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Abstract 

 
This thesis presents a single-slice based fast stereotactic registration and tracking technique 

along with a corresponding modular system for guiding robotic mechanism or interventional 

instrument to perform needle-based interventions under live MRI guidance.  The system can provide 

tracking of full 6 degree-of-freedom (DOF) in stereotactic interventional surgery based upon a single, 

rapidly acquired cross-sectional image. The whole system is constructed with a modular data 

transmission software framework and mechanical structure so that it supports remote supervision and 

manipulation between a 3D Matlab tracking user interface (UI) and an existing MRI robot controller 

by using the OpenIGTLink network communication protocol. It provides better closed-loop control 

by implementing a feedback output interface to the MRI-guided robot.  

A new compact fiducial frame design is presented, and the fiducial is wrapped with a passive 

resonant coil. The coil resonates at the Larmor frequency for 3T MRI to enhance signal strength and 

enable for rapid imaging. The fiducial can be attached near the distal end of the robot and coaxially 

with a needle so as to visualize target tissue and track the surgical tool synchronously. The MRI-

compatible design of fiducial frame, robust tracking algorithm and modular interface allow this 

tracking system to be conveniently used on different robots or devices and in different size of MRI 

bores.  

Several iterations of the tracking fiducial and passive resonant coils were constructed and 

evaluated in a Phillips Achieva 3T MRI. To assess accuracy and robustness of the tracking algorithm, 

25 groups of images with different poses were successively scanned along specific sequence in and 

MRI experiment. The translational RMS error along depth is 0.271mm with standard deviation of 
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0.277mm for a total of 100 samples. The overall angular RMS error is less than 0.426° with standard 

deviation of 0.526° for a total of 150 samples. The passive resonant coils were shown to significantly 

increase signal intensity in the fiducial relative to the surroundings and provide for rapid imaging with 

low flip angles. 
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Chapter 1    

Overview 

Robot-assisted surgical interventions have been developed rapidly in the last decade, especially 

in minimally invasive surgery (MIS) [1]. Taking advantage of MRI, which has a high soft-tissue 

contrast, real-time interventions could be accomplished by image-guided surgical robots [2]. 

Although robots themself have a high targeting accuracy, how to acquire the position and orientation 

of a surgical tool with respect to the patient’s anatomy is always a crucial challenge [3]. This results a 

need for highly accurate robot registration and tracking [4]. 

 
1.1 Clinical Background 

1.1.1  Background on MRI-guided Minimally Invasive Surgery 

Recently, MIS technologies have been widely used in clinical trials recently. They decrease the 

pain experienced by patients during treatment and significantly shorten recovery periods. MIS is an 

inherently stereotactic problem in many cases of therapy delivery to local lesions such as deep brain 

stimulation (DBS) [5], breast biopsies [6] and prostate intervention [7]. The effective image-guided 

methods are desired to facilitate the procedure accurately, which is the key to the efficiency of the 

therapeutic deliveries [8]. 

In 1908, Horsley and Clarke reported a frame with external markers that enabled them to assign 

a Cartesian space coordinate system to a monkey's head for neurological surgery [9]. This frame 

became known as the Horsley-Clarke stereotactic frame. It is still in use for neurological surgery, 
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such as DBS. The principles of frame-guided surgery were mainly used for neurosurgery because the 

skull can provide a rigid frame. 

 
Fig. 1-1: The prototype robot in the bore of a 3T MRI scanner developed at Worcester Polytechnic Institute 

With the invention of the MRI and the PC, the frame-guided field has extended to include 

MRI-guided surgery, which is widely used in neurosurgery, orthopedics, cardiac interventions and 

prostate interventions. MRI-guided surgeries are one of image-guided medical procedures in which 

medical images are provided by MRI based systems to assist the physician in precisely visualizing 

and targeting the surgical area [10]. The implantation of MRI-guided deep brain stimulator has 

become increasingly popular for movement-disorder surgery [11]. Cole, Wang and Fischer [12,13] 

designed a 5-DOF MRI-guided stereotactic robot that is kinematically identical to a Leksell frame 

with a high MRI-compatible control system. Fig. 1-1 shows the prototype robot in the bore of a 3T 

MRI scanner with phantom. Fischer et al also proposed a MRI-compatible robot system for 

transperineal prostate needle insertion using pneumatic actuation techniques [14]. 
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Fig. 1-2: (a) MRI-Guided Cardiothoracic Surgery Robot [15]. (b) MRI-Guided Neurosurgery Robot [12]. (c) 
MRI-Guided Breast Surgery Robot [16]. (d) MRI-Guided General Surgery Robot [17]. 

Although various image-guided surgery systems are developed for different surgical 

applications, most of them are still in the prototype stage, and few clinical trials have been conducted 

so far. Reliability and generality are still the two critical concerns for MRI-guided systems. Some 

MRI-guided surgery systems are shown in Fig. 1-2. 
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The typical work flow for MRI-guided MIS is shown as follows: 

1. Acquire pre-operative image by MR scanner and then extract valid tracking area 

2. Register and track the patient anatomy and surgery instrument from the valid image  

3. Manipulate the tool to carry out the procedure under the guidance of marked MR images 

1.1.2 Advantages of MRI for MIS 

Nowadays, doctors achieve sophisticated clinical operations with the help of modern, 

complicated medical instruments, like surgery under MRI or Ultrasound guidance. They prefer to 

adopt minimally invasive procedures to decrease the possibility of patient injury. However, precise 

placement and operation of surgical tools inside a narrow device environment, like an MRI scanner, is 

a tough task due to restricted space and poor ergonomics. In many cases, the instrument based 

surgeries are limited by the inherently stereotactic problem. Therefore, effective tracking and image 

analysis methods are needed to facilitate the accurate placement and operation of surgical tools during 

therapy. The primary advantages of using MRI for guidance of MIS are due to the inherent physical 

principles of the MRI. The MRI-based medical paradigm offers several advantages over other 

imaging counterparts. 

1) MRI has multiple mechanisms to provide high-fidelity soft tissue contrast and spatial 

resolution. It provides excellent soft tissue contrast that allows for visualization of tumors that are 

not visible using other modalities. Thus, it aids early diagnosis and treatment. Since it provides 

accurate positioning of targets, it is ideal for robot-assisted procedures as visual targets. 

2) MRI provides the capability to sense a variety of physiological parameters. This includes 

temperature sensing (also known as MRI thermal imaging), or blood flow measurement within a 

vascular malformation. Similar to visual sensing of tissue and tools, this extraordinary sensing 

feature enables monitoring and control of therapeutic interventions. In particular, it can potentially 

be used for closed-loop robotic intervention to regulate or track physiological parameters. 
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3) MRI is capable of imaging both soft tissue and intervention tools on arbitrary planes. The MRI 

is a three-dimensional imaging modality that permits arbitrary imaging plane selection, even in a 

dynamic manner. It allows for localization of the interventional tools and allows for on-the-fly 

adjustment of the imaging plane. This feature is particularly favorable for robotic applications, 

which relies on MRI sensory feedback to guide and control robot motion to close the control loop; 

4) MRI produces no ionizing radiation, and thus imposes no radiation safety hazard to the patient 

or practitioner. This is especially beneficial to patients who are imaged frequently, and to 

interventional radiologists who perform procedures on a regular basis. 

1.1.3 Motivation of Registration and Tracking System for MRI-guided Robots 

With these aforementioned advantages, robotics researchers worldwide have begun to design 

and utilize surgical robots for MRI procedures. Recently, almost all the tracking systems for surgical 

robots are custom-written for exclusive robot under specific image-guided environment. The 

Innomotion robot [18] is the first commercially available MRI-guided robot that utilizes pneumatic 

actuation and was recently acquired by Synthes Holding AG. As shown in Fig. 1-3, it has 

pneumatically actuated 5 DOF and manually actuated 2 DOF. The manual actuation is denoted with a 

red arrow for positioning at the orbit and a green arrow for positioning along the patient bed. The 

robot is attached to a 180° orbiting ring that is mounted to the patient table. The robot arm is fixed 

with a spring-loaded bolt and secured with a screw. The base of the robot provides XYZ Cartesian 

motion, while the end-effector is a 2-DOF remote center of motion mechanism. Although the robot 

itself has a high targeting accuracy, the intraoperative images about the position and orientation of the 

surgical tool with respect to the patient anatomy are always crucial.  
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Fig. 1-3: MRI-guided surgical application of the Innomotion robotic system (red arrow). It has pneumatically 
actuated 5 DOF and manually actuated 2 DOF [18]. 

Besides the Innomotion robot, NeuroArm shown in Fig. 1-4 (a) (b) is another MRI-guided 

master-slave remote operation system for neurosurgical procedures. The surgeon's hand motions in 7 

DOF are remotely mapped to the robotic manipulators. The system includes a workstation, a control 

cabinet, and two slave robot arms mounted on a mobile base. It provides functionalities such as 

tremor filtering and motion scaling to increase precision and accuracy. It also supports virtual fixtures 

(a mechanism that provides surgical no-fly zone) and mechanical locks to enhance safety. As shown 

in Fig. 1-4(c), the human machine interface includes two video monitors, two touch screen computer 

displays, and a stereoscopic display unit. The first clinical case, a tumor removal operation, was 

successfully carried out in May 2008 [19]. IMRIS, Inc. (Winnipeg, Canada) acquired the NeuroArm 

in February 2010, and is developing a next generation intraoperative MRI surgical robot in 

conjunction with MDA. However, all these sophisticated tracking systems are still feasible for 

specific robots and people can’t conveniently reuse it with other MRI-guided robots or under different 

image-guided environment.   
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Fig. 1-4:  (a) NeuroArm robot developed at University of Calgary. (b) CAD breakdown structure of NeuroArm 

robot with 7 DOF descriptions. (c) Human machine interface of NeuroArm robot [19].  
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1.2 Literature Review 

Numerous registration and tracking technologies used in clinical surgeries have been described 

in literature. This literature review surveys and lists different kinds of resonant coil markers and 

registration fiducial frames which provide not only specific patters of fiducials to track but also the 

approaches to make those fiducials more readily visible. Following are some of them, along with brief 

analyses about their advantages and disadvantages. 

1.2.1 Resonant Coil Marker Designs 

Resonant coil markers are mainly use for enhancing visibility of stereotactic pattern. There are 

two types of resonant coil in MRI guidance: passive coil marker and active coil marker. Each one has 

their own merits and demerits that decide how people use them in specific clinical application. 

 Passive Single Micro-coil Marker 

Passive Single Micro-coil Marker is usually made out of non-ferromagnetic metal with contrast 

medium inside. It advantages are MRI scanner independent and easy integration. Fig. 1-5 shows a 

typical application of micro-coil in a spiral shape [20]. Researchers compared the ability of ten 

different image-processing algorithms to track these micro-coil fiducials with sub-pixel accuracy. 

This tiny coil marker has a diameter of 3mm and a pixel size of 1.1mm. A maximum error of 0.22mm 

was observed in fiducial localization for displacements up to 40mm. 
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Fig. 1-5: Left diagram showing the dimensions of passive single micro-coil marker design, and right is an actual 
tuned micro-coil fiducial marker [20]. 

This fiducial prototype is compact, provides good contrast in the MRI, and has very little image 

distortion. However, its resonance frequency is fixed to serve for specific MR scanner but not 

adjustable. Another drawback is the fact that its shape in an MRI is just a point. To apply it to more 

complicated and reliable stereotactic registration, too many coils would be needed. 

 Active Single Micro-coil Fiducial Marker 

Active single micro-coil marker is another commonly used tracking methods with high 

brightness and space expansibility. The design, shown in Fig. 1-6, proposes an active micro-coil 

filling with semisolid method to do localization and tracking for medical devices like application in 

air filled body cavities [21]. By a road mapping reconstruction, the micro-coil’s trajectory could be 

visualized on a previously acquired reference image. It sets with a tracking rate of up to 60 Hz at a 

spatial resolution of better than 2mm. In a real-time tracking implementation, an image update rate of 

4 Hz was achieved by combining the tracking with a fast real-time imaging sequence.  

 

Fig. 1-6: The latex coil former (left) fills the coil and extends at its distal ends to cover the most sensitive 
regions of the solenoid. Real-time tracking images (right) with micro-coil at different positions in the pig’s 

trachea and lungs. The slice position is automatically adapted to the micro-coil position [21]. 

One advantage of active micro-coils is a longer imaging dimension and a brighter tracking spot 

than can be achieved with passive coils. It is possible to form active micro-coils into many arbitrary 
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shapes using in the imaging application. Yet the drawback of active micro-coil is also obvious. Their 

manufacture is more sophisticated than passive coils since they need inputs to coordinate their 

resonances. 

