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ABSTRACT 

COVID-19 is spread from an infected to a healthy person when they are within 6 

feet from each other for longer than 15 minutes. To limit disease transmission, there 

is a need for technology that could identify whether subjects were near each other 

longer than 15 minutes. In this thesis we systematically investigate Machine 

Learning (ML) methods to detect proximity by analyzing data gathered from 

smartphones’ built-in Bluetooth, accelerometer, and gyroscope sensors. We show 

that the proximity classification (< 6ft or not) can achieve 72%-90% accuracy using 

the accelerometer, 78%-84% accuracy using gyroscope sensor, and 76%-92% 

accuracy with the Bluetooth radio, while sensor fusion shows accuracy as high as 

97%. Our model outperforms current state-of-the-art methods using neural networks 

and achieved Normalized Decision Cost Function (nDCF) score of 0.34 with 

Bluetooth radio and 0.36 with sensor fusion. 
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CHAPTER 1 INTRODUCTION  

1.1. Motivation  

COVID-19 is a highly infectious airborne transmittable disease that has currently 

infected over 213 million people with a total of 4.44 million deaths globally to date 

[46], and has caused severe negative impact on global economy.  The risk of airborne 

infectious diseases such as COVID-19 increases when healthy people are within 6 

feet of infected people for longer than 15 minutes [25]. This has led to research 

interest in estimating the distance between smartphone users by analyzing data from 

smartphone built in sensors such as Bluetooth, accelerometer, and gyroscope.  

1.2. Background on COVID-19 

COVID-19 is a viral, highly transmittable respiratory disease of a coronavirus family 

of the diseases. It gets its name from crown-like spikes on the surface of the virus 

[37]. Coronavirus diseases cause severe acute respiratory syndrome (SARS) and 

Middle East respiratory syndrome (MERS) diseases in humans [37].  According to 

the Center for Disease Control and Prevention (CDC) people with COVID-19 may 

show following symptoms: 

 Fever and chills 

 Cough 
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 Shortness of breath or difficulty breathing 

 Fatigue 

 Muscle or body aches 

 Headache 

 New loss of taste or smell 

 Sore throat 

 Congestion or runny nose 

 Nausea or vomiting 

 Diarrhea 

This list is not complete and it should be noted that an individual infected with 

COVID-19 can exhibit other symptoms [38]. 

The current strain of coronavirus was first discovered in Wuhan, China in 

December of 2019 which is why it is also commonly known under the name of 

SARS-CoV-19. The virus quickly spread around the world causing a global 

pandemic. The rapid spread of SARS-CoV-19 is partially due to a long incubation 

period relative to other viruses. Its incubational period can be up to 14 days with a 

median of 4-5 days [38]. Currently, COVID-19 can be found on all continents except 

Antarctica [37].  Since it first originated in 2019, the virus mutated resulting in a 

new strain of the virus; some strains more contagious than others. At the time of 
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writing this thesis, the most prevalent strain of the virus is the Delta variant, which 

is a more transmittable and more contagious strain than the original strain first 

discovered in Wuhan, China. Even though, vaccines were developed and there have 

been to vaccinate large amounts of the global population, due to mutations of the 

virus it has continued to spread around the world causing new outbreaks and high 

rates of hospitalizations.  

To prevent the spread of the virus and its mutations, CDC recommends following 

preventive measures: 

 Get vaccinated 

 Wear a mask 

 Stay 6 feet from others 

 Avoid crowded and poorly ventilated spaces  

 Wash your hands often 

 Cover coughs and sneezes 

 Clean and disinfect 

 Monitor your health daily [39]. 

Figure 1 shows the infographic developed by the CDC which advertises behavior 

recommended to stop the spread of the virus.  
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Figure 1 Stop the spread infographic [40]. 
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1.3. Contact Tracing  

Since SARS-CoV-19 is a respiratory transmittable disease, it spreads from an 

infected to a healthy person through airborne particles, droplets. The transmission 

happens when two subjects are in the close contact with each other. CDC defines 

close contact by proximity and exposure. The close contact is defined as 6 feet of an 

infected person for a cumulative total of 15 minutes or more over a 24-hour period 

[41]. The people who were exposed to an infected person are asked to quarantine at 

home for 14 days [37]. This led to a need for contact tracing technology that could 

automatically detect a person’s close contacts and notify them when they have been 

exposed to an infected person and need to quarantine. The National Institute of 

Standards and Technology (NIST) and Massachusetts Institute of Technology’s 

(MIT) Private Automated Contact Tracing (PACT) collaboration led to initiative for 

development of a protocol, which defined a data collection procedure [42]. Their 

data collection protocol defines the procedure, in which participants of the study 

follow a smartphone application developed for this study to collect data [43]. 

Smartphones were chosen as a data collection tool since most of the modern 

smartphones present a vast variety of sensors such as integrated measurement unit 

(IMU), Wi-Fi and Bluetooth radios, and global positioning system (GPS). 

Smartphones are also widely available to the public which is helpful in large scale 

deployment of developed technology. However, some of the sensors available in 
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mobile phones such as GPS present privacy concerns. PACT collaboration focuses 

on use of IMU and Bluetooth radio which would preserve privacy of the users.  

1.4. Challenges with infectious disease tracing using 

smartphones 

Tracing infectious disease spread often means tracing social interactions which 

presents privacy issues. When developing technology for contact tracing it is 

important to be mindful of the potential privacy issues presented by this technology. 

Bluetooth radio signal and IMU signals do not contain information about the user 

which makes these sensors a good candidate for contact tracing. The challenge with 

using IMU is that these sensors do not carry any information about other subjects, 

meaning they are unable to send signals to other smartphone users. On the other 

hand, Bluetooth radio can transmit and receive signal from other mobile devices in 

its vicinity. Signal strength of Bluetooth can be used to infer the distance. 

Unfortunately, measuring strength of Bluetooth signal reliably is challenging. 

Bluetooth signal is subject to reflections and attenuations on its propagation path 

that create inaccuracies. By developing machine learning models, we attempt to 

minimize this uncertainty and accurately detect range between the subjects which 

would identify if subjects are closer than 6 feet of each other. The duration of the 

interaction can be tracked with an accurate clock available in smartphones. Time 
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tracking is much more trivial task those in this thesis we focus on accurate proximity 

detection.         

1.5. Goals 

In this thesis, we utilize PACT MITRE Range and Angle (Unstructured) (MRAU) 

dataset [1] and ML to develop regression and classification models for proximity 

detection. We attempt to accurately detect exact distance between two subjects and 

classify if two subjects are closer than 6 feet of each other. Models described in this 

thesis could be used as a backbone for contact tracing smartphone application which 

would send a notification if a healthy person were in close proximity of an infected 

person.  

1.6. Approach to contact tracing  

To develop accurate proximity detection models, we start with reading and splitting 

the data from the MARU dataset.  We then filter accelerometer and gyroscope data 

and remove outliers in Bluetooth radio data. We proceed with preparing data for the 

ML classification and regression model. The data is first split into training and test 

splits and then normalized. Three different methods of splitting the data and 

accuracy of proximity detection are presented in this thesis. We explore 19 different 

ML models to identify the one that works best with smartphone sensor data. The 

developed classification models are used to identify subject’s context and this 
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information then used as a feature to aid regression model in range estimation. In 

this thesis, we present 20 different features derived from accelerometer and 

gyroscope sensors signals, and 28 features derived from Bluetooth radio signal. 

Additionally, we present two different methods for sensor fusion. One at a feature 

level and another at decision level. Finally, we present accuracy of range estimation 

and ability to detect close contact (< 6 feet) with our model. Our model outperforms 

current state-of-the-art methods using neural networks and achieved nDCF score of 

0.34 with Bluetooth radio and 0.36 with sensor fusion. Results are presented with 

three different cross-validation techniques using four different evaluation metrics.  

1.7. Contributions of this thesis 

We careful evaluated a variety of ML methods for both regression and classification 

tasks and experimented with two different sensor fusion methods. As a result of our 

experiments, we found the following:  

1. Elliptical filtering of the accelerometer and gyroscope signals improves the 

regression R2 by 0.32 and 0.06 using accelerometer and gyroscope data 

respectively. 

2. Ensemble ML classification methods (boosted and bagged trees) classified < 6ft 

or not between subjects with 72%-90% accuracy and 0.43 nDCF score using the 

accelerometer, 78%-84% accuracy and 0.37 nDCF score using gyroscope sensor. 
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3. The regression tree classification method classified < 6ft or not between subjects 

with 76%-92% accuracy and 0.36 nDCF score using Bluetooth.  

4. Regression tree methods to estimate the actual distance between users when 

utilizing Bluetooth data, achieving an R2 between 0.64 to 0.99.  

5. Sensor fusion methods were found to be more robust at estimating distance than 

each sensor individually and were able to classify whether subjects were closer 

than 6 feet or not with up to 97% accuracy and 0.36 nDCF score. 

6. The most important features were z-axis mean and autocorrelation for the 

accelerometer, z-axis mean and y-axis mean for the gyroscope sensor, and 

advertiser time, mean RSSI, and peak of Doppler spectrum for Bluetooth. 

7. Recognizing user context and classifying proximity using context-specific ML 

models improved the performance of range regression but not classification.   

1.8. Roadmap  

The rest of this thesis is as follows: Chapter 2 presents background information of 

sensing social interactions in the past. Chapter 3 describes our approach to develop 

accurate ML models for proximity estimation. Chapter 4 demonstrates the results 

of our experiments. In Chapter 5, we discuss sources of error and why our model is 

not perfect. Finally, in Chapter 6 we conclude our findings.  
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CHAPTER 2 BACKGROUND  

Sensing social interactions has been explored by many researchers in the past. The 

main objective of such research is to track human mobility and the spread of 

epidemics [2], human behavior in organizational settings and how it shapes 

individuals and organizations [3], and propagation of information [4]. One approach 

to track social interactions relies on self-reporting. However, information collected 

in such a way is subjective, as it relies on the study participant’s memory. Another 

approach is to automatically detect social interactions. In order to classify interaction 

between two people, it is important to understand the proximity and orientation of 

the individuals. In the past, one group of researchers relied on custom hardware 

designed specifically for the purpose of identifying subjects carrying such devices, 

while other groups opportunistically utilized signals from the sensors available on 

mobile phones. Olguin, D.O et al [3] utilized a custom RFID tag called Sociometer 

to identify social interactions. Sociometer implements multimodal sensing which 

utilizes the microphone, accelerometer, Bluetooth and IR sensor to detect 

interactions. Unfortunately, in using the microphone this approach raises privacy 

concerns. Similar technology was employed by Isella, Lorenzo et al [2] which counts 

social interaction when two subjects are within a range of 1-2m from each other. The 

RFID tag employed in their study was not able to sense interactions beyond 2 meters. 

Huang, William et al [14] developed a custom sensor that uses ultrasonic radio to 
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communicate among its networks. Their approach demonstrated highly accurate 

proximity detection with an error of 5cm. Approaches using custom hardware to 

measure and detect social interactions are not scalable for large scale deployment. 

In the past, researchers experimented with using combinations of various sensors 

built into mobile phones to increase the accuracy of social interaction detection. Data 

from sensors such as: accelerometer [3, 5, 6, 7], gyroscope [5, 6], magnetometer [8], 

microphone [3,6], and GPS [7] were combined to estimate proximity of two or 

multiple subjects.  

Most modern mobile phones have built-in Wi-Fi and Bluetooth radios, which 

have provided the opportunity for prior research to utilize Wi-Fi [8, 9, 10] and 

Bluetooth [3, 5, 9, 11, 12, 13] signals to detect proximity of two or more subjects. 

Distance estimation using mobile radios relies on Received Signal Strength Indicator 

(RSSI) [5, 9,11, 12] and Time Difference of Arrival (TDoA) [14]. Researchers 

predominantly used the Path Loss Model (PLM) [5] to estimate distance from signal 

power. However, a new form of the PLM, which takes into account the relative 

orientation of mobile phones was proposed [13] and showed improved distance 

estimation when the separation between devices is less than 8 feet. In addition to 

classic proximity estimation techniques such as PLM, prior research also utilized 

Machine Learning (ML) based solutions. Palaghias, Niklas et al [11] studied social 

interactions using mobile phones and analyzed Bluetooth RSSI using the 
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MultiBoostAB (variation of AdaBoost) ML algorithm. In their work, the authors 

were not concerned with estimating the exact distance between subjects. Instead, 

their work focused on determining mutual orientation between participants in the 

study and classifying people’s interaction into public, social, and personal zones. In 

our work, we also employ Bluetooth RSSI but try to estimate distance in feet 

between subjects. Additionally, while we analyzed data from a variety of phone 

models, the research of Palaghias, Niklas et al was limited to only one type of phone 

(HTC One S). Katevas, Kleomenis et al [5] explored multiple ML models such as: 

XGBoost, Linear Regression, SVM, and Random Forest for identifying social 

interactions and not to estimate distance. They utilized the same sensors we used in 

our work accelerometer, gyroscope, and Bluetooth. They defined social interaction 

as two subjects located within 0.5m-1.5m of each other, giving a range of 1 meter 

(3.28 feet). Our proposed model achieves higher accuracy even with leave-one-out 

cross validation method. 

    In addition to distance estimation, prior researchers attempted to identify contexts 

in which social interactions occur. Vaizman et al [6] created an application that 

offered over 100 context labels. Their study attempts to classify the context the 

smartphone user is in and proposed a context recognition system that utilizes a 

combination of multi-modal sensors available on mobile devices to increase 

accuracy of context recognition.  
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Convolutional neural networks (CNNs) are a popular deep learning technique 

commonly used in domains such as computer vision and image recognition. CNNs 

are typically used with 2D image datasets. However, research in the areas of speech 

recognition [31, 32] and biomedical signal processing [33, 35] have also applied 

CNNs to 1D datasets. Tsinalis, Orestis et al proposed CNN architecture for sleep 

stage classification. The network takes an unfiltered EEG signal and passes it 

through 20 different filters, performing 1D convolution followed by max pooling. 

Afterwards, the filtered signals are stacked and 2D convolution is performed. The 

purpose of stacking signals is to find a relationship between different 1D filtered 

signals. This approach tries to discover relationships across the 3 axes of inertial 

sensors. Tsinalis, Orestis et al reported an F1 score of 81% for sleep stage 

classification using CNNs. 

    Other works attempting to estimate social distance have been published. Shankar, 

Sheshank et al.  attempt to estimate proximity between two subjects by utilizing 

Bluetooth Low Energy (BLE) in combination with the other sensors available on 

mobile devices such as: accelerometer, gyroscope, and magnetometer. Their 

approach treated sensors data as a time-series that were concatenated data into a 

vector and was analyzed using 1D CNNs. However, in addition to sensor data they 

also added encoded information about orientation between transmitting and 
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receiving devices. Such information would normally not be available on mobile 

devices, raising questions about real world applicability of their approach. 

In our conference paper, [36] we explored different ML algorithms, filter 

types, and features based on the user context. In this thesis we evaluate much broader 

set of statistical features and some radio signal specific features. We also present two 

different sensor fusion methods and do comprehensive evaluation of model 

performance. We investigate how accurately the proximity of two smartphones can 

be estimated using data from their built-in accelerometer, gyroscope sensors and 

Bluetooth radio. We analyzed these data using ML algorithms to estimate range. A 

novel aspect of our work is that we are the first to explore whether context-specific 

ML models are more accurate than general ones. Specifically, we explored whether 

first recognizing the user’s context such as whether the user is indoors or outdoors, 

room size, user’s pose and location of the transmitting device on the body and 

providing this context information as an input feature improves ML proximity 

estimation. We found that adding recognizing and using context information as a 

feature improved the accuracy of ML regression (distance estimate) but not ML 

proximity classification (< 6ft or not). Additionally, we present two different sensor 

fusion techniques to combine information from multiple sensors in order to improve 

regressor performance.    
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    Range estimation using Bluetooth radio is challenging because the RSSI varies 

continuously due to multipath fading, the transmission environment, room size, the 

presence of obstructions and the number of people in the room.  
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CHAPTER 3 METHODOLOGY FOR PROXIMITY DETECTION  

3.1. Dataset overview 

In our experiments, we utilized the publicly available PACT MITRE Range and 

Angle (Unstructured) (MRAU) dataset [1] to develop our ML proximity 

classification and regression models. Table 1 summarizes the data in the MRAU 

dataset. 

Table 1 Summary of the MITRE range and angle (unstructured) dataset  

Gyroscope Context 

x-axis y-axis z-axis Indoor Sitting 

Accelerometer Outdoor Standing 

x-axis y-axis z-axis Large Room Hold to Right Ear 

Bluetooth Medium Room Front Pants Pocket 

RSSI TSSI Advertiser Timestamp Small Room In Hand 

Response 

  

Center Congested In Purse 

Range Angle 

Center Open Rear Pants Pocket 

Near Wall 
Congested 

Shirt Pocket 

Near Wall Open   

The RSSI signal measurements were taken at increments of 2 feet from 2 to 

16 feet between transmitting and receiving devices. Since participants did not follow 

a defined protocol, not all recorded RSSI at all distances, which presents additional 

challenge when developing and evaluating models on the MRAU dataset. Figure 2 
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depicts measurements scenarios.  

 

Figure 2 MARU measurement scenarios 

    The data in MARU dataset was collected for approximately 60 seconds at each 

distance and orientation. Accelerometer and gyroscope data were sampled at ~4Hz 

while Bluetooth data was sampled at 4Hz-10Hz. Various mobile devices were used 

to capture the data such as: Pixel, Pixel 3, iPhone 6s, iPhone 7, iPhone 8, iPhone 11, 

iPhone XR, Galaxy S9, and LG G7, which explains why sampling frequency is 

inconsistent. 

