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Abstract 

Much research has been conducted on automated testing tools. Recently, Agitar 

Technologies developed Agitator™, which combines input generation and invariant detection 

into “software agitation”. Agitator analyzes code to automatically detect and report likely 

program invariants. However, Agitator only operates on Java, a statically typed language. 

I apply Agitator’s techniques to Python, a dynamically typed language, in a tool called 

PyStick. PyStick implements some alternative techniques to Agitator due to the differences 

between Java and Python. Since PyStick is a proof of concept, it does not cover the entirety of 

Python. It has nonetheless generated very promising results, and demonstrates the power and 

viability of software agitation on a dynamically typed language. 
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Introduction 

Research indicates that true software quality comes from the development phase, which 

is achieved with developer testing [1]. Correcting a bug following this phase incurs an extra cost. 

By some estimates, “approximately fifty percent of the elapsed time and more than fifty percent 

of the total cost were expended in testing the program” [2]. Thus, it is important that developers 

perform unit testing properly and accurately during the development phase in order to maximize 

the benefit of the time and minimize the money spent. However, unit testing is hard to do well, 

and is often executed poorly, if at all. 

In an effort to shift some of the unit testing responsibility off of developers, there has 

been a lot of recent research on automatic testing. One of the newest techniques is known as 

software agitation, pioneered by Agitar Technologies in AgitarOne Agitator™ [3]. Software 

agitation unifies automated input generation and dynamic invariant detection into a system for 

detecting permissible code behavior, presented to the programmer in the form of invariants. This 

serves to advance testing techniques, as agitation is a more holistic and qualitative investigation 

of the code. 

Since software agitation is such a new technology, it has yet to be applied to a statically 

typed language (Agitator only supports Java). My research begins this investigation with the 

construction of a software agitation system for Python (a dynamically typed language), which I 

call PyStick. Agitator serves as a direct guide, and PyStick uses its techniques wherever possible, 

as they are well researched. However, applying Agitator’s approach to Python raises a number of 

issues, most of which are related to Python’s status as a dynamically typed language. Since 

Python does not include type information in the source, input generation is not as straightforward 

as with Java. Additionally, invariants must be handled and reported using alternative methods. 
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PyStick necessarily attempts to resolve these issues in such a way as they can be applied to any 

dynamically typed language.  

The paper is organized in the following way. Section 2 gives a survey of the import 

works in the field, including Agitator [3], DART [4] (for input generation), and Daikon [5] (for 

invariant detection). Section 3 discusses in depth the methods employed to construct PyStick, as 

well as a number of problems that I encountered and how PyStick solves them. Section 4 

summarizes the results, including what was successfully implemented and some basic execution 

time information. Section 5 names areas of future work, which largely consists of ideas I had 

while coding and researching that I did not have time to implement. 
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Background 

Agitar Technologies strongly influenced PyStick’s development, as they are responsible 

for the development of software agitation. Their Agitator consists of two main phases: input 

generation and invariant detection. In this chapter, I investigate their technique for completing 

both phases of software agitation by looking at their research, as well as the work that served as 

their main influence (Daikon). Additionally, due to a lack of detailed description of their input 

generation, I look at a technology that they refer to as an advance in random testing which could 

be used to improve their algorithms, known as DART. 

From Daikon to Agitator 

Agitator is designed to perform software agitation on Java code [3]. The goal of software 

agitation is to provide the programmer with a list of program invariants for their code; that is, 

statements and expressions that hold no matter what input is provided. These are used to verify 

that a program behaves as expected in a wide variety of cases, and alert the user to the existence 

of bugs in the code. Although the idea of program invariants is fairly old and well established, 

dynamic detection in completed code is a recent development. Dynamically detecting invariants 

is the process of analyzing code for present invariants. The seminal work in this field, known as 

Daikon [5], requires the programmer to provide a test suite to exercise the code and identify 

these invariants; Agitator seeks to automate the process as much as possible. This automation of 

both invariant detection and input generation is a key benefit of software agitation. 

Test data generation is a well-studied problem with many different techniques available, 

largely centering on static code analysis. Agitator uses a variety of methods in order to increase 

accuracy and scalability, using a mix of static and dynamic analysis. Dynamic analysis is an 

iterative process that utilizes data from previous passes in an attempt to direct execution along a 
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particular path, while static analysis solves input value constraints to direct the next execution 

path. Despite this approach, Agitator does not aim for high code coverage; rather, it looks to 

maximize invariant detection as well as provide relatively high performance. To this end, 

Agitator uses some experimentation-based heuristics to take shortcuts and make intelligent 

guesses of data that will force code execution down alternative paths. This results in an efficient 

and relatively accurate implementation, although it is not complete. 

Invariant detection begins with instrumenting the entry point, exit point(s), and loop 

headers of each target method, and logging potentially interesting values. Values associated with 

fields, methods, properties, parameters, expressions, and return values are all tracked. Agitator 

begins by generating a list of all potential relationships between different values in the code, such 

as a linear relationship or the result of some comparison. Then, it uses dynamic analysis over the 

previously generated test data to evaluate the truth of each invariant. If an invariant fails to hold 

even once, it is found to be false and is consequently eliminated. Once Agitator is satisfied that 

the code has been fully exercised, the observed invariants are presented to the programmer. 

Dynamically Discovering Likely Program Invariants 

Program invariants in the form of pre-conditions, post-conditions, and loop invariants are 

well-known in the computer science field, and are often encoded in comments. Sometimes, they 

take the form of assertions, which allows programmatic enforcement. However, while some 

invariants can be easily identified, many others are missed. If an invariant is not encoded in an 

assertion, it can be difficult to ensure an invariant is always respected. To that end, Michael Ernst 

developed Daikon, a system of dynamically detecting program invariants for reporting to the 

programmer. 
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In order to detect likely invariants, a manually created text suite was created to exercise 

the code and reveal invariant expressions and values. When Daikon is run, the first thing it does 

is instrument the program by injecting logging code at the entry and exit points of each method, 

as well as at the head of each loop. The provided tests are executed, and the values of variables 

and expressions at each instrumented point are output. This output data is then analyzed for the 

existence of a variety of preprogrammed variable relationships, such as constant value, range of 

values, linear relationships, comparisons, and many more. For each variable, Daikon initially 

generates and tests all possible invariants. A single failure of an invariant to hold renders it false. 

