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Abstract

In the last decade, socially assistive robots have been used in therapeutic treatments for

individuals diagnosed with Autism Spectrum Disorders (ASDs). Preliminary studies

have demonstrated positive results using the Penguin for Autism Behavioral Interven-

tion (PABI) developed by the AIM Lab at WPI to assist individuals diagnosed with

ASDs in Applied Behavioral Analysis (ABA) therapy treatments. In recent years,

power-efficient embedded AI computing devices have emerged as a powerful technology

by reducing the complexity of the hardware platforms while providing support for par-

allel models of computation. This new hardware architecture seems to be an important

step in the improvement of socially assistive robots in ABA therapy. In this thesis, we

explore the use of a power-efficient embedded AI computing device and pre-trained deep

learning models to improve PABI’s performance. Five main contributions are made in

this work. First, a robot-enhanced ABA therapy framework is designed. Second, a

multilayer pattern software architecture for a robot-enhanced ABA therapy framework

is explored. Third, a multifactorial experiment is completed in order to benchmark the

performance of three popular deep learning frameworks over the AI computing device.

Experimental results demonstrate that some deep learning frameworks utilize the re-

sources of GPU power while others utilize the multicore ARM-CPU system of the device

for its parallel model of computation. Fourth, the robustness of state-of-the-art pre-

trained deep learning models for feature extraction is analyzed and contrasted with the

previous approach used by PABI. Experimental results indicate that pre-trained deep

learning models overcome the traditional approaches in some fields; however, combining

different pre-trained models in a process reduces its accuracy. Fifth, a patient-tracking

algorithm based on an identity verification approach is developed to improve the auton-

omy, usability, and interactions of patients with the robot. Experimental results show

that the developed algorithm has potential to perform as well as the previous algorithm

used by PABI based on a deep learning classifier approach.
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Chapter 1

Introduction

Rapid technological innovations, particularly in the field of robotics, offers

innovative treatment options for individuals diagnosed with Autism Spec-

trum Disorders (ASDs). As such, incorporating robots in autism therapy

has acquired a substantial amount of attention over the past twenty years

(Diehl et al. 2012; H.-L. Cao, Pablo G. Esteban, et al. 2019). Potential

benefits of robot-enhanced autism therapies are diverse. Clinical results

indicate that robot-enhanced therapy (RET) has potential to perform sim-

ilar to that of human standard therapies for individuals with ASDs(H.-L.

Cao, Pablo G. Esteban, et al. 2019). As innovative technologies in robotics

and artificial intelligence are included in autism treatment therapies, there

is great potential for diminished treatment costs and improved quality of

life for individuals diagnosed with ASDs.

Preliminary studies demonstrate positive results using the Penguin for

Autism Behavioral Intervention (PABI ©Dickstein-Fischer) developed by

2
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the AIM Lab (Laurie A Dickstein-Fischer et al. 2018) at WPI to assist indi-

viduals diagnosed with ASDs in ABA therapy treatments. Power-efficient

embedded AI computing devices have emerged in recent years as powerful

technologies, reducing complexity of the hardware platforms and providing

support for parallel models of computation. This new hardware architec-

ture indicates an important step in the improvement of socially assistive

robots in ABA therapy. In this thesis, the use of a power-efficient embedded

AI computing device and pre-trained deep learning models are explored to

improve PABI’s performance.

Emerging technologies suggest a rethinking the design of software ar-

chitectures. Chapter two focuses on this task. In the preliminary part of

this chapter, a robot-enhanced ABA therapy framework is designed. This

framework combines the requirements of ABA therapy with best practices

in the design of social robots. Seven subsystems integrate the framework

in order to provide reactive and deliberative therapeutic behaviors in the

robot: low-level feature extraction system, attention system, high-level and

intelligent perception system, ABA intelligent tutoring system, physical

control system, behavior system, and therapy configuration system. Chap-

ter two also explores the implementation of a multilayer software architec-

ture, serving as the pattern to implement the framework. The use of deep

learning pre-trained models over this pattern merges both the framework

and the AI computing device of PABI. The main characteristics looked for

3
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with this pattern are real-time, multitasking, modularity and expandabil-

ity.

In the proposed software architecture, deep learning frameworks play a

key role on creating systems that are both real-time and multitasking. If

the inference engine of a deep leaning framework is inefficient on the AI

device, real-time tasks are affected. On the other hand, in the inference

engine uses all of the resources of the embedded platform, multitasking per-

formance decreases substantially. Chapter three focuses on the evaluation

of three popular deep learning frameworks in order to evaluate efficiency

an resources usage.

Pre-trained deep learning models to make the robot expandable and

modular are explored in chapter four. Using pre-trained models on PABI

has several advantages. First, the hardware platform of PABI is designed to

deploy deep learning architectures efficiently. Second, the concept of black-

box inherits to deep learning models, enabling future improvements in the

robot without modification of the coding. Third, deep-learning models ex-

hibit better robustness than some traditional computer vision approaches.

For example, in face detection, deep-learning models have demonstrated

robustness to changes in pose, illumination, age, among others.

deep-learning models have surpassed traditional computer vision ap-

proaches, particularly under uncontrolled conditions as extreme pose face.

Chapter three focuses on testing the robustness of state-of-the-art pre-

4
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trained deep learning models for feature extraction under extreme poses.

The results are contrasted with traditional approaches used in the previ-

ous version of PABI. Three low-level features are evaluated: face detection,

face landmarks detection, and face recognition because of they are essential

components for building high-level human-robot interaction applications.

Finally, the software architecture previously designed is used to improve

the usability of the robot in an ABA therapy context. Using a patient-

tracking algorithm based on an open-set approach surpasses the constraints

inherent in close-set approaches. In close-set approaches a set of patient

images are taken and a deep learning model trained. The open-set algo-

rithm presented in chapter 5, combines patient data, a face encoding deep

learning model, and unsupervised methods to improve the usability and

autonomy of the PABI robot during ABA therapies.

This work re-imagines the design of socially assistive robots in ABA

therapy for autism treatments using emergent technologies in both software

and computational hardware of the robots. The core motivation for this

project is to improve the quality of life for autistic individuals, forging

advancements in robot-enhanced therapeutic treatments and providing new

opportunities within the standard-of-care treatment of individuals with

ASDs.

5



Chapter 2

Background and Literature Review

This chapter provides an overview of the research literature related to

Autism Spectrum Disorders (ASDs). It addresses many of the challenges in

treating ASDs, defined by a broad spectrum of disorders with a wide range

and variation of symptoms. Previous research based on the literature in the

field of autism therapy is further explained with specific focus on Applied

Behavior Analysis (ABA), a skill-based therapy that looks at the science

of behavior and the principles of motivation and learning to modify behav-

iors. ABA therapies are underscored because they have been scientifically

proven to effectively teach or eliminating undesired behaviors exhibited by

individuals on the autism spectrum. Moreover, ABA is one of the leading

therapies in the treatment of ASDs (Fisher et al. 2019), whose results have

been supported with measurable outcomes in scientific research (Reichow

et al. 2012; Heitzman-Powell et al. 2014). In addition to an overview of the

fundamental principles of ABA, it’s potential benefits in relation to socially
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assistive robots is explored. Rapid technological innovations, particularly

in the field of robotics, offers innovative treatment options for individuals

with ASDs. Robot-enhanced therapy (RET), for example, has the poten-

tial to achieve an equivalent performance compared to that of standard

human therapies. More specifically, socially assistive robots (SAR) have

been proven to benefit individuals treated for ASDs, helping in the acqui-

sition of social skills and language development in the treatment of autism.

This chapter provides a brief overview of the Penguin for Autism Behav-

ioral Interventions (PABI) as a socially assistive robot that was created by

the AIM Lab at WPI with its innovative software architecture specifically

designed for use in ABA therapy. Finally, thesis contributions are detailed,

providing a brief overview of the contents of each chapter.

