

Detonicon - A Networked Game Utilizing AI to Study the

Effects of Latency Compensation

A Major Qualifying Project

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Computer Science

and

Interactive Media & Game Development

by

Hung Hong

Antony Qin

Date: 25 April 2019

Report Submitted to:

Professor Mark Claypool, Advisor

Worcester Polytechnic Institute

1

Abstract

Online video games are pervasive and as a result, latency deteriorates the gaming

experience. While latency compensation techniques exist, the problem is that not many

developers can quantify the actual effects of latency compensation. Our goal is to precisely

measure the effects of latency compensation in games. We created a networked game for use as a

testbed and built a latency simulator and latency compensation into our game. In addition, we

implemented AI with the ability to play the game like a human player to enable automated

testing. Finally, we evaluated latency compensation by running a bot study to find out how

players perform, and a user study to find how players feel. The results show that players using

latency compensation performed better and also felt the game was less difficult.

2

Table of Contents
Abstract ………………………....………………………………………………………………1

Table of Contents .……………....………………………………………………………………2

List of Figures .……………....……….…………………………………………………………4

List of Tables……………....…………...…………………………………………………6

Chapter 1: Introduction ………....………………………………………………………………7

Chapter 2: Methodology ..……....………………………………………………………………9

 2.1: Game Development ….....……………………………………………………………9

 2.1.1: Alpha Build …...............……………………....……………………………...11

 2.1.2: Alphafest ……......................……………………..………………………….14

 2.1.3: Final Build………………………………………....…………..15

 2.2: AI Implementation ……....…………………………………………………………..18

 2.2.1: Bot Personality…………………………………………....…………..18

 2.2.1: Pathfinding ….............…………………………………………....…………..20

 2.3: Latency …………………….…....…………………………………………………..24

 2.3.1: Latency Simulator …..…………………………………………....………….25

 2.3.2: Latency Compensation ….............………………….…………....…………..26

Chapter 3: Evaluation …..……....…………………………………………………………….29

 3.1: Bot Study Procedure…………………………………………………………….29

 3.2: User Study Procedure ...…………………………………………………………….32

Chapter 4: Results & Analysis …….………………………………………………………….35

 4.1: Bot Study Results & Analysis ..……………………………………………………..35

 4.2: User Study Results & Analysis .……………………………………………………..44

Chapter 5: Postmortem ………....……………………………………………………………..53

 5.1: What Went Wrong ..………….....…………………………………………….……..53

 5.2: What Went Well …………....……..………………………………………………….54

Chapter 6: Conclusion …..……....……………………………………………………………..55

Chapter 7: Future Work ………....……...……………………………………………………..56

References ……………....……....……...…………………………………………………….57

3

Appendix A …..………....……....……...……………………………………………………...58

Appendix B …..…………....…………...……………………………………………………...60

Appendix C ……..…………........……...……………………………………………………...62

4

List of Figures

Figure 2.1.1: Dragonfly Title Screen ..…………………………………………………………10

Figure 2.1.2: Precision and Deadline ...…………………………………………………………10

Figure 2.1.3: Super Bomberman 5 …...…………………………………………………………11

Figure 2.1.1.1: Detonicon Screenshot (Alpha Build) ……...…………..………………………12
Figure 2.1.3.1: Detonicon Screenshot (Final Build) ……...…………....………………………17

Figure 2.2.1.1: Bot Decision Tree ………………………....…………....………………………19

Figure 2.2.2.1: Pathfinding with Breakable Wall Avoided ……..…...……………………....…21

Figure 2.2.2.2: Pathfinding with Breakable Wall Considered ……..…………...…………....…22

Figure 2.2.2.3: Path Smoothing in Horizontal Direction ……...…..…….…….…………....…23

Figure 2.2.2.4: Path Smoothing in Vertical Direction ……..…..…………………………....…23

Figure 2.3.1: Latency Summarized ..………………..…………………………………….……24

Figure 2.3.1.1: Latency Simulator Queue ..……………………………………………….……25

Figure 2.3.2.1: Client Movement Without Latency Compensation ..………………………….27

Figure 2.3.2.2: Client Movement Using Latency Compensation ..…………………………….28

Figure 4.1.1: Bot Win Rate vs Latency and Latency Compensation ……...…….……....…….35

Figure 4.1.2: Bot Survivability vs Latency and Latency Compensation ……...…………....….36

Figure 4.1.3: Spaces Moved vs Latency and Latency Compensation ……...…………....…….37

Figure 4.1.4: Movement Commands Sent vs Latency and Latency Compensation ………..….37
Figure 4.1.5: Number of Bumps vs Latency and Latency Compensation …………...……..….38
Figure 4.1.6: Number of Rebounds While Using Latency Compensation …………...……..….40
Figure 4.1.7: Distance Rebounded While Using Latency Compensation …………...……..….40
Figure 4.1.8: Ratio of Number of Rebounds and Number of Spaces Moved …...…...……..….41
Figure 4.1.9: Number of Times Hit by Explosion vs Latency and Latency Compensation ……42
Figure 4.1.10: Number of Bombs Placed vs Latency and Latency Compensation …………….43
Figure 4.1.11: Number of Power-ups Picked Up vs Latency and Latency Compensation ……..43
Figure 4.2.1: Perceived Smoothness vs Latency and Latency Compensation ………………...45
Figure 4.2.2: Perceived Responsiveness vs Latency and Latency Compensation ………..…...45
Figure 4.2.3: Noticeability of Visual Glitches vs Latency and Latency Compensation ….…....47

5

Figure 4.2.4: Number of Times Rebounded Player and Bot Comparison ………………...…..48
Figure 4.2.5: Number of Spaces Rebounded Player and Bot Comparison ……..……………..48
Figure 4.2.6: Number of Spaces Moved Player and Bot Comparison ……………….………..49
Figure 4.2.7: Perceived Difficulty vs Latency and Latency Compensation ……...…………..…50
Figure 4.2.8: Player Survivability vs Latency and Latency Compensation …………………...51

Figure 4.2.9: Player Survivability Compared with Bot Survivability ………………………......52

6

List of Tables
Table 2.1.1.1: Detonicon Game Elements ...………...…………………………………………13

Table 2.1.2.1: Alphafest Survey Data ...……….………………………………………………14
Table 2.1.3.1: Feature Priority …..........………………………………..………………………16

Table 3.1.1: Detonicon Client Statistics ...…………………………………..…………………30

Table 3.1.2: Testing Machine Specifications ...……………………………..…………………31
Table 3.1.3: Bot Study Tests ...……………………..………………………..…………………32

Table 3.1.4: User Study Tests ...…………………………….………………..…………………34

7

Chapter 1: Introduction

Network connectivity enables online games to be prevalent and people enjoy playing

them. However, this can mean online games are constrained by a network connection. As a

result, latency, or the delay in communication, is a common challenge in online gaming since it

can reduce responsiveness of the gameplay and consistency of the game world [1].

In response to the issue of latency, latency compensation techniques have been developed

in order to improve online gaming performance and experience [2]. Many different types of

latency compensation techniques are practiced in games of all genres, such as First-Person

Shooter (FPS) or Massive Multiplayer Online Role-playing Game (MMORPG). Aspiring game

developers that are interested in developing online games may consider development of latency

compensation for their infrastructures to deliver enjoyable games to their players.

