
1 

  

Project Number:  

Modeling Fluid Flow Using Fluent 

A Major Qualifying Project Report 

Submitted to the Faculty 

of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for the 

Degree of Bachelor of Science 

in Mechanical Engineering 
 

by 

Jonathan Zoll 

 

Date: 12/ 15/09 

 

 

 

 

Approved:    

 

Prof.  Gretar Tryggvason, Major Advisor  

 



2 

Abstract 

 The study of fluids is vital for our understanding of the world. Traditionally this was done 

through studying fluid flow on models in something like a wind tunnel, but in the last century the 

field of computational fluid dynamics has come into being. One program that is capable of 

modeling fluid flow is Fluent. The aim of this project was to model a few scenarios using Fluent. 

The purpose of doing so was to see how accurate the program was at modeling fluid flow in 

order to see if computational fluid dynamics has advanced enough to do away with the 

traditional methods. After running simulations in both 2D and 3D I found that Fluent is not quite 

ready to replace the wind tunnel. 
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1.0 Introduction  

  The study of fluid has been around for millennium, dating back to ancient Greece, 

but their understanding did not go beyond what they needed to know to run aqueducts and other 

waterworks. Da Vinci further pursued  the topic during the Renaissance observing waves and 

free jets. Even Newton studied fluids. The topic did not mature until people like Bernoulli and 

Euler investigated it and developed equations that were later named after them. The Euler 

equations were further modified by Claude Louis Marie Henry Navier and  George Gabriel 

Stokes to create the Navier-Stokes equation. These men laid the groundwork that would be the 

foundation of computational fluid dynamics. 

 Computational fluid dynamics is a term used to describe a way of modeling fluids using 

algorithms and numerical methods. Currently they are solved utilizing computers but early 

methods were completed manually without the aid of a computer. Computational fluid dynamics 

are a powerful tool to model fluids, but even with the most state of the art supercomputers and 

technological advances they are only an approximation of what would occur in reality. 

 It is unclear exactly when computational fluid dynamics came into being. Lewis Fry 

Richardson attempted to predict the weather by creating a grid in physical space and using 

Bjerknes's "primitive differential equations". His method involved a stadium of 64,000 people 

each using a mechanical calculator to solve part of the flow equation. It ended in failure. In 1933, 

A. Thom was able to numerically compute flow past a cylinder. Another mechanical solution was 

made by M. Kawaguti which took 20 hours a week over 18 months. NASA's theoretical division 

also made contributions during the 1960s, but it wasn't until the 1980s when commercial 

methods for computational fluid dynamics became available.  

 



4 

2.0 Method 

2.1 What is CFD? 

 CFD stands for computational fluid dynamics. It is a way of modeling complex fluid flow 

by breaking down geometry into cells that comprise a mesh. At each cell an algorithm is applied 

to compute the fluid flow for the individual cell. Depending on the nature of the flow either the 

Euler or Navier-Stokes equations can be used for the computation.  

2.1 What is Fluent? 

 Explaining how to 

use FLUENT cannot be 

done without discussing 

GAMBIT first. GAMBIT 

(Figure 1) is an application 

that is distributed along 

with FLUENT. As of this 

writing, it is owned and 

distributed by ANSYS, Inc. 

GAMBIT is used as a tool to generate or import geometry so that it can be used as a basis for 

simulations run in FLUENT.  It can either build a model or import existing geometries from 

various other CAD applications. With a geometry in place it generates a mesh for the surface and 

volume of the geometry allowing it to be used for computational fluid dynamics.  

 

 

Figure 1: Gambit 2.4.6 General User Interface 
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 FLUENT 

(Figure 2) is a 

“Flow Modeling 

Software” owned 

by and distributed 

by ANSYS, Inc. It 

is used to model 

fluid flow within a 

defined geometry 

using the 

principles of computational fluid dynamics. Unlike GAMBIT, which it is shipped with, it utilizes 

a multi window pane system for displaying various configuration menus and grids instead of a 

single window with several embedded sub-windows restricted within the space of the parent 

window. FLUENT is able to read geometries generated in GAMBIT and model fluid flow within 

them. It can model various scenarios using computational fluid dynamics, including 

compressible and incompressible flow, multiphase flow, combustion, and heat transfer. 