 Passive Multiple Coil Fiducial Markers 

Passive multiple coil fiducial markers are cooperation of many passive single coil to achieve 

complex tracking goal. The design, shown in Fig. 1-7, demonstrates the feasibility of using three 

wireless, long dimension coils as fiducial markers [22]. It supports fast imaging with limited 

projection reconstruction to accurately obtain tracking information in an MRI. The position and 

tracking of a rigid interventional instrument can be uniquely evaluated from the 3D coordinates of 

three fiducial markers mounted in a known configuration on that instrument. Three fiducial markers 

were tuned to the resonant frequency in a 0.2T open MR scanner and wrapped to the surface of a 

cylindrical water phantom. 

 

Fig. 1-7: Photograph (a) and schematic (b) of tuned fiducial markers. The resonant frequency of each marker 
consistently couples with MRI scanner and enhances magnetic field to amplify the internal marker signal (oil) 
relative to any other signal source. Photograph (c) of a localizing wand is used by an optical tracking system 
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(Aesculap Pointer FS613, Siemens Medical Engineering Group, Erlangen, Germany). Cross-sectional image (d) 
reconstructed from LPR-FISP algorithm with 180 projections of three fiducial markers mounted onto a water 

phantom. The image was acquired with a 7° tip angle [22]. 

These three tuned fiducial markers adopt a localization algorithm to accurately calculate the 3D 

coordinates of the fiducial markers in two orthogonal scan planes. Meanwhile, their short sequence 

repetition time (TR = 21ms) and rapid projection reconstruction time (about 170ms) allow them to 

achieve real-time tracking with high accuracy, with error within 3 mm on a 0.2T MR system. The 

only limitation is its unique algorithm to process projection reconstruction for correction, its strong 

MR scanner dependence, and the fact that it’s not very ideal for stereotactic tacking. 

 Active Multiple Coil Fiducial Markers 

Active multiple coil fiducial markers is emerging technology in MRI guidance at present. The 

Fig. 1-8 shows a multi-element coil design with two sub-coil markers in the array for active MR 

device tracking [23]. The device consists of two independent and opposed-solenoid phased coils 

which are wound in opposite directions and respectively connected to separate receive channels. 

During real-time catheter tracking, each element gave rise to a high-amplitude peak in its respective 

projection data, which enabled reliable and robust device tracking as well as automated slice 

positioning. The array’s imaging performance was tested on a clinical 1.5 T MRI scanner, getting a 

high resolution micro imaging in vivo. 
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Fig. 1-8: Photograph (top) of the two opposed solenoid arrays (five windings per solenoid coil; gap between the 
two solenoid coils = 1 cm; coil diameter = 5 F; wire diameter = 30 AWG; independent tune -, match-, and 
decoupling circuit). Electrical schematic (bottom) of the opposed-solenoid phased array catheter coil. Two 

solenoid coils, counter wound from copper wire, are fixed on a cylindrical form. The coils are separately tuned 
to the MR scanner’s resonance frequency of 63.65 MHz, using small ceramic capacitors [23]. 

This array coil has a relatively long structure compared to other coil based tracking markers, 

and needs custom-written ICE/IDEA tracking software for specific MR scanners. Yet it was proved to 

be practical enough in clinical guidance and imaging application like intravascular interventions. The 

independent coils could be used individually for tracking, or be combined for high-resolution 

stereotactic imaging. 

1.2.2 Registration Fiducial Frame Designs 

Fiducial frames provide necessary information in imaging slices to track target pose. There are 

many kinds of fiducial frame shape serving for different DOF registration and tracking requirement. 

Following are several configurations using in image-guided clinical applications.  

 Brown-Roberts –Wells (Z-frame) Fiducial  
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The most common fiducial frame is the so-called Brown-Roberts-Wells fiducial frame, or the 

Z-frame fiducial [24,25]. It consists of 3 planar Z-shaped fiducial patterns that are connected together 

in a rectangular shape, as show in Fig. 1-9. 

 

Fig. 1-9: Z-frame (left) and typical MRI reading of a cross-section of the Z-frame fiducial target (right) [24]. 

The target is very common mainly because it’s relatively easy to describe mathematically and 

thus to interpret the MRI scans in the tracking process. One of its main disadvantages is that its 

sensitivity on the Z-axis (along the cross-sectional direction of the body and the MRI) is dependent on 

its length in that direction, relative to its height on the Y-axis. This makes the target design relatively 

bulky and unsuitable for applications that have tight size constrains. 

 The Prism Fiducial 

This design is intended for preoperative tracking. It has a planar 2D version for interpretive 

adjustment of the tracking process in case there are discrepancies in the preoperative tracking [26], as 

shown in Fig. 1-10. The target is intended for use in x-ray but it can also be applied to MRI. 
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Fig. 1-10: 3D prism design (left) and a planar (right) 2D version of prism fiducial [26]. 

The advantage of this design is that it provides higher complexity and greater variety of 

features for detection, which provides better accuracy. However the tracking evaluation is somewhat 

complicated. The design itself is also physically large and thus not suitable for small volumes. 

 Two Types of Ellipse fiducial 

 

Fig. 1-11: Ellipse design in MRI [27]. 

A more elaborate yet compact design offers the tracking accuracy advantages of complex 

targets in a relatively small design space [27]. The design incorporates several types of features 
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similar to the prism design, but they are wrapped in a cylinder configuration, shown in Fig. 1-11. This 

is achieved by making custom tubing to hold MRI high contrast liquid in combination with standard 

ball-shaped markers.   

 

Fig. 1-12: Ellipse design in fluoroscopy [28]. 

A very similar idea is shown in Fig. 1-12 as a design that combines two ellipses and several 

straight lines. This design is based on thin metal wires that have been placed in a precisely machined 

feature-holding body for tracking in fluoroscopy [28]. While this second version of the ellipse design 

is even more elaborate and complicated to manufacture, it offers even better tracking accuracy. The 
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design ideology of the ellipse was chosen as an essential preferred approach for the fiducial frame in 

this thesis. We aim to compress a complex tracking pattern to a more compact configuration, but with 

a relatively decreased manufacturing complexity. Our design approach will be explained in later 

chapters. 

1.3 Thesis Contribution 

As described previously, this thesis builds a commonly used real-time posture tracking system 

for MRI robots. With its help, the MRI-guided robot control will become a better loop system with 

both movement correction and visual feedback. It is also a modular system that adopts a standardized 

medical image communication protocol named OpenIGTLink to do network data transmission among 

modules. Hence, it is remote control feasible and MR scanner independent.  The primary 

contributions of this thesis are: 

 An exclusive 6-DOF registration and tracking fiducial frame and corresponding 

algorithm 

The fiducial frame of the registration and tracking system can be served for tracking full 6-

DOF in stereotactic interventional surgery. The name of the registration and tracking fiducial frame is 

the Cylindrical Helix Imaging Coordinate (CHIC) fiducial frame. In the presented MRI-compatible 

embodiment of the fiducial design, there are nine tubes inside the frame which are all filled with high 

MRI contrast gelatin or gadolinium fluid to provide ample tracking spots in the cross-sectional image 

to guarantee detection accuracy and stability of the image analysis algorithm. The unique imaging 

pattern inside CHIC frame allows detection of all 6-DOF at any arbitrary pose by using only one slice 

image, so the corresponding algorithm is a single slice based image recognition technology.  

 A stand-alone registration and tracking system with modular framework  

To allow functional extension in the future, this system has been created with modular 

architecture. The modular system will provide high precision and remote tracking assisting to 

different types of MRI-guided robot in MIS. On one side, the software is constructed upon a modular 
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data transmission framework so that it supports remote supervision and manipulation between the 3D 

Matlab tracking user interface and robot controller using the OpenIGTLink network communication 

protocol. On the other side, the mechanical structure of fiducial frame module can take various forms 

based on the robot requirements and accuracy and configuration needs as well as it has high MRI 

compatibility which allows us to use it in 3 Tesla MR scanner.  

 A novel passive resonant coil to support real time MRI tracking 

The compact fiducial frame is wrapped with exterior resonant coil for supporting fast imaging. 

This passive tracking coil can sharply reduce imaging time by resonating with MRI main coil so that 

we can track rapid movement and extend its application fields to continuous freehand surgery. It has 

sophisticated stereotactic structure and almost symmetric distribution to counteract image distortion 

generating by each sub-coil. The rapid imaging ability of this resonant coil based tracking fiducial 

frame was evaluated under 3 Tesla MR scanner using real-time fast low-angle shot (FLASH) pulse 

sequences. 
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Chapter 2    

Design Requirements 

MRI-guided minimally invasive surgery allows interventional procedures with greater 

precision and superior outcomes by integrating medical imaging with the surgical workflow. 

However, developing real-time registration and tracking system for intraoperative MRI-guided 

surgery presents new challenges and limitation such as electromagnetic compatibility and mechanical 

constraints of the confined close-bore. 

2.1 MRI Compatibility 

MRI is an ideal guidance modality with the ability to perform high quality, volumetric, real-

time, multi-parametric imaging with high soft tissue contrast without ionizing radiation. But it is a 

tough task when people implement any design working in the MRI environment where exits high 

static magnetic field (1.5T or greater) and pulsed radiofrequency (RF) field. A thorough description 

of the issues relating to MR Safety is described by Shellock [29]. The MR-Safe definitions are 

according to the ASTM Standard F2052 [30] while MR-compatible is the commonly used term: 

MR-Safe:  The device, when used in the MR environment, has been demonstrated to present 

no additional risk to the patient or other individual, but may affect the quality of the diagnostic 

information.  The MR conditions in which the device was tested should be specified in conjunction 

with the term MR safe since a device that is safe under one set of conditions may not be found to be 

so under more extreme MR conditions. 
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MR-Compatible: A device is considered MR-compatible if it is MR safe and if it, when used 

in the MR environment, has been demonstrated to neither significantly affect the quality of the 

diagnostic information nor have its operations affected by the MR device. The MR conditions in 

which the device was tested should be specified in conjunction with the term MR-compatible since a 

device that is safe under one set of conditions may not be found to be so under more extreme MR 

conditions. 

Currently, there is no generally accepted definition for MRI compatibility of interventional 

system, though the National Electronic Manufacturers Association (NEMA) standard for signal to 

noise ratio (SNR) is commonly used to assess image quality [31]. A review of MRI compatible 

system for image-guided interventions being developed to date has been performed by Tsekos et al 

[32]. Beyond the SNR standard of collected images, it is important to understand bidirectional feature 

of MRI compatibility that means both the device does not cause image artifacts during the scanner 

imaging and the scanner should also not disturb the device function. Ferromagnetic materials must be 

avoided completely, and nonferrous metals such as aluminum, brass, nitinol and titanium should also 

be used limitedly in certain MRI environment. In this system, whole registration and tracking fiducial 

frame are made out of high strength, MRI-compatible plastics with limited nonferrous coil. 

2.2 Workspace 

Besides the MRI compatibility, the limitation of workspace insider of the MR bore is another 

problem that cannot be ignored. Traditional MR scanner provides a long and narrow cylindrical valid 

imaging area so that the workspace is tightly constrained in the scanner bore. For implementing and 

testing, a Phillips Achieva 3T MRI scanner system was targeted. This scanner has a bore diameter of 

60cm, however, with the bed in place, it just leaves about 50cm clearance for robot and registration 

and tracking system, see Fig. 2-1.  
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Fig. 2-1: Illustration of long and narrow workspace inside Phillips 3T MRI scanner [33]. 

2.3 High Resonant Frequency 

Using passive resonant coil for MRI guidance is both scanner-independence for  a small range 

of field strength and easier for integration than active resonant coil as well as it can decrease MR 

imaging time sharply providing a real-time tracking ability to fiducial frame. Although metal circuit 

caused compatibility issue can be ameliorated by utilizing limited non-ferromagnetic material, it still 

leads some distortion to MR images. In order to minimize image distortion, the diameter of coil also 

should be as small as possible. Meanwhile, the geometric shape of sub-coils should be symmetry with 

each other to counteract deforming influence.  
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Fig. 2-2: LC circuit schematic diagram and current response analysis for exterior stimulate 

Another challenge existing in passive resonant coil is its relative small tracking dimension 

compare with active imaging coil. This is because the LC circuit obeys the laws of physics to spark 

resonant current inside, which can be described as:  𝑓 = 1
2𝜋√𝐿𝐶

 , see Fig. 2-2. In order to make the 

passive resonant coil work with the MR scanner, its resonant frequency should be close to MR 

scanner’s imaging frequency. In light of the imaging frequency of MR scanner is usually very high 

reaching tens of MHz and some of high magnetic field MR scanner even over 100MHz under normal 

operating conditions while the tiny capacitor we can get just at least 1pF. It is an arduous task to make 

the dimension of passive resonant coil become large due to volume itself will generate high 

inductance breaking resonant requirement. To guarantee the generality of the system under some high 

frequency MR scanner, we take a relative tough requirement to design our passive coil working with 

128 MHz Phillips Achieva 3T MRI scanner system which is the same facility as mention before. We 

can calculate that the inductance of our passive resonant coil have to no larger than 1.55μH by 

connecting with a tiny 1pF capacitor. 

