 20.92 21.152 21.174
7 Set5 24.521 24.257 24.841 24.701 24.683 24.641

Set14 22.548 22.332 22.794 22.621 22.728 22.603
8 Set5 24.064 23.574 24.209 23.664 24.355 24.281

Set14 22.236 21.977 22.42 21.996 22.445 22.473

features. With the separated frequency representatives from transform domains, EDSR may

fail to extract enough information from the high-frequency part.

Traditionally, channels are treated equally in the neural network. However, some channels

containing abundant low-frequency information may hinder the network from focusing on

other channels. Zhang et al [58] developed Residual Channel Attention Networks (RCAN)

to address this problem. In general, they use deep residual blocks and skip connections to

preserve both low-frequency and high-frequency information. The main network focuses on

high-frequency information, while some residual blocks pass the low-frequency information

through multiple skip connections. Considering the internal dependencies among different

channels, RCAN rescales channel-wise features to preserve the balance of the energy content

of the underlying channels. In our case, the approximation channels within the four wavelet

detail sub-matrix (refer to Figure 14) are primarily collecting high-frequency information,

while the other three channels are all built for low-frequency information. Although the

high-frequency loss in our shallow architecture is not as severe as in deep neural networks,

we adapt a shallower version of RCAN in ESnet to explore the possibility of improving the

reconstruction quality. We replace the shallow processors with 56-layer RCANs. Several

experiments are conducted for down-scaling procedures No.5-No.8 in Table 11. The testing

PSNR values are shown in Table 7. Unfortunately, only 2 out of 8 experiments show that

the RCAN embedded ESnet has better performance than ESnet. Although the attention

mechanism is helpful for regular image super-resolution networks with abundant training

data, it does not help ESnet to extract wavelet features more efficiently. This suggests
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Table 7: Testing PSNR (in dB) for RCAN embedded ESnet and ESnet.

Test Set RCAN-ESnet ESnet
x4 5 Set5 23.092 23.211

Set14 21.359 21.378
6 Set5 23.061 23.226

Set14 21.174 21.152
7 Set5 24.642 24.683

Set14 22.603 22.728
8 Set5 24.280 24.355

Set14 22.473 22.445

the robust performance of shallow architecture for the small data image super-resolution

problem.

As demonstrated in the small-scale ablation study the shallower architecture is more suf-

ficient for not only the single domain models but also the ensemble model. We attempt to

improve several other aspects of our ESnet. There are two algorithms developed focusing

on multi-channel sparse representatives and ensembles respectively. In particular, ESnet has

a complex architecture, and we believe that by treating channels in a more uniform way

the architecture can be simplified while maintaining good performance. The reconstruc-

tion module and the ensemble module are trained separately and stored in different files.

Herein we simplify the two-step algorithm into one-step algorithms to improve efficiency and,

perhaps surprisingly, actually improve performance. In particular, the deep residual archi-

tecture in ESnet is removed since we believe the deep architecture cannot be well-trained on

a small sample. The new models utilize multiple sparsifying representatives from different

wavelet domains in a uniform way and output a high-resolution reconstruction in the space

domain. Both algorithms, which we call EWnet and EnsemNet not only simplify the training

procedure but also further improve the reconstruction quality.

3.4 EWnet: Ensemble Super-resolution CNN in Wavelet domains

The ESnet algorithm decides the best choice of transform domain for each sub-image patch

and combines the patches to provide a general optimal solution for the entire image. However,

the architecture has the potential to be optimized and here we attempt to improve the design
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of ESnet in two aspects:

• First, we analyze the performance of the basic image processors.

• Second, we simplify our original complex architecture by treating image channels in a

more uniform fashion.

The architecture of EWnet

In our experience, having the neural networks focus on the transform domain and not the

original image domain leads to better performance. Accordingly, we chose to separately train

the reconstruction module and the ensemble module in ESnet so that each reconstruction

module only focuses on a single transform domain.

However, the above choice leads to a complex architecture for the ESnet model. Five

independent models are trained and stored for one ESnet. As illustrated in Figure 32, there

are four basic image processors performed in the DCT domain, db6, bior3.7, and rbio6.8

wavelet transform domains respectively. The combiner then makes the ensemble in the

original image domain. While such a procedure leads to accurate image reconstructions, the

computational cost and the time cost are also important considerations in many applications.

In practice. we prefer a simplified architecture that requires only one training process and,

therefore, we developed the EWnet architecture, as described here.

Figure 29 shows the architecture of EWnet. It takes multi-channel wavelet representa-

tions from three different wavelet transform domains as input and outputs high-resolution

image patches in the original space domain. The algorithms are modified from the basic

wavelet image processor in ESnet, which is shown in Figure 26. It contains a feature extrac-

tion layer, up-sampling layers, and a reconstruction layer. In the pre-processing stage, three

4-channel representatives from different wavelet domains are combined into a 12-channel

representative. Then, a convolutional layer extracts 32 low-dimensional features from the

channels by 3×3 kernels and a ReLU activation function. Next, the extracted features

are mapped into high-dimensional space by 2 convolutional up-sampling layers and a lin-

ear up-sampling layer. The convolutional up-sampling layers further extract 128 features

and project them into higher dimensional space for 32 features. After that, the linear up-

sampling layer adjusts the dimension and maps the features into the target dimension. In the

end, a convolutional layer takes 4 features from the linear layer and reconstructs the high-

resolution image patch in the original space domain from 32 features. In this architecture,

all the convolutional layers use 3×3 kernels.

Previously, we indicated that a shallower architecture is more robust to numerous deep

layers for the small data image super-resolution problems that we focus on. EWnet does
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Figure 29: The architecture for the EWnet in wavelet transform domains. The algorithm is per-
formed on multi-channel wavelet representations. It contains a convolutional feature extraction
layer, two convolutional up-sampling, one linear up-sampling layer, and a reconstruction convolu-
tional layer. 3×3 kernels are applied.

Algorithm 3 EWnet
Input: ys ∈ Rn1×n2

Pre-training process: xdb = ψdb(ys), xbior = ψbior(ys), xrbior = ψbior(ys).
Concatenate xdb, xbior and xrbior into a multi-channel representative x.
Initialize Φθ with randomly initialized parameters.
While epoch = True

for each iteration
y = Φθ(x)
Minimize ∥Ω− Φθ(x)∥22 using back-propagation.

end for
end while
Return y
Output: y ∈ Rm1×m2

not require a combiner, which is itself a deep residual neural network, but instead leverages

a shallow convolutional structure. Since the architecture is significantly simplified, we also

observe that EWnet also makes improvements to the stability of the training process and

the robustness of different input images, as compared to ESnet. The training pseudo-code

for EWnet is provided in Algorithm 3.
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Figure 30: PSNR rankings of SRResNet, EDSR, ESnet, and EWnet referring test results in Table
16. EWnet ranks the highest overall and performs more stably than comparing methods for small
training data sets.

EWnet on ordinary image reconstruction

In the ablation study of ESnet, it is demonstrated that shallower architectures are sufficient,

and even in many cases superior, for our proposed ensemble model, we next make compar-

isons among benchmark deep residual neural networks. In particular, we compare ESnet

and EWnet with other baseline models to illustrate the efficiency. Then, we include more

data sets to analyze the flexibility of EWnet on small training data.

Table 17 shows the comparisons between ESnet and EWnet from the sixteen experiments

with super-resolution factors of 2 and 4. Although EWnet uses only the wavelet transform

domain and misses the information from the frequency domain, its shallow architecture helps

to outperform ESnet in 12 out of the 16 experiments. In addition, EWnet is more stable than

ESnet. Figure 30 plots the performance ranking of EWnet, ESnet, SRResNet, and EDSR

on Set 5 and Set 14. For both testing data sets, the benchmark comparing models shows

instability from procedure to procedure. Our proposed ensemble models are more robust

and always yield high rankings. In particular, EWnet has better performance than ESnet

on average. On the other hand, visual differences in reconstruction quality among baseline

models and EWnet can be recognized in Figure 31. Images from down-scaling procedure

No. 8 are given. The enlarging windows present some outcome of instability. When the

’unknown’ compressive measurement is very complex, and the small training data set is

not well representing the entire population, benchmark models may suffer from blurring

and deformation. As ESnet considers the different separation of frequencies in transform

domains, it robustly recovers better details.
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Table 8: Testing PSNR (in dB) with different models for different Super-resolution Factors
(SF). DCT, db6, rbio, and bior are individual basic image processors in transform domains.
The measurements for each procedure can be found in Table 11 with the corresponding
Procedure Number (PN). Every measurement is tested on Set 5 and Set 14. For each of
the 16 procedures, the red reflects the highest PSNR values and the blue reflects the second
highest PSNR values. The ensemble models ESnet and EWnet yield the highest PSNR
values in 12 procedures. In particular, EWnet outperforms ESnet in most cases.