2.3 Generating a Simple 2-dimensional Model with a Single Circle in the Center 

 In order to generate the model to be simulated, first one must open up GAMBIT. The 

geometry can either be imported from another source or built within the program. In this test the 

geometry was created within GAMBIT.  I then selected solver and choose Fluent 5/6. This  

configures the program to generate a file that will be compatible with the version of FLUENT 

being used. Next I went to Geometry, select Face, and then select Create Face. Since the 

geometry is rather simple, composed of a circle within a rectangle, there was no need to create 

 

Figure 2: Fluent 6.3.26 General User Interface 
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the vertexes individually. First, I 

created a rectangle with an x value of 8 

and a y value of 4 and a circle with a 

radius of 1. Both objects will be 

created with their center being the 

origin (Figure 3). In order to place the 

objects fully within the first quadrant I  

used the move command. Since they 

are halfway in both the positive x and y 

axis they must be moved 4 in the x direction and 2 in the y.  Next the two geometries need to be 

consolidated into one. This was done by using the subtract command where one must select the 

rectangle and subtract the circle from it. After the operation is completed only one face appeared 

up in the menu. 

 With the geometry created, it was now time to generate a mesh. I selected mesh, then 

face, and finally mesh faces. Leave the defaults except for the spacing. Spacing determines how 

far node points are away from each other and consequently how many are created. The spacing 

was done in the same units as the 

geometry used. At the default 

spacing of 1, a single node is created 

for every unit of 1. For a side that 

measures at 4 there would be 4 node 

points. I inputted the desired spacing 

to get the optimal resolution. For the 

 
 

Figure 3: Rectangle and Circle Generated at Origin 

 

Figure 4: Mesh generated at 0.01 resolution 
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first preliminary tests spacing of 0.5, 0.25, and 0.1 were used, but later tests used 0.1, 0.05, and 

0.01. After the mesh was exported I went back and replace the spacing for the mesh with a 

different one if the resolution isn't accurate enough. When the mesh was generated it looked like 

a grid that changes shape as it becomes closer to the circle (Figure 4).   

 Next the boundary types needed to be defined. Not every wall of the geometry serves the 

same purpose, so it was important to determine how Fluent was going to interpret them. For 

example in this geometry water needs to enter from the left and exit through the right while 

going around the circle in the middle. On its own Fluent can't determine that is what the user 

wants, so at this point, inlets, outflows, and walls need 

to be defined. In order to do this, I selected Zones then 

Boundary Types (Figure 5). From the drop down menu 

I selected the left edge. This can be determined by 

selecting an edge and clicking the arrow that points to 

the right which will move the label to the right options 

list. The edge will be highlighted on the geometry. 

When the correct edge was selected, I went to the Entity 

drop down menu and selected velocity_inlet. I called the 

edge velocity_inlet to label it for further reference. I 

repeated the steps for the right edge which was the 

outflow. The two remaining walls of the rectangle were 

designated and labeled as wall. Lastly the inner circle 

should be defined as a wall, but it was labeled circle so 

it could be accessed separately from the other walls. 
 

Figure 5: Boundary Types Menu 
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This was important when reading the forces acting on different elements of the geometry. Now 

that the mesh has been generated and the boundary types defined, I saved the file and exported as 

a mesh with the 2D option selected as the model is only utilizing the x and y dimensions. 

 The file was then opened in Fluent. It presented a list of options, 2d, 2ddp, 3d, and 3ddp. 

I selected 2d since the geometry generated in GAMBIT was 2-dimensional. Next I selected File 

then Read and then Case in order to import the file from GAMBIT, which ended with a .msh file 

extension.  Before doing anything else in Fluent I checked that there were no errors in the 

geometry. This was done by selecting Grid then Check. Although it was not essential to do this 

step, doing so will prevent one from running a simulation on faulty geometry, which, considering 

the nature of how the program uses memory, may cause the program to lock up and the computer 

to run rather slow as it prints out a series of error messages. Please note that this did not catch all 

possible mistakes. In one test I accidentally labeled the inside circle as the wall where the fluid 

outflows. In this case it did not notify me of the mistake as the program will assume that was 

intended.  

 I preceded by selecting 

Display the Grid. A new 

configuration window asking for 

criteria to be determined opened up 

but the defaults were all that was 

needed so I just selected Display.  

This opened up a new window 

displaying the model created in 

GAMBIT. From this point the fluid 

 

Figure 6: Materials Window 
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needed to be defined. This is done by opening up the Materials window (Figure 6) which is 

located in the Define menu. By default Air is listed, but in this test water was used instead.  I 

added water by clicking on the Database button. Another configuration window opened up, 

which listed various materials. I scrolled down to the bottom and selected Water. There were two 

entries for water so of the two I picked the one indicating liquid instead of vapor. After clicking 

Copy and water appeared in the main materials window. In some of the tests the viscosity of 

Water was changed from the default. For these tests the viscosity value was changed by typing in 

a new value and clicking Change/Create. 

