

Machine Learning Estimation of COVID-19 Social Distance Using

Smartphone Sensor Data

by

Oleksandr Semenov

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfilment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

August 2021

APPROVED:

Professor Emmanuel Agu, Major Thesis Advisor

Professor Kaveh Pahlavan

ii

ABSTRACT

COVID-19 is spread from an infected to a healthy person when they are within 6

feet from each other for longer than 15 minutes. To limit disease transmission, there

is a need for technology that could identify whether subjects were near each other

longer than 15 minutes. In this thesis we systematically investigate Machine

Learning (ML) methods to detect proximity by analyzing data gathered from

smartphones’ built-in Bluetooth, accelerometer, and gyroscope sensors. We show

that the proximity classification (< 6ft or not) can achieve 72%-90% accuracy using

the accelerometer, 78%-84% accuracy using gyroscope sensor, and 76%-92%

accuracy with the Bluetooth radio, while sensor fusion shows accuracy as high as

97%. Our model outperforms current state-of-the-art methods using neural networks

and achieved Normalized Decision Cost Function (nDCF) score of 0.34 with

Bluetooth radio and 0.36 with sensor fusion.

iii

ACKNOWLEDGMENTS

This thesis is a summary of my research work under the guidance of Professor

Emmanuel Agu over the past year in pursuit of my Master of Science Degree in

Electrical and Computer Engineering at Worcester Polytechnic Institute.

 Firstly, I would like to express my deepest gratitude to my research advisor,

Professor Emmanuel Agu who guided me in this research, shared his ideas, reviewed

my work, offered support and encouragement when I encountered difficulties in my

research. He is a wise man and a great advisor.

 I am grateful to have Professor Kaveh Pahlavan as my committee member

and for providing additional guidance. Thank you, Professor Pahlavan, for reviewing

my work, providing comments, and sharing your knowledge on wireless signal

propagation. I also would like to say thanks to Ph.D. student Zhuoran Su and

undergraduate student Haowen Wei for helping me with radio signal specific feature

calculation and running experiments on the remote server.

 Finally, I would like to thank my parents and my brother for their continuous

support and encouragement in pursuing my graduate studies.

iv

Contents

Abstract ... ii

Acknowledgments .. iii

List of Figures ... vii

Chapter 1 Introduction ... 1

1.1. Motivation ... 1

1.2. Background on COVID-19 ... 1

1.3. Contact Tracing ... 5

1.4. Challenges with infectious disease tracing using smartphones 6

1.5. Goals .. 7

1.6. Approach to contact tracing .. 7

1.7. Contributions of this thesis .. 8

1.8. Roadmap .. 9

Chapter 2 Background ...10

Chapter 3 Methodology for Proximity Detection ..16

3.1. Dataset overview ...16

v

3.2. Approach to proximity detection ...17

Sensor fusion..19

Signal filtering ...20

Feature extraction ..21

Machine learning algorithms ...24

Evaluation metrics ...29

Chapter 4 Evaluation and Results ..30

4.1. Data preparation ..30

4.2. Signal filtering ...31

4.3. Normalization ..32

4.4. Classification performance on various labels ...32

4.5. Best performing ML classification algorithm ...35

4.6. Cross-validation ...37

Chapter 5 Analysis of Proximity Estimation Error ..40

5.1. Analysis of error ..40

5.2. Synthetic minority over-sampling (SMOTE)..44

5.3. Best performing features ...44

vi

5.4. Social distance classification ...47

Chapter 6 Conclusions and Future Work ...51

Reference..53

Appendix A Feature Importance ..59

A.1 Predictor Importance for Features Based on Accelerometer Sensor Data59

A.2 Predictor Importance for Features Based on Gyroscope Sensor Data61

Appendix B Source Code ...65

B.1 Data filtering ..65

B.2 Routine to generate hand-crafted features ...70

B.3 Routine to classify user context ...77

B.4 Routines to perform range estimation ..82

B.5 Support functions ...92

B.6 Functions to calculate features ...106

vii

LIST OF FIGURES

Figure 1 Stop the spread infographic [40]. .. 4

Figure 2 MARU measurement scenarios ...17

Figure 3 Overview of our ML proximity regression pipeline using Accelerometer,

Gyroscope, Bluetooth, and sensor fusion data. ..18

Figure 4 Sensor fusion methods ...21

Figure 5 Predictor importance for accelerometer sensor data34

Figure 6 Predictor importance for gyroscope sensor data34

Figure 7 Predictor importance for Bluetooth sensor data.35

Figure 8 Distribution of regressor error with leave-one-out cross-validation.38

Figure 9 Amount of data in the test set. ...41

Figure 10 Predicted versus actual distance for regression model trained on

accelerometer data and validated with leave-one-out cross-validation42

Figure 11 Predicted versus actual distance for regression model trained on

gyroscope data and validated with leave-one-out cross-validation43

viii

Figure 12 Predicted versus actual distance for regression model trained on

Bluetooth radio data and validated with leave-one-out cross-validation43

Figure 13 Distribution of regressor error with leave-one-out cross-validation using

only 15 best performing features. ..46

Figure 14 Accuracy of ≤6 feet estimation – nDCF metric.50

ix

List of Tables

Table 1 Summary of the MITRE range and angle (unstructured) dataset16

Table 2 Features computed from accelerometer, gyroscope, and Bluetooth data ...22

Table 3 Evaluation metrics ..27

Table 4 Filter type rating ..31

Table 5 F1 and BA classifier performance ..33

Table 6 Results of an optimal classifier search..36

Table 7 Regression model results with 5-fold cross-validation39

Table 8 Regression model results with leave-one-out cross-validation39

Table 9 Regression model results with subject level splitting cross-validation39

Table 10 Original with synthetic dataset regression model performance when

validated with leave-one-out cross-validation ...45

Table 11 Regression model results with leave-one-out cross-validation when

trained on 15 best performing features ..46

Table 12 Accuracy of estimation if subjects are closer than 6 feet with leave-one-

out cross-validation ..48

Table 13 Accuracy of estimation if subjects are closer than 6 feet with 5-fold cross-

validation ..48

x

Table 14 Accuracy of estimation if subjects are closer than 6 feet with leave-one-

out cross-validation ..49

1

CHAPTER 1 INTRODUCTION

1.1. Motivation

COVID-19 is a highly infectious airborne transmittable disease that has currently

infected over 213 million people with a total of 4.44 million deaths globally to date

[46], and has caused severe negative impact on global economy. The risk of airborne

infectious diseases such as COVID-19 increases when healthy people are within 6

feet of infected people for longer than 15 minutes [25]. This has led to research

interest in estimating the distance between smartphone users by analyzing data from

smartphone built in sensors such as Bluetooth, accelerometer, and gyroscope.

1.2. Background on COVID-19

COVID-19 is a viral, highly transmittable respiratory disease of a coronavirus family

of the diseases. It gets its name from crown-like spikes on the surface of the virus

[37]. Coronavirus diseases cause severe acute respiratory syndrome (SARS) and

Middle East respiratory syndrome (MERS) diseases in humans [37]. According to

the Center for Disease Control and Prevention (CDC) people with COVID-19 may

show following symptoms:

 Fever and chills

 Cough

2

 Shortness of breath or difficulty breathing

 Fatigue

 Muscle or body aches

 Headache

 New loss of taste or smell

 Sore throat

 Congestion or runny nose

 Nausea or vomiting

 Diarrhea

This list is not complete and it should be noted that an individual infected with

COVID-19 can exhibit other symptoms [38].

The current strain of coronavirus was first discovered in Wuhan, China in

December of 2019 which is why it is also commonly known under the name of

SARS-CoV-19. The virus quickly spread around the world causing a global

pandemic. The rapid spread of SARS-CoV-19 is partially due to a long incubation

period relative to other viruses. Its incubational period can be up to 14 days with a

median of 4-5 days [38]. Currently, COVID-19 can be found on all continents except

Antarctica [37]. Since it first originated in 2019, the virus mutated resulting in a

new strain of the virus; some strains more contagious than others. At the time of

3

writing this thesis, the most prevalent strain of the virus is the Delta variant, which

is a more transmittable and more contagious strain than the original strain first

discovered in Wuhan, China. Even though, vaccines were developed and there have

been to vaccinate large amounts of the global population, due to mutations of the

virus it has continued to spread around the world causing new outbreaks and high

rates of hospitalizations.

To prevent the spread of the virus and its mutations, CDC recommends following

preventive measures:

 Get vaccinated

 Wear a mask

 Stay 6 feet from others

 Avoid crowded and poorly ventilated spaces

 Wash your hands often

 Cover coughs and sneezes

 Clean and disinfect

 Monitor your health daily [39].

Figure 1 shows the infographic developed by the CDC which advertises behavior

recommended to stop the spread of the virus.

4

Figure 1 Stop the spread infographic [40].

5

1.3. Contact Tracing

Since SARS-CoV-19 is a respiratory transmittable disease, it spreads from an

infected to a healthy person through airborne particles, droplets. The transmission

happens when two subjects are in the close contact with each other. CDC defines

close contact by proximity and exposure. The close contact is defined as 6 feet of an

infected person for a cumulative total of 15 minutes or more over a 24-hour period

[41]. The people who were exposed to an infected person are asked to quarantine at

home for 14 days [37]. This led to a need for contact tracing technology that could

automatically detect a person’s close contacts and notify them when they have been

exposed to an infected person and need to quarantine. The National Institute of

Standards and Technology (NIST) and Massachusetts Institute of Technology’s

(MIT) Private Automated Contact Tracing (PACT) collaboration led to initiative for

development of a protocol, which defined a data collection procedure [42]. Their

data collection protocol defines the procedure, in which participants of the study

follow a smartphone application developed for this study to collect data [43].

Smartphones were chosen as a data collection tool since most of the modern

smartphones present a vast variety of sensors such as integrated measurement unit

(IMU), Wi-Fi and Bluetooth radios, and global positioning system (GPS).

Smartphones are also widely available to the public which is helpful in large scale

deployment of developed technology. However, some of the sensors available in

6

mobile phones such as GPS present privacy concerns. PACT collaboration focuses

on use of IMU and Bluetooth radio which would preserve privacy of the users.

1.4. Challenges with infectious disease tracing using

smartphones

Tracing infectious disease spread often means tracing social interactions which

presents privacy issues. When developing technology for contact tracing it is

important to be mindful of the potential privacy issues presented by this technology.

Bluetooth radio signal and IMU signals do not contain information about the user

which makes these sensors a good candidate for contact tracing. The challenge with

using IMU is that these sensors do not carry any information about other subjects,

meaning they are unable to send signals to other smartphone users. On the other

hand, Bluetooth radio can transmit and receive signal from other mobile devices in

its vicinity. Signal strength of Bluetooth can be used to infer the distance.

Unfortunately, measuring strength of Bluetooth signal reliably is challenging.

Bluetooth signal is subject to reflections and attenuations on its propagation path

that create inaccuracies. By developing machine learning models, we attempt to

minimize this uncertainty and accurately detect range between the subjects which

would identify if subjects are closer than 6 feet of each other. The duration of the

interaction can be tracked with an accurate clock available in smartphones. Time

7

tracking is much more trivial task those in this thesis we focus on accurate proximity

detection.

1.5. Goals

In this thesis, we utilize PACT MITRE Range and Angle (Unstructured) (MRAU)

dataset [1] and ML to develop regression and classification models for proximity

detection. We attempt to accurately detect exact distance between two subjects and

classify if two subjects are closer than 6 feet of each other. Models described in this

thesis could be used as a backbone for contact tracing smartphone application which

would send a notification if a healthy person were in close proximity of an infected

person.

1.6. Approach to contact tracing

To develop accurate proximity detection models, we start with reading and splitting

the data from the MARU dataset. We then filter accelerometer and gyroscope data

and remove outliers in Bluetooth radio data. We proceed with preparing data for the

ML classification and regression model. The data is first split into training and test

splits and then normalized. Three different methods of splitting the data and

accuracy of proximity detection are presented in this thesis. We explore 19 different

ML models to identify the one that works best with smartphone sensor data. The

developed classification models are used to identify subject’s context and this

8

information then used as a feature to aid regression model in range estimation. In

this thesis, we present 20 different features derived from accelerometer and

gyroscope sensors signals, and 28 features derived from Bluetooth radio signal.

Additionally, we present two different methods for sensor fusion. One at a feature

level and another at decision level. Finally, we present accuracy of range estimation

and ability to detect close contact (< 6 feet) with our model. Our model outperforms

current state-of-the-art methods using neural networks and achieved nDCF score of

0.34 with Bluetooth radio and 0.36 with sensor fusion. Results are presented with

three different cross-validation techniques using four different evaluation metrics.

1.7. Contributions of this thesis

We careful evaluated a variety of ML methods for both regression and classification

tasks and experimented with two different sensor fusion methods. As a result of our

experiments, we found the following:

1. Elliptical filtering of the accelerometer and gyroscope signals improves the

regression R2 by 0.32 and 0.06 using accelerometer and gyroscope data

respectively.

2. Ensemble ML classification methods (boosted and bagged trees) classified < 6ft

or not between subjects with 72%-90% accuracy and 0.43 nDCF score using the

accelerometer, 78%-84% accuracy and 0.37 nDCF score using gyroscope sensor.

9

3. The regression tree classification method classified < 6ft or not between subjects

with 76%-92% accuracy and 0.36 nDCF score using Bluetooth.

4. Regression tree methods to estimate the actual distance between users when

utilizing Bluetooth data, achieving an R2 between 0.64 to 0.99.

5. Sensor fusion methods were found to be more robust at estimating distance than

each sensor individually and were able to classify whether subjects were closer

than 6 feet or not with up to 97% accuracy and 0.36 nDCF score.

6. The most important features were z-axis mean and autocorrelation for the

accelerometer, z-axis mean and y-axis mean for the gyroscope sensor, and

advertiser time, mean RSSI, and peak of Doppler spectrum for Bluetooth.

7. Recognizing user context and classifying proximity using context-specific ML

models improved the performance of range regression but not classification.

1.8. Roadmap

The rest of this thesis is as follows: Chapter 2 presents background information of

sensing social interactions in the past. Chapter 3 describes our approach to develop

accurate ML models for proximity estimation. Chapter 4 demonstrates the results

of our experiments. In Chapter 5, we discuss sources of error and why our model is

not perfect. Finally, in Chapter 6 we conclude our findings.

10

CHAPTER 2 BACKGROUND

Sensing social interactions has been explored by many researchers in the past. The

main objective of such research is to track human mobility and the spread of

epidemics [2], human behavior in organizational settings and how it shapes

individuals and organizations [3], and propagation of information [4]. One approach

to track social interactions relies on self-reporting. However, information collected

in such a way is subjective, as it relies on the study participant’s memory. Another

approach is to automatically detect social interactions. In order to classify interaction

between two people, it is important to understand the proximity and orientation of

the individuals. In the past, one group of researchers relied on custom hardware

designed specifically for the purpose of identifying subjects carrying such devices,

while other groups opportunistically utilized signals from the sensors available on

mobile phones. Olguin, D.O et al [3] utilized a custom RFID tag called Sociometer

to identify social interactions. Sociometer implements multimodal sensing which

utilizes the microphone, accelerometer, Bluetooth and IR sensor to detect

interactions. Unfortunately, in using the microphone this approach raises privacy

concerns. Similar technology was employed by Isella, Lorenzo et al [2] which counts

social interaction when two subjects are within a range of 1-2m from each other. The

RFID tag employed in their study was not able to sense interactions beyond 2 meters.

Huang, William et al [14] developed a custom sensor that uses ultrasonic radio to

11

communicate among its networks. Their approach demonstrated highly accurate

proximity detection with an error of 5cm. Approaches using custom hardware to

measure and detect social interactions are not scalable for large scale deployment.

In the past, researchers experimented with using combinations of various sensors

built into mobile phones to increase the accuracy of social interaction detection. Data

from sensors such as: accelerometer [3, 5, 6, 7], gyroscope [5, 6], magnetometer [8],

microphone [3,6], and GPS [7] were combined to estimate proximity of two or

multiple subjects.

Most modern mobile phones have built-in Wi-Fi and Bluetooth radios, which

have provided the opportunity for prior research to utilize Wi-Fi [8, 9, 10] and

Bluetooth [3, 5, 9, 11, 12, 13] signals to detect proximity of two or more subjects.

Distance estimation using mobile radios relies on Received Signal Strength Indicator

(RSSI) [5, 9,11, 12] and Time Difference of Arrival (TDoA) [14]. Researchers

predominantly used the Path Loss Model (PLM) [5] to estimate distance from signal

power. However, a new form of the PLM, which takes into account the relative

orientation of mobile phones was proposed [13] and showed improved distance

estimation when the separation between devices is less than 8 feet. In addition to

classic proximity estimation techniques such as PLM, prior research also utilized

Machine Learning (ML) based solutions. Palaghias, Niklas et al [11] studied social

interactions using mobile phones and analyzed Bluetooth RSSI using the

12

MultiBoostAB (variation of AdaBoost) ML algorithm. In their work, the authors

were not concerned with estimating the exact distance between subjects. Instead,

their work focused on determining mutual orientation between participants in the

study and classifying people’s interaction into public, social, and personal zones. In

our work, we also employ Bluetooth RSSI but try to estimate distance in feet

between subjects. Additionally, while we analyzed data from a variety of phone

models, the research of Palaghias, Niklas et al was limited to only one type of phone

(HTC One S). Katevas, Kleomenis et al [5] explored multiple ML models such as:

XGBoost, Linear Regression, SVM, and Random Forest for identifying social

interactions and not to estimate distance. They utilized the same sensors we used in

our work accelerometer, gyroscope, and Bluetooth. They defined social interaction

as two subjects located within 0.5m-1.5m of each other, giving a range of 1 meter

(3.28 feet). Our proposed model achieves higher accuracy even with leave-one-out

cross validation method.

 In addition to distance estimation, prior researchers attempted to identify contexts

in which social interactions occur. Vaizman et al [6] created an application that

offered over 100 context labels. Their study attempts to classify the context the

smartphone user is in and proposed a context recognition system that utilizes a

combination of multi-modal sensors available on mobile devices to increase

accuracy of context recognition.