SF PN Test Set SRResNet EDSR DCT db6 rbio bior ESnet EWnet
x2 1 Set5 24.925 24.512 24.518 24.322 24.328 24.206 24.562 24.419

Set14 22.973 22.625 22.526 22.471 22.439 22.378 22.595 22.489
2 Set5 25.503 26.480 26.219 26.286 25.803 25.812 26.564 26.764

Set14 23.540 24.131 23.838 24.011 23.434 23.691 24.155 24.237
3 Set5 23.907 23.367 23.675 24.130 24.260 23.638 24.262 24.282

Set14 22.265 21.970 22.120 22.207 22.468 22.161 22.717 22.500
4 Set5 23.697 23.632 23.013 23.100 23.748 23.338 23.808 23.899

Set14 22.105 22.040 21.571 21.774 22.062 21.871 22.186 22.250
x4 5 Set5 22.999 23.032 23.103 22.479 22.606 22.547 23.211 23.261

Set14 21.209 21.325 21.352 20.862 20.997 20.967 21.378 21.437
6 Set5 23.171 22.543 23.117 22.711 22.943 22.708 23.226 23.177

Set14 21.142 20.885 21.133 20.909 20.827 20.935 21.152 21.194
7 Set5 24.248 26.466 23.732 24.521 24.569 24.841 24.683 24.705

Set14 22.255 23.857 22.008 22.548 22.621 22.794 22.728 22.775
8 Set5 23.622 23.444 22.860 24.038 24.064 24.209 24.355 24.616

Set14 22.023 21.843 21.356 22.218 22.236 22.420 22.445 22.621
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Figure 31: Reconstructed testing images from procedure No.8. The super-resolution factor is 4.
ESnet provides the highest PSNR values and the sharpest details.
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Table 9: Testing PSNR (in dB) with different models for a small dataset with 50 patches.

Super-
resolution
Factors

Down-
scaling
Procedure
No.

Test Set SRResNet EDSR EWnet

x2 1 Set5 24.477 25.042 24.550
Set14 22.566 22.955 22.605

2 Set5 29.470 29.186 29.805
Set14 26.278 25.970 26.524

3 Set5 24.402 24.311 24.730
Set14 22.542 22.510 22.832

4 Set5 23.291 23.114 23.726
Set14 21.709 21.623 22.124

x4 5 Set5 23.507 23.796 23.474
Set14 21.611 21.676 21.596

6 Set5 24.020 23.224 23.179
Set14 21.917 21.402 21.263

7 Set5 24.851 24.607 24.893
Set14 22.779 22.619 22.789

8 Set5 24.544 23.780 24.590
Set14 22.571 22.050 22.574

To further test the superiority of EWnet for specifically small data, two extra small

training data sets are considered. The half-image data set contains 50 image patches, and the

two-images data set contains 200 image patches. Comparisons between EWnet, SRResNet

and EDSR are given in Table 9 and Table 10. The 50-patches set is extremely small that

covers a 120 × 60 pixels area. It requires high flexibility and stability. Among all the eight

down-scaling procedures, EWnet has better performance than the benchmark algorithms

for five procedures. Similarly, EWnet yields higher PSNR values in eleven out of sixteen

experiments when we enlarge the training data set to 200 patches.
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Table 10: Testing PSNR (in dB) with different models for a small dataset with 200 patches.

Super-
resolution
Factors

Down-
scaling
Procedure
No.

Test Set SRResNet EDSR EWnet

x2 1 Set5 24.714 24.681 24.436
Set14 22.781 22.752 22.544

2 Set5 29.383 27.807 29.292
Set14 26.161 24.958 26.172

3 Set5 23.670 24.294 24.666
Set14 22.022 22.482 22.751

4 Set5 22.589 22.461 23.475
Set14 21.209 21.190 21.972

x4 5 Set5 23.323 23.316 23.386
Set14 21.531 21.630 21.657

6 Set5 23.346 23.289 23.034
Set14 21.493 21.539 21.117

7 Set5 24.814 24.763 24.829
Set14 22.830 22.742 22.758

8 Set5 23.943 21.910 24.614
Set14 22.239 20.892 22.599
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3.5 EnsemNet: Ensemble Super-resolution CNN in Wavelet do-

mains for Small Data and Diverse Compressive Models

We have leveraged the advantage from multiple wavelet sparsifying transform domains in

the study of ESnet and EWnet. The neural networks explore the feature space across

different transformation domains and extract informative features as material for the final

reconstruction convolutional layer. In ESnet, we use an individual network as the combiner

for ensemble reconstructions from different SparseFnets. It has been proved that an ensemble

can deliver more accurate results than reconstructing on a single domain. With EWnet, we

simplified the ESnet into a more uniform fashion and obtained more accurate results from

a more efficient architecture. However, it is unclear whether EWnet performs an ensemble

or simply treats different transform representatives equally as input variables. Ensemble

methods provide a more robust approach when CNNs are trained with less representative

data. Transform domains could support the CNNs with multiple sparse representations of

the original image data which enrich the information so that the CNNs can be sufficiently

trained even using small data sets. Since we have known that both multiple domains and

ensembles can improve accuracy, we would like to propose a model that carries both of these

advantages.

The small-scale ablation study was conducted on ESnet in the previous Section 3.3.

We attempt to improve the performance of ESnet by leveraging benchmark algorithms as

the basic image processors. The deep residual blocks in benchmark algorithms are reduced

to replace the SparseFnet basic image processors. However, no convincing improvement

can be observed. Then, we propose an ensemble CNN in multiple representation domains

called EnsemNet. While image processing of visual imagery is often done in the presence

of large sets of training data, there are many important image processing problems that

do not benefit from such large collections of training data. EnsemNet provides a general

method of adapting benchmark algorithms into a transform-domain-ensemble fashion. In

particular, we demonstrate how our proposed technique improves the stability over strong

baseline techniques for visual imagery with diverse compressive models, with a focus on the

ability of our approach to function even in the presence of small data sets.

The ensemble model achieves a robust optimal result for various types of compressive

models from small training data sets with the help of different transform domains. Instead

of using only the shallow architecture model SparseFnet in EWnet, benchmark algorithms

SRResNet [12], EDSR [13] and RCAN [58] are utilized as basic image processors in Ensem-

Net. In this way, we can demonstrate the sufficiency of the ensemble method over single

models. EnsemNet assembles multiple basic image processors in different representation do-
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mains for an optimal combined result. Taking advantage of multiple representation domains,

our model stands apart from previous algorithms by adapting different small training sets.

The advantage of our model is demonstrated through the comparison among individual im-

age super-resolution CNNs in single transform domains and the ensemble model. Similarly,

with the study of ESnet and EWnet, it is proved that

• Our method provides a general solution for the image super-resolution problem on

diverse and complex compressive models in real-world applications.

• The optimal performance is stable over different selections of small training data sets.

In addition to the case of EWnet which focuses on multiply transform domains, EnsemNet

also focuses on the advantage of the ensemble. Using this method on both SparseFnet and

deep benchmark models, it is proved that our method is novel because

• based upon advantageous properties of sparsifying transform domains, our ensemble

model combines the results from different domains to provide a robust solution from

insufficient training data sets.

The architecture of EnsemNet

EWnet focus on processing the features from different transform domains more efficiently

rather than combining reconstruction results from different domains. The purpose of the

following algorithm is to improve the performance of ESnet while preserving the ensem-

ble part. The ensemble algorithm, which we call EnsemNet, adapts the contents from the

limited training data and then decides the best way to combine the reconstructions from

different domains to provide an optimal solution. The architecture is illustrated in Figure

32. We parallel two algorithms on the space domain and the transform domain to generate

two high-resolution reconstructions respectively. The algorithm then makes the ensemble

in the original image domain. The ensemble method adds the two reconstructions element-

wisely. Finally, with an extra convolutional layer for feature reconstruction and additional

adjustment of the combination, an output is obtained. In this architecture, all the feature

extraction convolutional layers use 3×3 kernels, and all the feature reconstruction convolu-

tional layers use 1×1 kernel. The ensemble itself works on the combination and final feature

reconstruction, it influences the training of individual algorithms by optimizing the ensemble

based on different training sets and diverse compressive models. The element-wisely addi-

tion sufficiently provides a better result than simply using convolutional feature extraction

from previous layers. Moreover, the performance of EnsemNet highly depends on the per-

formances of its individual components. We try several candidates on different domains for
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Figure 32: The architecture for the ensemble method in both the space domain and the wavelet
transform domain. Two algorithms are performed separately on the spatial representation and the
multi-channel wavelet representation. Then the outcomes are combined by element-wise addition.
Finally, the output is refined by an extra convolutional layer.