Despite its prevalence, there are few quantified measurements as to how latency

compensation benefits gameplay performance and experience over a range of games and player

actions. How much does latency compensation help with scoring? With moving the avatar? With

shooting? How much does latency compensation help enjoyment? Answers to such questions

may help developers weigh the costs and benefits of implementing latency compensation.

The primary goal of our project is to precisely quantify the effect of latency

compensation in games by experimentally measuring the effects of latency on gameplay and

comparing it to the same gameplay with latency compensation. Secondary goals include

producing a game with a range of actions, bots with human-like behavior, and a framework for

experiments.

In order to achieve our objectives, we created a networked game called Detonicon and

implemented latency as well as latency compensation into the game for testing purposes. We

also implemented AI in order to execute automated tests. Finally, we ran experiments and did

analysis on the data from both a bot study and a user study.

Based on results from 300 bots runs and 19 users our findings validate our knowledge

and expectation of latency compensation in games. Specifically, latency compensation improves

player survivability by about 10% and improves the perceived responsiveness by about 40%.

8

The rest of this report is organized as follows: Chapter 2: Methodology describes the

process of game development, the AI implementation, the latency simulator and the latency

compensation implementation; Chapter 3: Evaluation presents the evaluation procedure, how

we collect data, both from bot study and user study, and what it means for effectiveness of

latency compensation; Chapter 4: Results & Analysis analyzes our findings on latency

compensation and player performance and experience; Chapter 5: Postmortem provides a

postmortem of the project; Chapter 6: Conclusion summarizes our conclusions from our

project; and Chapter 7: Future Work describes possible future work.

9

Chapter 2: Methodology
In order to precisely measure the effects of latency compensation, we:

1. Created a networked game (Chapter 2, Section 2.1)

2. Implemented bot AI to play the game similar to a human player (Chapter 2,

Section 2.2)

3. Implemented a latency simulator and latency compensation into the game

(Chapter 2, Section 2.3)

4. Evaluated latency and latency compensation with a bot study and a user study

(Chapter 3)

Our first step is to create a networked game to act as a testbed and an infrastructure to

produce further work utilizing our structure. Our next step is to implement a latency simulator to

allow us to simulate specific latencies for clients without third-party applications. Additionally,

we implemented a type of latency compensation into our game in order to test its effects on

players. We created bot AI to emulate human players, enabling repetitive tests without the need

for actual playtesters. Finally, we ran a bot study in order to gather objective data (how the

player performs) and a user study to gather subjective data (how the player feels).

2.1 Game Development

This section discusses how we came up with the game idea and developed our game. We

designed a game to use as a research tool for us to study the effects of latency with the following

requirements:

1. The game must be created using the Dragonfly engine

2. The game must be a networked game

3. The game must have gameplay that is affected by latency

4. The game should be simple to play and understand

10

Figure 2.1.1: Dragonfly Title Screen

The Dragonfly engine is an ASCII-based C++ game engine to teach game development

[3]. Figure 2.1.1 shows the title screen of the engine and showcases the ASCII art style.

Dragonfly was primarily made as a learning tool, but can be used for research.

Figure 2.1.2: Precision and Deadline [1]

Precision, or how much accuracy a player action requires, and Deadline, or how long a

player action requires, determine how an action is affected by latency [1]. A graph showing how

actions are scaled to Precision and Deadline is shown in Figure 2.1.2. Actions closer to the

origin (bottom right corner) are more affected by latency. Since latency has a variable effect on

11

different types of games, latency compensation could also have a variable effect on different

types of games. A game with flexible Precision and Deadline for actions enables testing the

effects of latency compensation for a range of game types.

Since Dragonfly is ASCII-based, we decided on a 2D design as that art style lends itself

to ASCII. We decided against Co-op, as that would require the development of different bot AI

for allies and enemies. Rather than players with different skills, unique strengths and

weaknesses, we decided that players should have the same actions for simpler evaluation. Items

scattered across the map allowed players to obtain different abilities. This design philosophy

allowed for a single, consistent AI to be used to emulate human player action.

Figure 2.1.3: Super Bomberman 5 [4]

After deliberation, we settled on a design akin to the franchise Bomberman (Hudson Soft,

1983). A picture of the game Super Bomberman 5 (Hudson Soft, 1997) that served as inspiration

is shown in Figure 2.1.3. Detonicon is a battle-royale type of game that revolves around up to 5

players who each have the ability to drop a bomb at their feet that explodes on a timer. Precision

is modifiable with bomb explosion size and Deadline is modifiable with bomb timer duration.

The goal in Detonicon is to be the last one standing.

2.1.1 Alpha Build

The alpha build of a game is typically “feature-complete”. This means that the mechanics

of the game are all present in the build. The alpha build may not be “asset-complete”, meaning it

12

does not have all the art and sound intended for the final build of the game in at present. The

alpha build of our game included the basic mechanics of:

● Movable player

● Placing & kicking bombs

● Enemy bot AI, up to 4

● HUD to display stats of each player

● Breakable & Unbreakable walls

● 1 Map

● Power-ups

● Win / Lose Condition

Figure 2.1.1.1: Detonicon Screenshot (Alpha Build)

Figure 2.1.1.1 shows a screenshot of the game’s alpha build. Table 2.1.1.1 sums up

several key elements in Detonicon.

13

Table 2.1.1.1: Detonicon Game Elements

Game Element Sprite Purpose

Breakable Wall

Serves as an obstacle, can be destroyed by a bomb
explosion

Unbreakable Wall

Serves as an obstacle, cannot be destroyed by a
bomb explosion

Player

- Player avatars represented by ‘O’, ‘Q’, ‘P’, ‘M’,
or ‘6’ are randomly assigned to each player
- Can be moved using ‘W’, ‘A’, ‘S’, ‘D’ or arrow
keys
- HP bar is expressed with ‘>’ per each HP, and is
on top of the character

Bomb

- Can be placed by any player using ‘SPACE’ key,
or be kicked by running over the bomb
- The number of bombs for each player depends on
the individual bomb count
- Explodes after a certain period of time

Explosion

- Created by a bomb after a certain period of time
in a ‘+’ shaped pattern
- Length of the bomb placed by each player
depends on their bomb power
- Inflicts 1 damage to the player(s) in range
- Destroys breakable wall(s)

Power-ups

- 4 types of Power-ups:
● Increase bomb power by 1
● Increase bomb count by 1
● Restore health by 1
● Increase move speed

- Can be picked up by any player by running over
them
- Individual stats are updated to the HUD

The game ends once there is one player left alive. In the case where the remaining players

die at the same time, the game ends in a tie.

14

2.1.2 Alphafest

Alphafest is a social gathering hosted by the IMGD program at WPI where we presented

our alpha build. As stated on the WPI website, “Alphafest is a chance for the entire IMGD

community to hang out together, show off project work in progress, conduct playtesting, gather

feedback and eat pizza!” [5]. The primary purpose of participating in Alphafest was to elicit

feedback from players unfamiliar to Detonicon in order to improve the game. We collected

feedback through the instrumentation of paper surveys, given to players after they played

Detonicon. The questions and answers collected from the survey are shown in Table 2.1.2.1.