  



22 
 

 

Chapter 3    

System Architecture 

The real-time registration and tracking system will operate with the surgical robot 

simultaneously in the confined MRI bore. On one side, the compact fiducial frame being wrapped 

with exterior resonant coil can be easily attached near the distal end of the robot arm for the purpose 

of imaging in the MRI slices synchronously. On the other side, its software system is a strong back up 

to surgeon supervising and manipulating robot during surgical process. 

3.1 Panorama of Cooperation of Registration and Tracking System with 

Surgical Robot in MIS 

The modular manner of system construction guarantees each functionalized module performs 

its own functions. Its software framework and corresponding workflow with robot is depicted in Fig. 

3-1. To allow functional extension in the future, the registration and tracking system has been created 

by integrating five main modules: 1) green tracking module is the main body of registration and 

tracking algorithm; 2) aqua user interface module gives a visual description about the posture of robot 

back to operator; 3) orange DICOM server module which is the input interface of the system also acts 

as data base for whole system; 4) blue correction feedback module will output the correction 

transformation matrix to robot controller for adjusting robot movement; and 5) passive coil wrapped 

fiducial frame module is mounted on robot. The solid line represents communication between 

modules via cable while dashed line connected modules exchange information via network under 
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OpenIGTLink protocol. The OpenIGTLink protocol was adopted by wide variety of image-guided 

therapy (IGT) applications [34,35] to provide a standardized mechanism for communications from 

computers or devices in operating rooms to any terminal in network. The tracking module and user 

interface are isolated by network connection so that they support remote control and transplant main 

body of algorithm into other platforms, such as Linux, Mac etc.  

 
Fig. 3-1: System architecture and data flow of registration and tracking system. The modules in gray block 
constitute the software framework in the system where tracking module and user interface are isolated by 

network connection from other direct modules in operating rooms. 

To piece all things together, Fig. 3-2 shows the setting of the whole real-time MRI-guided 

robotic surgery environment. This registration and tracking system aims to combine these two 

technologies together: robots and machine vision. We have developed a modular mechanical structure 

and software architecture, which is scanner independent and remote control feasible. In Fig. 3-2(a), 

the fiducial frame was adhered on a robot which was controlled from the console room Fig. 3-2(b). 

Although we can supervise 2D MR images from MRI console in operating room to manipulate robot, 

this just gives limited information about relative place of instrument and patient anatomy. While 

registration and tracking system will provide a 3D visual feedback to let surgeon know 6-DOF pose 

of instrument as well as a referential correction transformation matrix will be outputted to robot 

controller.   
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Fig. 3-2: The panorama of real-time MRI-guided robotic surgery system setting. (a) Robot with fiducial frame 
and robot controller inside the MR scanner room. (b) Robot controller user interface and real-time tracking 

system supervise and manipulate robot to do surgery remotely in the operation room. 
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3.2 DICOM Sever Module 

The DICOM sever module could act as input interface and data base that undertakes 

bidirectional communication with internal module via network connection, as shown in Fig. 3-3. This 

module buffers a massive amount of raw MRI scanning images from MR scanner IO port. And an 

interior DICOM image data base storages buffered image stream in real time. Then it will extract 

small valid tracking area from large raw image data to track module processing. This step is critical 

process to shrink image processing time to support real-time tracking. Finally it would storage 

DICOM image with corresponding transformation matrix in the data base. 

 
Fig. 3-3: DICOM sever module interior data flow 

3.3 Tracking Module 

The tracking module is the “brain” of registration and tracking system which is in charge of 

evaluating stereotactic information from sophisticated tracking spots pattern in 2D cross-sectional 

image. It is also an independent module isolated by network connection far from MR scanner. 

Besides image analysis function, it also undertakes bidirectional communication with DICOM sever 

module and tracking information output to two downstream modules. The algorithm of tracking 

module will be divided into three main steps: 1) tracking spots registration; 2) plane reconstruction; 
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and 3) transformation matrix generation, see Fig. 3-4. More detailed description for each steps are in 

Chapter 5. 

The first step, tracking spots registration, is about feature extraction from input images. After a 

new slice of valid tracking area being loaded into tracking module, the software will identify all the 

tracking spots inside. In rare cases, we may meet tracking information deficiency because certain 

valid tracking areas could not be identified containing enough spots to rebuild feature pattern. So we 

have to push out these rags from further image analysis and reload new valid tracking area to keep the 

running robustness of whole system. If the tracking spots are countered completely, the software will 

do centroid measurement for each of spot. We proposed a new method which brings in statistic 

Gaussian model fitting to improve robustness of centroid measurement by anti-jamming from 

foaming phenomenon in contrast medium imaging. Its ins and outs will be discussed in Chapter 5. 

The second step, plane reconstruction, is about information reversion from featured 2D plane 

pattern back to 3D pose. We will use least-square method to fit these centroids from nine separate 

tracking spots into a generalized ellipse equation. And reconstruction the tracking area with ellipse 

plane together. Then this general parametric form of ellipse equation combining with included angles 

of each two tracking spots with respect to center of ellipse could elicit enough information to rebuild 

stereo 6-DOF pose. 

The last step, transformation matrix generation, is about tracking results synthesis and output. 

The software will generate rotation matrix from 3 DOF of rotation and then combine it with other 3 

DOF of translation to constitute a transformation matrix for describing stereotactic pose in robotic 

manner since most of the robot controls are depended on transformation matrix. Finally, it will send 

these tracking results to relative modules by network and reload a new slice of tracking area 

recurrently. 
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Fig. 3-4: Algorithm of tracking module to detect and localize the fiducial frame  
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3.4 1User Interface Module 

The user interface module running on Matlab platform provides an intuitive sense for tracking 

surgical procedure in real time. A sample of visual feedback results are shown in Fig. 3-5. This visual 

display was implemented on Matlab platform which includes an OpenIGTLink plug-in module to 

receive tracking results from tracking module. It was integrated with tracking module together in 

remote control side so that surgeon could supervise operation process in the operating room where is 

far away from MR scanner. 

 
Fig. 3-5: The 3D visual interface for real time stereotactic pose tracking. It consists of three visual fields: 

original image, marked image and main 3D pose view 

In Fig. 3-5, the main visual field on the right provides a 3D visual view about stereotactic pose 

of target. In this view, the cross-sectional plane will be automatically adapted to right steric 

configuration of target according to tracking results. There are two sub visual fields on the left 

z

x
y
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column: one is to show original valid tracking area and another is to show marked result after image 

analysis. This user interface could update images and 3D poses in real time so that it completely 

supports registration and tracking system to tack target in continuous freehand surgery.  

3.5 Correction Feedback Module 

Registration and tracking system not only provides a visual feedback interface about real pose 

of interest robot part to manipulator but also assists robot to adjust its movement during interventional 

operation. The blue correction feedback module receives both requested transformation matrix from 

manipulator and the real movement transformation matrix from tracking module. Then it will 

calculate correction between them and send that correction transformation matrix to robot controller 

for shrinking deviation. Since: 

𝑻𝑻𝒓𝒂𝒄𝒌 ∙ 𝑻𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏 = 𝑻𝑹𝒆𝒒𝒖𝒆𝒔𝒕 

where 𝑻𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏  is the output correction transformation matrix, 𝑻𝑹𝒆𝒒𝒖𝒆𝒔𝒕  is the requested target 

transformation matrix, and 𝑻𝑻𝒓𝒂𝒄𝒌 is the real movement transformation matrix obtained by tracking 

module. So the calculation of correction matrix could be expression as: 

𝑻𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏 = 𝑻𝑻𝒓𝒂𝒄𝒌−𝟏 ∙ 𝑻𝑹𝒆𝒒𝒖𝒆𝒔𝒕 

where 𝑻𝑻𝒓𝒂𝒄𝒌−𝟏 is inverse matrix of 𝑻𝑻𝒓𝒂𝒄𝒌. Then 𝑻𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏 will be outputted to downstream robot 

controller by an IO port for future use. 

3.6 Fiducial Frame Module 

The fiducial module is the only hardware part in system. It would typically be attached near the 

distal end of the robot arm for the purpose of getting target tissue image and surgical tool position 

synchronously. Moreover, resonant coil was wrapped on the exterior surface of the fiducial frame for 

decreasing imaging time so that this system could be used to tracking some real-time movement 

during surgery like involvement of freehand operation, see Fig. 3-6. The sophisticated design of 

fiducial frame with non-ferromagnetic resonant coil wrap will achieve high MRI compatibility and 
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full DOF tracking ability with minimal image distortion for MRI-guided surgery. Detailed description 

about fiducial frame is in Chapter 4 and resonant coil wrap is in Chapter 7.  

 
 

Fig. 3-6: CAD design of fiducial frame with coil wrap: (a) front view, (b) lateral view, (c) oblique drawing and 
(d) manufactured object. 

3.7 Data Transmission and Coordination Among Modules 

Different modules in the registration and tracking system achieve data communication with 

each other by two ways: direct connection and network link. Since direct connection undertakes to 

transmit massive DICOM image stream, direct modules should be set to not only connect with MR 

scanner computer or run on MRI console directly but also communicate on unidirectional 

transmission between each other in order to guarantee real-time processing. While network link 

would be allowed to exchange information among relative modules in bidirectional way as DIOCM 

sever buffers the DICOM image stream and shrink task load of data transmission to focus on small 

valid tracking area only. The data flow of whole system was optimized by rationally utilize these two 

connection methods.   
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Chapter 4    

Fiducial Frame Design 

In light of restricted workspace and 6-DOF stereotactic tracking requirement, the space-

contracting multi-helix mesh was chosen as a preferred approach for our fiducial frame designs. We 

aimed to combine a complex registration pattern in a more compact configuration but with a 

relatively decreased manufacturing complexity. Many basic types of cylindrical helix mesh were 

designed and compared at early design stage. Then the final design was given after integrating their 

advantages. 

4.1 Analysis of Initial Prototype Fiducial Designs 

We are focusing on some similar designs all based on the elliptical and helix pattern 

configuration in Chapter 1. All of them are utilized cylindrical tube as main body shape with multi-

helix or elliptical mesh inside to minimized volume taken by the fiducial itself in the assembly of the 

full system. All testing prototypes are design on a cylindrical tube with 15mm inner diameter, 5mm 

wall thickness and 5cm length for consistency in the evaluation, but the approach can be readily 

scaled up or down. The detectable and curved tubes inside are consisted of tunnels with 3mm 

diameter circular normal section. 

4.1.1 Mesh Design of Six Identical Helical Curves  

The first design is based on a simple straight wireframe that is wrapped around a cylinder. The 

geometry of the mesh is generated by projecting the six diagonals in the cylinder against its surface. 
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All helical curves have same screw pitch and precession direction but just equidistant initial phases. 

Adjacent helical curves keep the same phase difference with each other along the cylinder, see Fig. 

4-1. 

 

Fig. 4-1: Mesh design of six helical curves, isometric image (left) and example cross-section (right) 

This design allows for high density mesh for more registration points per cross-section. A 

typical cross-section of the sample gives enough information to define two of the angles about the 

fiducial orientation in the 3D space. It also could elicit the 2D position of central axis in cylindrical 

plane, however, could not provide the cross-sectional depth along the central axis as well as twist of 

cylinder itself. Thus this fiducial will be suitable for only 4 DOF detection. So the geometry of this 

mesh cannot insure that all possible cross-sections are detectable.  

4.1.2 Mesh Design of Two Helical Curves and Two Straight Lines  

The second design is based on a standard planar Z-frame mesh as discussed in the Chapter 1. 

The planar shape is projected onto the cylindrical surface so that the tubular mesh pattern gets a better 

spatial filling across the surface of the cylindrical wall to maximize detectable readability. This mesh 
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is consisted with two helical curves and two straight lines. Two helical curves have same screw pitch 

and precession direction but with 180° phase difference. Two helical curves touch two straight lines 

at each end of cylinder, see Fig. 4-2. 