3.2. Approach to proximity detection 

The main steps in our machine learning pipeline are shown in Figure 3. 
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Figure 3 Overview of our ML proximity regression pipeline using Accelerometer, 

Gyroscope, Bluetooth, and sensor fusion data. 
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First, the raw sensor signals were resampled since the sampling rate is not 

consistent across all subjects. Next, the accelerometer and gyroscope sensors signals 

were filtered using a low-pass filter. Then, various statistical features found to be 

predictive in prior work were extracted. These features including the user’s context 

were then classified or regressed to predict the user’s proximity/range using ML 

methods. In addition to training a classifier and regressor on individual sensors we 

used a combination of all three sensors for range estimation. Inspired by Vaizman et 

al’s work on context recognition, we experimented with two different sensors fusion 

methods.  

 Sensor fusion: There are three commonly known sensor fusion methods which 

combine data from multiple sources at data level, feature level, or decision level. We 

explored sensor fusion at feature level and decision level. The first sensor fusion 

method combines data at feature level using a feature matrix extracted from raw 

sensor data (accelerometer, gyroscope and Bluetooth). The feature data was 

concatenated horizontally, resulting in n by 58 feature matrices, where n is a number 

of samples. The second sensor fusion method combines data at decision level using 

a two-stage approach. First the ML model was trained on data from each sensor 

individually. The proximity probabilities output by each ML were combined 

resulting in n by 3 matrices. Finally, the matrix of probabilities was input into the 

ML regressor for range estimation. Our data fusion method at decision level is 
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similar to the popular Dempster-Shafer theory where hypothesis H is calculated as      

𝑚 ⊕ 𝑚 (𝐻) =
∑ ( ) ( )∩

 ∑ ( ) ( )∩ ∅
 [44]. The difference with our method is that 

after obtaining probabilities (hypothesis), we let ML model decide how to combine 

the data instead of assigning a defined formula. Figure 4 illustrates how the data 

from multiple sensors is arranged for the two sensor fusion methods explored in this 

thesis.    

Signal filtering: We evaluated the utility of 5 filter types for ML range 

estimation: Butterworth [16], Chebyshev [16], Elliptical [16], Median [17], moving 

average and moving average with overlapping windows. In order to determine 

frequencies of interest, the Fast Fourier Transforms (FFTs) of the sensor signals 

were computed. Most of the signal energy was found to be concentrated in the 0-

0.2Hz, 0.3Hz-0.5Hz, and 1.3Hz-1.5Hz bands. The Kaiser window FIR filter defined 

by 𝜔 (𝑛𝑇) =
( )

( )
0 ≤ 𝑛 ≤ 𝑁 − 1

      0                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  where 𝛽 controls side lobe level 

and 𝐼 (𝑥) is modified zero-order Bessel function [26]. A combination of three bands 

was tested. Another experiment was conducted by using the Discrete Wavelet 

Transform (DWT) to filter data, but it did not improve the accuracy of distance 

estimation. 
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Figure 4 Sensor fusion methods 

Feature extraction: Table 2 summarizes the radio propagation and statistical 

features we computed from accelerometer, gyroscope, and Bluetooth data. 

Additionally, for the accelerometer and gyroscope sensors, the mean and standard 

deviation for each axis were computed as well as autocorrelation between the xy, xz, 

and yz axes. A total of 20 features was extracted for each sensor. Radio propagation-

specific features along with statistical features based on RSSI, transmitted signal 

strength, and advertiser time were extracted for Bluetooth radio. All radio 

propagation specific features for Bluetooth radio were calculated based on RSSI. 
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Table 2 Features computed from accelerometer, gyroscope, and Bluetooth data  

Sensor Feature Formula Ref 

A, G Magnitude 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝑥 + 𝑦 + 𝑧  - 

A, G, B Mean µ =  ∑ 𝑋 n  - 

A, G, B Standard deviation 
𝑆 = ∑ |𝑋 − 𝜇|   

- 

A, G, B Third and fourth 
momentum 

𝑚 = ∑ (𝑥 − 𝜇)  , k=3, 4  - 

A, G, B Percentile  The score at k percentile for k = 25, 
50, 75 

- 

A, G, B Value entropy 𝐻 (𝑦) = −𝐾 ∑ 𝑝 log 𝑝   15 

A, G Time entropy  𝐻 (𝑦) = −𝐾 ∑ |𝑚 | log(|𝑚 |)  15 

A, G, B Autocorrelation  𝑟 =    18 

A, G Autocovariance  𝐾 (𝑡, 𝑠) = 𝑐𝑜𝑣[𝑋(𝑡), 𝑋(𝑠)] =

𝐸{[𝑋(𝑡) − 𝜇 (𝑡)][𝑋(𝑠) − 𝜇 (𝑠)]}  
19 

B Delta 𝑑𝑒𝑙𝑡𝑎 =  𝑅𝑆𝑆 − 𝑇𝑆𝑆  - 

B Peak-to-peak change {𝑦(𝑛}| − {𝑦(𝑛}|  29 

B Doppler spectrum peak 𝑃 ( ) = max
( , )

𝐷(𝜆) 28 

B Doppler spectrum mean 
µ =

∑ 𝐷(𝜆)

|2𝑓 |
 

28 

B Doppler spectrum RMS 
𝑃 =

∫ 𝜆 𝐷(𝜆)𝑑𝜆

∫ 𝐷(𝜆)𝑑𝜆
 

29 

B Energy 
𝐸 =  𝐷(𝜆)𝑑𝜆 29 
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B Laplacian best fit 𝐷(𝜆) =  
𝑎

1 + 𝑏𝜆
 29 

B Gaussian fit 
𝐷(𝜆) = 𝑎 exp (−(𝜆 − 𝑏 )

/𝑐 ) 

27 

B Polynomial fit 
𝐷(𝜆) = 𝑎 𝜆  

27 

B Fade duration 
𝜏(𝜌) =

𝑒 − 1

√2𝜋𝜌𝑃
 

29 

B Level crossing 𝑁(𝜌) = √2𝜋𝜌𝑃 𝑒  29 

B Rayleigh parameter 
𝑓 (𝑟) =

𝑦

𝜎
exp −

𝑦

2𝜎
, 𝑦 ≥ 0 

29 

In addition to statistical features, we employed classification models to 

estimate the environment in which measurements were taken. There were five types 

of environment labels: 1) Indoors or outdoors, 2) Room size:  large, medium or small 

room, 3) Transmitting device’s location in the room: center congested, center open, 

near wall congested, and near wall open, 4) Pose of the test subject: sitting or 

standing, and 5) Phone placement: held to right ear, front pants pocket, in hand, in 

purse, rear pants pocket, or shirt pocket. All the features were computed over 

windows of 10 samples of continuously sampled sensors’ signals. Before training a 

regression classifier on the dataset, the data were normalized using one of two 

methods: 1) z-score 𝑋 =   or 2) min-max normalization 𝑋 =  
 

 .  
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Machine learning algorithms: In this thesis, several regression models were 

examined. A linear regression model assumes that regression function is linear. 

Linear regression model is defined by 𝑓(𝑋) =  𝛽 + ∑ 𝑋 𝛽  [20]. Several 

methods were examined to find the best fitting the linear regression model. The 

stepwise linear method automatically adds or removes predictors 𝑋  to the model 

based on the goodness of fit evaluated by computing a sum of squared errors. It is 

expected that a model with more predictors will have lower error but could also 

easily overfit the data. For that reason, we evaluated various combinations of 

predictors in the ML model. The linear regression method is somewhat similar to 

stepwise linear method but instead of adding or removing predictors, it tries to 

discover interactions between predictors. The robust linear regression method is a 

type of linear regression that attempts to identify outliers in the dataset which would 

affect the goodness of fit. The measure of the effect of each observation in the dataset 

can be found by computing H-matrix 𝐻 = 𝑋(𝑋 𝑋) 𝑋  where each diagonal term 

is the effect of an observation on outcome y and X is the data matrix [22]. Outliers 

are undesirable data points that do not follow the pattern of the other samples. 

Removing outliers may affect the distribution of the data, which may be undesirable. 

Tukey’s biweight applies weight to the data to handle outliers and was used to handle 
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outliers in our dataset. Tukey’s biweight function is defined as: 

𝜓(𝑥) = 𝑥(1 − 𝑥 ) 𝑓𝑜𝑟 𝑥 < 1

𝜓(𝑥) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [17]. 

    We evaluated linear regression [20, 22], regression trees [21], Support Vector 

Machines (SVM) [23], ensemble methods [20], and Gaussian Process Regression 

(GPR) [24]. We validated the results of regression models using the 5-fold cross 

validation technique to avoid overfitting and to robustly determine the optimal ML 

model. The best performing model was also evaluated using leave-one-out cross-

validation with subject level splitting, wherein in each subject’s data occurs either 

in the training or test set but not partially in both. 

The regression tree splits data space into disjointed regions Ak and provides a 

fitted value E (Y | X ϵ Ak) within each region [21]. Each split in the tree is made to 

decrease impurity. Deviance is used as a definition of impurity and defined as 𝐷 =

∑ (𝑦 − 𝜇| |)  where 𝜇| | is the mean of values in the node where case j belongs 

to [21]. Three different types of trees were examined in this thesis: fine, medium, 

and coarse. The difference between the tested tree types is that the minimum of the 

fine tree leaf size is 4. The medium tree has a minimum leaf size of 12 and the coarse 

tree has a minimum leaf size of 36. A Fine tree with smaller leaf size tends to overfit 

the data. Trees with larger leaf sizes could help improve accuracy on the test set. Our 

experiments showed the highest accuracy achieved with a fine tree. 
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    Support Vector Machines (SVM) regression is similar to linear regression 

attempts to split feature space by creating linear boundary defined by 𝑓(𝑥) =  𝑥 𝛽 +

 𝛽 . In addition to hyperline that attempts to split the feature space, SVM allows 

deviation from the hyperline by a margin M, defined as 𝑀 =  
‖ ‖

 [20]. SVM 

constructs a decision boundary of a type 𝑓(𝑥) =

𝑠𝑖𝑔𝑛(∑ 𝑦 𝛼 𝐾(𝑥 , 𝑥) − 𝑏 ) where 𝐾(𝑥 , 𝑥) is a convolution of the inner 

product between support vector and the vector of the feature space [23]. Different 

functions can be used for convolution of the inner product 𝐾(𝑥 , 𝑥) which can create 

different types of non-linear decision boundaries. In this thesis, linear, quadratic, 

cubic, and three types of Gaussian function were examined. The linear decision 

boundary is defined by 𝐾(𝑥 , 𝑥) = 𝑥 ∙ 𝑥.  To construct the polynomial decision 

boundary the following function for convolution of the inner product is used 

𝐾(𝑥 , 𝑥) =  [(𝑥 ∙ 𝑥) + 1]   where 𝑑 is the degree of the polynomial [11]. For 

quadratic functions d=2 and cubic d=3 are used. The gaussian function uses the 

following decision rule 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼 𝐾 (|𝑥 − 𝑥 |) − 𝑏) where 𝐾 (|𝑥 −

𝑥 |) = 𝑒𝑥𝑝{−𝛾|𝑥 − 𝑥 | } [11]. Fine, medium, and coarse Gaussian SVMs are 

different in how the feature space is scaled. For Fine Gaussian SVM, features are 

scaled by √  where 𝑃 is the number of features. Medium Gaussian SVM uses √𝑃 to 

scale the features and Coarse Gaussian SVM utilizes √𝑃 ∗ 4. 
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Table 3 Evaluation metrics  

Mean Squared Error (MSE)  MSE =  ∑ (𝑌 − 𝑌 )  

Root-Mean-Square Error (RMSE)  RMSE =  
∑ (  )

 

R2  R2 =
∑ (  )

∑ (  )
 

Mean Absolute Error (MAE)   MAE =
∑ |   |

 

Balanced Accuracy (BA)  BA =  
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
 

F1  
𝐹1 =  

2 ∗ 𝑇𝑃𝑅 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑇𝑃𝑅 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

True Positive Rate (TPR)  TPR =   

True Negative Rate (TNR)  TNR =  

Precision  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Normalized Decision Cost 
Function (nDCF) 

𝑛𝐷𝐶𝐹 =  
𝑤 𝑃 + 𝑤 𝑃

min (𝑤 , 𝑤 )
 

Ensemble Regression model utilizes several simple models to build stronger 

prediction models. Two different ensemble regression methods were explored in this 

thesis. Bagged Trees, an ensemble method, utilizes simple regression trees to build 

stronger predictor. The bagging estimate is defined by 𝑓  =  ∑ 𝑓 (𝑥)  

where 𝑓(𝑥) is the prediction at input x, b is a bootstrap sample, and 𝑓 (𝑥)  are 

independent predictions generated by each regression tree [20]. Bagging trees helps 
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reduce variance and thus improve goodness of fit. Boosted Trees is a technique that 

combines several individual regression models to produce a more powerful one. A 

prediction from several individual classifiers 𝐺 (𝑥) combined through weighted 

majority voting produces a final decision 𝐺(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼 𝐺 (𝑥)) where 𝛼  

are weights for each individual classifier  𝐺 (𝑥) [20]. Weights applied to each 

individual classifier help more accurate classifiers influence the final prediction. 𝛼  

computed as 𝛼 = log( ); error computed as 𝑒𝑟𝑟 =
∑ ( ( ))

∑
 where 

𝑤 =  and N is a number of observations [20]. 

Gaussian Process Regression (GPR) can be viewed as a linear regression but 

with added noise. The noise in the GPR model has a Gaussian distribution 

𝜀~𝑁(0, 𝜎 ) with zero mean and variance of 𝜎 , those GPR model has the form 𝑦 =

𝑓(𝑥) +  𝜀 where 𝑓(𝑥) = 𝑥 𝑤 [24]. The Gaussian process is specified by the mean 

function 𝑚(𝑥) and covariance function or kernel 𝑘(𝑥, 𝑥 ), where 𝑚(𝑥) = 𝐸[𝑓(𝑥)] 

and 𝑘(𝑥, 𝑥 ) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥 ) − 𝑚(𝑥 ))] [24]. In this thesis, several 

kernel functions were examined. We examined squared exponential kernel function 

defined as 𝑘(𝑟) = exp (− ) where 𝑙 is characteristic length scale and 𝑟 = |𝑥 −

𝑥 |, the Matern 5/2 kernel defined as 𝑘(𝑟) =
( )

√
𝐾 (

√
) where 𝑣 = 5/2 

and 𝐾  is a modified Bessel function, an exponential kernel defined as 𝑘(𝑟) =
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exp (−(𝑟/𝑙) ) for 0 < 𝛾 ≤ 2, and rational quadratic kernel defined as 𝑘(𝑟) =

(1 + )  [24]. 

Evaluation metrics: Table 3 summarizes evaluation metrics used to measure 

performance of regression and classification models. 
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CHAPTER 4 EVALUATION AND RESULTS 

4.1. Data preparation  

MARU dataset contains 24 different folders. We treated each folder as a different 

subject. We first load the data into computer memory and organized data by sensor 

and subject. Accelerometer and gyroscope data matrices have x, y, and z axes data, 

information on range, angle, and user context. Bluetooth contains advertiser time 

stamp, RSSI, transmitter signal strength, range, angle, and information on user 

context. User context at this stage is n x 17 matrix consisting of ones and zeros that 

tell if certain label applicable to a given data point or not. We continue by filtering 

data using routine in appendix B.1 and creating hand-crafted features using routine 

in appendix B.2. The functions used to calculate features presented in appendix B.6.    

Now we have data ready for classification to identify user context. Routines 

presented in appendix B.3 first combines 17 individual context labels into five 

categories then performs classification to predict user context and finally, adds this 

information to the test and training matrices. The final step in which the data was 

normalized, ML models trained, and the regression tasks performed to estimate 

range between a subject in order to classify it two are closer than six feet presented 

in Appendix B.4. Supporting functions, such as the one used to align sensor data for 
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sensor fusion experiments, calculate performance matrices, and to group context 

information into five categories are presented in Appendix B.5. 

4.2. Signal filtering 

We tested various types of filters and cutoff frequencies ranging from 0.1 Hz to 1.8 

Hz and found that the Elliptical filter of the 9th order performed best. Table 4 shows 

a ranking of the performance of different filter types. 

The highest regression R2 for the accelerometer was 0.63 at cut-off frequency 

of 0.2 Hz and 0.27 for the gyroscope at a cut-off frequency of 0.1 Hz. This was a 

significant improvement over the best R2 achieved using unfiltered data: 0.31 for the 

accelerometer and 0.21 for the gyroscope. The constructed bandpass filter performed 

worse than a low-pass filter. Thus, we proceeded to utilize the 9th order Elliptical 

filter low-pass filter in subsequent experiments.   

Table 4 Filter type rating  

Rating Accelerometer Gyroscope Sensor Fusion 

1 Elliptical 9th  Elliptical 10th  Elliptical 9th  

2 Chebyshev 5th  Butterworth 10th  Butterworth 6th  

3 Butterworth 6th  Chebyshev 3rd  Chebyshev 5th  

4 Median 7th  MA with OL MA (window 4) 

5 MA (window 8) MA (window 3) MA with OL 

6 MA with OL  Median 6th  Median 10th  
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4.3. Normalization 

Min-max and z-score normalization techniques showed similar performance. The R2 

score for accelerometer was 0.5365, gyroscope – 0.3808, and Bluetooth - 0.9983 

using min-max normalization, while with z-score normalization accelerometer R2 – 

0.6767, gyroscope – 0.2935, and Bluetooth – 0.9980. Consequently, we proceeded 

with z-score normalization. 