13

Convolutional neural networks (CNNs) are a popular deep learning technique

commonly used in domains such as computer vision and image recognition. CNNs

are typically used with 2D image datasets. However, research in the areas of speech

recognition [31, 32] and biomedical signal processing [33, 35] have also applied

CNNs to 1D datasets. Tsinalis, Orestis et al proposed CNN architecture for sleep

stage classification. The network takes an unfiltered EEG signal and passes it

through 20 different filters, performing 1D convolution followed by max pooling.

Afterwards, the filtered signals are stacked and 2D convolution is performed. The

purpose of stacking signals is to find a relationship between different 1D filtered

signals. This approach tries to discover relationships across the 3 axes of inertial

sensors. Tsinalis, Orestis et al reported an F1 score of 81% for sleep stage

classification using CNNs.

 Other works attempting to estimate social distance have been published. Shankar,

Sheshank et al. attempt to estimate proximity between two subjects by utilizing

Bluetooth Low Energy (BLE) in combination with the other sensors available on

mobile devices such as: accelerometer, gyroscope, and magnetometer. Their

approach treated sensors data as a time-series that were concatenated data into a

vector and was analyzed using 1D CNNs. However, in addition to sensor data they

also added encoded information about orientation between transmitting and

14

receiving devices. Such information would normally not be available on mobile

devices, raising questions about real world applicability of their approach.

In our conference paper, [36] we explored different ML algorithms, filter

types, and features based on the user context. In this thesis we evaluate much broader

set of statistical features and some radio signal specific features. We also present two

different sensor fusion methods and do comprehensive evaluation of model

performance. We investigate how accurately the proximity of two smartphones can

be estimated using data from their built-in accelerometer, gyroscope sensors and

Bluetooth radio. We analyzed these data using ML algorithms to estimate range. A

novel aspect of our work is that we are the first to explore whether context-specific

ML models are more accurate than general ones. Specifically, we explored whether

first recognizing the user’s context such as whether the user is indoors or outdoors,

room size, user’s pose and location of the transmitting device on the body and

providing this context information as an input feature improves ML proximity

estimation. We found that adding recognizing and using context information as a

feature improved the accuracy of ML regression (distance estimate) but not ML

proximity classification (< 6ft or not). Additionally, we present two different sensor

fusion techniques to combine information from multiple sensors in order to improve

regressor performance.

15

 Range estimation using Bluetooth radio is challenging because the RSSI varies

continuously due to multipath fading, the transmission environment, room size, the

presence of obstructions and the number of people in the room.

16

CHAPTER 3 METHODOLOGY FOR PROXIMITY DETECTION

3.1. Dataset overview

In our experiments, we utilized the publicly available PACT MITRE Range and

Angle (Unstructured) (MRAU) dataset [1] to develop our ML proximity

classification and regression models. Table 1 summarizes the data in the MRAU

dataset.

Table 1 Summary of the MITRE range and angle (unstructured) dataset

Gyroscope Context

x-axis y-axis z-axis Indoor Sitting

Accelerometer Outdoor Standing

x-axis y-axis z-axis Large Room Hold to Right Ear

Bluetooth Medium Room Front Pants Pocket

RSSI TSSI Advertiser Timestamp Small Room In Hand

Response

Center Congested In Purse

Range Angle

Center Open Rear Pants Pocket

Near Wall
Congested

Shirt Pocket

Near Wall Open

The RSSI signal measurements were taken at increments of 2 feet from 2 to

16 feet between transmitting and receiving devices. Since participants did not follow

a defined protocol, not all recorded RSSI at all distances, which presents additional

challenge when developing and evaluating models on the MRAU dataset. Figure 2

17

depicts measurements scenarios.

Figure 2 MARU measurement scenarios

 The data in MARU dataset was collected for approximately 60 seconds at each

distance and orientation. Accelerometer and gyroscope data were sampled at ~4Hz

while Bluetooth data was sampled at 4Hz-10Hz. Various mobile devices were used

to capture the data such as: Pixel, Pixel 3, iPhone 6s, iPhone 7, iPhone 8, iPhone 11,

iPhone XR, Galaxy S9, and LG G7, which explains why sampling frequency is

inconsistent.

3.2. Approach to proximity detection

The main steps in our machine learning pipeline are shown in Figure 3.

18

Figure 3 Overview of our ML proximity regression pipeline using Accelerometer,

Gyroscope, Bluetooth, and sensor fusion data.

19

First, the raw sensor signals were resampled since the sampling rate is not

consistent across all subjects. Next, the accelerometer and gyroscope sensors signals

were filtered using a low-pass filter. Then, various statistical features found to be

predictive in prior work were extracted. These features including the user’s context

were then classified or regressed to predict the user’s proximity/range using ML

methods. In addition to training a classifier and regressor on individual sensors we

used a combination of all three sensors for range estimation. Inspired by Vaizman et

al’s work on context recognition, we experimented with two different sensors fusion

methods.

 Sensor fusion: There are three commonly known sensor fusion methods which

combine data from multiple sources at data level, feature level, or decision level. We

explored sensor fusion at feature level and decision level. The first sensor fusion

method combines data at feature level using a feature matrix extracted from raw

sensor data (accelerometer, gyroscope and Bluetooth). The feature data was

concatenated horizontally, resulting in n by 58 feature matrices, where n is a number

of samples. The second sensor fusion method combines data at decision level using

a two-stage approach. First the ML model was trained on data from each sensor

individually. The proximity probabilities output by each ML were combined

resulting in n by 3 matrices. Finally, the matrix of probabilities was input into the

ML regressor for range estimation. Our data fusion method at decision level is

20

similar to the popular Dempster-Shafer theory where hypothesis H is calculated as

𝑚 ⊕ 𝑚 (𝐻) =
∑ () ()∩

 ∑ () ()∩ ∅
 [44]. The difference with our method is that

after obtaining probabilities (hypothesis), we let ML model decide how to combine

the data instead of assigning a defined formula. Figure 4 illustrates how the data

from multiple sensors is arranged for the two sensor fusion methods explored in this

thesis.

Signal filtering: We evaluated the utility of 5 filter types for ML range

estimation: Butterworth [16], Chebyshev [16], Elliptical [16], Median [17], moving

average and moving average with overlapping windows. In order to determine

frequencies of interest, the Fast Fourier Transforms (FFTs) of the sensor signals

were computed. Most of the signal energy was found to be concentrated in the 0-

0.2Hz, 0.3Hz-0.5Hz, and 1.3Hz-1.5Hz bands. The Kaiser window FIR filter defined

by 𝜔 (𝑛𝑇) =
()

()
0 ≤ 𝑛 ≤ 𝑁 − 1

 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 where 𝛽 controls side lobe level

and 𝐼 (𝑥) is modified zero-order Bessel function [26]. A combination of three bands

was tested. Another experiment was conducted by using the Discrete Wavelet

Transform (DWT) to filter data, but it did not improve the accuracy of distance

estimation.

21

Figure 4 Sensor fusion methods

Feature extraction: Table 2 summarizes the radio propagation and statistical

features we computed from accelerometer, gyroscope, and Bluetooth data.

Additionally, for the accelerometer and gyroscope sensors, the mean and standard

deviation for each axis were computed as well as autocorrelation between the xy, xz,

and yz axes. A total of 20 features was extracted for each sensor. Radio propagation-

specific features along with statistical features based on RSSI, transmitted signal

strength, and advertiser time were extracted for Bluetooth radio. All radio

propagation specific features for Bluetooth radio were calculated based on RSSI.

22

Table 2 Features computed from accelerometer, gyroscope, and Bluetooth data

Sensor Feature Formula Ref

A, G Magnitude 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝑥 + 𝑦 + 𝑧 -

A, G, B Mean µ = ∑ 𝑋 n -

A, G, B Standard deviation
𝑆 = ∑ |𝑋 − 𝜇|

-

A, G, B Third and fourth
momentum

𝑚 = ∑ (𝑥 − 𝜇) , k=3, 4 -

A, G, B Percentile The score at k percentile for k = 25,
50, 75

-

A, G, B Value entropy 𝐻 (𝑦) = −𝐾 ∑ 𝑝 log 𝑝 15

A, G Time entropy 𝐻 (𝑦) = −𝐾 ∑ |𝑚 | log(|𝑚 |) 15

A, G, B Autocorrelation 𝑟 = 18

A, G Autocovariance 𝐾 (𝑡, 𝑠) = 𝑐𝑜𝑣[𝑋(𝑡), 𝑋(𝑠)] =

𝐸{[𝑋(𝑡) − 𝜇 (𝑡)][𝑋(𝑠) − 𝜇 (𝑠)]}
19

B Delta 𝑑𝑒𝑙𝑡𝑎 = 𝑅𝑆𝑆 − 𝑇𝑆𝑆 -

B Peak-to-peak change {𝑦(𝑛}| − {𝑦(𝑛}| 29

B Doppler spectrum peak 𝑃 () = max
(,)

𝐷(𝜆) 28

B Doppler spectrum mean
µ =

∑ 𝐷(𝜆)

|2𝑓 |

28

B Doppler spectrum RMS
𝑃 =

∫ 𝜆 𝐷(𝜆)𝑑𝜆

∫ 𝐷(𝜆)𝑑𝜆

29

B Energy
𝐸 = 𝐷(𝜆)𝑑𝜆 29

23

B Laplacian best fit 𝐷(𝜆) =
𝑎

1 + 𝑏𝜆
 29

B Gaussian fit
𝐷(𝜆) = 𝑎 exp (−(𝜆 − 𝑏)

/𝑐)

27

B Polynomial fit
𝐷(𝜆) = 𝑎 𝜆

27

B Fade duration
𝜏(𝜌) =

𝑒 − 1

√2𝜋𝜌𝑃

29

B Level crossing 𝑁(𝜌) = √2𝜋𝜌𝑃 𝑒 29

B Rayleigh parameter
𝑓 (𝑟) =

𝑦

𝜎
exp −

𝑦

2𝜎
, 𝑦 ≥ 0

29

In addition to statistical features, we employed classification models to

estimate the environment in which measurements were taken. There were five types

of environment labels: 1) Indoors or outdoors, 2) Room size: large, medium or small

room, 3) Transmitting device’s location in the room: center congested, center open,

near wall congested, and near wall open, 4) Pose of the test subject: sitting or

standing, and 5) Phone placement: held to right ear, front pants pocket, in hand, in

purse, rear pants pocket, or shirt pocket. All the features were computed over

windows of 10 samples of continuously sampled sensors’ signals. Before training a

regression classifier on the dataset, the data were normalized using one of two

methods: 1) z-score 𝑋 = or 2) min-max normalization 𝑋 =

 .

24

Machine learning algorithms: In this thesis, several regression models were

examined. A linear regression model assumes that regression function is linear.

Linear regression model is defined by 𝑓(𝑋) = 𝛽 + ∑ 𝑋 𝛽 [20]. Several

methods were examined to find the best fitting the linear regression model. The

stepwise linear method automatically adds or removes predictors 𝑋 to the model

based on the goodness of fit evaluated by computing a sum of squared errors. It is

expected that a model with more predictors will have lower error but could also

easily overfit the data. For that reason, we evaluated various combinations of

predictors in the ML model. The linear regression method is somewhat similar to

stepwise linear method but instead of adding or removing predictors, it tries to

discover interactions between predictors. The robust linear regression method is a

type of linear regression that attempts to identify outliers in the dataset which would

affect the goodness of fit. The measure of the effect of each observation in the dataset

can be found by computing H-matrix 𝐻 = 𝑋(𝑋 𝑋) 𝑋 where each diagonal term

is the effect of an observation on outcome y and X is the data matrix [22]. Outliers

are undesirable data points that do not follow the pattern of the other samples.

Removing outliers may affect the distribution of the data, which may be undesirable.

Tukey’s biweight applies weight to the data to handle outliers and was used to handle

25

outliers in our dataset. Tukey’s biweight function is defined as:

𝜓(𝑥) = 𝑥(1 − 𝑥) 𝑓𝑜𝑟 𝑥 < 1

𝜓(𝑥) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [17].

 We evaluated linear regression [20, 22], regression trees [21], Support Vector

Machines (SVM) [23], ensemble methods [20], and Gaussian Process Regression

(GPR) [24]. We validated the results of regression models using the 5-fold cross

validation technique to avoid overfitting and to robustly determine the optimal ML

model. The best performing model was also evaluated using leave-one-out cross-

validation with subject level splitting, wherein in each subject’s data occurs either

in the training or test set but not partially in both.

The regression tree splits data space into disjointed regions Ak and provides a

fitted value E (Y | X ϵ Ak) within each region [21]. Each split in the tree is made to

decrease impurity. Deviance is used as a definition of impurity and defined as 𝐷 =

∑ (𝑦 − 𝜇| |) where 𝜇| | is the mean of values in the node where case j belongs

to [21]. Three different types of trees were examined in this thesis: fine, medium,

and coarse. The difference between the tested tree types is that the minimum of the

fine tree leaf size is 4. The medium tree has a minimum leaf size of 12 and the coarse

tree has a minimum leaf size of 36. A Fine tree with smaller leaf size tends to overfit

the data. Trees with larger leaf sizes could help improve accuracy on the test set. Our

experiments showed the highest accuracy achieved with a fine tree.

26

 Support Vector Machines (SVM) regression is similar to linear regression

attempts to split feature space by creating linear boundary defined by 𝑓(𝑥) = 𝑥 𝛽 +

 𝛽 . In addition to hyperline that attempts to split the feature space, SVM allows

deviation from the hyperline by a margin M, defined as 𝑀 =
‖ ‖

 [20]. SVM

constructs a decision boundary of a type 𝑓(𝑥) =

𝑠𝑖𝑔𝑛(∑ 𝑦 𝛼 𝐾(𝑥 , 𝑥) − 𝑏) where 𝐾(𝑥 , 𝑥) is a convolution of the inner

product between support vector and the vector of the feature space [23]. Different

functions can be used for convolution of the inner product 𝐾(𝑥 , 𝑥) which can create

different types of non-linear decision boundaries. In this thesis, linear, quadratic,

cubic, and three types of Gaussian function were examined. The linear decision

boundary is defined by 𝐾(𝑥 , 𝑥) = 𝑥 ∙ 𝑥. To construct the polynomial decision

boundary the following function for convolution of the inner product is used

𝐾(𝑥 , 𝑥) = [(𝑥 ∙ 𝑥) + 1] where 𝑑 is the degree of the polynomial [11]. For

quadratic functions d=2 and cubic d=3 are used. The gaussian function uses the

following decision rule 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼 𝐾 (|𝑥 − 𝑥 |) − 𝑏) where 𝐾 (|𝑥 −

𝑥 |) = 𝑒𝑥𝑝{−𝛾|𝑥 − 𝑥 | } [11]. Fine, medium, and coarse Gaussian SVMs are

different in how the feature space is scaled. For Fine Gaussian SVM, features are

scaled by √ where 𝑃 is the number of features. Medium Gaussian SVM uses √𝑃 to

scale the features and Coarse Gaussian SVM utilizes √𝑃 ∗ 4.

27

Table 3 Evaluation metrics

Mean Squared Error (MSE) MSE = ∑ (𝑌 − 𝑌)

Root-Mean-Square Error (RMSE) RMSE =
∑ ()

R2 R2 =
∑ ()

∑ ()

Mean Absolute Error (MAE) MAE =
∑ | |

Balanced Accuracy (BA) BA =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2

F1
𝐹1 =

2 ∗ 𝑇𝑃𝑅 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑇𝑃𝑅 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

True Positive Rate (TPR) TPR =

True Negative Rate (TNR) TNR =

Precision 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Normalized Decision Cost
Function (nDCF)

𝑛𝐷𝐶𝐹 =
𝑤 𝑃 + 𝑤 𝑃

min (𝑤 , 𝑤)

Ensemble Regression model utilizes several simple models to build stronger

prediction models. Two different ensemble regression methods were explored in this

thesis. Bagged Trees, an ensemble method, utilizes simple regression trees to build

stronger predictor. The bagging estimate is defined by 𝑓 = ∑ 𝑓 (𝑥)

where 𝑓(𝑥) is the prediction at input x, b is a bootstrap sample, and 𝑓 (𝑥) are

independent predictions generated by each regression tree [20]. Bagging trees helps

28

reduce variance and thus improve goodness of fit. Boosted Trees is a technique that

combines several individual regression models to produce a more powerful one. A

prediction from several individual classifiers 𝐺 (𝑥) combined through weighted

majority voting produces a final decision 𝐺(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼 𝐺 (𝑥)) where 𝛼

are weights for each individual classifier 𝐺 (𝑥) [20]. Weights applied to each

individual classifier help more accurate classifiers influence the final prediction. 𝛼

computed as 𝛼 = log(); error computed as 𝑒𝑟𝑟 =
∑ (())

∑
 where

𝑤 = and N is a number of observations [20].

Gaussian Process Regression (GPR) can be viewed as a linear regression but

with added noise. The noise in the GPR model has a Gaussian distribution

𝜀~𝑁(0, 𝜎) with zero mean and variance of 𝜎 , those GPR model has the form 𝑦 =

𝑓(𝑥) + 𝜀 where 𝑓(𝑥) = 𝑥 𝑤 [24]. The Gaussian process is specified by the mean

function 𝑚(𝑥) and covariance function or kernel 𝑘(𝑥, 𝑥), where 𝑚(𝑥) = 𝐸[𝑓(𝑥)]

and 𝑘(𝑥, 𝑥) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥) − 𝑚(𝑥))] [24]. In this thesis, several

kernel functions were examined. We examined squared exponential kernel function

defined as 𝑘(𝑟) = exp (−) where 𝑙 is characteristic length scale and 𝑟 = |𝑥 −

𝑥 |, the Matern 5/2 kernel defined as 𝑘(𝑟) =
()

√
𝐾 (

√
) where 𝑣 = 5/2

and 𝐾 is a modified Bessel function, an exponential kernel defined as 𝑘(𝑟) =

29

exp (−(𝑟/𝑙)) for 0 < 𝛾 ≤ 2, and rational quadratic kernel defined as 𝑘(𝑟) =

(1 +) [24].

Evaluation metrics: Table 3 summarizes evaluation metrics used to measure

performance of regression and classification models.

30

CHAPTER 4 EVALUATION AND RESULTS

4.1. Data preparation

MARU dataset contains 24 different folders. We treated each folder as a different

subject. We first load the data into computer memory and organized data by sensor

and subject. Accelerometer and gyroscope data matrices have x, y, and z axes data,

information on range, angle, and user context. Bluetooth contains advertiser time

stamp, RSSI, transmitter signal strength, range, angle, and information on user

context. User context at this stage is n x 17 matrix consisting of ones and zeros that

tell if certain label applicable to a given data point or not. We continue by filtering

data using routine in appendix B.1 and creating hand-crafted features using routine

in appendix B.2. The functions used to calculate features presented in appendix B.6.