The likelihood of the truth of each remaining invariant is then calculated, and all invariants that 

are true above a certain threshold are reported to the programmer. 

Invariants are calculated for all variables in scope. Additionally, in order to cover and 

exploit more relationships, derived variables are used. These are variables that may not explicitly 

appear in code, but are related to those that do; for example, if an array A appears in the code, it 

is relatively likely that A[0], A[1], A[-1], and A[-2] are relevant. Additionally, if a variable x 

appears in the same scope as A, it is conceivable that A[x] and A[x-1] are relevant. These 

derived variables are stored and treated as regular variables for the purposes of invariant 

detection. 

In terms of constructing a test suite, the goal is to produce as many meaningful invariants 

as possible. Intuitively, a larger test suite generally means more invariants will be reported, and 

constraints will be tighter (e.g. an array value range of 0-10 instead of 0-20). Two methods of 

automatically generating input data were investigated; random testing and grammar-based 

testing. Random testing generated many of the core invariants, but did not catch some of the less 

obvious invariants that grammar-based testing did. However, grammar-based testing requires the 
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programmer to define a grammar that defines what constitutes a valid input. That being said, 

random testing did find some other invariants that grammar-based testing missed, leading Ernst 

to favor it over grammar-based testing. 

DART: Dynamic Automated Random Testing 

Although known to be beneficial, testing is rarely completed due to its inherent 

complexity. One increasingly popular solution to this problem is the automation of testing code 

with minimal human input. The easiest way to do this is to implement random testing, as it is a 

simple yet powerful testing technique. However, its simplicity also gives rise to a number of 

limitations. Thus, if this process is to be automated in such a way as to produce useful results, 

some of these limitations must be dealt with. The Directed Automated Random Test tool 

(DART) does just that [4]. It uses static analysis for generating initial random test data, symbolic 

execution, and constraint solving, and dynamic analysis to actually evaluate the code and guide 

future execution down unexplored paths. DART’s execution consists of three steps: interface 

extraction, random testing, and dynamic analysis to guide future execution. 

Interface extraction is performed by statically analyzing the code for anything defined to 

be an interface, and that interface’s type. Interface code consists of the arguments of a user-

defined top-level function, as well as any referenced functions or variables that are from external 

code. It is at this point that instrumentation occurs. DART-instrumentation causes the program to 

be executed both concretely and symbolically at each interesting step (that is, an assignment or 

branch). This allows symbolic execution to fall back to a concrete value if it cannot completely 

solve a constraint, which avoids the pitfalls present in many tools based in static analysis. 

Once the interface is extracted, an initial input vector is randomly calculated based on the 

interface types. Throughout execution, the conditional of each branch taken is tracked. After 
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execution completes, the conditional of the last branch taken is negated, then solved. This way, 

the next execution is directed down a different path. If the constraint solver cannot exactly solve 

the constraint, the current concrete value of the constraint is substituted, and the execution is 

flagged as incompletely solved. Thus, if an error arises, it can be assumed to be due to the 

incomplete solution, and a random input vector can be generated to force execution of the last 

unexplored branch. 

Using this analysis to explore every conceivable path through the function, DART 

attempts to detect points in the code that cause an abnormal execution abortion. They claim their 

mixed system allows a more accurate evaluation of the code, as DART can default to real 

variable values in the case of hitting an unsolvable constraint, allowing both symbolic and 

concrete evaluation to continue. 
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Methodology 

Since PyStick’s inspiration was Agitator [3], many of the decisions I made were an 

attempt to imitate their work. PyStick focuses on the software agitation technologies employed 

by Agitator, while ignoring its features for codify invariants. These additional features are 

unnecessary for implementing software agitation, and thus do not further the goal of this project. 

They were omitted with no decrease in the demonstrative power of this prototype. 

The approach to implementation of software agitation in PyStick mirrors that of Agitator. 

There are two core phases: input generation and invariant detection. PyStick aims to implement 

these two phases using the same technologies as Agitator, since their approach has proven quite 

successful. Due to time constraints and some lack of detail, PyStick’s actual implementation of 

each phase is inspired by Agitator, but is indeed different. 

There is no detailed description of how Agitator accomplishes input generation, leading 

to a discrepancy between its approach and PyStick’s. The one allusion to Agitator’s technique 

seems to imply it uses its own system based off of existing automated test input generation 

techniques, such as “…symbolic execution, constraint solving, heuristic- and feedback-driven 

random input generation, and human input specification”. Unable to copy their system, I instead 

base input generation off DART [4]. DART requires limited user interaction by making use of an 

intelligent random testing approach. Automation is a goal of PyStick, which makes DART a 

more attractive candidate. For these reasons, it is the basis for PyStick’s input generation phase. 

The Daikon tool [5] serves as the core influence and inspiration for Agitator. Daikon is a 

seminal work concerning dynamic invariant detection. As such, it is also the basis for PyStick’s 

invariant detection phase. The invariants supported by PyStick all come from Daikon, except for 

the ones concerning variable types. Although there is a great amount of detail about each 
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invariant, there is no discussion as to the actual mechanism Daikon uses to detect invariants. 

There is discussion of where the values are stored and what constitutes an invariant, but not how 

one is discovered. Some reasonable assumptions of their approach can be made, but the 

downside is that PyStick cannot leverage all of Daikon’s techniques. Nonetheless, Daikon is a 

tremendous resource, both as an insight into Agitator’s operation and invariant detection. 

The next sections contain a detailed discussion of my implementation and any differences 

that exist between it and each technology used. 

Python 

PyStick agitates Python, which is a prime candidate because it is a popular, dynamically 

typed language, and my personal language of choice. Thus, it was easy to write examples and 

effective tests for PyStick. 