4.4. Classification performance on various labels 

Table 5 summarizes the results of classifying various labels in the MRAU dataset. 

Overall, Bluetooth radio had very high accuracy for recognizing all the context 

variables with BA and F1 values of 0.99 for all. Accelerometer data yielded good 

accuracy for recognizing when the subject was sitting or standing and also, in 

detecting the size of the room. We discovered that including additional features 

improved the ML model’s performance of the model when validated using 5-fold 

cross-validation. Figures 5 through 7 show the importance of each feature for various 

range estimation tasks. In addition to hand-crafted features, a much broader set of 

features was evaluated, and results are presented in Appendix A. Feature importance 

was calculated as the difference in the node risk between parent and children’s nodes 

  
 where risk is defined as a node error.  
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Table 5 F1 and BA classifier performance  

Classification 
Model Accuracy  

Accelerometer Gyroscope Bluetooth 

F1 BA F1 BA F1 BA 

Indoor 0.8512 0.9014 0.7595 0.8371 0.9981 0.9991 

Outdoor 0.7812 0.8626 0.4939 0.7098 0.9999 1 

Large Room 0.7946 0.8708 0.7152 0.8465 0.9971 0.9988 

Medium Room 0.9035 0.9041 0.7793 0.7843 0.9992 0.9992 

Small Room 0.8466 0.9005 0.5839 0.74 0.9999 1 

Center Congested 0.5835 0.7511 0.1614 0.59 0.9936 0.9999 

Center Open 0.8511 0.8921 0.6514 0.7466 0.9995 0.9995 

Near Wall 
Congested 

0.8657 0.8993 0.7512 0.8113 0.9999 1 

Near Wall Open 0.9035 0.9309 0.7357 0.8026 0.9999 0.9999 

Sitting 0.8815 0.8987 0.7401 0.782 0.9979 0.998 

Standing 0.9151 0.8987 0.8195 0.782 0.9979 0.998 

Hold to Right Ear 0.8546 0.9033 0.7712 0.8362 0.9992 0.9996 

Front Pants 
Pocket 

0.635 0.7677 0.3487 0.6125 0.9943 0.9975 

In Hand 0.7518 0.8048 0.5636 0.6611 0.9929 0.9929 

In Purse 0.6756 0.7956 0.2771 0.5835 0.9796 0.992 

Rear Pants Pocket 0.6292 0.7419 0.456 0.6573 0.985 0.9895 

Shirt Pocket 0.5803 0.7863 0.1325 0.5656 0.989 0.9987 

Average: 0.7826 0.8535 0.573 0.7264 0.9955 0.9978 
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Figure 5 Predictor importance for accelerometer sensor data 

 

Figure 6 Predictor importance for gyroscope sensor data 
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Figure 7 Predictor importance for Bluetooth sensor data. 

4.5. Best performing ML classification algorithm 

Table 6 summarizes and compares the performance of various machine learning 

classification algorithms. Regression Trees performed best with Bluetooth sensor 

data, and Bagged Trees performed best on the accelerometer and gyroscope data. 

The highest ML regression fit was observed with the Bluetooth sensor. 
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Table 6 Results of an optimal classifier search 

Model  Method 
RMSE score 

A G B 

Linear Linear 4.4223 4.6607 4.7696 

  Interactions Linear 4.6399 7.938 5.82E+08 

  Robust Linear 4.4308 4.6633 12.719 

  Stepwise Linear 3.9749 4.6461 7.0528 

Tree Fine Tree 3.5293 5.1107 0.2289 

  Medium Tree 3.3486 4.7299 0.3087 

  Coarse Tree 3.4537 4.4817 0.4765 

SVM Linear SVM 4.528 4.7148 4.6823 

  Quadratic SVM 4.2603 7.1004 19.766 

  Cubic SVM 30.453 105.29 26940 

  Fine Gaussian SVM 3.234 4.2502 3.7406 

  Medium Gaussian SVM 3.3354 4.2912 4.2992 

  Coarse Gaussian SVM 4.2538 4.5428 4.5327 

Ensemble Boosted Trees 3.5044 4.2923 2.1337 

  Bagged Trees 2.837 4.0989 0.5902 

GPR Squared Exponential  3.0078 4.1947 3.6705 

  Matern 5/2  2.9709 4.1685 3.5152 

  Exponential 2.9223 4.1153 2.0701 

  Rational Quadratic 2.9249 4.1399 2.1051 
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4.6. Cross-validation 

In addition to the 5-fold cross validation technique, we also validated the 

performance of our model using leave-one-out cross validation, and subject level 

splitting. For leave-one-out cross-validation, we split the data into training and test 

sets by subject, where one subject’s data was put in the test set and all others in the 

training set. For this test we only used subjects that had data from all three sensors 

which resulted in a total of 17 subjects. Since the performance of the regression 

model can vary significantly from subject to subject, we performed leave-one-out 

cross-validation 17 times, each time testing on a new subject while the remaining 16 

were used to train the model. This validation approach most closely mimics real- 

world environments. Figure 8 summarizes the performance of the regression model 

and depicts the distribution of regressor error. It should be noted that the regression 

model was found to be capable of producing repeatable results when trained on the 

accelerometer, gyroscope, Bluetooth, or the first method of sensor fusion. The 

regression model trained on gyroscope sensor data showed the lowest average 

RMSE error of 4.57 while Bluetooth had an error of 5.65. However, some subjects 

showed higher range estimation accuracy using Bluetooth sensor data, while others 

had better results with gyroscope or accelerometer data. Since it is difficult to predict 

which sensor will work best for a random subject, it is best to combine data from all 

three sensors as proposed in the first sensor fusion method. Even though the average 
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RMSE for the first sensor fusion method is 5.23, it never performed worse than the 

worst performing sensor out of three for a given subject. The second sensor fusion 

method did not show good results, had wide distribution error and thus should not 

be considered for real-word deployment. 

 

Figure 8 Distribution of regressor error with leave-one-out cross-validation. 

For subject level cross-validation, we used a 70/30 train/test split (12 subjects 

in training set, 5 subjects in test set). This method is a good alternative to leave-one-

out cross-validation as it is very rigorous and mimics a real-world scenario but also 

allows us to have a larger test set. Tables 7 through 9 show the results of cross-

validation. 
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Table 7 Regression model results with 5-fold cross-validation   

  

Accelerometer Gyroscope Bluetooth 

Handcrafted 
Features 

All 
Features 

Handcrafted 
Features 

All 
Features 

Handcrafted 
Features 

All 
Features 

MSE 7.1917 7.4384 15.9857 16.2524 0.0409 0.0485 

RMSE 2.6817 2.7273 3.9982 4.0314 0.2023 0.2202 

R2 0.6874 0.6767 0.3051 0.2935 0.9983 0.998 

MAE 1.8938 1.9426 3.2899 3.3445 0.0112 0.0122 

 

Table 8 Regression model results with leave-one-out cross-validation 

  

Accelerometer Gyroscope Bluetooth 

Handcrafted 
Features 

All 
Features 

Handcrafted 
Features 

All 
Features 

Handcrafted 
Features 

All 
Features 

MSE 43.8925 43.2142 39.2562 39.0704 33.2625 12.9921 

RMSE 6.6251 6.5738 6.2655 6.2506 5.7674 3.6045 

R2 -0.2007 -0.1822 -0.0739 -0.0688 0.0901 0.6446 

MAE 5.9464 5.9096 5.7377 5.7527 4.5635 2.2201 

 

Table 9 Regression model results with subject level splitting cross-validation  

  

Accelerometer Gyroscope Bluetooth 

Handcrafted 
Features 

All 
Features 

Handcrafted 
Features 

All 
Features 

Handcrafted 
Features 

All 
Features 

MSE 11.7313 11.1554 24.4948 23.3507 35.929 41.4525 

RMSE 3.4251 3.34 4.9492 4.8323 5.9941 6.4384 

R2 0.5098 0.5339 -0.0235 0.0243 -0.5012 -0.732 

MAE 2.8614 2.7524 4.3665 4.2637 4.5213 4.8695 
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CHAPTER 5 ANALYSIS OF PROXIMITY ESTIMATION ERROR 

5.1. Analysis of error  

We found that ensemble methods estimated range between two subjects within 2.8 

feet RMSE when using accelerometer data, and 4 feet RMSE with gyroscope data, 

while the regression trees yielded 0.2 feet RMSE score using Bluetooth data. 

Additionally, low pass filtering sensor data improved the performance of ML 

algorithms for range estimation. We observed an R2 improvement of 0.32 and 0.06 

with accelerometer and gyroscope data respectively. Unfortunately, the performance 

of the regressor dropped significantly when validated using subject level splitting. 

The R2 of the best performing ML regression model using Bluetooth reduced by 0.35 

R2, and by 0.49 and 0.22 when using accelerometer and gyroscope data respectively. 

We observed that adding context information as an input feature to the machine 

learning model improved regression model performance but not on classification 

models validated either using 5-fold cross-validation or with leave-one-out cross-

validation, but context features helped during validation.  

We believe that the reduction in regression model performance was due to 

inadequate training data. Figure 9 shows how much data was available for each 

subject. As we can see, some subjects had very little data and very few available 

distance settings which results in a model being trained at a given distance not on all 
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17 subjects but on much smaller dataset as well as a much less diverse training set. 

This also affects validation since only a few samples end up in a test set when 

validating with leave-one-out cross-validation. Figures 10 to 12 show the predicted 

versus actual when validated using leave-one-out cross validation.  

 

Figure 9 Amount of data in the test set. 

Accelerometer and gyroscope data have a high variance, which can be 

improved by training the regression model on more data. In contrast, the Bluetooth 
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regressor had both high variance and bias. Thus, adding more diverse Bluetooth data 

could improve regression performance. 

 

Figure 10 Predicted versus actual distance for regression model trained on 

accelerometer data and validated with leave-one-out cross-validation 
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Figure 11 Predicted versus actual distance for regression model trained on 

gyroscope data and validated with leave-one-out cross-validation 

 

Figure 12 Predicted versus actual distance for regression model trained on 

Bluetooth radio data and validated with leave-one-out cross-validation 
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5.2. Synthetic minority over-sampling (SMOTE) 

To train our model on more samples, we generated more data using the Synthetic 

Minority Over-sampling Technique (SMOTE). In comparison to traditional over-

sampling or under-sampling techniques, SMOTE operates in the “feature space: 

rather than “data space” [30]. The additional samples generated along the line that 

joins all k nearest neighbors where k is determined by the oversampling rate. New 

samples generated by the following formula 𝑥 = 𝑥 + 𝑟𝑎𝑛𝑑(0,1)|𝑥 − 𝑥 |, where 𝑥 

is the feature vector under consideration and 𝑥  its nearest neighbor [30]. Table 10 

depicts results of comparison between original data set and the one with synthetic 

data. It should be noted that the regression model results depicted in Table 10 were 

obtained with leave-one-out cross-validation in which only one randomly selected 

subject was chosen for the test set. Unfortunately, training our regression model on 

synthetic data did not improve the accuracy of range estimation. 

5.3. Best performing features 

In some cases, adding additional features to ML model improved the accuracy of the 

model. In our experiments, we used 20 hand-crafted features for accelerometer and 

gyroscope, and 28 hand-crafted features for Bluetooth. However, we found that not 

all features were useful for range estimation. Based on predictor importance we 

selected only the 15 best-performing features and repeated our tests using leave-one-
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out cross validation, where one subject would be kept in the test set and the rest put 

in the training set. We tested all 17 subjects, and the results are shown in Figure 13 

and Table 11. 

Table 10 Original with synthetic dataset regression model performance when 

validated with leave-one-out cross-validation  

 

Accelerometer Gyroscope Bluetooth 

Ref. SMOTE Ref. SMOTE Ref. SMOTE 

MSE 35.8281 43.5135 32.6668 35.7631 30.498 89.5644 

RMSE 5.9857 6.5965 5.7155 5.9802 5.5225 9.4638 

R2 -1.0572 -1.0271 -0.8756 -0.6761 -0.7511 -3.178 

MAE 5.294 5.6685 5.0777 5.1284 4.8512 8.1768 

 

Fusion 1 Fusion 2 

  

Ref. SMOTE Ref. SMOTE 

MSE 46.2692 47.6334 128.8 101.658 

RMSE 6.8021 6.9017 11.349 10.0826 

R2 -1.6567 -1.2324 -6.3954 -3.7642 

MAE 5.9693 5.9333 10.5538 8.9624 
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Figure 13 Distribution of regressor error with leave-one-out cross-validation using 

only 15 best performing features. 

Table 11 Regression model results with leave-one-out cross-validation when 

trained on 15 best performing features  

  Accelerometer Gyroscope Bluetooth Fusion 1 Fusion 2 

MSE 24.5158 21.6165 27.5294 32.8085 48.5999 

RMSE 4.8283 4.5220 5.1097 5.4426 6.4561 

R2 -2.4943 -2.1205 -4.0736 -4.1276 -5.2881 

MAE 4.1838 3.9787 4.2420 4.6338 5.5489 
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Using only the best performing features improved mean RMSE by 0.0035 for 

a model trained on accelerometer sensor data, by 0.0493 on gyroscope data, and by 

0.5436 on Bluetooth radio data. However, it did affect the performance of the first 

sensor fusion method by 0.2098. The regression model based on Bluetooth sensor 

data had the most features (28 features). Thus, removing the worst-performing 

features yielded the highest improvement in the accuracy of range estimation. We 

believe that using the best performing features versus more futures yields higher 

accuracy regression and classification models.  

5.4. Social distance classification  

Overall, the approach presented in this thesis can detect with high accuracy whether 

two subjects are within 6 feet of each other.  Table 12 shows the classification results 

for all sensors with leave-one-out cross-validation technique when using all features 

and when using only the best performing. 

We found that using only the best performing features significantly improves 

classification model trained on Bluetooth data, improving the F1 score by 0.17. 

Classification results are even better when validated with 5-fold cross-validation. 

However, 5-fold cross-validation are not as rigorous as leave-one-out cross-

validation, which is the best approximation to the real-world deployment scenario. 
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Table 13 presents classification results for all sensors and sensor fusion methods 

when validated with 5-fold cross-validation. 

Table 12 Accuracy of estimation if subjects are closer than 6 feet with leave-one-

out cross-validation  

  

Accelerometer Gyroscope 

All features 15 Best feat. All features 15 Best feat. 

F1 0.6359 0.7274 0.7345 0.7813 

BA 0.4348 0.4599 0.4698 0.4978 

  

Bluetooth 

  

All features 15 Best feat. 

F1 0.5885 0.7589 

BA 0.5318 0.5984 

Table 13 Accuracy of estimation if subjects are closer than 6 feet with 5-fold cross-

validation  

  Accelerometer Gyroscope Bluetooth Fusion 1 Fusion 2 

F1 0.9036 0.8358 0.9182 0.9687 0.9511 

BA 0.7925 0.5575 0.9238 0.9625 0.9497 
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Table 14 Accuracy of estimation if subjects are closer than 6 feet with leave-one-

out cross-validation 

  Accelerometer Gyroscope Bluetooth Fusion 1 Fusion 2 

F1 0.7274 0.7813 0.7589 0.7651 0.0000 

BA 0.4599 0.4978 0.5984 0.5918 0.4375 

We can see that sensor fusion classified proximity of 6 feet or less better than 

any other individual sensor. To verify whether that remains true when validating 

with leave-one-out cross validation, we tested every subject in our dataset and the 

average results of leave-one-out cross-validation are captured in Table 14. First 

sensor fusion method performed slightly worse than the model trained on gyroscope 

data only if comparing by F1 metric. However, sensor fusion performed better than 

the gyroscope when compared using the Balanced Accuracy (BA) metric. Sensor 

fusion showed very promising results at estimating proximity and classifying if 

subjects are closer than 6 feet and we believe it is the optimal way to use sensors 

available in mobile phones for real-world deployment scenarios. 

In addition to balanced accuracy and F1-score, we computed nDCF which is 

the required performance metric for National Institute of Standards and Technology 

(NIST) TC4TL challenge [45]. nDCF measures misclassified predictions – false 

negatives (FN) and false positives (FP). The sum of the misclassification normalized 

per number of samples so that sets of different sample size can be compared. nDCF 
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results for classifying social distance are captured in Figure 14. We found that our 

model, trained on each individual sensor and on the sensor fusion at the future level, 

outperformed state of the art methods using neural networks developed by Shankar, 

Sheshank et al. and described in their paper “Proximity Sensing: Modeling and 

Understanding Noisy RSSI-BLE Signals and Other Mobile Sensor Data for Digital 

Contact Tracing.” [34]. 

 

Figure 14 Accuracy of ≤6 feet estimation – nDCF metric. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

In this thesis, we have presented research that demonstrates that accurate range 

estimation with accelerometer, gyroscope sensors and Bluetooth radio are possible 

with high accuracy in certain scenarios. We found that ensemble ML models worked 

best with accelerometer and gyroscope sensors data, while regression trees 

performed best with Bluetooth radio data. We found that the Elliptical low-pass filter 

of 9th order with cut-off frequency of 0.2 Hz for accelerometer and 0.1 Hz for 

gyroscope performed best. Z-axis mean autocorrelation were the most important 

features in ML model developed for accelerometer sensor, z-axis mean y-axis mean 

worked best for gyroscope sensor, and advertiser time and mean RSSI worked best 

with Bluetooth radio. In addition to handcrafted features, this thesis shows that 

adding context to predictor matrix could improve regression model performance. 

