

WILD Goblin Sensor Pod Design,

Development, and Integration

December 15, 2014

Submitted by:

Lillian Walker, lgwalker@wpi.edu, WPI box number: 1421

Daniel Zaleski, drzaleski@wpi.edu, WPI box number: 1909

Advised by:

WPI Advisor: Professor Fred Looft

MIT Lincoln Laboratory Supervisor: Bryce Remesch

[Designated Space for Disclosure Statement]

2

Table of Contents
Table of Figures ... 4

Table of Tables .. 7

Table of Equations ... 9

Section 1. Introduction ... 11

Section 2. Background ... 12

2.1. History of Unmanned Aerial Vehicles .. 12

2.2. Modern UAVs ... 14

2.3. WILD Goblin .. 20

2.4. Sensor Capabilities .. 25

2.5. Summary ... 30

Section 3. Project Statement .. 31

3.1. Introduction ... 31

3.2. Project Statement .. 31

3.3. Project Objectives ... 31

3.4. Requirements .. 31

3.5. Summary ... 31

Section 4. Methodology ... 33

4.1. Mechanical Design Process .. 33

4.2. Turret Control Algorithm Development ... 33

4.3. Integration Tests .. 34

4.4. Summary ... 35

Section 5. Design of the Sensor Turret .. 36

5.1. Introduction ... 36

5.2. Mechanical Results: Iterations .. 36

5.3. Integration Tests .. 70

5.4. Summary ... 75

Section 6. Software Results ... 76

6.1. Introduction ... 76

6.2. Test Turret Setup ... 77

6.3. Arduino Capabilities ... 77

6.4. Serial Commands .. 78

3

6.5. Scans ... 82

6.6. Encoder with Continuous Rotation Servo ... 95

6.7. Stabilization .. 97

6.8. Summary ... 110

Section 7. Discussion ... 111

7.1. Mechanical Component Breakdown ... 111

7.2. Control Software Discussion .. 123

7.3. Integration Tests .. 126

7.4. Summary ... 128

Section 8. Conclusion .. 129

Appendix A. Datasheets .. 130

Appendix B. Gantt Chart .. 132

Appendix C. Requirements ... 133

Appendix D. Verification Plan ... 135

Appendix E. TOIL Capabilities .. 137

Appendix F. Executive Summary ... 138

Appendix G. B Term MQP Addendum .. 145

Appendix H. Video Stabilization Code... 157

4

Table of Figures
Figure 1: Civil War Balloon [2] ... 12

Figure 2: The Kettering "Bug" [4] ... 13

Figure 3: The Queen Bee [2] ... 13

Figure 4: 2014-2018 President's Budget for Unmanned Systems ($ Mil) [6]................................ 15

Figure 5: UAS Flight Hours (1996-2011) [5] .. 16

Figure 6: DoD UAS [5].. 17

Figure 7: Inventory of DoD UAS [6] ... 18

Figure 8: BAE Systems Coyote and its Sonobuoy Tube [9] .. 21

Figure 9: Example of a Sparse Point Cloud of a Building [10] ... 22

Figure 10: Raster Scan [11] ... 23

Figure 11: Spiral Scan [12] .. 23

Figure 12: Figure-8 clover Scan .. 24

Figure 13: Jenoptik DLEM-SR Laser Rangefinder [13] .. 25

Figure 14: Electromagnetic Spectrum based on Wavelength [15] ... 26

Figure 15: SWIR camera being used for night vision (visible wavelength camera used on the left,

SWIR camera used on the right) [17] ... 27

Figure 16: Sensors Unlimited Micro-SWIR [19] ... 27

Figure 17: Thermal Image produced by a FLIR Quark LWIR camera [23] 28

Figure 18: FLIR Quark LWIR camera [25] ... 28

Figure 19: SolidWorks Model of Iteration 1 (Front) ... 38

Figure 20: SolidWorks Model of Iteration 1 (Back) .. 38

Figure 21: Body and Nose Cone of Goblin with Half Cut Nose Cone .. 39

Figure 22: Size Comparison of Three Sensors ... 40

Figure 23: Sensor Housing for Iteration 1 ... 40

Figure 24: 2013 Senior Project Four-bar Linkage ... 41

Figure 25: Complex Motion Tilt Mechanism .. 42

Figure 26: Three Positions of the Complex Tilt Mechanism ... 42

Figure 27: Keyway and Groove of the Turret Body .. 43

Figure 28: SolidWorks Model of Iteration 2 (Front) ... 44

Figure 29: SolidWorks Model of Iteration 2 (Back) .. 44

Figure 30: Exploded View of Locking Rings .. 45

Figure 31: Locking Rings .. 45

Figure 32: Groove for Roll Ring (shown in purple) .. 46

Figure 33: Gearing for Iteration 2 .. 47

Figure 34: Gear Labels... 47

Figure 35: Diagram of Gearing Annotated with Tooth Counts for Each Gear 48

Figure 36: SolidWorks Model of Iteration 3 (Front) ... 49

Figure 37: SolidWorks Model of Iteration 3 (Back) .. 49

Figure 38: Sensor Housing for Iteration 3 ... 50

5

Figure 39: Iteration 3: Four-bar Linkage and Servo .. 50

Figure 40: Three Positions of the Four Bar Tilt Mechanism ... 51

Figure 41: Two Extreme Positions of the Four-bar Linkage ... 51

Figure 42: Exploded View of Locking Rings, Ridge, and Servo Housing 52

Figure 43: Locations for Screws (at arrows) Connecting the Servo Housing and Tube Side

Locking Ring ... 53

Figure 44: Cut in Roll Ring ... 53

Figure 45: SolidWorks Model of Iteration 4 (Front) ... 54

Figure 46: SolidWorks Model of Iteration 2 (Back) .. 55

Figure 47: Anchor Points and Link Lengths for Iteration 4 Four-bar .. 55

Figure 48: SolidWorks Model of Iteration 5 (Front) ... 56

Figure 49: SolidWorks Model of Iteration 5 (Back) .. 57

Figure 50: Sensor Housing for Iteration 5 ... 58

Figure 51: Iteration 5 Geared Roll Mechanism ... 58

Figure 52: Three Positions of Geared Tilt Mechanism .. 59

Figure 53: SolidWorks Model of Iteration 6 (Front) ... 60

Figure 54: SolidWorks Model of Iteration 6 (Back) .. 60

Figure 55: Servo Converter Instered into Servo Housing .. 61

Figure 56: Sensor Housing ... 61

Figure 57: Roll Ring and Internal Gear ... 64

Figure 58: SolidWorks model of Iteration 7 (Front) .. 64

Figure 59: SolidWorks model of Iteration 7 (Back) .. 65

Figure 60: Final Turret Design, Front View .. 66

Figure 61: Final Turret Design, Top View .. 66

Figure 62: Final Turret Design with Sensors ... 67

Figure 63: Turret Housing with Space for Rangefinder, Electronics, and Shelves 68

Figure 64: Final Encoder Mount .. 69

Figure 65:Test Setup for Accuracy and Repeatability of Tilt Mechanism 72

Figure 66: Comparison Between Angle Reading When Tilting the Mechanism Up vs. Down 73

Figure 67: Flowchart of Program Modules .. 76

Figure 68: Test Turret Setup .. 77

Figure 69: readSerialString() Function for Parsing a String .. 82

Figure 70: Spiral with Density of 2 (spiral goes around 2 times) .. 84

Figure 71: Spiral with Density of 6 (spiral goes around 6 times) .. 85

Figure 72: Clover Scans with 2 Leaves (Figure-8 Scan) Showing the Ability to Change the End

Radius of the Clover .. 87

Figure 73: Clover Scans with 4 Leaves Showing the Ability to Change the End Radius of the

Clover... 87

Figure 74: Sample Raster Scan Point Numbers ... 88

Figure 75: Clover Scan with 2 Leaves Showing that Red and Blue Dot do not Overlap 92

Figure 76: Clover Scan with 4 Leaves Showing that Red and Blue Dot do not Overlap 93

6

Figure 77: Clover Scan with 2 Leaves Showing that Red and Blue Dot do Overlap 93

Figure 78: Clover Scan with 4 Leaves Showing that Red and Blue Dot do Overlap 94

Figure 79: Gyro Integration Code .. 101

Figure 80: Arduino to IMU Pin Connections ... 101

Figure 81: Arduino to IMU Wiring Diagram ... 102

Figure 82: Number of Angle Calculations Per Filter Test in 1 Second 104

Figure 83: Tilt Angle Results for Stationary Test After 5 Seconds ... 105

Figure 84: Roll Angle Results for Stationary Test After 5 Seconds .. 105

Figure 85: Tilt Angle Results for Stationary Test After 5 Seconds with Scaled Axes 106

Figure 86: Roll Angle Results for Stationary Test After 5 Seconds with Scaled Axes 107

Figure 87: IMU Roll and Tilt with Jitter .. 109

Figure 88: IMU Roll and Tilt with no Jitter ... 109

Figure 89: 2013 Sensor Housing SolidWorks Static Simulation (Displacement Left, Stress Right)

 .. 111

Figure 90: Iteration 1 Sensor Housing SolidWorks Static Simulation (Displacement Left, Stress

Right) ... 112

Figure 91: Iteration 2 Sensor Housing SolidWorks Static Simulation (Displacement Left, Stress

Right) ... 112

Figure 92: Iteration 3 Sensor Housing SolidWorks Static Simulation (Displacement Left, Stress

Right) ... 113

Figure 93: Final Iteration Sensor Housing (ABS) SolidWorks Static Simulation (Displacement

Left, Stress Right) .. 113

Figure 94: Final Iteration Sensor Housing (Aluminum) SolidWorks Static Simulation

(Displacement Left, Stress Right) .. 114

Figure 95: Maximum Stress and Displacement due to Sensor Load in Each Sensor Housing

Iteration .. 115

Figure 96: Displacement caused by a 0.5 Nm Torque applied at the groove 116

Figure 97: Stress caused by a 0.5 Nm Torque applied at the groove on the 2013 Turret Housing

 .. 116

Figure 98: Displacement caused by a 0.5 Nm Torque applied at the groove on the Locking Rings

Turret Housing ... 117

Figure 99: Stress caused by a 0.5 Nm Torque applied at the groove on the Locking Rings Turret

Housing .. 117

Figure 100: Displacement caused by a 0.5 Nm Torque applied at the groove on the Final Turret

Housing .. 118

Figure 101: Stress caused by a 0.5 Nm Torque applied at the groove on the Final Turret Housing

 .. 118

Figure 102: Roll Ring, Iteration 1, SolidWorks Static Simulation, 2N Total Force (Displacement

Left, Stress Right) .. 120

Figure 103: Roll Ring, Iteration 3, SolidWorks Static Simulation, 2N Total Force (Displacement

Left, Stress Right) .. 121

7

Figure 104: Roll Ring, Iteration 4, SolidWorks Static Simulation, 2N Total Force (Displacement

Left, Stress Right) .. 121

Figure 105: Roll Ring, Iteration 7, SolidWorks Static Simulation, 2N Total Force (Displacement

Left, Stress Right) .. 122

Figure 106: Maximum Stress and Displacement due to Sensor Load in Each Roll Ring Iteration

 .. 122

Figure 107: Clover Scan Showing an Instance when the Calculated Roll Angle is Less than the

Preprogrammed Lower Limit of the Roll Servo (0 Degrees in this Case) 125

Figure 108: Test Data for Tilt Mechanism Calibration .. 127

Figure 109: Final Turret, Front View .. 141

Figure 110: Final Turret, Top View ... 142

Figure 111. Overall Flowchart of Turret Control .. 143

Figure 1: MATLAB code structure for the Tracking software .. 146

Figure 2: Final MATLAB Tracking Software Structure ... 147

Figure 3: Variables used to calculate Roll and Tilt .. 148

Figure 4: User Feedback Panel .. 149

Figure 5. Video Frame Displaying the Unstabilized Video (Left) with the White Stabilization

Boxes and the Stabilized Video (Right) ... 150

Figure 6. Sample Centroid Finding Result... 151

Figure 7. Overlapping Frames of a Video Showing the Stabilized Video Result on the Right ... 151

Figure 8. Video Frames Demonstrating Video Stabilization ... 152

Figure 9. Initial Frame of Moving Object, Stationary Camera Test Video 153

Figure 10: Feature Points on a Lamp ... 154

Figure 11. Stabilization Boxes Losing Object of Interest Close to Video Frame Borders 155

Figure 12. Stabilization Boxes Refocusing Near Initial Object of Interest in Video Frame 155

Table of Tables
Table 1: Four Levels of Autonomy [5] .. 20

Table 2: System Requirements and Tracability ... 32

Table 3: Iterations of the Sensor Turret ... 37

Table 4: Results of First Integration Test... 71

Table 5: Results of Second Integration Test .. 74

Table 6: Variables for Speed Change Equations ... 79

Table 7: Variables for Spiral Scan Calculations .. 83

Table 8: Variables Used for Clover Scan... 86

Table 9: Variables Used in Raster Scan Point Time Calculations ... 88

Table 10: Variables Used to Calculate the Point Time of a Raster Scan 90

Table 11: Variables Used in Spiral Scan Point Number Equations ... 91

Table 12: Variables Used in Spiral Scan Point Number Equations ... 91

8

Table 13: Variables Used in Clover Scan Point Number Equations .. 94

Table 14: Variables Used in Clover Scan Point Number Equations .. 95

Table 15. Variables Used in Encoder Degree Calculations ... 96

Table 16: Variables Used to Calculate Accelerometer Orientation ... 98

Table 17: Variables Used to Calculate Gyroscope Orientation ... 100

Table 18. Number of Angle Calculations for Each Filter Test .. 103

Table 19. Moment of the Distribution Calculations for Roll and Tilt Angles for Complementary

and Kalman Filter Stationary Tests .. 108

Table 20: Simulation Load Forces for Each Sensor .. 111

Table 21: Parts Required for Each Title Mechansim ... 119

Table 1: Integrations .. 140

Table 1: Comparison of FLIR One and FLIR Quark 2 .. 147

9

Table of Equations
(1) ... 47

(2) ... 47

(3) ... 48

(4) ... 48

(5) ... 52

(6) ... 52

(7) ... 63

(8) ... 69

(9) ... 70

(10) ... 79

(11) ... 79

(12) ... 79

(13) ... 79

(14) ... 80

(15) ... 80

(16) ... 83

(17) ... 83

(18) ... 84

(19) ... 84

(20) ... 85

(21) ... 85

(22) ... 86

(23) ... 86

(24) ... 88

(25) ... 89

(26) ... 89

(27) ... 89

(28) ... 90

(29) ... 90

(30) ... 90

(31) ... 91

(32) ... 91

(33) ... 92

(34) ... 92

(35) ... 94

(36) ... 94

(37) ... 95

(38) ... 95

(39) ... 95

10

(40) ... 96

(41) ... 96

(42) ... 97

(43) ... 97

(44) ... 99

(45) ... 99

(46) ... 99

(47) ... 99

(48) ... 99

(49) ... 108

(50) ... 108

11

Section 1. Introduction
Unmanned Aerial Vehicles (UAVs) have proven to be critical components of many military and

civilian missions, both at home and abroad. One major mission area UAVs contribute significant value to

is Intelligence, Surveillance and Reconnaissance (ISR). ISR capabilities are essential for exploring

terrain, gathering intelligence, and finding objects of interest. The information UAVs can provide while

flying over unknown territories can make the difference between mission success and failure.

Several inherent traits of UAVs make them ideal for ISR missions. Since UAVs do not have a

pilot, the risk of human causalities in reconnaissance missions decreases with the increased use of UAVs

for high risk missions and geographic areas. UAVs are usually smaller than a light aircraft (e.g. a small

private airplane), so they are capable of quick and agile maneuvers through the air that a normal manned

aircraft would not be able to easily accomplish. Finally, UAVs are often smaller and relatively quiet and,

as a result, are less observable from the ground than large piloted aircraft.

The Wing and Internal Launcher Deployed (WILD) Goblin is a small UAV in development at

Lincoln Laboratory that is intended for use for ISR missions including autonomous reconnaissance. This

UAV is composed of a BAE Systems Coyote airframe as well as specially selected sensors used for

tracking objects of interest and developing sparse point clouds of objects.

The purpose of our capstone project was to, first, design a sensor pod turret assembly which can

house the specific set of sensors that were selected for the WILD Goblin’s missions, and second, to

develop a software package that can be used with the Goblin’s turret assembly to control and stabilize the

turret that the sensors will be mounted in. While many Commercial Off-The-Shelf (COTS) UAV turrets

and sensor packages are available, they are not optimized for the WILD Goblin’s restricted size, weight,

and power (SWaP) constraints. As a result, this project was focused on a custom turret design and

software stabilization/control solution designed specifically to meet the WILD Goblin system

requirements.

12

Section 2. Background
Modern reconnaissance unmanned vehicles, like the WILD Goblin, are equipped with advanced

sensor technology which enables them to gather valuable intelligence and provide many advantages over

manned aircraft. Since UAVs do not need to accommodate a pilot, with the corresponding weight, power,

volume, safety, and other requirements, UAVs allow for a wider variety of aircraft sizes, designs,

operation areas, and deployment capabilities.

2.1. History of Unmanned Aerial Vehicles

Ever since manned flight was proven to be possible, inventors have been seeking to implement

and improve unmanned flight. During the Civil War, balloons, such as shown in Figure 1, were used for

manned reconnaissance (surveying enemy terrain) as well as unmanned bomb dropping vehicles. Both the

Union and the Confederacy would launch these balloons and rely on wind patterns to bring the balloon

down behind enemy lines and, hopefully, destroy a target of value [1]. Charles Perley designed an aerial

bomber in 1863, a hot air balloon equipped with a mechanical timer which could be preset to drop a bomb

at a specific time after launch. These bombers were used by both Union and Confederate forces, but had

limited success as they were inaccurate, because they relied on wind patterns, and dangerous, due to the

potential for premature explosions [2].

Figure 1: Civil War Balloon [2]

 Many of the first unmanned aerial vehicles were the result of researchers adapting

existing aircraft to fly autonomously using mechanical devices. In 1917, Elmer Sperry invented an

automatic gyroscopic stabilizer which could keep an airplane level during flight [2]. The same device

could also be used to cause the aircraft to crash after a length of time, sending it crashing into a target.

Near the end of World War I, branches of the United States military began investing in research into

UAVs like Sperry’s to be used as disposable bomb delivery aircraft. Figure 2 shows the Kettering “Bug,”

purchased by the United States Army, made by Charles F. Kettering and Orville Wright, which had a

counter on the propeller that cut power to the engine after a certain number of propeller revolutions. The

end of World War I, however, brought an early end to most of the interest in UAV research [3].

13

Figure 2: The Kettering "Bug" [4]

During World War II, UAV research experienced a resurgence as military branches in several

countries began using unmanned aircraft for target practice. These remote control UAVs were flown by

ground or ship based operators who attempted to elude anti-aircraft personnel for practice. In the 1930’s,

the British military developed the Queen Bee, shown in Figure 3, a multi-use remote control UAV which

was used to train the Royal Navy anti-aircraft gunners. The Queen Bees were wooden biplanes that had a

range of 300 miles and could fly as high as 17,000 feet [2]. After seeing the British Navy’s use of UAVs,

the US military invested in similar technology which was produced by Radioplane Company, a toy

aircraft manufacturer. These target UAVs were essentially larger versions of remote control toy aircraft

with wingspans up to 12 feet 3inches and lengths up to 9 feet 3inches. Both the US Army and US Navy

invested in these target UAVs for training [3].

Figure 3: The Queen Bee [2]

14

UAVs were also used by both the Allies and Germany during World War II as remote-control

bomb carrying vehicles. In 1944, Germany employed unmanned rockets, the V-1 and V-2, during the

bombing of London. The V-1 carrying a 2,000 pound warhead was launched from a ramp and could be

preprogrammed to fly a specified distance before dropping its bomb [2]. The US forces also developed

UAVs for remote attacks during World War II by repurposing older planes to be remote controlled. For

example, during Operation Aphrodite, pilots would takeoff in converted B-17 or other bombers filled with

25,000 pounds of explosives, then bail out while a remote operator piloted the UAV towards a target.

These missions were rarely successful, however, as on many missions the remote control malfunctioned,

the plane was shot down, or the payload exploded prematurely [3].

In the 1950’s and 60’s the United States began using UAVs for reconnaissance. Some

reconnaissance UAVs were the same ones used for target practice during World War II, but were

modified to carry a variety of sensors. The Firebee, built by Ryan Aeronautical Company in 1948, was the

first to be adapted for reconnaissance missions in 1959. One model of the Firebee, the Q-2C, could travel

at heights of 60,000 feet at a range of 800 miles. These UAVs were equipped with conventional film

cameras, making recovery of the cameras necessary for the intelligence to be useful. Many of the Firebee

models were designed to be recoverable and some models had over a 90 percent return rate [3].

The Q-2C was followed by the Ryan Fire Fly 147A and 147B, which were designed to fly

missions over Russia undetected. These “stealth” UAV were equipped with radar absorbing materials and

other devices to disguise the aircraft from radar. Ryan Aeronautical continued to design many more

models of the Fire Fly to fit a wide range of mission scenarios, high and low altitudes, and ranges. The

Fire Fly continued to be used in Vietnam for reconnaissance, taking the place of human operators during

dangerous missions, including day and night missions to take photographs of terrain and enemy locations

[3].

2.2. Modern UAVs

In the last 15 years of the 20th century and up to modern day, UAVs have constantly been

developed and implemented for various missions. New technology for UAVs continues to be created,

leading to yet more uses for unmanned aerial vehicles.

Uses of UAVs

Unmanned systems (US) are very common in today’s military and are used for a wide variety of

missions. Each mission has specific operating conditions which determine the requirements for the

unmanned system to be used. Unmanned systems are used not only for airborne platforms, but also for

ground based platforms and both underwater and surface sea platforms [5]. As shown in Figure 4, air

platforms receive the majority of funding for unmanned systems; for financial years 2014-2018,

Unmanned aerial systems (UAS) account for 90.9% of the 23.9 billion dollars in funding designated for

unmanned systems, likely because UAS are the most versatile, able to operate from ground or sea bases

and used by all branches of the military. Unmanned ground systems (UGS) receive 0.9% of the budget

and unmanned maritime systems (UMS) receive 8.2%.

15

Figure 4: 2014-2018 President's Budget for Unmanned Systems ($ Mil) [6]

 Figure 5 shows a breakdown of UAS flight hours since 1996. While the Air Force is responsible

for the majority of flight hours, the Army has a comparable number of flights and the Navy and Marine

Corps are also strongly represented.

16

Figure 5: UAS Flight Hours (1996-2011) [5]

UAV Capabilities

Each UAV system is a factor of many components which are determined during design based on

the eventual mission area of the UAV. These components include UAV size, launch method, recovery

method, payload capability and level of autonomy.

Vehicle Design

The wide range of mission requirements for UAVs calls for a diverse selection of vehicles with

different payload capacities, speeds, ranges, and sizes. Figure 6 shows a chart from the Department of

Defense (DoD) Unmanned Systems Integrated Roadmap of current Department of Defense UAV projects

sorted into groups according to weight, speed, and other factors [5].

Figure 6: DoD UAS [5]

Small Unmanned Aerial Vehicles (SUAVs) are of particular interest as vehicles for tactical

reconnaissance. Figure 7 shows how prevalent Group 1 and 2 UAVs are in the Department of Defense,

making up 89% of the DoD inventory. These aircraft can be as small as the Black Hornet Nano, a rotary

wing vehicle which can fit in the palm of your hand [7]. The small size of SUAVs and more limited

payload mean that for many scenarios, these aircraft cost far less than a Group 4 or 5 UAV while still

providing the essential instruments and sensors that are needed for a mission. These UAVs can be

inexpensive enough to be expendable, so they do not endanger ground forces involved in retrieving the

SUAV. SUAVs can also often be deployed at a lower organizational level, meaning that a small squad of

soldiers could be equipped with useful reconnaissance tools.

Figure 7: Inventory of DoD UAS [6]

Launch Methods

Depending on their size, UAVs can be launched in a variety of ways. Some UAVs can be

launched much like other large aircraft using runways, although this requires space for takeoff. Others

19

can be hand launched, which is useful for Group 1 aircraft which are light. Vertical launches are also used

for helicopter like aircraft with rotary wings. Catapults, which can be free standing, car-top, or even hand

held, can be used to launch UAVs up to Group 4. Finally, UAVs can be air launched by another aircraft.

Some SUAVs use this technique and are typically jettisoned or dropped from an aircraft inside a

protective casing such as a sonobuoy, flare magazine, etc. and then deploy after they are dropped or

jettisoned [8].

Recovery Methods

Recovery is not always an option or even a design choice in UAV missions. When a UAV is

launched into a high risk area for a reconnaissance mission it may not be possible to retrieve the UAV if it

has a short battery life or is not near a friendly base [8]. Thus, some UAVs are designed to be disposable

and do not have a recovery method.

Some UAVs are equipped with landing gear and can be landed on a runway like a conventional

aircraft. Another common way of landing and recovering an aircraft is parachute deployment. The UAV

deploys a parachute and is retrieved from the ground, sea, or even plucked from the air [8].

Autonomy

Autonomy, in other words the capability to perform actions without the direct intervention of a

human, is a key characteristic of UAVs. As seen in Table 1, UAVs vary in their level of autonomy;

ranging from human operated, or remote control, in which a computer controls only low level functions,

to fully autonomous, in which a computer is in control of the entire system for often long periods of time.

Increasing autonomy can have many advantages in a UAV system depending on the mission. In a wide

spread mission involving many UAVs, autonomy can lead to manpower savings since all modern aircraft

require a team of people to operate, maintain, observe and interpret the data received, even for a remote

controlled vehicle. In a more autonomous system, one pilot could oversee several aircraft and delegate a

computer to control some of the tasks associated with flying each aircraft, such as stabilization or

navigation [9].

20

Level Name Description

1 Human

Operated

A human operator makes all decisions. The system has no autonomous control

of its environment although it may have information-only responses to sensed

data.

2 Human

Delegated

The vehicle can perform many functions independently of human control

when delegated to do so. This level encompasses automatic controls, engine

controls, and other low-level automation that must be activated or deactivated

by human input and must act in mutual exclusion of human operation.

3 Human

Supervised

The system can perform a wide variety of activities when given top-level

permissions or direction by a human. Both the human and the system can

initiate behaviors based on sensed data, but the system can do so only if within

the scope of its currently directed tasks.