After much research on the systems I needed to implement, I decided to write PyStick in 

Python. Python is my strongest language, which makes it the obvious choice, but that alone is 

not enough to justify its use. Since PyStick agitates Python code, writing it in Python greatly 

reduced complexity for a number of reasons. 

This decision means PyStick can easily execute the code it is analyzing. This greatly 

reduces the work necessary to implement dynamic analysis, a technique employed by both 

DART and Daikon. Python includes a compile function and an exec statement, which together 

allow a Python program to be compiled and executed from within Python code. PyStick figures 

out what it needs to dynamically analyze, and also track the state of the environment. As these 

are already required by DART and Daikon, PyStick does not have to do any extra work to ensure 

dynamic analysis works. 
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Due to the extensiveness and power of the Python built-in modules, PyStick is almost 

entirely free of third-party libraries (python-constraint [6] is used for constraint solving). As 

such, PyStick has access to a number of modules designed to operate on Python source code. 

One such module is Python’s ast module, which PyStick heavily utilizes to parse a valid Python 

program into an abstract syntax tree (AST), which is used for both code instrumentation and 

symbolic execution. Both of these are done with relative ease at the source code level due to the 

power of the ast module. 

Combining both of these benefits, Python’s compile function has the ability to compile an 

AST directly. This eliminates the cumbersome step of turning the AST back into source code, 

and once again allows PyStick a great deal of flexibility and power by letting Python do all the 

hard work. 

Implementation 

PyStick is implemented in Python 2.7, and agitates programs that use a subset of Python 

2.7 features. The subset it operates on is relatively small, but it is sufficient to prove that software 

agitation of a dynamically typed language is feasible using an approach that is similar to 

Agitator. 

PyStick only agitates one function at a time, and that function cannot make any function 

calls. The file itself may have multiple functions, but the user must tell PyStick which function to 

agitate. In addition, the function must be written using only the operations supported by PyStick. 

Currently, they are: assignment, compound assignment, delete statements, if-elif-else statements, 

while loops, print statements, and return statements. Arithmetic and boolean expressions are also 

supported. Due to time constraints, there is no support for try-except statements or for-loops, as 

there are some complexities to input generation with both constructs. 
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The other large restriction on PyStick is that it can only handle integers. This decision 

simplifies implementing agitation while preserving the spirit of software agitation. It does not 

allow for full use of the power and flexibility of a dynamically typed language, but this system 

may be extended to other types in the future. For now, it only has to show that software agitation 

can be performed on a dynamically typed language, not that it can handle every aspect of the 

language. Thus, although this restriction does prevent PyStick from being used on many real 

world programs, it does not detract from PyStick’s goal. 

 

Figure 1: A function written for PyStick , using only constructs that it can handle. 

PyStick is structured with both subsystems (input generation and invariant detection) as 

separate, independent pieces. Both systems are capable of operating completely independently 

from the PyStick tool, and could be provided as separate tools from PyStick. This allows for the 

greatest modularity and flexibility within PyStick, as its operation does not depend on how either 

subsystem operates. PyStick simply calls each in turn, stores the output, and hands this output to 

the next system. 

Input Generation 

PyStick’s input generation is largely influenced by DART, although a number of liberties 

were taken for various reasons. DART is written for C and operates on both C code and the 

corresponding assembly code, necessitating a number of adaptations in order to make it suitable 
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for a source code level tool in Python. As such, the resulting tool is not truly an implementation 

of DART for Python. Rather, it makes use of many principles set forth by DART, but goes about 

these principles in a very different way. 

The first departure occurs in interface extraction, DART’s first step. Part of interface 

extraction is determining the types associated with each interface to the program. As PyStick 

deals with a dynamically typed language, type information cannot be easily extracted. This 

combined with time constraints results in PyStick only considering the function provided by the 

user. Additionally, it does not attempt to extract any type information from this function. Types 

are dealt with during input vector seeding. 

The biggest difference between PyStick and DART is the timing of concrete execution. 

DART performs concrete and symbolic execution simultaneously. It operates on the level of 

assembly code and symbolically executes instructions that it cares about, namely branches and 

assignments. The code is stepped through address-by-address, and advanced to the labeled 

address in the case of a jump. DART also manually tracks the environment state both concretely 

and symbolically, and uses this to handle all variable references. If concrete execution is 

necessary, the instruction in question is simply executed with the currently stored state. It is a 

fairly simple and elegant system for execution. 

That same system is difficult to setup and execute properly at Python’s source code level. 

The ability of assembly code to execute arbitrary instructions with no regard to context makes 

switching between symbolic and concrete execution fairly trivial. The source code level inability 

to ignore context is why this same approach cannot be easily implemented in Python. In order to 

execute code, Python expects a full, syntactically correct piece of code, complete with an 
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environment that contains all variables referenced. As such, PyStick departs in mechanic from 

DART at this point. It performs concrete and symbolic execution in two distinct steps. 

The general idea with this approach is to first execute the code concretely in order to 

build up a dictionary containing a snapshot of the environment at each line. The symbolic 

execution phase follows a similar algorithm to DART’s system, but instead of performing any 

further concrete execution, it simply makes use of the dictionary provided to it. 

Concrete Execution 

Along with executing the code concretely, PyStick must manually log the environment 

state. It must do so in a way that not only is suitable for use during symbolic execution, but one 

that takes Python’s somewhat unorthodox scoping rules into account. This is no easy task. It 

requires extensive instrumentation and code injection. 

The function under analysis is first parsed into an AST using Python’s built-in ast 

module. Handling the code in this format makes it much easier to analyze as related units since 

related code will be children of the appropriate parent node of the tree. Additionally, an AST is 

quite easy to reliably modify in such a way as to produce a legal representation of the code. 

Finally, the ast module provides the NodeTraversal class, whose sole purpose is to ease AST 

traversal (through the visitor pattern) and modification (through modifying return values of the 

desired node type). 

PyStick’s implementation of DART defines a subclass of NodeTraversal in order to 

perform all necessary instrumentation and code injection. Code injection is used to prepend the 

provided program with a number of utility functions. These functions perform various tasks 

related to propagating scope information in the state dictionary. This is needed because PyStick 

only updates the state when something changes, such as on an assignment or looping (since 
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iterations are tracked). It does not make sense to update at every line since the state does not 

often change in a significant way. Updating the state only when it changes requires the same 

amount of operations, but allows multiple operations to be performed at once. 