Now we have data ready for classification to identify user context. Routines

presented in appendix B.3 first combines 17 individual context labels into five

categories then performs classification to predict user context and finally, adds this

information to the test and training matrices. The final step in which the data was

normalized, ML models trained, and the regression tasks performed to estimate

range between a subject in order to classify it two are closer than six feet presented

in Appendix B.4. Supporting functions, such as the one used to align sensor data for

31

sensor fusion experiments, calculate performance matrices, and to group context

information into five categories are presented in Appendix B.5.

4.2. Signal filtering

We tested various types of filters and cutoff frequencies ranging from 0.1 Hz to 1.8

Hz and found that the Elliptical filter of the 9th order performed best. Table 4 shows

a ranking of the performance of different filter types.

The highest regression R2 for the accelerometer was 0.63 at cut-off frequency

of 0.2 Hz and 0.27 for the gyroscope at a cut-off frequency of 0.1 Hz. This was a

significant improvement over the best R2 achieved using unfiltered data: 0.31 for the

accelerometer and 0.21 for the gyroscope. The constructed bandpass filter performed

worse than a low-pass filter. Thus, we proceeded to utilize the 9th order Elliptical

filter low-pass filter in subsequent experiments.

Table 4 Filter type rating

Rating Accelerometer Gyroscope Sensor Fusion

1 Elliptical 9th Elliptical 10th Elliptical 9th

2 Chebyshev 5th Butterworth 10th Butterworth 6th

3 Butterworth 6th Chebyshev 3rd Chebyshev 5th

4 Median 7th MA with OL MA (window 4)

5 MA (window 8) MA (window 3) MA with OL

6 MA with OL Median 6th Median 10th

32

4.3. Normalization

Min-max and z-score normalization techniques showed similar performance. The R2

score for accelerometer was 0.5365, gyroscope – 0.3808, and Bluetooth - 0.9983

using min-max normalization, while with z-score normalization accelerometer R2 –

0.6767, gyroscope – 0.2935, and Bluetooth – 0.9980. Consequently, we proceeded

with z-score normalization.

4.4. Classification performance on various labels

Table 5 summarizes the results of classifying various labels in the MRAU dataset.

Overall, Bluetooth radio had very high accuracy for recognizing all the context

variables with BA and F1 values of 0.99 for all. Accelerometer data yielded good

accuracy for recognizing when the subject was sitting or standing and also, in

detecting the size of the room. We discovered that including additional features

improved the ML model’s performance of the model when validated using 5-fold

cross-validation. Figures 5 through 7 show the importance of each feature for various

range estimation tasks. In addition to hand-crafted features, a much broader set of

features was evaluated, and results are presented in Appendix A. Feature importance

was calculated as the difference in the node risk between parent and children’s nodes

 where risk is defined as a node error.

33

Table 5 F1 and BA classifier performance

Classification
Model Accuracy

Accelerometer Gyroscope Bluetooth

F1 BA F1 BA F1 BA

Indoor 0.8512 0.9014 0.7595 0.8371 0.9981 0.9991

Outdoor 0.7812 0.8626 0.4939 0.7098 0.9999 1

Large Room 0.7946 0.8708 0.7152 0.8465 0.9971 0.9988

Medium Room 0.9035 0.9041 0.7793 0.7843 0.9992 0.9992

Small Room 0.8466 0.9005 0.5839 0.74 0.9999 1

Center Congested 0.5835 0.7511 0.1614 0.59 0.9936 0.9999

Center Open 0.8511 0.8921 0.6514 0.7466 0.9995 0.9995

Near Wall
Congested

0.8657 0.8993 0.7512 0.8113 0.9999 1

Near Wall Open 0.9035 0.9309 0.7357 0.8026 0.9999 0.9999

Sitting 0.8815 0.8987 0.7401 0.782 0.9979 0.998

Standing 0.9151 0.8987 0.8195 0.782 0.9979 0.998

Hold to Right Ear 0.8546 0.9033 0.7712 0.8362 0.9992 0.9996

Front Pants
Pocket

0.635 0.7677 0.3487 0.6125 0.9943 0.9975

In Hand 0.7518 0.8048 0.5636 0.6611 0.9929 0.9929

In Purse 0.6756 0.7956 0.2771 0.5835 0.9796 0.992

Rear Pants Pocket 0.6292 0.7419 0.456 0.6573 0.985 0.9895

Shirt Pocket 0.5803 0.7863 0.1325 0.5656 0.989 0.9987

Average: 0.7826 0.8535 0.573 0.7264 0.9955 0.9978

34

Figure 5 Predictor importance for accelerometer sensor data

Figure 6 Predictor importance for gyroscope sensor data

35

Figure 7 Predictor importance for Bluetooth sensor data.

4.5. Best performing ML classification algorithm

Table 6 summarizes and compares the performance of various machine learning

classification algorithms. Regression Trees performed best with Bluetooth sensor

data, and Bagged Trees performed best on the accelerometer and gyroscope data.

The highest ML regression fit was observed with the Bluetooth sensor.

36

Table 6 Results of an optimal classifier search

Model Method
RMSE score

A G B

Linear Linear 4.4223 4.6607 4.7696

 Interactions Linear 4.6399 7.938 5.82E+08

 Robust Linear 4.4308 4.6633 12.719

 Stepwise Linear 3.9749 4.6461 7.0528

Tree Fine Tree 3.5293 5.1107 0.2289

 Medium Tree 3.3486 4.7299 0.3087

 Coarse Tree 3.4537 4.4817 0.4765

SVM Linear SVM 4.528 4.7148 4.6823

 Quadratic SVM 4.2603 7.1004 19.766

 Cubic SVM 30.453 105.29 26940

 Fine Gaussian SVM 3.234 4.2502 3.7406

 Medium Gaussian SVM 3.3354 4.2912 4.2992

 Coarse Gaussian SVM 4.2538 4.5428 4.5327

Ensemble Boosted Trees 3.5044 4.2923 2.1337

 Bagged Trees 2.837 4.0989 0.5902

GPR Squared Exponential 3.0078 4.1947 3.6705

 Matern 5/2 2.9709 4.1685 3.5152

 Exponential 2.9223 4.1153 2.0701

 Rational Quadratic 2.9249 4.1399 2.1051

37

4.6. Cross-validation

In addition to the 5-fold cross validation technique, we also validated the

performance of our model using leave-one-out cross validation, and subject level

splitting. For leave-one-out cross-validation, we split the data into training and test

sets by subject, where one subject’s data was put in the test set and all others in the

training set. For this test we only used subjects that had data from all three sensors

which resulted in a total of 17 subjects. Since the performance of the regression

model can vary significantly from subject to subject, we performed leave-one-out

cross-validation 17 times, each time testing on a new subject while the remaining 16

were used to train the model. This validation approach most closely mimics real-

world environments. Figure 8 summarizes the performance of the regression model

and depicts the distribution of regressor error. It should be noted that the regression

model was found to be capable of producing repeatable results when trained on the

accelerometer, gyroscope, Bluetooth, or the first method of sensor fusion. The

regression model trained on gyroscope sensor data showed the lowest average

RMSE error of 4.57 while Bluetooth had an error of 5.65. However, some subjects

showed higher range estimation accuracy using Bluetooth sensor data, while others

had better results with gyroscope or accelerometer data. Since it is difficult to predict

which sensor will work best for a random subject, it is best to combine data from all

three sensors as proposed in the first sensor fusion method. Even though the average

38

RMSE for the first sensor fusion method is 5.23, it never performed worse than the

worst performing sensor out of three for a given subject. The second sensor fusion

method did not show good results, had wide distribution error and thus should not

be considered for real-word deployment.

Figure 8 Distribution of regressor error with leave-one-out cross-validation.

For subject level cross-validation, we used a 70/30 train/test split (12 subjects

in training set, 5 subjects in test set). This method is a good alternative to leave-one-

out cross-validation as it is very rigorous and mimics a real-world scenario but also

allows us to have a larger test set. Tables 7 through 9 show the results of cross-

validation.

E
rr

o
r

[f
ee

t]

39

Table 7 Regression model results with 5-fold cross-validation

Accelerometer Gyroscope Bluetooth

Handcrafted
Features

All
Features

Handcrafted
Features

All
Features

Handcrafted
Features

All
Features

MSE 7.1917 7.4384 15.9857 16.2524 0.0409 0.0485

RMSE 2.6817 2.7273 3.9982 4.0314 0.2023 0.2202

R2 0.6874 0.6767 0.3051 0.2935 0.9983 0.998

MAE 1.8938 1.9426 3.2899 3.3445 0.0112 0.0122

Table 8 Regression model results with leave-one-out cross-validation

Accelerometer Gyroscope Bluetooth

Handcrafted
Features

All
Features

Handcrafted
Features

All
Features

Handcrafted
Features

All
Features

MSE 43.8925 43.2142 39.2562 39.0704 33.2625 12.9921

RMSE 6.6251 6.5738 6.2655 6.2506 5.7674 3.6045

R2 -0.2007 -0.1822 -0.0739 -0.0688 0.0901 0.6446

MAE 5.9464 5.9096 5.7377 5.7527 4.5635 2.2201

Table 9 Regression model results with subject level splitting cross-validation

Accelerometer Gyroscope Bluetooth

Handcrafted
Features

All
Features

Handcrafted
Features

All
Features

Handcrafted
Features

All
Features

MSE 11.7313 11.1554 24.4948 23.3507 35.929 41.4525

RMSE 3.4251 3.34 4.9492 4.8323 5.9941 6.4384

R2 0.5098 0.5339 -0.0235 0.0243 -0.5012 -0.732

MAE 2.8614 2.7524 4.3665 4.2637 4.5213 4.8695

40

CHAPTER 5 ANALYSIS OF PROXIMITY ESTIMATION ERROR

5.1. Analysis of error

We found that ensemble methods estimated range between two subjects within 2.8

feet RMSE when using accelerometer data, and 4 feet RMSE with gyroscope data,

while the regression trees yielded 0.2 feet RMSE score using Bluetooth data.

Additionally, low pass filtering sensor data improved the performance of ML

algorithms for range estimation. We observed an R2 improvement of 0.32 and 0.06

with accelerometer and gyroscope data respectively. Unfortunately, the performance

of the regressor dropped significantly when validated using subject level splitting.

The R2 of the best performing ML regression model using Bluetooth reduced by 0.35

R2, and by 0.49 and 0.22 when using accelerometer and gyroscope data respectively.

We observed that adding context information as an input feature to the machine

learning model improved regression model performance but not on classification

models validated either using 5-fold cross-validation or with leave-one-out cross-

validation, but context features helped during validation.

We believe that the reduction in regression model performance was due to

inadequate training data. Figure 9 shows how much data was available for each

subject. As we can see, some subjects had very little data and very few available

distance settings which results in a model being trained at a given distance not on all

41

17 subjects but on much smaller dataset as well as a much less diverse training set.

This also affects validation since only a few samples end up in a test set when

validating with leave-one-out cross-validation. Figures 10 to 12 show the predicted

versus actual when validated using leave-one-out cross validation.

Figure 9 Amount of data in the test set.

Accelerometer and gyroscope data have a high variance, which can be

improved by training the regression model on more data. In contrast, the Bluetooth

42

regressor had both high variance and bias. Thus, adding more diverse Bluetooth data

could improve regression performance.

Figure 10 Predicted versus actual distance for regression model trained on

accelerometer data and validated with leave-one-out cross-validation

P
re

d
ic

te
d

 D
is

ta
n

ce

43

Figure 11 Predicted versus actual distance for regression model trained on

gyroscope data and validated with leave-one-out cross-validation

Figure 12 Predicted versus actual distance for regression model trained on

Bluetooth radio data and validated with leave-one-out cross-validation

P
re

di
ct

ed
 D

is
ta

nc
e

P
re

d
ic

te
d

 D
is

ta
n

ce

44

5.2. Synthetic minority over-sampling (SMOTE)

To train our model on more samples, we generated more data using the Synthetic

Minority Over-sampling Technique (SMOTE). In comparison to traditional over-

sampling or under-sampling techniques, SMOTE operates in the “feature space:

rather than “data space” [30]. The additional samples generated along the line that

joins all k nearest neighbors where k is determined by the oversampling rate. New

samples generated by the following formula 𝑥 = 𝑥 + 𝑟𝑎𝑛𝑑(0,1)|𝑥 − 𝑥 |, where 𝑥

is the feature vector under consideration and 𝑥 its nearest neighbor [30]. Table 10

depicts results of comparison between original data set and the one with synthetic

data. It should be noted that the regression model results depicted in Table 10 were

obtained with leave-one-out cross-validation in which only one randomly selected

subject was chosen for the test set. Unfortunately, training our regression model on

synthetic data did not improve the accuracy of range estimation.

5.3. Best performing features

In some cases, adding additional features to ML model improved the accuracy of the

model. In our experiments, we used 20 hand-crafted features for accelerometer and

gyroscope, and 28 hand-crafted features for Bluetooth. However, we found that not

all features were useful for range estimation. Based on predictor importance we

selected only the 15 best-performing features and repeated our tests using leave-one-

45

out cross validation, where one subject would be kept in the test set and the rest put

in the training set. We tested all 17 subjects, and the results are shown in Figure 13

and Table 11.

Table 10 Original with synthetic dataset regression model performance when

validated with leave-one-out cross-validation

Accelerometer Gyroscope Bluetooth

Ref. SMOTE Ref. SMOTE Ref. SMOTE

MSE 35.8281 43.5135 32.6668 35.7631 30.498 89.5644

RMSE 5.9857 6.5965 5.7155 5.9802 5.5225 9.4638

R2 -1.0572 -1.0271 -0.8756 -0.6761 -0.7511 -3.178

MAE 5.294 5.6685 5.0777 5.1284 4.8512 8.1768

Fusion 1 Fusion 2

Ref. SMOTE Ref. SMOTE

MSE 46.2692 47.6334 128.8 101.658

RMSE 6.8021 6.9017 11.349 10.0826

R2 -1.6567 -1.2324 -6.3954 -3.7642

MAE 5.9693 5.9333 10.5538 8.9624

46

Figure 13 Distribution of regressor error with leave-one-out cross-validation using

only 15 best performing features.

Table 11 Regression model results with leave-one-out cross-validation when

trained on 15 best performing features

 Accelerometer Gyroscope Bluetooth Fusion 1 Fusion 2

MSE 24.5158 21.6165 27.5294 32.8085 48.5999

RMSE 4.8283 4.5220 5.1097 5.4426 6.4561

R2 -2.4943 -2.1205 -4.0736 -4.1276 -5.2881

MAE 4.1838 3.9787 4.2420 4.6338 5.5489

E
rr

o
r

[f
ee

t]

47

Using only the best performing features improved mean RMSE by 0.0035 for

a model trained on accelerometer sensor data, by 0.0493 on gyroscope data, and by

0.5436 on Bluetooth radio data. However, it did affect the performance of the first

sensor fusion method by 0.2098. The regression model based on Bluetooth sensor

data had the most features (28 features). Thus, removing the worst-performing

features yielded the highest improvement in the accuracy of range estimation. We

believe that using the best performing features versus more futures yields higher

accuracy regression and classification models.

5.4. Social distance classification

Overall, the approach presented in this thesis can detect with high accuracy whether

two subjects are within 6 feet of each other. Table 12 shows the classification results

for all sensors with leave-one-out cross-validation technique when using all features

and when using only the best performing.

We found that using only the best performing features significantly improves

classification model trained on Bluetooth data, improving the F1 score by 0.17.

Classification results are even better when validated with 5-fold cross-validation.

However, 5-fold cross-validation are not as rigorous as leave-one-out cross-

validation, which is the best approximation to the real-world deployment scenario.

48

Table 13 presents classification results for all sensors and sensor fusion methods

when validated with 5-fold cross-validation.

Table 12 Accuracy of estimation if subjects are closer than 6 feet with leave-one-

out cross-validation

Accelerometer Gyroscope

All features 15 Best feat. All features 15 Best feat.

F1 0.6359 0.7274 0.7345 0.7813

BA 0.4348 0.4599 0.4698 0.4978

Bluetooth

All features 15 Best feat.

F1 0.5885 0.7589

BA 0.5318 0.5984

Table 13 Accuracy of estimation if subjects are closer than 6 feet with 5-fold cross-

validation

 Accelerometer Gyroscope Bluetooth Fusion 1 Fusion 2

F1 0.9036 0.8358 0.9182 0.9687 0.9511

BA 0.7925 0.5575 0.9238 0.9625 0.9497

49

Table 14 Accuracy of estimation if subjects are closer than 6 feet with leave-one-

out cross-validation

 Accelerometer Gyroscope Bluetooth Fusion 1 Fusion 2

F1 0.7274 0.7813 0.7589 0.7651 0.0000

BA 0.4599 0.4978 0.5984 0.5918 0.4375

We can see that sensor fusion classified proximity of 6 feet or less better than

any other individual sensor. To verify whether that remains true when validating

with leave-one-out cross validation, we tested every subject in our dataset and the

average results of leave-one-out cross-validation are captured in Table 14. First

sensor fusion method performed slightly worse than the model trained on gyroscope

data only if comparing by F1 metric. However, sensor fusion performed better than

the gyroscope when compared using the Balanced Accuracy (BA) metric. Sensor

fusion showed very promising results at estimating proximity and classifying if

subjects are closer than 6 feet and we believe it is the optimal way to use sensors

available in mobile phones for real-world deployment scenarios.

In addition to balanced accuracy and F1-score, we computed nDCF which is

the required performance metric for National Institute of Standards and Technology

(NIST) TC4TL challenge [45]. nDCF measures misclassified predictions – false

negatives (FN) and false positives (FP). The sum of the misclassification normalized

per number of samples so that sets of different sample size can be compared. nDCF

50

results for classifying social distance are captured in Figure 14. We found that our

model, trained on each individual sensor and on the sensor fusion at the future level,

outperformed state of the art methods using neural networks developed by Shankar,

Sheshank et al. and described in their paper “Proximity Sensing: Modeling and

Understanding Noisy RSSI-BLE Signals and Other Mobile Sensor Data for Digital

Contact Tracing.” [34].