 After defining the materials the boundary conditions needed to be defined. I opened the 

menu by 

clicking Define 

and then 

Boundary 

Conditions. 

Then, I selected 

fluid in the 

Zone list and 

then fluid in the Type list before pressing the Set... button on the bottom. In the drop down menu 

that says 'air', I selected it and changed it to water. This tells Fluent that it will use water as the 

fluid for the simulation. I then pressed okay and exited out of the subwindow. At this point I 

returned to the Materials window and deleted air from the list of available materials so that there 

won't be any confusion, but this was not necessary.  I went back to the Boundary Conditions 

window (Figure 7) and selected the item velocity_inlet in both panes and pressed set... again. For 

 
 

Figure 7: Boundary Conditions and Velocity Inlet Windows 
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the Velocity Specification Method, I changed from the default option in the drop down menu to 

Components then changed the X-Velocity to 0.001 as that value was be used in this test. Then I 

pressed OK and exited out of the Boundary Conditions window. 

 At this point the solution needed to be initialized. To do this I went into the Solve menu, 

pressed Initialize and then Initialize... which opened up a window titled Solution Initialization. In 

the new window I clicked on the drop down menu and selected velocity_inlet as where it will 

compute from.  For the X Velocity I inputted the same number used before which was 0.001 m/s. 

I then clicked Init and closed the window.  

 At this point all conditions were satisfied to run the simulation. From the Solve menu I 

clicked Monitors and then Residual.  This window set the parameters of the simulation. For this 

test the default options were left alone. I check the radio button next to the Plot option then 

pressed OK.  In order to run the simulation I clicked Solve then Iterate to open the Iterate 

window. For number of iterations I typed 1000 and then pressed Iterate. The second window that 

displayed the geometry was 

replaced with a plot with new 

points being added as time 

went. The number of 

iterations were also be 

tracked in the main window. 

Depending on the resolution 

running the solution varied in 

terms of length  

(Figure 8). In a few circumstances the simulation may ended before it could finish all 1000 

 

Figure 8: Sample of 3000 Iterations 
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iterations. This meant the solution had converged and the main window indicated that 

convergence had been found. In some tests it stopped computing the solution before convergence 

was found because the computer ran out of memory to run the operation. In other tests the 

solution did not converge after 1000, which prompted me to go back and run further iterations to 

see if it converged with more. In the case that they still did not converge, I compared the earlier 

solution with the one generated after further iterations. After I compared the two, I determined 

whether or not they are close enough to pick a solution.  

 Since the simulation completed, it was necessary to interpret the results.  I did this by 

clicking Display, then Contours to open up the Contours configuration window. This displayed 

the results of the simulation in contours over the geometry based on the defined parameters that 

were being measured. I checked the Filled radio button and then switch the options in the drop 

down menus to say Pressure. Clicking Display changed the second plot window into a contour 

graph overlaid on top of the geometry. I then checked whether or not the distribution of pressure 

forces makes sense using prior knowledge of fluid flow, using the color key on the right to 

determine what color means what value. Red represented a higher pressure while blue indicated 

low pressure. To see what the actual forces are on specific parts of the geometry, I clicked Report 

and then Forces. Under Wall Zone I selected the entries for Wall and Circle as those are the 

objects that were being measured in this test.  The entry for Force Vector indicated the direction 

of the measurement, meaning value of 1 for X and 0 for Y measured forces in just the x direction. 

By switching the values and it measured in the y direction. Since the fluid flow was going 

horizontally there were minimal forces in the y direction. I checked the forces in the y direction 

to verify that was indeed the case. Pressing Print displayed the pressure, viscous, and total forces 

for each zone along with the corresponding coefficients.  
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2.4 Generating a Simple 3-dimensional Model with a Single Sphere in the Center 

  

Since the previous test set out to test accuracy by running the simulation at multiple 

resolutions, it was only logical to extend the simulation to the third dimension.  Starting out the 

steps were generally the same, but keeping the third dimension in mind. Instead of creating a 

rectangle, I went to the volume subsection and generated a rectangular prism instead, with the 

dimensions of 8x4x4. I substituted the circle with a sphere with a radius of 1 and moved it to the 

location of (4,2,2) , which should be the exact center of the geometry (Figure 9). Like before, the 

sphere was subtracted from the rectangular prism. Meshes were generated at three resolutions 

once again under the volume subsection. Using knowledge gained from the previous test, this 

simulation was run at only the 0.1, 0.05, and 0.01 resolutions since the 0.5 and 0.25 resolutions 

were too low to accurately model the fluid flow. Defining the boundary types was similar to 

before except I needed to include the other sides of the rectangular prism as part of the wall.  The 

only other detail I had to keep in mind for GAMBIT was to not check off the option to export in 

 

Figure 9: 3D Model with a Single Sphere 
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2D. There were no further differences in Fluent except for selecting the 3D option when opening 

up the program for obvious reasons.  