The other major piece of instrumentation that these functions handle is loop 

instrumentation. Due to the necessity of tracking the environment state during every iteration, 

each loop must be instrumented to include an iteration counter, and the state must be associated 

with the appropriate iteration number. Some of the utility functions PyStick injects serve to ease 

the transition through loops. 

A single dictionary used to track the state is injected at the very beginning of the 

program. It is this dictionary that is updated to properly track the program state at every line and 

loop iteration. The utility functions yet again aid with this feature, as they properly initialize the 

state for every logging operation. 

Once all this instrumentation has taken place, the AST is compiled and executed, the state 

dictionary is extracted from the environment, and the concrete execution step returns this state 

dictionary for use in the symbolic execution system. 

Symbolic Execution 

PyStick’s approach to symbolic execution is very similar to DART’s. The end goal of the 

symbolic execution phase is to produce a list of interesting input vectors for the function, 

grouped by which path they will execute. However, despite these similarities, a number of 

liberties were taken in order to account for the differing approach of DART and PyStick. 

To begin, the process is seeded with a randomly generated input vector. This step 

demonstrates how a dynamically typed language must be handled differently than a statically 

typed language. DART ensures that all randomly generated inputs are of the appropriate type. 
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However, PyStick does not know the correct type of input. My intention is for the input 

generation process to be run for each combination of input types, and invariants will be logged 

and reported based on the input types involved. Due to time constraints, the prototype does not 

address this issue, and PyStick can only handle integer inputs. The code is set up such that this 

could be implemented, but the result of such a process is left for future researchers to discover. 

Next, a loop is entered which symbolically executes the program. PyStick replaces 

DART’s assembly level analysis with traversing an AST. At each interesting node (assignments, 

branches, and loops), the expression is executed symbolically and all necessary logging takes 

place. Apart from use of an AST, PyStick adheres to DART’s established execution scheme, 

which involves tracking the symbolic state and logging each branch condition that evaluates to 

true. Both of these pieces of information serve to direct the path taken by the next execution of 

the code. 

Branch conditions are logged to track the path executed by a given input vector, and 

ensure a different path is taken on subsequent executions. Each branch executed is pushed onto a 

stack which will log the condition, which branch was taken (true or false), and whether both 

branches have been executed. All this information is used in generating the system of constraints 

to be solved which will result in the next input vector. 

Symbolic state is different from concrete state in that if an expression is assigned to a 

variable, the variable’s value is literally that expression, not the expression’s value. This allows 

PyStick to capture a situation where a local variable is dependent on the value of a function 

argument. As such, the input generation system is quite powerful and expressive, as it can handle 

complex situations (such as variable aliasing) with no extra work. The symbolic state forms part 

of the system of constraints that will determine valid inputs for the next execution. 
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When generating the next input vector, branches are popped off the condition stack until 

one that is not yet complete (where one branch has not been executed) is discovered. The next 

input vector will be generated so as to force execution of the other branch of this incomplete 

condition. To make this happen, the flag indicating which branch of this condition was taken is 

flipped. For example, if the condition last evaluated to true, the flag is flipped to false. All branch 

conditions on the stack (including this modified condition) are combined with the symbolic state 

to form a system of constraints on the next input vector. A constraint solver is then run to 

generate a solution space that forces execution of an unexecuted branch. In this way, every 

semantically reachable path through the code is executed. 

The DART tool was intended to detect defects in the code for various reasons, and was 

not designed to log all values that could lead program execution down a certain path. Since 

PyStick aims to determine program invariants, just traversing every path is not enough. Rather, it 

must traverse every path as many times as possible in order to gather enough data to accurately 

infer invariants. While DART discards all solutions not seeding the next execution, PyStick logs 

all solutions provided by the constraint solver. This is not the entire solution space (as the actual 

solution space is infinite), but captures all relevant solutions within a user defined range. Note 

that the solutions are grouped by which path they solve, and returned this way. As such, the 

system that accepts this input could run a heuristic to pick the optimal set of inputs. It is up to the 

implementation to do what it needs. 
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Figure 2: An input generation step. The concrete state is shown at the top, followed by the symbolic memory state, path 

constraints, and state of the stack. Finally, after solving the constraints, we see the new input vector, and the new stack. 

Invariant Detection 

Daikon was the inspiration for Agitator, and forms the foundation for PyStick’s invariant 

detection phase. Daikon is written in Java, and does not operate on any specific programming 

language. Its input is a text file containing information about variable values across by multiple 

executions of the code using different input vectors. This information comes from the interesting 

points in the code, defined by Daikon as the function’s entry point, exit point(s), and loop 

headers. The authors specify a format for this text file, which allows anyone to write a front end 

for Daikon by ensuring their application outputs a file in the correct format. At the time of the 
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original research, they used a Lisp front end for testing, which I will refer to as Daikon’s front 

end. As of this writing, there exist official front ends for Java, C/C++, Perl, Eiffel, and IOA. 

While PyStick does not directly use Daikon, it attempts to embody Daikon’s approach 

and extend its established research into the realm of dynamically typed languages. All invariants 

detected by PyStick come directly from Daikon, except for one, which is exclusive to 

dynamically typed languages. Code is instrumented at interesting points and then executed, 

which logs the actual values of each variable. The logged values are then analyzed for invariants, 

which are printed to the screen. Details follow concerning how this process was completed, as 

well as if (and how) PyStick’s approach differs from Daikon’s. 

Instrumentation for Logging 

Logging variable values is achieved through static analysis, code instrumentation, and 

concrete execution. Instrumentation forms the core of the logging phase since it allows the 

values of each variable in scope to be stored at all interesting points. While Daikon’s front end 

also uses instrumentation to log variable values, the key difference is in the storage method. 

Daikon’s front end writes its logging information to a file, which Daikon uses as input. 