 
Fig. 4-2: Mesh design of two helical curves and two straight Lines, isometric image (left) and example cross-

section (right) 

This design allows for registration of all 6DOF of the fiducial pose theoretically as cross-

section will directly give not only all three parameters for the rotation but also other two of the 

parameters for the position of the cylindrical axis. Especially, the varying spacing between the mesh 

grid tubes provides information for the position along the cylindrical axis in the coordinate space of 

the fiducial frame. One defect is this design provides a low density mesh to reconstruct cross-

sectional ellipse duo to only four registration points per cross-section. 

4.1.3 Mesh Design of Four Various Gradient Helical Curves  

The third design is based on the design principle of multi-helix design. And more specifically 

to provide variation in the spacing between the mesh grid wires as a function of the position along the 

central axis. However, instead of projecting a planar Z-frame on a cylindrical surface, it utilizes 
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complex geometry typically described in a cylindrical coordinates – various gradient helical curves. 

The design utilizes four helical curves with incremental screw pitch and non-equidistant initial 

phases. All helical curves has slightly different pitch to each other which makes the relative 

circumferential position between them varies with the position along the central axis, yet none of 

them overlaps with other. The structure idea is shown in the Fig. 4-3. 

 
Fig. 4-3: Mesh Design of Four Various Gradient Helical curves, isometric image (left) and example cross-

section (right) 

Just like the second design, this design allows for the registration of all 6-DOF of the design in 

theory. The resulting geometry is almost identical in mathematics to the second design, but the 

geometrical generation is based on parameters in the cylindrical coordinate system rather than the 

Cartesian system as it is in the case of the second design. This simplifies the mathematical description 

of the fiducial and its error analysis in projected polar coordinates. But it will bring in many 

transformations in the image analysis which is using Cartesian system as coordinate system for each 

pixel. It will increase complexity and robustness of the tracking algorithm in the next step. 

4.1.4 Detection Robustness Analysis of  Basic Fiducial Prototype Designs  
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Fig. 4-4: Error of fitting caused by the lack of number of detected points (a) and poor distributions of detected 

points (c) for the ellipse detection. (b) and (d) are correct results after taking remedial measures. 
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The range of reliability of detection of the pose of the cross-sectional image is mainly based on 

the range of reliability of the detection of the cross-sectional ellipse which is fitting from mesh 

pattern. So the design of mesh pattern will directly determine the reliability of detection. Furthermore, 

ellipse fitting is closely dependent on the number and distribution of the detected spots around the 

circumference of the fiducial’s cylindrical tubular mesh pattern. Fig. 4-4 lists two common errors and 

corresponding remedial methods causing by lack of number of detected points and poor distribution 

of detected points respectively.  

All of prototype designs before suggested at least 4 points are necessary to accurately estimate 

centroid of the wire mesh points by fitting them into an ellipse, but this does not guarantee a precise 

estimation of the major and minor diameter of that ellipse, which will be strong relevant to the 

accuracy of detection procedure in the next step, see Fig. 4-4(a). So it was determined that at least 5 

points are needed even though 4 points is enough for determining 6-DOF technically.  The more 

points will better improve detection reliability and stability obviously since they narrow the fitting 

uncertainty. Besides the number of detected spots, how detected spots distribute is another essential 

factor which may cause unexpected problems, see Fig. 4-4(c). That is, whatever cross-sectional 

images we take, we have to make sure all detected points are distributed equably in at least three 

quadrants of transvers plane.  

4.2 Proposed Final Fiducial Design 

4.2.1 Mechanic Structure 

The final design utilized the depth detection technique of identical multi-curves along with 

higher density mesh of mixture of straight lines and helical curves for improving both detection 

accuracy and stability in the detection algorithm. This design of registration and tracking fiducial 

frame is named as Cylindrical Helix Imaging Coordinate (CHIC) fiducial frame [36] which utilizes 

the similar technique as Brown-Roberts-Wells (Z-frame) did [25,37] to detect cross-sectional depth 

information by a higher density of tubular mesh shifting along central axis regularly, see Fig. 4-5. 
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The high density of mesh pattern has nine interior imaging tubes: six straight lines and three helical 

curves. The unique pattern of these tubes allows detection of all 6-DOF at any arbitrary pose by using 

only ONE slice image, so it’s a single slice based image recognition technology. 

 
Fig. 4-5: CHIC frame fiducial CAD model (left) and unique registration elliptical mesh pattern in cross-section 

(right). 

The main body of fiducial frame which was made by 3D printing is a tubular cylinder with 

height of 50mm, external diameter of 30mm, inner diameter of 20mm and tube mesh diameter of 

3mm, yet all these sizes are scalable for other applications. Interior tubular mesh was filled with high 

MRI contrast gelatin or gadolinium fluid and provides ample tracking spots in the cross-sectional 

image to guarantee detection accuracy and stability of image analysis algorithm. For the sake of 

meeting the specifications listed in design requirement, the amended CHIC fiducial frame is extend to 

a tilt angle of 63.5˚ for a cross-sectional imaging in the midpoint of the fiducial center axis and to 

approximately 31˚ in the central range of 35mm along the axis where each blue helix tube shown in 

Fig. 4-7 doesn’t touch close red straight tube at both end as shown in Fig. 4-6.  
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Fig. 4-6: (a) Lateral perspective view of the CHIC fiducial frame to show measurement range for the 

registration and tracking. (b) Real object of 3D printed CHIC fiducial frame. (c) Top view of CHIC fiducial 
frame with parameter annotation 
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Fig. 4-7 shows only three blue helix tubes change their position when cross-section shifts along 

the central axis. So the blue spots are used for getting cross-sectional depth information and called 

axial position markers. While there are four red straight tubes which always keep a cruciate position 

with each other. These fixed cruciate markers are mainly used for reconstructing ellipse in ellipse 

plane and reference points for calculating blue tubes’ rotation angle. Each blue axial position marker 

keeps a 20° included angle offset δ with close red fixed cruciate marker respectively at both 

cylindrical ends in order to always keep identifiable distance for image recognition even at the 

extreme pose of the scanning plane. The last are two green straight tubes called axial twist markers 

which do not divide the quadrant where they belong equally but forms a 25° included angle with close 

red fixed cruciate marker at central point respectively. They make four quadrant of ellipse plane, 

whatever blue tubes shift, become an asymmetric distribution so that we can get the rotation of CHIC 

fiducial frame itself along central axis. And, they improve the accuracy of ellipse fitting, too. 

 
Fig. 4-7: Tubular mesh position, ω, shifts along central axis, z. The CAD drawing of CHIC fiducial frame 

includes different type of tubes with different colors in (a) and corresponding plot in (b). 
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Fig. 4-8: Unique registration pattern of tubular mesh. 

Detailed functional description of unique registration pattern of tubular mesh is shown in Fig. 

4-8. Axial position markers (red cross) and axial position markers (blue line) to determine the depth 

along central axis, axial twist markers (green angle) to determine the twist angle and all centroid of 

tubes were fitted into elliptical curve to determine the pose of ellipse plane. 

The further detection process relies on a machine vision techniques based image analysis for 

three aspects: the centroids measurement of each individual spots forming by detectable tubular mesh 

in cross-section, the central axis as well as corresponding depth information of the elliptical cross-

sectional plane, and the determination of the 6-DOF pose (3 DOF in translation and 3 DOF in 

rotation), see Fig. 4-9. The systemic description of machine vision based image processing algorithm 

and mathematically stereotactic principle for using this fiducial data to estimate the full 6DOF 

parameter set are discussed in the Chapter 5. 
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Fig. 4-9: Further detection process in the image analysis  

4.2.2 Manufacturing and Materials Parameters 

 Main Body 

The fiducial is designed to be fabricated through a 3D printing process. The manufacturing of 

the initial prototype parts was based on 3D printing of the fiducial frame body by a fused deposition 

modeling (FDM) machine available at the facilities of the ME department of WPI (Stratysys 

Dimension SST 1200ES). Later prototypes of the CHIC fiducial used for MRI trials were 

manufactured on the newly arrived high resolution Objet260 Connex 3D printing machine. The 

Objet260 Connex is capable of spatial resolution better than 0.1mm with the horizontal layer 

thickness ranges from 0.025mm to 0.152. The typical accuracy for the machine is 20-85μm for 

features below 50mm, and up to 200μm for the full model. In practice a better resolution could be 

achieved by carefully aligning the crucial features of the design with the manufacturing axis. 

Due to the physics of the deposition process of the FDM rapid prototype material, the 

structures may have tiny porous and will not hold liquid for long time. However, several treatment 
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techniques of the surface are available that can alleviate this problem and provide suitable 

manufacturing process for this and future designs [38]. This study also suggests a treatment process 

that relies on a mixture of one part commercially available sealant and 2 parts epoxy. Here are the 

materials that have been tested and listed in Table 4-1. 

 
TABLE 4-1 

SEALANT MATERIALS AND PRODUCTS [38] 

 
 

All of these are commercially available materials and some similar items are already available 

at the AIM lab at WPI. Based on the study here is how these materials compare based on their 

pressure holding capabilities, see Table 4-2. This data is based on the ability of the treated parts to 

hold pressure for at least 5 minutes. In our case, we need a long term – several months or years, 

sealing at atmospheric pressure. 
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TABLE 4-2 
 PERFORMANCE OF VARIOUS SEALING TECHNIQUES AND MATERIALS [38] 

 

 
 
 Imaging Filler Inside Tubular Mesh 

To achieve good visibility of the registration, the mesh in the fiducial body will be filled with 

aqueous contrast medium. The design will utilize  high MRI contrast gelatin or commercially 

gadolinium fluid (MR-Spots, Beekley Corp., Bristol, CT) as the one shown below in Fig. 4-10. 
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Fig. 4-10: MR-SPOTS MRI high contrast registration fluid 

4.3 Application in MRI-compatible Surgical Robots 

As we mentioned before, the size of CHIC frame is scalable for different applications. The 

CHIC frame was successively integrated on two of the WPI AIM Lab’s MRI-guided surgical robots 

to do tracking and calibration under MRI guidance, see Fig. 4-11. Its powerful 6-DOF registration 

and tracking ability not only gives linear tracking for percutaneous interventions robot but also 

provides stereotactic location for neurosurgery robot. These examples are powerful demonstration 

that this compact fiducial frame could be widely implanted onto various robots or device for working 

synchronously in the restricted MR environment. Moreover, if we change the filler insider the tubular 

mesh into different contract media using for other imaging technique like CT or SPECT, the CHIC 

fiducial can be easily served for robot getting tracking information under guidance of corresponding 

imaging technique. 
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Fig. 4-11: CHIC frame fiducial frame integrated on WPI AIM Lab’s (a) stereotactic neurosurgery robot [36] and 
(b) linear percutaneous interventions robot [39]. 
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Chapter 5    

Stereotactic Tracking Methods 

The stereotactic detection procedure is divided in several sub-procedures and each one of them 

determines different parameters of the stereotactic 6DOF information from cross-sectional image step 

by step. Every one of them is limited in detection range by the geometry of the design of the fiducial 

frame. And then a software simulation was launched to generate many mock cross-sectional images 

under different pose with artificial MRI noise. The tracking algorithm will be run to evaluate these 

images with known pose to test the both accuracy and robustness of the tracking methods. 

5.1 Image Recognition 

The image recognition process relies on a machine vision technique which is realized on the 

Matlab platform. From only one slice of arbitrary cross-sectional image, it can automatically detect 

all the 6-DOF information of pose, which are three space angles of rotation: azimuth, elevation and 

twist, as well as three space coordinates of central point for translation: x0, y0 and z0. The unique 

feature of this fiducial design, by the distribution of tubular mesh, will generates a one-to-one 

correspondence between tracking spots pattern and cross-sectional pose. Thus a single-slice based 

corresponding algorithm could be written to estimate the full 6-DOF parameter set for the arbitrary 

pose from cross-sectional imaging of the CHIC fiducial frame. 

5.1.1 Centroid Measurement 

The primary step of image recognition is centroid localization, which crucially decides the 

accuracy of algorithm. Therefore, it is also the major focus of many image preprocessing techniques. 

 Traditional Way 
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Fig. 5-1: MRI image of a transvers image of the Z-frame (left), filtration of its tubular mesh (middle) and 

corresponding centroid estimation (right) 

A traditional way to localize the central point of each tracking spot is utilizing weighted 

geometric mean of valid pixel set in threshold-filtered image which is processed by using Otsus 

method as filter [40]. In the first step, the random noise from the MRI is filtered. This was done 

before on real images from Brown-Roberts –Wells (Z-frame) fiducial provided by several members 

of the AIM lab [41], see Fig. 5-1. 