2.1 Autism Spectrum Disorders (ASDs)

According to the Diagnostic and Statistical Manual of Mental Disorders-

Fifth Edition (DSM-5), ASDs is a generic term under which falls the perva-

sive developmental disorders characterized by the exhibition of challenges

associated with language development, social communication, social inter-

action, excessive or stereotyped repetitive behaviors or resistance to change

in one’s daily routine. Rather than ASDs being a singular, easily identifi-

able condition based on a common standard of symptoms across the board,

it is rather a broad spectrum of disorders defined by an array of severity

7
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levels, resulting in widespread variation in patient types.

Autism Spectrum Disorders include Autistic Disorder, Childhood Disin-

tegrated Disorder, Asperger’s Disorder, Rett’s Disorder, and Pervasive De-

velopmental Disorder Not Otherwise Specified (DSM-IV Diagnostic Clas-

sifications 2019)(Zachor and Merrick 2012).

ASDs are identified by abnormalities in social interactions and commu-

nications, repetitive behavior and confined interests (DSM-IV Diagnostic

Classifications 2019; H.-L. Cao, Pablo G. Esteban, et al. 2019). A person

diagnosed on the spectrum with low functioning abilities may have intense

behaviors, impeding their ability to lead an independent life, little to no

communication skills, and an inability to interact in environments without

additional support. A higher functioning person would have the stereotyp-

ical behavior, yet would be capable of communication and interact with

others while still experiencing challenging in these areas. Symptoms of

ASDs are vast and varied, presenting a unique set of challenges in care and

treatment of individuals diagnosed with ASDs. ASDs may be recognizable

in an individual who is nonverbal and uses an iPad to verbalize concerns

or express their ideas. Yet a different individual diagnosed with ASDs may

be presented with a different set of challenges. For example, they may

be extremely talented in a specific subject area such as mathematics, yet

struggle to make eye contact and when nervous or upset may be prone

to emotionally shutdown. Early indicators of ASDs include social exclu-
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sion, poor balance skills, persistent impairments in social communications

skills, impairments in verbal and nonverbal communications skills, avoid-

ance of social situations, as well as sensitivity to oral textures. Identified

individuals with ASDs may exhibit one or more of these behaviors.(Bellini

2004).

A common concern regarding ASDs is its widespread prevalence in chil-

dren. According to the Centers for Disease Control and Prevention, in the

United States, 1 in 59 children have been identified with ASDs (Baio 2018).

Furthermore, ASDs is not correlated with racial, ethnic and socioeconomic

groups, reaching global concern. In the late 1980s and early 1990s legis-

lation was passed that provided individuals with educational materials to

help those diagnosed with ASDs. As a result, with increased awareness

of the symptoms of autism, more individuals have been able to receive

therapeutic treatments.

Despite therapies exceptional success in significantly improving the lives

of many autistic individuals, therapies for ASDs are accompanied by a

number of challenges. One such concern is the high cost of therapy, acting

as a barrier to families who need access to therapy. It is estimated that

the cost of supporting a person with ASDs during his or her lifespan is

1.4 million USD in the United States. Furthermore, if the person has

an intellectual disability, the cost practically doubles to 2.4 million USD

(Baio 2018). The primary expenditures for children with ASDs include
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special education programs and productivity loss of parents with children

diagnosed with ASDs. Furthermore, behavioral intervention programs, for

example early intervention for children, requires a significant amount of

human workload to carry out therapeutic sessions, as well as to manage a

child’s performance data. Increased risk of poverty is a concern for families

as therapies contribute to a reduction in family household wealth. Medical

costs and residential care for individuals with ASDs is another concern as

prices continue to mount.

2.2 Applied Behavior Analysis (ABA) for ASDs

ASDs have not been be associated with any particular biological marker

and a cure to this disorder has not yet been discovered. As a result of the

varying symptoms and severity of ASDs, no singular therapy is capable

of being effective for every autistic individual. However, there are sev-

eral available treatments that are well-studied in literature that have been

proven to assist individuals diagnosed with ASDs. According to (Green

et al. 2006)(Howard et al. 2005) the most frequently used therapies include

Speech Therapy, Visual Schedules, Sensory Integration, Applied Behavior

Analysis (ABA), and Social Stories. They have been demonstrated to serve

as viable therapeutic treatments.

Applied Behavior Analysis (ABA) is a skill-based therapy that looks

at the science of behavior the principles of motivation and learning to
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modify behaviors. ABA has been scientifically proven to effectively help

individuals on the autism spectrum by teaching or eliminating challenging

behaviors exhibited. ABA is one of the leading therapies which results have

been supported by scientific research and measurable results (Granpeesheh

and Tarbox 2009). ABA is a technique in which a therapist conducts

observations, observes the environment, and restructures it in order to

assist individuals with ASDs in the development of social skills and forge

bonds that will help them overcome challenges associated with ASDs.

ABA is not synonymous for autism therapy yet because of its proven

success in helping modify behavior in individuals diagnosed with ASDs,

it is commonly associated with autism therapy. ABA is incorporated in

teaching individuals with autism and assumes that all activities that peo-

ple do can be considered a form of behavior and, as such, ABA seeks

to either strengthen or weaken behaviors by rewarding or avoiding their

consequences. It hinges on the premise that by controlling or alternating

behavioral consequences, it can be modified.

Four principles on which ABA stands include reinforcement, extinction,

stimulus control, and generalization. Reinforcement generates desirable

or averse consequences of a behavior depending if we want to strengthen

or weaken it. Using reinforcement systematically, a determinate behavior

may be increased or reduced. For example, cheering a child taking their

first steps conveys to the child a positive reinforcement, helping them learn

11



Eduardo Calle Ortiz CHAPTER 2

to walk and develop the necessary skills to lead a full life. ABA therapy

simply expands this training in intensive ways until each child struggling

with autism experiences new milestones and develops the necessary habits

to lead a full life.

ABA changes behavior by looking at what reinforces a certain behavior.

It further examines the principles of learning in order to alter a specific

behavior or to reinforce a given behavior in order to encourage its con-

tinuity in the future. Examples of positive reinforcement include praise,

something the individual enjoys, or an edible item that demonstrates to

the individual that their behavior is what the therapist is seeking. Unde-

sired behaviors can be mitigated through positive reinforcement, negative

reinforcement or automatic reinforcement. Unlike positive reinforcement,

extinction seeks to deter or reduce negative behavior. Stimulus control,

on the other hand, implies that behavior is present only when a specific

stimulus is present and cannot exist in its absence. Daily behaviors are

controlled by perceived stimuli. Generalization proliferates a behavior in

the presence of one stimulus to another and becomes a challenging process

for autistic individuals.

2.3 Socially Assistive Robots in Autism Therapy

Rapid technological innovations, particularly in the field of robotics and

machine learning, offers innovative and personalized treatment options for
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individuals with ASDs. Clinical results indicate that robot-enhanced ther-

apy can obtain an equivalent performance compared to that of human stan-

dard therapy for children with ASDs (H.-L. Cao, Pablo G. Esteban, et al.

2019). As innovative technologies in robotics and artificial intelligence are

included in the therapy, therapy costs diminish and overall quality of life

for individuals with ASDs is improved. Incorporating robotics machines

in autism therapy has consequently acquired a substantial amount of at-

tention over the past twenty years (Diehl et al. 2012; H.-L. Cao, Pablo G.

Esteban, et al. 2019) due to the potential benefits of incorporating robots

in autism therapy.

Hyper-systematizing theory proposes that individuals with ASDs have

a hyper-systematized brain which makes them adept at interacting within

highly predictable systems such as when working with computers or ma-

chines (Baron-Cohen 2002; Baron-Cohen 2006). However, these same in-

dividuals often fail to interact in low, unpredictable systems such as in the

development of interpersonal relationships or when placed in social settings.

Individuals diagnosed with ASDs are influenced by entirely lawful systems,

indeed highly lawful systems and in some cases moderately lawful systems,

depending on the severity level of the disorder. Interestingly, individuals

diagnosed with ASDs exhibit particular interest in robots because they are

highly predictable machines (Robins, Dautenhahn, and Dubowski 2006).

Robotic interactions are highly motivating environments for individu-
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als with ASD due the simple, predictable nature of robots compared to

humans (Srinivasan et al. 2015). Predicting a behavior or intention is a

fundamental aspect of all human beings as they aid in survival in changing

environments. In order to predict changes in the environment, individu-

als utilize a process of systematization. Systematizing, that explores the

law that governs the relationship between inputs and outputs, is the most

powerful way to predict changes (Baron-Cohen 2006). Systems, like com-

puters, are highly predictable with low variability while other systems, such

as human behaviors, are defined by low predictability with high variation.