While this allows invariant detection to be completed independent of which programming 

language was used, it makes for many writes to disk, which greatly slows execution. To avoid 

this problem, PyStick stores all variable information in memory, namely a dictionary. This 

dictionary is then passed to the invariant detection phase. While this binds PyStick’s invariant 

detection to Python, the goal was not to create a language independent system. To make it 

language independent, this dictionary could be used to output a file in Daikon’s format following 

execution. However, this is left for future research. 
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PyStick’s instrumentation of the code for invariant detection is not very complex. The 

injected code simply serves to log variable values at interesting points in the function. Thus, each 

chunk of code injected simply logs all variables in scope according to which kind of point is 

being logged (entry, exit, or loop) and at which line number this point begins. This injection is 

achieved through static analysis. The source code is parsed into an AST, which is then traversed 

to find interesting points. If a node represents an interesting point, then a series of logging 

statements is injected to log the values of all variables in scope. At all exit points (signified by a 

return statement), the return type is also logged. Nodes that constitute interesting points are 

functions, while loops, for loops, and return statements. Try-except statements could also be 

considered interesting, but introduce a number of problems that must be solved. As they are not 

necessary for this prototype’s goal, they were omitted. Additionally, if the end of a function is 

semantically reachable, then it is also interesting, as a Python function will implicitly return 

“None” in this situation. 

While not much code gets output, a lot happens during static analysis. Namely, PyStick 

tracks the scope (which is no small task), and determines if the end of the function is an 

interesting point. 

Note that since all logging statements are statically injected into the code, PyStick 

requires a method of knowing which variables are in scope at each point. Furthermore, it cannot 

query the program’s current state for this information; since code is injected during static 

analysis, the program is not running, and is thus without state. To solve this problem, PyStick 

tracks the variables in scope during AST traversal. Any time a variable is created or deleted, the 

list of variables in scope is updated. Supported control-flow constructs are also analyzed and 

have their scope tracked in case they contain loops or return statements, which are points of 
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interest, and thus require knowledge of variables in scope. The constructs supported for this 

purpose include if-elif-else blocks, try-except blocks, with blocks, while loops, and for loops
1
. 

In many languages, each code block is given its own scope. Thus, the scope that existed 

before the block’s execution is restored upon completion. However, Python’s scoping rules do 

not work this way. In Python, control-flow blocks do not get their own scope. Any variables 

defined within a control-flow block are added directly to the scope of the enclosing function. 

While this makes the need to reset the scope unnecessary, it introduces problems with logging. If 

a variable is defined within a block of code that is never executed, but that variable is then 

referenced later in the code, Python will raise a NameError. This indicates the variable does not 

currently exist, which is true because its definition was never executed. During static analysis, 

PyStick cannot know which blocks will be executed, so it cannot know which variables will 

exist. As such, PyStick must utilize an alternative method for determining this information. 

The solution employed by PyStick is to defer the decision to runtime. To do this, upon 

exiting a control-flow block, any variable defined within the block is marked as a “scoped” 

variable. When emitting a scoped variable, extra code is first emitted to check if that variable 

exists in the current scope. If it does, its value is logged. Otherwise, it is logged as “void” at that 

point. The “void” value is a custom value in PyStick, used to denote a lack of information. Its 

use lets the user know that this variable could have been defined, but was not. In this manner, 

Python’s unorthodox scoping rules are successfully taken into account, and all scoping 

information is correctly propagated. 

                                                           
1
 You may notice that some of the “supported” blocks are not supported by PyStick itself due to their absence from 

the input generation phase. Since invariant detection is independent from input generation, I wrote some of the 

logging code before I knew exactly what input generation would cover. Once I knew, I saw no reason to remove this 

code, as it may aid future work based off PyStick. 



27 
 

Static analysis is also responsible for the ability to detect that the end of the function is an 

interesting point, which is only true if it is semantically reachable. Whenever a return statement 

is discovered, a flag is set. If the return statement is contained within a control-flow block, the 

node representing this block has the ability to examine the flag and determine if the block itself 

returns. A block is said to return if all paths through the block result in a return statement being 

executed. For example, in the case of an if-else statement, if both the if statement and the else 

statement return a value, then the if-else statement is said to return. If either one (or both) does 

not return, then the if-else statement does not return. If a block is determined to return before the 

bottom of the function is reached, then the bottom of the function is semantically unreachable an 

uninteresting. Otherwise, it is treated as an exit point, and logging information is emitted. A 

return type of “void” is logged in order to distinguish an explicit return type of None from the 

implicit return type of None. 

 

Figure 3: Code instrumented for logging values for invariant detection. 
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Execution 

Execution is straightforward concrete execution, with one slight twist in order to improve 

efficiency. The instrumented AST is only generated once: before any execution occurs. Then, to 

execute the instrumented code with the desired inputs, code is injected that calls the function 

with the appropriate inputs. For each input vector, this line is changed to reflect the appropriate 

values. 

Other than this little piece of code, execution is simple. It compiles the given AST with 

the compile function and executes it with the exec statement. After execution, the produced 

logging dictionary is extracted and returned. 

 

Figure 4: A small sample of logged values, organized by interesting point. 
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Invariant Detection 

PyStick currently detects five different classes of invariants: range, order, unary 

functions, binary functions, and return type. The first four come directly from Daikon. They were 

chosen and implemented because they can be applied to integer values. The return type invariant 

was implemented as a desired and useful addition for a dynamically typed language. 

The general approach for detecting each invariant is the same. Each variable present in a 

section is considered in turn. All values of the variable under analysis are analyzed in order to 

determine if the property holds. This information is conveyed back to the invariant detection 

system, which stores it in memory. I will now discuss each invariant and rationale. 

The range invariant is one of the most useful ones Daikon provides. PyStick marks each 

variable one of three ways: ranged, constant, or undefined. A ranged variable’s value falls within 

some range. A constant variable’s minimum and maximum values are equivalent. An undefined 

variable is either marked as “void” in this section or does not contain an integer. Narrowing the 

possible values of a variable is invaluable information for debugging errors, as it has the ability 

to exclude certain variables whose type could be causing the error but who cannot take illegal 

values. 