Figure 14 Accuracy of ≤6 feet estimation – nDCF metric.

51

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

In this thesis, we have presented research that demonstrates that accurate range

estimation with accelerometer, gyroscope sensors and Bluetooth radio are possible

with high accuracy in certain scenarios. We found that ensemble ML models worked

best with accelerometer and gyroscope sensors data, while regression trees

performed best with Bluetooth radio data. We found that the Elliptical low-pass filter

of 9th order with cut-off frequency of 0.2 Hz for accelerometer and 0.1 Hz for

gyroscope performed best. Z-axis mean autocorrelation were the most important

features in ML model developed for accelerometer sensor, z-axis mean y-axis mean

worked best for gyroscope sensor, and advertiser time and mean RSSI worked best

with Bluetooth radio. In addition to handcrafted features, this thesis shows that

adding context to predictor matrix could improve regression model performance.

Our classification model was able to detect context in which measurements took

place with an average BA of 0.85 using accelerometer sensor, 0.73 using gyroscope

sensor, and 0.99 with Bluetooth radio. We explored two methods of combining

sensors data. Finally, we presented results of an ML classification model trained on

sensors fusion data that showed 77%-97% accuracy estimating whether two subjects

are closer than 6 feet. We observed that different validation methods could have

significant impact on performance of our model. We performed thorough evaluation

of our model. The presented model was evaluated with three different cross-

52

validation methods. However, we only split data into a training and test set due to

lack of samples and subjects in available dataset. In the future, if a larger dataset

becomes available, it would be worth repeating our experiments with the data split

to training, validation, and test sets.

53

REFERENCE

[1] “Pact datasets and evaluation,” PACT, Boston, MA, 2020. [Online]. Available:

https://mitll.github.io/PACT/datasets.html# datasets-submit

[2] Isella, Lorenzo et al. “What’s in a Crowd? Analysis of Face-to-Face Behavioral

Networks.” Journal of theoretical biology 271.1 (2011): 166–180. Web.

[3] Olguin, D.O et al. “Sensible Organizations: Technology and Methodology for

Automatically Measuring Organizational Behavior.” IEEE transactions on

systems, man and cybernetics. Part B, Cybernetics 39.1 (2009): 43–55. Web.

[4] Pentland, Alex (Sandy). “Automatic Mapping and Modeling of Human

Networks.” Physica A 378.1 (2007): 59–67. Web.

[5] Katevas, Kleomenis et al. “Finding Dory in the Crowd: Detecting Social

Interactions Using Multi-Modal Mobile Sensing.” (2018): n. pag. Print.

[6] Vaizman, Yonatan, Katherine Ellis, and Gert Lanckriet. “Recognizing Detailed

Human Context in the Wild from Smartphones and Smartwatches.” IEEE

pervasive computing 16.4 (2017): 62–74. Web.

[7] Ouchi, Kazushige, and Miwako Doi. “Indoor-Outdoor Activity Recognition by a

Smartphone.” ACM Ubicomp 2012. 600-1.

[8] Matic, A et al. “Multi-Modal Mobile Sensing of Social Interactions.”, IEEE

Pervasive Health Workshop 2012. 105-14.

[9] Banerjee, Nilanjan et al. “Virtual Compass: Relative Positioning to Sense Mobile

Social Interactions.” Pervasive Computing. Berlin, Heidelberg: Springer Berlin

Heidelberg. 1–21. Web.

54

[10] Sapiezynski, Piotr et al. “Inferring Person-to-Person Proximity Using WiFi

Signals.” ACM IMWUT 1.2 (2017): 1–20. Web.

[11] Palaghias, Niklas et al. “Accurate Detection of Real-World Social Interactions

with Smartphones.” 2015 IEEE ICC 2015. 579–585.

[12] Katevas, Kleomenis et al. “Detecting Group Formations Using iBeacon

Technology.” Proc. ACM Ubicomp 2016. 742–752.

[13] Ghose, Avik, Chirabrata Bhaumik, and Tapas Chakravarty. “BlueEye: A

System for Proximity Detection Using Bluetooth on Mobile Phones.” Adj. Proc.

ACM Ubicomp 2013. 1135–1142.

[14] Huang, William et al. “Opo: a Wearable Sensor for Capturing High-Fidelity

Face-to-Face Interactions.” In Proc ACM Conference on Embedded Network

Sensor Systems.2014. 61–75.

[15] Shannon, C. “A Mathematical Theory of Communication.” Mobile computing

and communications review 5.1 (2001): 3–55.

[16] Schlichthärle, Dietrich. Digital Filters: Basics and Design. Second edition.

Heidelberg: Springer, 2011.

[17] Tukey, John Wilder. Exploratory Data Analysis. Reading, Mass: Addison-

Wesley Pub. Co., 1977.

[18] George E.P. Box. Time Series Analysis: Forecasting and Control. 5th ed. New

York: Wiley, 2016.

55

[19] Hsu, Hwei P. Schaum’s Outline of Theory and Problems of Probability,

Random Variables, and Random Processes. Place of publication not identified:

McGraw Hill, 1997.

[20] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. Elements of

Statistical Learning: Data Mining, Inference, and Prediction. New York:

Springer, 2009.

[21] Breiman, Leo. Classification and Regression Trees. Belmont, Calif:

Wadsworth International Group, 1984.

[22] Huber, P. J. Robust Statistics. New York: Wiley, 1981.

[23] Vapnik, Vladimir N. The Nature of Statistical Learning Theory. New York,

NY: Springer New York, 1995.

[24] Rasmussen, Carl Edward, and Christopher K. I Williams. Gaussian Processes

for Machine Learning. Cambridge: MIT Press, 2005. Print.

[25] Greenberg, C. and, D. (2020), NIST Pilot Too Close for Too Long (TC4TL)

Challenge Evaluation Plan, NIST TC4TL Challenge, [online],

https://tsapps.nist.gov/publication/get_pdf. cfm?pub_id=930486, https://www

.nist.gov/itl/iad/mig/nist-tc4tl-challenge (Accessed May 3, 2021)

[26] Chen, Wai-Kai. Passive, Active, and Digital Filters. Boca Raton: Taylor &

Francis, 2006. Print.

[27] Ruijun Fu et al. “Doppler Spread Analysis of Human Motions for Body Area

Network Applications.” 2011 IEEE 22nd International Symposium on Personal,

Indoor and Mobile Radio Communications. IEEE, 2011. 2209–2213. Web.

56

[28] Dong, Zehua et al. “Indoor Motion Detection Using Wi-Fi Channel State

Information in Flat Floor Environments Versus in Staircase Environments.”

Sensors (Basel, Switzerland) 18.7 (2018): 2177–. Web.

[29] Su, Zhuoran, Kaveh Pahlavan, and Emmanuel Agu. “Performance Evaluation

of COVID-19 Proximity Detection Using Bluetooth LE Signal.” IEEE access 9

(2021): 38891–38906. Web.

[30] Chawla, N. V et al. “SMOTE: Synthetic Minority Over-Sampling

Technique.” The Journal of artificial intelligence research 16 (2002): 321–357.

Web.

[31] Palaz, Dimitri, Mathew Magimai-Doss, and Ronan Collobert. “Convolutional

Neural Networks-Based Continuous Speech Recognition Using Raw Speech

Signal.” 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2015. 4295–4299. Web.

[32] Swietojanski, Pawel, Arnab Ghoshal, and Steve Renals. “Convolutional

Neural Networks for Distant Speech Recognition.” IEEE signal processing letters

21.9 (2014): 1120–1124. Web.

[33] Kiranyaz, Serkan et al. “Convolutional Neural Networks for Patient-Specific

ECG Classification.” 2015 37th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC) (2015): 2608–2611. Web.

[34] Shankar, Sheshank et al. “Proximity Sensing: Modeling and Understanding

Noisy RSSI-BLE Signals and Other Mobile Sensor Data for Digital Contact

Tracing.” (2020): n. pag. Print.

57

[35] Tsinalis, Orestis et al. “Automatic Sleep Stage Scoring with Single-Channel

EEG Using Convolutional Neural Networks.” (2016): n. pag. Print.

[36] Semenov, Oleksandr, Emmanuel Agu, and Kaveh Pahlavan. “Machine

Learning Estimation of COVID-19 Social Distance using Smartphone Sensor

Data”.” 2021 43rd Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC) (2021). Web. (Accepted, to appear)

[37] “Coronavirus, Covid-19” Cleveland Clinic, 12 Nov. 2020,

my.clevelandclinic.org/health/diseases/21214-coronavirus-covid-19.

[38] “Interim Clinical Guidance for Management of Patients with Confirmed

Coronavirus Disease (COVID-19).” CDC, Center for Disease Control and

Prevention, 12 Feb. 2021, www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-

guidance-management-patients.html. Accessed 15 Aug. 2021

[39] “How to Protect Yourself & Others.” CDC, Center for Disease Control and

Prevention, 13 Aug. 2021, https://www.cdc.gov/coronavirus/2019-ncov/prevent-

getting-sick/prevention.html. Accessed 15 Aug. 2021

[40] “Coronavirus disease 2019 (COVID-19) Factsheet.” CDC, Center for Disease

Control and Prevention, 7 Jan. 2021, https://www.cdc.gov/coronavirus/2019-

ncov/downloads/stop-the-spread_poster.pdf. Accessed 15 Aug. 2021

[41] “Appendices.” CDC, Center for Disease Control and Prevention, 5 Aug. 2021,

https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-

tracing-plan/appendix.html. Accessed 15 Aug. 2021

58

[42] “PACT: Private Automated Contact Tracing” PACT, Massachusetts Institute

of Technology, 19 May 2020, https://pact.mit.edu/project-description. Accessed

16 August 2021

[43] “Structured Contact Tracing Protocol, V. 2.0 (1.5)” MITLL, Massachusetts

Institute of Technology Lincoln Laboratory, 2020,

https://mitll.github.io/PACT/files/Structured%20Contact%20Tracing%20Protoc

ol,%20V.%202.0%20(1.5).pdf. Accessed 15 Aug. 2021

[44] Castanedo, Federico. “A Review of Data Fusion Techniques.” The Scientific

World 2013 (2013): 704504–19. Web.

[45] “NIST Pilot Too Close for Too Long (TC4TL) Challenge Evaluation Plan.”

NIST TC4TL Challenge, NIST, 1 July 2020,

www.nist.gov/system/files/documents/2020/07/01/2020_NIST_Pilot_TC4TL_

Challenge_Evaluation_Plan_v1p3.pdf.

[46] “WHO Coronavirus (COVID-19) Dashboard.” World Health Organization,

World Health Organization, 25 Aug. 2021, covid19.who.int/.

59

APPENDIX A FEATURE IMPORTANCE

A.1 Predictor Importance for Features Based on

Accelerometer Sensor Data

Feature Importance
acc_x__absolute_sum_of_changes 2.92496E-05
acc_x__fft_coefficient__attr_"abs"__coeff_1 2.46921E-05
acc_x__mean_abs_change 2.33099E-05
acc_y__mean_abs_change 2.18487E-05
acc_z__fft_coefficient__attr_"abs"__coeff_1 2.16607E-05
acc_z__mean_abs_change 2.13031E-05
acc_z__absolute_sum_of_changes 2.04745E-05
acc_y__fft_coefficient__attr_"abs"__coeff_1 2.04742E-05
acc_y__absolute_sum_of_changes 1.92937E-05
acc_x__quantile__q_0.6 1.61013E-05
acc_x__time_reversal_asymmetry_statistic__lag_1 1.56442E-05
acc_x__autocorrelation__lag_0 1.35567E-05
acc_x__cwt_coefficients__coeff_0__w_5__widths_ (2, 5,
10, 20) 1.19505E-05
acc_x__minimum 1.16347E-05
acc_x__quantile__q_0.8 1.16339E-05
acc_x__cwt_coefficients__coeff_0__w_20__widths_ (2, 5,
10, 20) 1.15786E-05
acc_x__abs_energy 1.13793E-05
acc_x__quantile__q_0.9 1.11264E-05
acc_x__cwt_coefficients__coeff_1__w_2__widths_ (2, 5,
10, 20) 1.10877E-05
acc_x__quantile__q_0.4 1.10048E-05
acc_x__quantile__q_0.7 1.0521E-05
acc_y__cwt_coefficients__coeff_1__w_2__widths_ (2, 5,
10, 20) 1.02811E-05
acc_x__mean 1.01694E-05
acc_z__quantile__q_0.2 9.30498E-06
acc_x__fft_coefficient__attr_"real"__coeff_1 9.29676E-06

60

acc_x__length 9.21368E-06
acc_y__fft_coefficient__attr_"real"__coeff_1 9.19955E-06
acc_y__autocorrelation__lag_0 9.19913E-06
acc_x__benford_correlation 9.13743E-06
acc_y__cwt_coefficients__coeff_0__w_20__widths_ (2, 5,
10, 20) 9.07809E-06
acc_z__fft_coefficient__attr_"real"__coeff_1 8.94405E-06
acc_z__quantile__q_0.8 8.93077E-06
acc_y__benford_correlation 8.82741E-06
acc_y__quantile__q_0.7 8.77025E-06
acc_z__quantile__q_0.3 8.74172E-06
acc_y__quantile__q_0.6 8.5821E-06
acc_z__cwt_coefficients__coeff_0__w_5__widths_ (2, 5,
10, 20) 8.56369E-06
acc_y__cwt_coefficients__coeff_0__w_10__widths_ (2, 5,
10, 20) 8.53453E-06
acc_y__quantile__q_0.8 8.52491E-06
acc_x__quantile__q_0.3 8.45743E-06
acc_x__cwt_coefficients__coeff_0__w_10__widths_ (2, 5,
10, 20) 8.36018E-06
acc_z__abs_energy 8.29184E-06
acc_z__cwt_coefficients__coeff_1__w_2__widths_ (2, 5,
10, 20) 8.13314E-06
acc_z__cwt_coefficients__coeff_0__w_20__widths_ (2, 5,
10, 20) 7.99846E-06
acc_y__abs_energy 7.98002E-06
acc_y__length 7.87085E-06
acc_z__autocorrelation__lag_0 7.77286E-06
acc_y__quantile__q_0.3 7.71416E-06
acc_z__benford_correlation 7.70786E-06
acc_y__quantile__q_0.2 7.60758E-06
acc_x__quantile__q_0.2 7.43027E-06
acc_z__quantile__q_0.6 7.39519E-06
acc_y__quantile__q_0.9 7.33523E-06
acc_y__minimum 7.10305E-06
acc_z__quantile__q_0.4 6.94949E-06
acc_y__cwt_coefficients__coeff_0__w_5__widths_ (2, 5,
10, 20) 6.75632E-06
acc_z__mean 6.75479E-06

61

acc_y__mean 6.6312E-06
acc_z__cwt_coefficients__coeff_0__w_10__widths_ (2, 5,
10, 20) 6.52357E-06
acc_y__quantile__q_0.4 6.37809E-06
acc_z__quantile__q_0.7 6.3578E-06
acc_z__minimum 6.15688E-06
acc_z__quantile__q_0.9 5.72905E-06
acc_z__length 5.25758E-06
acc_y__time_reversal_asymmetry_statistic__lag_1 2.75666E-06
acc_z__time_reversal_asymmetry_statistic__lag_1 2.69566E-06
acc_x__lempel_ziv_complexity__bins_2 5.58921E-07
acc_x__fft_coefficient__attr_"angle"__coeff_1 5.08107E-07
acc_x__approximate_entropy__m_2__r_0.1 2.58461E-07
acc_x__count_below__t_0 2.25775E-07
acc_y__lempel_ziv_complexity__bins_2 6.01714E-08
acc_y__fft_coefficient__attr_"angle"__coeff_1 5.26534E-08
acc_y__count_below__t_0 4.87347E-08
acc_y__approximate_entropy__m_2__r_0.1 3.24629E-08
acc_z__range_count__max_0__min_1000000000000.0 3.18586E-08
acc_z__lempel_ziv_complexity__bins_2 2.93348E-08
acc_z__approximate_entropy__m_2__r_0.1 1.7963E-08
acc_z__fft_coefficient__attr_"angle"__coeff_1 1.78132E-08
acc_z__count_below__t_0 1.5534E-08
acc_y__range_count__max_0__min_1000000000000.0 1.39696E-08

A.2 Predictor Importance for Features Based on

Gyroscope Sensor Data

Feature Importance
gyro_z__fft_coefficient__attr_"abs"__coeff_1 2.84421E-05
gyro_y__absolute_sum_of_changes 2.80925E-05
gyro_z__mean_abs_change 2.71903E-05
gyro_y__mean_abs_change 2.60896E-05
gyro_y__fft_coefficient__attr_"abs"__coeff_1 2.57663E-05

62

gyro_z__absolute_sum_of_changes 2.31541E-05
gyro_x__fft_coefficient__attr_"abs"__coeff_1 2.24368E-05
gyro_x__absolute_sum_of_changes 2.02626E-05
gyro_x__mean_abs_change 1.96577E-05
gyro_y__time_reversal_asymmetry_statistic__lag_1 1.68127E-05
gyro_z__time_reversal_asymmetry_statistic__lag_1 1.65649E-05
gyro_x__time_reversal_asymmetry_statistic__lag_1 1.42673E-05
gyro_x__autocorrelation__lag_0 1.11642E-05
gyro_x__quantile__q_0.2 1.10066E-05
gyro_x__quantile__q_0.7 1.09897E-05
gyro_x__cwt_coefficients__coeff_1__w_2__widths_ (2, 5,
10, 20) 9.95369E-06
gyro_y__quantile__q_0.9 9.869E-06
gyro_x__length 9.69879E-06
gyro_y__quantile__q_0.4 9.69441E-06
gyro_z__cwt_coefficients__coeff_0__w_10__widths_ (2, 5,
10, 20) 9.69363E-06
gyro_x__fft_coefficient__attr_"real"__coeff_1 9.58692E-06
gyro_y__quantile__q_0.6 9.47557E-06
gyro_x__benford_correlation 9.42223E-06
gyro_y__fft_coefficient__attr_"real"__coeff_1 9.30378E-06
gyro_z__quantile__q_0.2 9.27752E-06
gyro_z__quantile__q_0.3 9.1353E-06
gyro_x__cwt_coefficients__coeff_0__w_5__widths_ (2, 5,
10, 20) 9.06342E-06
gyro_z__quantile__q_0.6 9.06283E-06
gyro_z__quantile__q_0.7 8.95777E-06
gyro_y__autocorrelation__lag_0 8.8109E-06
gyro_z__minimum 8.70725E-06
gyro_z__abs_energy 8.62714E-06
gyro_z__quantile__q_0.8 8.39803E-06
gyro_z__length 8.39759E-06
gyro_z__mean 8.35594E-06
gyro_y__minimum 8.35335E-06
gyro_y__quantile__q_0.3 8.34377E-06
gyro_y__cwt_coefficients__coeff_0__w_10__widths_ (2, 5,
10, 20) 8.33001E-06
gyro_x__mean 8.22334E-06
gyro_y__quantile__q_0.2 8.1304E-06