 
Fig. 5-2: CAD model of CHIC fiducial frame (left), an ideal cross-sectional image of its frame tubular mesh 

(middle) and corresponding centroid estimation (right) 

The initial filtration step is capable of removing typical noise in MRI image so that software 

could find the cross-sections of the wire mesh and estimate the location of its centroids in image 

coordinate system later. The algorithm was then further developed to detect cross-section positions of 
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the wire mesh of simulated MRI cross-sectional images made from CHIC fiducial frame CAD model, 

see Fig. 5-2. 

 Gaussian distribution model 

Since it is hard to clean up some small bubbles in tracking gelatin or gadolinium fluid which 

could bring dark shadow in certain tracking spots during imaging which could introduce unexpected 

calculation error, we improved a novel method to increase the robustness of centroid measurement 

during raw images analysis. The intensity of each tracking spot is assumed to follow 2D Gaussian 

distribution. Least-square fitting is used to obtain variation range of the parameters in the following 

Gaussian distribution function from 5 groups, total 150 different shapes of tracking spots to build a 

Gaussian intensity distribution model with three known parameter spaces. 

𝑓(𝑥,𝑦) = 1
2𝜋𝜎𝑥𝜎𝑦√1−𝑟2

𝑒𝑥𝑝 � 1
1−𝑟2

�− (𝑥−𝑥0)2

2𝜎𝑥2
+ 𝑟(𝑥−𝑥0)(𝑦−𝑦0)

𝜎𝑥𝜎𝑦
− (𝑦−𝑦0)2

2𝜎𝑦2
��               (1) 

where 𝑟  is correlation between x and y directions,  σx  and σy  are standard deviation in x and y 

directions. 𝑥0 and 𝑦0 are the coordinates of tracking spot we expect to estimate from the registration. 

Then we use this Gaussian intensity distribution model with three known parameter spaces to 

refit each single tracking spot orderly in the MRI images, see Fig. 5-3(a)(c). A comparison of 

centroid measurements by Gaussian model and traditional way for the same bubble affected tracking 

spot are shown in Fig. 5-3(b).So we can see the Gaussian model perform better especially in the 

situation when bubble or noise happens in the tracking spot. 
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Fig. 5-3: (a) Using Gaussian distribution model to refit pixels’ intensity for one bubble affected tracking spot. (b) 
“+”: the centroid gets from traditional way. “*”: the centroid gets from Gaussian intensity distribution model. (c) 

the aerial view of Gaussian distribution fitting results for the same tracking spot. 

5.1.2 Ellipse Plane Reconstruction  

The result of ellipse plane reconstruction also decides the accuracy of cross-sectional pose 

detection which in terms is dependent on the number and distribution of tracking spots generated by 

tubular mesh pattern around the circumference of cylindrical fiducial frame. The tubular mesh of 

CHIC fiducial frame provides adequate tracking spots in the cross-sectional image to guarantee very 

high robustness for ellipse plane reconstruction using least-square approach. Two types of failure in 

the ellipse fitting can be avoided: improper distribution and lack of tracking spots. 

To classify tracking spots in the cross-sectional image into different types of markers, the first 

step is to counterclockwise arrange all tracking spots along ellipse by the coordinates of their 

centroids before exactly matching them into each type of markers. Then the four red fixed cruciate 

markers in Fig. 4-7 can be recognized by searching four tracking spots in the loops which have 
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successive odd or even serial number as well as the sum of included angle of each contiguous pair at 

central point is 360° (within a reasonable tolerance of σ = 0.5). We cannot judge fixed cruciate 

markers by just checking four spots which have cruciate diagonal line at central point as a result of 

this orthogonal cross may change to non-vertical decussation under certain cross-sectional tilt. Then 

the two green axial twist markers which make an asymmetric distribution within four cruciate 

quadrants will be found by checking the number of tracking spots in each cruciate quadrant. 

However, here we have to do a double-check to make sure we make right recognition at first step 

before marking the rest of spots as blue axial position markers because the blue spots may shift into 

certain conditions where they can form the same crossed diagonal line at central point together with 

one of green spots just totally same as four red fixed cruciate markers do. So we check whether the 

two included angles between each green axial twist marker and close red fixed cruciate marker at 

central point are both around 25° (within the same tolerance σ = 0.5), and we need to repeat the 

program to find next four crossed spots in loop if they are not. Once marking all type of markers, we 

can adopt least-square method to fit their centroids into an elliptical curve to reconstruct ellipse plane, 

see Fig. 5-4. 

 
Fig. 5-4: (a) Valid tracking area with noise, (b) Ellipse plane reconstruction after measurement and 

classification of the centroids. 
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5.2 Mathematic Model 

Unlike some of published approaches for image based registration adopting multi-slice images 

to improve accuracy of spatial information [42], the registration algorithm of this fiducial frame 

utilizes a single-slice based fiducial registration method which could skillfully extracts high-accuracy 

6-DOF information from sophisticated spots pattern. The function of different markers will be 

explained in detailed through this part, including sections of reference frame for rotation and 

extraction of 6-DOF information. 

5.2.1 Reference Frame Definitions 
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Fig. 5-5: Reference frame for CHIC fiducial frame. Ff (red arrow)is adhere to central point of cross-sectional 
image and it  is the primary fixed frame adhering to initial point of robot arm or needle. 

The Reference frame for Single-slice based Registration is illustrated in Fig. 5-5. The gray 

plane is cross-sectional image including a central point 𝑃0while red circle plane is corresponding 

normal projected plane for 𝑃0. The black coordinate frame 𝐹𝑓  (red arrow) on the bottom is set as 

primary fixed frame adhering to initial point of tubular robot end effector, and all steps of sub-rotation 

must be done with respect to it. The central point 𝑃0(𝑥0,𝑦0, 𝑧0) where 𝐹𝑖 adhered to, includes all three 

DOF information about translation. 𝐹𝑖 is internally calibrated and related to the primary frame 𝐹𝑓 with 

same 𝑥0and 𝑦0 but a certain displacement along central axis which equals depth information 𝑧0. Other 

three DOF about rotation will be achieved by three sub-rotation steps noted as R1: Twist (φ), R2: 

Elevation (α) and R3: Direction (η). Azimuth angle (θ) is a forward correction which cannot be 

measured directly from cross-sectional image and it will be introduced further later. 

5.2.2 Calculation of 3 Rotational  DOF  

 

Fig. 5-6: (a) Side view of reference frame for Elevation angle evaluation. (b) Top view of reference frame for 
Azimuth angle evaluation 

The cross-sectional rotation can be described completely by three angles: twist angle (φ), 

elevation angle (α) and direction angle (η). The Twist angle can be directly measured by the mean 
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rotary angle of four red fixed cruciate markers diverging from each original 0°, 90°, 180° and 270° 

position referenced by two green axial twist markers. Here the pairwise symmetry of four fixed 

cruciate markers will counteract the distortion of included angle between each other which is caused 

by cross-sectional tilt during averaging process. The Elevation angle, just as its name suggesting, is 

the projective angle of the major to minor axis of the ellipse equation at central point 𝑃0 after ellipse 

plane reconstruction, see Fig. 5-6(a):   

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (𝛼) = 𝑐𝑜𝑠−1 �𝑟𝑚𝑖𝑛𝑜𝑟
𝑟𝑚𝑎𝑗𝑜𝑟

�                    (2) 

where 𝑟𝑚𝑖𝑛𝑜𝑟 and 𝑟𝑚𝑎𝑗𝑜𝑟 are minor axis and major axis of ellipse equation respectively. 

The direction angle can be immediately measured after ellipse plane reconstruction, and which 

is the angle between major axis of ellipse and x axis as shown as 𝜑 in general parametric form of 

ellipse equation: 

�𝑋
(𝑡) = 𝑋𝑐 + 𝑎 cos 𝑡 cos𝜑 − 𝑏 sin 𝑡 sin𝜑
𝑌(𝑡) = 𝑌𝑐 + 𝑎 cos 𝑡 sin𝜑 − 𝑏 sin 𝑡 cos𝜑     (3) 

where parameter t varies from 0 to 2π. Here (𝑋𝑐 ,𝑌𝑐) is the center of the ellipse, and φ is the angle 

between the X-axis and the major axis of the ellipse. 

After the obtaining of three angles about rotation, we can reconstruct corresponding 6-DOF 

pose by just following a specific three steps of sub-rotation with respect to the fixed frame 𝐹𝑓 in 

sequence of z, y and z again as Fig. 5-7 shows. Consider the last sub-rotation step will have after 

effect on twist angle that bring in an extra twist called azimuth angle (θ). Although the azimuth angle 

cannot be measured directly from cross-sectional image, it can be deduced by rotation rule: orbital 

movement will bring same spin effect on rigid body, see Fig. 5-6(b). The conversion equation can be 

finally simplified as: 

𝜃 = 𝜂                                       (4) 

therefore we have to add an amendment that subtracts the twist angle with azimuth angle to get twist 

angle in place of twist angle early in the first sub-rotation matrix shown in: 
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𝑇𝑤𝑖𝑠𝑡∗ =  𝜑 − 𝜃 = 𝜑 − 𝜂                            (5) 
 

 

Fig. 5-7: Illustration of three individual rotation steps rotating with respect to the fixed frame 𝐹𝑓 to achieve 
robot arm or needle into arbitrary pose. 

Finally, because all sub-rotation are respect to the fixed frame, we multiply three sub-rotation 

matrixes inversely together to obtain total rotation matrix as following: 

𝑹𝑧,𝑇𝑤𝑖𝑠𝑡∗
1 =  �

cos(𝜑 − 𝜃) − sin(𝜑 − 𝜃) 0
sin(𝜑 − 𝜃) cos(𝜑 − 𝜃) 0

0 0 1
�    (6) 
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𝑹𝑦,𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
2  =  �

1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

�      (7) 

𝑹𝑧,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
3    =  �

cos𝜂 − sin 𝜂 0
sin 𝜂 cos𝜂 0

0 0 1
�     (8) 

𝑹 = 𝑹𝑧,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
3 ⋅ 𝑹𝑥,𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

2 ⋅ 𝑹𝑧,𝑇𝑤𝑖𝑠𝑡∗
1       (9) 

 
5.2.3 Calculation of 3 Translational  DOF  

As we mentioned before, the central point 𝑃0  includes all three DOF information about 

translation in its spatial coordinate x0, y0 and z0. The x0 and y0 can be straightforward obtained from 

ellipse equation after ellipse plane reconstruction while how to exactly estimate z0 is a geometric 

conundrum. Previous Fig. 5-8(b) in Chapter 4 shows the blue axial position markers shift their 

included angle with corresponding red fixed cruciate markers linearly along central axis. This can be 

formulized as: 

𝑧𝑘 = 𝛼𝑘−2𝛿
𝜔

        (𝑘 = 1, 2, 3)     (10) 
where 𝛼𝑘, see Fig. 4-8 in Chapter 4, is the included angle between one pair of blue and red spots, 𝑧𝑘 

is the space distance along central axis corresponding with 𝛼𝑘, see Fig. 4-7(a) in Chapter 4, δ is an 

initial angular offset which is equal in the both ends of the cylinder and ω is the pitch of the helix tube 

that defines this tubular mesh in dimensions of angle/distance (degree/mm). Since the length of CHIC 

frame is 50cm and the offset in each side is 20° which means the maximum shifting range of each 

blue axial position markers is 50°, the ω will be 1°/cm for every blue helix tube.  

It should be noticed that this is defined on normal section along central axis of CHIC frame yet 

real cross-section usually stay in arbitrary pose which is not overlap with any normal section along 

central axis. Fig. 5-8(a) illustrates this difference: the gray plane with central point O  is cross-

sectional plane which contains a blue spot 𝐵 cutting from one of axial position marker and a red spot 

𝑅 cutting from corresponding fixed cruciate marker of 𝐵. The red circle plane with central point 𝑂′ is 

the normal section passes through 𝐵. We could only recognize dashed line angle ∠𝐵𝑂𝑅 directly from 
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cross-sectional image, however, the conversion relation between space and rotation according to 

aforementioned definition force us to calculate solid line angle ∠𝐵𝑂′𝑅′ where 𝑅’ is projection of 𝑅 on 

red normal section. Then we still have to calculate 𝑂𝑂′ to transfer 𝑧𝑜′ to 𝑧𝑜 . The conversion from 

∠𝐵𝑂𝑅 to ∠𝐵𝑂′𝑅′ as well as acquiring correction distance 𝑂𝑂′ will be illustrated by two steps, as 

shown in Fig. 5-8(b) and Fig. 5-8(c). 