4 Fully

Autonomous

The system receives goals from humans and translates them into tasks to be

performed without human interaction. A human could still enter the loop in an

emergency or change the goals, although in practice there may be significant

time delays before human intervention occurs.

Table 1: Four Levels of Autonomy [5]

2.3. WILD Goblin

The Wing and Internal Launcher Deployed (WILD) Goblin is a UAV in development in Group

106 at Lincoln Laboratory. The idea behind the WILD Goblin UAV is to have a small UAV (SUAV) that

will be relatively inexpensive, disposable, and equipped with a sensor pod to perform completely

autonomous reconnaissance, target identification, and target tracking.

Some sample mission areas that the WILD Goblin is designed for and will prove useful include:

 Border patrols

 Searching for camouflaged and concealed targets

 Identifying targets in heavy clutter

 Inspecting pipelines, roads, transmission lines, and bridges

21

Coyote Airframe

Shown in Figure 8, the aircraft design of the WILD Goblin is based off of the BAE Systems

Coyote airframe. As shown in Figure 8, the body of the UAV is three feet long and fits into a standard A-

size sonobuoy, also shown, which is 36 inches long and 4.875 inches in diameter1. In addition to the

standard flight components that make up the WILD Goblin such as foldable wings and control surfaces, a

motor and its associated electronics for propulsion, and other material and control systems required for

flight, the front 5 inches of the UAV body as well as the internal space of the nose cone is left empty to

allow a custom sensor payload to be installed.

Figure 8: BAE Systems Coyote and its Sonobuoy Tube [9]

Mission Outline

The WILD Goblin is designed to be air-launched from an airplane at high altitudes (50,000 feet)

and high speed. The UAV is intended to be dropped from the aircraft inside the sonobouy tube, and

between 50,000 feet and 20,000 feet, deploy a parachute to stabilize the sonobuoy during fall. While

falling, the WILD Goblin is designed to warm up inside the tube since the temperature at 50,000 feet is

about -55 degrees Fahrenheit, which is too cold for the electronics onboard the UAV to work properly.

At about 20,000 feet, the WILD Goblin is ejected from the sonobuoy tube with the parachute

remaining attached to the airframe, not the tube. Shortly after, the parachute detaches and the wings of the

WILD Goblin expand and the UAV begins to glide with a 20:1 glide ratio, meaning that the UAV will

1 The astute reader will notice the discrepancy in the diameter dimensions given in this section.

Even though the sonobuoy tube is 4.875 inches in diameter, our project mentor at Lincoln Laboratory

made the requirement for our nose cone design to be less than 5.375 inches in order to be able to perform

various tests with a design, such as a ground launch, even if the designed sensor pod will not fit inside the

sonobuoy tube.

22

glide 20 feet forward for every foot it falls. During this gliding phase, the UAV does not produce any

noise or heat signature for enemies to detect.

Eventually the WILD Goblin’s propulsion system will start and maintain the WILD Goblin at its

mission altitude (altitude at which it typically performs) between 100 and 300 feet with a cruise speed of

around 60 knots. The Coyote has the capability of travelling at a burst speed of 120 knots, but sustained

flight at this speed greatly reduces the overall time of flight, as more power must be drawn from the

batteries to keep the UAV at that speed. While the battery is sized to maintain the WILD Goblin in

normal flight (60kts) for about an hour, the battery would only last about 10 minutes if the UAV were to

constantly travel at 120 knots.

Sensor Payload

Typical operation of the WILD Goblin first involves using acoustic sensors mounted on the belly

of the WILD Goblin to listen for a certain sound or a potential target of interest (e.g. the rumbling of a

pick-up truck’s engine). Once a sound is heard, the Goblin uses the long-wave infrared camera or short-

wave infrared camera to obtain a picture of the target (e.g. heat signatures on the target or headlights from

the target). If the target is identified as a potential target of interest, the Goblin approaches and uses a

laser rangefinder to determine how far away the target is and develops a point cloud image of the target.

In Figure 9, a sample point cloud image is shown. A point cloud image is usually a 3 dimensional picture

of an object made up of tiny dots, or points. The position of each point is based off of distance data

received from a laser rangefinder or other distance sensor.

Figure 9: Example of a Sparse Point Cloud of a Building [10]

UAV Turret Scans

The word turret in this project refers to a mechanical housing for various sensors that are

implemented in UAVs in order to move the UAVs’ sensors in a desired way. Depending on the mission

23

task of a UAV, a UAV’s sensor turret typically has various controls and is able to perform several

movement patterns, sometimes referred to as scans.

Figure 10 shows an example of a raster scan. A raster scan is primarily performed by the turret so

the sensors can image stationary objects when the UAV is orbiting those objects. The basic movement of

a raster scan consists of moving to the right with a desired width and then down a certain amount (usually

a small amount) and then moving to the left the same desired width. This process continues until the

desired height is reached, then the turret moves back to the starting position.

Figure 10: Raster Scan [11]

Figure 11 shows another type of scan that turrets can perform. Turrets perform spiral scans

because spiral scans enable laser rangefinders to shoot many points in a short amount of time in a focused

area on the desired target. Typically, spiral scans start from the middle of the spiral and gradually move

further from the center of the spiral as more revolutions are completed, until a desired radius is reached.

Figure 11: Spiral Scan [12]

Figure 12 shows an example of a Figure-8 clover scan (a clover with 2 leaves) with arrows

representing the motion of how a turret can move to complete a clover scan. A clover scan is used to

replicate a convoy eye-scanner (human behavior) because it allows the sensors to look around at the

24

UAV’s surroundings and then focus back at the middle to know where the UAV is flying. There are other

types of clover scans that are common including a 4-leaf clover scan, which is useful because it allows the

turret to move in such a way that the sensors have a better vertical view of the surroundings when

compared to a Figure-8 scan.

Figure 12: Figure-8 clover Scan

Previous Work

The development of the WILD Goblin has been divided into several development phases. Phase 0

involved acquiring the Coyote airframe as well as the sensors to be used. During this phase some of the

intended capabilities were demonstrated to show project feasibility.

Phase 1 of the Goblin project, which is in progress, has been divided into several parts including:

 Integrating sensors into a hardware package

 Developing software to manage operations

 Developing tracking and detection algorithms.

In 2013, a WPI senior design project team was tasked with designing a sensor turret to be

mounted in the nose cone of the Goblin UAV. This project team was able to demonstrate the feasibility of

a small volume sensor turret for the WILD Goblin which could produce point to point motion covering a

limited field of view (FOV). While the 2013 senior design project produced a prototype sensor turret, it

did not perform to the desired level of expectation. Projects have also been undertaken by other groups of

students to write tracking software for operation.

After the completion of Phase 1 of the WILD Goblin project, Phase 2 will involve final

demonstration of the system. Phase 2’s system demonstration will include:

 Flight operations

 Communications via Iridium satellite

 Launch tests, both from the ground, then dropped from a plane at high altitudes

25

2.4. Sensor Capabilities

Three sensors have been chosen to facilitate the WILD Goblin’s search, find, and identify

missions: a laser rangefinder, a short-wave infrared (SWIR) camera, and a long-wave infrared (LWIR)

camera, each performing a specific function.

Laser Rangefinder

A laser rangefinder is used to determine the distance to a particular point on an object or target,

and as mentioned previously, the data can be used to develop a sparse point cloud of the object. Shown in

Figure 13, the laser rangefinder that was chosen to be used in the WILD Goblin sensor pod was the

Jenoptik DLEM-SR laser rangefinder. The laser for this sensor is a 1.55 micron diode laser. This laser

rangefinder’s maximum range is 5000 meters and its maximum measuring rate is 25 Hz (meaning it can

send out a maximum of 25 pulses in 1 second) and the accuracy is less than 1 meter [13] . A faster

repetition rate can increase the accuracy of the measurement because more laser points will be able to hit

the target, and if the target is moving, then having more points on the target closer together will allow for

a more accurate point cloud to be created.

Figure 13: Jenoptik DLEM-SR Laser Rangefinder [13]

Laser rangefinders all follow similar operational steps:

1. The laser rangefinder firsts sends out a laser pulse.

2. That pulse then hits and bounces off of the object in front of the sensor and returns back

to the laser rangefinder.

3. Flight time from the pulse being emitted to the pulse being received is used in measuring

the distance to the object [14].

26

IR Cameras

Figure 14 shows the wavelengths of the electromagnetic spectrum with a breakdown of the

infrared section of the spectrum: short-wave infrared (SWIR), medium-wave infrared (MWIR), and long-

wave infrared (LWIR). Cameras that utilize wavelengths of the infrared spectrum are able to capture

images which express different qualities than standard digital camera images that utilize the visible light

spectrum. The qualities of SWIR cameras and the qualities of LWIR cameras are elaborated on in the

following sections.

Figure 14: Electromagnetic Spectrum based on Wavelength [15]

Short-wave Infrared (SWIR) Camera

SWIR cameras are useful since standard digital cameras that utilize the visible wavelength of

light can be obstructed by weather related phenomena and are unable to produce a clear image at night

without external illumination. SWIR cameras can be used for producing clear images of objects that are in

fog, mist, etc. or, as shown in Figure 15, used for night vision [16]. In Figure 15, on the left, a visible

wavelength camera (e.g. a standard digital camera) was used, and only illuminated a small part of the

captured image. However, on the right of Figure 15, a SWIR camera was used and a much more detailed

image can be seen even though the image was taken at night, thus demonstrating the usefulness of SWIR

cameras for night vision.

27

Figure 15: SWIR camera being used for night vision (visible wavelength camera used on the left,

SWIR camera used on the right) [17]

Also, SWIR cameras detect and image targets through tree tops and canopies as long as the IR

light is able to pass through the covering. Other applications of SWIR cameras include metal detection

and edge detection of objects. Metal detection is useful because it allows the Goblin to distinguish

between natural objects, such as trees, and man-made metal objects, such as cars. Edge detection is

important because a color thermal camera may only produce a blob of the target so the SWIR camera can

use its edge detection capabilities to produce a more detailed image of a target in its FOV.

Shown in Figure 16, the SWIR camera that will be used in the target tracking sensor pod of the

WILD Goblin is the Sensors Unlimited Micro-SWIR. Its standard spectral response is 0.9-1.7 micron and

its digital output frame rate is 30 frames per second (fps) [18].

Figure 16: Sensors Unlimited Micro-SWIR [19]

28

Long-wave Infrared (LWIR) Camera

LWIR cameras are typically known as “thermal cameras” because they are able to sense the

waves of energy (heat) that objects naturally emit and make them visible to humans [20]. An LWIR

camera can be passive, meaning that the camera does not need to illuminate the scene to sense the

objects’ radiated energy [21]. Long-wave infrared cameras convert the heat they detect into an electronic

signal. The electronic signal is then able to be processed and, as shown in Figure 17, a thermal image is

made based on that signal [22].

Figure 17: Thermal Image produced by a FLIR Quark LWIR camera [23]

Figure 18 shows the FLIR Quark, the long-wave infrared camera selected for the WILD Goblin.

The spectral band of this camera is 7.5 –13.5 micron and its NEdT (noise equivalent differential

temperature, which “represents approximately the minimum temperature difference which the camera can

resolve” [24]) is less than 50 mK at f/1.0 (f/1.0 is regarding the focal length of the lens).

Figure 18: FLIR Quark LWIR camera [25]

29

Stabilization Sensors

The WILD Goblin UAV will require a stabilization system in order to decouple the field of view

(FOV) of the sensors from the motion of the aircraft. The aircraft will perform various movements while

flying and it is important that the sensors stay locked on the desired target regardless of the UAV’s

motion or orientation. The undesired motions of the UAV caused by turbulence or sudden wind gusts, for

example, must be measured in order to know how much the sensor pod needs to be adjusted to keep the

target in the sensors’ FOV. Typically in UAVs a device called an inertial measurement unit (IMU) is used

for stabilization and for maintaining the orientation of the UAV while flying.

There are usually three microelectromechanical systems (MEMS) that make up an IMU: a triaxial

accelerometer, a triaxial gyroscope, and a magnetometer. For this project, the focus will be on

implementing a triaxial accelerometer and a triaxial gyroscope in order to stabilize the turret.

The accelerometers are used to measure acceleration and are stable over long periods of time, but

return inaccurate values if they are subjected to rapid motions. Acceleration is measured by g-force and

MEMS accelerometers measure gravity’s force on the three axes of the accelerometer in order to detect

tilt [26]. Sensitivity of accelerometers is measured in mV/g, meaning that there are certain voltages that

are output by the accelerometers due to the g-force on each of the three axes. The measurement range for

accelerometers is also given in g-force (e.g. ±3g), where a low-g range is less than 20 g (i.e. motion a

human is capable of generating), and a high-g range is more than 20 g and is used to detect motions that

humans cannot generate (e.g. machine movements). Appendix A presents sample data sheets for a triaxial

accelerometer’s measurement range and sensitivity.

MEMS gyroscopes (also called gyros) measure angular velocity and are useful in detecting rapid

motions over short time spans. Gyro sensitivity can be expressed in mdps/digit (milli degrees per second /

digit). For example if the gyro is a 16 bit gyroscope and is programmed use a 500 degree per second

measurement range (i.e. the range is from -500 dps to 500 dps) then the sensitivity would be (500dps*2)/

216 = sensitivity = 15.3 mdps/digit. However, datasheets for gyros tend to show a larger number than the

actual calculated sensitivity in order to accommodate for manufacturing tolerances. Appendix A also

includes a sample data sheet for a triaxial gyroscope’s measurement range and sensitivity. Since gyros

measure angular velocity, in order to acquire the angular positions of gyros (i.e. how much the gyros

rotated), the gyros’ velocities must be integrated over the time the gyros rotated. Due to these velocity

measurements constantly being summed, the position values calculated from the angular velocity data

tend to drift and become inaccurate over long periods of time.

Sensor Fusion Algorithms

In order to combine the readings from the accelerometers and gyroscopes on the IMU, a sensor

fusion algorithm must be implemented in the software to ensure accurate orientation and direction

readings.

Two possible sensor fusion algorithms that could be used are a complementary filter or a Kalman

filter. A complementary filter includes a low-pass and high-pass filter to combine data from the

30

accelerometers and gyroscopes. The low-pass filter is used to filter out vibrations of the accelerometers

(since accelerometers are inaccurate during rapid motions) and a high-pass filter is used to filter out the

slow drift of the gyros. By comparison, a Kalman filter uses properly weighted and measured inputs (e.g.

gyro data and accelerometer data) and estimates a predicted output. Complementary filters are easy to use

and less computationally expensive than Kalman filters. However, Kalman filters are usually more

accurate than complementary filters since Kalman filters attempt to predict the next output from the

inputs.

2.5. Summary

The goal of the WILD Goblin project is to design a small UAV capable of performing

autonomous reconnaissance missions such as border patrol, searching for concealed targets, and

investigating targets using point clouds. The success of the mission of the WILD Goblin UAV hinges on

its implementation of a specific set of sensors used together for object finding, tracking, and

identification. The small size of the UAV makes implementing the three sensors, the LWIR camera,

SWIR camera, and laser rangefinder, an important component of Phase 1 of the WILD Goblin project.

This report describes the design, development and integration of the WILD Goblin sensor pod.

31

Section 3. Project Statement

3.1. Introduction

The purpose of this section is to describe the specific goals, objectives and requirements for this

senior project. These goals and objectives will guide the design and development of the sensor turret.

3.2. Project Statement

The purpose of our capstone project was to, first, design a sensor turret assembly which can house

a set of sensors that will be used for the WILD Goblin’s missions (e.g. target tracking), and second, to

develop a software package that can be used with the turret assembly to control and stabilize the sensors

mounted to the turret platform. While many Commercial Off-The-Shelf (COTS) UAV turrets exist, they

are not optimized for the WILD Goblin’s required size, weight, and power (SWaP) constraints.

3.3. Project Objectives

There were 3 main objectives for this project:

 Design and prototype a sensor turret

 Implement point to point movement, scan geometry, and turret stabilization on a test

turret

 Integrate control software with the final turret prototype

3.4. Requirements

 Table 2 shows the requirements for the system as well as the traceability for each requirement.

3.5. Summary

The purpose of this section was to describe the specific problem statement, objectives, and

requirements for this senior project. The next section, Methodology, will describe the methods used to

carry out the goals and objectives according to the requirements.

32

Table 2: System Requirements and Tracability

ID Category Requirement Need Traceability

R01 Weight
The turret assembly without sensors shall

weight less than 17 ounces.

Limited battery life,

aerodynamics

R02 Size
The outer diameter of the turret assembly shall

be less than 5.375" in diameter.

Size constraint of sonobouy

used for launch.

R03 Size
The complete length of the turret assembly

shall be no longer than 5".

Size constraint of sonobouy

used for launch.

R04
Torque - Tilt

Platform

The torque supplied to actuate the tilt platform

shall be more than 10 oz-in, with a goal of at

least 20 oz-in.

Based on approximate

calculations of turning point,

center of gravity and weight

R05
Torque - Roll

Platform

The torque supplied to actuate the roll

platform shall be more than 20 oz-in with a

goal of at least 50 oz-in.

Based on approximate

calculations of turning point,

center of gravity and weight

R06
Speed - Tilt

Platform

The tilt mechanism will be able to tilt at a rate

of at least 15 degrees/second.
Mission parameters

R07
Speed - Roll

Platform

The roll mechanism will be able to roll at a

rate of at least 15 degrees/second.
Mission parameters

R08
Acceleration -

Tilt Platform

The tilt mechanism will be able to accelerate

at a rate of at least 15 degrees/second^2.
Mission parameters

R09
Acceleration -

Roll Platform

The roll mechanism will be able to accelerate

at a rate of at least 15 degrees/second^2.
Mission parameters

R10
Field of Regard

- Tilt Platform

The tilt mechanism shall be able to tilt at

minimum 45 degrees with a goal of 90

degrees.

Identify objects of interest

directly below, identify aerial

obstacles

R11
Field of Regard

- Roll Platform

The roll mechanism shall be able to roll a

minimum of 90 degrees with a goal of 180

degrees.

Maximize field of view of

sensors

R12 Sensor Capacity

The turret assembly shall be able to hold the

Jenoptik Laser Rangefinder, the Flir QUARK,

and the Sensors Unlimited MicroSWIR.

Required sensor payload,

established in Phase I

R13 Accuracy

The accuracy of the mechanism shall be less

than 1 degree (the actual position of the turret

should be within 1 degree of the specified

position).

Mission parameters

R14 Repeatability
The repeatability of the mechanism shall be

less than 1 degree.
Mission parameters

33

Section 4. Methodology
The purpose of the section is to describe the steps that were followed to develop the final sensor

pod for the WILD Goblin UAV. The methods are divided into two primary pieces: the mechanical design

and the turret control. These two aspects of the project were developed in parallel and merged during two

integration tests at the midpoint and end of the term.

4.1. Mechanical Design Process

The mechanical design process consisted of design, analysis, prototyping, and testing phases.

During the design phase, requirements were developed and used to design a SolidWorks model of the

turret. The resulting model was analyzed for weaknesses, excessive stresses, etc. to ensure performance

requirements were met. The design was prototyped using manufacturing tools available at Lincoln

Laboratory as well as WPI. Once manufactured, the prototype was tested using verifications appropriate

for each requirement.

SolidWorks was used for modeling the turret assembly due to the availability of SolidWorks on

the Lincoln Laboratory system and WPI campus, as well as familiarity with the software. In addition,

SolidWorks has many built in tools for design including interference checker and center of gravity

calculator.

SolidWorks simulation tools were also used for more computationally intensive analysis

including Finite Element Analysis. Analysis required complicated math which was done with the readily

available software.

Prototyping took place in the Technology Office Innovation Laboratory (TOIL), which is a

general learning and experimentation resource for Lincoln Laboratory staff. A description of the various

machines and tools available can be seen in Appendix E: TOIL Capabilities.

Testing of the assembly took place as a part of the integration testing at the midpoint of the term

and in the final week. A Gantt chart showing the scheduling of these milestone tests is shown in

Appendix B: Gantt Chart. To verify that the assembly met all of the requirements, the assembly was

tested using the methods outlined in Appendix D: Verification Plan.

4.2. Turret Control Algorithm Development

Modular Programming

In order to develop the turret control algorithms that were used to move the sensor pod in the final

turret assembly, a modular programming method was implemented. Modular programming allowed each

aspect or piece of the final code to be written independently so that if progress was halted in one module,

the development of another module was not hindered.

Programming Environment

The test turret came with an Arduino Duemilanove board so the Arduino integrated development

environment (IDE) was used to program the turret. Programs in the Arduino IDE were written in C-

34

language, are easily transferable to other Arduino compatible boards, and have useful built in libraries,

such as a math library and servo library.

Serial Commands

A serial commands module was developed in order to accomplish various desired tasks with the

turret. These serial commands include:

1. Point to point turret movement

2. Status command

3. Heartbeat Trigger

4. Home command

Scans

A scan module was then written which controlled both servos, tilt and roll, in specific

preprogrammed patterns. The scan program module incorporated the previous module, serial

commands. These scans include:

1. Raster Scan

2. Spiral Scan

3. Clover Scan

The various applications for each scan are described in Section 2: Background of this report and

the performance of each scan is evaluated in Section 6: Software Results of this report.

Inertial Measurement Unit (IMU)

For the IMU program module, a specific sensor fusion algorithm known as a complementary

filter was developed in order to combine the accelerometer readings (analog) and gyroscope readings

(I2C) and to accommodate for the errors expected with accelerometers and gyroscopes. These errors were

discussed in greater detail in Section 2: Background of this report. The ability of this IMU program to

return accurate angle values is discussed in Section 6: Software Results of this report.

Target Tracking

The 2013 senior project’s target tracking code was modified to work with our turret design. In

MATLAB, several actions were programmed that sent various commands to the turret’s microcontroller,

depending on the desired action. Also the 2013 senior project code was changed to incorporate the short-

wave infrared camera along with the long-wave infrared camera.

4.3. Integration Tests

Twice throughout the term, integration tests occurred during which the software and hardware

components of the turret were tested together. The specific tests that were performed during both

35

integrations of the hardware and software are listed in Appendix D: Verification Plan and the results of

the tests are discussed in the Section 5: Design of the Sensor Turret.

4.4. Summary

The purpose of this section was to describe the design and testing processes for the hardware and

software of the WILD Goblin UAV sensor pod. The design of the sensor turret solution consisted of two

parts: the mechanical and the turret control. These two parts were developed simultaneously and

integrated during two milestone tests. Design choices and the results of the tests are discussed in Section

5: Design of the Sensor Turret.

36

Section 5. Design of the Sensor Turret

5.1. Introduction

The purpose of this section is to describe the results of our methodologies in the design of the

sensor turret. The first section, Mechanical Results, describes the development of the mechanical design

including the improvements made to the turret design during each iteration and the shortcomings of each

iteration. The Integration Tests section describes the results of the integration tests.

5.2. Mechanical Results: Iterations

This section describes each of the iterations of the sensor turret design, the improvements made

during each iteration, and the problems and challenges encountered with each iteration. The sensor turret

assembly consists of 6 major components: the sensor housing, the roll ring, the roll mechanism, the tilt

mechanism, the turret housing, and the nose cone. Table 3 describes the iterations of the sensor turret

design by components, as well as the issues encountered in each iteration.

Table 3: Iterations of the Sensor Turret

Sensor Housing Roll Ring Roll Mechanism Tilt Mechanism Turret Housing Nosecone

1

Three pockets (one for

each of the three

sensors).

0.2 inch thick ring. Pocket for

micro servo.

Internal gear (70 teeth) driven by

pinion gear (10 teeth) attached to

a 180 degree position servo.

Complex Motion. Rack gear

driven by a pinion on a micro

servo linearly actuates the

sensor housing vertically. As

the sensor housing raises or

lowers it rotates about a roll

bar.

Retain 2013 senior project turret

housing. Cylindrical turret housing

holds all components produced for

the project. Fits into the cylindrical

body of the Goblin. Holds roll ring.

Keyway in front of housing is used

to insert roll ring.

Cut in half to expose the

sensors. Anchored to the

Goblin Body, does not move

with roll or tilt mechanism.

● Sensor Housing did not fit the

sensors.

● Roll Mechanism requires a 1:1

ratio to reach the desired range of

motion (180 degrees)

● Turret Housing: Keyway causes

hold on roll ring to be loose.

● Roll Ring: Servo collides with

pinion gear driving the roll

mechanism

2 No Change

Ring was mirrored so that the

servo no longer collided with

the gears of the roll mechanism.

Changed gear ratio of gear train to

be as close to 1:1 as certain

conditions would allow.

No Change

Used two interlocking rings which

formed a grove when locked

together to hold the roll ring. The

rings straddle a ridge in the existing

Goblin body, holding them in place.

No Change

● Sensors did not fit into the sensor

housing.

● Servo did not fit into the servo

housing, likely due to an inaccurate

servo CAD model.

3

Redesigned to fit sensors.

Thinned or removed walls

between sensors to

decrease size of the

sensor housing. Added

screw holes for all

sensors.

Removed micro servo mount,

leaving two vertical bars to

attach brackets to hold the

sensor housing.

Reduced the number of teeth of

the gear driving the internal gear,

decreasing the range of the roll

mechanism. Increased the gear

ratio of the first two gears by

changing their pitch in order to

compensate.

Since larger pocket sizes for

the sensors made the sensor

housing longer, the roll rods

would no longer fit on either

side of the roll ring and so the

tilt mechanism was changed.

Separated the tube side locking

ring into two pieces (roll servo

housing and tube side locking ring).

No Change

●Tilt mechanism did not have full 90

degrees of motion.

● Roll ring collided with the gear

driving the internal gear, needed to

cut a piece out of the vertical bar of

the roll ring.

4 No Change

Added the brackets directly to

the vertical bars of the roll ring

rather than using machine

screws to attach the brackets to

the vertical bar.

No Change

Resynthesized four bar linkage

to increase range of

mechanism.

No Change No Change

● Too much modularity on the

design made the assembly very

difficult to put together.

5

Redesigned sensor

housing to allow more

space for the SWIR lens.

Moved the Laser

Rangefinder to the top of

the housing.

Moved the brackets to attach to

the outside of the sensor

housing.

No Change

Redesigned tilt mechanism to

use gears rather than a four

bar.

Combined the locking rings, servo

housing, and Goblin body into one

turret housing to reduce the

number of pieces in the assembly.

Changed nose cone to attach

to roll ring rather than Goblin

body, allowing the nose cone

to rotate with the roll

mechanism. Changed the cut

of the nose cone to cover

more of the opening.

● Gears were all 3D printed and did

not mesh well.