63

gyro_x__quantile__q_0.9 8.09564E-06
gyro_x__quantile__q_0.3 8.00055E-06
gyro_z__quantile__q_0.4 7.97899E-06
gyro_y__cwt_coefficients__coeff_0__w_5__widths_ (2, 5,
10, 20) 7.95473E-06
gyro_z__fft_coefficient__attr_"real"__coeff_1 7.95095E-06
gyro_z__quantile__q_0.9 7.92326E-06
gyro_y__abs_energy 7.90241E-06
gyro_y__benford_correlation 7.84763E-06
gyro_z__cwt_coefficients__coeff_0__w_20__widths_ (2, 5,
10, 20) 7.77894E-06
gyro_z__cwt_coefficients__coeff_1__w_2__widths_ (2, 5,
10, 20) 7.7693E-06
gyro_z__cwt_coefficients__coeff_0__w_5__widths_(2, 5,
10, 20) 7.66005E-06
gyro_x__quantile__q_0.6 7.61073E-06
gyro_z__benford_correlation 7.49373E-06
gyro_x__cwt_coefficients__coeff_0__w_20__widths_(2, 5,
10, 20) 7.45128E-06
gyro_y__quantile__q_0.8 7.34678E-06
gyro_x__quantile__q_0.4 7.17652E-06
gyro_x__abs_energy 7.15876E-06
gyro_y__length 7.10458E-06
gyro_y__mean 6.93309E-06
gyro_y__cwt_coefficients__coeff_1__w_2__widths_(2, 5,
10, 20) 6.84515E-06
gyro_y__quantile__q_0.7 6.79714E-06
gyro_y__cwt_coefficients__coeff_0__w_20__widths_(2, 5,
10, 20) 6.66148E-06
gyro_z__autocorrelation__lag_0 6.3747E-06
gyro_x__quantile__q_0.8 6.32307E-06
gyro_x__cwt_coefficients__coeff_0__w_10__widths_(2, 5,
10, 20) 6.03442E-06
gyro_x__minimum 5.88025E-06
gyro_z__lempel_ziv_complexity__bins_2 6.57121E-07
gyro_y__lempel_ziv_complexity__bins_2 6.37286E-07
gyro_z__fft_coefficient__attr_"angle"__coeff_1 5.55441E-07
gyro_y__fft_coefficient__attr_"angle"__coeff_1 5.43819E-07
gyro_x__fft_coefficient__attr_"angle"__coeff_1 5.22187E-07

64

gyro_x__lempel_ziv_complexity__bins_2 4.72632E-07
gyro_y__approximate_entropy__m_2__r_0.1 4.04478E-07
gyro_y__count_below__t_0 3.11687E-07
gyro_z__count_below__t_0 3.02908E-07
gyro_z__approximate_entropy__m_2__r_0.1 2.83714E-07
gyro_x__count_below__t_0 2.19721E-07
gyro_x__approximate_entropy__m_2__r_0.1 1.84156E-07

65

APPENDIX B SOURCE CODE

B.1 Data filtering

%--%

% Routine to filter sensor's data

%--%

clear

load('test_acc_user11c.mat')

load('test_gyro_user11c.mat')

load('test_bt_user11c.mat')

fc_acc = 0.2; %accelerometer cut-off frequency

fc_gyro = 0.1; %gyroscope cut-off frequency

%fc_bt = 1;

fs = 4; %sampling frequency

%moving avearage filter

% windowSize = 10;

% b1 = (1/windowSize)*ones(1,windowSize);

% a1 = 1;

%butterworth filter 5th order

%[b2,a2] = butter(9,fc/(fs/2));

%FIR

%frequency bands for a band-pass filter

% fcuts = [0.16 0.22 0.28 0.3 0.45 0.5 1.28 1.35 1.5 1.55];% 3 Frequencie bands

% mags = [1 0 1 0 1 0];

% devs = [0.05 0.01 0.05 0.01 0.05 0.01];

66

% fcuts = [0.16 0.22 0.28 0.3 0.45 0.5];% 1,2 Frequencie bands

% mags = [1 0 1 0];

% devs = [0.05 0.01 0.05 0.01];

% fcuts = [0.16 0.22 1.28 1.35 1.5 1.55];% 1,3 Frequencie bands

% mags = [1 0 1 0];

% devs = [0.05 0.01 0.05 0.01];

% fcuts = [0.28 0.3 0.45 0.5 1.28 1.35 1.5 1.55];% 2,3 Frequencie bands

% mags = [0 1 0 1 0];

% devs = [0.01 0.05 0.01 0.05 0.01];

% [n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fs); % Kaiser Window FIR

Specification

% n = n + rem(n,2);

% hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale'); % Filter Realisation

% figure

% freqz(hh,1,2^14,fs)

% set(subplot(2,1,1), 'XLim',[0 2]); % Zoom Frequency Axis

% set(subplot(2,1,2), 'XLim',[0 2]); % Zoom Frequency Axis

% acc_filt_x = filtfilt(hh, 1, acc_data_proc.acc_x(:,1));

% acc_filt_y = filtfilt(hh, 1, acc_data_proc.acc_x(:,2));

% acc_filt_z = filtfilt(hh, 1, acc_data_proc.acc_x(:,3));

%

% gyro_filt_x = filtfilt(hh, 1, gyro_data_proc.gyro_x(:,1));

% gyro_filt_y = filtfilt(hh, 1, gyro_data_proc.gyro_x(:,2));

% gyro_filt_z = filtfilt(hh, 1, gyro_data_proc.gyro_x(:,3));

%eliptical

[b_acc,a_acc] = ellip(9,5,20,fc_acc/(fs/2)); %(10,10,20,fc_acc/(fs/2))

67

[b_gyro,a_gyro] = ellip(7,5,20,fc_gyro/(fs/2));

%filter the data

acc_filt_x = filtfilt(b_acc,a_acc, acc_data_proc.acc_x(:,1));

acc_filt_y = filtfilt(b_acc,a_acc, acc_data_proc.acc_x(:,2));

acc_filt_z = filtfilt(b_acc,a_acc, acc_data_proc.acc_x(:,3));

gyro_filt_x = filtfilt(b_gyro,a_gyro, gyro_data_proc.gyro_x(:,1));

gyro_filt_y = filtfilt(b_gyro,a_gyro, gyro_data_proc.gyro_x(:,2));

gyro_filt_z = filtfilt(b_gyro,a_gyro, gyro_data_proc.gyro_x(:,3));

%Raised cosine filter

%h1 = rcosdesign(0.25,4,6,'normal');

%chabyshev

%[b,a] = cheby1(10,10,fc/(fs/2));

%median filter

% m_filt_order = 4;

% acc_filt_x = medfilt1(acc_data_proc.acc_x(:,1), m_filt_order);

% acc_filt_y = medfilt1(acc_data_proc.acc_x(:,2), m_filt_order);

% acc_filt_z = medfilt1(acc_data_proc.acc_x(:,3), m_filt_order);

%

% gyro_filt_x = medfilt1(gyro_data_proc.gyro_x(:,1), m_filt_order);

% gyro_filt_y = medfilt1(gyro_data_proc.gyro_x(:,2), m_filt_order);

% gyro_filt_z = medfilt1(gyro_data_proc.gyro_x(:,3), m_filt_order);

%

% bt_filt_d = medfilt1(bt_data_proc.bt_x(:,1), m_filt_order);

% bt_filt_rx = medfilt1(bt_data_proc.bt_x(:,2), m_filt_order);

% bt_filt_tx = medfilt1(bt_data_proc.bt_x(:,3), m_filt_order);

%no filtering on Bluetooth signal

68

bt_filt_d = bt_data_proc.bt_x(:,1);

bt_filt_rx = bt_data_proc.bt_x(:,2);

bt_filt_tx = bt_data_proc.bt_x(:,3);

%compute magnitude of a filtered signal

acc_magnitude = sqrt(acc_filt_x.^2 + acc_filt_y.^2 + acc_filt_z.^2);

acc_xy_mag = sqrt(acc_filt_x.^2 + acc_filt_y.^2);

acc_xz_mag = sqrt(acc_filt_x.^2 + acc_filt_z.^2);

acc_yz_mag = sqrt(acc_filt_y.^2 + acc_filt_z.^2);

%conditions

ax_range = acc_data_proc.ax_range;

ax_angle = acc_data_proc.ax_angle;

acc_env_categories = acc_data_proc.acc_env_categories;

acc_pos_loc_categories = acc_data_proc.acc_pos_loc_categories;

%compute magnitude of a filtered signal

gyro_magnitude = sqrt(gyro_filt_x.^2 + gyro_filt_y.^2 + gyro_filt_z.^2);

gyro_xy_mag = sqrt(gyro_filt_x.^2 + gyro_filt_y.^2);

gyro_xz_mag = sqrt(gyro_filt_x.^2 + gyro_filt_z.^2);

gyro_yz_mag = sqrt(gyro_filt_y.^2 + gyro_filt_z.^2);

gyro_range = gyro_data_proc.gyro_range;

gyro_angle = gyro_data_proc.gyro_angle;

gyro_env_categories = gyro_data_proc.gyro_env_categories;

gyro_pos_loc_categories = gyro_data_proc.gyro_pos_loc_categories;

%cary over bluetooth data

bt_rx = bt_data_proc.bt_x(:,2);

bt_tx = bt_data_proc.bt_x(:,3);

bt_time = bt_data_proc.bt_x(:,4);

69

bt_delta = bt_rx - bt_tx;

bt_range = bt_data_proc.bt_range;

bt_angle = bt_data_proc.bt_angle;

bt_env_categories = bt_data_proc.bt_env_categories;

bt_pos_loc_categories = bt_data_proc.bt_pos_loc_categories;

bt_x = [bt_filt_d bt_filt_rx bt_filt_tx bt_time];

%bt_x = [bt_delta bt_rx bt_tx bt_time];

acc_x = [acc_filt_x acc_filt_y acc_filt_z acc_magnitude acc_xy_mag acc_xz_mag

acc_yz_mag];

gyro_x = [gyro_filt_x gyro_filt_y gyro_filt_z gyro_magnitude gyro_xy_mag

gyro_xz_mag gyro_yz_mag];

%processed data

acc_data_proc = table(acc_x, ax_range, ax_angle, acc_env_categories,

acc_pos_loc_categories);

gyro_data_proc = table(gyro_x, gyro_range, gyro_angle, gyro_env_categories,

gyro_pos_loc_categories);

bt_data_proc = table(bt_x, bt_range, bt_angle, bt_env_categories,

bt_pos_loc_categories);

%save data to mat file

save('train_acc_user11SMOTE.mat','acc_data_proc')

save('train_gyro_user11SMOTE.mat','gyro_data_proc')

save('train_bt_user11SMOTE.mat','bt_data_proc')

% visualize filtered data

% figure

% plot(acc_data_proc.acc_x(1:300,1),'c')

70

% hold on

% plot(acc_filt_but(1:300),'r')

% hold on

% plot(acc_filt_ma(1:300),'b')

% hold on

% plot(acc_filt_ep(1:300),'g')

% hold on

% plot(acc_filt_ch(1:300),'k')

% hold off

% legend('Raw data','Butterworth 5th', 'Moving Average w5', 'Eliptical 5th',

'Chabishev I 5th')

% title('Filter Types vs Accelerometer Data')

% grid minor

%--%

B.2 Routine to generate hand-crafted features

%--%

% Routine to compute hand crafted features

%--%

clear

% load the data

load('test_acc_user11cf.mat')

load('test_gyro_user11cf.mat')

load('test_bt_user11cf.mat')

%----fix irroneous transmit level power------5-15-2021----%

bt_data_proc((bt_data_proc.bt_x(:,3)<-20),:)=[];

71

bt_data_proc((bt_data_proc.bt_x(:,3)>20),:)=[];

%bt_data_proc.bt_x((bt_data_proc.bt_x(:,3)>-4),3)=-10;

bt_data_proc((bt_data_proc.bt_x(:,1)>-20),:)=[];

%---%

window_size = 10; % window size over which statistical features calculated

%average_over = 3;

%--%

%calculate moving average

% acc_data_proc.acc_x = movmean(acc_data_proc.acc_x, average_over);

% gyro_data_proc.gyro_x = movmean(gyro_data_proc.gyro_x, average_over);

% bt_data_proc.bt_x = movmean(bt_data_proc.bt_x, average_over);

%statistics of magnitude signal

%calculate magnitude mean

acc_mag_mean = Fmean(acc_data_proc.acc_x(:,4),window_size);

gyro_mag_mean = Fmean(gyro_data_proc.gyro_x(:,4),window_size);

bt_mag_mean = Fmean(bt_data_proc.bt_x(:,1),window_size);

%calculate standard deviation of magnitude

acc_mag_std = Fstd(acc_data_proc.acc_x(:,4),window_size);

gyro_mag_std = Fstd(gyro_data_proc.gyro_x(:,4),window_size);

bt_mag_std = Fstd(bt_data_proc.bt_x(:,1),window_size);

%calculate third and fourth moment of magnitude

[acc_M3, acc_M4] = Fmoment(acc_data_proc.acc_x(:,4),window_size);

[gyro_M3, gyro_M4] = Fmoment(gyro_data_proc.gyro_x(:,4),window_size);

[bt_M3, bt_M4] = Fmoment(bt_data_proc.bt_x(:,1),window_size);

%calculate 25th, 50th, and 75th percentile

[acc_P25, acc_P50, acc_P75] = Fprctile(acc_data_proc.acc_x(:,4),window_size);

72

[gyro_P25, gyro_P50, gyro_P75] =

Fprctile(gyro_data_proc.gyro_x(:,4),window_size);

[bt_P25, bt_P50, bt_P75] = Fprctile(bt_data_proc.bt_x(:,1),window_size);

%value and time entopy

[acc_ValE, acc_TimeE] = Fentropy(acc_data_proc.acc_x(:,4),window_size);

[gyro_ValE, gyro_TimeE] = Fentropy(gyro_data_proc.gyro_x(:,4),window_size);

[bt_ValE, ~] = Fentropy(bt_data_proc.bt_x(:,1),window_size);

%---%

%auto-correlation and auto-covariance

[acc_Acov, acc_Acor] = Fauto(acc_data_proc.acc_x(:,4),window_size);

[gyro_Acov, gyro_Acor] = Fauto(gyro_data_proc.gyro_x(:,4),window_size);

[bt_Acov, bt_Acor] = Fauto(bt_data_proc.bt_x(:,1),window_size);

%---%

%statistics of 3-axis

%accelerometer

%mean

acc_x_mean = Fmean(acc_data_proc.acc_x(:,1),window_size);

acc_y_mean = Fmean(acc_data_proc.acc_x(:,2),window_size);

acc_z_mean = Fmean(acc_data_proc.acc_x(:,3),window_size);

%standard deviation

acc_x_std = Fstd(acc_data_proc.acc_x(:,1),window_size);

acc_y_std = Fstd(acc_data_proc.acc_x(:,2),window_size);

acc_z_std = Fstd(acc_data_proc.acc_x(:,3),window_size);

%correlation xy, xz, yz

acc_corr = Fcorr(acc_data_proc.acc_x(:,1), acc_data_proc.acc_x(:,2), ...

 acc_data_proc.acc_x(:,3), window_size);

%gyroscope

73

%mean

gyro_x_mean = Fmean(gyro_data_proc.gyro_x(:,1),window_size);

gyro_y_mean = Fmean(gyro_data_proc.gyro_x(:,2),window_size);

gyro_z_mean = Fmean(gyro_data_proc.gyro_x(:,3),window_size);

%standard deviation

gyro_x_std = Fstd(gyro_data_proc.gyro_x(:,1),window_size);

gyro_y_std = Fstd(gyro_data_proc.gyro_x(:,2),window_size);

gyro_z_std = Fstd(gyro_data_proc.gyro_x(:,3),window_size);

%correlation xy, xz, yz

gyro_corr = Fcorr(gyro_data_proc.gyro_x(:,1), gyro_data_proc.gyro_x(:,2), ...

 gyro_data_proc.gyro_x(:,3), window_size);

%bluetooth

%mean

bt_rx_mean = Fmean(bt_data_proc.bt_x(:,2),window_size);

bt_tx_mean = Fmean(bt_data_proc.bt_x(:,3),window_size);

%standard deviation

bt_rx_std = Fstd(bt_data_proc.bt_x(:,2),window_size);

bt_tx_std = Fstd(bt_data_proc.bt_x(:,3),window_size);

%--------additional features for bluetooth

%RMS Doppler Spread

bt_rx_dopler = FRmsDoppler(bt_data_proc.bt_x(:,2),window_size);

%Yp2p

bt_rx_yp2p = Yp2p(bt_data_proc.bt_x(:,2),window_size);

%Rayleigh

bt_rx_rayleigh = Frayleigh(bt_data_proc.bt_x(:,2),window_size);

%Fade Duration

bt_rx_fadeDuration = FfadeDuration(bt_data_proc.bt_x(:,2),window_size);

74

%Level Crossing

bt_rx_levelX = FlevelX(bt_data_proc.bt_x(:,2),window_size);

%Energy

bt_rx_energy = Fenergy(bt_data_proc.bt_x(:,2),window_size);

%Laplacian Best Fit

%bt_rx_laplacian = Flaplacian(bt_data_proc.bt_x(:,2),window_size);

%Laplacian Best Fit v2

%bt_rx_laplacian2 = Flaplacian2(bt_data_proc.bt_x(:,2),window_size);

%Gaussian fit

%bt_rx_gauss = Fgauss(bt_data_proc.bt_x(:,2),window_size);

%Polynomial Fit

%bt_rx_poly = Fpoly(bt_data_proc.bt_x(:,2),window_size);