The order invariant is useful in determining how integer variables relate to each other, 

such as cases where one variable constrains the values of another. A variable can be related to 

another variable in one of six ways: equal (==), not equal (!=), less than (<), less than or equal to 

(<=), greater than (>), or greater than or equal to (>=). Note that since a relation must hold in all 

cases, it is possible for two variables to not be related by any of these operators. Also, two 

variables will never be reported to be related in more than one way. If two relations apply, then 
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the tighter constraint will be reported. For example, if two variables are related by both less than 

and less than or equal to, then the reported relationship will be less than. 

The unary and binary function invariants are closely related. This invariant applies a 

unary or binary function to one or two variables (respectively) and checks the result. If the result 

is always equal to another variable, or if the result is constant, an invariant has been detected. All 

functions checked are built-in to the language. PyStick checks ten built-in functions, which make 

up all that take integer inputs. Seven functions are unary, of which only one returns an integer. 

Of the three that are binary, all return integers. This invariant serves to further the search for a 

relationship between variables. Additionally, it may imply a source for the value contained in the 

variable, which could be helpful. 

The final invariant is the only one not from Daikon. Looking for an invariant among 

return types can be immensely helpful for those programming in a dynamically typed language. 

There is nothing to prevent a programmer from accidentally coding a function to return different 

types in different situations. Thus, this invariant gives the coder an understanding of all types 

that may be returned at each exit point from their function. Also note that if the function 

implicitly returns a None (that is, it exits without a return statement), PyStick will report that 

return type as “void”. In this way, programmers can differentiate between the two cases and 

ensure proper one is occurring. 
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Figure 5: Sample PyStick output. 
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Results and Analysis 

The goal of this project was to build a software agitation system to operate on a 

dynamically typed language using the same principles embodied by Agitator. PyStick took 

certain liberties to account for the differences between Java and Python, and the lack of detail 

about Agitator’s internal operation. These differences have been detailed in the previous section. 

Though these differences make PyStick interesting and relevant, they only matter if PyStick 

achieves its goal. In this section, I evaluate PyStick’s success. 

Completeness 

The first measure of success is PyStick’s level of completion. The goal was to implement 

as much of the system as necessary to show Agitator’s approach to software agitation is feasible 

for a dynamically typed language. PyStick supports one data type and six different language 

features, which is sufficient to achieve this goal. 

PyStick only supports integers, which is all that is required to demonstrate success. 

Automated input generation is a well-studied problem, so it will not provide any significant 

obstacles to the system. However, it does prevent PyStick from taking advantage of invariants 

relating to the input of differing input types. While this does not detract from its success, it 

implies that PyStick is not reaching its full potential. This consideration is left to future research. 

There are a few coding structures that PyStick must handle to be viable as a proof of 

concept. Assignment forms the basis of software agitation, and was implemented first. 

Compound assignment and deletion did not require much more work, and increased PyStick’s 

Python coverage. Return statements are another important feature for software agitation, and 
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were implemented following assignment. All this was straightforward and did not take much 

time. Control structures were more difficult to implement. 

Branches are important to software agitation, since local variables will often be modified 

by a branch. There were a couple difficulties I encountered implementing static analysis. During 

code instrumentation, I had to make modifications to persisting code scope and marking 

unexecuted lines. 

Loops are a core piece of software agitation, as loop headers are defined as important. 

For this reason, PyStick can handle while loops. Unfortunately, as implementing loops is a non-

trivial problem due to their iterative nature, PyStick cannot handle for loops. 

Although for loops are unsupported, the successful inclusion of branches and while loops 

demonstrate the feasibility of agitating a dynamically typed language. 

Testing 

Ideally, PyStick’s success would be evaluated by running it on arbitrary code. However, 

since it handles a small subset of the Python language, this is not feasible. Even the simple 

functions put forth by Daikon are outside of PyStick’s range, as they require contain arrays. To 

this end, I evaluated PyStick’s success through the use of two different test suites. The informal 

test suite is a collection of small functions using the features PyStick can support, while the 

formal test suite evaluates each PyStick supported structure in isolation. 

The informal test suite consists of fifteen tests. All tests in this suite were intended for 

personal use during development. PyStick consists of four main pieces: concrete execution, 

symbolic execution, logging, and invariant detection. These pieces were developed in isolation 

as much as possible, and as such required a method of verifying their operation independent of 
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any other system. I wrote some small functions to exercise each PyStick feature I added support 

for. They were not carefully constructed, and do not cover any special cases. Rather, they 

exercise the basic operation of a number of features within PyStick. They are informal, and 

behave much like an arbitrary piece of code. Many of these functions are somewhat complex, or 

exercise many different features at once. In this way, they differ from rigorous tests. 

The formal test suite consists of nineteen tests, and is a more traditional style test suite. It 

provides a number of very small test functions, each with a very specific purpose. Each feature 

supported by PyStick has its own dedicated test. Special cases are also exercised, such as 

parameter-less functions. These were all written following the completion of development, since 

it was not until then that I knew which constructs PyStick could handle. 

Each test suite is a collection of functions, and each has a test runner. Both runners 

operate in the same manner. They run PyStick on each function in the test suite multiple times, 

defined by the user. On each run, standard out and standard error are written to file for later 

inspection. Additionally, execution of each test is timed and then averaged across each run to 

give a rough evaluation of performance. By default, each test is run five times. 

In order to evaluate the success of each test, I inspected the output and compared it to the 

invariants I expected. Any discrepancy required closer investigation. First, I checked to ensure 

the expected result was correct. If it was, the next step was to further investigate the code and 

correct the bug. A number of bugs were resolved in this manner. 

Timing 

In addition to verifying correctness, these tests perform a basic and informal analysis of 

execution time. I was surprised with the speed that PyStick appears to operate at. Since I paid 
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little attention to efficiency while coding, I was expecting that it would operate quite slowly in 

all but the simplest of cases. While it is not fast, these basic tests imply that PyStick’s speed is 

decent. 