● Gear attached to tilt servo collided

with nosecone in fully retracted

position.

6

Altered the sensor

housing to make it

machinable by increasing

wall thickness and adding

fillets to inside corners.

Reduced the size of the

brackets.

Changed from a position servo to

a continuous turn servo to

increase the range of motion of

the mechanism, which allowed

for a gear ratio other than 1:1.

Performed parts selection to find

aluminum gears for the roll

mechanism.

Changed the gear mounted on

the servo so that it did not

collide with the nose cone.

Change the ratio of the gears

to increase the torque of the

mechanism.

Realigned the holes for the shafts

holding the gears for the new

gearing.

No Change

● Roll servo does not line up well

with the shaft causing grinding and

vibration.

● gears for tilt mechanism are plastic

and do not attach well to the micro

servo.

7

Changed the micro servo

mount to accommodate a

new micro servo.

No Change Realigned servo and shaft.

Used new micro servo with

standard spline size as well as

a gear which attaches directly

to the standard spline.

Extended the length of the turret

housing to add another sensor.

Added ledges with holes to allow

shelves for electronics to be added

.

No Change.

Iteration Issues Found
Description of Item in Iteration

38

Iteration 1

In the first iteration of the sensor turret design, we attempted to keep some parts of the 2013

senior project design. Figure 19 shows the first design iteration with colored parts representing the pieces

which were carried over from the last design (red) and which were new to the design (blue).

Figure 19: SolidWorks Model of Iteration 1 (Front)

Figure 20: SolidWorks Model of Iteration 1 (Back)

(See Figure 25)

39

One part of the previous design which was retained was the roll mechanism, consisting of a large

internal gear driven by a smaller spur gear. Use of the internal gear requires less space within the tube,

which has two benefits: it allows more or larger electronic components to be added to the payload and

makes cabling for the cameras simpler as the moving parts which could get in the way are kept to the

edge of the tube. Another part of the design which was retained was the cylindrical turret housing (shown

in Figure 19 and Figure 20 as transparent red). This housing contains the roll and tilt mechanisms, servos,

and the camera housing.

Another commonality between the 2013 project and the first iteration was the shape and function

of the nose cone, shown in Figure 21. The Coyote is designed to have a domed nose cone which must

have a hole cut into it for the cameras to see out. The lower half of the nose cone is removed to expose the

sensors, while the top half of the mechanism is covered. The nose cone is attached to the outer body of the

Goblin and does not move with either mechanism.

Figure 21: Body and Nose Cone of Goblin with Half Cut Nose Cone

One part of the 2013 assembly which could not be reused in this project was the sensor housing,

as a new requirement for the sensor turret was to accommodate three cameras rather than two. In 2013,

the turret was designed to hold only the Jenoptik Laser Rangefinder and the FLIR Quark. The sensor

package was expanded to include the Sensors Unlimited Micro SWIR camera for this project. Figure 22

shows SolidWorks models of each camera for size comparison.

40

Figure 22: Size Comparison of Three Sensors

Figure 23 shows the sensor housing designed for the first iteration. The housing has three

pockets, one for each sensor, which are open in the back to accommodate the cables for the sensors.

Figure 23: Sensor Housing for Iteration 1

Also in the first iteration, a new tilt mechanism was designed. The previous design used a four-

bar mechanism, shown in Figure 24. According to the 2013 MQP report, the four-bar was able to move

the cameras through a range of 45 degrees. While this range is sufficient, we wanted to expand the range

of the tilt motion without using a four-bar, as four-bar mechanisms tend to be space inefficient.

41

Figure 24: 2013 Senior Project Four-bar Linkage

In order to allow the cameras to see directly below the aircraft without being obstructed by the

body of the aircraft, the point of rotation needed to be moved outside of the body of the aircraft and into

the nose cone. In addition, the cameras needed to be able to see out of the front of the aircraft without

being obscured by the nose cone. As Figure 21 shows, the nose cone was cut to cover the upper half of

the tube only, leaving the lower half open for the cameras to look out. The first mechanism considered for

the tilt motion was a mechanism which used a combination of linear and rotational motion, a complex

motion, in order to accommodate both of these positions.

Figure 25 shows the complex motion mechanism used in the first iteration of the turret design.

The sensor housing was held by a bracket on either side, and the bracket attached to a slot in the roll ring.

A rack gear was attached to the bracket and is driven by a pinion mounted on the spline of a micro servo.

In order to rotate the sensor housing, a rod with a 90 degree bend was attached normally to the roll ring,

and the end of the rod was inserted into a slot on the sensor housing. When the pinion was rotated by the

servo, the rack and bracket were raised or lowered and the sensor housing was rotated around the rod

while also rising in the tube

This complex motion positioned the sensors in the lower half of the tube when in the horizontal

position, and held the sensor housing outside of the body of the aircraft so the sensors could see directly

below the aircraft in the vertical position. Figure 26 shows the horizontal position, an intermediate

position, and the vertical position of the sensor housing.

42

Figure 25: Complex Motion Tilt Mechanism

Figure 26: Three Positions of the Complex Tilt Mechanism

Upon analysis and assessment of iteration 1, we identified several opportunities for improving the

design of the sensor turret. One of the parts which was problematic was the cylindrical turret housing,

shown in Figure 27, which had been reused from the 2013 project. This cylindrical housing has a groove

in the front which keeps the roll ring from falling out while rolling. A keyway is cut into the top of the

tube to allow the roll ring to be inserted or removed from its groove. Adding the keyway, however,

loosened the hold the groove needed to have on the roll ring in order to ensure a smooth rolling motion. In

addition, the turret housing, which was supposed to be inserted into the body of the payload volume had

no mechanism to anchor it in place.

43

Figure 27: Keyway and Groove of the Turret Body

Another area of concern was the gearing of the roll mechanism. In the 2013 design, the 70 tooth

internal gear was driven by a 10 tooth gear, which was driven by a second stage of 10 tooth gears to

transmit power from the servo to the internal gear. Overall, the mechanism had a gear ratio of 7:1, so if

driven by a position servo the mechanism would have a range of less than 180 degrees.

Iteration 2

In the second iteration, all parts which were retained from the 2013 project were replaced. Figure

28 and Figure 29 show two views of the SolidWorks model for this iteration. The tilt mechanism was also

moved to the opposite side of the tube opening so as not to interfere with the roll mechanism. The length

of the rack driven by the pinion was lengthened to extend the range of the tilt motion. The roll servo was

moved to the lie along the bottom of the tube, connected more securely to the turret housing than in the

previous iteration, making the servo more stable and less susceptible to vibrations.

44

Figure 28: SolidWorks Model of Iteration 2 (Front)

Figure 29: SolidWorks Model of Iteration 2 (Back)

In the second iteration, we needed to design a part or set of parts to hold the roll ring tightly

without a keyway and anchor the turret housing in the body of the Goblin. The solution we used involved

(See Figure 30)

45

two interlocking rings which straddled the ridge between the tube and nose cone. Figure 30 shows an

exploded view of the interlocking rings and the ridge.

Figure 30: Exploded View of Locking Rings

Figure 31 shows how the rings locked together. The tube-side locking ring has three bumps along

its rim which fit into three curved slots along the rim of the nose-side locking ring.

Figure 31: Locking Rings

46

When locked together, the locking rings formed a groove for the roll ring to fit in, which is shown

in purple in Figure 32. In addition to holding the roll ring tightly, the interlocking rings secured the entire

assembly in the tube by straddling the fixed ridge in the payload volume.

Figure 32: Groove for Roll Ring (shown in purple)

Another goal of this iteration was to determine the gear configuration needed to drive the roll

mechanism. The roll mechanism consisted of a large internal gear and three spur gears as shown in Figure

33. Since the position servo driving the roll mechanism has a range of 180 degrees and the desired range

of the mechanism is 180 degrees, the gear ratio between the servo and the spur gear should be 1 or lower.

A gear ratio lower than 1:1, however, would reduce the resolution of the mechanism as for every degree

of input motion there would be more than one degree of output motion.

47

Figure 33: Gearing for Iteration 2

Figure 34 shows a diagram of the gear train for the roll mechanism. Gear 1 (N1) is driven by the

roll servo and Ni is the internal gear. Equation can be used to find the gear ratio of the gear train using the

number of teeth on each gear.

Figure 34: Gear Labels

𝐺𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑁1

𝑁2
×

𝑁3

𝑁𝑖

(1)

Since the WILD Goblin is limited in space, the gears for the gear train were chosen to reduce gear

size. The minimum gear tooth size considered was 10 teeth, as that is the minimum number of teeth

generally available for 20 pitch gears which were used during this iteration, and the maximum number of

teeth on a spur gear was 25, which with a pitch of 20 has a 1.25” diameter.

Equation (1) solves Equation (2) with these parameters and optimizes for the largest gear ratio.

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =
𝑁1

10
×

𝑁3

70
=

𝑁1 × 𝑁3

700
=

25 × 25

700
= 0.89

(2)

48

Equation (3) can be used to calculate the output range from the input range and gear ratio.

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 × 𝐼𝑛𝑝𝑢𝑡 𝑅𝑎𝑛𝑔𝑒 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑅𝑎𝑛𝑔𝑒 (3)

Equation (4) calculates the output range for the gear train designed above.

0.89 × 180 𝑑𝑒𝑔𝑟𝑒𝑒𝑒𝑠 = 160 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 (4)

This range of 160 degrees meets the minimum requirement for output range of 90 degrees, though

it does not reach the ideal goal of 180 degrees. Figure 35 shows a gearing diagram, annotated with the

number of teeth on each gear.

Figure 35: Diagram of Gearing Annotated with Tooth Counts for Each Gear

This iteration was the first to be prototyped during this project using the 3D print capabilities in

TOIL. As a result, many of the results of this iteration relate to the fit of various components and the

tolerances of the machines used. The pockets in the sensor holder, for instance, were all too small to fit

the sensors. The servo also did not fit into its housing because the SolidWorks model was made using a

“standard servo” CAD model used in the 2013 senior project SolidWorks assemblies, which was not the

same size as any of the servos we had available. In future iterations, servo size must be decided on in

advance, or a more easily swappable servo housing must be designed. The servo housing in this iteration

was in the same SolidWorks part as the tube-side locking ring. The entire piece took several hours to print

on the Stratasys and required a large amount of support material as it contained several overhangs,

making reproduction of the part many times for different servos infeasible.

Iteration 3

In the third iteration, shown in Figure 36, several parts had to be changed in order to resize the

pockets holding the sensors and servos. The effects of increasing pocket size, however, required a change

to the tilt mechanism.

49

Figure 36: SolidWorks Model of Iteration 3 (Front)

Figure 37: SolidWorks Model of Iteration 3 (Back)

The sensor housing was redesigned to increase the pocket size for each sensor. The sensors were

also reordered as shown in Figure 38 such that the SWIR camera was the middle sensor in the housing, as

(See Figure 30)

(See Figure 42)

(See Figure 42)

50

the length of the SWIR camera with lens and cable required that the camera be located at the largest point

of the roll ring.

Figure 38: Sensor Housing for Iteration 3

Increasing the sizes of the pockets of the sensor housing made the housing too large to use the

complex tilt mechanism as there was no room for the roll rods or the micro servo. For this reason, we

redesigned the tilt mechanism to be a four-bar mechanism, shown in Figure 39, driven by a micro servo

located on top of the sensor housing. Figure 40 shows the sensor housing in three positions, horizontal,

midpoint, and vertical.

Figure 39: Iteration 3: Four-bar Linkage and Servo

51

Figure 40: Three Positions of the Four Bar Tilt Mechanism

Figure 41 shows a kinematic diagram of the four-bar linkage. The point the cameras rotate about

is O2. The other anchor is located on one of the vertical bars of the roll ring.

Figure 41: Two Extreme Positions of the Four-bar Linkage

The gear train mechanism also needed to be reevaluated as the spur gear driving the internal gear

was very large (1.25” diameter) and collided with the sensor housing. The diameter of this gear needed to

be reduced to 0.75”, so the 25 tooth 20 pitch gear was replaced with a 16 tooth 20 pitch gear. This greatly

reduced the gear ratio of the mechanism, such that the output of the roll mechanism would be reduced to

103 degrees:

52

𝑁1

𝑁2
×

𝑁𝑖

𝑁3
=

25

10
×

16

70
= 0.57

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 × 𝑠𝑒𝑟𝑣𝑜 𝑟𝑎𝑛𝑔𝑒 = 0.57 × 180 = 103 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

(5)

In order to increase the gear ratio between the first two gears while adhering to the requirements

about maximum gear diameter (1.25”) and minimum tooth number, the pitch of gears 1 and 2 was

changed to 32 teeth per inch. At this pitch the minimum tooth number for gear 2 was 12. The tooth count

on gear 1 at the maximum diameter of 1.25” is given in Equation (6).

32
𝑡𝑒𝑒𝑡ℎ

𝑖𝑛𝑐ℎ
∗ 1.25 𝑖𝑛𝑐ℎ𝑒𝑠 = 40 𝑡𝑒𝑒𝑡ℎ

(6)

This tooth count from Equation (6) can be used in Equation (5) to calculate the gear ratio and

output range of the roll mechanism:

𝑁1

𝑁2
×

𝑁𝑖

𝑁3
=

40

12
×

16

70
= 0.76

0.76 × 180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 137 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

Another goal of this iteration was to make the locking ring and servo housing assembly more

modular so that the roll servo could be changed without having to reprint the entire tube-side locking ring.

As shown in Figure 42, the locking ring on the tube side was remade into two pieces, the servo housing

and the locking ring, attached together using two machine screws in the locations indicated in Figure 43.

Figure 42: Exploded View of Locking Rings, Ridge, and Servo Housing

53

Figure 43: Locations for Screws (at arrows) Connecting the Servo Housing and Tube Side Locking

Ring

Once produced, testing showed that the four-bar mechanism was not able to reach the full range

suggested by the SolidWorks model due to the fasteners used to hold the mechanism together.

Finally, a piece of the roll ring needed to be cut away, as shown in Figure 44, so that the roll ring

did not get caught on the gear axle behind it.

Figure 44: Cut in Roll Ring

54

Iteration 4

In iteration 4, shown in Figure 45 the four-bar mechanism was resynthesized to improve the

range. The anchor points and link lengths determined for this iteration are shown in Figure 47.

Figure 45: SolidWorks Model of Iteration 4 (Front)

(See Figure 47)

55

Figure 46: SolidWorks Model of Iteration 2 (Back)

Figure 47: Anchor Points and Link Lengths for Iteration 4 Four-bar

While assembling the turret, it became apparent that the assembly required too many parts and

fasteners. It was very difficult for a single person to put together the turret as several of the screw holes

56

were difficult to reach. The modularity behind the detached servo housing in Iteration 3 became a

disadvantage when assembling the turret.

Iteration 5

In Iteration 5, shown in Figure 48, the turret housing was changed to be more securely attached to

the aircraft. The sensor housing was also altered to allow larger lenses to be used. The tilt mechanism was

redesigned to use gears rather than a four-bar mechanism.

Figure 48: SolidWorks Model of Iteration 5 (Front)

(See Figure

51)

57

Figure 49: SolidWorks Model of Iteration 5 (Back)

After fitting the turret housing into the WILD Goblin, it was obvious that the fifth iteration design

should be well anchored in the body of the WILD Goblin and require fewer pieces than the previous

iteration. To do this, we combined the servo housing and tube side locking ring into one piece, which took

the place of the metal tube body of the Goblin. The new turret housing will be directly attached to the rest

of the Goblin by six screws rather than be inserted into the existing metal body.

Also in this iteration we changed the setup of the camera housing so that there was more room for

lenses for the SWIR. In the previous iteration, there was very little space allocated for the SWIR lens,

which was limited in diameter to 1.35 inches. In the iteration 5 sensor housing, shown in Figure 50, the

Laser Rangefinder was moved to the top of the housing to allow more space for SWIR lenses. This

configuration did mean that the nose cone would obscure the Laser Rangefinder for some positions of the

turret, but the ability to use larger SWIR lenses was more valued than an always operational rangefinder.

Several set of SWIR camera holes allowed the camera to be moved up and down in the housing to

accommodate lenses up to 1.75 inches in diameter.

58

Figure 50: Sensor Housing for Iteration 5

The tilt mechanism was redesigned in this iteration from a four-bar mechanism to geared rotation,

which is shown in Figure 51. Gear A in the figure is anchored to the bracket on the roll ring, which is

transparent in the figure. The small cylinders on either side of the camera housing shown in Figure 50

insert into the centers of the two Gear A’s on either side of the roll ring and can rotate freely inside of

them. Gear B is attached to the micro servo on top of the camera housing. Figure 52 shows the position of

the mechanism in three positions, to illustrate the motion of the mechanism. This mechanism is geared

1.667:1, increasing the torque supplied by the micro servo.

Figure 51: Iteration 5 Geared Roll Mechanism

59

Figure 52: Three Positions of Geared Tilt Mechanism

Finally, part of the roll ring redesign involved attaching the half nose cone to rotate with the roll

ring. This increased the field of view for the turret as the sensors were no longer blocked when they rolled

past the nose cone.

Most of the issues found in this iteration related to the fit of components. The holes in the nose

cone did not line up with the holes in the roll ring. In addition, the sensor holder did not leave enough

space for the tilt servo.

Iteration 6

In iteration 6, shown in Figure 53 and Figure 54, the few fit problems from the previous iteration

were rectified. The design was also modified to use purchased metal gears rather than 3D printed gears.

60

Figure 53: SolidWorks Model of Iteration 6 (Front)

Figure 54: SolidWorks Model of Iteration 6 (Back)

61

First, our sponsor asked that we design a way for the roll mechanism to be driven by a micro or

standard servo. Figure 55 shows the turret housing as well as the piece we designed to allow the servos to

be swapped. The servo converter fits into the servo housing in the turret body and has a hole for the micro

servo to mount in which lines up with the drive shaft.

Figure 55: Servo Converter Instered into Servo Housing

Also in the iteration, the sensor housing was changed, as shown in Figure 56, so that it could be

machined. Our sponsor wants a machined aluminum sensor holder in order to protect the sensors from

damage caused by impact or stress which could deform a plastic servo housing and damage the sensors.

Figure 56: Sensor Housing

62

In order to mill the sensor mount out of aluminum, input from the TOIL manager, David Scott,

was used to improve the machinability of the design. The walls, previously between 0.08” and 0.04” in

thickness were increased to 0.125”. Fillets were also added to the design with a radius of 0.125”, as that is

the smallest diameter end mill available in TOIL. A 3D printed model of the camera housing to be milled

was made in order to test the fit of sensors and the fit of the housing in the assembly.

Also during this iteration, the position servo previously used to drive the roll mechanism was

replaced with a continuous turn servo. Use of the continuous turn servo eliminated the need for a gear

ratio of 1:1 for the roll mechanism. We were provided with a rotary encoder to use for feedback and it

was suggested that we use the encoder shaft and the shaft coupler attached to the roll servo as friction

wheels to spin the encoder. The diameter of the drive shaft (Dshaft) was 0.42 inches, and the diameter of

the encoder (Dencoder) shaft was 0.6 inches.

𝐷𝑒𝑛𝑐𝑜𝑑𝑒𝑟

𝐷𝑠ℎ𝑎𝑓𝑡
=

0.6

0.42
= 1.43

In order to have a 1:1 ratio between encoder ticks and output degrees, the gear train from the

drive shaft to the output gear needed to be:

24 𝑡𝑖𝑐𝑘𝑠

360 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
× 𝑅𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 21.42

The constraints for gear selection became the required torque, speed, and accuracy for the roll

mechanism, which can be seen in Appendix C. Since the resolution of the encoder was 24 ticks per

revolution2, the gear ratio between the encoder and the roll mechanism had to be at least 1:15 in order to

achieve a relationship of one encoder tick per degree. In order to simplify calculations for the micro

controller, the goals for the relationship between the encoder and the output motion was to find an integer

value for degrees per encoder tick, preferably 1.

Four gears were required to complete the roll mechanism: three spur gears and an internal gear.

Iteration 5 used a 20 pitch gear with 80 teeth, making the pitch diameter 4 inches. The two internal gears

available for purchase close to this size were a 4 inch pitch diameter (PD), 4.75 inch outer diameter (OD)

and a 3.25 inch PD, 3.998 OD gear. The 3.25 PD gear was selected for use as it did not require increasing

the diameter of the roll ring and therefore the entire assembly. This gear had a pitch of 24 and 78 teeth.

The gear to drive the internal gear needed to be a small diameter gear in order to not collide with

the cameras as they rolled. Since the internal gear chosen for the gear train had a pitch of 24 teeth, the

2 It was originally thought that the encoder had 24 ticks per revolution as that was the feature

stated on the product page. However, in testing it was found that the encoder actually had 4 times as many

ticks per revolution, so in the rest of the paper 96 should be the number of encoder ticks per revolution.

63

gear to drive the internal gear was required to be 24 pitch. The smallest available 24 pitch gear was a 10

tooth gear, so this gear was selected for the mechanism.

Finally, once the gear ratio of the first pair of gears was chosen and the ratio between the encoder

and drive shafts was known, the required gear ratio of the remaining gears could be determined. For a

compound gear train, consisting of pairs of gears N1 and N2, N3 and N4…, where the even numbered gears

are the output gears, Equation (7) can be used to determine the total gear ratio:

 𝑁2

𝑁1
×

𝑁4

𝑁3
× … = 𝑅

(7)

Since this gear train consists of three pairs of gears from the encoder to the output motion, the

remaining gear ratio could be determined.

𝑁2

𝑁1
×

𝑁𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝑁3
= 21.42

𝑁2

𝑁1
×

78

10
= 21.42

𝑁2

𝑁1
= 2.75

A set of two 48 pitch gears with 22 teeth and 60 teeth was selected for N1 and N2 as the ratio was

very close to the required ratio:

𝑁2

𝑁1
=

60

22
= 2.73

Thus the gear ratio from the drive shaft to the output gear was:

60

22
×

78

10
= 21.27

The relationship between encoder ticks and degrees of output was:

(
𝑁2

𝑁1
×

𝑁4

𝑁3
×

𝐷𝑠ℎ𝑎𝑓𝑡

𝐷𝑒𝑛𝑐𝑜𝑑𝑒𝑟
) ×

24 𝑡𝑖𝑐𝑘𝑠

360 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

60

22
×

78

10
×

0.42

0.6
×

24

360
= 0.99

𝑡𝑖𝑐𝑘𝑠

𝑑𝑒𝑔𝑟𝑒𝑒

Selection of an aluminum internal gear required changes to the roll ring. Previously, the internal

gear had been printed in the same part as the roll ring, but the aluminum gear required a method

attachment. Three holes were added to the roll ring, as shown in Figure 57, and three holes were drilled

64

into the aluminum gear using the milling machine in TOIL. The gear was attached to the roll ring using

three machine screws and nuts.

Figure 57: Roll Ring and Internal Gear

One of the issues with this iteration was the fit of the continuous turn servo. The fit of the servo in

the housing was slightly off, which resulted in a grinding noise when the mechanism was used. However

no deflection or deformation was observed and the model was used in the first iteration test.

Iteration 7

The final iteration incorporated some additional requests by our sponsor, addressed the servo fit

issue from iteration 6, and incorporated the encoder for the continuous turn servo. Figure 58 and Figure

59 show the model of this iteration.

Figure 58: SolidWorks model of Iteration 7 (Front)

65

Figure 59: SolidWorks model of Iteration 7 (Back)

Figure 60 and Figure 61show the final turret design prototype. Figure 62 shows the final turret

prototype with all three of the sensors held in the sensor housing.

66

Figure 60: Final Turret Design, Front View

Figure 61: Final Turret Design, Top View

67

Figure 62: Final Turret Design with Sensors

The improvements in this iteration were isolated to the turret housing. Our sponsor requested that

the housing be lengthened beyond the original 5 inch requirement in order to accommodate more

electronics and an additional sensor. The length of the housing was extended to 8 inches and the

requirement was edited to reflect the change. The additional sensor was a FLIR Rangefinder to be used as

a laser altimeter. The sensor was designed to mount such that when the Goblin is flying, the sensor would

be pointed straight down towards the ground, as shown in Figure 63. In addition, a mount for the

electronics for the sensor was added to the side wall of the turret housing.

The second change to the turret housing was the addition of shelves for electronics. To

accomplish this, racks were added to the sides of the turret housing, as shown in Figure 63 to which

electronics or shelves could be mounted. There were many benefits of adding racks for shelves to be

attached to rather than built in shelves. The racks did not block access to the roll servo, which would have

been covered by shelves. As there are two layers of racks, one or both can be added depending on the size

of the electronics needed.

68

Figure 63: Turret Housing with Space for Rangefinder, Electronics, and Shelves

Finally, the encoder was mounted in the turret housing to give feedback for the roll motion. The

mount for the encoder attached to the front of the servo housing, as shown in Figure 64. The mount fit

into the opening in the servo housing and was attached to the slot in the housing.

69

Figure 64: Final Encoder Mount

The encoder and drive shaft were to be geared in order to provide feedback to the roll mechanism.

In order to have the required 1 degree of accuracy for the output of the roll mechanism, the ratio of

encoder ticks to output motion in degrees needed to be at least 1:1. A ratio greater than 1:1 (i.e. more

encoder ticks per degree of output roll motion) would result in a more precise mechanism, as increments

smaller than one degree of output could be measured.

As shown in Equation (8), the gear ratio between the drive shaft and the output gear was

27.273:1. The encoder used for feedback had a resolution of 3.75 degrees per encoder tick.

 21.273 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑖𝑛𝑝𝑢𝑡

1 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑢𝑡𝑝𝑢𝑡
×

1 𝑡𝑖𝑐𝑘

3.75 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑚𝑜𝑡𝑖𝑜𝑛
= 1

(8)

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑖𝑛𝑝𝑢𝑡
=

1

5.67

As we were unlikely to reach a ratio of 1:5.67 in the space allotted for the encoder and gearing,

this was not a large concern. It was decided that to simplify calculations on the microcontroller, the

70

mechanism should use a 1:1 gear ratio between encoder and drive shaft. As shown in Figure 64, a 20

pitch, 20 tooth gear was attached to the shaft of the encoder and another 20 pitch 20 tooth gear was added

to the drive shaft to drive the encoder gear.