Algorithm 4 EnsemNet
Input: ys ∈ Rn1×n2

Pre-training process: x = ψ(ys).
Initialize Φ1 in Algorithm 1 and Φ2 in Algorithm 2
with randomly initialized parameters.
While epoch = True

for each iteration
y1 = Φ1(x), y2 = Φ2(ys)
Minimize ∥Ω− (Φ1(x) + Φ2(ys))∥22 using back-propagation.

end for
end while
Return y = y1 + y2
Output: y ∈ Rm1×m2

algorithm 1 and algorithm 2 which are described in Figure 32. The best performing En-

semNet has better results than performing its individual components alone. For example,

the EnsemNet with an SRResNet on the space domain as algorithm 1 and an EDSR on the

wavelet domain as algorithm 2 should have improved results than SRResNet and EDSR.

The best setting of EnsemNet will be found from experiments on regular visual imagery, and

then applied to the MIRALON sheet application. The training pseudo-code for EnsemNet

is provided in Algorithm 4.
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EnsemNet on ordinary image reconstruction

In the following, we show several experiments that were conducted to demonstrate the ef-

fectiveness of ensemble CNNs. We make comparisons among individual benchmark deep

residual neural networks and ensemble CNNs over different combinations of individual algo-

rithms. The efficiency of our best-performing EnsemNet is indicated through experiments

on multiple small data sets and different measurements.

Similarly, with the experiment of EWnet, we use standard benchmark image data sets

as training and testing data. Training data are from the DIV2K data set [57]. Drawn from

the 800 high-resolution images, we obtain four data sets with the size of 1, 2, 3, and 5 im-

ages respectively. Testing results are compared on data sets Set5 and Set14 which consist

of natural scenes. In previous studies, cubic interpolation is often chosen to be the stan-

dard compressive model. We believe it is more faithful to consider more measurements. To

present the complexity and diversity of compressive models in real-world applications, four

down-scaling procedures with super-resolution factors of 4 are carried out with different in-

terpolation methods, Gaussian blur models, and Gaussian pyramid degradation, as shown in

Table 11. We use packages OpenCV and scikit-image in Python to implement the measure-

ments. A 100×100 image would be reconstructed to 400×400. Each of the four down-scaling

procedures consists of multiple measurements. Suppose we have a 400×400 high-resolution

image. In down-scaling procedure No. 1, the image is compressed into 200×200 with linear

interpolation first. Then, a Gaussian blur is added to smooth the image. Finally, the image

is compressed into 100×100 with the nearest interpolation.

To make full use of the limited training data, we extract small overlapping patches from

the low-resolution image. The sizes for low-resolution patches are 12×12. Each patch is

rotated in 90◦, 180◦, and 270◦ to enlarge the size of the training data set. The number

of training patches is 100, 150, 200, and 250 for the four data sets respectively. Another

validation set of 100 patches is randomly drawn from the DIV2K data set to train the models.

Table 11: 4 compressive versions with multiple down-scaling measurements. Lanczos: Lanc-
zos interpolation; Cubic: cubic interpolation; Nearest: nearest interpolation; Linear: linear
interpolation; Gaussian: Gaussian Pyramid; GB: Gaussian Blur.

Compressive Versions Down-scaling Measurements
1 Linear x2 + GB + Nearest x2
2 Lanczos x2 + Nearest x2 + GB
3 Gaussian x4 + GB
4 Gaussian x2 + GB + Gaussian x2 + GB
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Table 12: Implemented models and the corresponding domains for the three settings of
EnsemNet.

Names Algorithm 1 Algorithm 2
EnsemNet1 EDSR - Wavelet domain EDSR - DCT domain
EnsemNet2 RCAN - Wavelet domain SRResNet - space domain
EnsemNet3 EDSR - Wavelet domain SRResNet - space domain

We use the MSE loss function as our experiment suggests that other popular loss functions

do not help to train models well with the sparse representatives in transform domains. Other

specific settings include Adadelta optimizer [59], 32 batch-size and 1000 maximum epochs.

We use a 3.20 GHz Intel core i7-8700 CPU and 64 GB memory to run the implementations.

SRResNet [12], EDSR [13] and RCAN [58] are implemented as basic models. For in-

dividual algorithms, we apply EDSR on the DCT domain, both SRResNet and EDSR on

the space domain, and RCAN on the Wavelet domain. Applying the architecture in Figure

32, three combinations of ensemble algorithms are implemented on both the space domain

and the Wavelet domain, as illustrated in Table 12. Packages SciPy and PyWavelets in

Python are used to implement the transformations. The shape of the multi-channel wavelet

representation is adjusted with zero padding.

Four experiments on two testing data sets are conducted to compare the performances for

each training data set. The performance of all algorithms varies from different compressive

versions and data sets. They depend on the randomly drawn small training image as well

as the ’unknown’ compressive models. To compare the stability of performances in different

circumstances, we evaluate the algorithms with their comprehensive performances. For each

training data set with each compression version, the testing PSNR (in dB) values from the

seven algorithms are ranked from the highest to the lowest. Then an average ranking for

each algorithm is obtained over the four training data sets. Table 13 shows the ranking

result obtained from the testing PSNR values from Table 16. For example, the testing

PSNR values from ENsemNet3 for compressive version 1 on Set5, rank 2, 1, 1, and 3 for

training data sets of sizes 100, 150, 200, and 250 respectively. Therefore, the overall average

ranking for ENsemNet3 on compressive version 1 is 1.75. The rankings are also reflected

in Figure 33. For individual algorithms, EDSR on the original space domain has the most

competing results on different small training sets. In two of the eight cases, SRResNet slightly

outperforms EDSR. Moreover, individual algorithms have frequent gradient explosions while

training with extremely small data sets, which demonstrates the instability of performance

in the circumstances of this study. For ensemble algorithms, we find EnsemNet3, which
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Table 13: Average rankings for testing PSNR (in dB) values. For each training data set with
each compression version, the seven algorithms are ranked from the highest PSNR to the
lowest PSNR. An average ranking for each algorithm is then obtained with the performances
from all the four training data sets. CV: Compressive Version

Models CV 1 CV 2 CV 3 CV 4
Set5 Set14 Set5 Set14 Set5 Set14 Set5 Set14

EDSR-DCT 7 7 5.75 5.75 6.5 6.5 7 6.75

EDSR 2.5 2 2.25 2.75 3 3.25 2 2.25

SRResNet 2.25 3.25 3.75 3.75 3.75 3.75 2.25 2.25

RCAN-WVT 5 5 5 4.5 5.25 4.75 5.25 5.25

EnsemNet1 5.75 5.75 5.25 5.25 5.25 5 5.75 6

EnsemNet2 3.5 3.25 4 4 2.5 2.25 4 3.5

EnsemNet3 1.75 1.5 2 2 1.75 2.25 1.75 2

combines a EDSR in the wavelet domain and a SRResNet in the space domain, has the most

stable performance. This ensemble algorithm delivers a robust outstanding result in all the

cases from different small training data sets on diverse and complex compressive models.
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Table 14: Testing PSNR (in dB) with different models for different training data sets. The
performance of all algorithms varies from different compressive versions and data sets. Table
13 shows the summary of these results. This table is provided for completeness as one can
see the averages in Table 13 demonstrate that EnsemNet3 has the most stable performance
on different training data sets and diverse compressive models. (Data Size: # of training
patches, CV: Compressive Versions)