Scientific evidence demonstrates that robots are particularly useful to im-

prove the social skills of individuals diagnosed with ASDs (Brian Scassellati

et al. 2018).

Both artificial intelligence and Machine Learning have opened the door

to the creation of personalized treatments for individuals with ASDs. (Rudovic

et al. 2018). Socially assistive robots (SAR) are robots which assist people

in social interactions (Breazeal 2004),(Feil-Seifer and Mataric 2005). Sci-

entific literature demonstrates a variety of studies when both robots and

individuals with ASDs interact (Begum, Serna, and Yanco 2016), (Pennisi

et al. 2016). The main three clinical approaches in which SAR has been

used in autism are to eliciting certain behaviors, model behaviors, teach-

ing and practicing a skill-specific task, each while providing feedback and

encouragement to the individual.
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Elicit behaviors imply the use of a robot as a stimulus to generate the

desired behavior. Using robots to elicit behavior has not only been used

in people with ASDs. For instance, (Hiolle et al. 2012) robots can help to

elicit caregiving behavior in human-robot interaction. In ASDs, SAR has

been used to elicit behaviors for diagnostic purposes (Hashim et al. 2013),

(Tapus, Mataric, and B. Scassellati 2007) and elicit pro-social behavior

(E. S. Kim et al. 2013). Modeling, teaching, and practicing skills, is one of

the most commonly used approaches in autism therapies and other fields in

which SAR is used (Robots Help Teach STEM Concepts to Students With

Autism 2018),(Towards Autonomous Robotic Systems 2011), (Waltz 2018),

(Zheng et al. 2016). Finally, some studies use SAR to provide feedback or

encouragement as a part of patient care treatment (Costa et al. 2009),

(Miskam et al. 2014).

2.4 Penguin for Autism Behavioral Intervention

Penguin for autism behavioral intervention (PABI ©Dickstein-Fischer) is a

research platform developed by the Automation and Interventions Medicine

Laboratory of Worcester Polytechnic Institute (WPI) in partnership with

Salem State University(Laurie A Dickstein-Fischer et al. 2018), to guide

ABA Discrete Trial Training (DTT) therapies (Pereira 2017). Figure 2.1

illustrates the research platform.

The platform includes a robot platform and an interface provided by a
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Figure 2.1: Penguin for Autism Behavioral Intervention research platform

tablet. Capable of conveying facial expressions, mobilizing its body, and

providing verbal feedback, the robot is both intuitive and responsive. It’s

tracking system collects patient information in order to gather data on the

emotional state of patients. The tablet provides the necessary interface

for applying ABA therapy and it is linked to the robot using a WIFI

connection. A modified ABA therapy application is installed in the tablet

to generate the outputs and inputs necessaries during the therapy. Figure

2.2 illustrate the flow chart of the ABA process.

Prior work on PABI included various iterations of both mechanical and

software systems was realized. The last version of the robot has nine de-

grees of freedom, each of which is actuated by a servomotor. The servomo-

tors are controlled by a servo-motor controller which interchange informa-
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Figure 2.2: Flow chart of the modified ABA therapy. Reprinted from Adaptive Applied
Behavior Analysis (ABA) Therapy for Autistic Children using a Tablet Application
alongside a Humanoid Robot, by A. Fathima, 2017, USA, Worcester Polytechnic Insti-
tute - AIM Lab
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tion with the main computer. The main computer was a PC-based x86-64

system.

The software architecture of the system used a micro-services pattern.

The insight of this pattern is modularity. Thus, this pattern uses fine-

grained services and lightweight protocols. This pattern is commonly used

to the development in web application. PABI uses a database as the pri-

mary service, as illustrated in Figure 2.3. The software included algorithms

for face detection, face landmarks detection, and tracking.

Figure 2.3: Overall Software Architecture of PABI. Reprinted from Interactive Behav-
ior for Humanoid Robot Mediated Applied Behavioral Analysis Autism Therapy, by R.
Pereira, 2017, USA, Worcester Polytechnic Institute

2.5 Summary

Austism Spectrum Disorders (ASDs) cannot be associated with any partic-

ular biological marker and a cure to this disorder has not yet been discov-

ered. Thus, ASDs are of widespread concern. While symptoms vary across

the spectrum, early indicators of ASDs include social exclusion, avoidance
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to social situations, and sensitivity to oral textures. Individuals identified

with ASDs may exhibit one or more of these behaviors. Interestingly, in-

dividuals with autism exhibit a high level of interest in machines because

they are predictable systems.

Emergent technologies such as socially assistive robots (SAR) have been

successfully used in recent years to support autism treatments. The three

main clinical approaches in which SAR have been used in autism are: elic-

iting behaviors; modeling, teaching and practicing a skill; and providing

feedback and encouragement. Experimental studies have shown that us-

ing socially assistive robots have a similar performance measures as human

interventions.

Penguin for Autism Behavioral Interventions (PABI) is a socially assis-

tive robot created by the AIM Lab at WPI with the aim of supporting

autism treatments. PABI’s architecture is especially designed for applying

ABA therapy.

2.6 Thesis Contributions

Previous work with PABI has demonstrated positive results for its use in

ABA therapy session. This thesis work is built upon previous research

and investigation of both thesis papers and project works. This thesis has

achieved the following contributions:
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2.6.1 Primary Contributions

Contribution 1: Designing a robot-enhanced ABA therapy framework

goes beyond the hardware architecture of the robot and provide a baseline

for future innovations in both the hardware and the software of PABI.

Contribution 2: Exploring a multilayer pattern software architecture for

a robot-enhanced ABA therapy framework provides a point of reference for

contrasting and comparing future architectures.

Contribution 3: Benchmarking deep learning frameworks in the Jetson

TX2 enhance the selection of software-hardware pair and provides a base-

line for future developments.

Contribution 4: Contrasting deep learning models with another ap-

proaches for a socially assistive robot in ABA therapy, contributes to build

a knowledge frame that help to build more efficient technology in autism

treatment.

Contribution 5: Improving the tracking system in a socially assistive

robot in ABA therapy is a keystone in the usability of the robot. The new

system not only enhances the human-robot interaction but also strengthen

the autonomy of the robot.

2.6.2 Secondary Contributions

Contribution 1: Writing a C++ Library with the protocol to communi-

cate the servocontroller driver with the embedded system help to accelerate
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future developments.

Contribution 2: Implementing a C++ Library with the software archi-

tecture proposed help to accelerate future developments.

Contribution 3: Analyzing the kinematics of the robotic platform and

implementing a C++ Library to control the movement of the robot help

to accelerate future developments.
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Chapter 3

Designing a New Software
Architecture and Framework for
Robot-Assisted ABA Therapy

Socially assistive robots have been used in therapeutic treatments for indi-

viduals diagnosed with Autism Spectrum Disorders (ASDs) in recent years.

Preliminary studies have demonstrated positive results using the Penguin

for Autism Behavioral Intervention (PABI) developed by the AIM Lab at

WPI to assist individuals diagnosed with ASDs in ABA therapy treat-

ments. On the other hand, in recent years, power-efficient embedded AI

computing devices have emerged as a powerful technology by reducing the

complexity of the hardware platforms while providing support for paral-

lel models of computation. This new hardware architecture seems to be

an important step in the development of socially assistive robots in ABA

therapy.