With the 1:1 gearing, the output angle of the roll motion could be determined using Equation (9

):

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 =

𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑡𝑖𝑐𝑘𝑠

5.67

(9)

5.3. Integration Tests

During this project, two integration tests will occur. The first will occur at the midpoint of the

project and the second will occur at the conclusion. The purpose of the integration tests is to integrate the

hardware and software components of the project, as the final deliverable for the project is a system

consisting of both. During the first integration test, whatever software and hardware is ready for testing

will be used to test all available requirements according to the Verification Plan in Appendix D. During

the second integration test, all requirements will be tested in order to be able to show that the sensor turret

meets all requirements.

First Integration Test

At the time of integration test 1, not all requirements were able to be tested. The encoder module

had not been completed, so the roll mechanism could not be tested. The accelerometer was also

unavailable as it was being used in the test turret and there was no scale available to test torque. Table 4

shows the results of the test:

71

Table 4: Results of First Integration Test

ID Category Requirement Verification Test Result
Pass/Not

Pass

R02 Size

The outer diameter of
the turret assembly shall
be less than 5.375" in
diameter.

Measurement of diameter 4.875" Pass

R03 Size The complete length of
the turret assembly shall
be no longer than 5".

Measurement of body 5" Pass

R06
Speed - Tilt

Platform

The tilt mechanism shall
be able to tilt at a rate of
at least 15
degrees/second.

Use a timer and do several
trials.

37.57
degrees

Pass

R10
Field of

Regard - Tilt
Platform

The tilt mechanism shall
tilt at minimum 45
degrees with a goal of 90
degrees.

Use mounted laser pointer and
measure change in position

and convert to angle

90
degrees

Pass

R12
Sensor

Capacity

The turret assembly shall
hold the Jenoptik Laser
Rangefinder, the Flir
QUARK, and the Sensors
Unlimited MicroSWIR.

Put sensors in camera housing.
Check for appropriate fit.

All
Sensors

Were
Fit

Pass

R13 Accuracy

The accuracy of the
mechanism shall be less
than 1 degree (the actual
position of the turret
should be within 1
degree of the specified
position).

Use the field of regard test.
Calculate "ideal" reading and

compare to actual data. Repeat
20 times.

5.31
degrees

Not Pass

R14 Repeatability The repeatability of the
mechanism shall be less
than 1 degree.

Compare the different trials of
the accuracy test for

repeatability

0.34
degrees

Pass

Seven tests were performed during this integration test. Of these seven, two were not passed by

the system. The accuracy of the mechanism, calculated as the average error in each movement, was 5.27

degrees, as opposed to the requirement of 1 degree. In addition, the repeatability of the mechanism was

1.98 degrees, rather than the 1 degree required.

72

The accuracy and repeatability tests were performed by moving the tilt mechanism through a

range at increments of 5, 10, and 15 degrees from 90 degrees to 30 degrees and back. As shown in Figure

65, the angle was determined by attaching a laser pointer to the sensor holder, measuring the position of

the laser on a flat wall, and using this value to find the angle of the mechanism.

Figure 65:Test Setup for Accuracy and Repeatability of Tilt Mechanism

When the angles calculated during the test are separated into those taken when the mechanism

was moving up (from 90 to 30 degrees) or down (from 30 to 90 degrees), and compared only to those

readings in the same set, the repeatability is 0.34 degrees, far below the requirement of 1 degree. This

pattern is indicative of hysteresis in the system; the motion output is dependent on the previous motion, n

this case whether the mechanism is raising or lowering. Figure 66 shows a graph of the measurements

when the mechanism is raising and lowering.

73

Figure 66: Comparison Between Angle Reading When Tilting the Mechanism Up vs. Down

If the hysteresis can be mediated, the mechanism could be calibrated to have more accurate

position. One option for mediating the hysteresis is to pick one motion, raising or lowering, and have the

mechanism always complete a motion moving in the same direction. For example, the mechanism is

commanded to move from 45 degrees to 70 degrees, it could move past 70 degrees to 75 degrees and then

back to 70 degrees so that 70 degrees from 45 degrees is the same as 70 degrees from 75 degrees.

Second Integration test

During the second integration tests, more of the tests were performed on the turret assembly. At

the time of testing, the IMU was not able to be used to test the acceleration, and a spring scale could not

be found to test torque. The results of the tests performed are shown in Table 5 below. The implications

of these results are discussed in the next chapter.

74

Table 5: Results of Second Integration Test

ID Category Requirement Verification Test Result
Pass/Not
Pass

R02

Size The outer diameter of the
turret assembly shall be less
than 5.375" in diameter. Measurement of diameter 4.875" Pass

R03
Size

The complete length of the
turret assembly shall be no
longer than 5". Measurement of body 10.875" Pass*

R06

Speed - Tilt
Platform The tilt mechanism shall be

able to tilt at a rate of at least
15 degrees/second.

Options: 1. Use a timer and do
several trials. 2. Limit switches
and software timer. 3. Use the
already implemented gyro.
Mount very close to the turning
center of the tilt motion.

68.3
degrees/second Pass

R07

Speed - Roll
Platform The roll mechanism shall roll

at a rate of at least 15
degrees/second.

Options: 1. Use a timer and do
several trials. 2. Limit switches
and software timer. 3. Use the
already implemented gyro.
Mount very close to the turning
center of the roll motion.

18.8
degrees/second Pass

R10

Field of
Regard - Tilt

Platform

The tilt mechanism shall tilt at
minimum 45 degrees with a
goal of 90 degrees. (Figure 2)

Use mounted laser pointer and
measure change in position and
convert to angle 90 degrees Pass

R11

Field of
Regard - Roll

Platform

The roll mechanism shall roll a
minimum of 90 degrees with
a goal of 180 degrees. (Figure
3)

Use mounted laser pointer and
measure change in position and
convert to angle 160 degrees Pass

R12

Sensor
Capacity

The turret assembly shall hold
the Jenoptik Laser Range
finder, the Flir QUARK, and
the Sensors Unlimited
MicroSWIR.

Put sensors in camera housing.
Check for appropriate fit.

All Sensors
Were Fit Pass

R13

Accuracy

The accuracy of the
mechanism should be 1
degree (the actual position of
the turret should be within 1
degree of the specified
position).

Use the FoR test. Calculate
"ideal" reading and compare to
actual data. Repeat 20 times.

Tilt: 0.84
degrees
Roll: 0.44
degrees Pass

R14

Repeatability The repeatability of the
mechanism should be 0.1
degrees. Repeat FoR Test 50 times.

Tilt: 0.31
degrees
Roll: 0.44
degrees Pass*

75

5.4. Summary

The purpose of this section was to describe the results of the design iterations as well as the

results of the integration tests. There were seven design iterations during the project, each of which

consisted of six major components. The integration tests were performed in order to ensure that the sensor

turret met the mechanical requirements, performance requirements, and could implement the control

software. The results of the first integration test showed that the tilt mechanism had unsatisfactory

accuracy and repeatability. A software solution was implemented before the second integration tests in

order to improve the performance of the sensor turret during the second integration test.

76

Section 6. Software Results

6.1. Introduction

Various program modules were created for the different stages of the prototyping process. Figure

67 shows the flowchart of the different program modules that were programmed using the Arduino IDE

and how the modules interact with one another. Each module is explained in greater detail later in this

section.

Start

Initialize Setup

Receive scan parameters
and perform desired scan

Execute physical
movement

If a new tilt or
roll position is

entered

If a new tilt or
roll speed is

entered

If the Scan
Mode is
enabled

Is scan mode is
disabled?

If the home
command is

entered

If the status
command is

entered

If the
heartbeat

command is
entered

Update or return
program parameters

Wait for serial
command

Stabilize around tilt
and roll position

YesNo

Figure 67: Flowchart of Program Modules

The different modules included a serial command module which included position and speed

change of the servos, a status command, a home command, and a heartbeat trigger. Another module was a

scans program which enabled the turret to move in preprogrammed patterns including a raster scan, spiral

scan, and clover scan. A stabilization program module was developed in order to stabilize the turret,

which was eventually used to decouple the sensor view from the motion of the aircraft in the final

assembly. The stabilization module and scan program were then combined to stabilize the turret while the

various scans were being performed. Target tracking was the final stage of the modular programming

process, which first involved optical target tracking (i.e. just using the sensors) and then optomechanical

target tracking (i.e. target tracking with the sensors moving in the turret assembly).

77

6.2. Test Turret Setup

In the test turret, all servos were Hitec brand servos and all had metal gearing on the inside, as

opposed to plastic gearing. The old (first) test turret tilt servo and roll servo were both the HS-322HD 180

degree position servos. The new turret’s tilt servo was the HS-626MG and the new roll servo was the HS-

322HD, which are both 180 degree position servos. Figure 68 shows a picture of the test turret.

Figure 68: Test Turret Setup

The position of the servos are controlled by a pulse width, where the different pulse widths sent

from the microcontroller (described more in the following section) correspond to an angle (e.g. for the

HS-322HD, a pulse width of 600 milliseconds corresponds to -90 degrees and a pulse width of 2400

milliseconds corresponds to 90 degrees, but in the setup we mapped the 600 ms pulse to 0 degrees and

2400 ms pulse to 180 degrees). A new test turret was needed about halfway through the project because

the older test turret’s servos became worn down mechanically over long and repetitive usage so the

movements of the older servos were sluggish and did not perform the desired tasks efficiently.

6.3. Arduino Capabilities

 The Arduino Duemilanove was the Arduino board that came mounted to the test turret

assembly along with a compatible motor shield. The Arduino Duemilanove Arduino board was primarily

chosen due to its availability and knowledge we had about programming in the Arduino IDE. The

Arduino Duemilanove has an Atmel ATmega328 microprocessor that has a clock speed of 16Mhz and is

capable of storing programs up to 30 kB (the amount of flash on the ATmega328 is 32 kB, but around 2

kB is used for the Arduino IDE bootloader). The Arduino IDE also offers a simple serial interface, called

the Serial Monitor, which allowed for a string of serial data to be entered and proved useful when

implementing the serial commands that are discussed in the following parts of this section.

78

6.4. Serial Commands

Point-to-point movement using serial commands

The first requirement for turret control was to do basic turret movement using serial commands.

The serial monitor in the Arduino IDE was used to send a string of serial commands to the

microcontroller, which then controlled the turret actions. A number from 0 degrees to 180 degrees

followed by either a “p” (to roll) or a “t” (to tilt) moved the corresponding servo to the specified angle.

For example, “45p66t” entered in the serial monitor moved the roll servo to 45 degrees and the tilt servo

to 66 degrees. Both servos moved simultaneously to a position to archive the desired fluidic motion

requirement of the servos.

If the angle entered was greater than the preprogrammed maximum servo angle or less than the

minimum servo angle, then the new angle positions were defaulted to the maximum servo angle or

minimum servo angle, respectively. For example if the maximum angle for the roll servo was

programmed to be 180, and the command 222p was entered, the roll servo would only move to the 180

degree position.

Ability to change the speed of position servos

The next serial commands that were implemented were servo speed change options. The speed of

the servos needed to be variable because the turret will eventually be used for target tracking, and not all

targets will be moving at the same speed. Changing the speed of each servo individually will allow the

turret to accurately track the target. The command entry into the serial monitor for the speed change was

similar to the position commands, but for the speed command an “r” after a number changed the tilt speed

to that degree per second speed and an “o” after a number changed the roll speed to that speed. For

example, the entered command “70r88o” changed the speed of the tilt servo to 70 degrees per second

(dps) and changed the speed of the roll servo to 88 degrees per second. The speeds of the servos ranged

from 0 degrees per second (stopped) to the no load speed of the servos, which can be entered as a variable

in the code so servos can be swapped.

In order to change the speed of the position servos in the test turret, there needed to be a delay in

between each degree step of the servos that would make the servo move at the desired speed in degrees

per second. Table 6 explains the variables used in the speed change equations. The word “Angle” in

Equation (10), Equation (11), Equation (12), and Equation (13) is replaced by “tilt” in the

NewDelayTimeTilt function and by “roll” in the NewDelayTimeRoll function in order to produce the

new delay times needed to change the speed of the tilt servo and roll servo, respectively.

The speed change functions take in the desired servo speed in dps and the function returns the

new delay time for needed for the desired speed.

79

Table 6: Variables for Speed Change Equations

𝑛𝑜𝐷𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑛𝑔𝑙𝑒 =

1.0

𝑁𝐿𝑆𝑝𝑒𝑒𝑑𝐴𝑛𝑔𝑙𝑒

(10)

𝑑𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑛𝑔𝑙𝑒 =

1.0

𝑠𝑒𝑟𝑣𝑜𝑆𝑝𝑒𝑒𝑑𝐴𝑛𝑔𝑙𝑒

(11)

 𝑑𝑖𝑓𝐷𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑛𝑔𝑙𝑒 = 𝑑𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑛𝑔𝑙𝑒 − 𝑛𝑜𝐷𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑛𝑔𝑙𝑒 (12)

 𝑛𝑒𝑤𝐷𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑛𝑔𝑙𝑒 = 𝑑𝑖𝑓𝐷𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑛𝑔𝑙𝑒 × 1000.0 (13)

Interrupts were implemented in the code in order to accurately produce the delay needed to

control the speed of the servos. In the interrupt service routine (ISR), there is a segment of code that

checks to see if a certain amount of time passes and if a certain amount of time has passed (the delay

time), a flag (either “rollNow” or “tiltNow”) is triggered to a 1 which allows the servos to move in the

main loop of the code. At the end of the movement, the “rollNow” or “tiltNow” variable is set to 0 and is

not set to 1 again unless the certain delay time passes.

The default speeds for the servos were programmed to be 60 dps for each servo. If the entered

speed is greater than the preprogrammed maximum servo speed (i.e. speed at no load), then the servo

speed is defaulted to the no load speed. For example if the maximum speed for the test turret’s roll servo

was programmed to be 316 dps, and the command 432o was entered, the servo speed would be adjusted

to 316 dps. If the speed entered was 0 dps, then the servo would stop in that current position. If the servo

Variable Name Use

noDelTimeAngle Time it would take the servo to move 1 degree with

no speed change

NLSpeedAngle The preprogrammed no load speed from the

specific servo based on the data sheet from the

servo

delTimeAngle Time needed to move to 1 degree at desired speed

(i.e. servoSpeedAngle)

servoSpeedAngle Desired servo speed

difDelTimeAngle Difference in the delay time and the no delay time

newDelTimeAngle Delay needed for each step in milliseconds to move

servo at desired speed

80

is commanded to move to a new position from a stop (0 dps), then the stopped servo speed is set to the

default servo speed (60 dps) and the servo moves to the newly desired location.

 The calculations for the maximum no load speed for the two servos used in the test turret are

shown below in Equation (14) and Equation (15).

Tilt Servo: HS-626MG: The operating speed at no load with 4.8V applied is 0.18sec/60°. Using

this information:

𝑆𝑝𝑒𝑒𝑑 𝑎𝑡 𝑛𝑜 𝑙𝑜𝑎𝑑 =

60°

0.18𝑠𝑒𝑐
≅ 333 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

(14)

Roll Servo: HS-322HD: The operating speed at no load with 4.8V applied is 0.19sec/60°. Using

this information:

𝑆𝑝𝑒𝑒𝑑 𝑎𝑡 𝑛𝑜 𝑙𝑜𝑎𝑑 =

60°

0.19𝑠𝑒𝑐
≅ 316 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

(15)

Having a speed option allows for the speed to be scaled in order to accommodate any gearing to

obtain the desired end effector movement rate in degrees per second in the final assembly.

The serial command program also includes an option for a heartbeat, which sends the message

“BEAT” over serial to the computer to let the user know that the system is active and waiting for a

command or action. The “z” command triggers the heartbeat on and the “x” command triggers the

heartbeat off. The “BEAT” message prints after a certain number of milliseconds using the counter for

millisecond ticks in the ISR.

The status command, “s”, sends the current status of the turret to the serial monitor. The status

includes the current positions of the roll and tilt servos, the current speed of the roll and tilt servos, and

whether the heartbeat is active. If the turret moves from one point to another, the angle values of both the

roll and the tilt servos update each time after the “s” command is entered. The same also goes for the

speed of the servos, meaning that if the speed change command is entered, then the new speed appears.

The home command, “h”, returns the turret to a desired home position. This home command

option will be useful for centering the sensor’s FOV when the UAV isn’t performing any scans or

tracking, so the turret will be ready to be used from the home position when the turret needs to begin

scanning for targets. The home position is preprogrammed so if it is desired to change the coordinates of

the home position then the coordinates need to be changed in the code and then that code would have to

be reuploaded. If any or both of the servos are stopped (i.e. servo speed set to 0 dps), and the “h”

command is entered, then the servo speeds of the stopped servos are set to the default servo speed of 60

dps to move to the home position.

The program is able to effectively parse all command strings entered into the serial monitor so

any number of these commands can be executed. Figure 69 shows the function that is responsible for

parsing a string of serial commands. The function readSerialString() first checks to see if a number was

81

entered and stores that value as “angle”. It then checks for a letter to use as an indication of a command

and executes the corresponding action. The last two commands that can be entered are the “q” and “w”

command that enable and disable scan mode, respectively. These commands are described more in the

following section.

void readSerialString () {

 int endTiltAngle = newTiltPos;

 int endRollAngle = newRollPos;

 if (Serial.available()){

 ch = Serial.read();

 if(ch >= '0' && ch <= '9') {angle = angle * 10 + ch - '0';}

 else if(ch == 'P'| ch == 'p') { //roll position precedes P

 if (angle > 180) {angle = 180;}

 if (angle < 0) {angle = 0;}

 if (degSpeedRoll == 0) {degSpeedRoll = defSpeedRoll;}

 newRollPos = angle;

 angle = 0;}

 else if(ch == 'T'| ch == 't') { //tilt position precedes T

 if (angle > 180) {angle = 180;}

 if (angle < 0) {angle = 0;}

 if (degSpeedTilt == 0) {degSpeedTilt = defSpeedTilt;}

 newTiltPos = angle;

 angle = 0;}

 else if(ch == 'H'| ch == 'h') { //home command

 if (degSpeedRoll == 0) {degSpeedRoll = defSpeedRoll;}

 if (degSpeedTilt == 0) {degSpeedTilt = defSpeedTilt;}

 newTiltPos = tiltCenter;

 newRollPos = rollCenter;

 angle = 0;}

 else if(ch == 'O'| ch == 'o') { // Roll Servo Speed precedes O

 if (angle > NLSpeedRoll) {angle = NLSpeedRoll;}

 if (angle < 0) {angle = 0;}

 degSpeedRoll = angle;

 angle = 0;}

 else if(ch == 'R'| ch == 'r') { // Tilt Servo Speed precedes R

 if (angle > NLSpeedTilt) {angle = NLSpeedTilt;}

 if (angle < 0) {angle = 0;}

 degSpeedTilt = angle;

 angle = 0;}

 else if(ch == 'S'| ch == 's') { // Status Check

 Serial.print("STATUS");

 Serial.print("\n");

 Serial.print("Roll Position = ");

 Serial.print(rollServo.read());

 Serial.print("\n");

 Serial.print("Roll Speed = ");

 Serial.print(degSpeedRoll);

 Serial.print("\n");

82

 Serial.print("Tilt Position = ");

 Serial.print(tiltServo.read());

 Serial.print("\n");

 Serial.print("Tilt Speed = ");

 Serial.print(degSpeedTilt);

 Serial.print("\n");

 if (trigHB == 1) {

 Serial.print("Heartbeat ON");

 Serial.print("\n"); }

 if (trigHB == 0) {

 Serial.print("Heartbeat OFF");

 Serial.print("\n");}}

 else if(ch == 'Z'| ch == 'z') { //used for heartbeat trigger on

 trigHB = 1;

 angle = 0;}

 else if (ch == 'X' | ch == 'x') { //used for heartbeat trigger off

 trigHB = 0;

 angle = 0;}

 else if (ch == 'Q' | ch == 'q') { //used to trigger Scan Mode on

 trigScanMode = 1;

 Serial.println("Scan Mode Enabled");

 Serial.println("");

 angle = 0;}

 else if (ch == 'W' | ch == 'w') { //used to trigger Scan Mode off

 trigScanMode = 0;

 Serial.println("Scan Mode Disabled");

 Serial.println("");

 angle = 0;}}}

Figure 69: readSerialString() Function for Parsing a String

6.5. Scans

The turret control program also has the ability to execute scan patterns. The term “scan” refers to

moving both servos in a specific pattern that is preprogrammed, in order to demonstrate how the sensors

will move in the final assembly to accomplish a certain task (e.g. when target tracking). If the “q”

command is entered, the program enters scan mode and waits for a scan command. Entering the “w”

command into the serial monitor causes the program to exit scan mode.

The three scans that the turret could perform include a raster scan, a spiral scan, and a clover

scan. Once in scan mode, the turret waits for a serial command and corresponding parameters to be

entered. Once the scan is complete, the turret returns to its starting position.

A raster scan is used primarily on stationary objects when the UAV is orbiting. Each raster scan is

composed of a desired height (controlled by the tilt servo) and width (controlled by the roll servo). Once

scan mode is enabled, the command “.raster,HEIGHT,WIDTH” executes a raster scan with the desired

height (i.e. HEIGHT in the command example) and desired width (i.e. WIDTH in the command

example). The raster scan is made up of for loops and while loops that perform the raster motion: The

turret rolls one direction the number of degrees specified as WIDTH, down one degree, and then rolls

83

back the number of degrees specified as WIDTH. This process repeats until the starting tilt position minus

the current tilt position is equal to the desired height.

 A spiral scan is used on moving objects because it allows the laser rangefinder, to fire multiple

points in a short amount of time in a focused area on the target. A sample spiral scan command has the

form “.spiral,RADIUS,DENSITY”. The spiral scan command parameters are the desired radius of the

spiral (i.e. RADIUS in the command example) and the density (i.e. number revolutions/ DENSITY in the

command example).

A spiral scan uses parametric equations to determine the x and y coordinates of each spiral point.

A loop is used to increase a variable “t” by a certain amount each execution of the loop then uses “t” in

Equation (16) and Equation (17) to calculate the x and y coordinates of a point on the spiral at that

value. A change in the amplitude value in equations Equation (16) and Equation (17) affects the end

radius of the spiral.

 𝑥 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∗ 𝑡 ∗ sin(𝑡) (16)

 𝑦 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∗ 𝑡 ∗ cos (𝑡) (17)

Many tests were performed in MATLAB in order to observe how changing the different variables

in the spiral equation affected the resulting spiral’s radius and density. Table 7 explains the variables used

in the spiral scan calculations below. The x and y coordinates corresponded to the desired roll and tilt

servo angles, so the x equation was used to control the roll servo position and the y equation was used to

control the tilt servo position by acting as an offset to the position the servos are at when the spiral scan

begins (i.e. newRollPos in Equation (18) and newTiltPos in Equation (19)). The original spiral

equations were modified to be able to change the ending radius of the spiral and the number of

revolutions of the spiral. After modifications were made, we found that changing “desDensity” (in

Equation (18) and Equation (19)) changes the amount of revolutions of the spiral (we used the word

density to describe this number) and that changing “spiAmp” changes the resulting radius of the spiral in

Equation (18) and Equation (19).

Table 7: Variables for Spiral Scan Calculations

Variable Name Use

x Resulting x position at a certain time in a spiral

scan with a specific density and radius

spiAmp Used to change the final radius of the spiral

desDensity Desired spiral density (number of revolutions)

t Time

newRollPos Starting roll position of the clover scan

84

𝑥 = 𝑠𝑝𝑖𝐴𝑚𝑝 × (

10.0

𝑑𝑒𝑠𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 2.0
) × 𝑡 × sin(𝑡) + 𝑛𝑒𝑤𝑅𝑜𝑙𝑙𝑃𝑜𝑠

(18)

𝑦 = 𝑠𝑝𝑖𝐴𝑚𝑝 × (

10.0

𝑑𝑒𝑠𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 2.0
) × 𝑡 × cos(𝑡) + 𝑛𝑒𝑤𝑇𝑖𝑙𝑡𝑃𝑜𝑠

(19)

The following plots, Figure 70 and Figure 71, are a result of implementing Equation (18) and

Equation (19) in MATLAB, keeping “spiAmp” constant (so the end point radius doesn’t change), and

only changing the “desDensity”. The “t” variable must be iterated to a final value of desDensity*2*π, for

Figure 70 and Figure 71 to have a varying density and same amplitude. The text boxes on Figure 70 and

Figure 71 reveal that the end y position stays constant, which proves the ability to change the density of a

spiral without changing the ending radius.

Figure 70: Spiral with Density of 2 (spiral goes around 2 times)

y Resulting y position at a certain time in a spiral

scan with a specific density and radius

newTiltPos Starting tilt position of the clover scan

85

Figure 71: Spiral with Density of 6 (spiral goes around 6 times)

A clover scan is used to replicate a convoy eye-scanner (human behavior) because it allows the

sensors to look around at the UAV’s surroundings and then focus back at the middle to know where the

UAV is flying. The clover scan command has the form “.clover,RADIUS,LEAVES”, where RADIUS is

the desired radius of the clover and LEAVES is the number of leaves (e.g. a Figure 8 clover scan has 2

leaves).

A clover scan, like the spiral scan, uses two parametric equations and a loop that iterates a

variable “t” by a certain amount each loop iteration. The new value of “t” is used in Equation (20) and

Equation (21) for the x and y coordinates of a clover:

 𝑥 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∗ cos (𝑡) ∗ (1 + cos(𝑡)) (20)

 𝑦 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∗ sin (𝑡) ∗ (1 + cos(𝑡)) (21)

Multiple tests were performed in MATLAB in order to see how changing the variables in the

clover equation affected the resulting clover’s number of leaves and number of revolutions. Table 8

explains the variables used in the clover scan equations below. The x and y coordinate equations

correspond to the desired roll and tilt servo angles, respectively, so Equation (22) and Equation (23)

were used to control those servos. The following equations are the resulting equations that are used in the

Arduino code to obtain the desired x and y values that produced a clover while the variable “t” increased

until “t” reached (2*π)+(π/numLeaves). We found that changing the “numLeaves” value changed the

number leaves the clover had and that changing the “desClovRadius” changed the resulting radius of the

clover (from clover center to farthest point left or clover center to farthest point right)

86

Table 8: Variables Used for Clover Scan

𝑥 = 𝑛𝑒𝑤𝑅𝑜𝑙𝑙𝑃𝑜𝑠 + (

𝑑𝑒𝑠𝐶𝑙𝑜𝑣𝑅𝑎𝑑𝑖𝑢𝑠

2
) × cos(𝑡) × (1 + cos(𝑛𝑢𝑚𝐿𝑒𝑎𝑣𝑒𝑠 × 𝑡))

(22)

𝑦 = 𝑛𝑒𝑤𝑇𝑖𝑙𝑡𝑃𝑜𝑠 + (

𝑑𝑒𝑠𝐶𝑙𝑜𝑣𝑅𝑎𝑑𝑖𝑢𝑠

2
) × sin(𝑡) × (1 + cos(𝑛𝑢𝑚𝐿𝑒𝑎𝑣𝑒𝑠 × 𝑡))

(23)

Since the clover scan is based off of a time variable “t”, increasing the number of leaves with

keeping the maximum “t” value the same causes the servos’ positions to not always reach the exact

middle point of the clover for leaves more than 8. This was due to the clover scan still having to be

completed in that maximum “t” amount of time, and the servos had a limited maximum speed. If the

maximum “t” for the loop was increased as the number of leaves increased, then the servos’ positions

would reach the center of the clover scan after each leaf was completed. Since it was only desired by our

supervisor to have a Figure-8 scan (a clover scan with 2 leaves) and a 4-leaf clover scan, and the servos’

positions would reach the center of the clover scan after each leaf with a maximum “t” value of

(2*π)+(π/numLeaves), having the” t” variable as a modifiable parameter in the serial monitor wasn’t

necessary.