2.5 Flow Through a 2 Dimensional Pipe With Seven Circles 

 Fluids often face obstructions as they flow in a direction. The previous test demonstrated 

what would happen when a singular object blocked part of the fluid's path in a somewhat 

idealized scenario with even spacing on both sides. Even at different resolutions it was 

reasonable to say the flow would not noticeably change. But often in reality there are often more 

than one object obstructing a fluid's flow. This test was designed to model the flow around seven 

randomly placed circles and compare them with three different configurations of order. 

 The general methodology for measuring flow two dimensions with seven circles inserted 

at random was very similar to the test with a single circle. Namely, the big difference is the 

number of circles and the size of each individual circle.  Back at previous test, I followed the 

same procedure until the moment I needed to generate the circle at a radius of 1. Instead of that 

circle I generated seven circles at the sizes 0.25, 0.50, 0.75, 1.00, 0.75, 0.50, 0.25 respectively 

(Figure 10). The order of the circles in terms of size and creation was not particularly important, 

but chosen for 

identification purposes 

so that there would be 

no confusion  between 

the same size circles 

being numbered so 

close together.  

 

Figure 10: A 2 Dimensional Pipe wth Seven Circles 
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 From here the circles were moved inside the rectangular boundary to seemingly random 

positions for each of the three variations. It should be noted that in the first attempt to run this 

test, the first two variations exported without any difficulty, but GAMBIT had difficulty dealing 

with the third. This was because one of the circles touched the wall and therefore shared a 

boundary. The solution to this problem was found by moving the circle that was creating 

difficulty away from the wall. 

 Again the same steps were taken as the first test up until the boundary types were defined. 

In the same order as their creation, I labeled the circles separately as numbers 1,2,3,4,5,6, and 7. 

After importing the geometry into Fluent, one thing that stood out was that it renamed the circles 

as zone-(number) with number being the same number I selected from before. This was not a big 

deal in this circumstance as they maintained the order that was desired. Further steps were 

identical to the previous test, using the same numbers for viscosity, density, and velocity.  

2.6  Flow Through a 3 Dimensional Pipe With Three Spheres 

 As stated before, fluids do not simply move around a single object and continue 

unhindered. The same can be said for fluids simply moving in two dimensions. Fluid flow in two 

dimensions only exists in drawings and theoretical models. If one wanted to even hope of 

accurately modeling a fluid flow they need to make the shift to the third dimension.  This test is 

similar to the previous 3d accuracy test the same way the previous test was similar to the 2d 

accuracy test. To clarify, in this test three spheres are placed at random throughout the 

rectangular prism boundary with three variations. Because the computer was unable to model the 

fluid flow in three dimensions at .01 and .05 resolutions before running out of memory, a 

resolution of 0.1 was chosen to be used for this test.  
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 The same steps from the 3 dimensional test were repeated for this simulation up until the 

creation of the spheres. Instead of the sphere with a radius of 1, three spheres were generated 

with radii of 0.25, 0.50, and 0.75 (Figure 11).  These were moved to random locations in the x, y, 

and z axis for each variation. Like in the simulation with seven circles, each sphere was later on 

labeled 1, 2, and 3 for their respective order. Again, Fluent renamed the circles, but since they 

retained the numbers it was not an issue. From that point on, the rest of the steps were identical 

to the previous tests. 

 

Figure 11: A 3 Dimensional Pipe with Three Spheres: First Variation 
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3.0 Results 

3.1 Accuracy Testing in 2D 

 To determine whether or not the later tests were indeed accurate, a test of accuracy was 

developed. This involved a simple two dimensional flow within a cylinder with a circle placed in 

the middle. First it was run to see if any forces acted on the circle. Since a fluid flow  entered 

from the velocity inlet in the x direction and by the circle on the way to the outflow, a force 

should be present on the circle in the x direction. While true for the x direction this should not 

the case for the y direction as there is no net pressure force acting in the y direction. While some 

force was registered in the test in the y direction in addition to the x direction, it was found to be 

sufficiently small to be considered an aberration.  