%peak of Doppler spread

bt_rx_peakD = FpeakDoppler(bt_data_proc.bt_x(:,2),window_size);

%mean of Doppler spread

bt_rx_meanD = FmeanDoppler(bt_data_proc.bt_x(:,2),window_size);

%---------------------%

%bt stats on advertiser time

bt_time_mean = Fmean(bt_data_proc.bt_x(:,4),window_size);

bt_time_std = Fstd(bt_data_proc.bt_x(:,4),window_size);

[bt_time_P25, bt_time_P50, bt_time_P75] =

Fprctile(bt_data_proc.bt_x(:,4),window_size);

[bt_time_M3, bt_time_M4] = Fmoment(bt_data_proc.bt_x(:,4),window_size);

%---%

%get labels

%accelerometer

acc_range = acc_data_proc.ax_range(1:window_size:end);

75

acc_angle = acc_data_proc.ax_angle(1:window_size:end);

acc_categories = [acc_data_proc.acc_env_categories(1:window_size:end,:)...

 acc_data_proc.acc_pos_loc_categories(1:window_size:end,:)];

acc_stats = [acc_mag_mean, acc_mag_std, acc_M3, acc_M4, acc_P25, acc_P50, ...

 acc_P75, acc_ValE, acc_TimeE, acc_Acov, acc_Acor, acc_x_mean,

acc_y_mean, ...

 acc_z_mean, acc_x_std, acc_y_std, acc_z_std, acc_corr];

%acc_stats = acc_data_proc.acc_x(:,1:3);

% acc_range = acc_range(1:end-1);

% acc_angle = acc_angle(1:end-1);

% acc_categories = acc_categories(1:end-1,:);

acc_dat_test = table(acc_stats, acc_range, acc_angle, acc_categories);

%--%

gyro_range = gyro_data_proc.gyro_range(1:window_size:end);

gyro_angle = gyro_data_proc.gyro_angle(1:window_size:end);

gyro_categories = [gyro_data_proc.gyro_env_categories(1:window_size:end,:)...

 gyro_data_proc.gyro_pos_loc_categories(1:window_size:end,:)];

gyro_stats = [gyro_mag_mean, gyro_mag_std, gyro_M3, gyro_M4, gyro_P25,

gyro_P50, ...

 gyro_P75, gyro_ValE, gyro_TimeE, gyro_Acov, gyro_Acor, gyro_x_mean,

gyro_y_mean, ...

 gyro_z_mean, gyro_x_std, gyro_y_std, gyro_z_std, gyro_corr];

%gyro_stats = gyro_data_proc.gyro_x(:,1:3);

% gyro_range = gyro_range(1:end-1);

76

% gyro_angle = gyro_angle(1:end-1);

% gyro_categories = gyro_categories(1:end-1,:);

gyro_dat_test = table(gyro_stats, gyro_range, gyro_angle, gyro_categories);

%--%

bt_range = bt_data_proc.bt_range(1:window_size:end);

% bt_range = bt_range(1:end-1);

bt_angle = bt_data_proc.bt_angle(1:window_size:end);

 %bt_angle = bt_angle(1:end-1);

bt_time = bt_data_proc.bt_x(1:window_size:end,4);

%bt_time = bt_time(1:end-1);

bt_categories = [bt_data_proc.bt_env_categories(1:window_size:end,:)...

 bt_data_proc.bt_pos_loc_categories(1:window_size:end,:)];

 %bt_categories = bt_categories(1:end-1,:);

bt_stats = [bt_rx_mean,bt_tx_mean, bt_time,bt_mag_mean, bt_mag_std, bt_M3,

bt_M4, bt_P25, ...

 bt_P50, bt_P75, bt_ValE, bt_Acov, bt_Acor, ...

 bt_rx_std, bt_tx_std, bt_rx_yp2p, bt_rx_rayleigh, bt_rx_fadeDuration,...

 bt_rx_levelX, bt_rx_energy, bt_rx_dopler,...

 bt_rx_peakD, bt_rx_meanD, ...

 bt_time_mean,bt_time_std, bt_time_P25,bt_time_P50, bt_time_P75,

bt_time_M3, bt_time_M4];

%bt_rx_laplacian, bt_rx_laplacian2, bt_rx_gauss, bt_rx_poly,

%bt_stats = bt_data_proc.bt_x(:,2:4);

bt_dat_test = table(bt_stats, bt_range, bt_angle, bt_categories);

%save data to mat file

save('test_acc_user11cff4.mat','acc_dat_test')

77

save('test_gyro_user11cff4.mat','gyro_dat_test')

save('test_bt_user11cff4.mat','bt_dat_test')

%--%

B.3 Routine to classify user context

%--%

% routine to classify user context

%--%

clear

load('test_acc_user11cff3.mat')

load('test_gyro_user11cff3.mat')

load('test_bt_user11cff3.mat')

load('train_acc_user11cff3.mat')

load('train_gyro_user11cff3.mat')

load('train_bt_user11cff3.mat')

%randomly shufle the data

%test data

h = height(acc_dat_test);

idx = randperm(h);

acc_data_rand_test = acc_dat_test(idx,:);

gyro_data_rand_test = gyro_dat_test(idx,:);

h1 = height(bt_dat_test);

idx1 = randperm(h1);

bt_data_rand_test = bt_dat_test(idx1,:);

%training data

78

h = height(acc_dat_train);

idx = randperm(h);

acc_data_rand_train = acc_dat_train(idx,:);

gyro_data_rand_train = gyro_dat_train(idx,:);

h1 = height(bt_dat_train);

idx1 = randperm(h1);

bt_data_rand_train = bt_dat_train(idx1,:);

%Normalize features data

%accelerometer

acc_norm_test = featureNormalize2(acc_data_rand_test.acc_stats, 'Zscale');

acc_norm_train = featureNormalize2(acc_data_rand_train.acc_stats, 'Zscale');

%gyroscope

gyro_norm_test = featureNormalize2(gyro_data_rand_test.gyro_stats, 'Zscale');

gyro_norm_train = featureNormalize2(gyro_data_rand_train.gyro_stats, 'Zscale');

%bluetooth

bt_norm_test = abs(featureNormalize2(bt_data_rand_test.bt_stats, 'Zscale'));

bt_norm_test(:,12) = [];

bt_norm_train = abs(featureNormalize2(bt_data_rand_train.bt_stats, 'Zscale'));

bt_norm_train(:,12) = [];

%prepare data for sensor fusion

[acc_lbl_train, acc_lbl_test, gyro_lbl_train, gyro_lbl_test, ...

 bt_lbl_train, bt_lbl_test, all_cnt]= group_cat(acc_data_rand_test, ...

 acc_data_rand_train, gyro_data_rand_test, gyro_data_rand_train, ...

 bt_data_rand_test, bt_data_rand_train);

%--%

for c = 1:size(acc_lbl_train,2)

79

 t2 = templateTree('MinLeafSize', 1);

%train ---%

 cost = compute_cost_multi(acc_lbl_train(:,c),c);

 Mdl_acc = fitcensemble(acc_norm_train, acc_lbl_train(:,c),'Method','Bag',...

 'NumLearningCycles',15,'Learners',t2,'Cost', cost); %try 265 Nlerncycles

 cost = compute_cost_multi(gyro_lbl_train(:,c),c);

 Mdl_gyro = fitcensemble(gyro_norm_train, gyro_lbl_train(:,c),'Method','Bag' ,...

 'NumLearningCycles',15,'Learners',t2, 'Cost', cost); %try 265 Nlerncycles

 cost = compute_cost_multi(bt_lbl_train(:,c),c);

 Mdl_bt = fitctree(bt_norm_train, bt_lbl_train(:,c),'MinLeafSize', 7, ...

 'Surrogate', 'off', 'Cost', cost);

%---%

 %apply model on a test set

 [prediction_acc(:,c), ~]= predict(Mdl_acc, acc_norm_test);

 [prediction_gyro(:,c), ~]= predict(Mdl_gyro, gyro_norm_test);

 [prediction_bt(:,c), ~]= predict(Mdl_bt, bt_norm_test);

 %apply model on a train set

 [prediction_acc_t(:,c), ~]= predict(Mdl_acc, acc_norm_train);

 [prediction_gyro_t(:,c), ~]= predict(Mdl_gyro, gyro_norm_train);

 [prediction_bt_t(:,c), ~]= predict(Mdl_bt, bt_norm_train);

%--%

end

80

%performance metrics

[F1_test_acc, BA_test_acc] = scores_multi(acc_lbl_test,prediction_acc);

[F1_test_gyro, BA_test_gyro] = scores_multi(gyro_lbl_test,prediction_gyro);

[F1_test_bt, BA_test_bt] = scores_multi(bt_lbl_test,prediction_bt);

%--%

lbl_txt = ["Indoor" "outdoor" "large room" "medium room"...

 "small room" "center congested" "center open" "near wall congested"...

 "near wall open" "Sitting" "Standing" "Hold to right ear"...

 "front pants pocket" "in hand" "in purse" "rear pants pocket" "shirt pocket"];

%number of positive samples

n_e_acc = sum(acc_data_rand_test.acc_categories)';

n_e_gyro = sum(gyro_data_rand_test.gyro_categories)';

n_e_bt = sum(bt_data_rand_test.bt_categories)';

n_te_acc = sum(acc_data_rand_train.acc_categories)';

n_te_gyro = sum(gyro_data_rand_train.gyro_categories)';

n_te_bt = sum(bt_data_rand_train.bt_categories)';

%save results

results_ba = table(lbl_txt', n_te_acc, n_e_acc, BA_test_acc, n_te_gyro, ...

 n_e_gyro, BA_test_gyro, n_te_bt, n_e_bt, BA_test_bt);

results_f1 = table(lbl_txt', n_te_acc, n_e_acc, F1_test_acc, n_te_gyro, ...

 n_e_gyro, F1_test_gyro, n_te_bt, n_e_bt, F1_test_bt);

writetable(results_ba, 'results_pact_BA_user11tsfresh.xlsx');

writetable(results_f1, 'results_pact_F1_user11tsfresh.xlsx');

%--%

81

%add classified context to the data file as a feature

%training set

acc_stats = [acc_dat_train.acc_stats, prediction_acc_t];

acc_range = acc_dat_train.acc_range;

acc_angle = acc_dat_train.acc_angle;

acc_dat_train = table(acc_stats, acc_range, acc_angle);

gyro_stats = [gyro_dat_train.gyro_stats, prediction_gyro_t];

gyro_range = gyro_dat_train.gyro_range;

gyro_angle = gyro_dat_train.gyro_angle;

gyro_dat_train = table(gyro_stats, gyro_range, gyro_angle);

bt_stats = [bt_dat_train.bt_stats, prediction_bt_t];

bt_range = bt_dat_train.bt_range;

bt_angle = bt_dat_train.bt_angle;

bt_dat_train = table(bt_stats, bt_range, bt_angle);

%save data to mat file

save('train_acc_user11cffc3.mat','acc_dat_train')

save('train_gyro_user11cffc3.mat','gyro_dat_train')

save('train_bt_user11cffc3.mat','bt_dat_train')

%--%

%test set

acc_stats = [acc_dat_test.acc_stats, prediction_acc];

acc_range = acc_dat_test.acc_range;

acc_angle = acc_dat_test.acc_angle;

acc_dat_test = table(acc_stats, acc_range, acc_angle);

82

gyro_stats = [gyro_dat_test.gyro_stats, prediction_gyro];

gyro_range = gyro_dat_test.gyro_range;

gyro_angle = gyro_dat_test.gyro_angle;

gyro_dat_test= table(gyro_stats, gyro_range, gyro_angle);

bt_stats = [bt_dat_test.bt_stats, prediction_bt];

bt_range = bt_dat_test.bt_range;

bt_angle = bt_dat_test.bt_angle;

bt_dat_test = table(bt_stats, bt_range, bt_angle);

%save data to mat file

save('test_acc_user11cffc3.mat','acc_dat_test')

save('test_gyro_user11cffc3.mat','gyro_dat_test')

save('test_bt_user11cffc3.mat','bt_dat_test')

%--%

B.4 Routines to perform range estimation

%--%

% Routine to do range estimation using 5fold cross validation

%--%

clear

load('data_acc_plus_class.mat')

load('data_gyro_plus_class.mat')

load('data_bt_plus_class.mat')

%randomly shuffle the data

h = height(acc_dat);

83

idx = randperm(h);

acc_data_rand = acc_dat(idx,:);

gyro_data_rand = gyro_dat(idx,:);

h1 = height(bt_dat);

idx1 = randperm(h1);

bt_data_rand = bt_dat(idx1,:);

%normalize features

%accelerometer

acc_norm = featureNormalize2(acc_data_rand.acc_stats(:,1:20), "Zscale");

acc_norm =[acc_norm, acc_data_rand.acc_stats(:,21:end)];

%acc_norm =acc_data_rand.acc_stats(:,21:end);

acc_range= acc_data_rand.acc_range;

%gyroscope

gyro_norm = featureNormalize2(gyro_data_rand.gyro_stats(:,1:20), "Zscale");

gyro_norm = [gyro_norm, gyro_data_rand.gyro_stats(:,21:end)];

%gyro_norm = gyro_data_rand.gyro_stats(:,21:end);

gyro_range = gyro_data_rand.gyro_range;

%bluetooth

bt_norm = featureNormalize2(bt_data_rand.bt_stats(:,1:14), "Zscale");

bt_norm = [bt_norm, bt_data_rand.bt_stats(:,15:end)];

bt_range = bt_data_rand.bt_range;

%--%

%regrassion on range

predNames = {'Mean', 'STD', 'M3', 'M4', '25%', '50%', '75%',...

 'Value Entropy', 'Time Entropy', 'Autocorelation', 'Autocovariance',...

 'X Mean', 'Y Mean', 'Z Mean', 'X STD', 'Y STD', 'Z STD', ...

84

 'Autocorelation XY', 'Autocorelation XZ', 'Autocorelation YZ'};

predNamesBT = {'RX Mean', 'TX Mean', 'Advertiser Time', 'Delta Mean',...

 'Delta STD', 'M3', 'M4', '25%', '50%', '75%',...

 'Value Entropy', 'Autocorelation', 'RX STD', 'TX STD'};

%range

t2 = templateTree('MinLeafSize', 1);

Mdl_acc_reg = fitrensemble(acc_norm, acc_range, ...

 'Method','Bag','NumLearningCycles', 492,'Learners',t2, 'CrossVal','on',...

 'KFold',5); %try 265 Nlerncycles , 'PredictorNames', predNames

fitted_acc= kfoldPredict(Mdl_acc_reg);

Mdl_gyro_reg = fitrensemble(gyro_norm, gyro_range, ...

 'Method','Bag','NumLearningCycles',477,'Learners',t2, 'CrossVal','on',...

 'KFold',5); %try 265 Nlerncycles , 'PredictorNames', predNames

fitted_gyro= kfoldPredict(Mdl_gyro_reg);

Mdl_bt_reg = fitrtree(bt_norm, bt_range,'MinLeafSize', 2, ...

 'Surrogate', 'off', 'CrossVal','on','KFold',5); %, 'PredictorNames', predNamesBT

fitted_bt= kfoldPredict(Mdl_bt_reg);

%--%

%Sensor fusion

%prepare training data

[ef_data_r, lbl_r] = prep_ef_data_reg2(acc_norm, gyro_norm,...

 bt_norm, acc_range, gyro_range, bt_range);

Mdl_ef = fitrtree(ef_data_r, lbl_r, 'MinLeafSize', 2, ...

 'Surrogate', 'off', 'CrossVal', 'on', 'KFold',5);

prediction_ef = kfoldPredict(Mdl_ef);

85

%--%

%Fusion2

acc_nn = ef_data_r(:,1:37); %with labels (:,1:37) ///without labels (:,1:20)

gyro_nn = ef_data_r(:,38:74); %with labels (:,38:74) ///without labels)(:,21:40)

bt_nn = ef_data_r(:,75:end); %with labels (:,75:end) ///without labels(:,41:end)

%first layer

Mdl_acc_nn = fitrensemble(acc_nn, lbl_r, 'Method','Bag',...

 'NumLearningCycles',30,'Learners',t2, 'CrossVal','on','KFold',5);

Mdl_gyro_nn = fitrensemble(gyro_nn, lbl_r, 'Method','Bag',...

 'NumLearningCycles',30,'Learners',t2, 'CrossVal','on','KFold',5);

Mdl_bt_nn = fitrtree(bt_nn, lbl_r,'MinLeafSize', 4, ...

 'Surrogate', 'off', 'CrossVal','on','KFold',5);

acc_nn_l1 = kfoldPredict(Mdl_acc_nn);

gyro_nn_l1 = kfoldPredict(Mdl_gyro_nn);

bt_nn_l1 = kfoldPredict(Mdl_bt_nn);

%layer 2 (output layer)

nn_dat_l2 = [acc_nn_l1 gyro_nn_l1 bt_nn_l1];

nn_dat_l2_norm = featureNormalize(nn_dat_l2); %try without normalization

Mdl_nn_l2 = fitrensemble(nn_dat_l2, lbl_r, 'Method','Bag',...

 'NumLearningCycles',30,'Learners',t2, 'CrossVal','on','KFold',5);

prediction_nn = kfoldPredict(Mdl_nn_l2);

%--%

% fit error/performance metrics

[mse_acc, rmse_acc, r2_acc, mae_acc] = fit_error(acc_range, fitted_acc);

[mse_gyro, rmse_gyro, r2_gyro, mae_gyro] = fit_error(gyro_range, fitted_gyro);

[mse_bt, rmse_bt, r2_bt, mae_bt] = fit_error(bt_range, fitted_bt);

86

[mse_ef, rmse_ef, r2_ef, mae_ef] = fit_error(lbl_r, prediction_ef);

[mse_nn, rmse_nn, r2_nn, mae_nn] = fit_error(lbl_r, prediction_nn);

%save results

methods = ["MSE" "RMSE" "R2" "MAE"];

results_reg = table(methods', [mse_acc rmse_acc r2_acc mae_acc]',...

 [mse_gyro rmse_gyro r2_gyro mae_gyro]',...

 [mse_bt rmse_bt r2_bt mae_bt]', ...

 [mse_ef rmse_ef r2_ef mae_ef]', ...