Our classification model was able to detect context in which measurements took 

place with an average BA of 0.85 using accelerometer sensor, 0.73 using gyroscope 

sensor, and 0.99 with Bluetooth radio. We explored two methods of combining 

sensors data. Finally, we presented results of an ML classification model trained on 

sensors fusion data that showed 77%-97% accuracy estimating whether two subjects 

are closer than 6 feet. We observed that different validation methods could have 

significant impact on performance of our model. We performed thorough evaluation 

of our model. The presented model was evaluated with three different cross-
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validation methods. However, we only split data into a training and test set due to 

lack of samples and subjects in available dataset. In the future, if a larger dataset 

becomes available, it would be worth repeating our experiments with the data split 

to training, validation, and test sets.   
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APPENDIX A FEATURE IMPORTANCE 

A.1 Predictor Importance for Features Based on 

Accelerometer Sensor Data  

Feature Importance 
acc_x__absolute_sum_of_changes 2.92496E-05 
acc_x__fft_coefficient__attr_"abs"__coeff_1 2.46921E-05 
acc_x__mean_abs_change 2.33099E-05 
acc_y__mean_abs_change 2.18487E-05 
acc_z__fft_coefficient__attr_"abs"__coeff_1 2.16607E-05 
acc_z__mean_abs_change 2.13031E-05 
acc_z__absolute_sum_of_changes 2.04745E-05 
acc_y__fft_coefficient__attr_"abs"__coeff_1 2.04742E-05 
acc_y__absolute_sum_of_changes 1.92937E-05 
acc_x__quantile__q_0.6 1.61013E-05 
acc_x__time_reversal_asymmetry_statistic__lag_1 1.56442E-05 
acc_x__autocorrelation__lag_0 1.35567E-05 
acc_x__cwt_coefficients__coeff_0__w_5__widths_ (2, 5, 
10, 20) 1.19505E-05 
acc_x__minimum 1.16347E-05 
acc_x__quantile__q_0.8 1.16339E-05 
acc_x__cwt_coefficients__coeff_0__w_20__widths_ (2, 5, 
10, 20) 1.15786E-05 
acc_x__abs_energy 1.13793E-05 
acc_x__quantile__q_0.9 1.11264E-05 
acc_x__cwt_coefficients__coeff_1__w_2__widths_ (2, 5, 
10, 20) 1.10877E-05 
acc_x__quantile__q_0.4 1.10048E-05 
acc_x__quantile__q_0.7 1.0521E-05 
acc_y__cwt_coefficients__coeff_1__w_2__widths_ (2, 5, 
10, 20) 1.02811E-05 
acc_x__mean 1.01694E-05 
acc_z__quantile__q_0.2 9.30498E-06 
acc_x__fft_coefficient__attr_"real"__coeff_1 9.29676E-06 
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acc_x__length 9.21368E-06 
acc_y__fft_coefficient__attr_"real"__coeff_1 9.19955E-06 
acc_y__autocorrelation__lag_0 9.19913E-06 
acc_x__benford_correlation 9.13743E-06 
acc_y__cwt_coefficients__coeff_0__w_20__widths_ (2, 5, 
10, 20) 9.07809E-06 
acc_z__fft_coefficient__attr_"real"__coeff_1 8.94405E-06 
acc_z__quantile__q_0.8 8.93077E-06 
acc_y__benford_correlation 8.82741E-06 
acc_y__quantile__q_0.7 8.77025E-06 
acc_z__quantile__q_0.3 8.74172E-06 
acc_y__quantile__q_0.6 8.5821E-06 
acc_z__cwt_coefficients__coeff_0__w_5__widths_ (2, 5, 
10, 20) 8.56369E-06 
acc_y__cwt_coefficients__coeff_0__w_10__widths_ (2, 5, 
10, 20) 8.53453E-06 
acc_y__quantile__q_0.8 8.52491E-06 
acc_x__quantile__q_0.3 8.45743E-06 
acc_x__cwt_coefficients__coeff_0__w_10__widths_ (2, 5, 
10, 20) 8.36018E-06 
acc_z__abs_energy 8.29184E-06 
acc_z__cwt_coefficients__coeff_1__w_2__widths_ (2, 5, 
10, 20) 8.13314E-06 
acc_z__cwt_coefficients__coeff_0__w_20__widths_ (2, 5, 
10, 20) 7.99846E-06 
acc_y__abs_energy 7.98002E-06 
acc_y__length 7.87085E-06 
acc_z__autocorrelation__lag_0 7.77286E-06 
acc_y__quantile__q_0.3 7.71416E-06 
acc_z__benford_correlation 7.70786E-06 
acc_y__quantile__q_0.2 7.60758E-06 
acc_x__quantile__q_0.2 7.43027E-06 
acc_z__quantile__q_0.6 7.39519E-06 
acc_y__quantile__q_0.9 7.33523E-06 
acc_y__minimum 7.10305E-06 
acc_z__quantile__q_0.4 6.94949E-06 
acc_y__cwt_coefficients__coeff_0__w_5__widths_ (2, 5, 
10, 20) 6.75632E-06 
acc_z__mean 6.75479E-06 
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acc_y__mean 6.6312E-06 
acc_z__cwt_coefficients__coeff_0__w_10__widths_ (2, 5, 
10, 20) 6.52357E-06 
acc_y__quantile__q_0.4 6.37809E-06 
acc_z__quantile__q_0.7 6.3578E-06 
acc_z__minimum 6.15688E-06 
acc_z__quantile__q_0.9 5.72905E-06 
acc_z__length 5.25758E-06 
acc_y__time_reversal_asymmetry_statistic__lag_1 2.75666E-06 
acc_z__time_reversal_asymmetry_statistic__lag_1 2.69566E-06 
acc_x__lempel_ziv_complexity__bins_2 5.58921E-07 
acc_x__fft_coefficient__attr_"angle"__coeff_1 5.08107E-07 
acc_x__approximate_entropy__m_2__r_0.1 2.58461E-07 
acc_x__count_below__t_0 2.25775E-07 
acc_y__lempel_ziv_complexity__bins_2 6.01714E-08 
acc_y__fft_coefficient__attr_"angle"__coeff_1 5.26534E-08 
acc_y__count_below__t_0 4.87347E-08 
acc_y__approximate_entropy__m_2__r_0.1 3.24629E-08 
acc_z__range_count__max_0__min_1000000000000.0 3.18586E-08 
acc_z__lempel_ziv_complexity__bins_2 2.93348E-08 
acc_z__approximate_entropy__m_2__r_0.1 1.7963E-08 
acc_z__fft_coefficient__attr_"angle"__coeff_1 1.78132E-08 
acc_z__count_below__t_0 1.5534E-08 
acc_y__range_count__max_0__min_1000000000000.0 1.39696E-08 

 

A.2 Predictor Importance for Features Based on 

Gyroscope Sensor Data  

Feature Importance 
gyro_z__fft_coefficient__attr_"abs"__coeff_1 2.84421E-05 
gyro_y__absolute_sum_of_changes 2.80925E-05 
gyro_z__mean_abs_change 2.71903E-05 
gyro_y__mean_abs_change 2.60896E-05 
gyro_y__fft_coefficient__attr_"abs"__coeff_1 2.57663E-05 
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gyro_z__absolute_sum_of_changes 2.31541E-05 
gyro_x__fft_coefficient__attr_"abs"__coeff_1 2.24368E-05 
gyro_x__absolute_sum_of_changes 2.02626E-05 
gyro_x__mean_abs_change 1.96577E-05 
gyro_y__time_reversal_asymmetry_statistic__lag_1 1.68127E-05 
gyro_z__time_reversal_asymmetry_statistic__lag_1 1.65649E-05 
gyro_x__time_reversal_asymmetry_statistic__lag_1 1.42673E-05 
gyro_x__autocorrelation__lag_0 1.11642E-05 
gyro_x__quantile__q_0.2 1.10066E-05 
gyro_x__quantile__q_0.7 1.09897E-05 
gyro_x__cwt_coefficients__coeff_1__w_2__widths_ (2, 5, 
10, 20) 9.95369E-06 
gyro_y__quantile__q_0.9 9.869E-06 
gyro_x__length 9.69879E-06 
gyro_y__quantile__q_0.4 9.69441E-06 
gyro_z__cwt_coefficients__coeff_0__w_10__widths_ (2, 5, 
10, 20) 9.69363E-06 
gyro_x__fft_coefficient__attr_"real"__coeff_1 9.58692E-06 
gyro_y__quantile__q_0.6 9.47557E-06 
gyro_x__benford_correlation 9.42223E-06 
gyro_y__fft_coefficient__attr_"real"__coeff_1 9.30378E-06 
gyro_z__quantile__q_0.2 9.27752E-06 
gyro_z__quantile__q_0.3 9.1353E-06 
gyro_x__cwt_coefficients__coeff_0__w_5__widths_ (2, 5, 
10, 20) 9.06342E-06 
gyro_z__quantile__q_0.6 9.06283E-06 
gyro_z__quantile__q_0.7 8.95777E-06 
gyro_y__autocorrelation__lag_0 8.8109E-06 
gyro_z__minimum 8.70725E-06 
gyro_z__abs_energy 8.62714E-06 
gyro_z__quantile__q_0.8 8.39803E-06 
gyro_z__length 8.39759E-06 
gyro_z__mean 8.35594E-06 
gyro_y__minimum 8.35335E-06 
gyro_y__quantile__q_0.3 8.34377E-06 
gyro_y__cwt_coefficients__coeff_0__w_10__widths_ (2, 5, 
10, 20) 8.33001E-06 
gyro_x__mean 8.22334E-06 
gyro_y__quantile__q_0.2 8.1304E-06 
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gyro_x__quantile__q_0.9 8.09564E-06 
gyro_x__quantile__q_0.3 8.00055E-06 
gyro_z__quantile__q_0.4 7.97899E-06 
gyro_y__cwt_coefficients__coeff_0__w_5__widths_ (2, 5, 
10, 20) 7.95473E-06 
gyro_z__fft_coefficient__attr_"real"__coeff_1 7.95095E-06 
gyro_z__quantile__q_0.9 7.92326E-06 
gyro_y__abs_energy 7.90241E-06 
gyro_y__benford_correlation 7.84763E-06 
gyro_z__cwt_coefficients__coeff_0__w_20__widths_ (2, 5, 
10, 20) 7.77894E-06 
gyro_z__cwt_coefficients__coeff_1__w_2__widths_ (2, 5, 
10, 20) 7.7693E-06 
gyro_z__cwt_coefficients__coeff_0__w_5__widths_(2, 5, 
10, 20) 7.66005E-06 
gyro_x__quantile__q_0.6 7.61073E-06 
gyro_z__benford_correlation 7.49373E-06 
gyro_x__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 
10, 20) 7.45128E-06 
gyro_y__quantile__q_0.8 7.34678E-06 
gyro_x__quantile__q_0.4 7.17652E-06 
gyro_x__abs_energy 7.15876E-06 
gyro_y__length 7.10458E-06 
gyro_y__mean 6.93309E-06 
gyro_y__cwt_coefficients__coeff_1__w_2__widths_(2, 5, 
10, 20) 6.84515E-06 
gyro_y__quantile__q_0.7 6.79714E-06 
gyro_y__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 
10, 20) 6.66148E-06 
gyro_z__autocorrelation__lag_0 6.3747E-06 
gyro_x__quantile__q_0.8 6.32307E-06 
gyro_x__cwt_coefficients__coeff_0__w_10__widths_(2, 5, 
10, 20) 6.03442E-06 
gyro_x__minimum 5.88025E-06 
gyro_z__lempel_ziv_complexity__bins_2 6.57121E-07 
gyro_y__lempel_ziv_complexity__bins_2 6.37286E-07 
gyro_z__fft_coefficient__attr_"angle"__coeff_1 5.55441E-07 
gyro_y__fft_coefficient__attr_"angle"__coeff_1 5.43819E-07 
gyro_x__fft_coefficient__attr_"angle"__coeff_1 5.22187E-07 



64 
 

gyro_x__lempel_ziv_complexity__bins_2 4.72632E-07 
gyro_y__approximate_entropy__m_2__r_0.1 4.04478E-07 
gyro_y__count_below__t_0 3.11687E-07 
gyro_z__count_below__t_0 3.02908E-07 
gyro_z__approximate_entropy__m_2__r_0.1 2.83714E-07 
gyro_x__count_below__t_0 2.19721E-07 
gyro_x__approximate_entropy__m_2__r_0.1 1.84156E-07 
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APPENDIX B SOURCE CODE 

B.1 Data filtering  

%----------------------------------------------------------------% 

% Routine to filter sensor's data 

%----------------------------------------------------------------% 

clear 

load('test_acc_user11c.mat')  

load('test_gyro_user11c.mat') 

load('test_bt_user11c.mat') 

fc_acc = 0.2; %accelerometer cut-off frequency 

fc_gyro = 0.1; %gyroscope cut-off frequency 

%fc_bt = 1; 

fs = 4; %sampling frequency 

  

%moving avearage filter 

% windowSize = 10;  

% b1 = (1/windowSize)*ones(1,windowSize); 

% a1 = 1; 

%butterworth filter 5th order 

%[b2,a2] = butter(9,fc/(fs/2)); 

%FIR 

%frequency bands for a band-pass filter 

% fcuts = [0.16 0.22 0.28 0.3 0.45 0.5 1.28 1.35 1.5 1.55 ];% 3 Frequencie bands 

% mags = [1 0 1 0 1 0];                                     

% devs = [0.05 0.01 0.05 0.01 0.05 0.01];          
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% fcuts = [0.16 0.22 0.28 0.3 0.45 0.5 ];% 1,2 Frequencie bands 

% mags = [1 0 1 0];                                     

% devs = [0.05 0.01 0.05 0.01]; 

% fcuts = [0.16 0.22 1.28 1.35 1.5 1.55 ];% 1,3 Frequencie bands 

% mags = [1 0 1 0];                                     

% devs = [0.05 0.01 0.05 0.01];     

% fcuts = [0.28 0.3 0.45 0.5 1.28 1.35 1.5 1.55 ];% 2,3 Frequencie bands 

% mags = [0 1 0 1 0];                                     

% devs = [0.01 0.05 0.01 0.05 0.01]; 

% [n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fs);          % Kaiser Window FIR 

Specification 

% n = n + rem(n,2); 

% hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');           % Filter Realisation 

% figure 

% freqz(hh,1,2^14,fs) 

% set(subplot(2,1,1), 'XLim',[0 2]);                         % Zoom Frequency Axis 

% set(subplot(2,1,2), 'XLim',[0 2]);                         % Zoom Frequency Axis 

% acc_filt_x = filtfilt(hh, 1, acc_data_proc.acc_x(:,1)); 

% acc_filt_y = filtfilt(hh, 1, acc_data_proc.acc_x(:,2)); 

% acc_filt_z = filtfilt(hh, 1, acc_data_proc.acc_x(:,3)); 

%  

% gyro_filt_x = filtfilt(hh, 1, gyro_data_proc.gyro_x(:,1)); 

% gyro_filt_y = filtfilt(hh, 1, gyro_data_proc.gyro_x(:,2)); 

% gyro_filt_z = filtfilt(hh, 1, gyro_data_proc.gyro_x(:,3)); 

  

%eliptical 

[b_acc,a_acc] = ellip(9,5,20,fc_acc/(fs/2)); %(10,10,20,fc_acc/(fs/2)) 
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[b_gyro,a_gyro] = ellip(7,5,20,fc_gyro/(fs/2)); 

%filter the data 

acc_filt_x = filtfilt(b_acc,a_acc, acc_data_proc.acc_x(:,1)); 

acc_filt_y = filtfilt(b_acc,a_acc, acc_data_proc.acc_x(:,2)); 

acc_filt_z = filtfilt(b_acc,a_acc, acc_data_proc.acc_x(:,3)); 

  

gyro_filt_x = filtfilt(b_gyro,a_gyro, gyro_data_proc.gyro_x(:,1)); 

gyro_filt_y = filtfilt(b_gyro,a_gyro, gyro_data_proc.gyro_x(:,2)); 

gyro_filt_z = filtfilt(b_gyro,a_gyro, gyro_data_proc.gyro_x(:,3)); 

%Raised cosine filter 

%h1 = rcosdesign(0.25,4,6,'normal'); 

%chabyshev 

%[b,a] = cheby1(10,10,fc/(fs/2)); 

%median filter 

% m_filt_order = 4; 

% acc_filt_x = medfilt1(acc_data_proc.acc_x(:,1), m_filt_order); 

% acc_filt_y = medfilt1(acc_data_proc.acc_x(:,2), m_filt_order); 

% acc_filt_z = medfilt1(acc_data_proc.acc_x(:,3), m_filt_order); 

%  

% gyro_filt_x = medfilt1(gyro_data_proc.gyro_x(:,1), m_filt_order); 

% gyro_filt_y = medfilt1(gyro_data_proc.gyro_x(:,2), m_filt_order); 

% gyro_filt_z = medfilt1(gyro_data_proc.gyro_x(:,3), m_filt_order); 

%  

% bt_filt_d = medfilt1(bt_data_proc.bt_x(:,1), m_filt_order); 

% bt_filt_rx = medfilt1(bt_data_proc.bt_x(:,2), m_filt_order); 

% bt_filt_tx = medfilt1(bt_data_proc.bt_x(:,3), m_filt_order); 

%no filtering on Bluetooth signal 
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bt_filt_d = bt_data_proc.bt_x(:,1); 

bt_filt_rx = bt_data_proc.bt_x(:,2); 

bt_filt_tx = bt_data_proc.bt_x(:,3); 

  