This chapter discusses the new hardware and software architecture of

architecture for SARs and its implementation on PABI. The chapter be-

gins with an analysis of the new power-efficient embedded AI computing
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device incorporated to the hardware architecture of PABI. Additionally,

the chapter focuses on the software architecture in which three main ideas

are discussed: an analysis of the interactions in a robot-enhanced ABA

therapy context, the design of a robot-enhanced ABA framework, and the

use of a multilayer pattern for a software architecture.
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3.1 Motivations and requirements

Previous experimental studies with PABI demonstrated positive results

(Laurie A Dickstein-Fischer et al. 2018) while using the robot during an

ABA therapy session (Pereira 2017). In recent years, power-efficient em-

bedded AI computing devices have emerged as a powerful technology by

further reducing the complexity of the hardware platforms while providing

support for parallel models of computation. The small size of those devices

as well as their low power consumption allow innovation in the mechanical

designs of the autonomous machines thus making this new hardware archi-

tecture an important step in the improvement of socially assistive robots in

ABA therapy. Motivated by the previous successful results of using PABI

in ABA therapy and the emergent AI computing devices, a new version

of the computing framework of PABI is proposed in this chapter. The AI

embedded system architecture used in PABI includes a multicore ARM-

CPU system with 256 GPU cores. While there is great interest in cloud

computing and high speed networking such as 5G to offload processing and

potentially further reducing costs of onboard components, at the present,

there is no guarantee of adequate network coverage in the location of ther-

apy and thus embedded intelligence is critical for widespread deployment.

The small size and the low power consumption of the embedded system are

also advantages that allow improvements to the mechanical design of the

robot physical body. Because of the ARM processors, the previous software
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architecture developed for PABI cannot be deployed on the new hardware.

Therefore, a new software architecture exploiting the computational power

of the new hardware reduces previous limitations.

3.2 Primary Contributions

The primary contributions of this chapter are two-fold. A robot-enhanced

ABA therapy framework is proposed and later a multilayer software ar-

chitecture for the new hardware architecture of PABI is designed. The

robot-enhanced ABA therapy framework is the result of analyzing a robot-

enhanced ABA therapy scenario combined with best practices in the de-

sign of social machines. The main components of a robot-enhanced ABA

therapy are extracted and conceptualized in several systems to build the

framework. The systems are then combined to provide reactive and de-

liberative social behaviors in the robot. A software architecture using a

multi-layer pattern in proposed. The proposed architecture articulates the

robot-enhanced ABA therapy framework with the embedded platform used

by PABI.

3.3 Background and Related Work

Diverse architectural patterns to build multiple software architectures have

been developed.(Raj, Raman, and Subramanian 2017). However, architec-
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tures for social robots contribute an additional layer of complexity in the

design process because of the inherent constraint within those systems.

Thus, social robots usually require low-level characteristics like real-time,

multitasking, modularity, etc., combined with high-level traits such as so-

cial behaviors and social interactions, among others. Social robots are also

implemented over embedded systems that add additional constraints to

the design. To overcome these challenges, different architectures have been

proposed in previous literature. (Ahmad and Babar 2016; H.-L. Cao, Pablo

Gómez Esteban, et al. 2017). For instance, Breazeal proposed a combina-

tion of both low and high level procedures to a human-inspired framework

for a synthetic nervous system (Breazeal 2004).

In another research project, Kim (J. Kim et al. 2008) explored a different

approach using an intelligent software architecture that consisted of delib-

erate, sequenced, and reactive behaviors. (Pakkar et al. 2018), on the other

hand, simplified the design for a low cost social robot platform. Research

Ferland (Ferland et al. 2013) presents an approach especially focused on

interaction. Finally, Saerbeck (Saerbeck 2009) summarized best practices

in the design of social robots, presenting a framework for the design of

software architectures of social robots.
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3.4 PABI Hardware Architecture

As Figure 3.1 illustrates, the new version of PABI is integrated using five

systems. The heart of the new architecture is a multicore ARM-based

CPU with 256 GPU cores embedded system. This high-performance sys-

tem provides the computational power as well as additional capacities such

as wifi connection, SPI, I2C, UART protocols among other characteristics.

The sensory system perceives both verbal and non-verbal clues during the

entirety of an ABA therapy session. Two systems are used for the commu-

nication with the patient and therapist. First, the interface system provides

the communication between the patient and intelligent ABA tutoring sys-

tem. Second, the physical body system is responsible for the expressiveness

of the robot. The power system is the last system and it is responsible for

providing a source of energy for the hardware architecture.

3.4.1 The Embedded System: NVIDIA Jetson TX2 Platform

Jetson TX2 is a low-power embedded platform with specific focus on accel-

erated AI-based applications. This embedded platform is ideal for au-

tonomous machines which require high computational power with low-

power consumption. The Jetson TX2 can compute 1.3 Teraflops with

7.5W-15W power consumption. Additionally, the small size of this sys-

tem (50mmx87mm) enables ease of incorporation in robotics systems. A

difference of systems like a PC-based system, this embedded platform can
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Figure 3.1: Proposed new hardware architecture for Penguin for Autism Behavioral
Intervention

communicate with additional devices using different standards such as TTL

UART, I2C, SPI, CAN, among others. Figure 3.2 illustrates the Jetson

TX2 architecture.

The heart of the JetsonTX2 is an NVIDIA Tegra Jetson TX2 System-

On-Module Block Diagramystem-on-Chip (SoC) module. This module in-

corporates both CPU and GPU processors in one chip. Tegra X2 includes

four 64 bits ARM® Cortex®- A57 MPCore, two 64 bits NVIDIA Denver

2, a 256-core NVIDIA Pascal™ GPU and 8GB 128-bit LPDDR4 Memory.

Figure 3.3 illustrates the components of the Tegra X2.

Different modes of operation control the performance of the Jetson TX2.

Thus, the embedded system can switch from a low-power consumption

mode to a high-power computation mode. This characteristic allows build-
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Figure 3.2: Jetson TX2 Block Diagram. Reprinted from Nvidia Tegra X2. Architecture
and Design by J.Barker, B.Wu., 2017, Rochester Institute of Technology

Figure 3.3: Tegra X2 SoC Architecture
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Table 3.1: Jetson TX2 modes of operation

Mode Mode Name Denver 2 Frequency ARM 57 Frequency GPU

0 MAX-N 2 2.0GHz 4 2.0GHz 1.3GHz
1 MAX-Q 0 4 1.2GHz 0.85GHz
2 MAX-P Core All 2 1.4GHz 4 1.4GHz 1.12GHz
3 MAX-P ARM 0 4 2.0GHz 1.12GHz
4 MAX-P Denver 1 2.0GHz 1 2.0GHz 1.12GHz

ing more power-efficient autonomous machines. Table 3.1 illustrates the

Jetson TX2 operation modes.

Three modes of operation are present in the Jetson TX2. They include:

Best power-efficiency mode (MAX-Q), best power and performance bal-

ance mode (MAX-P), and best computation performance mode (MAX-N).

In MAX-Q mode, this embedded system consumes only 7.5W and uses four

processors plus the GPU power. MAX-P mode offers additional variations:

MAX-P Core All, MAX-P ARM, and MAX-P Denver. Distinct CPUs

configurations are established in each case, as Table 3.1 illustrates. Power

consumption in this mode varies between 7.5W and 15W, depending on the

selected configuration. In MAX-N mode, all CPUs and the GPU at max-

imum frequency are used. The power consumption in this mode is 15W,

and the maximum computational power of the Jetson TX2 is accessible.

3.4.2 The Sensory System

The sensory system illustrate in Figure 3.1 is responsible for perceiving

stimuli during the ABA therapy session. The sensory system is consisted
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of two USB cameras model USBFHD01M and a USB microphone. The

USB camera produces 1280x760 frames at 60 frames per second. Fish-eye

lens are mounted on the USB cameras capable of observing the physical

environment, broadening its field of vision.

3.4.3 The Interface System

The interface system is the mechanism used for communication between

the patient and the intelligent ABA tutoring system (Figure 3.1. This

system also can be used by the therapist to set parameters during the

session. PABI uses a tablet as the primary interface system. The tablet is

linked with the robot’s web server through a wifi connection. Any device

that supports wifi connections and web browser navigation can be used as

part of the output system. The interface system also includes a speaker

to generate verbal positive reinforcers aimed to increase the likelihood of a

particular behavior in the patient with ASDs during the therapy.

3.4.4 The Physical Body System

A robotic platform constitutes the physical body system. The platform

includes ten degrees of freedom, each of which is actuated by a servomotor

(Figure 3.1. The heart of the physical body is the servo controller “Micro

Maestro servo controller”. The servomotor controller has a USB connection

within the embedded system.
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3.4.5 The Power System

It provides the electricity to the system. The Jetson TX2 runs off of 12V

DC power and that while it is typically run off of a wired power adapter it

is designed to be portable and run off of a battery. The embedded system

as a low power consumption.