 [mse_nn rmse_nn r2_nn mae_nn]');

writetable(results_reg, 'results_pact_linReg13xLablBest3.xlsx');

%--%

%--%

% Routine to do range estimation using subject-level splitting cross-validation

%--%

clear

load('train_acc_user11cffc3.mat')

load('train_gyro_user11cffc3.mat')

load('train_bt_user11cffc3.mat')

load('test_acc_user11cffc3.mat')

load('test_gyro_user11cffc3.mat')

load('test_bt_user11cffc3.mat')

% %randomly shufle the data

h = height(acc_dat_test);

87

idx = randperm(h);

acc_data_test_rand = acc_dat_test(idx,:);

gyro_data_test_rand = gyro_dat_test(idx,:);

h1 = height(bt_dat_test);

idx1 = randperm(h1);

bt_data_test_rand = bt_dat_test(idx1,:);

%-------------------------------

h = height(acc_dat_train);

idx = randperm(h);

acc_data_train_rand = acc_dat_train(idx,:);

gyro_data_train_rand = gyro_dat_train(idx,:);

h1 = height(bt_dat_train);

idx1 = randperm(h1);

bt_data_train_rand = bt_dat_train(idx1,:);

%normalize features

%accelerometer

acc_norm_train = featureNormalize2(acc_data_train_rand.acc_stats(:,1:20),

"Zscale");

acc_norm_train =[acc_norm_train,

featureNormalize2(acc_data_train_rand.acc_stats(:,21:end), "Zscale")];

acc_norm_test = featureNormalize2(acc_data_test_rand.acc_stats(:,1:20),

"Zscale");

88

acc_norm_test

=[acc_norm_test,featureNormalize2(acc_data_test_rand.acc_stats(:,21:end),

"Zscale")];

acc_train_range= acc_data_train_rand.acc_range;

acc_test_range= acc_data_test_rand.acc_range;

%gyroscope

gyro_norm_train = featureNormalize2(gyro_data_train_rand.gyro_stats(:,1:20),

"Zscale");

gyro_norm_train = [gyro_norm_train,

featureNormalize2(gyro_data_train_rand.gyro_stats(:,21:end), "Zscale")];

gyro_norm_test = featureNormalize2(gyro_data_test_rand.gyro_stats(:,1:20),

"Zscale");

gyro_norm_test = [gyro_norm_test,

featureNormalize2(gyro_data_test_rand.gyro_stats(:,21:end), "Zscale")];

gyro_train_range = gyro_data_train_rand.gyro_range;

gyro_test_range = gyro_data_test_rand.gyro_range;

%bluetooth

bt_norm_train = featureNormalize2(bt_data_train_rand.bt_stats(:,1:23), "Zscale");

%(:,1:23)

bt_norm_test = featureNormalize2(bt_data_test_rand.bt_stats(:,1:23), "Zscale");

%(:,1:23)

bt_norm_train = ([bt_norm_train,

featureNormalize2(bt_data_train_rand.bt_stats(:,24:end), "Zscale")]);

bt_norm_test = ([bt_norm_test,

featureNormalize2(bt_data_test_rand.bt_stats(:,24:end), "Zscale")]);

89

bt_train_range = bt_data_train_rand.bt_range;

bt_test_range = bt_data_test_rand.bt_range;

%--%

%regrassion on range

%range train

t2 = templateTree('MinLeafSize', 1);

Mdl_acc_reg = fitrensemble(acc_norm_train, acc_train_range, ...

 'Method','Bag','NumLearningCycles', 265,'Learners',t2);

Mdl_gyro_reg = fitrensemble(gyro_norm_train, gyro_train_range, ...

 'Method','Bag','NumLearningCycles',265,'Learners',t2);

Mdl_bt_reg = fitrtree(bt_norm_train, bt_train_range,'MinLeafSize', 7, ...

 'Surrogate', 'off'); %, 'PredictorNames', predNamesBT

%--%

%Sensor fusion

%prepare training data

[ef_data_r, lbl_r] = prep_ef_data_reg2(acc_norm_train, gyro_norm_train,...

 bt_norm_train, acc_train_range, gyro_train_range, bt_train_range);

Mdl_ef = fitrtree(ef_data_r, lbl_r, 'MinLeafSize', 11, ...

 'Surrogate', 'off');

%--%

%Fusion 2

acc_nn = ef_data_r(:,1:25); %with labels (:,1:37) ///without labels (:,1:20)

gyro_nn = ef_data_r(:,26:50); %with labels (:,38:74) ///without labels (:,21:40)

bt_nn = ef_data_r(:,51:end); %with labels (:,75:end) ///without labels(:,41:end)

%first layer

90

Mdl_acc_nn = fitrensemble(acc_nn, lbl_r, 'Method','Bag',...

 'NumLearningCycles',225,'Learners',t2);

Mdl_gyro_nn = fitrensemble(gyro_nn, lbl_r, 'Method','Bag',...

 'NumLearningCycles',225,'Learners',t2);

Mdl_bt_nn = fitrtree(bt_nn, lbl_r,'MinLeafSize', 9, ...

 'Surrogate', 'off');

acc_nn_l1 = predict(Mdl_acc_nn, acc_nn);

gyro_nn_l1 = predict(Mdl_gyro_nn, gyro_nn);

bt_nn_l1 = predict(Mdl_bt_nn, bt_nn);

%layer 2 (output layer)

nn_dat_l2 = [acc_nn_l1 gyro_nn_l1 bt_nn_l1];

nn_dat_l2_norm = featureNormalize2(nn_dat_l2, "Zscale"); %try without

normalization

Mdl_nn_l2 = fitrensemble(nn_dat_l2, lbl_r, 'Method','Bag',...

 'NumLearningCycles',30,'Learners',t2);

%--%

%test

fitted_acc = predict(Mdl_acc_reg, acc_norm_test);

fitted_gyro = predict(Mdl_gyro_reg, gyro_norm_test);

fitted_bt = predict(Mdl_bt_reg, bt_norm_test);

%--%

%Sensor fusion test

[ef_data_test, lbl_test] = prep_ef_data_reg3(acc_norm_test, gyro_norm_test,...

 bt_norm_test, acc_test_range, gyro_test_range, bt_test_range);

prediction_ef = predict(Mdl_ef, ef_data_test);

%--%

91

%Fusion 2 test

acc_nn_test = ef_data_test(:,1:25); %with labels (:,1:37) ///without labels (:,1:20)

gyro_nn_test = ef_data_test(:,26:50); %with labels (:,38:74) ///without labels

)(:,21:40)

bt_nn_test = ef_data_test(:,51:end); %with labels (:,75:end) ///without

labels(:,41:end)

acc_nn_l1_test = predict(Mdl_acc_nn, acc_nn_test);

gyro_nn_l1_test = predict(Mdl_gyro_nn, gyro_nn_test);

bt_nn_l1_test = predict(Mdl_bt_nn, bt_nn_test);

%layer 2 (output layer)

nn_dat_l2_test = [acc_nn_l1_test gyro_nn_l1_test bt_nn_l1_test];

nn_dat_l2_test_norm = featureNormalize2(nn_dat_l2_test, "Zscale");

prediction_nn = predict(Mdl_nn_l2, nn_dat_l2_test_norm);

%--%

%fit error/performance metrics

[mse_acc, rmse_acc, r2_acc, mae_acc] = fit_error(acc_test_range, fitted_acc);

[mse_gyro, rmse_gyro, r2_gyro, mae_gyro] = fit_error(gyro_test_range,

fitted_gyro);

[mse_bt, rmse_bt, r2_bt, mae_bt] = fit_error(bt_test_range, fitted_bt);

[mse_ef, rmse_ef, r2_ef, mae_ef] = fit_error(lbl_test, prediction_ef);

[mse_nn, rmse_nn, r2_nn, mae_nn] = fit_error(lbl_test, prediction_nn);

%safe regression results

methods = ["MSE" "RMSE" "R2" "MAE"];

results_reg = table(methods', [mse_acc rmse_acc r2_acc mae_acc]',...

 [mse_gyro rmse_gyro r2_gyro mae_gyro]',...

 [mse_bt rmse_bt r2_bt mae_bt]', ...

 [mse_ef rmse_ef r2_ef mae_ef]', ...

92

 [mse_nn rmse_nn r2_nn mae_nn]');

%accuracy of predicting <6 feet

[F1_acc, BA_acc] = scores((acc_test_range >= 6),(fitted_acc >= 6));

[F1_gyro, BA_gyro] = scores((gyro_test_range >= 6),(fitted_gyro >= 6));

[F1_bt, BA_bt] = scores((bt_test_range >= 6),(fitted_bt >= 6));

%save <6 feet classification results

b_methods = ["F1" "BA"];

results_b = table(b_methods', [F1_acc BA_acc]', [F1_gyro BA_gyro]',...

 [F1_bt BA_bt]','VariableNames',{'Metric' 'Accelerometer' 'Gyroscope'

'Bluetooth'});

writetable(results_b, 'results_pact_LOO_6feet_user17.xlsx');

%--%

B.5 Support functions

%--%

%Function to normalize features

%Inputs: X - feature vector/matrix to normalize

% method - normalization method ('Zscore','MinMax', or 'Log')

%Output: X_norm - normalized feature vector/matrix

%--%

function X_norm = featureNormalize2(X, method)

epsilon = 0.0001; %to avoid division by 0

if method == "Zscale"

 temp = bsxfun(@minus, X, mean(X));

 X_norm = bsxfun(@rdivide, temp, (std(X)+epsilon));

elseif method == "MinMax"

93

 X_norm = (X - min(X))./(max(X) - min(X));

elseif method == "Log"

 X_norm = log10(X);

else

 disp('No scaling method selected')

end

end

%--%

% Function that creates 5 groups from user context data and prepares it for

% sensor fusion model

% Inputs: training and test data

% Outputs: training, test data, and labels spareratly

%--%

function [acc_lbl_train, acc_lbl_test, gyro_lbl_train, gyro_lbl_test, ...

 bt_lbl_train, bt_lbl_test, all_cnt]= group_cat(acc_dat_test, ...

 acc_dat_train, gyro_dat_test, gyro_dat_train, bt_dat_test, bt_dat_train)

%accelerometer

%--%

%training set

acc_cat_train = acc_dat_train.acc_categories;

%Inside or outside

acc_env1_train = acc_cat_train(:,1)+(acc_cat_train(:,2).*2);

%Size of the room

acc_env2_train = acc_cat_train(:,3) + acc_cat_train(:,4).*2 + acc_cat_train(:,5).*3;

%Where in the room

acc_env3_train = acc_cat_train(:,6) + acc_cat_train(:,7).*2 + acc_cat_train(:,8).*3

+ acc_cat_train(:,9).*4 ;

94

%Sitting or Standing

acc_pose_train = acc_cat_train(:,10)+(acc_cat_train(:,11).*2);

%Phone location on user body

acc_loc_train = acc_cat_train(:,12) + acc_cat_train(:,13).*2 +...

 acc_cat_train(:,14).*3 + acc_cat_train(:,15).*4 + acc_cat_train(:,16).*5 +

acc_cat_train(:,17).*6 ;

%test set

acc_cat_test = acc_dat_test.acc_categories;

acc_env1_test = acc_cat_test(:,1)+(acc_cat_test(:,2).*2);

acc_env2_test = acc_cat_test(:,3) + acc_cat_test(:,4).*2 + acc_cat_test(:,5).*3;

acc_env3_test = acc_cat_test(:,6) + acc_cat_test(:,7).*2 + acc_cat_test(:,8).*3 +

acc_cat_test(:,9).*4 ;

acc_pose_test = acc_cat_test(:,10)+(acc_cat_test(:,11).*2);

acc_loc_test = acc_cat_test(:,12) + acc_cat_test(:,13).*2 +...

 acc_cat_test(:,14).*3 + acc_cat_test(:,15).*4 + acc_cat_test(:,16).*5 +

acc_cat_test(:,17).*6 ;

acc_lbl_train = [acc_env1_train, acc_env2_train, acc_env3_train, ...

 acc_pose_train, acc_loc_train];

acc_lbl_test = [acc_env1_test, acc_env2_test, acc_env3_test, ...

 acc_pose_test, acc_loc_test];

%--%

%gyroscope

%--%

gyro_cat_train = gyro_dat_train.gyro_categories;

gyro_env1_train = gyro_cat_train(:,1) + gyro_cat_train(:,2).*2;

95

gyro_env2_train = gyro_cat_train(:,3) + gyro_cat_train(:,4).*2 +

gyro_cat_train(:,5).*3;

gyro_env3_train = gyro_cat_train(:,6) + gyro_cat_train(:,7).*2 +

gyro_cat_train(:,8).*3 + gyro_cat_train(:,9).*4 ;

gyro_pose_train = gyro_cat_train(:,10)+ gyro_cat_train(:,11).*2;

gyro_loc_train = gyro_cat_train(:,12) + gyro_cat_train(:,13).*2 +...

 gyro_cat_train(:,14).*3 + gyro_cat_train(:,15).*4 + gyro_cat_train(:,16).*5 +

gyro_cat_train(:,17).*6 ;

gyro_cat_test = gyro_dat_test.gyro_categories;

gyro_env1_test = gyro_cat_test(:,1) + gyro_cat_test(:,2).*2;

gyro_env2_test = gyro_cat_test(:,3) + gyro_cat_test(:,4).*2 + gyro_cat_test(:,5).*3;

gyro_env3_test = gyro_cat_test(:,6) + gyro_cat_test(:,7).*2 + gyro_cat_test(:,8).*3

+ gyro_cat_test(:,9).*4 ;

gyro_pose_test = gyro_cat_test(:,10)+ gyro_cat_test(:,11).*2;

gyro_loc_test = gyro_cat_test(:,12) + gyro_cat_test(:,13).*2 +...

 gyro_cat_test(:,14).*3 + gyro_cat_test(:,15).*4 + gyro_cat_test(:,16).*5 +

gyro_cat_test(:,17).*6 ;

gyro_lbl_train = [gyro_env1_train, gyro_env2_train, gyro_env3_train, ...

 gyro_pose_train, gyro_loc_train];

gyro_lbl_test = [gyro_env1_test, gyro_env2_test, gyro_env3_test, ...

 gyro_pose_test, gyro_loc_test];

%--%

%Bluetooth

%--%

bt_cat_train = bt_dat_train.bt_categories;

96

bt_env1_train = bt_cat_train(:,1) + bt_cat_train(:,2).*2;

bt_env2_train = bt_cat_train(:,3) + bt_cat_train(:,4).*2 + bt_cat_train(:,5).*3;

bt_env3_train = bt_cat_train(:,6) + bt_cat_train(:,7).*2 + bt_cat_train(:,8).*3 +

bt_cat_train(:,9).*4 ;

bt_pose_train = bt_cat_train(:,10)+ bt_cat_train(:,11).*2;

bt_loc_train = bt_cat_train(:,12) + bt_cat_train(:,13).*2 +...

 bt_cat_train(:,14).*3 + bt_cat_train(:,15).*4 + bt_cat_train(:,16).*5 +

bt_cat_train(:,17).*6 ;

bt_cat_test = bt_dat_test.bt_categories;

bt_env1_test = bt_cat_test(:,1) + bt_cat_test(:,2).*2;

bt_env2_test = bt_cat_test(:,3) + bt_cat_test(:,4).*2 + bt_cat_test(:,5).*3;

bt_env3_test = bt_cat_test(:,6) + bt_cat_test(:,7).*2 + bt_cat_test(:,8).*3 +

bt_cat_test(:,9).*4 ;

bt_pose_test = bt_cat_test(:,10)+ bt_cat_test(:,11).*2;

bt_loc_test = bt_cat_test(:,12) + bt_cat_test(:,13).*2 +...

 bt_cat_test(:,14).*3 + bt_cat_test(:,15).*4 + bt_cat_test(:,16).*5 +

bt_cat_test(:,17).*6 ;

bt_lbl_train = [bt_env1_train, bt_env2_train, bt_env3_train, ...

 bt_pose_train, bt_loc_train];

bt_lbl_test = [bt_env1_test, bt_env2_test, bt_env3_test, ...

 bt_pose_test, bt_loc_test];

%--%

%calculate number of positive samples

acc_test_cnt = sum(acc_cat_test);

acc_train_cnt = sum(acc_cat_train);

97

gyro_test_cnt = sum(gyro_cat_test);

gyro_train_cnt = sum(gyro_cat_train);

bt_test_cnt = sum(bt_cat_test);

bt_train_cnt = sum(bt_cat_train);

all_cnt = [acc_test_cnt', acc_train_cnt', gyro_test_cnt', gyro_train_cnt', ...

 bt_test_cnt', bt_train_cnt'];

end

%--%

%--%

% Function to compute cost of misclassification for multiclass

% classification

% Input: class vector

% Output: cost matrix

%--%

function cost = compute_cost_multi(array_classes,c)

%classes

all_classes = [0 1 2 0 0 0 0;

 0 1 2 3 0 0 0;

 0 1 2 3 4 0 0;

 0 1 2 0 0 0 0;

 0 1 2 3 4 5 6;];

%unique classes

98

u1 = unique(array_classes);

 i1 = ~eye(length(u1));

 for z = 1:length(u1)

 u2(z) = sum(array_classes==u1(z));

 if u2(z) == 0

 u2(z)=1;

 end

 end

 cost = [];

 for z = 1:length(u1)

 cost = [cost;u2];

 end

 %misclassification matrix

 cost=(cost).*i1;

 u2=[];

end

%--%

%--%

% Function to compute F1 score and blanced accuracy

% Input: ground truth vector and predicted class vector

% Output: F1 score and balanced accuracy

%--%

function [F1_all , BA_all] = scores_multi(groundTruth, prediction)

%classes

all_classes = [0 1 2 0 0 0 0;

 0 1 2 3 0 0 0;

99

 0 1 2 3 4 0 0;

 0 1 2 0 0 0 0;

 0 1 2 3 4 5 6;];

epsilon = 0.0001; %to avoid division by 0

[n,~] = size(all_classes); %n-number of groups

F1_all = [];

BA_all = [];

for c=1:n

 u = unique(all_classes(c,:)); %number of test settings (lables) per group

 for i=2:length(u)

 [TP, FP, TN, FN] = calError(prediction(:,c) == u(i), groundTruth(:,c) == u(i));

 TPR = TP./(TP+FN+epsilon);

 TNR = TN./(TN+FP+epsilon);

 prec = TP./(TP+FP+epsilon);

 BA(i-1) = (TPR+TNR)./2;

 F1(i-1) = (2.*TPR.*prec)./(TPR+prec+epsilon);

 end

 F1_all = [F1_all; F1'];