Table 2.1.2.1: Alphafest Survey Data

 Surveys

Question Scale 1 2 3 4 5 6 Average

How clear were the sprites
in conveying information? 1 to 4 3 3 2 1 2 3 2.33

How clear was the HUD
in conveying information? 1 to 4 2 3 3 2 3 4 2.83

How clear were the
instructions in conveying

information?
1 to 4 4 2 2 N/A 4 4 3.2

How human-like were the
bots? 1 to 4 2 2 4 1 2 2 2.17

How was the length of a
game? 1 to 4 3 4 4 4 3 3 3.5

How was the size of the
map? 1 to 4 3 3 2 4 3 3 3

If you played this game
over a network, would lag

affect the game?
1 to 4 3 4 4 4 N/A 2 3.4

15

In addition to the paper surveys, we noted additional comments given by players at the

time of the playtesting as well as feedback from those who observed the game simply being

played. Our main takeaways from the survey and feedback were as follows:

● The map was too big

○ Players could not reliably fight each other

○ The time to finish a game was too long

● The interface was unclear

○ Players could not find their controlled character easily

○ Players did not know what each power-up did

○ Players did not understand the meaning of the HUD

● Players did not read the instructions before playing

● The bot AI needs more work

○ The bots were too predictable and had the tendency to endanger themselves

○ A few commented the bots were “unfair” during the late game, and had too much

space to dodge explosions

2.1.3 Final Build
We improved Detonicon by taking into account the feedback gained from Alphafest. We

tabulated features to address the issues cropped up at Alphafest, ranked by importance and given

a difficulty to implement rating. The resulting Table 2.1.3.1 was used to determine priority and

the order in which we implemented features. All the tabulated features were eventually

implemented into the game.

16

Table 2.1.3.1: Feature Priority

Feature To
Implement

Issue Feature
Addresses

Importance
of Feature

Difficulty to
Implement

Feature

Implemented
in Final
Build

Shrinking map border as
the game goes on.

- The map was too big.
- Players had ample space
to run instead of fighting
others.

HIGH HARD Yes

Arrows point to and
highlight the

player-controlled
character on game start.

Players could not find the
player-controlled character

on game start.
HIGH EASY Yes

Shake HUD of character
that takes damage.

Players could not quickly
tell which character was
getting damaged without
reading the HUD of that

character.

MEDIUM EASY Yes

Improve bot AI,
especially danger

detection of enclosing
walls or explosions.

Bot AI during Alphafest
was not smart enough. HIGH HARD Yes

Spawn a quick text
snippet on power-up

pick up that says what
the power-up does.

Players could not tell what
each power-up did. HIGH MEDIUM Yes

Spawn a little spectacle
firework on character
deaths, and many on

game victory.

To add flavor and flair to
deaths and victory. LOW EASY Yes

Add multiple maps, and
a way to create a read
them into the game.

To improve the variety of
maps and add additional

strategy.
MEDIUM MEDIUM Yes

Add a way to read bot
personalities into the
game before it starts.

To add an easy way to test
different bot AI. LOW EASY Yes

Change game from the
debug build to a release

build.

Improves resource
utilization and

optimization during
gameplay.

HIGH EASY Yes

17

Figure 2.1.3.1: Detonicon Screenshot (Final Build)

Figure 2.1.3.1 shows a screenshot of Detonicon’s final build after taking into account the

feedback gained from Alphafest. Most of the improvements were to make the game more

understandable. Unbreakable walls are still represented by a yellow ‘X’ character, but now

breakable walls are represented by the green ‘B’ character. This adds another level of distinction

other than color to tell them apart. Characters that spawn have a graphic of arrows pointing to

them so players can tell what character they control. Picking up power-ups now spawns a

message such as ‘BOMB POWER UP’ so players know how their character was just

strengthened. Our map design improved to be more structured and balanced. Most importantly,

over the course of a game, the outer walls shrink in. If the walls reach each other in the middle,

the game automatically ends. With this new mechanic, players are forced together, making it

harder to dodge bomb explosions. Moreover, the game is guaranteed to end at a reasonable and

tweakable time, allowing us to gather more tests during the evaluation.

18

2.2 AI Implementation

Since the goal of our project is to study the effectiveness of latency compensation

through our game Detonicon, implementing artificial intelligence (AI) in order to emulate player

behavior allows study on how our compensation technique performs objectively from automated

tests where bots play against each other.

2.2.1 Bot Personality

We intend for our bots to resemble human behavior as much as possible. In other words,

bots should choose the same actions as do human players in the game. Below are some actions

that players normally do in Detonicon:

● Move towards other players

● Move towards power-ups

● Move away from bombs

● Move away from the enclosing walls

● Place bombs to attack other players

● Place bombs to break walls

● Kick bombs

● Obtain power-ups

Based on this list of actions, bots should have 3 main modes. Each mode represents the

current state of the bots and dictates the appropriate action during each state:

● Fight Mode: The bot moves offensively to attack other players by approaching them and

placing bomb near them.

● Flight Mode: The bot moves defensively to avoid getting hit by bomb explosions and

wait safely until the explosions are over.

● Selfish Mode: The bot moves to obtain power-ups to gain an advantage in stats.

We built a decision tree to determine which mode the bot chooses, as shown in Figure

2.2.1.1, based on its surrounding environment as well as its personalized values assigned

externally. These personalized values served as a mean to infuse personalities to the bots so that

their behaviors are unique similar to human behaviors. The two personality values are:

19

● Brave Value. This value determines bot aggressiveness. The higher the Brave Value, the

more likely that the bot engages in Fight Mode.

● Smart Value. This value determines bot awareness. The higher the Smart Value, the more

accurately the bot skirts around the ranges of bomb explosions during Flight Mode.

Figure 2.2.1.1: Bot Decision Tree

The current location of the bot plays an important role in determining the course of action

that the bot should undertake. From Figure 2.2.1.1, the bot starts with a simple check of whether

its current location is invalid. An invalid position is either an out-of-bounds location (which

should not happen in the game), or within the shrinking wall boundary. Since players do not

20

want to be crushed by a shrinking wall, a struggle movement is triggered by the bot to get out of

the wall boundary. Going down the decision tree, the next decisions are based on how close is

the bot to other key elements of the game, namely bombs, other players, and power-ups. The

bot’s personality values also determine the probability to enter a branch of the tree. The decision

tree also supports a waiting action, in the case the bot has not completed certain decision yet. For

example, the bot could wait after placing a bomb instead of deciding to move somewhere else.

2.2.2 Bot Pathfinding

At first, we wanted to utilize the built-in pathfinding feature in Dragonfly. However, we

found out that we would need a more customized algorithm due to the technical aspect of how

players control movement in Detonicon as well as the existence of breakable walls in the game.

In response, we developed our own pathfinding algorithm built on top of the A* algorithm [6].

After inspecting the surrounding environment and adjusting to the appropriate mode, the

bot determines its destination accordingly. The next task is to find the most efficient way to get

from its current position to that destination using the A* algorithm. A* search aims to find a path

from one starting node to another destination node with the smallest cost. Specifically, when

building a path, A* will try to minimize the following cost:

f(n) = g(n) + h(n)

For the cost equation shown above, n is the next node on the path, g(n) is the cost of the

path from the starting node to node n, and h(n) is a heuristic function estimating the smallest cost

required from the nth node to the destination node. The A* algorithm terminates once it

discovers the lowest cost path that connects the starting node to the destination node, or when

there is no path possible. The Euclidean Distance is our choice of heuristic for our algorithm

because it is quickly computed.

In order to customize the A* algorithm, we had the algorithm consider the existence of

breakable walls, generating two separate searches, if needed, as illustrated in Figure 2.2.2.1 and

Figure 2.2.2.2.