Data
Size

CV Test
Set

EDSR-
DCT

EDSR
SRRes-
Net

RCAN-
WVT

Ensem-
Net1

Ensem-
Net2

Ensem-
Net3

1 Set5 22.474 22.788 22.752 22.742 22.681 22.831 22.816
Set14 20.975 21.157 21.149 21.126 21.114 21.198 21.190

2 Set5 22.345 23.105 22.073 22.976 22.631 22.926 22.978
100 Set14 20.869 21.169 20.633 21.188 21.009 21.116 21.207

3 Set5 21.759 21.103 23.226 19.279 22.269 24.118 23.335
Set14 20.976 20.375 22.099 20.558 21.541 22.437 22.043

4 Set5 21.753 23.988 24.147 23.479 22.778 23.610 24.162
Set14 20.586 22.234 22.331 21.881 21.368 21.940 22.317

1 Set5 22.597 22.863 22.870 22.785 22.643 22.772 22.870
Set14 21.086 21.225 21.211 21.172 21.096 21.168 21.222

2 Set5 22.142 23.015 22.625 22.600 22.477 22.736 22.783
150 Set14 20.725 21.158 20.936 20.982 20.901 21.043 21.023

3 Set5 23.987 25.680 24.879 24.669 24.745 25.072 25.337
Set14 22.256 23.352 22.976 22.627 22.724 23.107 23.180

4 Set5 24.476 26.078 25.610 25.096 24.869 25.422 25.486
Set14 22.608 23.693 23.396 23.025 22.882 23.335 23.352

1 Set5 22.520 22.869 22.849 22.620 22.700 22.839 23.041
Set14 21.042 21.249 21.233 21.071 21.118 21.201 21.373

2 Set5 22.951 22.822 23.166 22.661 22.858 22.851 23.194
200 Set14 21.150 20.995 21.188 20.956 21.096 20.966 21.199

3 Set5 24.808 25.462 25.221 25.557 25.180 25.571 25.578
Set14 22.718 23.134 22.968 23.223 22.994 23.270 23.223

4 Set5 24.864 25.959 25.811 25.515 25.392 25.755 25.842
Set14 22.798 23.615 23.416 23.295 22.793 23.432 23.456

1 Set5 22.656 22.952 22.969 22.830 22.703 22.914 22.936
Set14 21.104 21.304 21.297 21.206 21.165 21.297 21.323

2 Set5 22.934 23.459 23.440 23.212 23.045 23.261 23.410
250 Set14 21.167 21.464 21.489 21.304 21.237 21.321 21.436

3 Set5 23.991 25.917 25.583 25.214 25.055 25.323 25.656
Set14 22.351 23.507 23.378 23.083 22.955 23.261 23.442

4 Set5 23.617 24.805 24.895 24.136 24.327 24.703 25.088
Set14 21.988 22.843 22.939 22.426 22.491 22.845 23.062
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Figure 33: Average rankings of testing PSNR from the four training sets over the four down-scale
procedures and the two testing data sets.

3.6 Voxel-based: Multi-layer Wavelet Transformations for Image

Super-resolution: Applications to Voxel-based Deep Learning

and Areal Density Maps of Carbon-nanotube Sheets

At this point, we have developed several algorithms to overcome the challenge of small train-

ing data in image super-resolution problems for various types of applications. We explored

the feature space more sufficiently by using sparsifying domains and improved the robust

performance of ordinary super-resolution models by the ensemble. However, these algorithms

are not ready for the domain of MIRALON sheet areal density maps. Areal density is in-

herently a 3D phenomenon and the change of density as a function of depth in the sheet is

critical to estimate. Herein we propose a new architecture and training approach. Through a

special 3-layer voxel experiment which is specifically designed for the MIRALON problem, we

can gather a limited set of training data for which the true areal density is known. This data

gathering task demonstrates the need for a close collaboration between the team developing

the super-resolution methodologies and the team performing the physical measurements2.

Given this data set, we then develop a super-resolution architecture and training paradigm

which is simultaneously efficient in its data needs as well as sensitive to density changes as

a function of depth.

The architecture of EnsemNet is modified by adapting the semi-3D data. Additional

data augmentation techniques are also applied to enrich the training data set. As this part

2Thanks to the Nanocomp Technologies, Inc. team for their data generation work
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is studied specifically for the application of MIRALON sheet areal density maps, we will

discuss the details in Section 4.2.

4 Application of MIRALON Areal Density Maps

MIRALON sheets are an advanced carbon nanotube-based product that provides strength,

thermal and electrical conductivity, high-temperature resistance, and electromagnetic inter-

ference. Carbon nanotubes are seamless cylindrical hollow fibers. The nature of its hexag-

onal lattice structure and the strong bond between carbon atoms provides carbon fiber-like

materials with impressive properties. MIRALON sheets are formed with extremely long

carbon nanotubes that are recognized as a state-of-the-art carbon material. They provide

sustainable and effective solutions to some of the toughest industry challenges involving the

aerospace, energy, and electronics domains.

As described in Section 1, one of the challenges for quality control of the MIRALON

sheets is to ensure the uniformity of the areal density distribution. The areal density map

generated by a Mahlo QMS-12 Qualiscan Beta Transmission System (shown in Figure 5)

provides a general texture of a MIRALON sheet. The emitter releases beta particles while

the sensing head moves over the surface. The number of particles which pass through the

sheet and reach the detector is converted into a measurement for an areal density map of

the sheet. However, there is a lack of accuracy for fine details of the uneven distribution of

the material in the MIRALON sheet. As areal density maps can be interpreted as images,

current work in image super-resolution deep convolutional neural network (CNN) promises

to reconstruct high-resolution areal density maps with fine texture details.

However, when compared to classic problems in image super-resolution, there are two

challenges that need to be overcome in order to apply the fundamental theory of super-

resolution to MIRALON sheets.

• This problem is a small sample problem, as only limited training data is available.

We need to ensure that the model is capable of capturing the compressive model from

small training data sets.

• The unknown compressive model is complex. We not only need to determine the math
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behind the camera but also the physical movement of the equipment. The behavior of

beta particles, the spreading distribution from the emitter head, and the mathematical

conversion in the equipment are all unknown.

The measurement is clearly more complex than interpolation methods that are used in stud-

ies of regular visual imagery. Luckily, by leveraging the sparsifying transform domains and

the ensemble methods into image super-resolution neural networks, we now have several can-

didate algorithms that could potentially provide robust accurate results on high-resolution

MIRALON sheet areal density maps.

Nevertheless, there are two additional technical challenges in addition to the fundamental

challenges. Before applying image super-resolution neural networks to the MIRALON sheet

application, we need to understand the difference between ordinary images and MIRALON

areal density maps.

• The ground-truth of the high-resolution density maps is unavailable.

• The MIRALON sheet areal density distribution has depth dependency. We need the

accuracy in the thickness, but 2D super-resolution neural networks cannot provide

enough information in the vertical direction.

To overcome the first technical challenge of high-resolution density map ground-truth, we

need a sheet with minimal or at least known variations in the areal density. The first

approach is to use a standard material called shim-stock. As introduced with Figure 7 in

Section 1, shim-stocks are assumed to be perfectly uniform. Cutting the shim-stock with a

template of geometric figures and letters will generate a sheet with known defect holes. In

the study of SparseFnet, ESnet, EWnet, and EnsemNet, we use this version of the ground

truth to train the model for the MIRALON sheet application.

However, there are still two problems with using the shim-stock as ground truth:

• The behavior of the beta particles could be different between the shim-stock and the

MIRALON sheet.

• The shim-stock only has holes and areas of known density, the bias is introduced with

the Gaussian blurring filter.

Therefore, we introduced another version of the ground truth with a real MIRALON sheet.

In order to control the measurement error, areal density maps of small pieces of MIRALON

sheet were first generated, and only the most uniform were selected to cut with the same

template as the shim-stock pieces. This result in an even smaller training data set. To further

study the depth dependency of the beta particles, we propose the 3-layer voxel representation
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to adapt current deep CNNs to the particular application of MIRALON sheets. With the

help of the proposed algorithm, a high-resolution areal density map can be reconstructed,

which successfully reveals finer patterns in the MIRALON sheets.

In the following sections, we will report our MIRALON sheet application results in the

order of the theory development. We will show that all the results are improved step by step

as we proposed more advanced algorithms. Since EWnet and EnsemNet are both improved

versions of ESnet, we will skip the MIRALON sheet application result on ESnet. The

progress is divided into two sections. First, the comparison between different algorithms is

illustrated with the shim-stock ground truth. Then, the MIRALON sheet ground truth is

included for the study of the semi-3D voxel design. Our results demonstrate that appropriate

data augmentation is essential to achieving accurate results, and transform domains could

provide special information based on the image content. Using our proposed techniques, a

high-resolution areal density map, rich in 3D information, can be obtained by leveraging 2D

image super-resolution CNNs.