 Another test of accuracy involved running the 

same simulation at different resolutions. This involved 

changing the spacing of the node points in GAMBIT 

for the creation of the mesh. The smaller the spacing 

between node points, the greater the resolution, which 

means greater accuracy of the model. Ideally one 

would want the highest resolution possible, but with a 

higher resolution it takes more processing power to 

compute the simulation. Running a simulation at a low 

resolution may take seconds while at a higher 

resolution can take hours for the same number of 

iterations. To find a good balance between speed and accuracy, this test was run at various 

resolutions. At lower resolutions there is a degree of noise and variation in what is computed, but 

 

Figure 12: Graph of change in drag 
coefficient for 0.001003 viscosity 
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as the resolution gets higher the variation between the calculated values become smaller. Once 

the variation between resolutions is diminished to a point it can be considered negligible, an ideal 

resolution is found.  

The first test was performed at the .5, .25. and .1 resolutions. These tests acted as a 

preliminary because at the lower resolutions the geometry is still rather blocky. This was most 

noticeable in the center circle where the sides and edges are noticeable. At higher resolutions the 

corners and sides are less visible because of the higher degree of node points.  These were 

computed with a velocity of 0.001 and a viscosity 

of 0.001003. This resulted in a Reynold's number 

of around 2000. The drag coefficient is also 

around 4 for the two lower resolutions. It is cut in 

half for the .1 resolution. It is also worth noting 

that the lower resolutions converged after less 

than 50 iterations.   

 The same test was then run at 0.05 and 

0.01 resolutions. It was significantly more 

difficult to run FLUENT at these resolutions 

because of the number of calculations it needed to 

process. With the grid displayed, any window 

movement would cause the grid to refresh, 

locking all operations until it finished drawing the window. Since the trend from the last three 

tests indicated a downward slope as the resolution increased the drag coefficient decreased, it 

was expected the next two would follow this trend and settle with a drag coefficient of around 1 

 

Figure 13: Graph of change in drag 
coefficient at low viscosity 
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as that is the ideal drag coefficient of a cylinder. That did not happen. At 0.05 resolution the 

resolution jumped to a little above 2 while at 0.01 is went up to 2.68 (Figure 12). While the first 

one could be considered noise if the actual drag coefficient was indeed close to 2, the second 

coefficient was too much of a jump upwards to be discounted by the imperfections of the 

program.  Since the Reynold's number was rather large, it was determined to be a likely cause of 

the bump in drag coefficient.  

 Reynold's number is determined by velocity/(u), density/(ρ) , diameter/(L), and viscosity/ 

( μ) for flow through a pipe. It can be expressed as Re= ρ u L / μ . To see what factor could cause 

this a single variable was changed. The viscosity was lowered to 0.00001 and raised 0.01. At the 

lower viscosity the Reynold's number went up to 199, 640 and at a higher viscosity it dropped to 

199.64. Since at this point it could be determined that both the 0.5 and 0.25 resolutions were too 

low to accurately determine flow, they were not used in this simulation. Only the 0.1, 0.05, and 

0.01 resolutions were used.  With a lower viscosity the drag coefficient dropped to 1.46, 0.81, 

and 0.6 in order of lowest resolution to highest 

(Figure 13). This seemed to correlate to the 

pattern shown at the lower resolutions in 

which the drag coefficient dropped as the 

resolution became larger. In addition the drop 

between the resolutions appeared to become 

smaller as if it were to converge  at a single 

number if higher resolutions were used. Of 

course since only 3 resolutions were used in 

this example the trend cannot be considered Figure 14: Graph of change in drag coefficient 
for high viscosity 
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significant due to small sample size. In addition the problem before was initially hypothesized to 

be due to an unusually high Reynold's Number. By lowering the viscosity of the fluid it only 

raised the Reynold's Number even further. In order to lower the Reynold's number according to 

the equation, the viscosity needed to be raised. Unfortunately raising the viscosity did not 

achieve the desired result either. While the Reynold's number appeared more manageable, the 

drag coefficient shot up to 4.48, 4.68, and 5.67 in order of lowest resolution to highest (Figure 

14). Again there appears to be an undesired upward slope with the last jump being greater than 

the difference between the first two. It should be noted that an upward slope is not 'bad' by 

definition but indicates a trend going away 

from the desired drag coefficient of 1. One 

should also recognize that the 0.01 

resolution only took 26 iterations before it 

converged while the other two resolutions 

did not converge after 1000 iterations. This 

appeared to be peculiar as it would seem 

that a greater resolution would require more 

iterations in order to calculate a 

convergence point. 