21

Figure 2.2.2.1: Pathfinding with Breakable Wall Avoided

As shown in Figure 2.2.2.1, the bot first generates a path from Start position (green

square) to End position (red square). This first path tries to avoid as many obstacles as possible

which include both breakable and unbreakable walls. If the first path is found, the bot is not

required to place any bombs in order to reach its destination and does not generate a second path.

22

Figure 2.2.2.2: Pathfinding with Breakable Wall Considered

In the scenario where there is no direct path from Start to End, the bot generates a path

that may go through breakable walls. Specifically, the algorithm treats breakable walls as if they

were unobstructed spaces, allowing free travel. As illustrated in Figure 2.2.2.2, a direct path can

be generated from Start to End, with the path passing through a breakable wall. The bot travels

along its path and is halted by a wall. The bot proceeds to place a bomb at the interrupted

location (shown as an orange circle) and switches to Flight mode, which calculates a path and

brings the bot to safety (shown as blue arrows). This scenario is common in Detonicon where the

bot may be surrounded by breakable walls.

After creating a path, there is still an additional step that is required in order to make the

bot move along the path seamlessly. In Detonicon, each horizontal movement is a 2-unit shift,

whereas each vertical movement is a 1-unit shift. Owing to the ASCII nature of the Dragonfly

engine, units in the horizontal direction are closer together than the units in the vertical direction

(kerning and line spacing, respectively). Detonicon’s movement design creates a visual

23

impression that speed is uniform in any direction. However, since our pathfinding algorithm

creates a path that is a list of adjacent coordinates, we have to perform an additional step of “path

smoothing” so that our bot can understand the path information and move accordingly.

Figure 2.2.2.3: Path Smoothing in Horizontal Direction

Figure 2.2.2.4: Path Smoothing in Vertical Direction

Path Smoothing is a process where the path generated from the pathfinding algorithm is

interpreted as a list of “directions” instead of a list of coordinates. Figure 2.2.2.3 shows an

example of path smoothing when moving in a horizontal direction, where X represents the

24

coordinates within the path and O represents the location of the bot after a move has been made.

Basically, the bot compares its current location with the next location on the path coordinate list

to determine the direction that the bot should move. If the next coordinate in the path is the same

as its new location after the move is made, that coordinate is skipped. This allows the bot to be

able to keep up with the generated path and move along the path smoothly. In the case where

there is a change in direction, as shown in Figure 2.2.2.4, the bot compares its location with the

current path coordinate and turns accordingly. This ensures the bot does not move backwards

and continues on its path accordingly.

2.3 Latency

Latency is the time required for a signal to go from a sender to a receiver and back (the

round trip time). As shown in Figure 2.3.1, the client on the left does not render input until after

receiving a server (shown on the right) ok response, which takes some time (latency). As a result,

gamers who experience high latency can see their games stutter, have low frame rate, and

perform poorly.

Figure 2.3.1: Latency Summarized [2]

Our game Detonicon relies on a Client-Server architecture. First, the server starts up the

game and waits. Each player runs a separate client that connects to the started server. Once all

the clients have connected and are ready to play, the server begins the game. The server is

authoritative, meaning all actions that have any effect on the outcome of the game must be

25

approved by and happen on the server. A client sends messages to the server to request an action,

such as moving the player. The server takes in client request messages and updates the game.

The server then sends messages to the clients to update their game world. Finally, the clients

render the world based on their copy of the world. A client experiencing high latency takes

longer to send and receive messages to and from the server than clients experiencing low latency.

2.3.1 Latency Simulator

In order to test the effectiveness of latency compensation in our game, we needed a way

to add latency to the clients. We wanted clients to be reliably burdened with a controlled amount

of latency for testing and did not want to rely on third-party applications. In addition, we wanted

the latency simulator to allow for clients with different latencies on the same machine with the

server to allow for easier testing. This way, our project would be a self-sufficient package that

could be further developed in the future. We simulated latency with a message queue, shown in

Figure 2.3.1.1.

Figure 2.3.1.1: Latency Simulator Queue

Each client is assigned a latency. Each client processes messages from the server only

after their assigned latency time has passed. Messages sent from the server are captured by a

receive queue on the client, shown in Figure 2.3.1.1. Each time a message is added to the receive

26

queue, a timestamp is noted that is the sum of the current time and the assigned latency of the

client, in milliseconds. Every game loop, the receive queue is iterated through, and any messages

that have their timestamp less than or equal to the current time are removed from the receive

queue and processed by the client to update their game state. Latency to the server is simulated

with another queue, the send queue, where all the messages the client sends are placed in the

send queue and assigned a timestamp to send equal to the sum of the current time and the client’s

assigned latency. Every game loop, the send queue is iterated through, and any messages that

have their timestamp less than or equal to the current time are removed and sent to the server.

2.3.2 Latency Compensation

Some latency compensation algorithms are well known [2]. For example:

● Player Prediction: The client predicts what player actions the server will allow.

● Opponent Prediction (Dead Reckoning): The client predicts opponent actions the server

will provide.

● Time Delay: The server waits to process requests until all clients are ready.

● Time Warp: The server rolls back time, applies a previous client request, and rolls time

forward again.

We did not implement opponent prediction as predictions are usually determined using a

directional velocity, and our game has no concept of momentum - opponents can just change

direction with no penalty. Time delay was also not selected so as not to add a handicap to clients

with no latency. Time warp implementation would be out of scope for our project. In the end, we

implemented player prediction for the movement action in Detonicon.

Without player prediction latency compensation in Detonicon, movement in Detonicon is

as follows:

1. The player (client) inputs a movement request, for example, by pressing ‘W’ for up

2. The client packages up the movement request and sends it to the server

3. The request waits (depending on the client’s assigned latency) in the send queue before

being sent to the server

4. The server receives the movement request and either approves or rejects it

27

5. If the request is approved, the server sends a message back to all clients to move the

appropriate avatar on their screen

6. The message waits (depending on each client’s assigned latency) in each client’s receive

queue before being processed

7. Each client processes the message and moves the character upwards on the screen

8. If the server rejected the request, the client’s character simply does not move with the

‘W’ input command

Figure 2.3.2.1: Client Movement Without Latency Compensation

Figure 2.3.2.1 shows a representation of a client moving without latency compensation.

The x-axis represents the character’s increasing movement in space after inputting a movement

command. The y-axis represents increasing time. The ‘P’ marks the character. The graphic

shows that the client’s character does not move immediately after inputting a movement

command. Instead, the client must wait for the server to approve the movement command and

then the character moves through space as shown in the graphic.

With player prediction latency compensation, movement is as follows:

1. The player (client) inputs a movement request, for example, ‘W’

2. Assuming that move was valid, the player’s avatar moves upwards on the client’s screen

3. The client packages up the movement request and sends it to the server

4. The request waits (depending on the client’s assigned latency) in the send queue before

being sent to the server

28

5. The server receives the movement request and either approves or rejects it

6. If the request is approved, the server sends a message to all other client’s to move the

character up on their screen

7. The message waits (depending on each client’s assigned latency) in each client’s receive

queue before being processed

8. If the request is rejected (for example, trying to move into an occupied space that the

client does not know of because it is behind due to latency), the server sends a reject

message back to the client, containing the last valid position for that character on the

server. The server then ignores all messages from that client until a movement request

originates from the last valid position

9. Once the client gets a message of rejection popped from the receive queue, the controlled

character is rebounded (teleported) back to the last valid position the server packaged in

the message

Figure 2.3.2.2: Client Movement Using Latency Compensation

Figure 2.3.2.2 shows a representation of a client moving using latency compensation.