4.1 Super-resolution Neural Network with shim-stock ground truth

We implement the algorithm for the application of beta transmission areal density maps for

MIRALON sheets. The measurement parameters of the beta transmission Mahlo system

are assumed to be fixed. If the setting of the beta transmission sensor is adjusted, i.e.,

sensor speed, viewable range, etc., then the model needs to be trained for the new setting

before applying it to the manufacturing batches. First, we test the approach on a second

version of the ground truth sheet. Then, we apply the model on areal density maps of several

MIRALON sheets.

4.1.1 Reconstruction of MIRALON Areal Density Maps with SparseFnet

Figure 34 shows the results of our models applied to the areal density map of a second piece

of shim-stock with laser-cut geometric figures. White areas are materials with thick and

even densities. Blue areas are cut figures with thinner densities. We attempt to increase the

resolution of the areal density map with a super-resolution factor of 4. The reconstruction

quality from SparseFnet is visually appealing. EWnet makes further improvements on the

basis of SparseFnet. For example, outlines of the arch and the square figures in the right-

bottom corner (red window) are increasingly clear from SparseFnet to EWnet. For the
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Figure 34: Reconstructed beta transmission areal density maps by the proposed algorithm for
MIRALON sheets from the production line. Details for uneven density distribution are recovered.

letters on the right side (yellow window), SparseFnet reveals the outline for each letter and

EWnet recovers the structure more precisely even with a clear underline.

Figure 35 shows the results of our model applied to the areal density maps of recently

produced MIRALON sheets with a super-resolution factor of 4. The Mahlo beta transmission

system uses the same parameter settings as for both versions of the ground truth sample.

Additional details about defects and areal density variation are revealed in the high-resolution

reconstructed density maps. Taking the green box section from the first sheet in Figure 35

as an example, the woven pattern running through the low-density valleys (deep blue area)

and high-density hills (light blue area) is discovered more precisely. This indicates that our

model is practical for the application.

A side effect can be observed from the result is the measurement error brought by the

mesh screen. The mesh screen is a bottom plate underneath the scanning target on the

Mahlo equipment. It is a relatively very thin layer which should not bring apparent side

effects. However, the thickness of the mesh screen can be ignored with respect to the training

shim-stock. When we applied the trained algorithm on the MIRALON sheet, the side effect
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Figure 35: Reconstructed beta transmission areal density maps by SparseFnet for MIRALON sheets
from the production line. Details for uneven density distribution are recovered.
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Figure 36: The low-resolution density maps of the MIRALON sheet and the underneath mesh
screen.

rises because the relative thickness between the mesh screen and the scanning target sheets

are different. As shown in Figure 36, though the mesh screen is very thin that can be ignored

in most cases, it may shift the overall density distribution when the MIRALON sheet is thin.

By this point, we make an adjustment by subtracting the mean density of the mesh from

the high-resolution output as we cannot detect the mesh screen when using the shim-stock.

In the upcoming Section 4.2, this problem will be solved by using MIRALON sheet as the

ground truth.
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4.1.2 Reconstruction of MIRALON Areal Density Maps with EWnet

First, we test the approach on a second version of the ground truth sheet. Then, we apply

the model on areal density maps of several MIRALON sheets. Figure 37 shows the results of

our model applied to the areal density map of the second piece of shim-stock with laser-cut

geometric figures. White areas are materials with thick and even densities. Blue areas are

cut figures with thinner densities. The reconstruction quality is visually appealing. For

example, the outlines of the arch and the square figures in the right-bottom corner are

increasingly clear as the enlarge factor grows. Figure 38 shows the results of our model

applied to the areal density maps of three recently produced MIRALON sheets. The Mahlo

beta transmission system uses the same parameter settings as for both versions of the ground

truth sample. Additional details about defects and areal density variation are revealed in

the high-resolution reconstructed density maps. Taking the green box section from the first

sheet in Figure 38 as an example, horizontal patterns in the low-density valley (deep blue

area) are discovered more precisely as the enlarge factor increases. This indicates that our

model is practical for the application.

At this point, we can make the comparison between SparseFnet and EWnet. In Figure

37, the outlines of the figures are with less deformation in the reconstruction from EWnet.

In particular, though SparseFnet could reconstruct some blurring letters of ’Huntsman’ from

the single DCT domain, it is hard to recognise the letters. On the contrary, EWnet provides

a very clear image of the ’Huntsman’ letters. In Figure 39, it can be observed from the

SparseFnet reconstruction that there are some additional grid patterns. This may be caused

by the DCT representatives. DCT representatives are very sparse, when the training image

patch is not big enough and when the training data set is extremely small, it brings extra

noise frequency. EWnet helps to solve this issue by considering more types of sparsifying

transformations. Since EWnet has a more robust performance and can make adjustments

based on different image content, a smoother reconstruction is delivered. The shape and

area of the defect spots are easier to be measured. And more importantly, we have a much

clearer vision of the woven lay-down patterns.
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Figure 37: Areal density maps for the Patterned shim-stock. The outline of cut figures, especially
the letters, is revealed more clearly in the enlarged images.
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Figure 38: Reconstructed beta transmission areal density maps by EWnet for MIRALON sheets
from the production line. Details for uneven density distribution are recovered.
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Figure 39: Comparison between SparseFnet reconstructions and EWnet reconstructions. With the
help of multiple transform domains, EWnet delivers more accurate results with less noise.

4.1.3 Reconstruction of MIRALON Areal Density Maps with EnsemNet

EnsemNet focus on the sufficiency of the ensemble over different benchmark algorithms.

In the study on ordinary images, we found that the version of EnsemNet3 has the most

stable and robust performance on different complex compressive measurements. Here, we

implement the version of EnsemNet3 to the application of beta transmission areal density

maps for MIRALON sheets. A better visualization of the reconstruction are shown in Figure

40. We use the color bar to indicate different density ranges, helping to identify defects

and patterns. Additional details about defects and areal density variation are revealed

in the high-resolution reconstructed density maps. Taking the zoomed section from the

sheet in Figure 40 as examples, the shape and the area of defective spots can be discovered

more precisely from the super-resolution reconstruction. This indicates that our method is

practical for the application.
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Figure 40: Reconstructed beta transmission areal density maps by EnsemNet3 for MIRALON
sheets from the production line. Details for uneven density distribution are recovered.
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4.2 Semi-3D Super-resolution with MIRALON Sheet ground truth

Unlike ordinary images for most image reconstruction problems, the beta transmission areal

density map is a 2D projection of the MIRALON sheet whose density is depth-dependent.

Figure 44 illustrates the measuring equipment setup. The particle emitter on the Mahlo Beta

Transmission System spreads beta particles with an unknown distribution at each picture

frame. As it moves along the surface at different speeds and directions regarding specific

settings, the total number of particles that penetrate the sheet is converted into the camera

measurement. The behavior of the beta particles varies for different sheet densities. Also,

standard image super-resolution CNNs require training data for which the true density is

known. We use small pieces of MIRALON sheets in which geometric figures are cut. However,

such small training sets cannot meet the data requirement of most image super-resolution

CNNs.

Therefore, this study overcomes three major challenges:

• First, the distribution of the beta particle spread is unknown. The particle spreading

in each single picture frame is not necessarily a uniform or Gaussian distribution. The

observation from the equipment is obtained from overlapping picture frames. Com-

bined with different emitter settings (i.e., sensor speed, visible range, etc.), the camera

measurement model is complex and not known a priori.

• Second, the penetrating power of the beta particles with regards to the different thick-

nesses of the material is unknown, and the paths of the particles after hitting the surface

are not necessarily linear. Therefore, the number of particles received at the detec-

tor head and the thickness of the material are not necessarily in a linear relationship.

Therefore, the projection of the 3D density to a 2D image is complex.

• Since the destructive measurements are expensive, only a small collection of training

data is available.