%compute magnitude of a filtered signal 

acc_magnitude = sqrt(acc_filt_x.^2 + acc_filt_y.^2 + acc_filt_z.^2); 

acc_xy_mag = sqrt(acc_filt_x.^2 + acc_filt_y.^2); 

acc_xz_mag = sqrt(acc_filt_x.^2 + acc_filt_z.^2); 

acc_yz_mag = sqrt(acc_filt_y.^2 + acc_filt_z.^2); 

%conditions 

ax_range = acc_data_proc.ax_range; 

ax_angle = acc_data_proc.ax_angle; 

acc_env_categories = acc_data_proc.acc_env_categories; 

acc_pos_loc_categories = acc_data_proc.acc_pos_loc_categories; 

%compute magnitude of a filtered signal 

gyro_magnitude = sqrt(gyro_filt_x.^2 + gyro_filt_y.^2 + gyro_filt_z.^2); 

gyro_xy_mag = sqrt(gyro_filt_x.^2 + gyro_filt_y.^2); 

gyro_xz_mag = sqrt(gyro_filt_x.^2 + gyro_filt_z.^2); 

gyro_yz_mag = sqrt(gyro_filt_y.^2 + gyro_filt_z.^2); 

gyro_range = gyro_data_proc.gyro_range; 

gyro_angle = gyro_data_proc.gyro_angle; 

gyro_env_categories = gyro_data_proc.gyro_env_categories; 

gyro_pos_loc_categories = gyro_data_proc.gyro_pos_loc_categories; 

%cary over bluetooth data 

bt_rx = bt_data_proc.bt_x(:,2); 

bt_tx = bt_data_proc.bt_x(:,3); 

bt_time = bt_data_proc.bt_x(:,4); 
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bt_delta = bt_rx - bt_tx; 

bt_range = bt_data_proc.bt_range; 

bt_angle = bt_data_proc.bt_angle; 

bt_env_categories = bt_data_proc.bt_env_categories; 

bt_pos_loc_categories = bt_data_proc.bt_pos_loc_categories; 

bt_x = [bt_filt_d bt_filt_rx bt_filt_tx bt_time];  

%bt_x = [bt_delta bt_rx bt_tx bt_time];  

acc_x = [acc_filt_x acc_filt_y acc_filt_z acc_magnitude acc_xy_mag acc_xz_mag 

acc_yz_mag ]; 

gyro_x = [gyro_filt_x gyro_filt_y gyro_filt_z gyro_magnitude gyro_xy_mag 

gyro_xz_mag gyro_yz_mag ]; 

%processed data 

acc_data_proc = table(acc_x, ax_range, ax_angle, acc_env_categories, 

acc_pos_loc_categories); 

gyro_data_proc = table(gyro_x, gyro_range, gyro_angle, gyro_env_categories, 

gyro_pos_loc_categories); 

bt_data_proc = table(bt_x, bt_range, bt_angle, bt_env_categories, 

bt_pos_loc_categories); 

  

%save data to mat file 

save('train_acc_user11SMOTE.mat','acc_data_proc')  

save('train_gyro_user11SMOTE.mat','gyro_data_proc') 

save('train_bt_user11SMOTE.mat','bt_data_proc') 

  

% visualize filtered data 

% figure 

% plot(acc_data_proc.acc_x(1:300,1),'c') 
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% hold on 

% plot(acc_filt_but(1:300),'r') 

% hold on 

% plot(acc_filt_ma(1:300),'b') 

% hold on 

% plot(acc_filt_ep(1:300),'g') 

% hold on 

% plot(acc_filt_ch(1:300),'k') 

% hold off 

% legend('Raw data','Butterworth 5th', 'Moving Average w5', 'Eliptical 5th', 

'Chabishev I 5th') 

% title('Filter Types vs Accelerometer Data') 

% grid minor 

%----------------------------------------------------------------% 

B.2 Routine to generate hand-crafted features 

%----------------------------------------------------------------------% 

% Routine to compute hand crafted features 

%----------------------------------------------------------------------% 

clear 

% load the data 

load('test_acc_user11cf.mat')  

load('test_gyro_user11cf.mat') 

load('test_bt_user11cf.mat') 

  

%----fix irroneous transmit level power------5-15-2021----% 

bt_data_proc((bt_data_proc.bt_x(:,3)<-20),:)=[]; 
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bt_data_proc((bt_data_proc.bt_x(:,3)>20),:)=[]; 

%bt_data_proc.bt_x((bt_data_proc.bt_x(:,3)>-4),3)=-10; 

bt_data_proc((bt_data_proc.bt_x(:,1)>-20),:)=[]; 

%---------------------------------------------------------% 

window_size = 10; % window size over which statistical features calculated 

%average_over = 3; 

%--------------------------------------------------------------------% 

%calculate moving average 

% acc_data_proc.acc_x = movmean(acc_data_proc.acc_x, average_over); 

% gyro_data_proc.gyro_x = movmean(gyro_data_proc.gyro_x, average_over); 

% bt_data_proc.bt_x = movmean(bt_data_proc.bt_x, average_over); 

%statistics of magnitude signal 

%calculate magnitude mean 

acc_mag_mean = Fmean(acc_data_proc.acc_x(:,4),window_size); 

gyro_mag_mean = Fmean(gyro_data_proc.gyro_x(:,4),window_size); 

bt_mag_mean = Fmean(bt_data_proc.bt_x(:,1),window_size); 

%calculate standard deviation of magnitude 

acc_mag_std = Fstd(acc_data_proc.acc_x(:,4),window_size); 

gyro_mag_std = Fstd(gyro_data_proc.gyro_x(:,4),window_size); 

bt_mag_std = Fstd(bt_data_proc.bt_x(:,1),window_size); 

%calculate third and fourth moment of magnitude 

[acc_M3, acc_M4] = Fmoment(acc_data_proc.acc_x(:,4),window_size); 

[gyro_M3, gyro_M4] = Fmoment(gyro_data_proc.gyro_x(:,4),window_size); 

[bt_M3, bt_M4] = Fmoment(bt_data_proc.bt_x(:,1),window_size); 

%calculate 25th, 50th, and 75th percentile 

[acc_P25, acc_P50, acc_P75] = Fprctile(acc_data_proc.acc_x(:,4),window_size); 
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[gyro_P25, gyro_P50, gyro_P75] = 

Fprctile(gyro_data_proc.gyro_x(:,4),window_size); 

[bt_P25, bt_P50, bt_P75] = Fprctile(bt_data_proc.bt_x(:,1),window_size); 

%value and time entopy  

[acc_ValE, acc_TimeE] = Fentropy(acc_data_proc.acc_x(:,4),window_size); 

[gyro_ValE, gyro_TimeE] = Fentropy(gyro_data_proc.gyro_x(:,4),window_size); 

[bt_ValE, ~] = Fentropy(bt_data_proc.bt_x(:,1),window_size); 

%-------------------------------------------------------------------% 

%auto-correlation and auto-covariance 

[acc_Acov, acc_Acor] = Fauto(acc_data_proc.acc_x(:,4),window_size); 

[gyro_Acov, gyro_Acor] = Fauto(gyro_data_proc.gyro_x(:,4),window_size); 

[bt_Acov, bt_Acor] = Fauto(bt_data_proc.bt_x(:,1),window_size); 

%-------------------------------------------------------------------% 

%statistics of 3-axis 

%accelerometer 

%mean 

acc_x_mean = Fmean(acc_data_proc.acc_x(:,1),window_size); 

acc_y_mean = Fmean(acc_data_proc.acc_x(:,2),window_size); 

acc_z_mean = Fmean(acc_data_proc.acc_x(:,3),window_size); 

%standard deviation 

acc_x_std = Fstd(acc_data_proc.acc_x(:,1),window_size); 

acc_y_std = Fstd(acc_data_proc.acc_x(:,2),window_size); 

acc_z_std = Fstd(acc_data_proc.acc_x(:,3),window_size); 

%correlation xy, xz, yz 

acc_corr = Fcorr(acc_data_proc.acc_x(:,1), acc_data_proc.acc_x(:,2), ... 

    acc_data_proc.acc_x(:,3), window_size); 

%gyroscope 
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%mean 

gyro_x_mean = Fmean(gyro_data_proc.gyro_x(:,1),window_size); 

gyro_y_mean = Fmean(gyro_data_proc.gyro_x(:,2),window_size); 

gyro_z_mean = Fmean(gyro_data_proc.gyro_x(:,3),window_size); 

%standard deviation 

gyro_x_std = Fstd(gyro_data_proc.gyro_x(:,1),window_size); 

gyro_y_std = Fstd(gyro_data_proc.gyro_x(:,2),window_size); 

gyro_z_std = Fstd(gyro_data_proc.gyro_x(:,3),window_size); 

%correlation xy, xz, yz 

gyro_corr = Fcorr(gyro_data_proc.gyro_x(:,1), gyro_data_proc.gyro_x(:,2), ... 

    gyro_data_proc.gyro_x(:,3), window_size); 

%bluetooth 

%mean 

bt_rx_mean = Fmean(bt_data_proc.bt_x(:,2),window_size); 

bt_tx_mean = Fmean(bt_data_proc.bt_x(:,3),window_size); 

%standard deviation 

bt_rx_std = Fstd(bt_data_proc.bt_x(:,2),window_size); 

bt_tx_std = Fstd(bt_data_proc.bt_x(:,3),window_size); 

%--------additional features for bluetooth 

%RMS Doppler Spread 

bt_rx_dopler = FRmsDoppler(bt_data_proc.bt_x(:,2),window_size); 

%Yp2p 

bt_rx_yp2p = Yp2p(bt_data_proc.bt_x(:,2),window_size); 

%Rayleigh 

bt_rx_rayleigh = Frayleigh(bt_data_proc.bt_x(:,2),window_size); 

%Fade Duration 

bt_rx_fadeDuration = FfadeDuration(bt_data_proc.bt_x(:,2),window_size); 
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%Level Crossing 

bt_rx_levelX = FlevelX(bt_data_proc.bt_x(:,2),window_size); 

%Energy 

bt_rx_energy = Fenergy(bt_data_proc.bt_x(:,2),window_size); 

%Laplacian Best Fit 

%bt_rx_laplacian = Flaplacian(bt_data_proc.bt_x(:,2),window_size); 

%Laplacian Best Fit v2 

%bt_rx_laplacian2 = Flaplacian2(bt_data_proc.bt_x(:,2),window_size); 

%Gaussian fit 

%bt_rx_gauss = Fgauss(bt_data_proc.bt_x(:,2),window_size); 

%Polynomial Fit 

%bt_rx_poly = Fpoly(bt_data_proc.bt_x(:,2),window_size); 

%peak of Doppler spread 

bt_rx_peakD = FpeakDoppler(bt_data_proc.bt_x(:,2),window_size); 

%mean of Doppler spread 

bt_rx_meanD = FmeanDoppler(bt_data_proc.bt_x(:,2),window_size); 

%---------------------% 

%bt stats on advertiser time 

bt_time_mean = Fmean(bt_data_proc.bt_x(:,4),window_size); 

bt_time_std = Fstd(bt_data_proc.bt_x(:,4),window_size); 

[bt_time_P25, bt_time_P50, bt_time_P75] = 

Fprctile(bt_data_proc.bt_x(:,4),window_size); 

[bt_time_M3, bt_time_M4] = Fmoment(bt_data_proc.bt_x(:,4),window_size); 

%-------------------------------------------------------------------% 

%get labels 

%accelerometer 

acc_range = acc_data_proc.ax_range(1:window_size:end); 
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acc_angle = acc_data_proc.ax_angle(1:window_size:end); 

acc_categories = [acc_data_proc.acc_env_categories(1:window_size:end,:)... 

    acc_data_proc.acc_pos_loc_categories(1:window_size:end,:)]; 

  

acc_stats = [acc_mag_mean, acc_mag_std, acc_M3, acc_M4, acc_P25, acc_P50, ... 

    acc_P75, acc_ValE, acc_TimeE, acc_Acov, acc_Acor, acc_x_mean, 

acc_y_mean, ... 

    acc_z_mean, acc_x_std, acc_y_std, acc_z_std, acc_corr]; 

%acc_stats = acc_data_proc.acc_x(:,1:3); 

%  acc_range = acc_range(1:end-1); 

%  acc_angle = acc_angle(1:end-1); 

%  acc_categories = acc_categories(1:end-1,:); 

acc_dat_test = table(acc_stats, acc_range, acc_angle, acc_categories); 

%----------------------------------------------------------------------% 

gyro_range = gyro_data_proc.gyro_range(1:window_size:end); 

gyro_angle = gyro_data_proc.gyro_angle(1:window_size:end); 

gyro_categories = [gyro_data_proc.gyro_env_categories(1:window_size:end,:)... 

    gyro_data_proc.gyro_pos_loc_categories(1:window_size:end,:)]; 

  

gyro_stats = [gyro_mag_mean, gyro_mag_std, gyro_M3, gyro_M4, gyro_P25, 

gyro_P50, ... 

    gyro_P75, gyro_ValE, gyro_TimeE, gyro_Acov, gyro_Acor, gyro_x_mean, 

gyro_y_mean, ... 

    gyro_z_mean, gyro_x_std, gyro_y_std, gyro_z_std, gyro_corr]; 

%gyro_stats = gyro_data_proc.gyro_x(:,1:3); 

  

%  gyro_range = gyro_range(1:end-1); 
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%  gyro_angle = gyro_angle(1:end-1); 

%  gyro_categories = gyro_categories(1:end-1,:); 

gyro_dat_test = table(gyro_stats, gyro_range, gyro_angle, gyro_categories); 

%----------------------------------------------------------------------% 

bt_range = bt_data_proc.bt_range(1:window_size:end); 

% bt_range = bt_range(1:end-1); 

bt_angle = bt_data_proc.bt_angle(1:window_size:end); 

 %bt_angle = bt_angle(1:end-1); 

bt_time = bt_data_proc.bt_x(1:window_size:end,4); 

%bt_time = bt_time(1:end-1); 

bt_categories = [bt_data_proc.bt_env_categories(1:window_size:end,:)... 

    bt_data_proc.bt_pos_loc_categories(1:window_size:end,:)]; 

 %bt_categories = bt_categories(1:end-1,:); 

bt_stats = [bt_rx_mean,bt_tx_mean, bt_time,bt_mag_mean, bt_mag_std, bt_M3, 

bt_M4, bt_P25, ... 

    bt_P50, bt_P75, bt_ValE, bt_Acov, bt_Acor, ... 

    bt_rx_std, bt_tx_std, bt_rx_yp2p, bt_rx_rayleigh, bt_rx_fadeDuration,... 

    bt_rx_levelX, bt_rx_energy, bt_rx_dopler,... 

    bt_rx_peakD, bt_rx_meanD, ... 

    bt_time_mean,bt_time_std, bt_time_P25,bt_time_P50, bt_time_P75, 

bt_time_M3, bt_time_M4];  

%bt_rx_laplacian, bt_rx_laplacian2, bt_rx_gauss, bt_rx_poly, 

%bt_stats = bt_data_proc.bt_x(:,2:4); 

bt_dat_test = table(bt_stats, bt_range, bt_angle, bt_categories); 

  

%save data to mat file 

save('test_acc_user11cff4.mat','acc_dat_test')  
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save('test_gyro_user11cff4.mat','gyro_dat_test')  

save('test_bt_user11cff4.mat','bt_dat_test')  

%----------------------------------------------------------------------% 

B.3 Routine to classify user context  

%----------------------------------------------------------------------% 

% routine to classify user context 

%----------------------------------------------------------------------% 

clear 

load('test_acc_user11cff3.mat')  

load('test_gyro_user11cff3.mat')  

load('test_bt_user11cff3.mat')  

  

load('train_acc_user11cff3.mat')  

load('train_gyro_user11cff3.mat')  

load('train_bt_user11cff3.mat')  

%randomly shufle the data 

%test data 

h = height(acc_dat_test); 

idx = randperm(h); 

acc_data_rand_test = acc_dat_test(idx,:); 

gyro_data_rand_test = gyro_dat_test(idx,:); 

  

h1 = height(bt_dat_test); 

idx1 = randperm(h1); 

bt_data_rand_test = bt_dat_test(idx1,:); 

%training data 



78 
 

h = height(acc_dat_train); 

idx = randperm(h); 

acc_data_rand_train = acc_dat_train(idx,:); 

gyro_data_rand_train = gyro_dat_train(idx,:); 

  

h1 = height(bt_dat_train); 

idx1 = randperm(h1); 

bt_data_rand_train = bt_dat_train(idx1,:); 

%Normalize features data 

%accelerometer 

acc_norm_test = featureNormalize2(acc_data_rand_test.acc_stats, 'Zscale'); 

acc_norm_train = featureNormalize2(acc_data_rand_train.acc_stats, 'Zscale'); 

%gyroscope 

gyro_norm_test = featureNormalize2(gyro_data_rand_test.gyro_stats, 'Zscale'); 

gyro_norm_train = featureNormalize2(gyro_data_rand_train.gyro_stats, 'Zscale'); 

%bluetooth 

bt_norm_test = abs(featureNormalize2(bt_data_rand_test.bt_stats, 'Zscale')); 

bt_norm_test(:,12) = []; 

bt_norm_train = abs(featureNormalize2(bt_data_rand_train.bt_stats, 'Zscale')); 

bt_norm_train(:,12) = []; 

%prepare data for sensor fusion 

[acc_lbl_train, acc_lbl_test, gyro_lbl_train, gyro_lbl_test, ... 

    bt_lbl_train, bt_lbl_test, all_cnt]= group_cat(acc_data_rand_test, ... 

    acc_data_rand_train, gyro_data_rand_test, gyro_data_rand_train, ... 

    bt_data_rand_test, bt_data_rand_train); 

%----------------------------------------------------------------% 

for c = 1:size(acc_lbl_train,2) 
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    t2 = templateTree('MinLeafSize', 1);  

%train -------------------------------------------------------------% 

    cost = compute_cost_multi(acc_lbl_train(:,c),c); 

     

    Mdl_acc = fitcensemble(acc_norm_train, acc_lbl_train(:,c),'Method','Bag',... 