 Comparing the same tests across 

resolutions based on contour graphs show a 

distinct similarity despite the resolutions. 

Generally it seemed that the overall shape 

remained the same for the three resolutions 
 

Figure 15: Variations in Pressure at .1, .05, and  
.01 resolutions at high viscosity 
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for both total pressure and velocity. This was most obvious when observing the 'tails' behind the 

circle, which were spots with low pressure and velocity (Figure 15). Each viscosity had its own 

shape of tail. This was important to observe since it indicated that the shape of the contours were 

determined by the conditions of the test, such as viscosity, instead of the degree of resolution.

 The major differences were that at the lower resolutions there seemed to be a more 

dramatic contrast between colors representing pressure ranges. At low resolutions dark red, 

which indicates high pressure or velocity, was much more present than when looking at the high 

resolutions. The general shape of the flow was also more asymmetric when slicing the geometry 

in half horizontally while it seems rather symmetric at the .01 resolution. There seemed to have 

been more of a blend of colors at the higher resolutions along with smoother shapes. This is most 

likely attributed to greater number of data points which allow for greater precision in calculation 

and certain roundness in shape. In most cases it appeared that the .05 resolution was a middle 

ground between the other two resolutions. One can observe the gradual change in colors and 

shapes from low to high resolution with the middle resolution acting as an intermediary step. 

Exceptions did exist. At the high resolution it was sometimes difficult to discern the original 

shape as the contrast between the colors had dulled so much. This was especially noticeable in 

high viscosity tests at 0.01 resolution. 

3.2 Accuracy Testing in 3D 

 Overall the simulations that were run in 3D did not run as smoothly as the ones 

performed in 2 dimensions. Only one of the three prepared tests was completed, the simulations 

at 0.1 resolution. This was the lowest of the three resolutions, meaning the geometry required 

fewer nodes than the other two. GAMBIT was able to successfully export all three resolutions as 

a mesh so Fluent could read them. The process of building the mesh took a considerable amount 
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of time compared to the 2D version from the last test. This was due to the fact that a third 

dimension was added, giving the mesh further complexity.  

 In Fluent everything proceeded smoothly until it was time to iterate. Iterations were able 

to be started but after a few passes the program alerted me that it was out of memory. This 

occurred in the 0.05 and 0.01 resolutions, both of which were held in files of considerable size, 

which seemed to verify that it was caused by a lack of random-access memory. The occurrence 

seemed rather puzzling, considering that the computer that the simulation ran on had 

considerable ram that would appear to be more than enough RAM. A possible reason behind this 

would be that the installed version of the program was 32 bit and was only able to see the max 

random-access limit of three gigabytes for 32 bit programs despite the fact that the system ran at 

64 bits. Presumably this issue would go away if one were to install the 64 bit version of Fluent 

and ran the same simulation.  

 Because of the program's inability to properly simulate the simple model in three 

dimensions at resolutions higher than 0.1, only this example was recorded. For further tests I 

decided that it would not be a good idea to try and run the simulation of more complex 

geometries at such a high resolution. All following tests in three dimensions were run at the 

resolution of 0.1 as that was shown to work.  

3.3 Flow through a 2 dimensional pipe with 7 circles  

 This test differed from the previous two in that not only that there were seven different 

size circles instead of one but that it focused on the variation of flow based on circle distribution 

than the effects of resolution against viscosity. The three contour graphs for each variation were 

quite similar. On the left there is a region of high pressure before the fluid reaches the circles. For 

the rest of the geometry the pressure is much lower in the yellow and blues except for the 
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streams in between the circles where the fluid is able to travel the fastest. This is reflected in the 

velocity contours where the whole thing is turquoise except for the streams which can range 

from yellow to red. The tail areas in both are a deeper blue.  This indicates a stagnation in terms 

of fluid flow behind the circles since in each variation there were multiple circles some of the 

circles are blocked from the flow of the fluid. 

3.4 Flow through a 3 dimensional pipe with 3 Spheres 

 Since the test was designed to be rather similar to the previous one; it was no surprise that 

the contour graphs appeared similar as well. The pressure was highest on the sides of the spheres 

in the face of the water flow. Similarly behind each sphere it generated a tail of stagnant fluid 

flow. The changes in pressure and velocity were not as dramatic in this test due to the 

distribution of the circles in the three dimensions. Unlike the previous experiment where every 

circle's front face was at least partially blocks by the one placed left of it in the x dimension, the 

spheres had different z dimensions which allowed the fluid to flow mostly unobstructed as it hit 

each sphere. 