To resolve the challenges, we first propose a 3-layer voxel architecture using rotated image

patches for data augmentation. Then, sparsifying transform domains are utilized to enhance

the density distribution patterns. We make the best use of limited data to represent the

features in the specific application study. 3D voxels are made from 2D pixels to simulate

the vertical thickness distribution. Voxel patches are rotated with small angles to enrich

the training data set and, at the same time, avoid over-fitting. Through such practical

measurements, we are able to reconstruct fine texture details from the heavily down-sampled

beta transmission areal density maps of MIRALON sheets. In addition, wavelet sparsifying

domains are adapted to provide more details of interests based on specific image content.
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Figure 41: Flowchart of generating training data for the 3D voxel experiment design.
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Figure 42: Different experiment settings. Both the input and the output are 2D patches in pixel-
based settings. In voxel-based settings, the 2D patch is processed by single image super-resolution
CNNs into an up-scaled 3D voxel patch. The high-resolution patch is then obtained by compressing
the vertical axis of the voxel patch.

Figure 43: Cross section of the 3-layer sample. There are holes with 1/3, 2/3, and 1 thickness
distributed in different vertical positions.

Figure 44: The MIRALON sheet is scanned on a mesh screen. As the sensing head moves, frames
of the particle spread overlap with regard to the settings (i.e., sensor speed, visible range, etc.) of
the equipment. The number of beta particles penetrating both the uneven MIRALON sheet and
the screen is converted into the measurement.
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By separating different frequencies, the wavelet transformation sensitively explores different

voxel layers providing more evidence on MIRALON lay-down patterns.

4.2.1 2D super resolution methods

We employ 2D super-resolution CNNs to the areal density map by treating the beta trans-

mission measurement as an image compressive measurement. The architecture is leveraged

from EnsemNet. Instead of combining 2 components in the 2D EnsemNet, we adapt the

neural network with a 3-components structure for the 3D voxel design. With experiments

specifically designed for this problem, SRResNet, EDSR, and EWnet are utilized to study

the performance of the 3D voxel design and image patch augmentation. Then, SRResNet,

EDSR, and RCAN are employed for reconstructing MIRALON sheet areal density maps

from the sparsifying transform domains.

4.2.2 Voxel construction

The 2D areal density map obtained from the beta transmission equipment is a projection

that is missing the information in the vertical axis. The penetrating behavior of the beta

particles is complex due to the different thicknesses of the material, different distribution of

the defective spots, and other variations in the density. For example, as shown in Figure

44, the movement of beta particles is not necessarily linear, and may not be the same when

penetrating areas of different densities. An area with an air bubble within the sheet and an

area with a hole on the surface may have the same overall thickness but are shown differently

on the original areal density map. In general, the behavior of beta particles is more consistent

on the surface and varies more with depth. Therefore, the lack of vertical details within the

sheet may lead to a misunderstanding in the sheet quality. Accordingly, we wish to recover

more details from the thickness and generate a semi-3D areal density map.

As there is no ground truth in high-resolution areal density maps, the first challenge is to

generate training data for super-resolution CNNs. There are few pieces of MIRALON sheets

available to provide smaller areas with minimal density variation which can be assumed of

uniform density distribution. We use templates to cut these small piece samples to create

known density variation for studying the behavior of the beta particle measurements. Three

templates with cutouts of geometric figures are designed as shown in the first step in Figure

41. Three samples are laser-cut into the shape of each template and then stacked into one
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sample to obtain holes with 1/3, 2/3, and 1 thickness of the sheet. Figure 43 shows the

cross-section of the sample. The holes are distributed in different vertical positions. The

sample is then scanned by the beta transmission equipment multiple times to obtain 2D low-

resolution areal density maps as shown in the second step in Figure 41. The down-sampling

rate is extremely low, making the geometric figures difficult to recognize in the low-resolution

images.

In addition, one of the three layers is scanned separately to generate data for an ordinary

2D pixel-based experiment to compare with our proposed methods. Figure 42 interprets the

algorithms. Both pixel-based 1-layer and 3-layer designs treat the density map patches as

ordinary 2D images. The 1-layer design uses the data from the single-layer scan while the

pixel-based 3-layer design uses the same data as the voxel design. In the voxel-based 3-layer

design, the single image super-resolution CNNs process the n × n low-resolution density

patch as a regular single-channel image and output a high-resolution n×n× 3 voxel density

map patch as a multi-channel image. Each channel in the voxel patch preserves the features

in the corresponding layer. A high-resolution patch is obtained by compressing the vertical

axis of the voxel patch.
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Figure 45: The sheet is rotated with multiple angles, then cropped into voxel patches to generate
more representative training data avoiding over-fitting.

4.2.3 The rotation of voxel patches

The cutout holes in the samples are more uniform than the real MIRALON sheet defects.

Therefore, they cannot be representative of the entire population of the real density varia-

tion and result in shifts or skewness in the distribution. Also, as the process of gathering

real data is quite expensive, we are not able to measure a wide range of different defect

types. An effective technique for improving the accuracy in image processing problems is

data augmentation [60, 61]. In this study, we not only augment the data to generate more

training data to avoid over-fitting but also to enrich the features of the algorithm. To help

in the representation of the complex real-world defects, we rotate the voxel patches from

the training data to simulate defects of different shapes. In this way, we take a small set

of real-world training data and augment it to assist in the training of our super-resolution

CNNs. Figure 45 provides an example of our data augmentation technique. Note, such

rotations are known in other domains [62–64], but here we demonstrate their importance for

3D voxel problems in the low data limit. The flowchart for generating the training data is

shown in Figure 41 with extra details.

However, the choice of wavelets is crucial as the performance depends on how well it suits

the particular application [20]. Although general guidelines and suggestions for choosing the

wavelet family toward specific areas are available from literature [21,23–25], we do not have

enough data to understand the distribution of the MIRALON areal density maps as the

sample may not well represent the entire population. Alternately, we adapt the dropout

convolution layer to avoid over-fitting and choose db6 from Daubechies wavelet family as we
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Figure 46: The architecture of the 3-layer voxel design on the wavelet domain. 10% of the infor-
mation is dropped before proceeding into the individual CNNs. Each parallel CNN studies the
measurement of the transmission equipment from the wavelet sparse representatives and delivers
high-resolution images in the original space domain. Then, the three high-resolution outputs are
compressed into a 3-layer voxel output.

observe it has an outstanding performance of revealing MIRALON lay-down patterns from

the experiments. The architecture of the 3-layer voxel design on the wavelet domain is shown

in Figure 46. Voxel layers are trained independently in parallel. 10% of the information is

dropped before proceeding into the individual CNNs for the three layers. Each CNN studies

the measurement of the transmission equipment from the wavelet sparse representatives and

delivers high-resolution images in the original space domain. Notice that the loss function

for individual CNNs is calculated regarding each of the corresponding 1-layer ground truths.

Finally, the three high-resolution outputs are compressed into a 3-layer voxel output.

4.2.4 Semi-3D Super-resolution result

The effectiveness of the proposed method has been tested with respect to numerical values.

However, the testing samples are cutout pieces from the templates and therefore cannot

represent the defects and distribution patterns in the real MIRALON sheet product well.

We suggest using Table 16 and Table 17 as numerical references and emphasize the visual

accuracy of the real MIRALON sheet products shown in the following section. The corre-

sponding experiment settings for ’Experiment #” are reflecting in Table 15. Histograms of

areal density maps approve the reliability of the proposed methods. 2D high-resolution den-

sity maps and 3D enhanced density maps provide more intuitive results on defective spots

and distribution patterns respectively.
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Table 15: The Four Experiment Settings

Experiment # Experiment Settings
1 Pixel-based 1-layer template
2 Pixel-based 3-layer template
3 Voxel-based 3-layer template (unrotated)
4 Voxel-based 3-layer template

Table 16: Training and testing PSNR (in dB) and SSIM with different settings regarding to
different models for 4x up-scale factor. All of the models generate the highest PSNR value
from the proposed design, while the pixel-based 3-layer template design gives the best SSIM
in 3 out of 8 cases. Experiment #s: 1. Pixel-based 1-layer template, 2. Pixel-based 3-layer
template, 3. Voxel-based 3-layer template (unrotated), 4. Voxel-based 3-layer template

Models Experiment # Training Test 1 Test 2
PSNR SSIM PSNR SSIM PSNR SSIM

SRResNet 1 20.741 0.664 21.744 0.729 19.703 0.712

2 24.886 0.823 20.082 0.771 22.009 0.763

3 22.336 0.550 17.912 0.410 17.779 0.406

4 18.383 0.534 25.509 0.655 25.365 0.645
EDSR 1 13.791 0.685 18.427 0.691 18.210 0.685

2 23.766 0.727 18.297 0.702 20.007 0.691

3 22.274 0.751 20.275 0.674 21.157 0.679

4 21.726 0.723 25.759 0.700 26.781 0.730
EWnet 1 19.374 0.473 22.016 0.671 22.206 0.673

2 21.358 0.679 21.609 0.680 22.971 0.683

3 24.154 0.801 9.696 0.591 9.696 0.591

4 26.048 0.978 22.481 0.701 23.074 0.725
EWnet-db6 1 20.479 0.544 19.915 0.578 20.117 0.575

2 21.556 0.672 19.685 0.695 21.966 0.669

3 22.937 0.781 21.641 0.618 21.476 0.616

4 17.168 0.511 22.422 0.698 22.663 0.693
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Table 17: The comparison of deep residual image super-resolution CNNs performing on the
original space domain and the db6 wavelet transform domain. The wavelet domain shows
an advantage regarding the PSNR value. Experiment #: 2. Pixel-based 3-layer template,
4. Voxel-based 3-layer template.