Figure 72 is the result of setting the number of leaves to 2 and showing how the end radius of the

clover can be changed. The red clover has half the end radius of the blue clover, but still has the same

number of leaves. Figure 73 shows the result when the number of leaves was changed to 4 and shows

how the end radius of the clover can be changed without affecting the number of leaves (i.e. the red

clover has half the end radius of the blue clover, but still has 4 leaves).

Variable Name Use

x Resulting x position at a certain time in a clover

scan with a certain number of leaves

newRollPos Starting roll position of the clover scan

desClovRadius Desired clover radius

t Time

numLeaves Desired number of leaves in clover scan

y Resulting y position at a certain time in a clover

scan with a certain number of leaves

newTiltPos Starting tilt position of the clover scan

87

Figure 72: Clover Scans with 2 Leaves (Figure-8 Scan) Showing the Ability to Change the End

Radius of the Clover

Figure 73: Clover Scans with 4 Leaves Showing the Ability to Change the End Radius of the Clover

88

The time at which every point occurred during each scan needed to be easily calculable because

the point times are scan data that will be useful in target tracking and point cloud creation. For example, if

there was a unique occurrence in the thermal camera’s FOV during a raster scan (such as a dark red spot),

the program will be able to make note at which time that red spot was observed. The other sensors will

then be able to orient themselves to perform further scans on that target of interest.

Obtaining the time for the raster scan points involved drawing out several raster scans on a sheet

of paper by hand that were a certain width and a certain height. The heights’ and widths’ units were

represented by dots, in order to symbolize each degree movement the respective servo had to move (i.e.

roll servo for width and tilt servo for height), to produce the desired scan. Figure 74 shows a sample raster

scan with the dots representing position and the number representing the point numbers which were used

in the point-time (time at which the point occurred) calculation. The first row and first column are row 0

and column 0, respectively, which are important when counting the rows and columns for the point

number calculations.

 Col0 Col1 Col2 Col3 Col4

Row0 ● 0 ● 1 ● 2 ● 3 ● 4

Row1 ● 9 ● 8 ● 7 ● 6 ● 5

Row2 ● 10 ● 11 ● 12 ● 13 ● 14

Figure 74: Sample Raster Scan Point Numbers

Table 9 and Table 10 explain the variables used in the equations for finding the time at which a

point in a raster scan occurred. Equation (24) is used if the desired point is in an even row or the first

row (row 0) and Equation (26) is used if the desired point is in an odd row:

Table 9: Variables Used in Raster Scan Point Time Calculations

 𝑝𝑜𝑖𝑛𝑡𝑁𝑢𝑚 = (𝑝𝑜𝑖𝑛𝑡𝑅𝑜𝑙𝑙𝑃𝑜𝑠 − 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑜𝑙𝑙𝑃𝑜𝑠)

+ ((𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑇𝑖𝑙𝑡𝑃𝑜𝑠 − 𝑝𝑜𝑖𝑛𝑡𝑇𝑖𝑙𝑡𝑃𝑜𝑠) × (𝑑𝑒𝑠𝑊𝑖𝑑𝑡ℎ + 1))

(24)

Variable Name Use

pointNum Point number found for a specific x and y

coordinate of a raster scan

pointRollPos Desired roll position to know the time at which the

point occurred

startingRollPos Starting roll position

startingTiltPos Starting tilt position

pointTiltPosSpi Desired tilt position to know the time at which the

point occurred

desWidth Desired width of the raster scan

89

For example, in Equation (24) if the following variables were given the following values:

Then the point

number is found in

Equation (25):

 𝑝𝑜𝑖𝑛𝑡𝑁𝑢𝑚 = (92 − 90) + ((90 − 88) × (4 + 1)) = 2 + (2 × 5) = 12

(which corresponds to point 12 in Figure 74).

(25)

If the desired point is in an odd row the following equation is used to find its point number:

 𝑝𝑜𝑖𝑛𝑡𝑁𝑢𝑚 = (((((𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑇𝑖𝑙𝑡𝑃𝑜𝑠 − 𝑝𝑜𝑖𝑛𝑡𝑇𝑖𝑙𝑡𝑃𝑜𝑠)

− (
(𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑇𝑖𝑙𝑡𝑃𝑜𝑠 − 𝑝𝑜𝑖𝑛𝑡𝑇𝑖𝑙𝑡𝑃𝑜𝑠) + 1

2
)) + 1) × ((𝑑𝑒𝑠𝑊𝑖𝑑𝑡ℎ

+ 1) × 2)) − ((𝑝𝑜𝑖𝑛𝑡𝑅𝑜𝑙𝑙𝑃𝑜𝑠 − 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑜𝑙𝑙𝑃𝑜𝑠) + 1))

(26)

For example, in Equation (26) if the following variables were given the following values:

Then the point number is found in Equation (27):

𝑝𝑜𝑖𝑛𝑡𝑁𝑢𝑚 = (((((90 − 89) − (

(90 − 89) + 1

2
)) + 1) × ((4 + 1) × 2)) − ((91

− 90) + 1)) = (((1) − (1) + 1) × (5 × 2)) − ((1) + 1)) = 10 − 2

= 8

(which corresponds to point 8 in Figure 74).

(27)

Since we know the total number of points of the raster scan (height*width), we can take the total

time for the raster scan, divide it by the total number of points (found by using Equation (28)), to get the

Variable Value

pointRollPos 92

pointTiltPos 88

startingRollPos 90

startingTiltPos 90

desWidth 4 (a raster scan that is 5 points wide means the roll

servo only has to move 4 times, so the “desWidth”

that the user enters is 4)

Variable Value

startingRollPos 90

startingTiltPos 90

pointTiltPos 89

pointRollPos 91

desWidth 4

90

time between each point (Equation (29)) and multiply it by the point number to obtain the time at which

any point in the raster scan occurred (Equation(30)).

Table 10: Variables Used to Calculate the Point Time of a Raster Scan

 𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠 = (𝑑𝑒𝑠𝐻𝑒𝑖𝑔ℎ𝑡 + 1) × (𝑑𝑒𝑠𝑊𝑖𝑑𝑡ℎ + 1) (28)

𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑃𝑜𝑖𝑛𝑡 =

𝑡𝑜𝑡𝑎𝑙𝑅𝑎𝑠𝑡𝑒𝑟𝑇𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠

(29)

 𝑡𝑖𝑚𝑒𝑂𝑓𝑃𝑜𝑖𝑛𝑡 = 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑃𝑜𝑖𝑛𝑡 × 𝑝𝑜𝑖𝑛𝑡𝑁𝑢𝑚 (30)

Next an equation was found to find the point number of a point in a spiral scan. Table 11 and

Table 12 explain the variables used in the equations for finding the time at which a point in a spiral scan

occurred. We discovered that since the spiral is based on a time (“t”) variable, and a spiral path revolves

outward from the middle, at any given time, the radius to any point in a spiral will be different. As a

result, we developed Equation (31) to get the specific point number of a spiral scan at any time. The

“round” function was used in the code in order to return a whole number after the calculation for the point

number was completed.

Variable Name Use

totalNumPoints The total number of points in the raster scan

desHeight The desired height of the raster scan

timePerPoint The amount of time in between each point of the

raster scan

totalRasterTime The total amount of time it took the raster scan to

complete

timeOfPoint The time at which the specific point in the raster

scan occurred

91

Table 11: Variables Used in Spiral Scan Point Number Equations

𝑝𝑡𝑁𝑢𝑚𝑆𝑝𝑖 = ((
2 × 𝑑𝑒𝑠𝐷𝑒𝑛

10 × 𝑠𝐴𝑚𝑝
) × √((𝑅𝑆𝑝𝑖 − 𝑠𝑡𝑅𝑜𝑙𝑙)2 + (𝑇𝑆𝑝𝑖 − 𝑠𝑡𝑇𝑖𝑙𝑡)2) × (

16.0

𝜋
))

(31)

In the program, a timer starts when a spiral scan begins and the timer stops when the spiral scan

end. In order to get the total amount of time it took to complete the spiral scan since we know the total

number of points of the spiral scan (determined by the “t” variable shown in Equation (32)), we can take

the total time for the spiral scan, divide it by the total number of points (shown in Equation (33)) and

multiply it by the point number to obtain the time at which any point in the spiral scan occurred (shown in

Equation (34)).

Table 12: Variables Used in Spiral Scan Point Number Equations

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠𝑆𝑝𝑖 = 𝑡 ×

16.0

𝜋

(32)

Variable Name Use

ptNumSpi Point number found for a specific x and y

coordinate of a spiral scan

desDen Desired number of revolutions for the spiral

sAmp Amplitude of the spiral. This variable changes the

end radius of the spiral

RSpi Desired roll position to know the time at which the

point occurred

stRoll Starting roll position

TSpi Desired tilt position to know the time at which the

point occurred

stTilt Starting tilt position

Variable Name Use

totalNumPointsSpi Total number of points in the spiral scan

t Time

timePerPointSpi The amount of time in between each point of the

spiral scan

totalSpiralTime The total amount of time it took the spiral scan to

complete

timeOfPointSpi The time at which the specific point in the spiral

scan occurred

92

𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑆𝑝𝑖 =

𝑡𝑜𝑡𝑎𝑙𝑆𝑝𝑖𝑟𝑎𝑙𝑇𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠𝑆𝑝𝑖

(33)

 𝑡𝑖𝑚𝑒𝑂𝑓𝑃𝑜𝑖𝑛𝑡𝑆𝑝𝑖 = 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑆𝑝𝑖 × 𝑝𝑜𝑖𝑛𝑡𝑁𝑢𝑚𝑆𝑝𝑖 (34)

The point number calculation for the clover scan took more time than the previous two scans. We

developed several MATLAB scripts that would allow us to test to see if our equations would work to

acquire the point number in a clover scan. Figure 75 and Figure 76 show attempts at trying to get an

equation that corresponds to a point number of the clover scan. We tested out equations by plotting actual

point we were trying to find as a red dot and the point we calculated with a blue dot. However, since the

red dot doesn’t overlap the blue dot in the Figure 75 nor Figure 76, the attempted equation would not

work to calculate the point number of the clover scan.

Figure 75: Clover Scan with 2 Leaves Showing that Red and Blue Dot do not Overlap

93

Figure 76: Clover Scan with 4 Leaves Showing that Red and Blue Dot do not Overlap

After several iterations and tests, we developed Equation (36) (which uses “tInt” from Equation

(35)) to obtain the point number of any point that occurred in a clover scan of any number of leaves. In

Figure 77 and Figure 78 the red dot overlaps the blue dot, proving that the equation produces the correct

point number for any time in the clover scan for any number of leaves.

Figure 77: Clover Scan with 2 Leaves Showing that Red and Blue Dot do Overlap

94

Figure 78: Clover Scan with 4 Leaves Showing that Red and Blue Dot do Overlap

Table 13 and Table 14 describe the variables used to calculate the time at which points in a clover

scan occurred.

Table 13: Variables Used in Clover Scan Point Number Equations

 𝑡𝐼𝑛𝑡 = 𝑎𝑡𝑎𝑛2((𝑝𝑜𝑖𝑛𝑡𝑇𝑖𝑙𝑡𝑃𝑜𝑠𝐶𝑙𝑜𝑣 − 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑇𝑖𝑙𝑡𝑃𝑜𝑠), (𝑝𝑜𝑖𝑛𝑡𝑅𝑜𝑙𝑙𝑃𝑜𝑠𝐶𝑙𝑜𝑣

− 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑜𝑙𝑙𝑃𝑜𝑠))

(35)

If “tInt” was less than π/numLeaves, then 2π was added to “tInt” in the program.

𝑝𝑜𝑖𝑛𝑡𝑁𝑢𝑚𝐶𝑙𝑜𝑣 = 𝑟𝑜𝑢𝑛𝑑 (((𝑡𝐼𝑛𝑡 × 2.0 ×

𝑝𝑖𝑃𝑖𝑒𝑐𝑒𝑠

2.0 × 𝜋
) − (

𝑝𝑖𝑃𝑖𝑒𝑐𝑒𝑠

𝑛𝑢𝑚𝐿𝑒𝑎𝑣𝑒𝑠
)))

(36)

Variable Name Use

tInt Angle value from positive x axis (center of clover

is the origin) to desired point on clover

numLeaves Desired number of leaves for the clover scan

pointNumClov Point number found for a specific x and y

coordinate of a clover scan

piPieces Affects the smoothness (resolution) of the clover

scan (larger piPieces corresponds to a smoother the

clover scan). It is a preprogrammed number so it

cannot be changed via serial monitor. It must be

changed in the code then that code must be

reuploaded.

95

As in the spiral scan calculations, we first used a timer to obtain the amount of time the clover

scan took to complete. We knew the total number of points of the clover scan by using Equation (37), so

we could take the total time for the clover scan, divide it by the total number of points (shown in Equation

(38)) and multiply by the point number (shown in Equation (39)) to obtain the time at which any point

in the clover scan occurred.

Table 14: Variables Used in Clover Scan Point Number Equations

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠𝐶𝑙𝑜𝑣 = (𝑛𝑢𝑚𝑇𝑖𝑚𝑒𝑠𝐴𝑟𝑜𝑢𝑛𝑑 × (2.0 × 𝜋)) × (

𝑝𝑖𝑃𝑖𝑒𝑐𝑒𝑠

𝜋
)

(37)

𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑣 =

𝑡𝑜𝑡𝑎𝑙𝐶𝑙𝑜𝑣𝑒𝑟𝑇𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠𝐶𝑙𝑜𝑣

(38)

 𝑡𝑖𝑚𝑒𝑂𝑓𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑣 = 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑣 × 𝑝𝑜𝑖𝑛𝑡𝑁𝑢𝑚𝐶𝑙𝑜𝑣 (39)

6.6. Encoder with Continuous Rotation Servo

In order to achieve the desired roll of the sensor housing in the final turret assembly, a continuous

rotation servo with an encoder (to keep track of the amount of turns the servo performed) was required

because a normal 180 degree position servo would not roll the sensor housing the desired angle (160

degrees) due to the limited space that was allowed for gearing. The encoder was an absolute encoder (its

value reset to 0 after the code reran) that was programmed using the following equations so 9.5 encoder

rotations corresponded to 160 degrees output.

Variable Name Use

totalNumPointsClov Total number of points in the clover scan

numTimesAround Represents the number of times the scan will

perform the desired number of leaves with the

specified radius before the scan finishes. By

default, the numTimesAround variable is set to 1.

The numTimesAround variable must be changed in

the code and that code must be reuploaded to

change the number of times the clover scan will go

around.

timePerPointClov The amount of time in between each point of the

clover scan

totalCloverTime The total amount of time it took the clover scan to

complete

timeOfPointClov The time at which the specific point in the clover

scan occurred

96

Using Equation (7), the gear ratio , or the ratio between input motion from the servo to output

motion of the mechanism, was:

𝑁2

𝑁1
×

𝑁𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝑁3
= 𝑅 =

𝑖𝑛𝑝𝑢𝑡 𝑟𝑎𝑛𝑔𝑒

𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑎𝑛𝑔𝑒

60

22
×

78

10
= 21.27

We used this gear ratio in Equation (40) to calculate the number of revolutions the encoder

would complete in order to obtain 160 degrees output.

1 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

21.27 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑖𝑛𝑝𝑢𝑡
× 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑖𝑛𝑝𝑢𝑡 = 160

(40)

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑖𝑛𝑝𝑢𝑡 = 160 × 21.27 = 3403 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

3403

360
= 9.453 ≈ 9.5 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑡𝑢𝑟𝑛𝑠

The continuous rotation servo to encoder gearing was 1:1, so that 9.5 complete 360 degree turns

of the continuous rotation servo will turn the rotary encoder 9.5 times, which resulted in 160 degrees

output measurement from the encoder. Table 15 shows the variables used in the encoder calculations so

that 9.5 complete encoder turns will output 160 degrees. The encoder had 4 counts per tick (there were 24

discrete ticks in the encoder) and Equation (41) shows the amount of encoder counts per 360 degree

turns of the encoder. Equation (42) shows the calculation to get the amount of degrees per count in order

for the desired 160 degrees to correspond to 9.5 rotations of the encoder. Equation (43) shows the

calculation that outputs the degree measurement based off of the encoder count value.

Table 15. Variables Used in Encoder Degree Calculations

𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑠𝑃𝑒𝑟𝑅𝑒𝑣 =
4 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡𝑖𝑐𝑘
×

24 𝑡𝑖𝑐𝑘𝑠

𝑟𝑒𝑣
= 96 𝑐𝑜𝑢𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣

(41)

Variable Name Use

EncoderCountsPerRev Number of encoder counts per revolution (360

degrees)

ScaledEncoderDegree Degree measurement based off of the encoder

count value

EncoderCountValue The number of counts of the encoder

97

160°

9.5 𝑟𝑒𝑣 ∗ 96 𝑐𝑜𝑢𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣
= 0.1754° 𝑝𝑒𝑟 𝑐𝑜𝑢𝑛𝑡

(42)

𝑆𝑐𝑎𝑙𝑒𝑑𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐷𝑒𝑔𝑟𝑒𝑒 = 0.1754° 𝑝𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 × 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑉𝑎𝑙𝑢𝑒

(43)

6.7. Stabilization

IMU

The ADXL335 triaxial MEMS accelerometer and the L3G4200D triaxial MEMS gyroscope were

chosen as the components of the inertial measurement unit for the stabilization system that was

implemented in our final assembly due to their low cost and availability. The accelerometer chip offered

the desired sensitivity of ±3g and the gyro offered sensitivity ranges up to 2000 dps.

The accelerometer breakout board was wired using a breadboard, and wires from the X, Y and Z

axes outputs of the accelerometer breakout board were wired to the A0, A1, and A2 Arduino analog pins,

respectively. The advantage to using analog interface for the accelerometer was that it allowed for data to

be sent from the accelerometer to the Arduino for processing using the analogRead(XX) command (XX

would be replaced by the analog pin name, such as A0). The accelerometer orientation values were sent to

the Arduino board in mV/deg so the degree measurement for each axis of the accelerometer can be easily

obtained using Equation (44) and Equation (45), and Equation (46) (variables for these equations are

described in Table 16)

98

Table 16: Variables Used to Calculate Accelerometer Orientation

Variable Name Use

accXval X-axis accelerometer data after accounting for a

zero value

aX Used to represent the Arduino analog pin A0 in our

code

zeroValue[0] An average of 100 accelerometer x-axis values that

accumulated in the setup of the accelerometer when

the accelerometer is stationary (in order to have a

known 0 degree roll and 0 degree tilt orientation).

accYval Y-axis accelerometer data after accounting for a

zero value

aY Used to represent the Arduino analog pin A1 in our

code

zeroValue[1] An average of 100 accelerometer y-axis values that

accumulated in the setup of the accelerometer when

the accelerometer is stationary (in order to have a

known 0 degree roll and 0 degree tilt orientation).

accZval Z-axis accelerometer data after accounting for a

zero value

aZ Used to represent the Arduino analog pin A2 in our

code

zeroValue[2]

An average of 100 accelerometer z-axis values that

accumulated in the setup of the accelerometer when

the accelerometer is stationary (in order to have a

known 0 degree roll and 0 degree tilt orientation).

accXangle Resultant roll angle based off of the 3 axes of the

accelerometer

accYangle Resultant tilt angle based off of the 3 axes of the

accelerometer

99

 𝑎𝑐𝑐𝑋𝑣𝑎𝑙 = 𝑎𝑛𝑎𝑙𝑜𝑔𝑅𝑒𝑎𝑑(𝑎𝑋) − 𝑧𝑒𝑟𝑜𝑉𝑎𝑙𝑢𝑒[0] (44)

 𝑎𝑐𝑐𝑌𝑣𝑎𝑙 = 𝑎𝑛𝑎𝑙𝑜𝑔𝑅𝑒𝑎𝑑(𝑎𝑌) − 𝑧𝑒𝑟𝑜𝑉𝑎𝑙𝑢𝑒[1] (45)

 𝑎𝑐𝑐𝑍𝑣𝑎𝑙 = 𝑎𝑛𝑎𝑙𝑜𝑔𝑅𝑒𝑎𝑑(𝑎𝑍) − 𝑧𝑒𝑟𝑜𝑉𝑎𝑙𝑢𝑒[2] (46)

The individual angles were able to be combined using Equation (47) and Equation (48) in order

to get the overall roll offset and tilt offset angles:

 𝑎𝑐𝑐𝑋𝑎𝑛𝑔𝑙𝑒 = (𝑎𝑡𝑎𝑛2 (−𝑎𝑐𝑐𝑋𝑣𝑎𝑙, √𝑎𝑐𝑐𝑌𝑣𝑎𝑙2 + 𝑎𝑐𝑐𝑍𝑣𝑎𝑙2) + 𝜋) ∗ 𝑅𝐴𝐷_𝑇𝑂_𝐷𝐸𝐺 (47)

 𝑎𝑐𝑐𝑌𝑎𝑛𝑔𝑙𝑒 = (𝑎𝑡𝑎𝑛2 (𝑎𝑐𝑐𝑌𝑣𝑎𝑙, √𝑎𝑐𝑐𝑋𝑣𝑎𝑙2 + 𝑎𝑐𝑐𝑍𝑣𝑎𝑙2) + 𝜋) ∗ 𝑅𝐴𝐷_𝑇𝑂_𝐷𝐸𝐺 (48)

The gyro uses I2C communication in order to pass angular velocity values to the Arduino for

processing. I2C requires certain registers of the MEMS chip to be set-up in a specific way in order to get

the desired values at the desired sensitivity (we used 2000 dps for this project). Table 17 describes the

variables used to calculate the gyroscope orientation. In Figure 79, the integration of gyro rates (velocity

data) to obtain the angles that the gyro rotated around the axes is shown.

100

Table 17: Variables Used to Calculate Gyroscope Orientation

Variable Name Use

millis() Keeps track of the amount of milliseconds that

passed since the code began running

timer Used to store the millis() value at the beginning of

the integration

sampleTime Number of milliseconds that need to pass in order

to update the gyro data.

gyro.read() Read the values from the gyro, updates the gyro

variables

gxrate Rate at which the gyro is rotating about the x-axis

gyro.g.x Raw velocity data from x-axis of gyro

gxdc_offset Offset of the x-axis of the gyro due to the DC

voltage

gxangle The angle the gyro rotated about the x-axis

gxprev_rate The gyro’s previous velocity about the x-axis

gyrate Rate at which the gyro is rotating about the y-axis

gyro.g.y Raw velocity data from y-axis of gyro

gydc_offset Offset of the y-axis of the gyro due to the DC

voltage

gyangle The angle the gyro rotated about the y-axis

gyprev_rate The gyro’s previous velocity about the y-axis

gzrate Rate at which the gyro is rotating about the z-axis

gyro.g.z Raw velocity data from z-axis of gyro

gzdc_offset Offset of the z-axis of the gyro due to the DC

voltage

gzangle The angle the gyro rotated about the z-axis

gzprev_rate The gyro’s previous velocity about the z-axis

101

if(millis()-timer > sampleTime){

 timer = millis();

 gyro.read();

 gxrate=(((int)gyro.g.x-gxdc_offset)/100)-6;

 gxangle += ((double)(gxprev_rate+ gxrate) * sampleTime) / 2000;

 gyrate=((int)gyro.g.y-gydc_offset)/100+1;

 gyangle += ((double)(gyprev_rate+ gyrate) * sampleTime) / 2000;

 gzrate=((int)gyro.g.z-gzdc_offset)/100;

 gzangle += ((double)(gzprev_rate+ gzrate) * sampleTime) / 2000;

 gzprev_rate = gzrate;

 gxprev_rate = gxrate;

 gyprev_rate = gyrate;

Figure 79: Gyro Integration Code

Wiring diagrams of the IMU to the Arduino are shown in Figure 80 and Figure 81, where the red

board is the gyroscope breakout board and the purple board is the accelerometer breakout board.

Figure 80: Arduino to IMU Pin Connections

102

Figure 81: Arduino to IMU Wiring Diagram3

Sensor Fusion Algorithm

In order to combine the accelerometer readings and gyroscope readings, we implemented 2 sensor

fusion algorithms, a Kalman filter and a complementary filter. The Kalman filter was implemented using

a Kalman filter library that calculated the resultant angles based on weighted gyroscope and

accelerometer readings. For comparison, a complementary filter was also implemented, after which it was

determined that the complementary filter generated accurate values without the larger number of

calculations that the Kalman filter required. Also, the Kalman filter would also be more difficult for other

people who work with this software we developed for stabilization to understand and tune sensor values if

different accelerometer chips or gyros were to be used.

3 The astute reader will notice that the diagram shows an Arduino Uno, but the test turret has an

Arduino Duemilanove, however, the circuit design software used for this diagram does not have a

Duemilanove component. The Uno does have the same pin out as the Duemilanove.

103

In order to compare the computational speed of the complementary and the Kalman filter, several

tests were performed on both filters. In each test, tilt and roll angles of the IMU that were generated over

a 5 second period and were displayed in the Arduino’s Serial Monitor, first, when a complementary filter

was implemented and then when a Kalman filter was implemented. Table 18 shows the numbers of angle

calculations that were printed out for a 5 second period and a 1 second period. The stationary tests

involved holding the IMU still for the 5 second duration and reading out the angle measurements. The

smooth motion tests involved slowly rolling and tilting the IMU during the 5 second test in order to

simulate a smooth banking turn the UAV could perform while flying. The shaking tests involved rapidly

shaking the IMU to simulate turbulence the UAV could encounter while flying. The results show that the

complementary filter has a larger output bandwidth because it was able to produce about twice as many

values as the Kalman filter in all of the corresponding tests (e.g. The complementary filter stationary test

resulted in 550 angle calculations per second and the Kalman filter stationary test resulted in only 284

angle calculations per second).