 

Figure 16: Contours through a 2 dimensional pipe with 7 circles 
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4.0 Conclusion 

 Computational Fluid Dynamics for all its advances over the past few decades is still 

nothing but an approximation and these tests seemed to only reinforce the notion. As the 

resolution changes there drag coefficient and overall model changes. Even at a high .01 

resolution the program didn't seem to have settled on a concrete value and one would have 

reason to believe that further tests at even higher resolutions would show a change in the model. 

Furthermore, due to limitations of computer hardware the higher levels of resolution cannot be 

computed without running out of memory. This is especially true considering the simulations run 

in this experiment can be considered relatively simple compared to modeling of real life 

applications and scenarios. The circumstances may be different if the tests were run in a 

completely 64 bit environment, but that was not available for use at the time of conducting the 

experiment. 

  If given more time and materials the next logical step would be to devise an 

experiment with conditions that can be replicated in both the program and in real life. This would 

be done using a wind tunnel or water tank where the fluid flow can be measured along with the 

forces. The same conditions would be created in Gambit and simulated in Fluent.  In addition, 

this would require the 64 bit installation of Fluent on a computer with more than three gigabytes 

of random access memory. Only then would one be able to get a good grasp of how accurate the 

program is at running simulations. 

 Eventually it would seem that computational fluid dynamics would advance to the point 

that nobody would ever need to conduct actual simulations such as running a wind tunnel. 
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Unfortunately CFD is not yet at that point.  For any real world applications it would still be best 

to at least run a wind tunnel concurrently with any computational fluid dynamics. 
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 Appendix 

 A1 Accuracy Testing 

  A1.1 Low Resolution Test 

  A1.2 Accuracy Testing at Resolutions of .1, .05, and .01 at Low Viscosity 

  A1.3 Accuracy Testing at Resolutions of .1, .075 .05, .025 and .01 at Normal  

   Viscosity 

  A1.4 Accuracy Testing at Resolutions of .1, .05, and .01 at High Viscosity 

 A2 Modeling Flow with Multiple Obstructions 

  A2.1 Modeling Fluid flow in 2D with Seven Circles at 0.01 Resolution 

  A2.2 Modeling Fluid flow in 3D with Three Spheres at 0.1 Resolution   
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A1 Accuracy Testing 

  A1.1 Low Resolution Test 

Accuracy Testing at Resolutions of .5, .25, and .1 
Resolution Density Viscosity Drag Force Velocity Drag Coef Reynolds 
0.5 998.2 0 . 00 103 0 . 00 385 0 . 00 1 3.86 1990.43 
0.25 998.2 0 . 00 103 0 . 00 309 0 . 00 1 3.09557203 1990.43 
0.1 998.2 0 . 00 103 0 . 00 193 0 . 00 1 1.93 1990.43 
 

 
Pressure at .5 Resolution  
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Resolution 
 

 
 
 

Pressure at .1 Resolution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



29 

 A1.2 Accuracy Testing at Resolutions of .1, .05, and .01 at Low Viscosity 

Accuracy Testing at Resolutions of .1, .05, and .01 at low viscosity 
Resolution Density Viscosity Drag Force Velocity Drag Coef Reynolds 
0.1 998.2 0 . 00 00 1 0 . 00 1459 0 . 00 1 1.46 199640 
0.05 998.2 0 . 00 00 1 0 . 000 8080 0 . 00 1 0.81 199640 
0.01 998.2 0 . 00 00 1 0. 000 5974 0 . 00 1 0.6 199640 
 

Pressure at .1 Resolution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pressure at .05 Resolution 
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Pressure at .01 Resolution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Velocity at .1 Resolution 
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Velocity at .05 Resolution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Velocity at .01 Resolution 
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 A1.3 Accuracy Testing at Resolutions of .1, .075 .05, .025 and .01 at Normal Viscosity 

Accuracy Testing at Resolutions of .1, .05, and .01  
Resolution Density Viscosity Drag Force Velocity Drag Coefficient 

0.1 998.2 0 . 00 103 0 . 00 193 0 . 00 1 1.93 
0,75 998.2 0 . 00 103 0.  00 190 0.  00 1 1.9 
0.05 998.2 0 . 00 103 0 . 00 208 0 . 00 1 2.08 
0.03 998.2 0. 00 103 0.  00 283 0.  00 1 2.84 
0.01 998.2 0 . 00 103 0 . 00 267 0 . 00 1 2.68 
 