One run of the test sweet reported the average execution time for a test in the formal test 

suite was about 0.53 seconds. All times were between 0.12 seconds and 2.72 seconds. Although 

the tests in the formal test suite are quite small (the longest is six lines) with a maximum of three 

variables, it was unexpectedly fast. This shows that PyStick works very well on short programs 

that are only a few lines in length. 

The informal test suite experienced more interesting results. The average execution time 

was about 3.43 seconds, with all tests falling between 0.14 seconds and 27.71 seconds. At first 

glance, this shows a must slower trend than the formal test suite. However, the maximum time 

function involves the execution of every control structure PyStick supports, including a loop 

which executed nine times. If we exclude this function from the data, the average drops to about 

1.7 seconds per test, with a maximum duration of 5.43 seconds. Although there remains much 

room for improvement, I was expecting much slower results. 

One possible explanation is that my test functions are not complex enough to see the 

slowdown I was expecting. The execution time of my most complex function may show that. 

However, further testing is needed to confirm that this is indeed true. 

A telling trend is the tendency for execution time to increase with the number of function 

parameters. From the formal test suite, the average execution time for the fifteen functions with 

only one parameter was 0.23 seconds. Meanwhile, the average execution time for the three 

functions with two parameters was 2.15 seconds. The same trend exists in the informal test suite. 

Functions without parameters average 0.14 seconds; single parameter functions take about 0.33 
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seconds; and two parameter functions take about 2.1 8 seconds. This implies that much of 

PyStick’s time is spent executing the generated input vectors. As such, it may make sense to 

research ways to select inputs in such a way that the input vector set is minimized, but the 

coverage does not suffer. 

In watching an execution of the complex test function, I noticed the majority of its time is 

spent attempting to solve path constraints, even though there are only two. The reason seems to 

be a fault of the way PyStick interacts with its constraint solver. At that point in the code, there 

are five live variables. All five are passed to the constraint solver as needed for solving, even 

though only two of those variables appear in the constraints. This was lazy coding and can easily 

be fixed, which would improve the efficiency in cases such as thus. 

This test function may also imply that PyStick does not handle loops very well. The 

biggest slow down on this test occurs when the loop is executed, so it may be beneficial to 

further investigate the input generation to force the proper execution of different paths through 

loops.  
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Future Work 

The product of this research is a prototype representing an area lacking in extensive 

research. As such, there are many opportunities for further work. 

Little attention was paid to the efficiency of PyStick’s code during development, leading 

to much room for improvement. The initial prototype traverses a function’s AST three times: 

twice to instrument the code (for input generation and invariant detection), and once to 

symbolically execute it. This is a waste, especially since the traversals largely focus on the same 

aspects of the code. The traversal from the input generation phase and the invariant detection 

phases could be blended to reduce this redundancy. 

The other primary concern of efficiency exists when logging variable values. Storing the 

values in memory and calculating invariants following execution works well for small programs. 

However, large programs may significantly slow down execution and inflate memory usage. 

This is due to a likely increase in the number of variables and interesting points. Daikon’s 

approach is to write all logged values to a file. Then, to calculate invariants, it simply reads from 

that file. Although this also works, the authors have expressed concern over the decreased 

efficiency from the many file operations required. One possible solution to both these problems 

would be to calculate invariants on-the-fly. Since an invariant must hold true across every 

execution, simply tracking the current state of the invariant and updating it on each execution 

would be enough to ensure its correctness. This technique would need to be evaluated for 

effectiveness in increasing performance, as it currently exists only as a proposition. 

PyStick supports a very small subset of the Python language. For this tool to realize its 

full potential, it must be able to handle much more of the language, with the final goal being the 

ability to handle the entirety of Python. It would not be necessary for PyStick to agitate every 
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aspect of Python. The ability to process and skip over constructs it cannot handle would be 

sufficient to allow PyStick to analyze real-world code. 

In its current form, PyStick cannot handle function calls, whether user-defined, built-in, 

or third party. It is a difficult problem to solve, made even more difficult by the lack of type 

information concerning the return type. Further research could be put into how to handle these 

three different classes of functions in order to enable PyStick to effectively analyze them. Two 

proposals come from my own work: on-the-fly invariant detection, and agitating the callee in 

order to determine input and return types. 

PyStick also must be extended to operate on more data types. While integers are 

sufficient to imply that software agitation of Python is feasible, the tool is not currently useful for 

arbitrary code. PyStick should at least be able to handle Python’s most commonly used built-in 

types, such as floating-point numbers, strings, booleans, lists, tuples, sets, and dictionaries. 

Adding more types to PyStick necessitates the handling of a few related issues. 

The most straightforward of these issues will be the need to add more invariants. This is 

likely the easiest to solve and implement. Since PyStick’s purpose is invariant detection, an 

inability to calculate invariants on a given type renders the inclusion of that type useless. 

Included in this is the task of enabling the invariant detector to ensure all values of a variable at a 

given interesting point are the same type. Additionally, the invariant detector could look for 

invariants only on variables of a type that matches the invariant. However, it may be interesting 

to see what invariants appear when variables of unexpected types are analyzed. 

On-the-fly invariant calculation has some problems of its own, but it is an interesting idea 

due to the problems it could solve. The inclusion of more types is another problem it could aid. 

Calculating type invariant on-the-fly would have benefits for input generation, even if no other 
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invariants were detected at the same time. These type invariants could be used to determine legal 

input types for the function being analyzed. This information could be used to ensure input 

generation is only performed for legal types. 

Analysis and detection of invariants would also require some further decisions, namely 

how to organize these invariants with differing input types. It may not make sense to analyze 

invariants over the entire program without considering input type. Since only one input type will 

apply to each program execution, combining all of them will likely not be the optimal 

configuration for the programmer. 

Techniques for automatic object generation may also be of interest to automate as much 

of the software agitation process as possible. Agitator often requires the use of factory classes for 

object creation. While this works well, it is more work on the part of the programmer. The ideal 

situation would be to completely remove the need for the programmer to do anything extra 

besides run the program. 