The x-axis represents the character’s movement in space after inputting a movement command.

The y-axis represents increasing time. The ‘P’ marks the character. The graphic shows that the

client’s character moves immediately after inputting a movement command. The client does not

wait for the server to approve the move. However, in cases where the movement request is

29

rejected, the player is rebounded back to a prior position (indicated in the figure by the red ‘x’).

While feeling responsive, this avatar rebounding may be visually jarring in some cases.

30

Chapter 3: Evaluation

Evaluation of the effects of latency compensation was done in two stages. The first stage

gathered data from bots and the second stage gathered data from human participants.

3.1 Bot Study Procedure

The bot study was done to gather objective statistics of Detonicon gameplay in order to

understand how players perform with latency compensation. It involved a group of bots

repeatedly playing the game, where one bot was under a combination of latency and maybe

latency compensation, and the other bots all had zero latency. At match end, statistics from the

game were recorded in a log file for each client in the game. A table of statistics printed to a

client’s log file is detailed in Table 3.1.1.

Table 3.1.1: Detonicon Client Statistics

Statistic Summary of Statistic

Match ID The ID of the match that was just played

Lag (MS) How much latency the client was assigned to
simulate. Round trip time would be Lag (MS)

multiplied by 2

of Clients The number of clients the server serviced
during the match

Is Using Lag Compensation Either true or false, whether or not the client
was utilizing latency compensation

Client Socket ID The assigned socket ID that uniquely
identifies a client

Class Either Bot or Player, whether or not the client
was played by AI or a human

Brave Value Used to determine bot aggressiveness, -1 if
the client is a player

Smart Value Used to determine bot resourcefulness, -1 if
the client is a player

31

Map ID The ID of the map the match was played on

Game Length (MS) The length of the game in milliseconds

Time Survived (MS) The length of time the client survived in
milliseconds

of Times Hit by Explosion The number of times the client was damaged
by a bomb explosion

of Times Bumped into Wall The number of times the client inputted a
movement command that attempted to move

into a wall

of Powerups Picked Up The number of power-ups the client picked up

of Bombs Placed The number of bombs the client placed

of Spaces Moved The number of spaces the client moved

of Move Cmds Sent The number of movement commands the
client sent to the server

of Times Rebounded The number of times the client received a
reject message from the server and had to

teleport back to a prior position

of Spaces Rebounded The total distance in spaces the client
teleported

Is Victor Either true or false, whether the client won the
game or not

32

The study was performed on one machine in order to simplify logistics for an automated

study. The specifications of the machine used we used is shown in Table 3.1.2.

Table 3.1.2: Testing Machine Specifications

Operating System 64 bit Windows Embedded 8.1 Industry Pro

Processor Intel Core i5-4690K @ 3.5 GHz

Memory 16 GB RAM

Graphics NVDIA GeForce GTX 970

Because the study was performed on one machine, we limited the number of bots per

match to 3 to prevent overloading the computer. In order to automate the bot study, we created a

script that spawns a server and the bots with one bot under a specific amount of latency (with or

without latency compensation). After the game ends, the script continues for a specified number

of games. We also created another script that calls the first script but changes the specified

latency and whether or not to use latency compensation after the specified number of games is

up.

 At 1280 millisecond RTT (time to send a message from the client to the server and back)

of latency, we felt the game was almost unplayable, so we kept that at the cap. The set of RTT

values (all in milliseconds) we tested are 0, 80, 160, 320, 640, and 1280. Our bot study tests are

shown in Table 3.1.3.

33

Table 3.1.3: Bot Study Tests

Number of Runs Lagged Bot’s Assigned
Latency (ms) Using Latency Compensation

30 80 Yes

30 80 No

30 160 Yes

30 160 No

30 320 Yes

30 320 No

30 640 Yes

30 640 No

30 1280 Yes

30 1280 No

3.2 User Study Procedure

The user study was done to gather subjective statistics of Detonicon gameplay in order to

understand how players feel with latency compensation. It involved a human player playing

against a group of bots, where the human player was under some combination of latency and

maybe latency compensation and the bots had zero latency. Like the bot study, at match end,

statistics from the game were recorded to a log file for each client in the game. In addition, after

each game, the user was asked to take a short survey to rate on a scale of 1 to 6 some certain

aspects of the game. The study was done using two machines. One computer was set up with a

script to automatically load the next game of Detonicon for the user. The other computer was

used for the user to take the surveys. A more detailed procedure for the user study is documented

below as a snippet from the Informed Consent Form given to users at the start of the study, found

in Appendix A.

1. The participant will be welcomed into the experiment area to sit in a chair and be given

the Informed Consent Form.

34

2. Once the participant completes the Informed Consent Form, the participant will be

directed to a computer to complete a Google Survey to record the demographics of the

participant. No identifying information is asked or recorded.

3. An investigator will then start the game Detonicon for the participant at a computer,

leaving it on the title screen of the game.

4. An investigator will ask the participant if they have any questions, and if they do not,

they will be directed to begin playing the game by pressing ‘P’ on the keyboard.

5. The participant will play through a game of Detonicon, which is guaranteed to take less

than 4 minutes.

6. Afterward, the participant will be directed to complete a session of a Google Survey that

asks about their play of the game.

7. The investigators will repeat steps 3 to 6 for several times in order to test the game with

varying amounts of latency and latency compensation.

8. Once the tests have been completed, or 30 minutes have passed, whatever comes first, the

participant will be thanked for their time and effort.

9. The participant leaves the experiment area.

The questions on the demographics survey taken before each user study contained a

series of questions to gather the user’s demographics and gaming experience. A full copy of that

survey is found in Appendix B. The after game survey contained these four questions:

● How smooth was the game?

○ This question was intended to assess how well the game seemed to run for the

player. How was their play? How did the enemies move? How did the game look?

● How responsive was the game?

○ This question was intended to assess how responsive the game seemed to players

under the effects of latency and latency compensation.

35

● How noticeable were the visual glitches?

○ Player prediction latency compensation could sometimes rebound an avatar on the

screen if the movement was rejected. This question was intended to assess how

often the users noticed visual artifacts.

● How hard was the game?

○ This question was intended to assess how difficult the game seemed to players

under the effects of latency and latency compensation.

The user study had the participant play 11 games. The tested latency and latency

compensation was the same as in the bot study to better compare the objective and subjective

data. The script used in the user study shuffled the order in which users tested the game so that

each participant did not get used to their current latency. Our bot study tests are shown in Table

3.1.4.

Table 3.1.4: User Study Tests

Number of Runs Lagged Player’s Assigned
Latency (ms) Using Latency Compensation

1 0 N/A

30 80 Yes

30 80 No

30 160 Yes

30 160 No

30 320 Yes

30 320 No

30 640 Yes

30 640 No

30 1280 Yes

30 1280 No

36

Chapter 4: Results & Analysis
The bot study and the user study returned a lot of data. For the objective data shown in

Table 3.1.1, scripts were used to parse through log files and then transferred to spreadsheets. For

the user study surveys, the information was automatically transferred to spreadsheets using

Google Forms. We found from our analysis of the data that latency compensation has an impact

on both performance and experience.