3.5 Robot-Enhanced ABA framework and software

architecture

3.5.1 Robot-Enhanced Therapy Analysis

Figure 3.4 illustrates a robot-enhanced ABA therapy session using PABI.

The session is integrated by the therapist who can be a behavior ana-

lyst, teacher, aide, parent, or other caregiver, the patient , and the robot.

Different stages are executed during the therapy session. First, prior to

the session the therapist configures the goals of the therapy session and

inputs the patient’s information. Second, during the session, PABI gener-

ates social behaviors to help the patient to achieve these therapeutic goals.

Social behavior generated by PABI is affected by three factors: the informa-

tion provided by the therapist before the session, the information received

through the interface system, and PABI’s perception of the session. The

data initially provided by the therapist assists PABI to establish proper

robot behavior during the session.
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Information such as the patient’s severity of ASDs, session goals, among

others, can help set the parameters for PABI’s social interaction during the

therapeutic session. The information received through the interface system

determines the kind of reinforcement that PABI provides to the patient.

For example, if during the ABA therapy, the child’s response to a predefined

stimulus is correct, PABI will intuitively provide a positive reinforcement

to the patient.

Likewise, if the response is wrong, PABI provide the correct response

to encourage the child to improve during the next attempt. The sensory

system of the robot will provide the information in real-time to serve in

future behaviors. For example, tracking is an action that the robot makes

based on its perception of the scene. The third stage during a therapy

session is data processing. After the session, data collected is analyzed to

improve the therapy and the social behavior of the robot.

Figure 3.4 illustrates the interaction in an enhanced-robot ABA therapy

session. Before the session the robot interacts more in the therapist loop;

however, during the therapy the robot is focused on the patient loop.

3.5.2 Robot-Enhanced ABA Therapy Framework

The basic scenario shows that different processes and interactions during

an ABA therapy session exits. As Figure 3.6 illustrates, seven subsystems

have been identified. First, a real-time low-level feature extraction system
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Figure 3.4: Example Configuration of a Robot-Enhanced Therapy Session. Adapted
from Interactive Behavior for Humanoid Robot Mediated Applied Behavioral Analysis
Autism Therapy, by R. Pereira, 2017, USA, Worcester Polytechnic Institute

Figure 3.5: Robot-enhanced ABA Therapy Interaction
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Figure 3.6: Robot-enhanced ABA Therapy Framework

analyzes the information of the scene and extract low-level features. The

extracted features are consisted of an additional two systems: the atten-

tion system and the high-level and intelligent perception system. The first

system is responsible for maintaining the robot focus on the patient or the

therapist. The second system combines the low-level features to produce

stimuli that are consumed by the behavior system. The ABA intelligent

tutoring system is focused on applying ABA therapy to the patient while

the therapy configuration system is focused on the therapist. Finally, a

physical control system is responsible for producing the robot’s physical

movements.

The seven subsystems proposed allow to the robot exhibit both reac-

tive and deliberative behaviors. The reactive behavior maintain the social

interaction while the deliberative behavior allows the therapeutical use of
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the robot. Subsystems are described below and summaries of the primary

tasks are included.

Real-time Low-Level Feature Extraction System

Scene perception and extraction of features than help the robot process

the data is one of the first stages of social interaction. The features are

extracted from different sources like images, sounds, or other kind of data.

The real-time low-level feature extraction is the system responsible for

reading to raw data and transforming it into useful features. Real-Time

processing is one of the keystones in this module. The faster the system

can produce the features, the faster the robot can react to the changes in

the scene. Some examples of low-level feature face detection, landmark

detection, pose detection, among others.

Attention System

A scene can have different stimuli. The attention system selects one of them

and excludes extraneous information. This system is important because it

helps the robot to allocate its limited resources in the most essential tasks.

In the ABA therapy, one of the most important tasks is monitoring the

state of the patient in order to maintain interactions.

36



Eduardo Calle Ortiz CHAPTER 3

High-Level and Intelligent Perception System

This system is responsible for organizing, combining, and interpreting low-

level features in order to have a better comprehension of the scene. This

system also combines the low-level features with the goals set by the ther-

apist or the learning progress exhibited by the patient. As a result of this

combination, a stimulus is generated for the behavior system.

Behavior System

Different social behaviors can be observed by the robot during ABA ther-

apy. Those behaviors are designed to have a therapeutic effect on the pa-

tient. From the robot’s perspective, each behavior is a well defined state.

Thus, the social behavior system can be considered a finite state machine.

Every low-level feature generates by the low-level feature extraction system

can be observed as an element in a features-alphabet. The high-level in-

telligent perception system uses the alphabet to generate strings that will

be applied to the behavior system, the finite state machine of the robot.

Figure 3.7 illustrates the process.

ABA Intelligent Tutoring System

One of the essential objectives of PABI is to provide support during the

ABA therapy session. The ABA intelligent tutoring system is responsible

for applying and evaluating the ABA therapy. Applying Intelligent tutoring
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systems in ABA therapy can be used to create personalized treatments.

Therapy Configuration System

This system provides the tools and interfaces to the therapist to set the

robot-enhanced social intervention. Through the interfaces, the therapist

can introduce not only descriptive information of the therapy but also can

configure the robot with new social behaviors, or new intervention, for

instance.

Physical Control System

This system is responsible for controlling the physical robotic platform and

show the expressiveness of the robot. It is directly linked with the behavior

system. The physical control system includes the servomotor’s control,

kinematic analysis, protocols of communications, among other tasks.

The previous robot-enhanced ABA framework exhibit constraints that

the software architecture needs consider. Below these restrictions are de-

scribed.

Real-Time Performance

Interaction with the patient needs a real-time approach to create a posi-

tive perception of the robot. Actions like face detection, pose detection,

tracking, among others, need to respond immediately maintain the robot

involved in the session.
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Multitasking

The robot-enhanced ABA therapy framework previously analyzed is con-

stituted by various systems and several tasks need to be executed simul-

taneously. Some examples of tasks that need to be run concurrently are

social interaction, communication with the external interface, communica-

tion with the servomotors, among others.

Modular

Including modularity in a software architecture provides some advantages.

From a develop point of view, modularity allows build and test systems

independently. From a robot perspective, modularity helps to build fault

tolerant system.

Expandable

Understand the scene of the therapy requires a low-level feature that can

change in the future. Some new features can be added and some eliminated.

Therefore, being expansible is a useful capacity of the system.

3.5.3 Multilayer Software Architecture

Amultilayer software architecture is proposed to combine the robot-enhance

ABA therapy framework with the AI embedded platform. Because of the

deep learning approach of the Jetson TX2, deep learning frameworks and
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Figure 3.7: Behavior System Generating Process of a Stimulus

Figure 3.8: Layer Architecture for Implementation on a Robot-Enhanced Framework
on Jetson TX2

models play a key role in the proposed software architecture. The multi-

layer architecture also allows building complex applications while maintain

modularity and expandability. The use of deep learning models also helps

to execute complex tasks in real-time.

Each layer proposes a different level of abstraction. Figure 3.8 illustrate

the multilayer architecture proposed.

Below the layers are described, and the main function of each of them
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is then summarized.

Hardware Layer

This layer is an abstraction of the hardware architecture that supports the

upper layers. PABI uses the Jetson TX2 embedded system in its hardware

layer.

Deep Learning Frameworks Layer

This is the second layer of abstraction. The layer implements a deep learn-

ing framework that takes advantage of the multicore ARM CPU and GPU

power of the platform.

Features Extraction Layer

This is the third layer of abstraction. In this layer, deep learning pre-

trained models are deployed. The objective of this layer is extracting the

features necessaries for supporting the next layer.

High-Level Application Layer

This is the fourth layer of abstraction. In this layer, applications that

support the social behavior of the robot, as well as intelligent applications,

are implemented. The applications communicate between them to create

complex systems.
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3.6 Summary

In this chapter, the hardware architecture of PABI is analyzed, a robot-

enhanced ABA therapy framework is created, and a multilayer software

architecture are designed.