 
Fig. 5-8: (a) The illustration of correction from arbitrary cross-section to normal section. The gray plane with 
central pont O is cross-sectional plane where contains a blue spots B cutting from one of axial position marker 
and a red spots R cutting from corresponding fixed cruciate marker of B. The red circle plane with central pont 
O’ is the normal section passes through B. R’ is projection of R on red normal section. (b) and (c) are two steps 

to illustrate of conversion from ∠BOR to ∠BO′R′. 

The first step will begin with the 2D cross-sectional image, see Fig. 5-8(b). 𝑂𝑃 can be 

calculated by: 

𝑂𝑃 = 𝑂𝐵 ⋅ 𝑠𝑖𝑛 ∠𝐵𝑂𝑃     (11) 
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where 𝑃 is the projection of  𝐵 on major axis of ellipse plane. Then we obtain 𝑂𝑂′ in the step (c): 

𝑂𝑂′ = 𝑂𝑃 ⋅ 𝑠𝑖𝑛(𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) = 𝑂𝑃 ⋅ 𝑠𝑖𝑛𝛼   (12) 

where 𝑂′ is the projection of 𝑃 on central axis of CHIC fiducial frame. And we can do similar work to 

gain 𝑅𝑅′ which is projection of 𝑂𝑅 on red normal section. Next, we first get 𝐵𝑅′ by the Pythagorean 

Theorem: 

𝐵𝑅′2 = 𝐵𝑅2 − 𝑅𝑅′2     (13) 

Because there is 𝑂′𝐵 = 𝑂′𝑅 = 𝑟𝑚𝑖𝑛𝑜𝑟  inside the red normal section, so we can reason out 

∠𝐵𝑂′𝑅′ by law of cosines: 

∠𝐵𝑂′𝑅′ = 𝑐𝑜𝑠−1 �𝑂′𝐵
2+𝑂′𝑅′2−𝐵𝑅′2

2⋅𝑂′𝐵⋅𝑂′𝑅′
�    (14) 

 = 𝑐𝑜𝑠−1 �2𝑟𝑚𝑖𝑛𝑜𝑟
2 −𝐵𝑅′2

2𝑟𝑚𝑖𝑛𝑜𝑟
2 �     (15) 

Now plug ∠𝐵𝑂′𝑅′ into (10) to estimate the depth of 𝑂′ and then eliminate correction distance 

𝑂𝑂′ to obtain depth of 𝑂: 

𝑧𝑘 = 𝑧𝑂′ − 𝑂𝑂′ = ∠𝐵𝑂′𝑅′ −2𝛿
𝜔

                   (𝑘 = 1, 2, 3)  (16) 

In order to minimize error, repeat these same steps in (16) to estimate other two blue spots and 

finally the depth information 𝑧0 of central point 𝑃0 will be the average of three depth of 𝑂 getting 

from three blue spots: 

𝑧0 = ∑𝑧𝑘
3

                                          (𝑘 = 1, 2, 3)  (17) 

5.2.4 Calculation of Transformation Matrix 

Most of the robot controls are depended on transformation matrix, so the last is to piece 

together a tracking transformation matrix 𝑇𝑇𝑟𝑎𝑐𝑘 from rotation matrix 𝑅 and central point 𝑃0:  

𝑇𝑇𝑟𝑎𝑐𝑘 = �𝑅 𝑃0′
0 1

�      (18) 

where 𝑅 is rotation matrix, 𝑃0′ is transpose of central point vector and 0 is zero row vector with 3 

dimension. 
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5.3 Simulation Verification 

5.3.1 Simulation Method 

To test the performance of the algorithm, artificial cross-sections from CAD drawings were 

made, see Fig. 5-9. 

 

Fig. 5-9: Artificially created cross-sectional image 

Artificially created white noise was added and the filtration capabilities of the registration 

algorithm were adjusted and tested, see Fig. 5-10. 

 
Fig. 5-10: Images with artificial noise 

The tracking algorithm applies a combination of tracking spots registration, plane 

reconstruction and transformation matrix generation, see Fig. 5-11. The total processing time is less 

than 10ms. 
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Fig. 5-11: Registration of centroids and various types of markers 

At the end of the algorithm, it determines the pose and orientation of the cross-section and 

provides a normal vector of the cross-sectional image, see Fig. 5-12. The RMS of registration for this 

pose is within 0.2° for all the 3 rotational DOF. 

 
Fig. 5-12: Final registration and tracking results 
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5.3.2 Simulation Results 

 Artificially Generated Images for Reconstruction Simulation 

Four groups of simulation have been performed to evaluate the accuracy of the fiducial 

module: two groups for positioning error tests and two for orientation error tests. The simulated 

images setting and corresponding results are showing in Fig. 5-13. 

A group of normal sections with known distances as shown in Fig. 5-13(top-left) was created. 

Cross-sections E to I with 5, 10, 20, 30 and 40mm to the end of the fiducial module are acquired from 

CAD model and used to create simulated images. The axial displacement error is shown in Fig. 

5-9(bottom-left). The maximum error is 0.130mm with a standard deviation is 0.039mm. 
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Fig. 5-13: Simulation positioning accuracy evaluation: Normal sections with known distances (top-left) and 
their axial displacement error (bottom-left). Tilted sections with known distances (top-right) and their axial 

displacement error (bottom-right).  
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Fig. 5-14: Simulation orientation accuracy evaluation: A group of cross-sections with known tilt angles (top-left) 
and their normal vector error (bottom-left). A group of normal sections with known twist angles (top-right) and 

their twist angle error (bottom-right).  
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A group of tilted sections with known distances is tested to evaluate the positioning error. The 

cross-sections are shown in Fig. 5-13(top-right). Cross-sections J to M have the same tilt angle of 30° 

relative to normal section and they are 10, 20, 30 and 40mm to the end of the fiducial module. The 

axial displacement error is shown in Fig. 5-13(bottom-right). The maximum error is 1.015mm with a 

standard deviation of 0.247mm. 

To evaluate orientation accuracy, a group of cross-sections A to D with known tilt angles of 

15°, 30°, 45° and 60° is created as shown in Fig. 5-14(top-left). The angular error of normal vector is 

shown in Fig. 5-14(bottom-left). The maximum error is 0.456° with a standard deviation of 0.164°. 

A group of normal sections with known twist angles was created to evaluate the twist angle 

error. The cross-sections of N to R with twist angles of 15°, 30°, 45°, 60° and 90° are shown in Fig. 

5-14(top-right). The twist angle error is shown in Fig. 5-14(bottom-right). The maximum error is 

0.032° with a standard deviation of 0.011°. 

 Original MR Images Simulation 

MR images of the fiducial module were acquired with a Philips 3T MRI scanner. The fiducial 

module was placed in the scanner at a random pose. The positioning and orientation accuracy are 

tested by taking a series of 14 images using a T2-weighted protocol, flip angle=45°, image 

size=256×256 pixels, pixel size=0.5×0.5mm, distance between slices=2mm. An assessment of 

relative accuracy on this set of images is shown in Table 5-1. 

TABLE 5-1 
ORIGINAL MR IMAGE ACCURACY EVALUATION 

 x y z Tilt Twist 

RMS Error 0.620mm 0.144mm 0.269mm 0.086° 0.006° 

Standard 
Deviation 0.166mm 0.166mm 0.280mm 0.089° 0.006° 

 

 

 Reconstructed MR Image Simulation 
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To further evaluate reliability on a large set of images with known poses, a high resolution 

MRI volume was acquired. This volume was then artificially resliced to generate reconstructed MR 

images of arbitrary, but known position and orientation. For a representative series of images 

reconstructed with a tilt angle of 15° relative to original MR images and with the same image and 

pixel size, the accuracy results are shown in Table 5-2.  

TABLE 5-2 
RECONSTRUCTED MRI POSITIONING AND ORIENTATION ACCURACY TEST 

 x y z Tilt Twist 

RMS Error 0.111mm 0.091mm 0.312mm 0.006° 0.161° 

Standard 
Deviation 0.114mm 0.094mm 0.311mm 0.006° 0.157° 

 

 
 User Interface Tracking  

Besides static registration, we also tested the user interface module running on Matlab 

platform. To make sure it provided a successive result in real time to reflect target pose exactly as 

well as sent the corresponding correction transformation matrix to robot controller. A series of visual 

feedback results for tracking two DOF movements are serially shown in Fig. 5-15. 
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Fig. 5-15: The image plane is adapted to automatically tracking a series of elevation angle changes (black arrow) 
and direction angle changes (blue arrow) with respect to a fixed point. 
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Chapter 6    

Tracking Experiments and Results 

To demonstrate the tracking accuracy and MRI compatibility of this registration and tracking 

system, we performed many MRI scanning tasks for registration and tracking. 25 experimental groups 

with different poses are successively scanned along specific sequence in MRI experiment to evaluate 

the accuracy and robustness of tracking algorithm. 

6.1 Experiments 

We evaluated our registration and tracking system in a Philips 3T MRI scanner and all images 

were acquired with following imaging parameter: TR = 3000ms; TE = 90ms; flip angle = 90°; slice 

thickness = 2mm; pixel spacing = 0.5 × 0.5mm; FOV = 80 × 80mm; and matrix = 160 × 160, see 

Table 6-1. The experimental groups are successively scanned along depth axis 𝒛𝒇 with fixed step 

length but invariable on both vertical axis 𝒙𝒇 and horizontal axis 𝒚𝒇. To evaluate the accuracy of the 

system at omnidirectional rotation within design requirement, we successively set scanning plane 

relative to CHIC fiducial frame at various tilt angles and twist angles to obtain a series of cross-

sectional images, see Fig. 6-1(a). The alteration of tile angle after twist will lead to both elevation 

angle and direction angle change: both elevation and direction angle are equal to tilt angle at the same 

time. There are 5 control groups for tile angle and twist angle respectively (tilt angle at 0°, 10°, 20°, 

30°, 40° and twist angle at 0°, 5°, 10°, 15°, 20°) forming 25 groups of different combination of tilt 

angle and twist angle in total, see Table 6-2 and Fig. 6-2.   
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Fig. 6-1: (a) Experiment schematic. Two fiducials being connected in series by a 50mm long concentric 

connector are placed on a phantom container. (b) The photo of the real installment of the whole experiment 
setting. This experiment was extra using the MRI head coil inside 3T main coil to enhance imaging definition. 

And the phantom container is the place to put water bag into it for MRI scanner getting a proper imaging 
window of contrast ratio. 
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TABLE 6-1 

PHILIPS 3T MRI SCANNER IMAGING PARAMETER 

 FOV TE TR FA BW Thickness Space Between 
Slices Receive Coil Size Pixel 

Spacing 

T1_MYZ -- 90ms 3000ms 90º 444 2 mm 1.5mm T/R Head 160*160 0.5*0.5 

 
 

TABLE 6-2 
25 GROUPS OF DIFFERENT COMBINATION OF TILT ANGLE AND TWIST ANGLE 

Group # Twist angle Tilt angle Description 
1 0 0 Volume Scan Once 
2 0 10 Volume Scan Once 
3 0 20 Volume Scan Once 
4 0 30 Volume Scan Once 
5 0 40 Volume Scan Once 
6 5 0 Volume Scan Once 
7 5 10 Volume Scan Once 
8 5 20 Volume Scan Once 
9 5 30 Volume Scan Once 
10 5 40 Volume Scan Once 
11 10 0 Volume Scan Once 
12 10 10 Volume Scan Once 
13 10 20 Volume Scan Once 
14 10 30 Volume Scan Once 
15 10 40 Volume Scan Once 
16 15 0 Volume Scan Once 
17 15 10 Volume Scan Once 
18 15 20 Volume Scan Once 
19 15 30 Volume Scan Once 
20 15 40 Volume Scan Once 
21 20 0 Volume Scan Once 
22 20 10 Volume Scan Once 
23 20 20 Volume Scan Once 
24 20 30 Volume Scan Once 
25 20 40 Volume Scan Once 
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Fig. 6-2: Typical CHIC fiducial frame MR images at different tilt and twist angles 
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Furthermore, two CHIC fiducial frames are connected in series by a 50mm long concentric 

connector to make an interior contrast within a group and also test expansibility for long discrete 

measurement application along depth. The stepping rotation of both twist angles and tilt angles are 

achieved by MIR scanner itself which is more precisely than move fiducial frames manually. Fig. 

6-1(b) is the photo of the real installment of the whole experiment setting. This experiment was extra 

using the MRI head coil to enhance imaging definition while we place the central axis of two 

concentric fiducial frames along the central axis of head coil. And the phantom container is the place 

where we put aqueous contrast medium into it for MRI scanner getting a proper imaging window of 

contrast ratio which is close to human tissue. By using image data provided by 25 groups, registration 

and tracking performance was evaluated into two aspects after: translation DOF and rotation DOF. 