As it currently stands, PyStick is merely an interesting research project. However, it has 

the potential to become a very useful tool for diagnosing issues that exist in Python code. Before 

it reaches that stage, much more research and work must occur, beginning with the areas laid out 

above. 
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Conclusion 

The development of PyStick investigated the feasibility of applying software agitation to 

a dynamically typed language. Specifically, it evaluated the suitability of the approach used by 

Agitator for this purpose. It addressed some issues that arise when dealing with a dynamically 

typed language in this manner, and laid the groundwork for even more. In addition, it is intended 

to serve as the foundation for further research into this understudied area, and will hopefully act 

as a starting point for future research on this topic. 

Although there was only time to apply this approach to a small subset of the Python 

language, its success implies that taking the Agitator approach to software agitation of a 

dynamically typed language is feasible. The success of development and application to arbitrary 

functions (using PyStick’s supported features) shows that the system works correctly in all 

situations it is designed for. A more complete implementation is required in order to make a 

more complete assessment of the viability, but the initial work looks promising. 
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Appendix A: Test execution time 
 

Table 1: Formal test execution (seconds) 

 

RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 AVERAGE 

test_assign_const 2.062883 0.173008 0.164737 0.165630 0.192040 0.551660 

test_assign_expr 0.196885 0.204549 0.197228 0.196789 0.169783 0.193047 

test_compound_add 0.198192 0.167378 0.177526 0.183870 0.173630 0.180119 

test_compound_div 0.222598 0.208199 0.188096 0.205139 0.173262 0.199459 

test_compound_mul 0.176685 0.203896 0.214953 0.184246 0.168472 0.189651 

test_compound_sub 0.181380 0.194607 0.173252 0.199067 0.197671 0.189196 

test_delete 0.156428 0.156547 0.152528 0.151552 0.159574 0.155326 

test_eval_bool 1.657985 1.605594 1.673990 1.758288 1.633656 1.665903 

test_ex 2.105477 1.884806 2.026968 2.123109 2.312203 2.090513 

test_if 0.228716 0.249631 0.231156 0.279056 0.236461 0.245004 

test_no_args 0.130358 0.113249 0.117369 0.126785 0.122779 0.122108 

test_no_control 0.193162 0.182320 0.181568 0.178608 0.188983 0.184928 

test_return_from_if 0.222802 0.218475 0.236591 0.217440 0.227621 0.224586 

test_return_from_while 0.226921 0.224346 0.227636 0.263562 0.234645 0.235422 

test_return_implicit 0.166882 0.169341 0.171560 0.166274 0.171349 0.169081 

test_return_no_control 0.158779 0.158272 0.160755 0.155392 0.169300 0.160500 

test_return_uneven 0.253552 0.214449 0.229881 0.211830 0.222037 0.226350 

test_two_args 2.591316 2.635859 2.515194 2.664483 3.204716 2.722314 

test_while 0.419260 0.327074 0.412145 0.439893 0.477731 0.415221 

AVERAGE 0.607909 0.489032 0.497533 0.519527 0.549259 0.532652 
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Table 2: Informal test execution (seconds) 

 

RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 AVERAGE 

branching 1.851488 1.831767 1.908082 1.765576 1.646559 1.800694 

branching_more 0.144265 0.160410 0.146485 0.132162 0.144068 0.145478 

complete_branching 2.237624 2.084089 2.183840 2.085307 1.873404 2.092853 

dart21 3.034892 2.816095 3.033769 2.891061 2.750769 2.905317 

dart24 2.054509 2.029064 2.119138 1.952037 1.877094 2.006368 

dart24_extended 1.873900 1.995767 1.909370 1.747660 1.758448 1.857029 

dead_return 0.130102 0.124767 0.153896 0.146210 0.131097 0.137214 

demo 2.740241 2.810190 2.754288 2.580650 2.502033 2.677480 

everything 33.771165 33.948558 34.261485 4.490436 32.082941 27.710917 

func 0.123746 0.137106 0.139074 0.133404 0.146156 0.135897 

func2 0.417451 0.501758 0.479422 0.487692 0.519400 0.481145 

loop 0.195978 0.207671 0.176826 0.183905 0.197414 0.192359 

loop_2_params 2.051417 2.053822 1.983989 1.813325 1.862365 1.952984 

param_types 1.959999 1.953787 2.013656 1.796314 1.828702 1.910492 

param_types_branching 7.965827 4.034993 4.029345 7.338196 3.822643 5.438201 

AVERAGE 4.036840 3.779323 3.819511 1.969596 3.542873 3.429629 
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Appendix B: Package Structure 
 

pystick\ 

 __init__.py 

 commonast.py 

 main.py 

 report.py 

 util.py 

 daikon\ 

  __init__.py 

  daikon.py 

  invariants\ 

   __init__.py 

   detect.py 

   inv_util.py 

  logging\ 

   __init__.py 

   logging.py 

 dart\ 

  __init__.py 

  constraint_solver.py 

  dart.py 

  hashdict.py 

  concrete\ 

   __init__.py 

   concrete.py 

   funcs.py 

  symbolic\ 

   __init__.py 

   symbolic.py 

   symbol_table.py 

 

 

 

 

 

 

 

 

 

 

1511 lines, 55 functions, 21 classes, 103 methods 

 

46 lines, 5 classes, 5 methods 

16 lines, 1 function 

64 lines, 6 functions 

64 lines, 5 functions, 2 classes, 5 methods 

489 lines, 23 functions, 7 classes, 32 methods 

 

13 lines, 2 functions 

236 lines, 20 functions, 3 classes, 6 methods 

  

202 lines, 19 functions 

34 lines, 1 function, 3 classes, 6 methods 

240 lines, 1 function, 4 classes, 26 methods 

  

240 lines, 1 function, 4 classes, 26 methods 

832 lines, 20 functions, 9 classes, 61 methods 

  

  

231 lines, 7 functions, 1 class, 12 methods 

10 lines, 1 class, 3 methods 

399 lines, 9 functions, 3 classes, 32 methods 

  

338 lines, 2 functions, 3 classes, 32 methods 

61 lines, 7 functions 

174 lines, 2 functions, 4 classes, 14 methods 

 

119 lines, 2 functions, 4 classes, 14 methods 

55 lines 
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