The heart of the new hardware architecture of PABI is a power-efficient

embedded AI computing device (NVIDIA Jetson TX2). This embedded

system is characterized by providing CPU and GPU support. The central

System-on-Chip (SoC) of the system is a NVIDIA Tegra X2 which provides

a multicore ARM-CPU system that includes a 256 GPU core system. Both

the CPU and the GPU systems can be reconfigured to achieve different

results.

The robot-enhanced ABA therapy framework is designed as the result

of the analysis of a robot-enhanced ABA therapy scenario combined with

the best practices in the design of social machines. The design began by

analyzing the interactions between the patient, the therapist, and the robot

in a robot-enhanced ABA therapy session. Then, the main components

of the interaction are extracted and conceptualized into several systems

that constituted the proposed framework. Seven systems integrate the

framework and provide reactive and deliberative social behaviors in the

robot.

Finally, a 4-layer software architecture is designed, articulating the robot-

enhanced ABA therapy framework with the AI embedded platform used
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in PABI. The designed architecture creates a multitasking, real-time, and

modular platform, taking advantage of the parallel model of computing of

the embedded system.
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Chapter 4

Exploring the Impact of Deep
Learning Frameworks: Implementing a
Real-Time and Multitasking
Robot-Enhanced ABA Software
Architecture

Multitasking and real-time are two characteristics required by a robot-

enhanced ABA therapy framework and the software architecture detailed in

Chapter 2. The parallel model of computation of the AI computing device

used by PABI can support both of them. However, this embedded system

must be combined with software that properly exploits its architecture.

In this chapter, a benchmark of three deep learning frameworks is pre-

sented. TensorRT, Caffe, and the deep learning module of OpenCV are

evaluated on the NVIDIA Jetson TX2. A within-subject multifactorial

experimental design was implemented for the analysis. Two variables are

studied: the velocity of the inference engines and resources usage of each

framework. The first variable is essential for building real-time systems,

while the second is vital for building multitasking systems. Two factors
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were used for testing conditions: workload and hardware configuration.

The experimental results are discussed at the final of the chapter.
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4.1 Motivations and requirements

A socially assistive robot in the context of ABA therapy involves tasks

like image processing, servomotors control, social behavior, among others.

Some tasks, for example, image processing, require high computational

power. Others, such as social behavior, require that different actions be

executed simultaneously. The multilayer architecture proposed in Chapter

2 included both multitasking and real-time processing characteristics.

Appropriate pairing of both software and hardware is essential when

using an embedded system as the core computational system of an au-

tonomous system. An appropriate hardware-software match improves crit-

ical tasks on the robots. Therefore, a device like the Jetson TX2 must be

combined with a software that exploits its architecture properly. Because

of the parallel computing approach of the Jetson, deep learning frameworks

are studied in this chapter. Several studies analyzing deep learning frame-

work on PC-based platforms exist in the literature. However, there are no

formal studies that exist about how deep learning frameworks perform on

the Jetson TX2.

4.2 Primary contributions

The aims of this chapter are two-fold. First, a benchmark of three popular

deep learning frameworks is underscored using the Jetson TX2 as the hard-
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ware platform. Three different modes of operation of the Jetson TX2 are

utilized for the benchmark: the most power-efficient mode (MAX-Q), the

best power efficient and computational performance balance mode (MAX-

P), and the best computational performance mode (MAX-N). For each

mode of operation, an analysis of the inference time and usage of hard-

ware resources by every deep learning framework is analyzed. The second

contribution presented is the implementation of an abstraction layer for

the bench-marked deep learning frameworks. The abstraction objective is

to build an expandable architecture for the robot, making it adaptive to

change and social in essence when interacting interacts with patients in

ASDs therapy sessions.

4.3 Background and Related work

Deep learning has allowed a dramatic improvement in areas such as com-

puter vision, speech recognition, natural language processing, etc. (LeCun,

Bengio, and Hinton 2015). In fact, artificial neural networks have outpaced

human capacities in some tasks. For instance, ImageNet illustrates that

a state-of-the-art neural network reaches an error rate of 3.57% in image

classification while the human error rate is 5.1%.(Russakovsky et al. 2015).

This demonstrates the ability of artificial neural networks outperform hu-

mans in image classification and they have a smaller margin of error as

compared to humans.
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Modern GPU-based hardware architectures have played a vital role in

the success of deep learning. Parallel models of computation of the GPUs

has reduced the training time of artificial neural networks. Embedded

GPU-based systems play a vital role in deploying pre-trained neural net-

works. These integrated systems have assisted in the implementation of

real-time applications, popularizing the deep learning approach.

Development of open-source frameworks have had an essential role in

the successful implementation of deep learning by facilitating the process of

training and deployment of artificial neural networks. Deep neural networks

(DNN) frameworks like Caffe from UC Berkeley (Jia et al. 2014), CNTK

from Microsoft (Deng 2012), TensorFlow from Google (Abadi et al. 2016),

Torch (Collobert, Kavukcuoglu, and Farabet 2011), Nvidia TensorRT, for

example, have been developed in the past decade.

Frameworks with a C++ API support are underscored in this chap-

ter: Caffe, TensorRT, and the deep learning module of OpenCV (DNN

OpenCV). Caffe is one of the earlier frameworks and it has been used to

train different networks architectures. Consequently, a plethora of pre-

trained models are available for this framework. NVIDIA TensorRT is

a framework included with the JetPack 3.2 set of libraries provided by

NVIDIA and installed in the Jetson TX2. Finally, the deep neural mod-

ule of OpenCV (DNN OpenCV) was selected because OpenCV has been

utilized as the development framework of the PABI project.
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Below the frameworks are described, and the main characteristics of

each is summarized.

4.3.1 CAFFE Framework

. Caffe was developed by the Berkeley Vision and Learning Center (BVLC)

at UC Berkeley and released in 2014 under a BSD 2-Clause license. (caffe.berkeleyvision.org

2019)

This framework allows for training, testing, fine tuning and deployment

of deep neural network architectures. Caffe combines GPU and CPU im-

plementations and its libraries are C++ based. However, it has Python

and Matlab bindings for rapid prototyping.

CUDA is used to implement the parallel programming model in this

framework. The CPU-GPU implementation uses a synchronized memory

model to share data. In this memory model, data is transferred by the

framework on demand between the CPU memory and the GPU memory.

Figure 4.1 shows the synchronization model. Once a pre-trained model is

loaded into the memory, the model is processed by the Caffe engine using

a CPU inference or a GPU inference that is dependent upon the hardware

capacities.
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Figure 4.1: Synchronization Model of Caffe Engine

4.3.2 NVIDIA TensorRT Framework

NVIDIA developed TensorRT focused on leveraging the parallel program-

ming model of its GPUs. A core distinction between Caffe and TensorRT

is regarding the high performance achievement in the inference process of

a deep learning model. Once a network is loaded in memory, TensorRT

builds and optimizes an inference Engine. The optimization procedure

maximizes throughput by quantitating models FP16 or INT8 without loss

of accuracy, optimizing GPU memory.

Figure 4.2 shows the NVIDIA TensorRT optimization model. Similar

to Caffe, TensorRT libraries are C++ based.

4.3.3 Deep Learning module from OpenCV framework

.

The deep learning module for OpenCV (DNN-OpenCV) was developed
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Figure 4.2: NVIDIA TensorRT Optimization Model. Reprinted from Nvidia Developer,
by NVIDIA, 2019, Retrieved from https://developer.nvidia.com/tensorrt, Copyright
2019 by NVIDIA.

to expand the capacity of this popular computer vision framework (Deep

Learning in OpenCV 2019). DNN-OpenCV allows training, testing, and

deployment of deep neural network architectures. Remarkable aspects of

the DNN-OpenCV include the following features: open-source, simplicity

of use, high compatibility with pre-trained models from other frameworks,

and the optimization of the networks through the use of OpenCL. A key

difference of Caffe and TensorRT is that DNN OpenCV does not support

a parallel computation model through CUDA.