        'NumLearningCycles',15,'Learners',t2,'Cost', cost); %try 265 Nlerncycles 

     

    cost = compute_cost_multi(gyro_lbl_train(:,c),c); 

    Mdl_gyro = fitcensemble(gyro_norm_train, gyro_lbl_train(:,c),'Method','Bag' ,... 

        'NumLearningCycles',15,'Learners',t2, 'Cost', cost); %try 265 Nlerncycles 

     

    cost = compute_cost_multi(bt_lbl_train(:,c),c);    

    Mdl_bt = fitctree(bt_norm_train, bt_lbl_train(:,c),'MinLeafSize', 7, ... 

        'Surrogate', 'off', 'Cost', cost); 

%-----------------------------------------------------------------% 

    %apply model on a test set 

    [prediction_acc(:,c), ~]= predict(Mdl_acc, acc_norm_test); 

    [prediction_gyro(:,c), ~]= predict(Mdl_gyro, gyro_norm_test); 

    [prediction_bt(:,c), ~]= predict(Mdl_bt, bt_norm_test); 

     

    %apply model on a train set 

    [prediction_acc_t(:,c), ~]= predict(Mdl_acc, acc_norm_train); 

    [prediction_gyro_t(:,c), ~]= predict(Mdl_gyro, gyro_norm_train); 

    [prediction_bt_t(:,c), ~]= predict(Mdl_bt, bt_norm_train); 

%----------------------------------------------------------------%     

end 
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%performance metrics 

[F1_test_acc, BA_test_acc] = scores_multi(acc_lbl_test,prediction_acc); 

[F1_test_gyro, BA_test_gyro] = scores_multi(gyro_lbl_test,prediction_gyro); 

[F1_test_bt, BA_test_bt] = scores_multi(bt_lbl_test,prediction_bt); 

%----------------------------------------------------------------%        

lbl_txt = ["Indoor" "outdoor" "large room" "medium room"... 

    "small room" "center congested" "center open" "near wall congested"... 

    "near wall open" "Sitting" "Standing" "Hold to right ear"... 

    "front pants pocket" "in hand" "in purse" "rear pants pocket" "shirt pocket"]; 

%number of positive samples 

n_e_acc = sum(acc_data_rand_test.acc_categories)'; 

n_e_gyro = sum(gyro_data_rand_test.gyro_categories)'; 

n_e_bt = sum(bt_data_rand_test.bt_categories)'; 

  

n_te_acc = sum(acc_data_rand_train.acc_categories)'; 

n_te_gyro = sum(gyro_data_rand_train.gyro_categories)'; 

n_te_bt = sum(bt_data_rand_train.bt_categories)'; 

%save results 

results_ba = table(lbl_txt', n_te_acc, n_e_acc, BA_test_acc, n_te_gyro, ... 

    n_e_gyro, BA_test_gyro, n_te_bt, n_e_bt, BA_test_bt); 

results_f1 = table(lbl_txt', n_te_acc, n_e_acc, F1_test_acc, n_te_gyro, ... 

    n_e_gyro, F1_test_gyro, n_te_bt, n_e_bt, F1_test_bt); 

  

writetable(results_ba, 'results_pact_BA_user11tsfresh.xlsx'); 

writetable(results_f1, 'results_pact_F1_user11tsfresh.xlsx'); 

  

%------------------------------------------------------% 
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%add classified context to the data file as a feature 

%training set 

acc_stats = [acc_dat_train.acc_stats, prediction_acc_t]; 

acc_range = acc_dat_train.acc_range; 

acc_angle = acc_dat_train.acc_angle; 

acc_dat_train = table(acc_stats, acc_range, acc_angle); 

  

gyro_stats = [gyro_dat_train.gyro_stats, prediction_gyro_t]; 

gyro_range = gyro_dat_train.gyro_range; 

gyro_angle = gyro_dat_train.gyro_angle; 

gyro_dat_train = table(gyro_stats, gyro_range, gyro_angle); 

  

bt_stats = [bt_dat_train.bt_stats, prediction_bt_t]; 

bt_range = bt_dat_train.bt_range; 

bt_angle = bt_dat_train.bt_angle; 

bt_dat_train = table(bt_stats, bt_range, bt_angle); 

  

%save data to mat file 

save('train_acc_user11cffc3.mat','acc_dat_train')  

save('train_gyro_user11cffc3.mat','gyro_dat_train')  

save('train_bt_user11cffc3.mat','bt_dat_train')  

%----------------------------------------------------% 

%test set 

acc_stats = [acc_dat_test.acc_stats, prediction_acc]; 

acc_range = acc_dat_test.acc_range; 

acc_angle = acc_dat_test.acc_angle; 

acc_dat_test = table(acc_stats, acc_range, acc_angle); 
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gyro_stats = [gyro_dat_test.gyro_stats, prediction_gyro]; 

gyro_range = gyro_dat_test.gyro_range; 

gyro_angle = gyro_dat_test.gyro_angle; 

gyro_dat_test= table(gyro_stats, gyro_range, gyro_angle); 

  

bt_stats = [bt_dat_test.bt_stats, prediction_bt]; 

bt_range = bt_dat_test.bt_range; 

bt_angle = bt_dat_test.bt_angle; 

bt_dat_test = table(bt_stats, bt_range, bt_angle); 

  

%save data to mat file 

save('test_acc_user11cffc3.mat','acc_dat_test')  

save('test_gyro_user11cffc3.mat','gyro_dat_test')  

save('test_bt_user11cffc3.mat','bt_dat_test')  

%----------------------------------------------------------------%  

B.4 Routines to perform range estimation 

%----------------------------------------------------------------------% 

% Routine to do range estimation using 5fold cross validation 

%----------------------------------------------------------------------% 

clear 

load('data_acc_plus_class.mat')  

load('data_gyro_plus_class.mat')  

load('data_bt_plus_class.mat')  

%randomly shuffle the data 

h = height(acc_dat); 
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idx = randperm(h); 

acc_data_rand = acc_dat(idx,:); 

gyro_data_rand = gyro_dat(idx,:); 

  

h1 = height(bt_dat); 

idx1 = randperm(h1); 

bt_data_rand = bt_dat(idx1,:); 

%normalize features  

%accelerometer 

acc_norm = featureNormalize2(acc_data_rand.acc_stats(:,1:20), "Zscale"); 

acc_norm =[acc_norm, acc_data_rand.acc_stats(:,21:end)]; 

%acc_norm =acc_data_rand.acc_stats(:,21:end); 

acc_range= acc_data_rand.acc_range; 

%gyroscope 

gyro_norm = featureNormalize2(gyro_data_rand.gyro_stats(:,1:20), "Zscale"); 

gyro_norm = [gyro_norm, gyro_data_rand.gyro_stats(:,21:end)]; 

%gyro_norm = gyro_data_rand.gyro_stats(:,21:end); 

gyro_range = gyro_data_rand.gyro_range; 

%bluetooth 

bt_norm = featureNormalize2(bt_data_rand.bt_stats(:,1:14), "Zscale"); 

bt_norm = [bt_norm, bt_data_rand.bt_stats(:,15:end)]; 

bt_range = bt_data_rand.bt_range; 

%----------------------------------------------------------------% 

%regrassion on range  

predNames = {'Mean', 'STD', 'M3', 'M4', '25%', '50%', '75%',... 

    'Value Entropy', 'Time Entropy', 'Autocorelation', 'Autocovariance',... 

    'X Mean', 'Y Mean', 'Z Mean', 'X STD', 'Y STD', 'Z STD', ... 
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    'Autocorelation XY', 'Autocorelation XZ', 'Autocorelation YZ'}; 

predNamesBT = {'RX Mean', 'TX Mean', 'Advertiser Time', 'Delta Mean',... 

    'Delta STD', 'M3', 'M4', '25%', '50%', '75%',... 

    'Value Entropy', 'Autocorelation', 'RX STD', 'TX STD'}; 

%range    

t2 = templateTree('MinLeafSize', 1);  

Mdl_acc_reg = fitrensemble(acc_norm, acc_range, ... 

    'Method','Bag','NumLearningCycles', 492,'Learners',t2, 'CrossVal','on',... 

    'KFold',5); %try 265 Nlerncycles , 'PredictorNames', predNames 

fitted_acc= kfoldPredict(Mdl_acc_reg); 

  

Mdl_gyro_reg = fitrensemble(gyro_norm, gyro_range, ... 

    'Method','Bag','NumLearningCycles',477,'Learners',t2, 'CrossVal','on',... 

    'KFold',5); %try 265 Nlerncycles , 'PredictorNames', predNames 

fitted_gyro= kfoldPredict(Mdl_gyro_reg); 

  

Mdl_bt_reg = fitrtree(bt_norm, bt_range,'MinLeafSize', 2, ... 

    'Surrogate', 'off', 'CrossVal','on','KFold',5); %, 'PredictorNames', predNamesBT 

fitted_bt= kfoldPredict(Mdl_bt_reg); 

%----------------------------------------------------------------% 

%Sensor fusion 

%prepare training data 

[ef_data_r, lbl_r] = prep_ef_data_reg2(acc_norm, gyro_norm,... 

    bt_norm, acc_range, gyro_range, bt_range); 

Mdl_ef = fitrtree(ef_data_r, lbl_r, 'MinLeafSize', 2, ... 

    'Surrogate', 'off', 'CrossVal', 'on', 'KFold',5); 

prediction_ef = kfoldPredict(Mdl_ef); 
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%----------------------------------------------------------------% 

%Fusion2 

acc_nn = ef_data_r(:,1:37); %with labels (:,1:37) ///without labels (:,1:20) 

gyro_nn = ef_data_r(:,38:74); %with labels (:,38:74) ///without labels )(:,21:40) 

bt_nn = ef_data_r(:,75:end); %with labels (:,75:end) ///without labels(:,41:end) 

%first layer 

Mdl_acc_nn = fitrensemble(acc_nn, lbl_r, 'Method','Bag',... 

    'NumLearningCycles',30,'Learners',t2, 'CrossVal','on','KFold',5); 

Mdl_gyro_nn = fitrensemble(gyro_nn, lbl_r, 'Method','Bag',... 

    'NumLearningCycles',30,'Learners',t2, 'CrossVal','on','KFold',5); 

Mdl_bt_nn = fitrtree(bt_nn, lbl_r,'MinLeafSize', 4, ... 

    'Surrogate', 'off', 'CrossVal','on','KFold',5); 

     

acc_nn_l1 = kfoldPredict(Mdl_acc_nn); 

gyro_nn_l1 = kfoldPredict(Mdl_gyro_nn); 

bt_nn_l1 = kfoldPredict(Mdl_bt_nn); 

%layer 2 (output layer)      

nn_dat_l2 = [acc_nn_l1 gyro_nn_l1 bt_nn_l1]; 

nn_dat_l2_norm = featureNormalize(nn_dat_l2); %try without normalization 

Mdl_nn_l2 = fitrensemble(nn_dat_l2, lbl_r, 'Method','Bag',... 

    'NumLearningCycles',30,'Learners',t2, 'CrossVal','on','KFold',5); 

prediction_nn = kfoldPredict(Mdl_nn_l2); 

%----------------------------------------------------------------%    

% fit error/performance metrics  

[mse_acc, rmse_acc, r2_acc, mae_acc] = fit_error(acc_range, fitted_acc); 

[mse_gyro, rmse_gyro, r2_gyro, mae_gyro] = fit_error(gyro_range, fitted_gyro); 

[mse_bt, rmse_bt, r2_bt, mae_bt] = fit_error(bt_range, fitted_bt); 
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[mse_ef, rmse_ef, r2_ef, mae_ef] = fit_error(lbl_r, prediction_ef); 

[mse_nn, rmse_nn, r2_nn, mae_nn] = fit_error(lbl_r, prediction_nn); 

%save results 

methods = ["MSE" "RMSE" "R2" "MAE"]; 

results_reg = table(methods', [mse_acc rmse_acc r2_acc mae_acc]',... 

    [mse_gyro rmse_gyro r2_gyro mae_gyro]',... 

    [mse_bt rmse_bt r2_bt mae_bt]', ... 

    [mse_ef rmse_ef r2_ef mae_ef]', ... 

    [mse_nn rmse_nn r2_nn mae_nn]'); 

  

writetable(results_reg, 'results_pact_linReg13xLablBest3.xlsx'); 

%----------------------------------------------------------------%  

 

 

%----------------------------------------------------------------------% 

% Routine to do range estimation using subject-level splitting cross-validation 

%----------------------------------------------------------------------% 

clear  

load('train_acc_user11cffc3.mat')  

load('train_gyro_user11cffc3.mat')  

load('train_bt_user11cffc3.mat')  

  

load('test_acc_user11cffc3.mat')  

load('test_gyro_user11cffc3.mat')  

load('test_bt_user11cffc3.mat')  

% %randomly shufle the data 

h = height(acc_dat_test); 
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idx = randperm(h); 

acc_data_test_rand = acc_dat_test(idx,:); 

gyro_data_test_rand = gyro_dat_test(idx,:); 

  

h1 = height(bt_dat_test); 

idx1 = randperm(h1); 

bt_data_test_rand = bt_dat_test(idx1,:); 

%------------------------------- 

h = height(acc_dat_train); 

idx = randperm(h); 

acc_data_train_rand = acc_dat_train(idx,:); 

gyro_data_train_rand = gyro_dat_train(idx,:); 

  

h1 = height(bt_dat_train); 

idx1 = randperm(h1); 

bt_data_train_rand = bt_dat_train(idx1,:); 

%normalize features 

%accelerometer 

acc_norm_train = featureNormalize2(acc_data_train_rand.acc_stats(:,1:20), 

"Zscale"); 

acc_norm_train =[acc_norm_train, 

featureNormalize2(acc_data_train_rand.acc_stats(:,21:end), "Zscale")]; 

  

acc_norm_test = featureNormalize2(acc_data_test_rand.acc_stats(:,1:20), 

"Zscale"); 
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acc_norm_test 

=[acc_norm_test,featureNormalize2(acc_data_test_rand.acc_stats(:,21:end), 

"Zscale")]; 

acc_train_range= acc_data_train_rand.acc_range; 

acc_test_range= acc_data_test_rand.acc_range;    

%gyroscope 

gyro_norm_train = featureNormalize2(gyro_data_train_rand.gyro_stats(:,1:20), 

"Zscale"); 

gyro_norm_train = [gyro_norm_train, 

featureNormalize2(gyro_data_train_rand.gyro_stats(:,21:end), "Zscale")]; 

  

gyro_norm_test = featureNormalize2(gyro_data_test_rand.gyro_stats(:,1:20), 

"Zscale"); 

gyro_norm_test = [gyro_norm_test, 

featureNormalize2(gyro_data_test_rand.gyro_stats(:,21:end), "Zscale")]; 

gyro_train_range = gyro_data_train_rand.gyro_range; 

gyro_test_range = gyro_data_test_rand.gyro_range;   

%bluetooth 

bt_norm_train = featureNormalize2(bt_data_train_rand.bt_stats(:,1:23), "Zscale"); 

%(:,1:23) 

bt_norm_test = featureNormalize2(bt_data_test_rand.bt_stats(:,1:23), "Zscale"); 

%(:,1:23) 

 

bt_norm_train = ( [bt_norm_train, 

featureNormalize2(bt_data_train_rand.bt_stats(:,24:end), "Zscale")]); 

bt_norm_test = ( [bt_norm_test, 

featureNormalize2(bt_data_test_rand.bt_stats(:,24:end), "Zscale")]); 
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bt_train_range = bt_data_train_rand.bt_range; 

bt_test_range = bt_data_test_rand.bt_range; 

%----------------------------------------------------------------% 

%regrassion on range  

%range train   

t2 = templateTree('MinLeafSize', 1);  

Mdl_acc_reg = fitrensemble(acc_norm_train, acc_train_range, ... 

    'Method','Bag','NumLearningCycles', 265,'Learners',t2 );  

 

Mdl_gyro_reg = fitrensemble(gyro_norm_train, gyro_train_range, ... 

    'Method','Bag','NumLearningCycles',265,'Learners',t2);  

 

Mdl_bt_reg = fitrtree(bt_norm_train, bt_train_range,'MinLeafSize', 7, ... 

    'Surrogate', 'off'); %, 'PredictorNames', predNamesBT 

%----------------------------------------------------------------% 

%Sensor fusion 

%prepare training data 

[ef_data_r, lbl_r] = prep_ef_data_reg2(acc_norm_train, gyro_norm_train,... 

    bt_norm_train, acc_train_range, gyro_train_range, bt_train_range); 

Mdl_ef = fitrtree(ef_data_r, lbl_r, 'MinLeafSize', 11, ... 

    'Surrogate', 'off'); 

%----------------------------------------------------------------% 

%Fusion 2 

acc_nn = ef_data_r(:,1:25); %with labels (:,1:37) ///without labels (:,1:20) 

gyro_nn = ef_data_r(:,26:50); %with labels (:,38:74) ///without labels (:,21:40) 

bt_nn = ef_data_r(:,51:end); %with labels (:,75:end) ///without labels(:,41:end) 

%first layer 
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Mdl_acc_nn = fitrensemble(acc_nn, lbl_r, 'Method','Bag',... 

    'NumLearningCycles',225,'Learners',t2); 

Mdl_gyro_nn = fitrensemble(gyro_nn, lbl_r, 'Method','Bag',... 