Table 18. Number of Angle Calculations for Each Filter Test

Figure 82 graphically shows the numbers of angle calculations for a 1 second period when the

IMU was stationary.

Test

Number of Roll and Tilt

Angle Calculations in 5

seconds

Number of Roll and Tilt

Angle Calculations in 1

second

Complementary Filter

Stationary Test = CST 2750 550

Complementary Filter

Smooth Motion Test = CSM 2729 545.8

Complementary Filter

Shaking Test = CSH 2417 483.4

Kalman Filter

Stationary Test = KST 1420 284

Kalman Filter

 Smooth Motion Test = KSM 1292 258.4

Kalman Filter

Shaking Test = KSH 1195 239

104

Figure 82: Number of Angle Calculations Per Filter Test in 1 Second
Figure 83 and Figure 84 show a line graph of the stationary tests of the complementary and

Kalman filter tilt and roll angles, respectively. The moments of distribution for Figure 83 and Figure 84

are shown in Table 19. Figure 83 and Figure 84 show that both filters were accurate in achieving the

desired 90 degrees (shown with a straight black line) for the majority of the angle calculations for the

tests. In Figure 83 and Figure 84, the complementary filter results are in blue and the Kalman filter results

are in red. The Kalman filter line is lower around the 90 degree mark than the complementary filter line

because the Kalman filter produced significantly fewer values than the complementary filter, as shown in

Figure 83 and Figure 84.

105

Figure 83: Tilt Angle Results for Stationary Test After 5 Seconds

Figure 84: Roll Angle Results for Stationary Test After 5 Seconds

106

Figure 85 and Figure 86 show a line graph of the stationary tests of the complementary and

Kalman filter tilt and roll angles, respectively, with the y axis scaled in order to see the random values

that were calculated around the desired angle for each test. In Figure 85 and Figure 86, the

complementary filter results are in blue and the Kalman filter results are in red. Figure 85 and Figure 86

both reveal that the Kalman filter produced more random values even though the IMU was stationary

during the tests for each filter. The arrows at the top of Figure 85 and Figure 86 represent that the number

of angle calculations goes beyond the limit on the y axis of Figure 85 and Figure 86.

Figure 85: Tilt Angle Results for Stationary Test After 5 Seconds with Scaled Axes

107

Figure 86: Roll Angle Results for Stationary Test After 5 Seconds with Scaled Axes

The previous test results prove that the complementary filter is not only faster for calculating the

angle outputs of the IMU, but also is more accurate and produces fewer random values that are not equal

to the desired angle, than the Kalman filter. Table 19 shows statistical calculations that were performed on

the roll and tilt angle data from the complementary filter and Kalman filter stationary tests. The mean for

each test was around the desired 90 degrees, which was expected. The Kalman filter results have a higher

standard deviation, in both roll and tilt angle, than the complementary filter, meaning that more Kalman

filter calculations were farther away from the average (which can also be seen in Figure 85 and Figure

86). The complementary filter tests have a higher skewness in both the roll and tilt angle data meaning

that the results are less symmetric than the Kalman filter roll and tilt angle data. The kurtosis values of the

complementary filter roll and tilt angles are higher than the Kalman filter roll and tilt angle’s kurtosis

values, meaning that there is a larger rate of change in the standard deviation concentrated around the

mean of the data for the complementary filter.

108

Table 19. Moment of the Distribution Calculations for Roll and Tilt Angles for Complementary and

Kalman Filter Stationary Tests

Also, a complementary filter was chosen over a Kalman filter to combine the accelerometer and

gyro readings as the complementary filter is much less computationally expensive and easier to tune to

achieve the desired output. Equation (49) and Equation (50) show the angle calculations of the resultant

roll and tilt angle after combining the gyro and accelerometer data using a complementary filter,

respectively.

 𝑐𝑜𝑚𝑝𝐴𝑛𝑔𝑙𝑒𝑋 = ((𝑔𝑦𝑟𝑜𝑏𝑖𝑎𝑠𝑋) × (𝑐𝑜𝑚𝑝𝐴𝑛𝑔𝑙𝑒𝑋 + 𝑔𝑦𝑟𝑜𝑁𝑒𝑤𝑅𝑜𝑙𝑙𝐴𝑛𝑔𝑙𝑒)

+ (1.00 − 𝑔𝑦𝑟𝑜𝑏𝑖𝑎𝑠𝑋) × (𝑎𝑐𝑐𝑋𝑎𝑛𝑔𝑙𝑒))

(49)

 𝑐𝑜𝑚𝑝𝐴𝑛𝑔𝑙𝑒𝑌 = ((𝑔𝑦𝑟𝑜𝑏𝑖𝑎𝑠𝑌) × (𝑐𝑜𝑚𝑝𝐴𝑛𝑔𝑙𝑒𝑌 + 𝑔𝑦𝑟𝑜𝑁𝑒𝑤𝑇𝑖𝑙𝑡𝐴𝑛𝑔𝑙𝑒)

+ (1.00 − 𝑔𝑦𝑟𝑜𝑏𝑖𝑎𝑠𝑌) × (𝑎𝑐𝑐𝑌𝑎𝑛𝑔𝑙𝑒))

(50)

Once calculated using the complementary filter, compAngleX and compAngleY were mapped

using the Arduino map command in order to scale the compAngleX and compAngleY to values that allow

the servos to perform accurate stabilization control. Also, in order to eliminate the random motion that

used to occur because of the randomness of the sensors, the turret was programmed to only move if the

sensor reading was above a sensitivity threshold for two readings in a row. This action filters out the one

random value (that was above or below the sensitivity threshold) that tended to occur with the MEMS

components at random times. Figure 87 shows the IMU stabilization code when the sensitivity threshold

was not used and Figure 88 shows a plot of the IMU stabilization code when the sensitivity threshold was

implemented. Figure 87 and Figure 88 were gathered in close to real time by having the Arduino send

over the coordinates of the roll and tilt servo through serial into MATLAB. The green line represents the

roll angle and the blue line represents the tilt angle in Figure 87 and Figure 88. After running several tests,

the average roll jitter was 7 degrees (peak-to-peak) and the average tilt jitter was also 7 degrees (peak-to-

peak).

Angle Data
Mean

(1st moment)

Standard Deviation

(2nd moment)

Skewness

(3rd moment)

Kurtosis

(4th moment)

CST Roll Angle 90.097 0.542 6.628 604.813

CST Tilt Angle 89.908 0.503 4.566 544.674

KST Roll Angle 90.050 2.056 -1.850 84.351

KST Tilt Angle 89.831 2.180 -0.052 61.246

109

Figure 87: IMU Roll and Tilt with Jitter

Figure 88: IMU Roll and Tilt with no Jitter

110

Stabilize Around One Point

After complementary filters were implemented to return an X (roll) and a Y (tilt) value based off

of the combined data from the accelerometer and gyro, a function was written to stabilize around any

given point. The IMU would start at a home position of 0 degrees tilt and 0 degrees roll and any roll of

the IMU to the left would make turret the roll right (to cancel out the movement of the IMU), any IMU

roll to the right would make turret the roll left, any IMU tilt up would make turret the tilt down, and any

IMU tilt down would make turret the tilt up. A roll and a tilt of the IMU could be done simultaneously in

order to simulate various turbulence effects or UAV banking turns the Goblin could encounter while

flying.

6.8. Summary

The purpose of this section was to describe the results of the various software modules that were

designed for this project: serial commands, scans patterns, and IMU-based stabilization. The following

section describes the performance of the mechanical assembly and turret control software.

111

Section 7. Discussion

7.1. Mechanical Component Breakdown

Each iteration of the sensor turret was composed of six major parts: the roll mechanism, the tilt

mechanism, the roll ring, the turret housing, the sensor housing, and the nose cone. This section discusses

the development of each major component as well as the strengths and weaknesses of the final

component.

7.1.1. Sensor Housing

The sensor housing is a key component of the sensor turret. As the design progressed, the sensor

housing went through several iterations, each of which was evaluated using the same static simulation in

SolidWorks to estimate load forces corresponding to the weight of each sensor, shown in Table 20.

Table 20: Simulation Load Forces for Each Sensor

Sensor Weight (according to website) Modeled Force (𝐹 = 𝑚 × 9.8)

Jenoptek DLEM SR [13] <40 g 0.4 N

FLIR Quark [25] 28 g 0.3 N

Micro 640CSX SWIR [18] 60g + 45g*=105g 1 N

A static simulation of the 2013 sensor housing is shown in Figure 89, displacement on the left and

stress on the right. While this sensor housing would not have worked for this project, as another sensor

was added, the original housing was analyzed as a comparison to the iterations developed for this senior

project. The maximum displacement caused by the sensor load was 3.566e-3 mm and the maximum stress

was 119,838 N/m2.

Figure 89: 2013 Sensor Housing SolidWorks Static Simulation (Displacement Left, Stress Right)

112

The first iteration of the sensor holder was designed to hold all three sensors side by side. Figure

90 shows a static analysis performed in SolidWorks on this first sensor housing; the left model shows the

displacement of the sensor housing and the right shows the stress in the part due to the sensor load. The

maximum stress experienced by the part under the loads stated above was 505435 N/m^2 and the

maximum displacement caused by the loads was 8.65 × 10−3mm. While the maximum stress and

displacement for the load was acceptable, the spaces for the sensors were too small.

Figure 90: Iteration 1 Sensor Housing SolidWorks Static Simulation (Displacement Left, Stress

Right)

The second iteration of the sensor housing is shown in Figure 91. The housing has much thinner

walls than the previous housing in order to keep the same configuration of sensors while still fitting inside

the small (4.875”) diameter of the turret housing. Figure 91 shows the displacement (left) and the stress

(right) caused by the loads in simulation. The stress and displacement were much higher in the iteration,

though the sensors did fit in the housing. The maximum displacement caused by the load was 1.88e-1 mm

and the maximum stress in the part was 1239130 N/m^2. One of the major problems with this iteration

was the wall thickness. The narrowest wall was 0.04 inches thick, which did not make for a very solid

structure to hold the sensors or to protect them from impact.

Figure 91: Iteration 2 Sensor Housing SolidWorks Static Simulation (Displacement Left, Stress

Right)

113

In the third iteration of the sensor housing, the sensors were rearranged into a different

configuration in order to allow a larger SWIR lens to be used and to accommodate thicker walls. Figure

92 shows the static simulation for the part with displacement from the load on the left and stress from the

load on the right. The maximum displacement in the part was 7.74e-2 mm and the maximum stress in the

part was 729887 N/m^2, which was a significant improvement from the previous sensor housing.

Figure 92: Iteration 3 Sensor Housing SolidWorks Static Simulation (Displacement Left, Stress

Right)

In the fourth and final iteration of the sensor housing, the walls from the previous housing were

increased to 0.125 inches from 0.08 inches to strengthen them and in preparation for machining the part

out of aluminum. As shown in Figure 93 this dramatically reduced the displacement in the part caused by

the sensor load, shown on the left, as well as the stress, shown on the right. When 3D printed out of ABS

plastic, the maximum displacement was 4.55e-3 mm and the 162428 N/m^2.

Figure 93: Final Iteration Sensor Housing (ABS) SolidWorks Static Simulation (Displacement Left,

Stress Right)

Figure 94 shows the same static simulation of the sensor loads on the sensor housing machined

out of aluminum. This did not significantly reduce the stress, which was 166233 N/m^2 for the aluminum

sensor housing, though it did reduce the displacement which was 1.34e-4 mm. It is likely that in practice

there would be more significant difference between the displacement and stress caused in the parts as the

SolidWorks simulation assumes the part is solid ABS, as opposed to hollow 3D printed ABS.

114

Figure 94: Final Iteration Sensor Housing (Aluminum) SolidWorks Static Simulation

(Displacement Left, Stress Right)

Figure 95 shows a comparison of the maximum displacement and stress in each of the sensor

housings. While the 2013 and the first iteration had relatively low stress and displacement, neither of

these housings would fit all of the sensors. The second iteration had the highest maximum stress and

displacement caused by the sensor loads, and as the design progressed the maximum stresses and

displacements decreased. In the final iteration, the aluminum housing, the maximum stress increased

slightly, but the maximum displacement decreased.

115

Figure 95: Maximum Stress and Displacement due to Sensor Load in Each Sensor Housing

Iteration

The chart in Figure 95 shows the improvement of the sensor housing as the design developed.

The first two iterations are connected with dashed lines to indicate that these sensor housings were not

able to hold all three sensors. The 2013 design, while it did have the lowest maximum stress and

displacement, was not acceptable for this project as it was only designed to fit two sensors. In the

simulation of the 2013 sensor housing, only the loads from the rangefinder and the LWIR camera were

used, as there was no space for the SWIR camera in the model.

What is surprising about the differences between maximum stress and displacement between

iterations is the relatively small difference between the final sensor housing made out of ABS vs.

Aluminum. However, as this is only a simulation, it does not take into account the production methods

used. The 3D printing process produces a part with many layers which would be weaker than a housing

produced from a solid material such as aluminum. The ABS version of the housing is also hollow, build

using only two outer layers of plastic and a small amount of infill.

7.1.2. Turret Housing

The turret housing consisted of a part or several parts which held the roll ring in place as it was

driven by the roll servo. The 2013 design utilized a keyway in order to allow the roll ring to be inserted

and removed from the turret housing. Figure 96 and Figure 97 show the effect of a 0.5 N-m torque on the

grove for the roll ring. The torque load caused a maximum displacement of 5.78e-1 mm and a stress of

116

3,566,884 N/m^2. The keyway caused the turret housing to deform significantly so that the roll ring was

not held tightly and could be in danger of sliding out.

Figure 96: Displacement caused by a 0.5 Nm Torque applied at the groove

Figure 97: Stress caused by a 0.5 Nm Torque applied at the groove on the 2013 Turret Housing

Figure 98 and Figure 99 show the locking rings design for the turret housing under the effects of

the same torque. The maximum displacement in this design was 1.755e-5 mm, and the maximum stress

was 10,267 N/m2, which was a significant improvement from the previous turret housing. However, it

117

was found that the slots used to lock the rings together broke easily during assembly, so another design

was necessary.

Figure 98: Displacement caused by a 0.5 Nm Torque applied at the groove on the Locking Rings

Turret Housing

Figure 99: Stress caused by a 0.5 Nm Torque applied at the groove on the Locking Rings Turret

Housing

118

Once it was determined that the turret housing should consist of fewer pieces, the turret assembly

was redesigned to be one piece. The simulated displacement, Figure 100, and stress, Figure 71, caused in

the part by the same 0.5 Nm torque are higher than those in the locking rings design, but still significantly

better than those in the initial turret housing design. In testing, this one piece design was far easier to

assembly than the previous designs, and simplicity was worth the tradeoff for increased maximum

displacement and stress.

Figure 100: Displacement caused by a 0.5 Nm Torque applied at the groove on the Final Turret

Housing

Figure 101: Stress caused by a 0.5 Nm Torque applied at the groove on the Final Turret Housing

119

7.1.3. Tilt Mechanism

The final tilt mechanism for the design succeeded in reducing complexity, both in the number of

components and the amount of calculation and calibration required and achieving the required range of

motion.

Table 21 shows a breakdown of the parts and fasteners needed for each mechanism.

Table 21: Parts Required for Each Title Mechansim

Mechanism Parts

Complex 6 parts, 2 fasteners

Four bar 4 parts, 3 fasteners

Geared 2 parts, 2 fasteners

The large number of parts required by the complex motion mechanism made both production and

assembly complicated. The fasteners in the four bar mechanism were problematic as they were constantly

becoming loose and slipping or falling out. The final geared mechanism was simpler in both number of

parts and fasteners, reducing the number of points of failure in the design: it consisted of two gears, one

stationary and held by two screws and one specially ordered gear which fit on the end of the standard

spline.

The geared mechanism was also the most simple for calculation of sensor housing angle. The

complex mechanism would have required a lot of modeling and math which due to its large number of

parts and possible points of failure would likely not have been very accurate. A look up table of values

may have improved the accuracy but would likely have required a lot of calibration and testing. Similarly,

the four bar mechanism, while easy to model in MATLAB would have required the micro controller to

perform complicated trigonometric equations every time the tilt angle needed changed. The math to

calculate the necessary servo values for desired output sensor housing angles was easy to implement on

the micro controller as the servo angle only needed to be offset by the servo position at the 0 degree

position and scaled by the gear ratio of the gear train, all of which are simple math for a micro controller.

7.1.4. Roll Mechanism

The roll mechanism for the sensor turret underwent one major change during the design process;

originally driven by a position servo, the mechanism was later adapted to use a continuous turn servo. The

position servo was originally chosen due to its simplicity in that it did not require a separate sensor for

feedback. However, the constraints on the gears used in the system due to available gears and to

maximum allowable gear diameter made the position servo system infeasible.

While it added complexity by adding another sensor for feedback, the continuous turn servo

allowed the mechanism to reach the desired range of motion for the mechanism. As described in Chapter

5, the resolution of the mechanism was about 5 encoder ticks per degree, so the mechanism could be

made more precise by implementing measurement of roll angles down to a fifth of a degree.

120

The accuracy of this mechanism was improved in software by programming the servo to always

turn a few encoder ticks farther than necessary and them turning back when the mechanism was moving

clockwise. This ensured that the mechanism always reached a position from the counterclockwise

direction, eliminating the effects of the hysteresis on accuracy.

7.1.5. Roll Ring

The roll ring, which includes the rolling ring itself as well as the brackets to hold the sensor

housing, improved in static stability over time.

In the first iteration the brackets were mounted in slots and held in position by the rack and

pinion. Figure 102 shows a static simulation of the turret housing at the lowest tilt position with

displacement on the left and stresses on the right. The maximum displacement caused by the 2N

simulated sensor load was 0.27 mm and the maximum stress caused was 2.60e6 N/m^2. This stress and

displacement was high due to the rather thin and delicate brackets and rolling bar.

Figure 102: Roll Ring, Iteration 1, SolidWorks Static Simulation, 2N Total Force (Displacement

Left, Stress Right)

In the 3rd iteration, once the four bar mechanism was implemented, the sensor housing was held

by stationary brackets mounted to posts in the roll ring, the maximum displacement and stress are shown

in Figure 103. The maximum displacement caused by the same 2N sensor load was reduced to stress was

reduced to 4.9e-2 mm and the maximum stress was reduced to 1.2e6 N/m^2.

121

Figure 103: Roll Ring, Iteration 3, SolidWorks Static Simulation, 2N Total Force (Displacement

Left, Stress Right)

 In the 4th iteration the roll ring was changed so that the brackets were built into the roll ring in an

effort to reduce the number of pieces in the design. However, as shown in Figure 104, the maximum

displacement and stress were not significantly decreased, the maximum displacement increased to 5.9e-2

mm (a change of +22% from iteration 3) and the maximum stress decreased to 1.0e6 (a change of -15%

from iteration 4).

Figure 104: Roll Ring, Iteration 4, SolidWorks Static Simulation, 2N Total Force (Displacement

Left, Stress Right)

In the later iterations with the geared tilt mechanism used a roll ring with brackets on either side

of the sensor housing. A gear with hole in the middle was attached to either bracket and a cylinder on

either side of the sensor housing was inserted into the gear. Figure 105 shows a static analysis of this

mechanism, for which the maximum displacement caused by the 2N sensor load was 2.7e-3 mm and the

maximum stress was 9.9e4 N/m^2, a significant improvement from previous iterations. Another benefit of

this setup was that there were no additional fasteners required to mount the sensor housing.

122

Figure 105: Roll Ring, Iteration 7, SolidWorks Static Simulation, 2N Total Force (Displacement

Left, Stress Right)

Figure 106 shows the change in the maximum displacement and stress in the part over iterations

due to the same 2N sensor load. Both displacement and stress decreased significantly by the end of

development, though displacement did rise between iterations 3 and 4. By the end of development, the

roll ring was very sturdy and could easily hold a heavier sensor load if, for example, the SWIR lens

weight changed significantly.

Figure 106: Maximum Stress and Displacement due to Sensor Load in Each Roll Ring Iteration

7.1.6. Nose Cone

Finally, the rotating nose cone increased the field of view of the sensors by allowing the sensors

to see out of the aircraft despite roll angle. In previous designs when the nose cone was stationary the

cameras would be blocked for part of the roll range. The rotating nose cone design allowed the window of

the covering to continuously move with the sensors without requiring another mechanism as it was

123

attached to the roll ring. An extension of this improvement would be to design a space efficient

mechanism to open and close the window according to the tilt mechanism. There would be several

challenges to this extension, including the shape of the nose cone and the lack of space for additional

servos and mechanisms.

7.2. Control Software Discussion

This section describes the development of the software, the challenges faced while implementing

each major module, as well as the strengths and weaknesses of the final modules.

7.2.1. Point-to-point movement

The point to point movement via serial commands did not work as desired at first. The roll servo

would move and then the tilt servo would move, instead of both servos moving simultaneously to achieve

fluidic motion. Interrupts were needed in order to achieve the desired smooth servo movement as well as

create the specific delay in between each servo position change to achieve the desired servo speed change.

The complicated process of parsing the serial commands into servo commands was addressed by creating

a specific format for serial commands, as described in the Control Software Results section. The

command format developed (a numerical value followed by a letter indicating the command) was tested

when the code was used for integration. One partner developed the command line interface and the other

used the interface in testing. While it took some time to learn the commands, the commands were

generally straight forward and easy to pick up with few errors.

Several fail safes were added to the code to ensure that user error did not cause damage to the

turret. If the user entered an angle that was larger than the maximum angle the servo could move to

(which was 180 degrees in the test turret servos), the program limited the angle to the preprogrammed

maximum angle. Also, if the user entered an angle that was smaller than the minimum angle the servo

could move to (which was 0 degrees in the test turret servos), the program limited the angle to the

preprogrammed minimum angle.

7.2.2. Scans

After a point to point movement command structure was developed, we also developed a

structure for scan commands. This involved parsing a string of words (as opposed to just a single letter

command in the serial commands point-to-point program module) and 2 parameters for each of the scans,

separated by a comma. The parameters were necessary components of the scan structure, as the ability to

change certain bounds of the scans (such as the radius of a clover scan and the number of leaves of a

clover scan), would allow the scan module to address many situations the UAV could encounter while

flying.

As with any new piece of software, there was a learning curve in order to use the scans program

module because there was a certain order that the scan command needed to be entered into the Arduino

Serial Monitor. In order to help the user to remember the order of parameters, print statements were used

to remind the user of the correct format.

124

The most challenging part of developing the scan module was modifying the parametric

equations of the spiral and clover scans in order to only change 2 values in each of the equations to create

the desired scan (i.e. in order to get the radius and number of leaves for a clover to change). Several

previous equation attempts were not successful in producing the desired scan by always changing the

same variable. For example, an older clover scan equation might have produced a clover scan of 2 leaves

successfully and was capable of producing clovers with different radii, but the equation would not be able

to then produce a clover scan of 4 leaves. A separate equation could have been made to create a clover

scan with 4 leaves, but in order to optimize the size and efficiency of the code, we wanted to find one

equation that could work for a clover with any number of leaves with any radius. We also found a similar

equation for the spiral scan which also proved very useful when programming the scans.

The scans program module was versatile enough so that any new set of x and y parametric

equations could be added in order to make the turret move in almost any preprogrammed pattern. For

example, the equations for a sine wave could be implemented in the code and then the turret would be

able to perform a sine wave scan.

The scans program module also limited the servo angles to the preprogrammed maximum and

minimum angles of the turret (180 degrees and 0 degrees, respectively, in the test turret) so that the servos

did not try and move outside of that range and potentially damage the turret set up. For example, shown in

Figure 107, if the clover scan started close to the edge of the lower limit of the roll servo (i.e. 0 degrees),

then the roll servo would stop at the 0 degree positon and the tilt servo would travel straight up along the

0 degree roll servo position if the equation returned any values less than 0 degrees. The shape of the

clover scan would no longer be a round leaf, but the turret would remain undamaged.

125

Figure 107: Clover Scan Showing an Instance when the Calculated Roll Angle is Less than the

Preprogrammed Lower Limit of the Roll Servo (0 Degrees in this Case)

7.2.3. IMU

Based on the results from the tests involving a complementary and Kalman filter (described in

Section 6: Software Results), a complementary filter was chosen to be used to accurately combine the

accelerometer angle readings and the gyroscope readings. The complementary filter was more accurate

(i.e. produced fewer random values) than the Kalman filter when the IMU was stationary and the

complementary filter also produced more values than the Kalman filter, representing that the

complementary filter has a larger output bandwidth.

Table 19 shows the calculations for the 4 moments of distribution which are typically used to

describe data readings from a sensor in order to compare sensors. The mean (1st moment) for each of the

tests were all close to the desired angle which was 90 degrees for the tests, which means that each filter

was capable of producing the desired angle for the majority of the calculations.

The complementary filter tests had a smaller standard deviation (2nd moment) in both roll and

tilt, than the Kalman filter, meaning that the Kalman filter produced more angle calculations farther away

from the mean of the results, which it not a desirable trait for a filter that will be used in a stabilization

system.

The skewness (3rd moment) of the complementary filter was larger than the skewness of the

Kalman filter meaning that the Kalman filter data results were more symmetric about the mean for that set

126

of data, than the complementary filter’s data results. The large skewness for the complementary filter

could be due to the data plot resulting in a larger spike of values than the Kalman filter. Since the

complementary filter data spike was so narrow, a slight shift to the left or the right (due to values that

weren’t exactly equal to the desired value) would cause the symmetry around the mean to be greatly

changed thus greatly increasing the absolute value of the skewness. A positive skewness means the peak

value of data results lies to the left of the mean and a negative skewness means the peak of data results

lies to the right of the mean. A skewness of 0 represents a symmetric bell-shaped curve, with the majority

of the results being the mean of the data.

For all of the tests, the kurtosis (4th moment) values of the complementary filter test results were

also larger than the kurtosis values of the Kalman filter results. This means that the slope (rate of change)

of the standard deviation concentrated around the mean is higher for the complementary filter than the

rate of change of the Kalman filter’s standard deviation. It makes sense that the complementary filter

kurtosis values for both the roll and the tilt were larger than the Kalman filter kurtosis values because the

complementary filter had a smaller standard deviation (more data points that are closer to the mean), so

there was a smaller area to notice a rate of change over, compared to the Kalman filter. Therefore, any

small rate of change in the standard deviation would greatly increase the kurtosis of the complementary

filter data.