Models Domians Experiment # Training Test 1 Test 2
PSNR SSIM PSNR SSIM PSNR SSIM

SRResNet Space 4 26.472 0.829 22.082 0.784 22.611 0.788
2 19.457 0.737 20.775 0.727 20.777 0.725

Wavelet 4 20.452 0.756 20.923 0.734 24.004 0.750
2 22.866 0.734 21.274 0.693 21.143 0.699

Wavelet 4 21.724 0.756 22.906 0.738 23.600 0.745
+dropout 2 23.355 0.739 21.559 0.714 22.456 0.727

ESDR Space 4 24.842 0.767 19.648 0.733 20.444 0.733
2 19.646 0.681 19.014 0.681 20.009 0.684

Wavelet 4 23.535 0.764 23.138 0.732 23.272 0.728
2 22.368 0.694 19.681 0.688 19.776 0.679

Wavelet 4 25.107 0.770 22.434 0.754 22.460 0.751
+dropout 2 20.949 0.688 20.981 0.701 21.944 0.703

RCAN Space 4 20.744 0.683 20.833 0.696 21.476 0.716
2 20.926 0.644 18.277 0.671 19.134 0.652

Wavelet 4 20.473 0.620 21.157 0.644 20.712 0.651
2 8.805 0.574 15.512 0.653 17.851 0.630

Wavelet 4 21.745 0.726 21.967 0.703 23.380 0.711
+dropout 2 15.662 0.369 18.747 0.372 19.827 0.360
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Figure 47: Histograms of the MIRALON sheet density from the original low-resolution density
map and high-resolution density maps from pixel-based settings with 1-layer template design,
voxel-based settings without data rotation, and voxel-based setting with data rotation. Only the
voxel-based setting with data rotation well preserves the information from the original density dis-
tribution.

Ideally, the super-resolved areal density map does not make changes to the density

histogram. The original low-resolution density distribution and the reconstructed high-

resolution density distribution should have similar Gaussian estimations. Figure 47 illus-

trates how well the super-resolution model could preserve the information from the original

density distribution. When the model learns only from the 1-template design, the result

is over-conservative about the thin spots and the thick clumps. The density distribution

is smoothed into the middle range and the Gaussian estimation has shorter tails compared

with the original histogram. On the contrary, when the model learns on the 3-template voxel

data without patch rotation, it over-fits the high-density area. The model focuses on the

thick defect, shifting the histogram to the right. The Gaussian estimation has thick tails

indicating more clumps in the sheet and brings uncertainty to the result. Despite the poor

performance from the un-rotated voxel data, the rotated data corrects the performance of

the voxel-based 3-layer design. With the help of patch rotation, the model delivers the clos-

est histogram to the original data. Percentages in each range stay close to the low-resolution

histogram. The Gaussian estimations have similar means and variance. Therefore, we can

conclude that the proposed design super-resolves the areal density map without over-fitting.

Similar conclusions could be drawn from the 2D high-resolution density maps for a MI-
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RALON sheet. Figure 48 shows closeups from a recently produced MIRALON sheet. Al-

though the ordinary 1-layer pixel design generates a high-resolution picture, it fails to deliver

texture details of interest. Thin spots and thick clumps are smoothed into the normal range.

On the contrary, the voxel design without patch rotation over-emphasizes the thicker range.

The performance is affected by the mesh screen which is underneath the MIRALON sheet.

The result ignores the variation in the MIRALON sheet and recovers the pattern of the

mesh screen. This also indicates that the multi-layer designs are able to capture different

behaviors of the beta particle measurement in the vertical axis. Fortunately, the rotated

data changes the performance of the voxel design. The high-resolution areal density map

represents the density distribution with slight influence from the mesh screen. A clear pic-

ture of the material density distribution is reconstructed. The shape and size of defective

spots are more apparent to measure.

However, the density distribution patterns are still hard to observe from the 2D high-

resolution density map from the image space domain. Adapting the db6 wavelet transform

domain to deep residual image super-resolution CNNs, the patterns are enhanced in 3D

high-resolution density maps shown in Figure 49. From the three high-resolution density

maps from the space domain, although the patterns (i.e., width, thickness, and direction of

low-density valleys and high-density hills) are reconstructed more clearly compared with the

original low-resolution density maps, they are still hard to observe in these visualizations.

The results from the wavelet transform domain enhance the patterns. It brings more contrast

to the high-resolution density maps, delivering an intuitive vision of the overall density lay-

down patterns in the entire sheet.
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Figure 48: Super-resolution areal density map of a recently produced MIRALON sheet. Pixel-based
high-resolution design underestimates both the low density and the high-density areas, and Voxel-
based high-resolution design without data rotation overestimates the high-density area. Voxel-based
high-resolution design with data rotation generates the best result.
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Figure 49: 3D high-resolution density maps for three MIRALON sheets. The wavelet transform
domain helps to enhance the density lay-down patterns (i.e., width, thickness, and direction of
low-density valleys and high-density hills), bringing a more intuitive visualization.
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5 Future Work

Described in Section 4, though resulting in an even smaller training data set, we need to

introduce the small pieces MIRALON sheet ground truth to replace the shim-stock ground

truth because there are two problems with the shim-stock: (1) The behavior of beta particles

is different regarding the shim-stocks and the MIRALON sheet. (2) The shim-stock has

only holes and a dense area, the bias is introduced with the Gaussian blurring filter. In

the experiment result from the voxel-based method, we find that the replacement largely

improves the quality of the reconstruction as it solves the problem of density shifting from

the shim-stock. Therefore, we can draw a conclusion that a better-measured ground truth

will improve the accuracy despite the fact that it may bring larger measurement errors when

generating the training data.

We plan to extend the idea from the voxel-based method and upgrade the algorithm

with improved ground truth. The original method of measuring MIRALON sheet areal

density distribution without the Mahlo equipment is to cut the sample into small specimens

and weigh them on an analytical or ultra-micro balance. This destructive process is very

expensive but could provide much more accurate views of the areal density distribution than

the Mahlo method. The next step of the MIRALON application is to improve the quality

of the areal density maps with the help of better ground truth from the cutting method.

The size of the cut sheet is preferred to be as small as possible due to the limitation of the

cost. The plan for cutting the sample sheet is given in Figure 50. Several 20cm × 20cm

patches with desired density variation features (clumps and holes) will be cropped from a

MIRALON sheet. One of the patches will be ’cut-and-weigh’ into small specimens. Prior to

the cut-and-weigh process, it will be scanned by the Mahlo equipment in a 3-layer fashion

with 2 other randomly chosen patches. On the top, in the middle, or on the bottom, there

will be 6 layups for each 3-piece combination. With a better ground truth on ’the cutting

patch’, we can conduct experiments with an inverse voxel-based algorithm. Illustrated in

Figure 51, by cutting only one patch, we will have high-resolution ground truth of one of

the 3 layers. In order to recover the density variation in depth, three algorithms need to

be trained individually. Then we can assemble the reconstruction of every layer to obtain a

voxel-based reconstruction.
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Figure 50: The template for scanning the 3-layer sheets.

Figure 51: The inverse voxel-based algorithm for ’the cutting patch’ ground truth data. Three
algorithms need to be trained individually to assemble a voxel-based reconstruction.
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Figure 52: The template for scanning the 3-layer sheets.

One of the challenges is to align the 3 layer patches perfectly in each scan. As shown in

Figure 52, a template is designed to ensure minimal displacement between different scans.