    'NumLearningCycles',225,'Learners',t2); 

Mdl_bt_nn = fitrtree(bt_nn, lbl_r,'MinLeafSize', 9, ... 

    'Surrogate', 'off'); 

     

acc_nn_l1 = predict(Mdl_acc_nn, acc_nn); 

gyro_nn_l1 = predict(Mdl_gyro_nn, gyro_nn); 

bt_nn_l1 = predict(Mdl_bt_nn, bt_nn); 

%layer 2 (output layer)      

nn_dat_l2 = [acc_nn_l1 gyro_nn_l1 bt_nn_l1]; 

nn_dat_l2_norm = featureNormalize2(nn_dat_l2, "Zscale"); %try without 

normalization 

Mdl_nn_l2 = fitrensemble(nn_dat_l2, lbl_r, 'Method','Bag',... 

    'NumLearningCycles',30,'Learners',t2); 

%----------------------------------------------------------------%     

%test 

fitted_acc = predict(Mdl_acc_reg, acc_norm_test); 

fitted_gyro = predict(Mdl_gyro_reg, gyro_norm_test); 

fitted_bt = predict(Mdl_bt_reg, bt_norm_test); 

%----------------------------------------------------------------% 

%Sensor fusion test 

[ef_data_test, lbl_test] = prep_ef_data_reg3(acc_norm_test, gyro_norm_test,... 

    bt_norm_test, acc_test_range, gyro_test_range, bt_test_range); 

prediction_ef = predict(Mdl_ef, ef_data_test); 

%----------------------------------------------------------------% 
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%Fusion 2 test 

acc_nn_test = ef_data_test(:,1:25); %with labels (:,1:37) ///without labels (:,1:20) 

gyro_nn_test = ef_data_test(:,26:50); %with labels (:,38:74) ///without labels 

)(:,21:40) 

bt_nn_test = ef_data_test(:,51:end); %with labels (:,75:end) ///without 

labels(:,41:end) 

acc_nn_l1_test = predict(Mdl_acc_nn, acc_nn_test); 

gyro_nn_l1_test = predict(Mdl_gyro_nn, gyro_nn_test); 

bt_nn_l1_test = predict(Mdl_bt_nn, bt_nn_test); 

%layer 2 (output layer)      

nn_dat_l2_test = [acc_nn_l1_test gyro_nn_l1_test bt_nn_l1_test]; 

nn_dat_l2_test_norm = featureNormalize2(nn_dat_l2_test, "Zscale"); 

prediction_nn = predict(Mdl_nn_l2, nn_dat_l2_test_norm); 

%----------------------------------------------------------------% 

%fit error/performance metrics 

[mse_acc, rmse_acc, r2_acc, mae_acc] = fit_error(acc_test_range, fitted_acc); 

[mse_gyro, rmse_gyro, r2_gyro, mae_gyro] = fit_error(gyro_test_range, 

fitted_gyro); 

[mse_bt, rmse_bt, r2_bt, mae_bt] = fit_error(bt_test_range, fitted_bt); 

[mse_ef, rmse_ef, r2_ef, mae_ef] = fit_error(lbl_test, prediction_ef); 

[mse_nn, rmse_nn, r2_nn, mae_nn] = fit_error(lbl_test, prediction_nn); 

%safe regression results 

methods = ["MSE" "RMSE" "R2" "MAE"]; 

results_reg = table(methods', [mse_acc rmse_acc r2_acc mae_acc]',... 

    [mse_gyro rmse_gyro r2_gyro mae_gyro]',... 

    [mse_bt rmse_bt r2_bt mae_bt]', ... 

    [mse_ef rmse_ef r2_ef mae_ef]', ... 
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    [mse_nn rmse_nn r2_nn mae_nn]'); 

%accuracy of predicting <6 feet 

[F1_acc, BA_acc] = scores((acc_test_range >= 6),(fitted_acc >= 6)); 

[F1_gyro, BA_gyro] = scores((gyro_test_range >= 6),(fitted_gyro >= 6)); 

[F1_bt, BA_bt] = scores((bt_test_range >= 6),(fitted_bt >= 6)); 

%save <6 feet classification results 

b_methods = ["F1" "BA"]; 

results_b = table(b_methods', [F1_acc BA_acc]', [F1_gyro BA_gyro]',... 

    [F1_bt BA_bt]','VariableNames',{'Metric' 'Accelerometer' 'Gyroscope' 

'Bluetooth'}); 

writetable(results_b, 'results_pact_LOO_6feet_user17.xlsx'); 

%----------------------------------------------------------------%  

B.5 Support functions 

%----------------------------------------------------------------% 

%Function to normalize features 

%Inputs: X - feature vector/matrix to normalize 

%        method - normalization method ('Zscore','MinMax', or 'Log') 

%Output: X_norm - normalized feature vector/matrix 

%----------------------------------------------------------------% 

function X_norm = featureNormalize2(X, method) 

  

epsilon = 0.0001; %to avoid division by 0 

if method == "Zscale" 

    temp = bsxfun(@minus, X, mean(X)); 

    X_norm = bsxfun(@rdivide, temp, (std(X)+epsilon)); 

elseif method == "MinMax" 
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     X_norm = (X - min(X))./(max(X) - min(X)); 

elseif method == "Log" 

    X_norm = log10(X); 

else 

    disp('No scaling method selected') 

end 

end 

%----------------------------------------------------------------------% 

% Function that creates 5 groups from user context data and prepares it for 

% sensor fusion model 

% Inputs: training and test data 

% Outputs: training, test data, and labels spareratly  

%----------------------------------------------------------------------% 

function [acc_lbl_train, acc_lbl_test, gyro_lbl_train, gyro_lbl_test, ... 

    bt_lbl_train, bt_lbl_test, all_cnt]= group_cat(acc_dat_test, ... 

    acc_dat_train, gyro_dat_test, gyro_dat_train, bt_dat_test, bt_dat_train) 

%accelerometer 

%----------------------------------------------------------------% 

%training set 

acc_cat_train = acc_dat_train.acc_categories; 

%Inside or outside 

acc_env1_train = acc_cat_train(:,1)+(acc_cat_train(:,2).*2); 

%Size of the room 

acc_env2_train = acc_cat_train(:,3) + acc_cat_train(:,4).*2 + acc_cat_train(:,5).*3;  

%Where in the room 

acc_env3_train = acc_cat_train(:,6) + acc_cat_train(:,7).*2 + acc_cat_train(:,8).*3 

+ acc_cat_train(:,9).*4 ; 
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%Sitting or Standing 

acc_pose_train = acc_cat_train(:,10)+(acc_cat_train(:,11).*2); 

%Phone location on user body 

acc_loc_train = acc_cat_train(:,12) + acc_cat_train(:,13).*2 +... 

    acc_cat_train(:,14).*3 + acc_cat_train(:,15).*4 + acc_cat_train(:,16).*5 + 

acc_cat_train(:,17).*6 ; 

%test set 

acc_cat_test = acc_dat_test.acc_categories; 

acc_env1_test = acc_cat_test(:,1)+(acc_cat_test(:,2).*2); 

acc_env2_test = acc_cat_test(:,3) + acc_cat_test(:,4).*2 + acc_cat_test(:,5).*3;  

acc_env3_test = acc_cat_test(:,6) + acc_cat_test(:,7).*2 + acc_cat_test(:,8).*3 + 

acc_cat_test(:,9).*4 ; 

acc_pose_test = acc_cat_test(:,10)+(acc_cat_test(:,11).*2); 

acc_loc_test = acc_cat_test(:,12) + acc_cat_test(:,13).*2 +... 

    acc_cat_test(:,14).*3 + acc_cat_test(:,15).*4 + acc_cat_test(:,16).*5 + 

acc_cat_test(:,17).*6 ; 

  

acc_lbl_train = [acc_env1_train, acc_env2_train, acc_env3_train, ... 

    acc_pose_train, acc_loc_train]; 

acc_lbl_test = [acc_env1_test, acc_env2_test, acc_env3_test, ... 

    acc_pose_test, acc_loc_test]; 

%----------------------------------------------------------------% 

%gyroscope 

%----------------------------------------------------------------% 

gyro_cat_train = gyro_dat_train.gyro_categories; 

gyro_env1_train = gyro_cat_train(:,1) + gyro_cat_train(:,2).*2; 
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gyro_env2_train = gyro_cat_train(:,3) + gyro_cat_train(:,4).*2 + 

gyro_cat_train(:,5).*3;  

gyro_env3_train = gyro_cat_train(:,6) + gyro_cat_train(:,7).*2 + 

gyro_cat_train(:,8).*3 + gyro_cat_train(:,9).*4 ; 

gyro_pose_train = gyro_cat_train(:,10)+ gyro_cat_train(:,11).*2; 

gyro_loc_train = gyro_cat_train(:,12) + gyro_cat_train(:,13).*2 +... 

    gyro_cat_train(:,14).*3 + gyro_cat_train(:,15).*4 + gyro_cat_train(:,16).*5 + 

gyro_cat_train(:,17).*6 ; 

  

gyro_cat_test = gyro_dat_test.gyro_categories; 

gyro_env1_test = gyro_cat_test(:,1) + gyro_cat_test(:,2).*2; 

gyro_env2_test = gyro_cat_test(:,3) + gyro_cat_test(:,4).*2 + gyro_cat_test(:,5).*3;  

gyro_env3_test = gyro_cat_test(:,6) + gyro_cat_test(:,7).*2 + gyro_cat_test(:,8).*3 

+ gyro_cat_test(:,9).*4 ; 

gyro_pose_test = gyro_cat_test(:,10)+ gyro_cat_test(:,11).*2; 

gyro_loc_test = gyro_cat_test(:,12) + gyro_cat_test(:,13).*2 +... 

    gyro_cat_test(:,14).*3 + gyro_cat_test(:,15).*4 + gyro_cat_test(:,16).*5 + 

gyro_cat_test(:,17).*6 ; 

  

gyro_lbl_train = [gyro_env1_train, gyro_env2_train, gyro_env3_train, ... 

    gyro_pose_train, gyro_loc_train]; 

gyro_lbl_test = [gyro_env1_test, gyro_env2_test, gyro_env3_test, ... 

    gyro_pose_test, gyro_loc_test]; 

%----------------------------------------------------------------% 

%Bluetooth 

%----------------------------------------------------------------% 

bt_cat_train = bt_dat_train.bt_categories; 
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bt_env1_train = bt_cat_train(:,1) + bt_cat_train(:,2).*2; 

bt_env2_train = bt_cat_train(:,3) + bt_cat_train(:,4).*2 + bt_cat_train(:,5).*3;  

bt_env3_train = bt_cat_train(:,6) + bt_cat_train(:,7).*2 + bt_cat_train(:,8).*3 + 

bt_cat_train(:,9).*4 ; 

bt_pose_train = bt_cat_train(:,10)+ bt_cat_train(:,11).*2; 

bt_loc_train = bt_cat_train(:,12) + bt_cat_train(:,13).*2 +... 

    bt_cat_train(:,14).*3 + bt_cat_train(:,15).*4 + bt_cat_train(:,16).*5 + 

bt_cat_train(:,17).*6 ; 

  

bt_cat_test = bt_dat_test.bt_categories; 

bt_env1_test = bt_cat_test(:,1) + bt_cat_test(:,2).*2; 

bt_env2_test = bt_cat_test(:,3) + bt_cat_test(:,4).*2 + bt_cat_test(:,5).*3;  

bt_env3_test = bt_cat_test(:,6) + bt_cat_test(:,7).*2 + bt_cat_test(:,8).*3 + 

bt_cat_test(:,9).*4 ; 

bt_pose_test = bt_cat_test(:,10)+ bt_cat_test(:,11).*2; 

bt_loc_test = bt_cat_test(:,12) + bt_cat_test(:,13).*2 +... 

    bt_cat_test(:,14).*3 + bt_cat_test(:,15).*4 + bt_cat_test(:,16).*5 + 

bt_cat_test(:,17).*6 ; 

  

bt_lbl_train = [bt_env1_train, bt_env2_train, bt_env3_train, ... 

    bt_pose_train, bt_loc_train]; 

bt_lbl_test = [bt_env1_test, bt_env2_test, bt_env3_test, ... 

    bt_pose_test, bt_loc_test]; 

%----------------------------------------------------------------% 

%calculate number of positive samples 

acc_test_cnt = sum(acc_cat_test); 

acc_train_cnt = sum(acc_cat_train); 
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gyro_test_cnt = sum(gyro_cat_test); 

gyro_train_cnt = sum(gyro_cat_train); 

  

bt_test_cnt = sum(bt_cat_test); 

bt_train_cnt = sum(bt_cat_train); 

  

all_cnt = [acc_test_cnt', acc_train_cnt', gyro_test_cnt', gyro_train_cnt', ... 

    bt_test_cnt', bt_train_cnt']; 

end 

%----------------------------------------------------------------% 

 

%----------------------------------------------------------------------% 

% Function to compute cost of misclassification for multiclass 

% classification  

% Input: class vector 

% Output: cost matrix 

%----------------------------------------------------------------------% 

function cost = compute_cost_multi(array_classes,c) 

%classes 

all_classes = [0 1 2 0 0 0 0;  

    0 1 2 3 0 0 0; 

    0 1 2 3 4 0 0; 

    0 1 2 0 0 0 0; 

    0 1 2 3 4 5 6;]; 

%unique classes  
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u1 = unique(array_classes); 

    i1 = ~eye(length(u1)); 

    for z = 1:length(u1) 

        u2(z) = sum(array_classes==u1(z)); 

        if u2(z) == 0 

            u2(z)=1; 

        end 

    end 

    cost = []; 

    for z = 1:length(u1) 

        cost = [cost;u2]; 

    end 

    %misclassification matrix 

    cost=(cost).*i1; 

    u2=[];       

end 

%----------------------------------------------------------------------% 

%----------------------------------------------------------------------% 

% Function to compute F1 score and blanced accuracy 

% Input: ground truth vector and predicted class vector 

% Output: F1 score and balanced accuracy  

%----------------------------------------------------------------------% 

function [F1_all , BA_all] = scores_multi(groundTruth, prediction) 

%classes  

all_classes = [0 1 2 0 0 0 0;  

    0 1 2 3 0 0 0; 
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    0 1 2 3 4 0 0; 

    0 1 2 0 0 0 0; 

    0 1 2 3 4 5 6;]; 

  

epsilon = 0.0001; %to avoid division by 0 

  

[n,~] = size(all_classes); %n-number of groups 

F1_all = []; 

BA_all = []; 

for c=1:n 

    u = unique(all_classes(c,:)); %number of test settings (lables) per group 

    for i=2:length(u) 

        [TP, FP, TN, FN] = calError(prediction(:,c) == u(i), groundTruth(:,c) == u(i)); 

        TPR = TP./(TP+FN+epsilon); 

        TNR = TN./(TN+FP+epsilon); 

        prec = TP./(TP+FP+epsilon); 

        BA(i-1) = (TPR+TNR)./2; 

        F1(i-1) = (2.*TPR.*prec)./(TPR+prec+epsilon); 

    end 

    F1_all = [F1_all; F1']; 

    BA_all = [BA_all; BA']; 

    BA = []; 

    F1 = []; 

end 

  

end 

%----------------------------------------------------------------------% 
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%----------------------------------------------------------------------% 

% Function to concatinate horizontaly data of different length (vertical length) 

% from three sensors 

% Input: each sensor data and range vectors 

% Output: concatinated data and range vector 

%----------------------------------------------------------------------% 

function [ef_dat, lbls] = prep_ef_data_reg2(acc_x, gyro_x, bt_x, ... 

    acc_y, gyro_y, bt_y ) 

%get all unique distanses (expected 2:2:16) 

dist = unique(acc_y); 

  

if length(dist)~=8 

    disp('Distance range is not what expected'); 

end 

%find data point associated with each distance 

acc_dist2 = acc_x(find(acc_y==dist(1)),:); 

acc_dist4 = acc_x(find(acc_y==dist(2)),:); 

acc_dist6 = acc_x(find(acc_y==dist(3)),:); 

acc_dist8 = acc_x(find(acc_y==dist(4)),:); 

acc_dist10 = acc_x(find(acc_y==dist(5)),:); 

acc_dist12 = acc_x(find(acc_y==dist(6)),:); 

acc_dist14 = acc_x(find(acc_y==dist(7)),:); 

acc_dist16 = acc_x(find(acc_y==dist(8)),:); 

  

gyro_dist2 = gyro_x(find(gyro_y==dist(1)),:); 

gyro_dist4 = gyro_x(find(gyro_y==dist(2)),:); 

gyro_dist6 = gyro_x(find(gyro_y==dist(3)),:); 
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gyro_dist8 = gyro_x(find(gyro_y==dist(4)),:); 

gyro_dist10 = gyro_x(find(gyro_y==dist(5)),:); 

gyro_dist12 = gyro_x(find(gyro_y==dist(6)),:); 

gyro_dist14 = gyro_x(find(gyro_y==dist(7)),:); 

gyro_dist16 = gyro_x(find(gyro_y==dist(8)),:); 

  

bt_dist2 = bt_x(find(bt_y==dist(1)),:); 

bt_dist4 = bt_x(find(bt_y==dist(2)),:); 

bt_dist6 = bt_x(find(bt_y==dist(3)),:); 

bt_dist8 = bt_x(find(bt_y==dist(4)),:); 

bt_dist10 = bt_x(find(bt_y==dist(5)),:); 

bt_dist12 = bt_x(find(bt_y==dist(6)),:); 

bt_dist14 = bt_x(find(bt_y==dist(7)),:); 

bt_dist16 = bt_x(find(bt_y==dist(8)),:); 