7.2.4. Improvements

For improvements, the IMU program should be integrated into the scans program module so that

the turret can stabilize as scans are being performed. In our development process, due to the limited time

for the project, we had to stop the integration of the scans and IMU modules because the encoder with a

continuous rotation servo had a higher priority, since the final assembly would not be able to move if the

encoder and continuous rotation servo code was not completed. Also, if the servos had a finer resolution

(all the position servos we used had a 1 degree resolution, besides the encoder and continuous rotation

servo set up which had 0.20 degrees resolution per step) then more precise servo control and scans could

be accomplished. The serial commands and scan commands still need to be interfaced with MATLAB in

order to eventually control the turret with the target tracking software that uses the MATLAB Computer

Vision Toolbox.

7.3. Integration Tests

The purpose of the integration tests was to first, to check that the sensor turret met the

requirements established at the start of the project. Second, the tests ensured that the control software

written on the test turret worked on the custom designed sensor turret.

The results of the first integration test showed that the accuracy and repeatability of the sensor

turret was below the required 1 degree for the tilt mechanism. There was an average of 5.27 degrees of

error in accuracy during this test, and the average variance between the results of different trials was 3.13

degrees. However, the repeatability decreased to 0.34 degrees when readings were only compared to

readings from motions in the same direction, as described in Section 5. This pointed to a hysteresis, which

we determined could be solved in software by overshooting the target tilt when moving up, and then

127

readjusting the position so that the mechanism always reaches the target point moving down. The

software solution to the hysteresis was picked as a mechanical solution would have required additional

parts, which increase the weight of the system, or additional servos, which increase the power.

For the tilt mechanism, the changes to eliminate the hysteresis did not significantly improve the

repeatability; the changes actually increased the average variance between readings of opposite direction

movements to over 3 degrees from 2 degrees in the first iteration test. Rather than pursue another software

fix for the hysteresis, we decided to look at the calibration of the mechanism.

For the first integration test, the position of the tilt servo was calculated using the known gear

ratio between the servo gear and the bracket gear as well as the known offset of the tilt mechanism (i.e.

the servo position which produced a 0 degree output position. The gear ratio was 23/30, and the offset

was 10 degrees of servo position, so the equation used was.

𝑆𝑒𝑟𝑣𝑜𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (
23

30
) × 𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑛𝑔𝑙𝑒 + 10

Rather than use this ideal calculation, we performed a calibration test. We moved the tilt

mechanism through the 30 to 90 degree range at increments of 10 degrees, recording the position of the

laser pointer, as described previously, to calculate the resulting angle. Shown in Figure 108, we plotted

the servo values and output angles using Excel and found the best fit line of the points.

Figure 108: Test Data for Tilt Mechanism Calibration

This equation greatly improved the accuracy for the mechanism for the second integration test,

from an average of 5.27 degrees of error to an average of 0.53 degrees of error. However, the repeatability

for opposite direction motion only improved slightly from the hysteresis eliminating code. This method of

y = 1.4752x + 7.0653
R² = 0.9901

0

20

40

60

80

100

120

140

160

0.00 20.00 40.00 60.00 80.00 100.00

Se
rv

o
 P

o
si

it
o

n

Output Angle

Calibration Test for Tilt Mechanism

Calibration Data

Linear (Calibration Data)

128

calibration should be used for decreasing the average error, and more testing should be done with the

overshooting and hysteresis eliminating code.

Preliminary testing with the roll mechanism was performed before the second integration test in

order to determine what the expected error would be and whether the overshoot technique should be

implemented. This testing showed that the roll mechanism had acceptable accuracy (average of 0.75

degrees of error), though the repeatability was high (an average of 1.42 degrees of variance), and the

mechanism had the same hysteresis problem as the tilt mechanism (when comparing only motions from

the same direction, the average variance was 0.46 degrees) with no overshoot. When overshoot was

implemented, the accuracy improved to 0.73 degrees of average error and an overall variance of 0.18

degrees of average variance. These tests were performed only on increments of 10 degrees on a range of

30 to 90 degrees roll motion.

During the second integration test, the accuracy was high, but the repeatability was not as high as

was expected from the preliminary tests. The average accuracy for the 5, 10, and 15 degree increment

tests was 0.44 degrees, and the average overall variance was 1.10 degrees. While the overshoot did

drastically improve the repeatability for 10 degree increment motions, the repeatability for other

increments was not as good. This could mean that the overshoot amount should be dependent on the total

change in motion. Further testing should be performed on the roll mechanism to determine the best

overshoot amount to have accurate and precise point to point motion.

7.4. Summary

The purpose of this section was to present conclusions about the final mechanical design and

control software for the sensor turret. Each major component was discussed and the improvements over

time identified. Areas for expansion and improvement were also recognized.

129

Section 8. Conclusion
The goal of this project was to design and develop a sensor turret for the WILD Goblin UAV to

house three mission-specific sensors and orient those sensors according to a serial interface. The project

was divided into two parts, mechanical design and control software design, which were worked on

simultaneously. The software and hardware was integrated to provide one functional robotic system.

The turret control software was capable of adjusting turret positon and speed of the servos. A

home command, heartbeat command, and status command was also integrated into the code to increase

the functionality of the turret assembly when it is mounted into the WILD Goblin UAV. A scan program

was also created in the turret control software which allowed the user to enter a desired scan, either a

raster scan, a spiral scan, or a clover scan, as well as 2 parameters for each of the scans. An IMU, which

consisted of a tri-axial accelerometer and a tri-axial gyroscope, was successfully used to stabilize the

turret, which will eventually be used to decouple the sensors’ field of view (FOV) from the motion of the

flying UAV so the sensors stay locked onto the target in a robust manner.

The sensor turret itself was developed through a series of integrations and prototyped using

additive manufacturing capabilities available at MIT Lincoln Laboratory. The final turret assembly was

able to use the point to point and scanning software written for the test turret and demonstrate these

capabilities in several integration tests. The full range of motion of the turret exceeded the requirement for

the system, rolling 160 degrees and tilting 90 degrees, giving more functional capabilities to the final

product.

130

Appendix A. Datasheets
ADXL335 Triaxial Accelerometer Datasheet

131

L3G4200D Triaxial Gyroscope Datasheet

132

Appendix B. Gantt Chart

This Gantt Chart shows how the mechanical design process and turret control software design

process will be integrated. The mechanical design process will consist of at least two design iterations as

shown in the chart, each consisting of a Design, Prototype, and Test phase. The Software is developed

modularly, so as each module is completed the next is begun. The hardware and software will be

combined during the integration tests.

18-Aug 25-Aug 1-Sep 8-Sep 15-Sep 22-Sep 29-Sep 6-Oct 13-Oct 20-Oct

Design I

Prototype I

Test I

Design II

Prototype II

Test II

Turret Control- Scans

Turret Control- IMU

Turret Control- Encoders

Optical Target Tracking

Optomechanical Target Tracking

Mechanical

Software

Integration Test

Final Integration
Test

133

Appendix C. Requirements

ID Category Requirement Need Traceability

R01 Weight
The turret assembly without sensors shall

weight less than 17 ounces.

Limited battery life,

aerodynamics

R02 Size
The outer diameter of the turret assembly shall

be less than 5.375" in diameter.

Size constraint of sonobouy

used for launch.

R03 Size
The complete length of the turret assembly

shall be no longer than 5".

Size constraint of sonobouy

used for launch.

R04
Torque - Tilt

Platform

The torque supplied to actuate the tilt platform

shall be more than 10 oz-in, with a goal of at

least 20 oz-in.

Based on approximate

calculations of turning point,

center of gravity and weight

R05
Torque - Roll

Platform

The torque supplied to actuate the roll

platform shall be more than 20 oz-in with a

goal of at least 50 oz-in.

Based on approximate

calculations of turning point,

center of gravity and weight

R06
Speed - Tilt

Platform

The tilt mechanism will be able to tilt at a rate

of at least 15 degrees/second.
Mission parameters

R07
Speed - Roll

Platform

The roll mechanism will be able to roll at a

rate of at least 15 degrees/second.
Mission parameters

R08
Acceleration -

Tilt Platform

The tilt mechanism will be able to accelerate

at a rate of at least 15 degrees/second^2.
Mission parameters

R09
Acceleration -

Roll Platform

The roll mechanism will be able to accelerate

at a rate of at least 15 degrees/second^2.
Mission parameters

R10
Field of Regard

- Tilt Platform

The tilt mechanism shall be able to tilt at

minimum 45 degrees with a goal of 90

degrees. (Figure 2)

Identify objects of interest

directly below, identify aerial

obstacles

R11
Field of Regard

- Roll Platform

The roll mechanism shall be able to roll a

minimum of 90 degrees with a goal of 180

degrees. (Figure 3)

Maximize field of view of

sensors

134

R12 Sensor Capacity

The turret assembly shall be able to hold the

Jenoptik Laser Rangefinder, the Flir QUARK,

and the Sensors Unlimited MicroSWIR.

Required sensor payload,

established in Phase I

R13 Accuracy

The accuracy of the mechanism should be 1

degree (the actual position of the turret should

be within 1 degree of the specified position).

Mission parameters

R14 Repeatability
The repeatability of the mechanism should be

0.1 degrees.
Mission parameters

135

Appendix D. Verification Plan

ID Category Requirement Verification Test

R01 Weight
The turret assembly without sensors

shall weigh less than 17 ounces.
Scale available in TOIL

R02 Size

The outer diameter of the turret

assembly shall be less than 5.375" in

diameter.

Measurement of body

R03 Size
The complete length of the turret

assembly shall be no longer than 5".
Measurement of diameter

R04
Torque - Tilt

Platform

The torque supplied to actuate the

tilt platform shall be more than 10

oz-in, with a goal of at least 20 oz-

in.

Calculate expected torque. Find stall

torque using spring scale. Attach spring

scale to one of the nose mounting holes.

R05
Torque - Roll

Platform

The torque supplied to actuate the

roll platform shall be more than 20

oz-in with a goal of at least 50 oz-in.

Calculate expected torque. Find stall

torque using spring scale. Attach spring

scale to one of the nose mounting holes.

R06
Speed - Tilt

Platform

The tilt mechanism shall be able to

tilt at a rate of at least 15

degrees/second.

Options: 1. Use a timer and do several

trials. 2. Limit switches and software

timer. 3. Use the already implemented

gyro. Mount very close to the turning

center of the tilt motion.

R07
Speed - Roll

Platform

The roll mechanism shall roll at a

rate of at least 15 degrees/second.

Options: 1. Use a timer and do several

trials. 2. Limit switches and software

timer. 3. Use the already implemented

gyro. Mount very close to the turning

center of the roll motion.

R08

Acceleration

- Tilt

Platform

The tilt mechanism shall accelerate

at a rate of at least 15

degrees/second^2.

Use accelerometer already implemented.

Mount acceleromter close to turning

center of tilt platform. Look at the

acceleration response using serial and

MATLAB.

136

R09

Acceleration

- Roll

Platform

The roll mechanism shall accelerate

at a rate of at least 15

degrees/second^2.

Use accelerometer already implemented.

Mount acceleromter close to turning

center of roll platform. Look at the

acceleration response using serial and

MATLAB.

R10

Field of

Regard - Tilt

Platform

The tilt mechanism shall tilt at

minimum 45 degrees with a goal of

90 degrees. (Figure 2)

Use mounted laser pointer and measure

change in position and convert to angle

R11

Field of

Regard - Roll

Platform

The roll mechanism shall roll a

minimum of 90 degrees with a goal

of 180 degrees. (Figure 3)

Use mounted laser pointer and measure

change in position and convert to angle

R12
Sensor

Capacity

The turret assembly shall hold the

Jenoptik Laser Rangefinder, the Flir

QUARK, and the Sensors Unlimited

MicroSWIR.

Put sensors in camera housing. Check

for appropriate fit.

R13 Accuracy

The accuracy of the mechanism

should be 1 degree (the actual

position of the turret should be

within 1 degree of the specified

position).

Use the FoR test. Calculate "ideal"

reading and compare to actual data.

Repeat 20 times.

R14 Repeatability
The repeatability of the mechanism

should be 0.1 degrees.
Repeat FoR Test 50 times.

137

Appendix E. TOIL Capabilities
The TOIL has tools for both additive and subtractive manufacturing, and each of these machines

presents several material options. The 3D printers in the TOIL use two materials: ABS (Acrylonitrile

Butadiene Styrene) or PLA (Polylactic Acid), each of which is useful for its own purpose. ABS requires a

heated chamber to reduce warping and cracking which can destroy the part while PLA is not adversely

affected by temperature change. ABS is also more flexible and stronger than PLA, which is more brittle

and stiff. Sheet acrylic is also available for use on the laser cutter. Acrylic is not as easily deformable as

ABS. Aluminum can be machined in the TOIL and would be the most reliable material for a long-term

continuous use WILD Goblin sensor pod.

The TOIL has three different types of 3D printers available for additive manufacturing. The

Stratasys Dimension printer produces ABS parts and uses a support material during production. The

support material is removed using a water based solution in a heated tank. The use of support material

makes the Stratasys ideal for complicated pieces with overhangs, holes, or moving pieces. The printer

also manufactures the piece in a heated build chamber, which is ideal for additive manufacturing with

ABS. While it is the most reliable machine and has the best product, the Stratasys is not always available

as it is used for many projects by Lincoln Laboratory staff. Also, the process of removing support

material can take hours to days for a very complicated piece with a lot of support material.

The TOIL also has several models of the MakerBot 3D printers: the MakerBot Replicator 2X, the

MakerBot Replicator 5th generation, and the MakerBot Replicator Z18. The Replicator 2X prints in ABS

while the Replicator 5th generation and Replicator Z18 use PLA. The MakerBot software has an option to

use the ABS and PLA to construct supports for the part which can be removed after printing to allow for

manufacturing overhangs. Four of these machines are available in the TOIL, and at least one is usually

available for use despite the machines being shared and occasional maintenance. While the MakerBots

are good for rapid additive manufacturing, they do have a relatively high failure rate which makes their

use hit-and-miss.

Finally, a Cubify 3D printer is available. The 2013 senior design project team used a Cubify

printer due to proximity to their workplace. It has been observed that this machine has a much coarser

product, making it less ideal for detailed parts. It is also very difficult to remove items from the bed of the

printer. In addition, the Cubify does not seem to manufacture overhangs well.

The laser cutter can be used for subtractive manufacturing. The machine can cut parts out of sheet

acrylic, wood, cardboard, or many other flat materials. The laser cutter is very quick and accurate, but the

tolerances of the laser beam can be difficult to work with when making a part with precise dimensions,

such as a gear.

The machine shop is also available for use with prescheduled appointments with the lab manager.

The machine shop has a manual and CNC milling machine, a manual and CNC lathe, a drill press, and a

band saw. Time and skill are the constraints with the machine shop as the space is not always available.

While machining aluminum parts would be the most desired for a final WILD Goblin sensor pod, the

time constraints of the project may render such parts infeasible.

138

Appendix F. Executive Summary

WILD Goblin Sensor Pod Design,

Development, and Integration

Executive Summary

December 15, 2014

Submitted by:

Lillian Walker, lgwalker@wpi.edu, WPI box number: 1421

Daniel Zaleski, drzaleski@wpi.edu, WPI box number: 1909

Advised by:

WPI Advisor: Professor Fred Looft

MIT Lincoln Laboratory Supervisor: Bryce Remesch

139

Introduction

The Wing and Internal Launched Deployed (WILD) Goblin is a small unmanned aerial vehicle

(UAV) project in development at MIT Lincoln laboratory that will be used to perform autonomous

reconnaissance. The WILD Goblin will utilize a laser rangefinder, a short-wave infrared (SWIR) camera,

and long-wave infrared (LWIR) camera in order to perform target tracking and identification.

The purpose of this capstone project was to design a sensor turret system that could house the 3

sensors the WILD Goblin will utilize in its missions (laser rangefinder, SWIR camera, and LWIR camera)

as well as orient this specific set of sensors in a two degree of freedom (pitch and roll) gimbal mechanism

using software we developed to control the turret.

Previous student groups have worked on parts of the WILD Goblin hardware and software. A

2013 WPI senior project team prototyped a sensor turret that held only 2 sensors and met some of the

requirements of the system, showing that the project was feasible and providing a basic design for the

turret mechanism. This team also developed software to move the turret through its range given

coordinates through a MATLAB interface and to track targets using the MATLAB Computer Vision

Toolbox.

Design of the Sensor Turret

 The design of the sensor turret came about through several iterations which are described

in Table 22. Each iteration consisted of six major components, each of which is described in the table.

The turret housing is the piece or assembly of pieces which holds all of the other components produced

for this project inside of the body of the Goblin. The sensor housing holds the three sensors, the Jenoptik

Laser Rangefinder, the MicroSWIR Camera and the FLIR Quark. The Roll Ring fits into a groove of

some sort and is rotated by the roll mechanism. The Roll Mechanism, located in the turret housing,

consists of a servo and a gear train and outputs the roll motion, one of the two degrees of freedom of the

turret. The tilt mechanism outputs the other degree of freedom: tilt motion. The nosecone is responsible

for covering all parts of the sensor turret which do not need to be exposed.

140

Table 22: Integrations

Iteration Description of Item in Iteration Issues Found

Sensor Housing Roll Mechanism Tilt Mechanism Turret Housing Nosecone Roll Ring

1 Three pockets (one for each

of the three sensors).

Internal gear (70 teeth) driven

by pinion gear (10 teeth)

attached to a 180 degree

position servo.

Complex Motion. Rack gear

driven by a pinion on a micro

servo linearly actuates the

sensor housing vertically. As the

sensor housing raises or lowers it

rotates about a roll bar.

Retain 2013 senior project turret

housing. Cylindrical turret

housing holds all components

produced for the project. Fits

into the cylindrical body of the

Goblin. Holds roll ring. Keyway

in front of housing is used to

insert roll ring.

Cut in half to expose the

sensors. Anchored to the

Goblin Body, does not move

with roll or tilt mechanism.

0.2 inches thick. Pocket for

micro servo.

● Sensor Housing did not fit the

sensors.

● Roll Mechanism requires a 1:1 ratio to

reach the desired range of motion (180

degrees)

● Turret Housing: Keyway causes hold

on roll ring to be loose.

● Roll Ring: Servo collides with pinion

gear driving the roll mechanism

2 No Change Changed gear ratio of gear train

to be as close to 1:1 as certain

conditions would allow.

No Change Used two interlocking rings

which formed a grove when

locked together to hold the roll

ring. The rings straddle a ridge

in the existing Goblin body,

holding them in place.

No Change Ring was mirrored so that

the servo no longer collided

with the gears of the roll

mechanism.

● Sensors did not fit into the sensor

housing.

● Servo did not fit into th servo

housing, likely due to an inaccurate

servo CAD model.

3 Redesigned to fit sensors.

Thinned or removed walls

between sensors to

decrease size of the sensor

housing. Added screw

holes for all sensors.

Reduced the number of teeth

of the gear driving the internal

gear, decreasing the range of

the roll mechanism. Increased

the gear ration of the first two

gears by changing their pitch in

order to compensate.

Since larger pocket sizes for the

sensors made the sensor housing

longer, the roll rods would no

longer fit on either side of the

roll ring and so the tilt

mechanism was change.

Separated the tube side locking

ring into two pieces (roll servo

housing and tube side locking

ring).

No Change Removed micro servo

mount, leaving two vertical

bars to attach brackets to

hold the sensor housing.

●Tilt mechanism did not have full 90

degrees of motion.

● Roll ring collided with the gear

driving the internal gear, needed to cut

a piece out of the vertical bar of the roll

ring.

4 No Change No Change Resynthesized four bar linkage

to increase range of mechanism.

No Change No Change Added the brackets directly

to the vertical bars of the roll

ring rather than using

machine screws to attach the

brackets to the vertical bar.

● Too much modularity on the design

made the assembly very difficult to put

together.

5 Redesigned sensor housing

to allow more space for the

SWIR lens. Moved the Laser

Rangefinder to the top of

the housing.

No Change Redesigned tilt mechanism to

use gears rather than a four bar.

Combined the locking rings,

servo housing, and Goblin body

into one turret housing to

reduce the number of pieces in

the assembly.

Changed nose cone to

attach to roll ring rather

than Goblin body, allowing

the nose cone to rotate

with the roll mechanism.

Changed the cut of the nose

cone to cover more of the

opening.

Moved the brackets to attach

to the outside of the sensor

housing.

● Gears were all 3D printed and did not

mesh well.

● Gear attached to tilt servo collided

with nosecone in fully retracted

position.

6 ltered the sensor housing

to make it machinable by

increasing wall thickness

and adding fillets to inside

corners.

Changed from a position servo

to a continuous turn servo to

increase the range of motion of

the mechanism, which allowed

for a gear ratio other than 1:1.

Perfromed parts selection to

find aluminum gears for the

roll mechanism.

Changed the gear mounted on

the servo so that it did not

collide with the nose cone.

Change the ratio of the gears to

increase the torque of the

mechanism.

Changed the holes for the shafts

holding the gears for the new

gearing.

No Change Reduced the size of the

brackets.

● Roll servo does not line up well with

the shaft causing grinding and

vibration.

● gears for tilt mechanism are plasic

and do not attach well to the micro

servo.

141

 Figure 109: Final Turret, Front View and Figure 110: Final Turret, Top View shows the final

product, produced in TOIL using several 3D printers as well as the machine shop.

Figure 109: Final Turret, Front View

142

Figure 110: Final Turret, Top View

Software

 We programmed an Arduino Duemilanove using the Arduino IDE in order to control a

test turret that consisted of a roll and tilt 180 degree position servos. The test turret was able to perform

several actions based on command inputs from a user. Figure 111 shows an overall flowchart of the

software that was developed for the test turret.

 The roll servo and tilt servo positon were able to be changed

 The roll servo and tilt servo speed were able to be changed

 The status of the turret (including the current position and speeds of the servos as well if the

heartbeat was active or not) was able to be viewed by the user at any time

 A home command that moved the servos to a preprogrammed default home position was

implemented

 A scan mode was implemented.

143

Start

Initialize Setup

Move servos to
home positions

If new tilt or
roll position is

entered

If a new tilt or
roll speed is

entered

If the Scan
Mode is
enabled

If the home
command is

entered

If the status
command is

entered

If the
heartbeat

command is
entered

Send the word “BEAT” once
every second to let the user
know the system is on and

waiting for a command

Wait for serial
command

Stabilize around tilt
and roll position

Move servos to new
positions

Return the status of the turret
which includes the position of
the servos, the speed of the

servos, and whether or not the
heartbeat is active

Change the speed of
the servos to the

desired speed

Enter desired scan
command and
perform scan

Wait for Scan to
Complete

Do you want to
know the time at

which a point
occurred?

Type “none”
(without the quotes)

No

Is scan mode
disabled?

Type the desired point you
want to know the time of (roll

angle and tilt angle
coordinates)

Yes

No

Yes

Figure 111. Overall Flowchart of Turret Control

 The scans program module consisted of a raster scan, a spiral scan, and a clover scan. For

each of the scans, the user was able to change 2 parameters:

 For a raster scan, the user could change the height and width of the raster scan

 For a spiral scan, the user could change the end radius of the spiral as well as the density

(i.e. the number of revolutions) of the spiral

 For a clover scan, the user could change the end radius of the clover as well as the

number of leaves of the clover (e.g. a 2 leaf clover scan is a Figure-8)

144

Also, after each scan was completed, the program asked the user if they would like to know the

time at which any point occurred throughout the scan, and the program provided the coordinates of the

roll servo angle and tilt servo angle for the user to choose from. If the user wanted to know the time of a

certain point, then they entered the roll servo angle and tilt servo angle of that desired point and the time

at which that point occurred in the scan would be displayed. If the user did not wish to know the time at

which a certain pointed occurred, then they typed “none” (without the quotes) and then the user was able

to enter another scan with new parameters or disable scan mode.

During point-to-point movements, the turret was being stabilized by an inertial measurement unit

(IMU) composed of an accelerometer and gyro. The roll and tilt of the IMU was used to represent the

types of movements the UAV would encounter while flying (such as banking turns or turbulence). The

stabilization was implemented so when the IMU rolled or tilted one direction a certain amount of degrees,

the turret would move that same amount of degrees in the opposite direction to cancel out the IMU

movement.

After several tests, it was proven that a complementary filter produced fewer random angle

calculations than a Kalman filter when the IMU was stationary and the complementary filter also

performed more angle calculations in the same amount of time as a Kalman filter (meaning the

complementary filter has a higher output bandwidth than the Kalman filter. Thus, complementary filters

(one for roll angle and one for tilt angle) were used to accurately combine the accelerometer readings and

gyroscope readings in order to produce a resultant roll angle of the IMU and a resultant tilt angle of the

IMU.

 Conclusion

 This capstone project involved the design and development of a turret that housed 3 sensors and

integrated hardware and software to perform desired actions that will be useful for the WILD Goblin

UAV. The sensor turret was successfully able to reach the required positions and orientations using

software to control the roll and pitch mechanism.

145

Appendix G. B Term MQP Addendum

Introduction

This report describes the additional work that was performed at WPI following the completion of

the main body of this report: Design and Development of the WILD Goblin Sensor Turret at MIT Lincoln

Laboratory. The purpose of this extension is to provide MATLAB software which can be used to control

the sensor turret in response to video input. To accomplish this we used the MATLAB Computer Vision

System Toolbox library including a tracking script written during the 2013 senior project.

Background

There were two desired outcomes from this extension: interfacing the existing tracking software

with the turret commands and developing stabilization software. Tracking targets is essential for the

success of WILD Goblin missions. In order to keep targets of interest within the field of view of the

sensors, targets must be tracked mechanically. While the MATLAB software is appropriate for tracking a

target within a video, the target could leave the field of view of the sensor if the turret is not moved in

response to the motion of the target. For this reason, the turret must be moved in response to the video

feed.

The stabilization software is disconnected from target tracking; no turret commands result from

video stabilization. A target is usually acquired by the WILD Goblin without knowledge of its identity.

In order to determine what the UAV is looking at or tracking, the WILD Goblin will eventually have

identification software. This software will require relatively stable images of the target. While some

stabilization is provided mechanically through the use of the IMU and the embedded stabilization code on

the Arduino, MATLAB stabilized video would be beneficial for identification software.

The MATLAB tracking software was developed as an extension of the 2013 senior project. The

software presents a frame of the video to the user who selects a target by drawing a box around the target.