An example of the Mahlo density map of the small patches is given in Figure ??. An issue

that draws attention is the rise of the shape of the pixel. From the zoom-in view of single

pixels, we find the pixel from Mahlo equipment of long rectangles, which make it very hard

to cut into smaller specimens. The size of the low-resolution pixel is 1.7327cm × 0.345cm.

An experiment of super-resolution factor of 4 will requires high-resolution pixels of size

0.432cm × 0.086cm. Such small specimens will not only result in high cost but also brings

large measurement error. Fortunately, we find that the resolution in the vertical direction

and the horizontal direction on the low-resolution density maps have a large relative ratio. In

other words, the limitation of the resolution is primarily brought by the vertical resolution.

If we can conduct a re-resolution experiment that increases the accuracy in the vertical

direction, a better view of the density distribution will be obtained. Figure 54 shows the

plan of the re-resolution experiment. A 1 × 4 pixel sample can be cut into 4 specimens

of size 0.86cm × 0.69cm. The next plan of this research is to provide better visualization

of the MIRALON sheet density map by extending the voxel-based image super-resolution

algorithm reversely from the previous study with the ’cut-and-weigh’ ground truth.
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Figure 53: The density map of the cropped MIRALON sheet patch with the template.

Figure 54: The size of the pixel is too small to control the measurement error of cutting the
specimen. Re-resolution pixels can also provide better visualization of the MIRALON sheet density
map.
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6 Conclusion

In this four-year research on small data image super-resolution problem, we started by com-

bining the idea of compressive sensing technique with single image super-resolution neural

networks to a complex real-world application on MIRALON sheet areal density map recon-

struction. First, we improved scalable single image super-resolution neural networks in the

Fourier domain. It is demonstrated that with the help of the sparsifying transform domain,

a shallow architecture can deliver more stable performance when the amount of training

data is limited. Second, multiple wavelet domains are considered. It is found that the best-

suited sparse domain differs from image contents, camera measurements, and sub-areas on

an image. We proposed ensemble algorithms that leverage the advantages from multiple

transform domains across different sub-image patches for general solutions for various types

of images. Next, we increased the robust performance of the ensemble algorithm from the

aspect of spare feature extraction and the aspect of improved ensemble respectively. The

advantages of using our proposed algorithms are illustrated through experiments on both

regular images and the MIRALON sheet areal density maps for different complex compres-

sive measurements. The performances improved as we upgrade the method step-by-step.

Ultimately, we can provide a robust and efficient solution for the limitation of small training

data sets in image super-resolution problems. Moreover, we extended the 2D neural networks

into a semi-3D design for the MIRALON sheet application problem. With the help of the

3-layer voxel experiment design, data augmentation, and the sparsifying domains, 3D details

are revealed with 2D single image super-resolution CNNs. The limitations of small training

data sets and the unknown knowledge about the depth-dependent measurements from the

transmission equipment are broken through. We successfully recover the fine texture details

in the material product which would further contribute to the quality control progress.
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Appendices

Automated Data Processing for Process Improvement

We have successfully recovered the fine texture details in MIRALON sheets with our algo-

rithms. For contributing to the quality control progress, high-resolution density maps are

generated for the MIRALON sheets from daily production. For providing the high-resolution

reconstruction of a single MIRALON sheet, we use the Python package ipywidgets to deliver

a user interface as shown in Figure 55. There are a few options including choosing the target

file, initializing the density of the mesh screen, and so on. The high-resolution density map

can be automatically generated along with brief analytic reports. As shown in Figure 56, the

analytic report for a MIRALON sheet is composed of five parts. Both the high-resolution

and the original low-resolution contour plots are generated with the color bar to provide a

visualization of the density variations. The histogram of the density, the fitted Gaussian dis-

tribution, and a box plot indicates whether there are evident outliers or significant anomalies

in the entire sheet. Next, we list three tables of basic statistics as a mathematical reference

for the density distribution. Then, as the stripping patterns are parallel with the Y axis, a

”1D” scatter plot provides the density variation in the thickness direction along with the X

axis. Finally, a 3D contour plot is generated to provide more visualization details.

Furthermore, instead of generating the high-resolution reports for every MIRALON sheet

manually, we would like to simplify this process into a batch operation. We write a Python

Figure 55: The Python user interface for generating high-resolution MIRALON density maps.
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Figure 56: The analytic report of a MIRALON sheet.
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script for generating the reports for the entire batch from a production day. Due to the

requirement of security, this batch-operation needs to be conducted across, WPI local PC,

Nanocomp virtual desktop, Mahlo drive, SQL database on Azure, and Nanocomp local PC.

Figure 57 gives the flow chart of this process. First, the raw data of the low-resolution density

maps which are directly from the Mahlo transmission machine are saved in Mahlo shared

drive. On the virtual desktop, we could access the data from the daily batch. From there,

the Python script generates the high-resolution density maps and the corresponding analytic

reports for the entire batch. Instantly, the analytic reports and the high-resolution density

data file are saved on the Mahlo shared drive and the SQL database on Azure respectively

as the script runs on each sheet. Finally, both the WPI and the Nanocomp local ends could

access the processed files.

Figure 57: The flow chart of processing MIRALON density maps in batch.
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Supervised Learning for Automated MIRALON sheet evaluation

The quality of a MIRALON sheet primarily depends on its areal density uniformity. Each

sheet from the daily batch production will be evaluated as ’accepted’, ’conditional accepted’,

or ’rejected’. Figure 58 gives three sample sheets. With only a few clumps that are pointed

by black boxes, the left sheet is categorized as an accepted product. The sheets in the middle

and on the right are evaluated to be rejected because there are large areas of uneven density

patterns which are indicated by red boxes. Currently, the decision on features for rejection is

evaluated manually. We would like to use machine learning algorithms to make this process

more efficient.

The nature of this problem is an image classification problem. However, from the available

400 sheets that can be studied, there might not be enough features to train the model.

Especially, the number of rejected sheets is less than the number of accepted sheets which

makes the training samples even less representative. Therefore, data pre-processing and

feature engineering is decisive for this problem. As the rejections primarily depend on areal

uneven density patterns, we propose to use 1D and 2D areal mean density as features for the

algorithms. Figure 59 illustrates the methods of generating the features. The 1D features

are the mean density within nine intervals on the X axis. Dividing the sheet equally into 300

small patches, the 2D features are the mean density within every patch. Feature engineering

Figure 58: Sample accepted and rejected MIRALON sheets. Black boxes indicate defective spots
which are not necessarily the reason for rejections. Red boxes indicate uneven areas that are the
causes of rejections.
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Figure 59: Use 1D and 2D mean density values as features for the evaluation model. The 1D
features are the mean density within nine intervals on the X axis. The 2D features are the mean
density within each of the 300 patches.

turns this problem from an image classification problem to a regular classification problem.

We use a random forest model and a simple image classification CNN as approaches.

The random forest has the basic settings of 100 random trees, Gini index criterion, and the

maximum number of features to be used in a tree equals
√
N , where N is the total number

of input features. For the deep learning approach, a simple dense network is trained. We use

a fully connected layer to extract 64 features from the data, then randomly drop out 30% of

the features and output the labeled class with another dense layer. Both models are trained

in three settings. 1D and 2D features are used individually in the first two settings and then

combined in the third set. In each setting, two cases of the original mean features and the

DCT transformations of the mean features are included. The experiments are conducted on a

binary ”accept-reject” problem, and an ”accept-conditional accept-reject” 3-classes problem.

For the binary 2-classes problem, all conditional accepts are treated as rejections. The results

are shown in Table 18. We focus on the binary problem as the results are more accurate.

In the space domain, adding more features helps with the performances of both algorithms.

Using 1D and 2D features, both the random forest and the neural network have an accuracy

of around 80%. Surprisingly, the performances increase significantly to above 90% in the

DCT transform domain. The DCT representatives of the areal density means are sufficient.
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Table 18: The accuracy in percentages from different models with 1D and 2D areal mean
density features.

Features 1D 2D 1D + 2D
Representative domains space DCT space DCT space DCT
2-classes random forest 78.6 92.9 75.5 93.3 80.5 83.3
2-classes neural network 78.6 92.1 83.7 84.8 83.7 75.7
3-classes random forest 79.7 83.2 66.9 83.2 63.6 80.7
3-classes neural network 84.7 84.8 62.7 80.6 76.3 79.8

Adding more features results in information redundancy which causes accuracy decreases for

both the algorithms. At this point, we have not studied this evaluation problem intensively.

In the future, this question could be fully developed into an independent study.
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