%concatenate using the shortest vector those cropping vectors for the 

%sensors that have more data for given distance 

min2 = min([length(acc_dist2), length(gyro_dist2), length(bt_dist2)]); 

min4 = min([length(acc_dist4), length(gyro_dist4), length(bt_dist4)]); 

min6 = min([length(acc_dist6), length(gyro_dist6), length(bt_dist6)]); 

min8 = min([length(acc_dist8), length(gyro_dist8), length(bt_dist8)]); 

min10 = min([length(acc_dist10), length(gyro_dist10), length(bt_dist10)]); 

min12 = min([length(acc_dist12), length(gyro_dist12), length(bt_dist12)]); 

min14 = min([length(acc_dist14), length(gyro_dist14), length(bt_dist14)]); 

min16 = min([length(acc_dist16), length(gyro_dist16), length(bt_dist16)]); 

  

dist2 = [acc_dist2(1:min2,:) gyro_dist2(1:min2,:) bt_dist2(1:min2,:) 

ones(min2,1)*2]; 
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dist4 = [acc_dist4(1:min4,:) gyro_dist4(1:min4,:) bt_dist4(1:min4,:) 

ones(min4,1)*4]; 

dist6 = [acc_dist6(1:min6,:) gyro_dist6(1:min6,:) bt_dist6(1:min6,:) 

ones(min6,1)*6]; 

dist8 = [acc_dist8(1:min8,:) gyro_dist8(1:min8,:) bt_dist8(1:min8,:) 

ones(min8,1)*8]; 

dist10 = [acc_dist10(1:min10,:) gyro_dist10(1:min10,:) bt_dist10(1:min10,:) 

ones(min10,1)*10]; 

dist12 = [acc_dist12(1:min12,:) gyro_dist12(1:min12,:) bt_dist12(1:min12,:) 

ones(min12,1)*12]; 

dist14 = [acc_dist14(1:min14,:) gyro_dist14(1:min14,:) bt_dist14(1:min14,:) 

ones(min14,1)*14]; 

dist16 = [acc_dist16(1:min16,:) gyro_dist16(1:min16,:) bt_dist16(1:min16,:) 

ones(min16,1)*16]; 

%combine data for each distance and randomly shuffle it 

dat_all = [dist2; dist4; dist6; dist8; dist10; dist12; dist14; dist16]; 

[h,~] = size(dat_all); 

idx = randperm(h); 

data_rand = dat_all(idx,:); 

%split data and range vector 

ef_dat = data_rand(:,1:end-1); 

lbls = data_rand(:,end); 

end 

%----------------------------------------------------------------------% 

 

%----------------------------------------------------------------------% 
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% Function to concatinate horizontaly data of different length (vertical length) 

% from three sensors 

% Input: each sensor data and range vectors 

% Output: concatinated data and range vector 

%----------------------------------------------------------------------% 

function [ef_dat, lbls] = prep_ef_data_reg3(acc_x, gyro_x, bt_x, ... 

    acc_y, gyro_y, bt_y ) 

dist = unique(acc_y); %get all unique distanses (expected 2:2:16) 

dat_all = []; 

for i=1:length(dist) 

   %find data point associated with each distance 

   acc_dist = acc_x(find(acc_y==dist(i)),:);  

   gyro_dist = gyro_x(find(gyro_y==dist(i)),:);  

   bt_dist = bt_x(find(bt_y==dist(i)),:);  

   %concatenate using the shortest vector those cropping vectors for the 

   %sensors that have more data for given distanc 

   min_d = min([length(acc_dist(:,1)), length(gyro_dist(:,1)), length(bt_dist(:,1))]); 

   dist_m = [acc_dist(1:min_d,:) gyro_dist(1:min_d,:) bt_dist(1:min_d,:) 

ones(min_d,1)*dist(i)]; 

   dat_all = [dat_all; dist_m]; 

end 

%combine data for each distance and randomly shuffle it 

[h,~] = size(dat_all); 

idx = randperm(h); 

data_rand = dat_all(idx,:); 

%split data and range vector 

ef_dat = data_rand(:,1:end-1); 
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lbls = data_rand(:,end); 

end 

%----------------------------------------------------------------------% 

 

%----------------------------------------------------------------------% 

% Function to compute RMSE, R^2, MSE, MAE 

% Input: predicted range and ground truth 

% Output: MSE, RMSE, R^2, MAE 

%----------------------------------------------------------------------% 

function [mse, rmse, r2, mae] = fit_error(tru, fitted) 

s = sum((tru-fitted).^2); 

n = length(tru); 

  

mse = s/n; %MSE 

  

rmse = sqrt(s/n);%RMSE 

  

r2 = 1 - (s/sum((tru-mean(tru)).^2)); %R^2 

  

mae = sum(abs(fitted-tru))/n; %MAE 

  

end 

%----------------------------------------------------------------------% 

 

%----------------------------------------------------------------------% 

% Function to compute F1 score and balanced accuracy 
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% Input: predicted range and ground truth 

% Output: F1 and balanced accuracy 

%----------------------------------------------------------------------% 

function [F1,BA] = scores(groundTruth, prediction) 

epsilon = 0.0001; %to avoid division by 0 

[TP, FP, TN, FN] = calError(groundTruth,prediction); 

TPR = TP./(TP+FN+epsilon); 

TNR = TN./(TN+FP+epsilon); 

prec = TP./(TP+FP+epsilon); 

BA = (TPR+TNR)./2; %Balanced accuracy 

F1 = (2.*TPR.*prec)./(TPR+prec+epsilon); %F1 score 

end 

%----------------------------------------------------------------------% 

 

%----------------------------------------------------------------------% 

% This function calculates True Positives, False Positives, True Negatives 

% and False Negatives for two matrices of equal size assuming they are 

% populated by 1's and 0's. 

% Inputs: trueMat contains the actual true values while the predictedMat 

% contains the 1's and 0's predicted from the algorithm used. 

% Output: confucion matrix 

%----------------------------------------------------------------------% 

function [TP, FP, TN, FN] = calError(trueMat, predictedMat) 

  

adder = trueMat + predictedMat; 

TP = length(find(adder == 2)); 
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TN = length(find(adder == 0)); 

subtr = trueMat - predictedMat; 

FP = length(find(subtr == -1)); 

FN = length(find(subtr == 1)); 

end 

%----------------------------------------------------------------------% 

B.6 Functions to calculate features 

%--------------------------------------------------------------------% 

% Function to compute mean 

% Input: X - data vector 

%            n - window over which mean computed 

%--------------------------------------------------------------------% 

function Y = Fmean(X,n) 

    Y = arrayfun(@(i) mean(X(i:i+n-1)),1:n:length(X)-n+1)'; 

End 

 

%--------------------------------------------------------------------% 

% Function to compute standard deviation 

% Input: X - data vector 

%        n - window over which standard deviation computed 

%--------------------------------------------------------------------% 

function Y = Fstd(X,n) 

    Y = arrayfun(@(i) std(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

 

%--------------------------------------------------------------------% 
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% Function to compute skewness and kurtosis 

% Input: X - data vector 

%        n - window over which skewness and kurtosis computed 

%--------------------------------------------------------------------% 

function [M3, M4] = Fmoment(X,n) 

%calculate third moment - skewness and fourth moment - kurtosis  

    M3 = arrayfun(@(i) moment(X(i:i+n-1),3),1:n:length(X)-n+1)'; 

    M4 = arrayfun(@(i) moment(X(i:i+n-1),4),1:n:length(X)-n+1)'; 

end 

 

%--------------------------------------------------------------------% 

% Function to compute 25th, 50th, and 75th percentile 

% Input: X - data vector 

%        n - window over which statistic calculation performed 

%--------------------------------------------------------------------% 

function [P25, P50, P75] = Fprctile(X,n) 

%calculate 25th, 50th, 75th percentile 

    P25 = arrayfun(@(i) prctile(X(i:i+n-1),25),1:n:length(X)-n+1)'; 

    P50 = arrayfun(@(i) prctile(X(i:i+n-1),50),1:n:length(X)-n+1)'; 

    P75 = arrayfun(@(i) prctile(X(i:i+n-1),75),1:n:length(X)-n+1)'; 

end 

 

%--------------------------------------------------------------------% 

% Function to value entropy and time entropy 

% Input: X - data vector 

%        n - window over which statistic calculation performed 

%--------------------------------------------------------------------% 
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function [ValE, TimeE] = Fentropy(X,n) 

    %value entropy 

    val = arrayfun(@(i) hist(X(i:i+n-1),20),1:n:length(X)-

n+1,'UniformOutput',false)'; 

    ValE = zeros(length(val),1); 

    for i = 1:length(val) 

        ValE(i) = entropy(val{i})'; 

    end 

    TimeE = arrayfun(@(i) timeE(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

  

function te = timeE(X) 

    %time entropy 

    normX = X./max(abs(X)); 

    te = entropy(normX); 

end 

 

%--------------------------------------------------------------------% 

% Function to compute autocovariance and autocorrelation 

% Input: X - data vector 

%        n - window over which statistic calculation performed 

%--------------------------------------------------------------------% 

function [Acov, Acor] = Fauto(X,n) 

    Acor = arrayfun(@(i) autoCor(X(i:i+n-1),n),1:n:length(X)-n+1)'; 

    Acov = arrayfun(@(i) autoCov(X(i:i+n-1),n),1:n:length(X)-n+1)'; 

end 
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%autocorrelation 

function Y = autoCor(X,n) 

    z = circshift(X,floor(n/2)); 

    Y=X'*z; 

end 

%autocovariance 

function Y = autoCov(X,n) 

    z = circshift(X,floor(n/2)); 

    Y = ((X-mean(X))'*(z-mean(z)))/(std(X)*std(z)); 

end 

 

%--------------------------------------------------------------------% 

% Function to compute correlation between axes 

% Input: X - data vector 

%        n - window over which statistic calculation performed 

%--------------------------------------------------------------------% 

function cor = Fcorr(x, y, z, n) 

%computes correlation between three axis 

xy = arrayfun(@(i) corr(x(i:i+n-1), y(i:i+n-1),  'Type', 'Pearson'),1:n:length(x)-

n+1)'; 

xz = arrayfun(@(i) corr(x(i:i+n-1), z(i:i+n-1),  'Type', 'Pearson'),1:n:length(x)-

n+1)'; 

yz = arrayfun(@(i) corr(y(i:i+n-1), z(i:i+n-1),  'Type', 'Pearson'),1:n:length(x)-

n+1)'; 

cor = [xy, xz, yz]; 

end 
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%--------------------------------------------------------------------% 

% Function to compute RMS of Doppler spectrum 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = FRmsDoppler(X,n) 

    Y = arrayfun(@(i) doppler(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

  

function  B_rms= doppler(rssi_1) 

w0=-pi:pi/1000:pi; 

X0=zeros(1,length(w0)); 

j0=length(rssi_1); 

for i=1:length(w0) 

    for j=1:j0 

    X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier 

Transform 

    end 

end 

P_doppler = 10*log10(abs(X0).^2); 

  

N_slice = size(rssi_1,1); 

  

f = w0*N_slice/2/pi; 

B_rms = sqrt(sum(f.^2.* P_doppler)/sum(P_doppler)); 

  

end 
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%--------------------------------------------------------------------% 

% Function to compute peak-to-peak signal change 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = Yp2p(X,n) 

    Y = arrayfun(@(i) (max(X(i:i+n-1)) - min(X(i:i+n-1))),1:n:length(X)-n+1)'; 

end 

 

%--------------------------------------------------------------------% 

% Function to compute signal energy 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = Fenergy(X,n) 

    Y = arrayfun(@(i) doppler(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

function  energy= doppler(rssi_1) 

w0=-pi:pi/1000:pi; 

X0=zeros(1,length(w0)); 

j0=length(rssi_1); 

for i=1:length(w0) 

    for j=1:j0 

    X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier 

Transform 

    end 
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end 

P_doppler = 10*log10(abs(X0).^2); 

dopler_size = size(P_doppler,2); 

energy = sum(P_doppler)/dopler_size; %signal energy 

end 

 

%--------------------------------------------------------------------% 

% Function to compute Rayleigh parameter 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = Frayleigh(X,n) 

    Y = arrayfun(@(i) raylfit(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

 

%--------------------------------------------------------------------% 

% Function to compute fade duration 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = FfadeDuration(X,n) 

    Y = arrayfun(@(i) (exp(ro(X(i:i+n-1))^2)-1)/(sqrt(2*pi)*ro(X(i:i+n-

1))*doppler(X(i:i+n-1))),... 

        1:n:length(X)-n+1)'; 

end 
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function y = ro(X) 

    %a = median(X); 

    arms=rms(X); 

    a = rms(X) - 3; %RMS - 3dB (try different values e.g 3, 2, 1 dB) 

    y=(a)/(arms); 

end 

function  B_rms= doppler(rssi_1) 

w0=-pi:pi/1000:pi; 

X0=zeros(1,length(w0)); 

j0=length(rssi_1); 

for i=1:length(w0) 

    for j=1:j0 

    X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier 

Transform 

    end 

end 

P_doppler = 10*log10(abs(X0).^2); 

  

N_slice = size(rssi_1,1); 

  

f = w0*N_slice/2/pi; 

B_rms = sqrt(sum(f.^2.* P_doppler)/sum(P_doppler)); 

  

end 

 

%--------------------------------------------------------------------% 

% Function to compute level crossing 
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% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = FlevelX(X,n) 

    Y = arrayfun(@(i) sqrt(2*pi)*ro(X(i:i+n-1))*doppler(X(i:i+n-1))*exp(-

ro(X(i:i+n-1))^2),... 

        1:n:length(X)-n+1)'; 

end 

  

function y= ro(X) 

    %a = median(X); 

    arms=rms(X); 

    a = arms - 3; 

    y=sum(a)/sum(arms); 

end 

  

function  B_rms= doppler(rssi_1) 

w0=-pi:pi/1000:pi; 

X0=zeros(1,length(w0)); 

j0=length(rssi_1); 

for i=1:length(w0) 

    for j=1:j0 

    X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier 

Transform 

    end 

end 

P_doppler = 10*log10(abs(X0).^2); 
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N_slice = size(rssi_1,1); 

  

f = w0*N_slice/2/pi; 

B_rms = sqrt(sum(f.^2.* P_doppler)/sum(P_doppler)); 

  

end 

 

%--------------------------------------------------------------------% 

% Function to compute peak of Doppler spectrum 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = FpeakDoppler(X,n) 

    Y = arrayfun(@(i) doppler(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

  

function  P_max= doppler(rssi_1) 

w0=-pi:pi/1000:pi; 

X0=zeros(1,length(w0)); 

j0=length(rssi_1); 

for i=1:length(w0) 

    for j=1:j0 

    X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier 

Transform 

    end 

end 
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P_doppler = 10*log10(abs(X0).^2); 

P_max = max(P_doppler); 

end 

 

%--------------------------------------------------------------------% 

% Function to compute mean of Doppler spectrum 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = FmeanDoppler(X,n) 

    Y = arrayfun(@(i) doppler(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

  

function  P_mean= doppler(rssi_1) 

w0=-pi:pi/1000:pi; 

X0=zeros(1,length(w0)); 

j0=length(rssi_1); 

for i=1:length(w0) 

    for j=1:j0 

    X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier 

Transform 

    end 

end 

P_doppler = 10*log10(abs(X0).^2); 

P_mean = mean(P_doppler); 

end 
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%--------------------------------------------------------------------% 

% Function to compute polynomial fit 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = Fpoly(X,n) 

%     a=1; 

%     b=0.7; 

    Y = arrayfun(@(i) lap_fit(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

function lbf = lap_fit(X) 

  

w0=-pi:2*pi/(length(X)-1):pi; 

ydata = X; 

xdata = w0'; 

opts = optimset('Display','off'); 

fun = @(x, xdata) x(1)*xdata.^3; 

x0 = 0.1; 

fit_param = lsqcurvefit(fun,x0,xdata,ydata, [],[],opts); % 

lbf = real(fit_param(1)); 

end 

 

%--------------------------------------------------------------------% 

% Function to compute Laplacian best fit 

% Input: X - data vector 

%        n - window over which output parameter calculated  
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%--------------------------------------------------------------------% 

function Y = Flaplacian(X,n) 

    Y = arrayfun(@(i) lap_fit(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

  

function lbf = lap_fit(X) 

w0=-pi:2*pi/(length(X)-1):pi; 

ydata = X; 

xdata = w0'; 

opts = optimset('Display','off'); 

fun = @(x, xdata) 1./(((xdata-x(3))./x(1)).^(2*x(2))); 

x0 = [0.1,0.1,1e-10]; 

fit_param = lsqcurvefit(fun,x0,xdata,ydata, [],[],opts); % 

lbf = real(fit_param(2)); 

end 

 

%--------------------------------------------------------------------% 

% Function to compute Gaussian best fit 

% Input: X - data vector 

%        n - window over which output parameter calculated  

%--------------------------------------------------------------------% 

function Y = Fgauss(X,n) 

    Y = arrayfun(@(i) lap_fit(X(i:i+n-1)),1:n:length(X)-n+1)'; 

end 

function lbf = lap_fit(X) 

w0=-pi:2*pi/(length(X)-1):pi; 

ydata = X; 
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xdata = w0'; 

opts = optimset('Display','off'); 

fun = @(x, xdata) (x(1)*exp(-(-xdata-x(2)).^2)./(x(3)^2)); 

x0 = [0.1,0.1,1e-10]; 

fit_param = lsqcurvefit(fun,x0,xdata,ydata, [],[],opts); % 

lbf = real(fit_param(2)); 

end 

 