The script then tracks the target using feature matching; identifying features in the user-drawn bounding

box, finding those features in subsequent frames, and transforming the box in response to feature point

movement.

For this project, the video used for testing tracking was thermal video. We took several videos

representative of scenarios the WILD Goblin could be used in. Since vehicles are one of the objects to be

identified by the UAV, we took and tested with several videos of a car from various vantage points. We

also took videos with various backgrounds, as the temperature and color differences between target and

background could be stark or very similar, in which case the target could be more easily lost. Finally, we

also took videos with the camera moving, the target moving, and both the camera and target moving. This

covers situations in which the background is changing relative to the target and in which the frame is

changing with the background.

The following goals and deliverables were defined for this project addendum:

 Implemented video stabilization in MATLAB

 Wrote MATLAB code to compose turret commands to send to the Arduino based on video

input

 Collected several videos which can be used to test the tracking and stabilization code

Methodology

For this extension we used the MATLAB Computer Vision System Toolbox, which was available

at WPI. The software written is compatible with MATLAB 2013b and later.

146

Figure 112 shows a diagram of the proposed MATLAB code structure. The MATLAB software

consists of a tracker, code to convert the output of the tracker into turret commands, and a simulation to

show the MATLAB user. For the tracker, either the tracking script written in the 2013 project or a custom

tracker was used, depending on the performance of the 2013 tracker using available video. The code to

compose the turret commands from the tracker data created strings and sent the strings over serial to the

Arduino. The simulation consists of an output panel showing the location of the object being tracked, an

indication of the orientation of the turret, as well as other output which could be useful to the user.

Figure 112: MATLAB code structure for the Tracking software

The video stabilization code was created by modifying some MATLAB sample code (link in the

Appendix XXX with the code) involving video stabilization. The video stabilization code works by first

inputting a thermal .mov video into the MATLAB file that has a resolution of 640 by 480. Then once the

run button is pressed in MATLAB, the code finds the centroid of the hottest object, places an inner and

outer stabilization box around that centroid, and keeps track of how much that point moves with respect to

its previous frame.

For collecting thermal video, we used the FLIR One, available through our advisor, as we could

not bring the FLIR Quark 2.0 back to WPI for testing. This camera uses the iPhone 5S, which one team

member owned, to record videos and store them. Table 23 shows a comparison of the two devices.

147

Table 23: Comparison of FLIR One and FLIR Quark 2

Quality FLIR Quark 2 with

35mm lens (f/1.5)

FLIR One

Cost Unknown $349.99

Field Of View 18° x 14 ° [1]

Resolution 640 x 512 [1] 640 x 480 [2]

Frame Rate 60 Hz [3] 9 Hz [4]

Scene Range

Temperature

-40 – 320 °F 32 – 212 °F [2]

Sensitivity <50 mK at f/1.0 [5] 0.18 °F [2]

Results

The final MATLAB code consisted of three modules with some overlap. It was determined that a

display panel would be useful for operation so the simulation and turret command modules were not

completely separated. Figure 113 shows the final code structure.

Figure 113: Final MATLAB Tracking Software Structure

Testing showed that the 2013 tracking code was usable for our purposes. While that code was

originally tested with a video we did not have access to outside of Lincoln Laboratory, the program

worked well with a few adjustments made for the videos we collected with the FLIR One. We collected

videos inside and outside. Our inside videos used very hot objects, such as a lamp or soldering iron,

against a cold featureless background, such as a blank wall. The outside videos were taken on a field on

the WPI campus from which a road was visible.

148

The tracking software uses user input to identify a target in the first frame of the video. The frame

is displayed and the user draws a rectangle containing the target to be tracked. Feature points are

identified in the rectangle, or bounding box, and identified again in subsequent frames. The box is

transformed according to the identification of the feature points in order to track the object from frame to

frame. If too few feature points are identified, the target has been lost.

The command composition software uses the bounding boxes from the tracking code to pick a

point to aim the turret at. The MakeScene function takes the points for a bounding box and finds the

location of the center of the box. The pixel location is used calculate the roll and tilt positions of the

turret. Figure 114 shows the variables used to calculate the tilt and roll angles, or φ and θ.

Figure 114: Variables used to calculate Roll and Tilt

𝜃 = atan (
𝑦

𝑥
)

𝜃 =
360 × 𝜃

2 × 𝜋

𝑤 = √(𝑥2 + 𝑦2)

𝜙 = atan (
𝑧

𝑤
)

𝜙 =
360 × 𝜙

2 × 𝜋

The values of φ and θ, shown above, are inserted into a turret command string. The format of the

turret command is “φtθr” (ex. “30t60r”). This string is what would be sent over serial to the Arduino in

the actual turret setup.

The simulation software was originally intended to test the turret control and tracking software

since the turret was not available for testing, but could also be used for user or tester feedback. Figure 115

shows a screenshot of the final user feedback panel showing the simulation. The figure on the right is a

3D plot showing the frame the tracker is currently processing, the bounding box around the target, the

cylinder representing the turret, and a 3D line plot representing a laser. This shows that the turret is

149

aiming at the correct point in the image. On the right side of the window, the frame of the video currently

being processed as well as the bounding box is shown. Finally, on the lower right there is a textbox

showing the command string generated by the turret simulation.

Figure 115: User Feedback Panel

Stabilization

As an addition to the work completed on the project in the previous terms we also spent time

learning about and implementing video stabilization using MATLAB and the Computer Vision System

Toolbox. The program, located in Appendix XXX, is designed to take in any video file that is 640 by 480

pixels and convert it to 320 by 240 pixels. The two videos (shown in Figure 116 with the original

unstabilized video on the left and the stabilized video on the right) are then displayed in an organized

intuitive way, so the user can compare the original video to the resulting stabilized video.

150

Figure 116. Video Frame Displaying the Unstabilized Video (Left) with the White Stabilization

Boxes and the Stabilized Video (Right)

There are several variables in the MATLAB code that can be changed by the user in order to

influence the output stabilized video. The user is able to define the point to be stabilized around, the size

of the area that defines the stabilized point (inner stabilization box on the left in Figure 116), and how

much the stabilization boxes are allowed to move from one video frame to the following video frame and

still remain locked onto the same position to stabilize around (outer stabilization box on the left in Figure

116).

The program first reads in the desired frame of the video and marking the point to be stabilized

around, based on the previously mentioned variables. The video then continues to read in the video, frame

by frame, and compares the position of the small and large box in the current frame to the position of the

small and large box in the previous frame, using point feature matching. The difference in positions in the

large and small boxes is then displayed as an offset in the bottom of the left video in Figure 116 an x and

y position. The offset is how far the stabilized video needs to adjust either its horizontal or vertical

borders for an x or y offset, respectively, in order for the stabilized video to make the focus object (i.e. the

object or part of an object with the boxes around it) appear as if it was not moved in the video frame, thus

giving the appearance of a stabilized video.

 The next piece of code that was added was centroid finding code in order to focus on a similar

type of point between all of the videos, as opposed to choosing random points to stabilize around. Figure

117 shows a sample centroid finding image from the video frame displayed in Figure 116. We first load a

thermal video into the MATLAB program then convert the desired frame (i.e. the frame that will have its

centroid found) to a binary frame, consisting only of black and white. This makes the really bright spots

(i.e. the hot spots) show as white and the rest of the frame turn black (depending on the threshold the user

provides). Then the centroid finding code looks for white blobs that are at least a certain size, defined by

the user, and stores the x and y position of that centroid. We were then able to use this centroid vector’s x

and y positions to make the video stabilize around the center of the largest hot object that was in the

desired initial frame of the video. As the video progresses through its frames, the 2 stabilization boxes are

able to stay focused on the original hot object and stabilize around that object by shifting the border of the

stabilized video by the required horizontal or vertical offset.

151

Figure 117. Sample Centroid Finding Result

Figure 118 shows a demonstration of the video stabilization with 3 different video frames

overlaying each other. On the left of Figure 118, three distinct positions of the 2 stabilization boxes

focused on the same object in each frame are shown. In Figure 118 on the right, the resulting stabilized

videos are also overlapping, however the image that the 2 stabilization boxes were focusing around

appears unmoved in all three stabilized video frames, which validates video stabilization. Figure 119

shows the same three video frames that are in Figure 118, but instead of being overlapped, Figure 119

displays the video frames how they were produced from the MATLAB script. Figure 119 still

demonstrates the video stabilization because on the right side of Figure 119, one can see that the bright

(hot) object stays in relatively the same position between all 3 frames, while the stabilization boxes move

around with the rest of the frame in the left of Figure 119.

Figure 118. Overlapping Frames of a Video Showing the Stabilized Video Result on the Right

152

Figure 119. Video Frames Demonstrating Video Stabilization

In order to simulate the various scenarios the WILD Goblin will encounter while flying,

several test videos were recorded to display the robustness of this video stabilization. The first video

involved keeping the hot object stationary while only moving the camera (e.g. the video examples shown

in Figure 118 and Figure 119). This could represent the UAV flying over a stationary object, but still

needing to stabilize the video for better object identification.

 Another scenario for testing was keeping the camera mainly stationary and only moving the hot

object in the FOV of the camera. This scenario could represent the UAV flying, with its cameras aimed

almost straight ahead, and seeing some target of interest off in the distance that constantly changes

orientation, while the cameras stay stationary on the flying UAV. The process of video stabilization is the

same as the previous example, and Figure 120 shows the moving object, with the boxes focused around

the hottest part of the video frame on the left, and the resultant stabilized video on the right.

153

Figure 120. Initial Frame of Moving Object, Stationary Camera Test Video

Discussion

The tracking software will be useful for transforming video input into turret commands for the

Arduino. While some assumptions were made to compensate for the lack of equipment to test on, the final

product demonstrates using video feedback to control the turret.

The tracker picks a target based on user input; identifying the target in a frame by drawing a box.

While this is not what is intended for the final system, as the final system will autonomously identify

targets, it is useful for testing. The stabilization code does find the tracking target autonomously by

finding the hottest object in the frame and drawing a box around it, but the tracking was left as user input

in order to see what kinds of objects and features work well as targets.

Using multiple videos for testing containing different targets, we were able to see what made a

good target in a video. For example in the videos of the lamp, most of the feature points that were picked

were not associated with a particular color (that is, they were not associated with hot objects), but were

located on defined lines in the image or stark temperature contrasts. Figure 121 shows the points that were

picked when the lamp was selected as the target. The feature points are located anywhere but the bright

light bulb. This is likely because of the nature of FLIR One videos: they combine the visual and thermal

images in every frame into a hybrid video which contains the color scale of thermal and dark lines

indicating features of the video.

154

Figure 121: Feature Points on a Lamp

The main difference between the two video examples used for testing the stabilization code (i.e.

moving camera with stationary object and moving object with a stationary camera) is the change in the

background as video stabilization is being performed. In the first example (shown in Figure 118 and

Figure 119), everything in the FOV of the camera changed from frame to frame, including the hot object

of interest. In the second video (with the stationary camera, shown in Figure 120), the only changes

between the frames of the video were the position and orientations of the hot object. The rest of the frame

(i.e. the background) remained mostly unchanged throughout the video, thus showing the robustness of

the video stabilization in various scenarios that the UAV could encounter.

 We encountered some problems when using some thermal videos in which the desired object to

be stabilized around did not have enough contrast with the warm background as the object moved farther

away from the FLIR One camera. However, when there was a clear distinction between the hottest object

and the coldest objects throughout the unstabilized video, the output video successfully stabilized around

the part of an object that was in the 2 stabilization boxes in the original video.

 Another issue with this stabilization code was realized when the hot object to be stabilized around

moved close to the edges of the video frames. If the search border (the maximum allowable displacement)

was set too large in the code and the object moved too close to the edge of the video, the 2 stabilization

boxes would no longer be focused around the same initial hot object as before. The stabilized video can

only shift its borders a limited amount before the object of interest goes out of frame. As shown in Figure

122, if the large amount of shifting caused the stabilization boxes (i.e. the position of the stabilization

boxes in the stabilization video) to be hit by the expanded borders in the stabilization video, the boxes

would lose the hottest object in the video frame.

155

Figure 122. Stabilization Boxes Losing Object of Interest Close to Video Frame Borders

Shown in Figure 123, if the inner stabilization box was large enough, however, the stabilized

video was able to compensate for the large displacement of the stabilized video borders and the inner and

outer stabilization boxes were able to refocus on (or get close to) the hot object in the video frame.

Figure 123. Stabilization Boxes Refocusing Near Initial Object of Interest in Video Frame

Conclusion

The software developed for this senior project extension in MATLAB will allow the WILD

Goblin turret to move in response to a video input. We were successfully able to demonstrate a simulated

target tracking scenario that used the same type of commands which can be used to move the turret. We

were also able to implement video stabilization which reduced the change in position of a target frame to

frame. Video stabilization will allow for the object of interest to be easily identifiable, even if the cameras

are shaking while the UAV is flying. The mechanical stabilization (developed last term) will be able to

compensate for the large motion of the UAV in order to stabilize the cameras. The video stabilization will

adjust the video accordingly so that small camera movements do not distort the object of interest. The

target tracking code will be able to send commands to the turret so it can autonomously track an object of

interest.

156

Addendum Works Cited

[1] "Quark Product Specification".

[2] "FLIR Explore," [Online]. Available: http://www.flir.com/flirone/explore.cfm.

[3] "FLIR Quark Feature Comparison," FLIR, [Online]. Available:

http://www.flir.com/cvs/cores/view/?id=64110.

[4] J. Carroll, "FLIR ONE infrared camera for the iPhone officially launches," Vision

Systems Design, [Online]. Available: http://www.vision-systems.com/articles/2014/07/flir-

one-infrared-camera-for-the-iphone-officially-launches.html.

[5] "Quark 2 Uncooled Cores," FLIR, [Online]. Available:

http://www.flir.com/cvs/cores/view/?id=51266&collectionid=549&col=51275.

Appendix H. Video Stabilization Code
clc

 Based off code found at http://www.mathworks.com/help/vision/examples/video-stabilization.html

% Input video file which needs to be stabilized.
filename = 'VIDEONAMEHERE.MOV';
hVideoSource = vision.VideoFileReader(filename, ...
 'ImageColorSpace', 'Intensity',...
 'VideoOutputDataType', 'double');
hTranslate = vision.GeometricTranslator(...
 'OutputSize', 'Same as input image', ...
 'OffsetSource', 'Input port');
hTM = vision.TemplateMatcher('ROIInputPort', true, ...
 'BestMatchNeighborhoodOutputPort', true);
hVideoOut = vision.VideoPlayer('Name', 'Video Stabilization');
hVideoOut.Position(1) = round(0.4*hVideoOut.Position(1));
hVideoOut.Position(2) = round(1.5*(hVideoOut.Position(2)));
hVideoOut.Position(3:4) = [1000 400];
%Read in video and find the centroid of video frame 2 from the hottest
%(brightest) object
centroids = [];
obj = VideoReader(filename);
video = read(obj);
hblob = vision.BlobAnalysis;
hblob.AreaOutputPort = false;
hblob.BoundingBoxOutputPort = false;

%look for a blob that is at least the following number of pixels
hblob.MinimumBlobArea =5;
framenumber=2
frame = video(:,:,:,framenumber);
frame=imresize(frame, 0.5);
pic = rgb2gray(frame);

%Changes the threshold of which pixels are deemed white or black, typical
%range = 0.7 to 0.9
contrastWeight = 0.9
pic = im2bw(pic,contrastWeight);
imshow(pic)
centroid = step(hblob,pic)
figure(1)
hold on
imshow(pic)
scatter(round(centroid(:,1)), round(centroid(:,2)))

%Set dimensions of inner stabilization box
tempsizex=40 tempsizey=40

%Set the dimensions of the outer stabilization box which defines the
%maximum horizontal and vertical placement
searchborderx = 15 searchbordery= 15

%Use the calculated centroid to position the inner and outer stabilization
%boxes around the hottest part of the second video frame to stabilze around
pos.template_orig = [round((centroid(:,1))-tempsizex/2) round((centroid(:,2))-tempsizey/2)];

pos.template_size = [tempsizex tempsizey]; % [width height]
pos.search_border = [searchborderx searchbordery]; % max horizontal and vertical displacement
pos.template_center = floor((pos.template_size-1)/2);
pos.template_center_pos = (pos.template_orig + pos.template_center -1);
fileInfo = info(hVideoSource);
W = fileInfo.VideoSize(1)/2; % Width in pixels

H = fileInfo.VideoSize(2)/2; % Height in pixels
BorderCols = [1:pos.search_border(1)+4 W-pos.search_border(1)+4:W];
BorderRows = [1:pos.search_border(2)+4 H-pos.search_border(2)+4:H];
sz = fileInfo.VideoSize;
TargetRowIndices = ...
 pos.template_orig(2)-1:pos.template_orig(2)+pos.template_size(2)-2;
TargetColIndices = ...
 pos.template_orig(1)-1:pos.template_orig(1)+pos.template_size(1)-2;
SearchRegion = pos.template_orig - pos.search_border - 1;
Offset = [0 0];
Target = zeros(18,22);
firstTime = true;

while ~isDone(hVideoSource)
 input = step(hVideoSource);
 %Resize the video (from 480 by 640 to 240 by 320)
 input=imresize(input,.5);
 % Find location of Target in the input video frame
 if firstTime
 Idx = int32(pos.template_center_pos);
 MotionVector = [0 0];
 firstTime = false;
 else
 IdxPrev = Idx;

 ROI = [SearchRegion, pos.template_size+2*pos.search_border];
 Idx = step(hTM, input, Target, ROI);

 MotionVector = double(Idx-IdxPrev);
 end

 [Offset, SearchRegion] = updatesearch(sz, MotionVector, ...
 SearchRegion, Offset, pos);

 % Translate video frame to offset the camera motion
 Stabilized = step(hTranslate, input, fliplr(Offset));

 Target = Stabilized(TargetRowIndices, TargetColIndices);

 % Add black border for display
 Stabilized(:, BorderCols) = 0;
 Stabilized(BorderRows, :) = 0;
 TargetRect = [pos.template_orig-Offset, pos.template_size];
 SearchRegionRect = [SearchRegion, pos.template_size + 2*pos.search_border];
 % Draw rectangles on input to show target and search region
 input = insertShape(input, 'Rectangle', [TargetRect; SearchRegionRect],...
 'Color', 'white');
 % Display the offset (displacement) values on the input image, shown in
 % the bottom of the left video
 txt = sprintf('(%+05.1f,%+05.1f)', Offset);
 input = insertText(input(:,:,1),[100 300],txt,'FontSize',16, ...
 'TextColor', 'white', 'BoxOpacity', 0);
 % Display video
 step(hVideoOut, [input(:,:,1) Stabilized]);

end

Works Cited

[1] J. Garamone, "From U.S. Civil War to Afghanistan: A Short History of UAVs," 16 April 2002.

[Online]. Available: http://www.defense.gov/news/newsarticle.aspx?id=44164.

[2] "Time Line of UAVs," November 2002. [Online]. Available:

http://www.pbs.org/wgbh/nova/spiesfly/uavs.html.

[3] J. D. Blom, "Unmanned Aerial Systems: A Historical Perspective," Fort Leavenworth, 2010.

[4] J. Stamp, "Unmanned Drones Have Been Around Since World War I," 12 February 2013. [Online].

Available: http://www.smithsonianmag.com/arts-culture/unmanned-drones-have-been-around-

since-world-war-i-16055939/?no-ist. [Accessed 8 September 2014].

[5] "Unmanned Systems Integrated Roadmap: FY 2011-2036".

[6] Department of Defense, "Unmanned Systems Integrated Roadmap FY 2013-2038," 2013.

[7] "UAV Study v2.01," 2013.

[8] "Unmanned Aerial Vehicle Options Assessment," Massachusetts Institute of Technology Lincoln

Laboratory, 2013.

[9] Defense Industry Daily, "BAE Acquires UAV Make ACR for $14.7M," 8 June 2009. [Online].

Available: http://www.defenseindustrydaily.com/BAE-Acquires-UAV-Maker-ACR-for-147M-

05488/. [Accessed 26 August 2014].

[10] S. Gienow, "Full Campus Scan with Octo," Ecosynth, 4 February 2014. [Online]. Available:

http://ecosynth.org/profiles/blogs/full-campus-scan-with-octo. [Accessed 3 September 2014].

[11] J. Lemons, "Radar," May 2003. [Online]. Available:

http://www.geocities.ws/jasonlemons/radar/topic1.htm. [Accessed 26 August 2014].

[12] J. G. Mangum, D. T. Emerson and E. W. Greisen, "The On The Fly imaging technique,"

Astronomy & Astrophysics, 8 May 2007. [Online]. Available:

www.aanda.org/articles/aa/full/2007/41/aa7811-07/aa7811-07.fig.html. [Accessed 26 August

2014].

159

[13] Jenoptik, "DLEM SR," 2014. [Online]. Available: http://www.jenoptik.com/en-diode-laser-

rangefinder-dlem-sr. [Accessed 2 September 2014].

[14] Nikon, "Laser Rangefinders," 2008. [Online]. Available:

http://nikon.com/about/technology/life/sportoptics/laser/index.htm. [Accessed 2 September 2014].

[15] Protherm, "Infrared Basics," [Online]. Available: http://www.pro-therm.com/infrared_basics.php.

[Accessed 11 September 2014].

[16] Xenics Infrared Solutions, "Night Vision," 2014. [Online]. Available:

http://www.xenics.com/en/infrared_imaging_applications/infrared_camera_detection_for_security_

applications/application_-_night_vision.asp. [Accessed 36 August 2014].

[17] Sensors Unlimited, "SWIR Night Vision Camera Systems for Vehicle Navigation," 2014. [Online].

Available: http://www.sensorsinc.com/applications/military/night-vision-systems. [Accessed 3

September 2014].

[18] Sensors Unlimited, "Micro 640CSX SWIR Camera," 2014. [Online]. Available:

http://www.sensorsinc.com/products/detail/microswir-camera. [Accessed 14 September 2014].

[19] Photonics Online, "Micro-SWIR™ Camera for Military Applications: SU640CSX," 2014.

[Online]. Available: http://www.photonicsonline.com/doc/micro-swir-camera-for-military-

applications-0001. [Accessed 3 September 2014].

[20] Industrial Precision Instruments, "How do Infrared Cameras work?," 2014. [Online]. Available:

http://www.ipi-infrared.com/start-here/how-do-infrared-cameras-work2. [Accessed 2 September

2014].

[21] C. Douglass, "IR Spectal Bands and Performance," FLIR Systems, Inc., 2014. [Online]. Available:

http://gs.flir.com/surveillance-products/surveillance-technology/imaging-

technotes/IR_Spectral_Bands. [Accessed 7 September 2014].

[22] FLIR Systems, Inc., "How Does and IR Camera Work?," 2014. [Online]. Available:

http://www.flir.com/thermography/americas/us/view/?id=55706. [Accessed 2 September 2014].

[23] FLIR Systems, Inc., "Sky-Watch Integrates FLIR Quark 640 into Small UAV," 2014. [Online].

Available: http://www.flir.com/cvs/cores/view/?id=61163. [Accessed 2 September 2014].

[24] FLIR Systems, Inc., "How is NEDT measured?," 2014. [Online]. Available:

http://flir.custhelp.com/app/answers/detail/a_id/128/~/how-is-nedt-measured%3F. [Accessed 3

September 2014].

160

[25] FLIR Systems, Inc., "Quark 2 Uncooled Cores," 2014. [Online]. Available:

http://www.flir.com/cvs/cores/view/?id=51266&collectionid=549&col=51275. [Accessed 3

September 2014].

[26] Analog Devices, Inc., "The Five Motion Senses: Using MEMS Inertial Sensing to Transform

Applications," 2014. [Online]. Available:

http://www.analog.com/en/content/over_five_motion_senses/fca.html. [Accessed 11 September

2014].

[27] J. K. Oestergaard, "AAI RQ-7 Shadow 200," Aeroweb, 22 May 2014. [Online]. Available:

http://www.bga-aeroweb.com/Defense/RQ-7-Shadow.html. [Accessed 2 September 2014].

[28] Marine Corps, "RQ 7B Shadow," 2014. [Online]. Available: http://www.marines.com/operating-

forces/equipment/aircraft/rq-7-shadow#features. [Accessed 2 September 2014].

[29] M. H. Ettenberg and M. D. S., "SWIR Imaging," Photonics, 2014. [Online]. Available:

http://www.photonics.com/EDU/Handbook.aspx?AID=25134. [Accessed 3 September 2014].

[30] J. Merchant, "Infrared Temperature Measurement Theory and Application," Omega Engineering,

Inc., 2014. [Online]. Available: http://www.omega.com/techref/iredtempmeasur.html. [Accessed 4

September 2014].

[31] T.-R. Hsu, "Chapter 2 Working Principles of MEMS of Microsystems," San Jose State University,

2008. [Online]. Available: http://www.engr.sjsu.edu/trhsu/ME189_Chapter%202.pdf. [Accessed 4

September 2014].

[32] J. Esfandyari, R. De Nuccio and G. Xu, "Introduction to MEMS gyroscopes," SolidState

Technology, 2014. [Online]. Available: http://electroiq.com/blog/2010/11/introduction-to-mems-

gyroscopes/. [Accessed 2 September 2014].

[33] P. Jain, "Magnetometers," EngineersGarage, 2012. [Online]. Available:

http://www.engineersgarage.com/articles/magnetometer. [Accessed 4 September 2014].

[34] "Our Heritage," [Online]. Available:

http://www.northropgrumman.com/AboutUs/OurHeritage/Pages/default.aspx.

[35] L. G. D. Deptula, "Air Force Unmanned Aerial System (UAS) Flight Plan 2009 - 2047".

[36] "BAE Acquires UAV Maker ACR for $14.7M," Defense Industry Daily, 8 June 2009. [Online].

Available: http://www.defenseindustrydaily.com/BAE-Acquires-UAV-Maker-ACR-for-147M-

05488/. [Accessed 26 August 2014].

161

[37] "Night Vision," Xenics Infrared Solutions, [Online]. Available:

http://www.xenics.com/en/infrared_imaging_applications/infrared_camera_detection_for_security_

applications/application_-_night_vision.asp. [Accessed 26 August 2014].

[38] J. Dorich and D. Mulcahy, "GOBLIN Eyes: Sensor Turret Target Tracking for Small Unmanned

Air Vehicles," 2013.

[39] Massachusetts Institute of Technology, "Modular Programming," 16 February 2001. [Online].

Available: http://web.mit.edu/16.070/www/year2001/Modular_Programming.pdf. [Accessed 8

September 2014].