4.4 Experimental methods

An within subject multi-factorial experimental design was used to bench-

mark the deep learning frameworks. Two factors were used for the experi-
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ment design: mode of operation of the Jetson TX2 and workload. For the

first factor, three different modes of operation of the Jetson TX2 were used:

MAX-Q, MAX-P, and MAX-N. For the second factor, two levels were cho-

sen: a high number of parameters and a low number of parameters. Caffe,

TensorRT, and the DNN-OpenCV, was selected as experimental units.

The inference time and the GPU/CPU usage were measured for each

deep learning framework. The inference time was measured by tracking

the number of clock-cycles used in a framework to propagate input data

through the artificial neural network. The input data was propagated sev-

eral times through each deep learning framework and the number of clock-

cycles used each time was registered. The average time is reported. Batch

processing performance was not evaluated during the experiments.

In order to measure the Jetson TX2 resource usage, a shell utility in-

cluded with JetPack called tegrastats were used. Tegrastats were config-

ured in order to obtain the Jetson TX2 status every 100 milliseconds and

save the samples in a log file. The following command line: ./sudo tegras-

tats –interval 100 –logfile data.txt was used to set the configuration of

tegrastats. Below an example an example of a tregrastats is presented:
RAM 7405/7851MB (lfb 2x512kB) CPU[0%@1463, 0%@345, 0%@345,

0%@1575, 0%@1575, 0%@1575] EMC_FREQ 1%@1866 GR3D_FREQ
40%@114 APE 150 MTS fg 0% bg 0% BCPU@34.5CMCPU@34.5C GPU@40.5C
PLL@34.5C AO@34C Tboard@31C Tdiode31.5C PMIC@100C thermal34.5C
VDD_IN 2074/2074 VDD_CPU 307/307 VDD_GPU 153/153 VDD_SOC
460/460 VDD_WIFI 19/19 VDD _DDR 363/363

Table 4.1 illustrates the meaning of each field. The logfile was later
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Table 4.1: Tegrastats fields description

FIELD MEANING

RAM 7405/7851MB (lfb 2x512kB) Used RAM/Total RAM (number of blocks and size of the larger block)

CPU [0%@1463,0%@345,0%@345,
0%@1575,0%@1575,0%@1575] CPU’s statistics. CPU usage%frequency

EMC_FREQ 1%@1866 Percent of the EMC memory bandwidth being used/ EMC frequency in MHz

GR3D_FREQ 40%@114 GPU statistics. GPU usage%frequency
midrule APE 150 Audio Processing Engine frequency

MTS fg 0% bg 0% Time spent in foreground tasks, Time spent in background tasks

BCPU@34.5C
MCPU@34.5C
GPU@40.5C
PLL@34.5C
AO@34C
Tboard@31C
Tdiode@31.5C
PMIC@100C
thermal@34.5C

Temperatures in Celcius in different reference points on the Jetson TX2.

According to NVIDIA, the PMIC doesn’t allow software to read

an actual temperature. Software can only read whether various

thermal thresholds have been crossed. The first threshold is

higher than 100C. So, the PMIC driver *assumes* temperature is 100C.

VDD_IN 2074/2074
VDD_CPU 307/307
VDD_GPU 153/153
VDD_SOC 460/460
VDD_WIFI 19/19
VDD_DDR 363/363

Voltages in different reference points on the Jetson Tx2.

processed using a script in Matlab.

Hardware Platform

The JETSON TX2 platform and JetPack 3.2 were installed to conduct

the experiments. The JetPack 3.2 includes Ubuntu 16.04 LTS and CUDA

9.0. OpenCV 3.4.1 for ARM processors and CUDA support were built

from the source code, installed, and later used for the experiments. Three

operation modes for the JETSON TX2: best power efficiency (MAX-Q),

power and performance balance (MAX-P), and best performance (MAX-

N) were selected. The details of the hardware configuration for each mode

are shown below in Table 4.2.
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Table 4.2: Hardware configuration for the experiments

Mode Mode Name Cores GPU

0 MAX-N 4 ARM57 CPUs at 2.0 Ghz
2 Denver CPUs at 2.0 Ghz 256 cores at 1.30 Ghz

1 MAX-Q 4 ARM57 CPUs at 1.2 Ghz 256 cores at 0.85 Ghz

2 MAX-P Core-All 4 ARM57 CPUs at 1.4 Ghz
2 Denver CPUs at 1.4 Ghz 256 cores at 1.12 Ghz

Table 4.3: Deep Learning Frameworks used for the experiments

Framework Version Additional Information

DNN-OpenCV 3.4.1
Caffe 1.0.0 rc3 Caffe version that supports SSD architecture
TensorRT 3.0 Include in JetPack 3.2

Deep Learning Frameworks

Three popular deep learning frameworks with C++ API interface avail-

able was selected for the experiments. The software versions and related

libraries in the experiments are shown in Table 4.3. For TensorRT a FP32

quantization model was used in all experiments.

Neural networks and input data

. Two models that can be loaded and deployed in all three of the deep learn-

ing frameworks tested were selected. The first model was GoogLeNet(Szegedy

et al. 2014). GoogLeNet is focused on image classifying. It was the win-

ner of the ImageNet Large Scale Visual Recognition Competition in 2014.

szegedyGoingDeeperConvolutions2014. Both TensorRT and OpenCV uses
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Table 4.4: Experimental setup of neural networks

Deep Learning Model Input Output Layers Number of parameters

GoogLeNet 224x224 1x20 22 6 Millon
OpenPose 320x240 57x30x40 ∼90 5 Billon

a Caffe version of GoogLeNet to evaluate its frameworks. A Caffe version

of a GoogLeNet model is included with JetPack 3.2 which has been used

for the experiments. GoogLeNet is considered to have a low number of

parameters model in the experiment.

The second model is OpenPose. This is a relatively new model focused

on human pose estimation. It was developed by the Perceptual Computing

Lab at Carnegie Mellon University (Z. Cao et al. 2017).This model Won the

Commons Objects in Context keypoints challenge in 2016 and it has been

selected for two reasons. First, the model has a high number of parameters

requiring a high level of computation. Second, this model can be useful in

the ABA therapy to understand a patients’ behavior. Table 4.4 shows the

details of the neural networks configuration.

Experiment Procedure

The experiments were implemented using OpenCV 3.4.1 with CUDA sup-

port and C++11. Four stages were considered in the realization of each

experiment. First, a baseline was built. The usage of Jetson TX2 resources

by the operating system was measured within the span of ten seconds.

The input data was then loaded to memory and the inference engine was
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built. Only one framework was tested every time. Next, prior to the start of

the inferences, a pause of four seconds was realized for the posterior analysis

of the data. This ensured separation of the build-time from the inference-

time. Finally, the inference of the input data two executed hundred times.

Figure 4.3 shows the four stages of the experiment and an example of the

GPU performance after the experimentation stages.

Figure 4.3: Stages during the experiments

Table 4.5 illustrates experiments conducted.

4.5 Experimental Results

The experimental results are organized into two sections. The results of

using a low-parameters model and the three modes of the Jetson TX2 are

presented in the first section. The results of using a high-parameters model

and the three modes of the Jetson TX2 is presented in the second.

56



Eduardo Calle Ortiz CHAPTER 4

Table 4.5: Summary of experiments

Frameworks Jetson TX2 modes Deep learning models

GoogLeNet OpenPose

DNN-OpenCV MAX-Q x x
MAX-P Core All x x
MAX-N x x

Caffe MAX-Q x x
MAX-P Core All x x
MAX-N x x

TensorRT MAX-Q x x
MAX-P Core All x x
MAX-N x x

4.5.1 Experimental Results Using GoogLeNet model

Experimental Results in MAX-Q Mode

Caffe was the fastest framework in this test. It was 6% faster than Ten-

sorRT, and 88% faster than the DNN module of OpenCV. The inference

time was 31ms for Caffe, 33ms for TensorRT and 278ms for DNN-OpenCV

as is illustrated in Figure . 4.4

Caffe used 93% of GPU’s cores of the Jetson TX2 for the deep learning

inference process. This indicates a 40% difference as compared to the

percentage of GPU’s cores used by TensorRT. Caffe was also the framework

with the lower use of the CPUs, leaving them available for other processes.

A singular high usage of CPU number four can be noted in Figure 4.5.