4.1 Bot Study Results & Analysis

The win rate for bots is significantly skewed towards bots with no latency. 30 out of the

300 (10%) of played games were tied and not considered, but bots with no latency won about

87% (235/270) of the un-tied games during the bot study.

Figure 4.1.1: Bot Win Rate vs Latency and Latency Compensation

Figure 4.1.1 shows a graph of the win rates of bots under latency with and without using

latency compensation. The x-axis shows the amount of latency while the y-axis shows the win

rate. The error bars show standard error. Latency is measured in milliseconds and is the RTT

37

(time to send a message from the client to the server and back). The figure shows a downward

trend of win rate as latency increases. The maximum amount of wins of a bot under latency was

8 from 160 ms of RTT. Note, the sample size is only 35/270 or 12.9% of games. Increasing the

number of games to gather more samples could be valuable in future work.

Figure 4.1.2: Bot Survivability vs Latency and Latency Compensation

Figure 4.1.2 shows the average survivability of the bot versus latency and latency

compensation. Survivability is a ratio of how long the bot survived over how long the game

lasted. A value of 1 is the best. The x-axis shows the latency during the game while the y-axis

shows the survivability. The error bars show standard error. The red line containing red triangles

shows the survivability without latency compensation while the blue line containing blue circles

shows the survivability with latency compensation. As shown in the figure, survivability

decreases as latency increases. Furthermore, survivability while using latency compensation is

consistently better than without. On average, survivability increased 9.47% while using latency

compensation versus without latency compensation.

38

Figure 4.1.3: Spaces Moved vs Latency and Latency Compensation

Figure 4.1.4: Movement Commands Sent vs Latency and Latency Compensation

39

Figure 4.1.3 shows the average number of spaces the player moved while Figure 4.1.4

shows the average number of movement commands (requests to move) the player sent to the

server over the course of each game. The x-axis of each figure shows the latency during the

game. The y-axis of Figure 4.1.3 shows the number of spaces the player moved while the y-axis

of Figure 4.1.4 shows number of movement commands the player sent. As latency increases,

both number of spaces moved and number of movement commands sent decrease. The number

of spaces moved and number of movement commands sent while using latency compensation is

consistently lower than without. Since there is no delay to a movement input, perhaps the use of

latency compensation allows for more accurate travel, which lowers number of spaces moved

and number of movement commands sent. And without latency compensation, the player would

spam (repeatedly send movement input) before finally moving, overshoot their desired path, and

have to send additional movement commands to correct their location. This would increase the

number of spaces moved and number of movement commands sent.

40

Figure 4.1.5: Number of Bumps vs Latency and Latency Compensation

Figure 4.1.5 shows the number of times a player bumped into a wall versus latency and

latency compensation. A player bumps into a wall when issuing a movement command that

attempts to travel directly into a wall. The x-axis of the figure shows the latency during the game

while the y-axis shows the number times the player bumped into a wall. Without latency

compensation, the number of times the player bumps into a wall increases as latency increases.

This could be due to the overshooting of a desired movement path due to the delay. With latency

compensation, the number of times a player bumps into a wall is extremely stable, with an

average of 0.969 times per game across all tested latencies, less than one misstep per game.

41

Figure 4.1.6: Number of Rebounds While Using Latency Compensation

Figure 4.1.7: Distance Rebounded While Using Latency Compensation

42

A drawback of player prediction latency compensation is the visual glitches that are

experienced by the player. The player can be rebounded back to a previous position if the server

rejects their movement request. On the y-axis, Figure 4.1.6 displays the average number of times

rebounded (number of times the server rejects a movement request) and Figure 4.1.7 displays

the average total distance rebounded (distance from where the player was to where the player is

teleported to when rebounded) in spaces. The x-axis of both figures shows the latency during the

game. Before the bot study, we assumed that the larger the delay, the more frequent and apparent

the rejects should be as the client gets further out of sync with the server. However, both number

of times rebounded and number of spaces rebounded trend downward as latency increases. As

we saw in Figure 4.1.3 the number of spaces travelled decreased as latency increased. With less

movement means less opportunity for rebounds, and perhaps that was why rebounds decreased

as latency increased.

Figure 4.1.8: Ratio of Number of Rebounds and Number of Spaces Moved

Figure 4.1.8 displays the ratio of number of times the player was rebounded versus the

number of spaces moved. The x-axis of the figure shows the latency during the game while the

y-axis shows the ratio of number of rebounds to number of spaces moved. A lower ratio means

43

that the player was able to move more spaces before being rebounded. The figure shows that the

ratio decreased as latency increased. This is consistent with our theory that as latency increases,

the client has an easier time moving more spaces before getting a delayed reject message from

the server and being rebounded.

Figure 4.1.9: Number of Times Hit by Explosion vs Latency and Latency Compensation

Figure 4.1.9 displays the number of times the player took damage by being hit with a

bomb explosion. The x-axis of the figure shows the latency during the game while the y-axis

shows the number of hits. The graph shows that with or without latency compensation, the

number of times the player was hit by an explosion is pretty similar. There is also not much of a

trend with how often the player gets hit as latency increases. This may be due to the low number

of times a player can get hit by an explosion (only 3 times without picking up a health pack) and

most games ending with all but one of the bots dying (mostly from being hit by 3 explosions).

Therefore, there is no major chance for variance.

44

Figure 4.1.10: Number of Bombs Placed vs Latency and Latency Compensation

Figure 4.1.11: Number of Power-ups Picked Up vs Latency and Latency Compensation

45

Figure 4.1.10 shows the average number of bombs placed while Figure 4.1.11 shows the

average number of power-ups picked up over the course of the game. The x-axis of both figures

shows the latency during the game. The y-axis of Figure 4.1.10 displays the number of bombs

placed while Figure 4.1.11 displays the number of power-ups picked up. Both the number of

bombs placed and the number power-ups picked up show a downward trend as latency increases.

This is most likely due to the player moving fewer spaces as latency increases, as shown in

Figure 4.1.3. Moving fewer spaces means decreased likelihood of being near another player and

placing a bomb. Moving fewer spaces means decreased likelihood of being near a power-up and

picking it up. Figure 4.1.3 also shows more spaces moved with latency compensation than

without, and that is reflected in Figure 4.1.10 and Figure 4.1.11 because the player places more

bombs and picks up more power-ups with latency compensation than without. The only outlier is

from the 160 millisecond latency tests. Future work could explore performance at 160

milliseconds of latency.

4.2 User Study Results & Analysis

Each participant of the user study was first tasked to first complete a demographics

survey before playing Detonicon. The participant pool was made up of a total of 19 participants.

The participants were all WPI students and ranged in age from 18 to 24 with an average age of

19.8. Of the participants, 17 (89.5%) were male and 2 (10.5%) were female. The group was

mostly proficient in online multiplayer games. Most were comfortable playing games with the

keyboard only. The participants were familiar with a variety of game genres, but only 2 of the 19

(10.5%) had any experience with Detonicon’s genre, a maze-based game. A full breakdown of

the demographic survey results can be found in Appendix C.

46

Figure 4.2.1: Perceived Smoothness vs Latency and Latency Compensation

Figure 4.2.2: Perceived Responsiveness vs Latency and Latency Compensation

47

Users were asked to rate smoothness and responsiveness on a scale of 1 (low) to 6 (high)

after each game. Smoothness was a description of how well the game felt to the user.