Pressure at .1 Resolution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Pressure at .075 Resolution 
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Pressure at .05 Resolution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Pressure at .025 Resolution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pressure at .01 Resolution 
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Velocity at .1 Resolution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Velocity at .075 Resolution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Velocity at .05 Resolution 
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Velocity at .025 Resolution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Velocity at .01 Resolution 
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 A1.4 Accuracy Testing at Resolutions of .1, .05, and .01 at High Viscosity 

Accuracy Testing at Resolutions of .1, .05, and .01 at High Viscosity 
Resolution Density Viscosity Drag Force Velocity Drag Coef Reynolds 
0.1 998.2 0.01 0 . 00 447 0 . 00 1 4.48 199.64 
0.05 998.2 0.01 0 . 00 468 0 . 00 1 4.68 199.64 
0.01 998.2 0.01 0 . 00 566 0 . 00 1 567 199.64 

 
Pressure at .1 Resolution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Pressure at .05 Resolution 
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Pressure at .01 Resolution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Velocity at .1 Resolution 
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Velocity at .05 Resolution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Velocity at .01 Resolution 
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A2 Modeling Flow with Multiple Obstructions  
  A2.1 Modeling Fluid flow in 2D with Seven Circles at 0.01 Resolution 

Pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Velocity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.05 multiple var 1 1 998.2 0.01 0.0011 0.5 0.001 4.27569625325586 199.64
2 998.2 0.01 0.0047 1 0.001 9.34181526748147 199.64
3 998.2 0.01 0.0038 1.5 0.001 5.08074534161491 199.64
4 998.2 0.01 0.0069 2 0.001 6.8803846924464 199.64
5 998.2 0.01 0.0094 1.5 0.001 12.6110465504575 199.64
6 998.2 0.01 0.0044 1 0.001 8.81359487076738 199.64
7 998.2 0.01 0.0011 0.5 0.001 4.39249889801643 199.64
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Iterations 

 
Pressure 

 
 
 
 
 
 
 
 
 
 
 

.05 multiple var 2 1 998.2 0.01 0.0006 0.5 0.001 2.51792426367461 199.64
2 998.2 0.01 0.0021 1 0.001 4.29553195752354 199.64
3 998.2 0.01 0.0089 1.5 0.001 11.9378681626928 199.64
4 998.2 0.01 0.0295 2 0.001 29.5031055900621 199.64
5 998.2 0.01 0.0019 1.5 0.001 2.49115073799506 199.64
6 998.2 0.01 0.0125 1 0.001 25.1033860949709 199.64
7 998.2 0.01 0.0018 0.5 0.001 7.12474454017231 199.64
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Velocity 
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Iterations 

Pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 

.05 multiple var 3 1 998.2 0.01 0.0014 0.5 0.001 5.44580244439992 199.64
2 998.2 0.01 0.0036 1 0.001 7.27755960729313 199.64
3 998.2 0.01 0.0079 1.5 0.001 10.536298670941 199.64
4 998.2 0.01 0.0124 2 0.001 12.4223602484472 199.64
5 998.2 0.01 0.0099 1.5 0.001 13.2371602217325 199.64
6 998.2 0.01 0.0030 1 0.001 5.96193147665798 199.64
7 998.2 0.01 0.0026 0.5 0.001 10.441194149469 199.64
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Velocity 
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Comparison of the 3 Variations in 2D 
           
 
 

Variation 1 Variation 2 

  
Variation 3 
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Circles Void Frac.
1 and 7 0.01
2 and 6 0.02
3 and 5 0.06
   and 4 0.1
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  A2.2 Modeling Fluid flow in 3D with Three Spheres at 0.1 Resolution 

Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iterations 

 

3d multiple var 1 1 998.2 0.01 0.0004 0.2 0.001 3.79976925885019
2 998.2 0.01 0.0009 0.79 0.001 2.31121932025478
3 998.2 0.01 0.0022 1.77 0.001 2.48270231403779
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Pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Forces 
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Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iterations 

 

3d multiple var 2 1 998.2 0.01 0.0002 0.2 0.001 2.17351250674085
2 998.2 0.01 0.0006 0.79 0.001 1.46431476393104
3 998.2 0.01 0.0010 1.77 0.001 1.189365998733
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Pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Forces 
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Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Forces 

3d multiple var 3 1 998.2 0.01 0.00024 0.2 0.001 2.47964102881703
2 998.2 0.01 0.00111 0.79 0.001 2.82913775818733
3 998.2 0.01 0.00220 1.77 0.001 2.49175589500679
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Comparison of the 3 Variations in 3D 

 
Variation 1 Variation 2 

 
 

Variation 3 
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