6.2 Accuracy Assessment 

6.2.1 Evaluation of Translation 

We selected 10 groups which include 5 groups of different twist angles and other 5 groups of 

different tilt angles, then picked 10 sequential slices from each group to evaluate the feature of 

translation tracking.  

First, group with 0° tilt angle and 0° twist angle was selected for qualitatively analysis about 

translation accuracy, see Fig. 6-3. Each blue and red point in the middle diagram represents the 

coordinates of an image’s central point getting from this selected group. And the numbers upon the 

line are corresponding average and standard deviation for these data.  From the small wave of x and y 

curve, we can see the program hold a decent stability when we try to apply it to get results from many 

invariable input. Here you may find there is a little separation between two fiducial’s y curve. It can 

be explained as double fiducial system may be placed a little bit skew initially along y direction. On 

the other side, the very smooth slop of z curve at top right graph shows the program can precisely 

measure the same gap between each slice. 
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Fig. 6-3: Preliminary analysis about translation accuracy in 0° tilt angle with 0° twist angle group. The middle 
3D plot shows position of all slices’ central points. The three 2D plots around show the x, y and z information 
of all slices’ central points respectively. The numbers upon the line are corresponding average and standard 

deviation for same color data. 

Then we evaluate the translation tracking accuracy quantificationally for whole groups. We 

measured translation results from 100 random slices with different twist and tilt angles respectively. 

Since the 2D central point of each cross-sectional image should be unchangeable after registration 

and only cross-sectional depth variation, so we show the RMS error measurement of 𝑥0, 𝑦0 and 𝑧0 

together in Fig. 6-4. Then we present the detection of 𝑧0 changing along central axis in Fig. 6-5 
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separately. There are 10 samples in each step which represents a set of slices scanning at same 𝒛𝟎 

position and the dash baseline marks out corresponding theoretical value. 

 
Fig. 6-4: RMS error measurement results of translation DOF from 100 slices under different twist and tilt angles. 

The RMS error of 𝑥0,𝑦0 and 𝑧0 is 0.074mm, 0.228mm and 0.271mm respectively. 

 
Fig. 6-5: Detection of motion in depth with 2mm regular step length along z axis with average error 0.298mm 

and standard deviation 0.277mm. 
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6.2.2 Evaluation of Rotation 

Results of the rotation accuracy study are shown in three ladder-shaped plots separately. The 

detection of successive twist angles (φ), elevation angles (α) and direction angles (η) are list in Fig. 

6-6, Fig. 6-7 and Fig. 6-8 respectively. In each case totally 50 slices are selected from five control 

groups of tilt or twist and the baseline of corresponding step length is also superimposed into the 

same plot. There are 10 samples in each step being taken from one of five groups and the dash 

baseline represents the corresponding ideal values they should be. 

 

 
Fig. 6-6: Detection of motion in twist angle with average error 0.038mm and standard deviation 0.436mm. 
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Fig. 6-7: Detection of motion in elevation angle with average error 0.146mm and standard deviation 0.458mm. 

 
Fig. 6-8: Detection of motion in direction angle with average error 0.398mm and standard deviation 0.609mm. 
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6.2.3 Comprehensive Evaluation 
Statistical analysis of all tracking errors is summarized in Table 6-3. We just obtain a series of 

relative values for 𝑥0 and 𝑦0 wihout its real valuse while other parameters we have fixed step length 

as real values. Each tracking angular error is with ±0.5° for 50 samples except standard deviation of 

direction angle is 0.609° due to direction angle is sensitive with any delicate error at completely 

vertical condition. The overall angular RMS error is 0.426° with standard deviation of 0.526° for 

totally 150 samples. The depth translation RMS error is 0.271mm with standard deviation of 

0.277mm for totally 100 samples. But consider the dimension of fiducial frames caliber is 250mm, 

this defect cannot belittle virtues. 

TABLE 6-3 
STATISTICAL ANALYSIS OF 6-DOF TRACKING ERRORS 

 Average 
Error 

Standard 
Deviation RMS Error Samples 

T
ra

ns
la

tio
n x0 - - 0.074mm N = 100 

y0 - - 0.228mm N = 100 

z0 (depth ) 0.198mm 0.277mm 0.271mm N = 100 

R
ot

at
io

n 

twist 0.038° 0.436° 0.430° N = 50 

elevation 0.146° 0.458° 0.383° N = 50 

azimuth 0.398° 0.609° 0.470° N = 50 

overall 0.194° 0.526° 0.426° N = 150 
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Chapter 7    

Passive Resonant Coil Design  

To successfully perform minimally invasive surgeries by robots, fast and accurate registration 

and tracking for the invasive instrument is a necessary precondition. MRI offers an excellent soft 

tissue contrast and three-dimensional imaging capabilities, however, getting the high-definition of 

soft tissue images usually requires at least several seconds per slice due to MR imaging principle 

itself. Both gradient strength and achievable signal-to-noise ratios would be limited under fast MR 

imaging condition when soft tissue was the target. Under these circumstances, it is difficult to 

perform interventions in organs that are rapid and permanent moving, like the involvement of 

freehand surgery. One way to solve the problem is using resonant coil wrapping to increase change of 

local magnetic field gradients by arousing instant resonant magnetic field so that the contrast medium 

in the fiducial frame could emit more energy than general way to get higher definition imaging under 

fast MR imaging condition of small flip angle. 

7.1 Proof of Principle 

7.1.1 Single Coil LC Circuit Implementation 

Single resonant coil fiducial markers were first used for localization in the 1990’s, and are 

increasingly being used to track devices within MRI scanners [43,44]. Most systems use active 

method: small coil were connected into a receive channel on the scanner which record position 

dependent signals. Connecting the fiducials directly to the scanner allows them to be detuned during 
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the RF excitation. This ensures that they do not compromise images, but raises patient safety issues 

with the cabling, particularly for coils placed internally. In this thesis, we selected passive coil with a   

variable capacitor to constitute a close loop RC circuit resonating with MR scanner main coil. In light 

of Phillips Achieva 3T MRI scanner will working at 128MHz under normal operating conditions 

while the non-magnetic capacitor we can get is just at least 1 pF, the turns and length of coil is greatly 

limited as its inductance should be narrowed less than 1.55μH. According to coil inductance 

approximate formula as Fig. 7-1 shown, a 1.55μH pyknotic coil with 3mm diameter would just have 

about 6 turns. Although we prolonged its length to befittingly diminish inductance, it brought in 

another problem which will lead to non-uniform imaging along with coil we will discuss later. 

 
Fig. 7-1: Single-layer coil and corresponding inductance approximate formula 

In order to be used for CHIC fiducial frame whose internal diameter of tubular mesh is 3mm, 

we first made a 3mm diameter sparse coil with 8 turns for interior filling of tube. On other side, we 

also made a 6mm diameter sparse coil with 3 turns for exterior wrapping since at least 1.5mm tube 

wall for each tubular mesh is just enough for its mechanical strength after 3D printer manufacture, see 

Fig. 7-2. The chosen variable capacitor supports capacitance changing within 1~6pF continuously. 
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Both them contained MRI high contrast registration fluid inside of the coil and were well-tuned with 

128MHz resonant frequency. 

 
 

Fig. 7-2: Single Coil LC Circuit with 6mm coil diameter (bottom) and 3mm coil diameter (top) 

7.1.2 MRI Results  

Tracking of passive fiducials requires careful selection of a pulse sequence to ensure marker 

contrast. Generally, dual-flip angle gradient echo sequences have been used with a low flip angle for 

fiducial imaging and a larger excitation for anatomical imaging [45]. All resonant coil images in this 

thesis were acquired with a fast low angle shot (FLASH) pulse sequence, see Table 7-1 (TE = 4.8ms, 

TR = 9.2ms, slice thickness 2mm, matrix 2562, pixel space 0.5 x 0.5, pixel size 1.1mm, flip angle 2°, 

bandwidth 390 Hz/pixel). The layout of resonant coils and control group in the MR scanner are 

shown in Fig. 7-3 which their axis slice located at the isocentre of main coil. 

TABLE 7-1 
FAST LOW ANGLE SHOT (FLASH) PULSE SEQUENCE 

 FOV TE TR FA BW Thickness Space Between 
Slices Size Pixel 

Spacing 

T1_FAST -- 4.8ms 9.2ms 2º 390 2 mm 1.5mm 80*80 0.5*0.5 
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Fig. 7-3: (a) Diagrammatic drawing for single coil layout in MRI experiment. The top one is control group with 
no resonant coil, and the bottom left and bottom left are exterior coil and interior coil respectively. (b) Photo of 

real products in MR scanner.  

 
Fig. 7-4: (a) MR image of control group (yellow circle) and exterior coil. (b) MR image of exterior coil. Their 

MRI results show the traditional contrast medium is hardly recognized under fast MR imaging, and the one with 
lager diameter coil wrapping is brighter and has higher SNR than the small diameter one. 
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From the MRI results in Fig. 7-4 we can know soft tissue or MRI high contrast registration 

fluid is hardly to see under fast low angle shot (FLASH) pulse sequence using in real time imaging. 

While both coil wrapped samples appear brightly in the same fast imaging condition. By comparing 

(a) and (b), it notices us the little imaging spot formed by small coil will drop off the SNR of MR 

image which adds more disturbance to the image analysis step even though the small diameter coil 

could be made to a longer size than lager diameter coil since it allows relative more turns under same 

inductance requirement. So it’s important to keep the balance between coil diameter and turns during 

design to guarantee the SNR of MR images. 

Another point in the single coil experiment is several sub-bright artifacts appearing around real 

spot when we tuned the coil circuit’s resonant frequency very close to MR scanner main coil’s 

imaging frequency for getting a brighter imaging spot, see Fig. 7-5. What we figured before is a 

perfect match resonant frequency would generate the best imaging results, but this unexpected 

phenomenon told us that the resonant frequency of coil and main coil are not the closer, the better. 

The high consistent matching of resonant frequency will stimulate artifacts and fake shadow like 

ringing effect although it does make tacking spots brighter. 

 
 

Fig. 7-5: An array of sub-bright artifacts appearing around real spot 

7.2 Analysis for Alternative Designs 

7.2.1 Double Layers Coil with Reversely Wrapping Proposal 

The straightforward thought we proposed at earlier coil design stage is to combines CHIC 

fiducial frame with coil directly by clockwise warping coil over its cylindrical external surface and 
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then anticlockwise wrapping back from its internal surface in order to counteract most of magnetic 

flux so that it would minim the inductance of whole system as Fig. 7-6 shown. But it turned out to be 

just an idle assumption due to its huge inductance calculating from aforementioned inductance 

approximate formula. It’s impossible to buy a capacitor with such small capacitance to resonate with 

it around 128MHz. 

 

 
Fig. 7-6: (a) Double layers coil with clockwise exterior warping and anticlockwise interior wrapping. (b) CAD 

view of CHIC fiducial frame with reversely wrapping double layers coil 

7.2.2 Interior Sub-coils Prototype 

After impractical plan A, we changed our thought back to small single coil and decided to 

break the big coil in plan A into a cluster of sub-coils inside the tubular mesh and connect them in 

parallel, see Fig. 7-7. This design was implemented a complex multi-coil cluster with the uniform 

distribution of same resonant frequency within the whole system which means every sub-coils should 

be made almost identically. The formula of identical inductance in parallel, 𝐿 = 𝐿𝑖
𝑛

 , suggests  if we 

make nine same sub-coils inside CHIC fiducial frame, the inductance of each sub-coil will allow nine 

times larger than the requested system inductance. In other words, the sub-coils connecting in parallel 

could be made longer and denser than any single coil. However, two problems lie behind this design 

that may lead to poor imaging quality: 1) small diameter of coil would lower the SNR of MR image; 
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2) the space inside tube where should be fully filled by contrast medium will be partly occupied by 

interior sub-coils result in forming incomplete spots.  

 
 

Fig. 7-7: CAD drawing and implementation of interior sub-coils CHIC fiducial frame

 

Fig. 7-8: CAD drawing and implementation of exterior sub-coils CHIC fiducial frame 



83 
 

7.2.3 Exterior Sub-cols Prototype 

In this design, we manufactured a skeleton for CHIC fiducial frame so that we can wrap a 

relative large diameter coil outside the tubular mesh without worry about it occupied the interior room 

of tubes forming crippled spots, see Fig. 7-8. This design has a stability problem: the shape of 

exterior coil is too ductile to be easily deformed unexpectedly even when it was slightly touched.  