Responsiveness was description of how quickly the game responded to key presses. The x-axis

of Figure 4.2.1 and Figure 4.2.2 shows the latency during the game. The y-axis of Figure 4.2.1

shows the user rated smoothness while the y-axis of Figure 4.2.2 shows the user rated

responsiveness. Both perceived smoothness and responsiveness decrease as latency increases. As

seen in both figures, the smoothness and responsiveness while using latency compensation is

consistently better than without. On average, while using latency compensation, smoothness

increased 34.9% and responsiveness increased 41.3%.

48

Figure 4.2.3: Noticeability of Visual Glitches vs Latency and Latency Compensation

Users were asked to rate the noticeability of visual glitches on a scale of 1 (low) to 6

(high) after each game. The type of latency compensation we used (player prediction) in

Detonicon could result in rebounding if the server rejects a player inputted move. The x-axis of

Figure 4.2.3 shows the latency during the game while the y-axis shows the user rated

noticeability of visual glitches. Noticeability of visual glitches trends upward as latency

increases. We hypothesized that visual glitch noticeability should increase with latency

compensation because of the added rebounding from server rejects. However, users rated visual

glitch noticeability higher while not using latency compensation except for the test of 1280

millisecond latency. Perhaps this is due to poor explanation of the survey question as well as the

art style. Users may have assumed that an unresponsive, lagging game had more visual glitches.

Figure 4.2.1 and Figure 4.2.2 shows that smoothness and responsiveness are consistently better

with latency compensation, and perhaps that allowed users to look past any visual glitches.

49

Figure 4.2.4: Number of Times Rebounded Player and Bot Comparison

Figure 4.2.5: Number of Spaces Rebounded Player and Bot Comparison

50

Figure 4.2.6: Number of Spaces Moved Player and Bot Comparison

In addition to the subjective rating, objective statistics of player performance was also

recorded for each game of the study. We wanted to analyze the actual number of visual glitches

for each test, so we analyzed the number of rebounds and distance rebounded shown in Figure

4.2.4 and Figure 4.2.5, respectively. The figures also overlay the stats from the bot study as

comparison. The number of times rebounded trends downward for users and bots to a similar

level. Although the number of times rebounded for the bots starts higher than a player’s at a

lower latency. Perhaps the bots skirt too closely to the shrinking wall, causing more rebounds at

lower latency. The number of spaces rebounded for users trends upward, to an average max

much higher than that of bots. Figure 4.2.6, which compares bot spaces moved with that of

user’s, shows that players move much more than bots do under latency compensation. This might

mean that bots do not explore as much on the map so their number of spaces rebounded becomes

fewer than that of users as the latency grows large. Figure 4.2.6 also shows that users move

more with latency compensation than without, which is opposite that of bots. This shows that the

bot’s behavior may need to be tweaked further in order to more closely resemble that of human

players.

51

Figure 4.2.7: Perceived Difficulty vs Latency and Latency Compensation

Users were asked to rate the difficulty of the game on a scale of 1 to 6 after each game. A

rating of 6 is a more difficult game. The x-axis of Figure 4.2.7 shows the latency during the

game while the y-axis of Figure 4.2.7 shows the user rated difficulty. The error bars show

standard error. The red line containing red triangles show the user’s rating while playing without

latency compensation while the blue line containing blue circles show the user’s rating while

playing using latency compensation. Perceived difficulty increases as latency increases. Values

of perceived difficulty while using latency compensation are consistently better than without. On

average, players thought the game was 27.2% less difficult with latency compensation versus

without latency compensation.

52

Figure 4.2.8: Player Survivability vs Latency and Latency Compensation

The x-axis of Figure 4.2.8 shows the latency during the game while the y-axis shows the

survivability. Survivability decreases as latency increases. Survivability with latency

compensation is consistently better than without. This correlated well with Figure 4.2.7 that

showed user rated difficulty. With latency compensation, users thought the game was easier and

also had greater survivability.

53

Figure 4.2.9: Player Survivability Compared with Bot Survivability

Figure 4.2.9 shows player survivability from the user study overlaid on top of bot

survivability from the bot study. The results are very similar, with a trending decrease in

survivability as latency increases and a consistent better performance with latency compensation.

54

Chapter 5: Postmortem
We worked for a school year on this project, broken up into 4 terms. Over the first two

terms we built Detonicon and added some bot AI. In the third term we implemented networking

and improved bot AI. In the final term we held evaluations.

5.1 What Went Wrong

Our game was not properly optimized. Each wall is a separate object and makes the

number of objects per game over 2 thousand. During testing we used a map with a smaller

number of walls. Perhaps we could have created bigger walls to build together in order to keep

the number of objects down. This also caused issues when we were implementing networking as

the socket would get overflown by synced wall messages. Moreover, bots were given a large

amount of time per game loop to compute their entire path instead of a small amount of time and

calculating a piece of the path per game loop. This would cause the game to stutter when the bots

were in a trapped room and had to consider every single reachable space. Detonicon has the

capability to play with 5 clients and 1 server. However, because we evaluated on one machine,

we limited the number of clients to 3 instead of 5 during studies. When we played with 5 clients

one machine, the computer could not keep up and the game regularly stuttered. Therefore we

could not test the game at maximum capacity.

The bots did not play quite to the level of a human player. As shown in the Chapter 4.2,

the bots results were slightly different than that of humans. Additionally, bots still had trouble in

closed maps (trapped in a small space) so we ended up holding the tests on a more open map.

Originally, we planned to have our participants test the game by playing against each

other in a PvP experience. However, due to logistic difficulties, we were unable to conduct the

test, and decided to focus our user study on player versus bots only.

During evaluation, our game had a small chance of crashing. When the game crashed, no

objective statistics were recorded in a log file. For the bot study, the script was built robust

enough to continue with the next test. We later redid any crashed tests in order to obtain an equal

amount of data for each run. For the user study, we also continued with the next test. However,

in an effort to save time, we did not ask the participant to redo the test. In the end, 5 of the 209

55

games (each of the 19 participants played 11 games) played in the user study crashed. Therefore

we lack 2.39% (5/209) of the potential data. The cause of the crash was a heap corruption error,

and unfortunately we were not able to fix the bug.

5.2 What Went Well

We were able to build Detonicon, a complex game with over 5000 lines of code, over 40

classes, and over 30 sprites.

During the networking implementation we ran into problems with the socket

overflowing. We solved the socket overflow problem by taking many objects (such as walls) off

of automatic sync. The server would send custom messages to have the clients sync large

amounts of data. For example, instead of sending each wall object over the network, the server

just sends one message to spawn a specific map to the client.

We initially used a third party program called clumsy in order to simulate latency [7].

However, the application did not allow for multiple different latencies on the same machine.

Additionally, since it was a third-party application, it was difficult to pull out the assigned

latency and record it in the same log file with all the other statistics shown in Table 3.1.1. Not

only did the implementation of the latency simulator work well, it also solved all of the problems

from working with clumsy.

The user study went well. There was always enough room in the computer lab that we

used to hold the study, so every participant was able to play Detonicon on one machine and take

the survey on another. It only took around 20 minutes for each participant instead of the

projected 30. Participants were positive and polite. Even if the game crashed, we were able to

quickly move on to the next test and keep the user study going smoothly.

56

Chapter 6: Conclusion
As long as online games exist, so will latency since it is impossible to completely remove

the delay between the server and client for every player. Latency compensation algorithms do

exist to ameliorate latency, but unfortunately their exact effects over a range of games and player

actions are not quantified. The goal of our project is to precisely measure the effects of latency

compensation with a scientific approach.