 BA_all = [BA_all; BA'];

 BA = [];

 F1 = [];

end

end

%--%

100

%--%

% Function to concatinate horizontaly data of different length (vertical length)

% from three sensors

% Input: each sensor data and range vectors

% Output: concatinated data and range vector

%--%

function [ef_dat, lbls] = prep_ef_data_reg2(acc_x, gyro_x, bt_x, ...

 acc_y, gyro_y, bt_y)

%get all unique distanses (expected 2:2:16)

dist = unique(acc_y);

if length(dist)~=8

 disp('Distance range is not what expected');

end

%find data point associated with each distance

acc_dist2 = acc_x(find(acc_y==dist(1)),:);

acc_dist4 = acc_x(find(acc_y==dist(2)),:);

acc_dist6 = acc_x(find(acc_y==dist(3)),:);

acc_dist8 = acc_x(find(acc_y==dist(4)),:);

acc_dist10 = acc_x(find(acc_y==dist(5)),:);

acc_dist12 = acc_x(find(acc_y==dist(6)),:);

acc_dist14 = acc_x(find(acc_y==dist(7)),:);

acc_dist16 = acc_x(find(acc_y==dist(8)),:);

gyro_dist2 = gyro_x(find(gyro_y==dist(1)),:);

gyro_dist4 = gyro_x(find(gyro_y==dist(2)),:);

gyro_dist6 = gyro_x(find(gyro_y==dist(3)),:);

101

gyro_dist8 = gyro_x(find(gyro_y==dist(4)),:);

gyro_dist10 = gyro_x(find(gyro_y==dist(5)),:);

gyro_dist12 = gyro_x(find(gyro_y==dist(6)),:);

gyro_dist14 = gyro_x(find(gyro_y==dist(7)),:);

gyro_dist16 = gyro_x(find(gyro_y==dist(8)),:);

bt_dist2 = bt_x(find(bt_y==dist(1)),:);

bt_dist4 = bt_x(find(bt_y==dist(2)),:);

bt_dist6 = bt_x(find(bt_y==dist(3)),:);

bt_dist8 = bt_x(find(bt_y==dist(4)),:);

bt_dist10 = bt_x(find(bt_y==dist(5)),:);

bt_dist12 = bt_x(find(bt_y==dist(6)),:);

bt_dist14 = bt_x(find(bt_y==dist(7)),:);

bt_dist16 = bt_x(find(bt_y==dist(8)),:);

%concatenate using the shortest vector those cropping vectors for the

%sensors that have more data for given distance

min2 = min([length(acc_dist2), length(gyro_dist2), length(bt_dist2)]);

min4 = min([length(acc_dist4), length(gyro_dist4), length(bt_dist4)]);

min6 = min([length(acc_dist6), length(gyro_dist6), length(bt_dist6)]);

min8 = min([length(acc_dist8), length(gyro_dist8), length(bt_dist8)]);

min10 = min([length(acc_dist10), length(gyro_dist10), length(bt_dist10)]);

min12 = min([length(acc_dist12), length(gyro_dist12), length(bt_dist12)]);

min14 = min([length(acc_dist14), length(gyro_dist14), length(bt_dist14)]);

min16 = min([length(acc_dist16), length(gyro_dist16), length(bt_dist16)]);

dist2 = [acc_dist2(1:min2,:) gyro_dist2(1:min2,:) bt_dist2(1:min2,:)

ones(min2,1)*2];

102

dist4 = [acc_dist4(1:min4,:) gyro_dist4(1:min4,:) bt_dist4(1:min4,:)

ones(min4,1)*4];

dist6 = [acc_dist6(1:min6,:) gyro_dist6(1:min6,:) bt_dist6(1:min6,:)

ones(min6,1)*6];

dist8 = [acc_dist8(1:min8,:) gyro_dist8(1:min8,:) bt_dist8(1:min8,:)

ones(min8,1)*8];

dist10 = [acc_dist10(1:min10,:) gyro_dist10(1:min10,:) bt_dist10(1:min10,:)

ones(min10,1)*10];

dist12 = [acc_dist12(1:min12,:) gyro_dist12(1:min12,:) bt_dist12(1:min12,:)

ones(min12,1)*12];

dist14 = [acc_dist14(1:min14,:) gyro_dist14(1:min14,:) bt_dist14(1:min14,:)

ones(min14,1)*14];

dist16 = [acc_dist16(1:min16,:) gyro_dist16(1:min16,:) bt_dist16(1:min16,:)

ones(min16,1)*16];

%combine data for each distance and randomly shuffle it

dat_all = [dist2; dist4; dist6; dist8; dist10; dist12; dist14; dist16];

[h,~] = size(dat_all);

idx = randperm(h);

data_rand = dat_all(idx,:);

%split data and range vector

ef_dat = data_rand(:,1:end-1);

lbls = data_rand(:,end);

end

%--%

%--%

103

% Function to concatinate horizontaly data of different length (vertical length)

% from three sensors

% Input: each sensor data and range vectors

% Output: concatinated data and range vector

%--%

function [ef_dat, lbls] = prep_ef_data_reg3(acc_x, gyro_x, bt_x, ...

 acc_y, gyro_y, bt_y)

dist = unique(acc_y); %get all unique distanses (expected 2:2:16)

dat_all = [];

for i=1:length(dist)

 %find data point associated with each distance

 acc_dist = acc_x(find(acc_y==dist(i)),:);

 gyro_dist = gyro_x(find(gyro_y==dist(i)),:);

 bt_dist = bt_x(find(bt_y==dist(i)),:);

 %concatenate using the shortest vector those cropping vectors for the

 %sensors that have more data for given distanc

 min_d = min([length(acc_dist(:,1)), length(gyro_dist(:,1)), length(bt_dist(:,1))]);

 dist_m = [acc_dist(1:min_d,:) gyro_dist(1:min_d,:) bt_dist(1:min_d,:)

ones(min_d,1)*dist(i)];

 dat_all = [dat_all; dist_m];

end

%combine data for each distance and randomly shuffle it

[h,~] = size(dat_all);

idx = randperm(h);

data_rand = dat_all(idx,:);

%split data and range vector

ef_dat = data_rand(:,1:end-1);

104

lbls = data_rand(:,end);

end

%--%

%--%

% Function to compute RMSE, R^2, MSE, MAE

% Input: predicted range and ground truth

% Output: MSE, RMSE, R^2, MAE

%--%

function [mse, rmse, r2, mae] = fit_error(tru, fitted)

s = sum((tru-fitted).^2);

n = length(tru);

mse = s/n; %MSE

rmse = sqrt(s/n);%RMSE

r2 = 1 - (s/sum((tru-mean(tru)).^2)); %R^2

mae = sum(abs(fitted-tru))/n; %MAE

end

%--%

%--%

% Function to compute F1 score and balanced accuracy

105

% Input: predicted range and ground truth

% Output: F1 and balanced accuracy

%--%

function [F1,BA] = scores(groundTruth, prediction)

epsilon = 0.0001; %to avoid division by 0

[TP, FP, TN, FN] = calError(groundTruth,prediction);

TPR = TP./(TP+FN+epsilon);

TNR = TN./(TN+FP+epsilon);

prec = TP./(TP+FP+epsilon);

BA = (TPR+TNR)./2; %Balanced accuracy

F1 = (2.*TPR.*prec)./(TPR+prec+epsilon); %F1 score

end

%--%

%--%

% This function calculates True Positives, False Positives, True Negatives

% and False Negatives for two matrices of equal size assuming they are

% populated by 1's and 0's.

% Inputs: trueMat contains the actual true values while the predictedMat

% contains the 1's and 0's predicted from the algorithm used.

% Output: confucion matrix

%--%

function [TP, FP, TN, FN] = calError(trueMat, predictedMat)

adder = trueMat + predictedMat;

TP = length(find(adder == 2));

106

TN = length(find(adder == 0));

subtr = trueMat - predictedMat;

FP = length(find(subtr == -1));

FN = length(find(subtr == 1));

end

%--%

B.6 Functions to calculate features

%--%

% Function to compute mean

% Input: X - data vector

% n - window over which mean computed

%--%

function Y = Fmean(X,n)

 Y = arrayfun(@(i) mean(X(i:i+n-1)),1:n:length(X)-n+1)';

End

%--%

% Function to compute standard deviation

% Input: X - data vector

% n - window over which standard deviation computed

%--%

function Y = Fstd(X,n)

 Y = arrayfun(@(i) std(X(i:i+n-1)),1:n:length(X)-n+1)';

end

%--%

107

% Function to compute skewness and kurtosis

% Input: X - data vector

% n - window over which skewness and kurtosis computed

%--%

function [M3, M4] = Fmoment(X,n)

%calculate third moment - skewness and fourth moment - kurtosis

 M3 = arrayfun(@(i) moment(X(i:i+n-1),3),1:n:length(X)-n+1)';

 M4 = arrayfun(@(i) moment(X(i:i+n-1),4),1:n:length(X)-n+1)';

end

%--%

% Function to compute 25th, 50th, and 75th percentile

% Input: X - data vector

% n - window over which statistic calculation performed

%--%

function [P25, P50, P75] = Fprctile(X,n)

%calculate 25th, 50th, 75th percentile

 P25 = arrayfun(@(i) prctile(X(i:i+n-1),25),1:n:length(X)-n+1)';

 P50 = arrayfun(@(i) prctile(X(i:i+n-1),50),1:n:length(X)-n+1)';

 P75 = arrayfun(@(i) prctile(X(i:i+n-1),75),1:n:length(X)-n+1)';

end

%--%

% Function to value entropy and time entropy

% Input: X - data vector

% n - window over which statistic calculation performed

%--%

108

function [ValE, TimeE] = Fentropy(X,n)

 %value entropy

 val = arrayfun(@(i) hist(X(i:i+n-1),20),1:n:length(X)-

n+1,'UniformOutput',false)';

 ValE = zeros(length(val),1);

 for i = 1:length(val)

 ValE(i) = entropy(val{i})';

 end

 TimeE = arrayfun(@(i) timeE(X(i:i+n-1)),1:n:length(X)-n+1)';

end

function te = timeE(X)

 %time entropy

 normX = X./max(abs(X));

 te = entropy(normX);

end

%--%

% Function to compute autocovariance and autocorrelation

% Input: X - data vector

% n - window over which statistic calculation performed

%--%

function [Acov, Acor] = Fauto(X,n)

 Acor = arrayfun(@(i) autoCor(X(i:i+n-1),n),1:n:length(X)-n+1)';

 Acov = arrayfun(@(i) autoCov(X(i:i+n-1),n),1:n:length(X)-n+1)';

end

109

%autocorrelation

function Y = autoCor(X,n)

 z = circshift(X,floor(n/2));

 Y=X'*z;

end

%autocovariance

function Y = autoCov(X,n)

 z = circshift(X,floor(n/2));

 Y = ((X-mean(X))'*(z-mean(z)))/(std(X)*std(z));

end

%--%

% Function to compute correlation between axes

% Input: X - data vector

% n - window over which statistic calculation performed

%--%

function cor = Fcorr(x, y, z, n)

%computes correlation between three axis

xy = arrayfun(@(i) corr(x(i:i+n-1), y(i:i+n-1), 'Type', 'Pearson'),1:n:length(x)-

n+1)';

xz = arrayfun(@(i) corr(x(i:i+n-1), z(i:i+n-1), 'Type', 'Pearson'),1:n:length(x)-

n+1)';

yz = arrayfun(@(i) corr(y(i:i+n-1), z(i:i+n-1), 'Type', 'Pearson'),1:n:length(x)-

n+1)';

cor = [xy, xz, yz];

end

110

%--%

% Function to compute RMS of Doppler spectrum

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = FRmsDoppler(X,n)

 Y = arrayfun(@(i) doppler(X(i:i+n-1)),1:n:length(X)-n+1)';

end

function B_rms= doppler(rssi_1)

w0=-pi:pi/1000:pi;

X0=zeros(1,length(w0));

j0=length(rssi_1);

for i=1:length(w0)

 for j=1:j0

 X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier

Transform

 end

end

P_doppler = 10*log10(abs(X0).^2);

N_slice = size(rssi_1,1);

f = w0*N_slice/2/pi;

B_rms = sqrt(sum(f.^2.* P_doppler)/sum(P_doppler));

end

111

%--%

% Function to compute peak-to-peak signal change

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = Yp2p(X,n)

 Y = arrayfun(@(i) (max(X(i:i+n-1)) - min(X(i:i+n-1))),1:n:length(X)-n+1)';

end

%--%

% Function to compute signal energy

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = Fenergy(X,n)

 Y = arrayfun(@(i) doppler(X(i:i+n-1)),1:n:length(X)-n+1)';

end

function energy= doppler(rssi_1)

w0=-pi:pi/1000:pi;

X0=zeros(1,length(w0));

j0=length(rssi_1);

for i=1:length(w0)

 for j=1:j0

 X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier

Transform

 end

112

end

P_doppler = 10*log10(abs(X0).^2);

dopler_size = size(P_doppler,2);

energy = sum(P_doppler)/dopler_size; %signal energy

end

%--%

% Function to compute Rayleigh parameter

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = Frayleigh(X,n)

 Y = arrayfun(@(i) raylfit(X(i:i+n-1)),1:n:length(X)-n+1)';

end

%--%

% Function to compute fade duration

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = FfadeDuration(X,n)

 Y = arrayfun(@(i) (exp(ro(X(i:i+n-1))^2)-1)/(sqrt(2*pi)*ro(X(i:i+n-

1))*doppler(X(i:i+n-1))),...

 1:n:length(X)-n+1)';

end

113

function y = ro(X)

 %a = median(X);

 arms=rms(X);

 a = rms(X) - 3; %RMS - 3dB (try different values e.g 3, 2, 1 dB)

 y=(a)/(arms);

end

function B_rms= doppler(rssi_1)

w0=-pi:pi/1000:pi;

X0=zeros(1,length(w0));

j0=length(rssi_1);

for i=1:length(w0)

 for j=1:j0

 X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier

Transform

 end

end

P_doppler = 10*log10(abs(X0).^2);

N_slice = size(rssi_1,1);

f = w0*N_slice/2/pi;

B_rms = sqrt(sum(f.^2.* P_doppler)/sum(P_doppler));

end

%--%

% Function to compute level crossing

114

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = FlevelX(X,n)

 Y = arrayfun(@(i) sqrt(2*pi)*ro(X(i:i+n-1))*doppler(X(i:i+n-1))*exp(-

ro(X(i:i+n-1))^2),...

 1:n:length(X)-n+1)';

end

function y= ro(X)

 %a = median(X);

 arms=rms(X);

 a = arms - 3;

 y=sum(a)/sum(arms);

end

function B_rms= doppler(rssi_1)

w0=-pi:pi/1000:pi;

X0=zeros(1,length(w0));

j0=length(rssi_1);

for i=1:length(w0)

 for j=1:j0

 X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier

Transform

 end

end

P_doppler = 10*log10(abs(X0).^2);

115

N_slice = size(rssi_1,1);

f = w0*N_slice/2/pi;

B_rms = sqrt(sum(f.^2.* P_doppler)/sum(P_doppler));

end

%--%

% Function to compute peak of Doppler spectrum

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = FpeakDoppler(X,n)

 Y = arrayfun(@(i) doppler(X(i:i+n-1)),1:n:length(X)-n+1)';

end

function P_max= doppler(rssi_1)

w0=-pi:pi/1000:pi;

X0=zeros(1,length(w0));

j0=length(rssi_1);

for i=1:length(w0)

 for j=1:j0

 X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier

Transform

 end

end

116

P_doppler = 10*log10(abs(X0).^2);

P_max = max(P_doppler);

end

%--%

% Function to compute mean of Doppler spectrum

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = FmeanDoppler(X,n)

 Y = arrayfun(@(i) doppler(X(i:i+n-1)),1:n:length(X)-n+1)';

end

function P_mean= doppler(rssi_1)

w0=-pi:pi/1000:pi;

X0=zeros(1,length(w0));

j0=length(rssi_1);

for i=1:length(w0)

 for j=1:j0

 X0(i)=X0(i)+sqrt(rssi_1(j)).*exp(-1i*w0(i)*j); % Discrete Time Fourier

Transform

 end

end

P_doppler = 10*log10(abs(X0).^2);

P_mean = mean(P_doppler);

end

117

%--%

% Function to compute polynomial fit

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = Fpoly(X,n)

% a=1;

% b=0.7;

 Y = arrayfun(@(i) lap_fit(X(i:i+n-1)),1:n:length(X)-n+1)';

end

function lbf = lap_fit(X)

w0=-pi:2*pi/(length(X)-1):pi;

ydata = X;

xdata = w0';

opts = optimset('Display','off');

fun = @(x, xdata) x(1)*xdata.^3;

x0 = 0.1;

fit_param = lsqcurvefit(fun,x0,xdata,ydata, [],[],opts); %

lbf = real(fit_param(1));

end

%--%

% Function to compute Laplacian best fit

% Input: X - data vector

% n - window over which output parameter calculated

118

%--%

function Y = Flaplacian(X,n)

 Y = arrayfun(@(i) lap_fit(X(i:i+n-1)),1:n:length(X)-n+1)';

end

function lbf = lap_fit(X)

w0=-pi:2*pi/(length(X)-1):pi;

ydata = X;

xdata = w0';

opts = optimset('Display','off');

fun = @(x, xdata) 1./(((xdata-x(3))./x(1)).^(2*x(2)));

x0 = [0.1,0.1,1e-10];

fit_param = lsqcurvefit(fun,x0,xdata,ydata, [],[],opts); %

lbf = real(fit_param(2));

end

%--%

% Function to compute Gaussian best fit

% Input: X - data vector

% n - window over which output parameter calculated

%--%

function Y = Fgauss(X,n)

 Y = arrayfun(@(i) lap_fit(X(i:i+n-1)),1:n:length(X)-n+1)';

end

function lbf = lap_fit(X)

w0=-pi:2*pi/(length(X)-1):pi;

ydata = X;

119

xdata = w0';

opts = optimset('Display','off');

fun = @(x, xdata) (x(1)*exp(-(-xdata-x(2)).^2)./(x(3)^2));

x0 = [0.1,0.1,1e-10];

fit_param = lsqcurvefit(fun,x0,xdata,ydata, [],[],opts); %

lbf = real(fit_param(2));

end