 
Fig. 7-9: Fast MRI results of interior sub-coils CHIC fiducial frame (left), Non-coil CHIC fiducial frame control 

group (middle), and Exterior sub-cols CHIC fiducial frame (right)  

In order to compare imaging quality between interior frame and exterior frame, we placed them 

with a non-coil-wrapped CHIC fiducial together to imaging under fast low angle shot (FLASH) pulse 

sequence by Phillips Achieva 3T MRI scanner, see Fig. 7-9. These results first proved that well-

designed resonant sub-coils can be made very long insider or outside the fiducial frame tube for fast 

MRI imaging. And it also show that exterior is better than interior since it not only doesn’t occupy the 

space of interior tube where is fully filled by gelatin but also imaging a better SNR slice than interior 
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one. The exterior results also showed a surprising clear images and tiny artifacts in fast imaging 

which we will give some quantitative analyses later.  

But new problems popped up: From the lateral view of both two sub-coil CHIC fiducial frames, 

see Fig. 7-10, imaging results revealed both coil wrappings were too sparse to forming an 

inhomogeneous distribution along tubular mesh. And it also demonstrated the tubes far from variable 

capacitor will present a relative dim imaging than the one close to variable capacitor. So an eccentric 

capacitor structure and sparse coil turns are the two main reasons why we saw different brightness of 

each tracking spot in the same cross-sectional image in Fig. 7-9. 

 
 

Fig. 7-10: Lateral view of sub-coil CHIC fiducial frame with inhomogeneous distribution along its tubular mesh. 

7.3 Final Improved Design 

7.3.1 Mechanic Structure 

 
 

Fig. 7-11: Two Different cross-sections of coil materials 
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Now that primary MRI results confirmed exterior sub-coils CHIC fiducial frame has 

preponderant features in fast MR imaging, we managed to solve its three defects: 1) loosing stereo 

structure; 2) sparse turns; 3) asymmetrical imaging distribution. We abandoned traditional round wire 

to wrap the coil but turn to adopt flat wire to cover as much surface as coil can under same turns, see 

Fig. 7-11.  Then a 1/8 inch wide flat cooper foil came into our view which has acrylic adhesive on 

one of its surface so that we can firmly adhere it onto CHIC fiducial skeleton to avoid unexpected coil 

deform. Besides, the variable capacitor will be connected in the center of CHIC fiducial frame in 

order to keep all the tubes have relative same distance to it eliminating asymmetric, see Fig. 7-12. 

The improved CHIC fiducial skeleton will bond tubular mesh only at each end instead of internal 

bracing in order to allow a dense coil wrapping covering tubes. 

 
 

Fig. 7-12: CAD drawing and implementation of improved exterior sub-coils CHIC fiducial frame 

7.3.2 MRI Results 
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The Fig. 7-13 shows the imaging results of exterior sub-coils CHIC fiducial frame under fast 

low angle shot (FLASH) pulse sequence. From the front view, it verifies sub-coils CHIC fiducial 

frame can provide plump tracking spots for all tubes with high imaging SNR by placing variable 

capacitor inside the center of CHIC fiducial frame. On the other hand, the lateral view demonstrates 

the flat copper foil wrapping make the imaging distribute along tubular mesh more continuously and 

uniformly than previous one. Also, the adhesive flat copper attached on tubes surface firmly 

preventing potential deformation caused by outside force. 

 

Fig. 7-13: Improved exterior sub-coils CHIC fiducial frame imaging under fast low angle shot (FLASH) pulse 
sequence. (a) Front view, (b) Lateral view. 

The soft tissue could generates dim imaging under fast imaging condition, however, that 

images can hardly provide the enough information for tracking or anatomical identification due to the 

lower contrast ratio and poor SNR. To quantitative analysis the imaging difference of the improved 

exterior sub-coils CHIC fiducial frame with respect to pure contrast medium under fast imaging 

condition, we place it upon a contrast medium bag which is containing normal saline using in the 

traditional soft tissue MR imaging, see Fig. 7-14. We got their imaging result in Fig. 7-15(a) and then 

drawn a red ling which was cross through two tracking spots (one was close to spot center and 

another one was close to spot border) and contrast medium bag in order to get the plot of pixel 

intensity distribution along the red line, see Fig. 7-15(b). The peak values of two tracking spots and 

contrast medium bag demonstrated the imaging intensity of improved exterior sub-coils CHIC 
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fiducial frame is about 2~4 times better than pure soft tissue that means it will give more detailed 

information about interested target under fast MR imaging during real-time MIS. 

 

Fig. 7-14: Quantitative analysis experiment for imaging intensity difference between improved exterior sub-
coils CHIC fiducial frame and contrast medium bag 

 

 
Fig. 7-15: Imaging intensity difference between improved exterior sub-coils CHIC fiducial frame and contrast 

medium bag. (a) Sampling trajectory along red line, (b) Pixel intensity distribution along red line 
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Chapter 8    

Conclusion 

MR imaging and navigation research is a developing area for surgical robotics. The hardware 

development for MRI-guided robotics has been set largely with a solid foundation while the MRI-

guidance is progressing relative slowly. However, more importantly, real-time robot localization, 

registration and tracking are the key parts to close the image guidance and feedback control loop. 

Image processing and computer vision would play major role for MRI-guided robotic systems. Right 

now, the method developed in this thesis got some good outcomes in the image guidance integration 

and feedback providing for surgical robot under MRI environment. 

8.1 Summary of Work and Contributions 

8.1.1 Summary 

In this thesis, we developed a fast registration and tracking system for real-time closed-loop 

control of robot in MIS under MRI guidance. Its novel 6-DOF registration and tracking fiducial frame 

and corresponding algorithm can be used to provide full 6-DOF tracking information for robotic 

surgery under MRI guidance. The commonly used modular structure makes this registration and 

tracking system completely feasible to support remote control and multi-platform operating. And we 

achieved an approach to get real-time imaging and track rapid motion by wrapping an elaborate 

passive resonation coil outside of fiducial. This method will allow us to get high definition fiducial 
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images under fast MRI imaging. It breaks the limitation that traditional MRI-guided surgeries are 

only feasible for slow pace of robotic movement due to relative low imaging speed of soft tissue. The 

developed mechanism in this thesis is for MRI-guided surgical robot, however, the modular hardware 

and software support a variety of image-guided MIS. As long as the fiducial frame of registration and 

tracking system is electromagnetic compatible, it is also suitable for ultrasound or CT guidance. 

8.1.2 Impact and Contribution 

 Designing an exclusive CHIC registration fiducial frame 

The elaborate stereotactic structure of compact fiducial frame allows image analysis program to 

reconstruct each 3D pose from one unique 2D spots pattern MR image. The unique and ample helical 

imaging pattern inside CHIC frame allows detection of a 6-DOF pose by only using one slice image 

from its compact cylindrical structure. The interior tubular mesh is filled with high MRI contrast 

gelatin or gadolinium fluid providing nine tracking spots in the cross-sectional image to guarantee 

detection accuracy and stability of the image analysis algorithm.  

 Developing an analysis approach to optimize image processing and accuracy 

2D Gaussian distribution model was brought in tracking centroid measurement. It effectively 

avoids errors caused by dark shadow in certain tracking spots forming from some small bubbles 

inside of contrast medium. The high efficiency and accuracy of MRI image processing algorithm also 

guarantee the quality of real-time registration and tracking in MIS. 

 Development of independent and modular communication framework 

The software framework integrated a DICOM server, a portable registration and tracking 

algorithm with OpenIGTLink network communication protocol, as well as user interface for the 

physician to coordinate the procedure and control the robot. Besides, it’s a standalone system that 

achieves registration and tracking without any additional instrument or supports just like MRI 

experiment setup demonstrated in Chapter 6. The data flows among modules are well-designed to 

undertake different types of real-time DICOM image flow into two proper ways: unidirectional & 



90 
 

high-throughput direct connection and bidirectional & remote network link. Moreover, the 

performance of registration and tracking system was rapid enough for real-time MRI-guided MIS. 

 Accuracy evaluation of fiducial frame design and simulation. 

The error results presented outstanding tracking accuracy during detecting full 6-DOF stereo 

pose by just a single 2D cross-sectional image. Meanwhile, these results also attested that it’s doable 

to utilize single-slice based fiducial detection methods to assist robot motion synchronize with real-

time registration and tracking. Each tracking angular error was with ±0.5° for 50 samples except 

standard deviation of direction angle was 0.609°. The overall angular RMS error was 0.426° with 

standard deviation of 0.526° for total 150 samples. The depth translation RMS error was 0.271mm 

with standard deviation of 0.277mm for total 100 samples. But consider the dimension of fiducial 

frames caliber was 250mm, this defect cannot belittle virtues. However, we have to notice that this 

accuracy depends upon the pixel size which in our experiment is  field of viem
image dimension

= 0.5mm. This 

demonstrated the system is completely able to track MRI-guided robot executing real-time surgery in 

a minimally invasive and accurate manner. 

 Developing and optimizing passive resonant coils for fiducial frame  

The exterior surface of fiducial frame was wrapped with passive tracking coil to reduce MR 

imaging time by resonating with MR scanner main coil so that it implemented tracking rapid 

movement and can be extended to freehand involved surgery. Although bringing non-ferromagnetic 

tracking coil into system may lead to image distortion during MR imaging, we minimized its MRI 

distortion by applying symmetrical distribution of each sub-coil and choosing an appropriate 

deviation of coil resonant frequency. The low-angle shot (FLASH) pulse sequence MR fast imaging 

results in Chapter 7 showed this elaborate non-ferromagnetic tracking coil dramatically shrunk 

imaging time while generating almost zero image distortion. The high MRI-compatibility of resonant 

coil generates very tiny artifact or disturbance in MRI images. 

8.2 Future Work 
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8.2.1 User Interface Enrichment 

The immediate future work to be done would be developing a better user interface for 

registration and tracking system to deal with complex conditions. It will allow physician to 

manipulate automatic movement of robot along pre-marked path coordinating with real time tracking 

results. The concomitant user interface would display both instrument pose and patient’s anatomic 

image at same visual field so that surgeon could check the relative position of instrument and target. 

In addition, we will also develop a new mode in user interface for robot calibration. The mode would 

load and display requested transformation matrix pose and tracked transformation matrix pose 

continuously at the same time and same visual view in order to reveal the movement error between 

input and output of robot movement. All these new functions will improve the multi-ability of 

registration and tracking system to avoid some common tracking faults such as single visual view 

misconception, soft tissue deformation under force or lack of relative position information [47]. On 

the other hand, the tracking algorithm needs improvement to raise its accuracy and robustness. And 

the DICOM sever part also needs some promotion that its basic image data base will be upgraded 

from Matlab storage library function into high efficiency data structure by calling certain C++ mix-

programmed dynamic link library (DLL) files. In the future application, the input and output 

interfaces: DICOM sever and correction feedback modules, are hoping to be implanted and run 

steadily in the MRI console computer under different operation system. 

8.2.2 Fiducial Frame Size Diversification 

Various dimensions of CHIC fiducial frame will be adopted in other MRI-guided surgeries like 

shown in Fig. 4-11 in Chapter 4 whose image definition is also different so that it needs us to do 

further work to evaluate the change rule of its accuracy under manifold size and imaging definition 

before launching it into other applications whose fiducial size are quite different. Another possible 

question is how much motion can be allowed for reconstruction to be robust enough. If the target 

moves above this threshold, then there will be a need for a completely new fiducial frame with lager 
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size. From the sample data, the upper limit on the target motion, above what value they needs to be a 

reacquisition would be identified. We are still working on testing different fiducial frames with 

typical size in medical applications. The fiducial frames will be made into a set of typical size and 

labeled corresponding errors so that we can just by installing anther ready-made and calibrated 

fiducial frame into robot or instrument when we change to a new type of surgery. It will widely 

extend the application area of this thesis work to other MRI-guided surgeries. 

8.2.3 Tracking Algorithm Platform Transplantation 

Furthermore, the registration and tracking system presented in this thesis open up the doors to 

be application to many other image-guided technologies and their combination for medical robot, 

such as X-ray computed tomography (XCT), single photon emission computed tomography (SPECT), 

and positron emission tomography (PET). There is no major technical hurdle for extending our 

registration and tracking system into other image-guided robotic surgery. In light of their imaging 

principle are very similar, some mutually compatible contrast agents are adopts in many hybrid 

image-guided clinic application. The iodine-containing contrast medium is one of commonly used 

contrast medium for CT, PET and SPECT [48-50]. We could fill the corresponding contrast medium 

inside the tubular mesh of fiducial frame to easily transplant it working under other image-guided 

environment.  
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