We created an online game called Detonicon that provides a platform to carry out our

research. We built the ability to simulate latency directly into the game, giving us freedom from

depending on third party applications to simulate latency and allowed evaluation on one

machine. We implemented player prediction as a latency compensation algorithm. We

implemented bots with AI behavior to play like human players to allow for automated tests.

Finally, we ran two studies to evaluate the effect of latency compensation. Our bot study

gathered objective data over the course of 300 games. Our user study gathered subjective data

over the course of 209 games.

From our results, we found that player prediction latency compensation improves

player’s performance. On average, players with latency compensation survive an average of

9.47% longer (Figure 4.1.2). Subjectively, players have a better experience while using latency

compensation. On average, players with latency compensation feel that the game is 27.2% less

difficult (Figure 4.2.7). Players also feel the game is 34.9% smoother (Figure 4.2.1) and 41.3%

more responsive (Figure 4.2.2) with latency compensation. Player prediction latency

compensation can have visual artifacts. However, players actually noticed visual glitches less

often when there was latency compensation (Figure 4.2.3).

57

Chapter 7: Future Work

Future work could run more experiments. For example, Figure 4.1.11 at 160

milliseconds of lag shows that with latency compensation, the number of power-ups picked up is

fewer than without latency compensation. This effect is not shared by the other tested latencies,

so more runs could potentially reveal more information. We tested only one map during

evaluation, but future work could test with different maps, perhaps a map with more constraints.

Our user study had 19 participants before it ended, but could be extended to gather more

subjective data. In Chapter 4.2, the data revealed that bot results were slightly different than

human results. Improving the bot AI to closer emulate the play of humans could also be valuable.

Fixing the bug that crashed the game (see Chapter 5.2) could reduce the amount of lost data.

The addition of a different type of latency compensation such as time warp could offer a

comparison to the effectiveness of player prediction latency compensation.

Although our results showed that player prediction latency compensation did improve

player performance and experience, its effects might not carry over to a different type of game.

Detonicon is a 2D maze-based game, a niche genre that does not look like popular online genres

such as FPS (First Person Shooter) or MOBA (Mobile Online Battle Arena). Future work could

involve building another game as an infrastructure and then testing the effects of latency

compensation on it.

58

References

[1] Mark Claypool and Kajal Claypool. Latency Can Kill: Precision and Deadline in Online

Games, In Proceedings of the First ACM Multimedia Systems Conference (MMSys), (Invited

paper), Scottsdale, Arizona, USA, February 2010.

[2] Armitage, Grenville, Mark Claypool, and Philip Branch. Networking and Online Games:

Understanding and Engineering Multiplayer Internet Games. Chichester, England Hoboken, NJ:

John Wiley & Sons, 2006. Print.

[3] Mark Claypool. Dragonfly - Program a Game Engine from Scratch, Interactive Media and

Game Development, Worcester Polytechnic Institute, 2014. Online at:

http://dragonfly.wpi.edu/book/

[4] Super Bomberman 5. Hudson Soft, 1997.

[5] Events & Conferences. (n.d.). Retrieved April 24, 2019, from

https://www.wpi.edu/academics/departments/interactive-media-game-development/events-confer

ences

[6] Belwariar, R. (2018, September 07). A* Search Algorithm. Retrieved April 24, 2019, from

https://www.geeksforgeeks.org/a-search-algorithm/

[7] Tao, C. (n.d.). Clumsy 0.2. Retrieved April 24, 2019, from https://jagt.github.io/clumsy/

59

Appendix A
Informed Consent Agreement for Participation in a Research Study Form

Investigators: Hung Hong & Antony Qin

Contact Information:
Hung: hphong@wpi.edu
Antony: aeqin@wpi.edu

Title of Research Study: A Networked Game Utilizing AI to Study the Effects of Latency Compensation

Sponsor: Professor Mark Claypool

Introduction: You are being asked to participate in a research study. Before you agree, however, you
must be fully informed about the purpose of the study, the procedures to be followed, and any benefits,
risks or discomfort that you may experience as a result of your participation. This form presents
information about the study so that you may make a fully informed decision regarding your participation.

Purpose of the study: This study attempts to learn about how specific network conditions and latency
compensation affect a user’s quality of experience and performance in a networked maze-based game.

What you will be asked to do (Procedure): In this experiment, you will play the game Detonicon several
times and answer questions about your experience of the gameplay.

1. The participant will be welcomed into the experiment area to sit in a chair and be given the
Informed Consent Form.

2. Once the participant completes the Informed Consent Form, the participant will be directed to a
computer to complete a Google Survey to record the demographics of the participant. No
identifying information is asked or recorded.

3. An investigator will then start the game Detonicon for the participant at a computer, leaving it on
the title screen of the game.

4. An investigator will ask the participant if they have any questions, and if they do not, they will be
directed to begin playing the game by pressing ‘P’ on the keyboard.

5. The participant will play through a game of Detonicon, which is guaranteed to take less than 4
minutes.

6. Afterward, the participant will be directed to complete a session of a Google Survey that asks
about their play of the game.

7. The investigators will repeat steps 3 to 6 for several times in order to test the game with varying
amounts of latency and latency compensation.

8. Once the tests have been completed, or 30 minutes have passed, whatever comes first, the
participant will be thanked for their time and effort.

9. The participant leaves the experiment area.

Risk and Benefits: There are no anticipated risks beyond those encountered in everyday life if you
participate in this study. There are no benefits to you in participating in this study.

mailto:hphong@wpi.edu
mailto:aeqin@wpi.edu

60

Your participation in this research is voluntary: Taking part in this study is completely voluntary. If you
choose to be in the study, you can withdraw at any time without consequences of any kind. Participants
can choose to skip any questions, but if the participant does not provide enough information, their
answers will be discarded. Participating in this study does not mean that you are giving up any of your
legal rights.

Your answers will be confidential: Any report of this research that is made to the public will
not include your name or any other individual information by which you could be identified. The
records of this study will be kept private. Recordings will be destroyed after transcription, and
records will be kept in an electronic database. The data collected in this study will be used to
further understand the effects of latency compensation.

Compensation or treatment in the event of injury: The study will not generate more
than minimal risk to the participant. Any injury that results from this study will be
reported to campus, and in the event of an emergency, WPI campus police. You do not
give up any of your legal rights by signing this statement.

If you have questions or want a copy or summary of the study results: Contact us at our
email: hphong@wpi.edu or aeqin@wpi.edu. You will be given a copy of this form to keep for your records.
If you have any questions about whether you have been treated in an illegal or unethical way, contact the
IRB Chair (Professor Kent Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu) or the Human Protection
Administrator (Gabriel Johnson, Tel. 508-831-4989, Email: gjohnson@wpi.edu).

Statement of Consent: By signing this consent form and proceeding with the survey, you confirm that
you have read the above information, and have received answers to any questions you may have. You
affirm that you are 18 years of age or older, and you consent to take part in this research study.

__
Study Participant Name (Please Print)

__ ___________________
Study Participant Signature Date

__ ___________________
Signature of Investigator who Explained this Study Date

mailto:hphong@wpi.edu
mailto:aeqin@wpi.edu
mailto:kjr@wpi.edu
mailto:gjohnson@wpi.edu

61

Appendix B

62

63

Appendix C

64

65

66