Overall, Caffe used only 22% of the total CPU power of the Jetson TX2.
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Figure 4.4: Inference Times in MAX-Q Mode Using GoogLeNet model

Figure 4.5: Resource usage during the inference process in MAX-Q Mode Using
GoogLeNet model
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TensorRT, the second-fastest framework, used 51% of GPU’s cores of

the Jetson TX2 for the deep learning inference process. However, the per-

formance of this framework was just 6% lower than Caffe. TensorRT used

36% of the total CPU power available on the Jetson TX2. However, similar

to Caffe, a singular high usage of CPU number four can be noticed in Figure

4.5. TensorRT was evaluated only in FP32 quantization mode. TensorRT

could have a better performance with this particular deep learning models

with FP16 and INT8 quantization models.

The DNN-OpenCV was the framework with the higher inference time.

In fact, the inference time was almost eight times higher than the other

frameworks. DNN-OpenCV used only 3% of the GPU’s cores of the Jetson

TX2 as illustrated in Figure 4.5 . One possible explanation could be the

fact that OpenCV does not support CUDA language for the parallel model

of computation. However, it is interesting that DNN OpenCV shows an

excellent parallel computation using the CPUs. As figure 4.5 illustrates,

DNN-OpenCV used 70% of the CPU power of the Jetson TX2.

Experimental Results in MAX-P Core-All Mode

Figure 4.6 illustrates an improvement of the performance in all three deep

learning frameworks. The highest improvement was reached by the DNN-

OpenCV, which reduced its inference time by 54% with respect to MAX-Q

mode. Two reasons explain this improvement. First, the presence of two
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Figure 4.6: Inference Times in MAX-P Mode Using GoogLeNet model

new Denver Processors assists the DNN-OpenCV to parallelize the calcu-

lations. Furthermore, the increase of the clock-frequency of the CPUs 16%

respect for the MAX-Q mode. The second-best improvement was reached

by Caffe which ran 22% faster than in MAX-Q mode. This improvement

is a consequence of the increment of the GPU’s clock-frequency in a 31%

respect of the MAX-Q mode. Containing faster CPUs also improves the

performance of this framework, which uses 24% of the total CPU capacity

of the JETSON TX2. This usage is consequent to the amount of power

used in MAX-Q mode. Figure 4.7 show the performances in MAX-P mode.

TensorRT had an improvement of just 3% in the inference time. This

was the framework with the least improvement. Curiously, this framework

increased the GPU’s core usage from 51% to 59% on average. TensorRT

decreased the use of the CPU from 36% to 28%. One reason to explain

the lower improvement of the TensorRT is that the model could not be

optimized on TensorRT in FP32 quantization mode. 4.8 illustrates the

GPU’s usage by TensorRT as compared to the CPU’s usage by Caffe.
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Figure 4.7: Resource usage during the inference process in MAX-P Mode Using
GoogLeNet model

Figure 4.8: GPU Usage by TensorRT and Caffe with GoogLeNet model
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DNN-OpenCV was the framework with the best improvement. Figure

4.7 confirms the CPUs approach for the computation parallel model of

this framework. DNN OpenCV incorporated the available new CPUs and

consumed 83% of the total CPU power on the Jetson. This framework

used a mere 6% of the GPU’s cores available in the JETSON TX2.

Experimental Results in MAX-P Core-All Mode

Caffe is still the fastest framework in the fastest mode of the Jetson TX2.

This framework had an improvement of 12.5% respect to the previous

MAX-P mode. The increment of the GPU’s clock-frequency a 16% is

the main factor for that improvement. However, the new GPU’s clock-

frequency does not help to TensorRT which has an improvement of only

a 3% being the framework with the lest improvement. DNN-OpenCV was

again the framework that had the better improvement respect the MAX-P

mode being a 28% faster. The increase of 30% in the clock-frequency of the

CPUs can explain the improvement of this framework. Figure 4.9 illustrate

the inference time of the frameworks.

Figure 4.10 shown that the deep learning frameworks maintained a re-

sources usage’s profile similar that in MAX-P Core All Mode. Thus, Caffe

took 92% of the GPU’s cores and a 16% of the total CPU power. TensorRT

took a 56% of the GPU’s cores and a 19% of the total CPU power. Finally,

OpenCV took 8% of the GPU’s cores and a 82% of the total CPU power.
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Figure 4.9: Inference Times in MAX-N Mode Using GoogLeNet model

Figure 4.10: Resource usage during the inference process in MAX-N Mode Using
GoogLeNet model

Table 4.6 summarize the resource usage’s profiles using the deep learning

model GoogLeNet.

4.5.2 Experimental Results Using OpenPose Model

Experimental Results in MAX-Q Mode

For this model, TensorRT was the fastest framework. It was 50% faster

than Caffe and 30 times faster than DNN OpenCV as illustrated in Figure

4.11. The considerable difference between DNN OpenCV and the other
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Table 4.6: Summary of resources usage in the experiment with GoogLeNet model

Framework MAX-Q Mode MAX-P Core-All MAX-N

Caffe 93% GPU-22%CPU 92%GPU-24%GPU 92%GPU-16%CPU
Tensor RT 51%GPU-36%CPU 59%GPU-28%CPU 56%GPU-19%CPU
DNN-OpenCV 3%GPU-70%CPU 6%GPU-83%CPU 8%GPU-82%CPU

Figure 4.11: Inference Times in MAX-Q Mode using OpenPose model

frameworks is due to the parallelization model of this framework. As the

previous experiments confirmed, DNN-OpenCV uses only the multicore

CPU system. In contrast, TensorRT and Caffe have the potential to par-

allelize the deep learning model using 256 GPU cores plus the multicore

CPU system.

Figure 4.12 illustrate than TensorRT used 92% of the GPU’s cores and

2% of the CPU power of the JETSON TX2. Similarly, Caffe used a 97%

of the GPU’s cores and 0% of the CPU power. However, TensorRT was

50% faster compared to Caffe. This suggests that TensorRT has a better

implementation for the NVIDIA platform Jetson TX2. DNN OpenCV

exhibited a similar resource usage’s profile as in the previous deep learning

model using a 0% of the GPU and a 80% of the total CPU capacity.
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Figure 4.12: Resource usage during the inference process in MAX-Q Mode using Open-
Pose model

Figure 4.13: GPU Usage by TensorRT and Caffe with OpenPose model

Figure 4.13 illustrates that Caffe is still the most stable framework in

terms of GPU usage during the inference process. Although TensorRT is

the fastest framework, it still has more variability using the GPU. It is

important to note that performance results reported in these experiments

are based on the understanding of usage of these tools by the author of

this work and do not necessarily reflect the best possible results possible

of being achieved.
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Figure 4.14: Inference Times in MAX-P Mode using OpenPose model

Experimental Results in MAX-P Core-All Mode.

DNN-OpenCV was the framework with the best improvement compared to

the MAX-Q mode. This framework reduced its inference time by 54%. The

improvement of DNN-OpenCV results from the two new Denver Processor

and the clock-frequency increment of the CPUs. The improvement for

TensorRT and Caffe was very similar, being 27% and 25% respectively in

regards to the MAX-Q mode. This improvement was a consequence of

the new clock-frequency of the GPU, which increased by 31%. Figure 4.14

illustrate the inference times this mode.

TensorRT was again the faster framework and used 90% of the GPU’s

cores and 3% of the total CPU power on the Jetson TX2. Its inference

time is 52% lower than Caffe even do it is using a 9% less GPU capacity.

Caffe maintained its previous resource usage’s profile using 97% of the

GPU’s cores and 1% of the total CPU power. Caffe otherwise is still the

best framework in terms of using the GPU capacity. DNN-OpenCV in
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Figure 4.15: Resource usage during the inference process in MAX-P Mode using Open-
Pose model

this mode takes 0% of the GPU’s cores and 75% of the CPU total power.

Figure 4.15 illustrate the resource usage.

Experimental Results in MAX-N Mode.

TensorRT remains 51% faster than Caffe in the fastest mode of the Jetson

TX2 as figure 4.16 illustrates. DNN OpenCV, similar to the aforementioned

case study, was the framework with the best improvement regarding the

MAX-P mode, 30% faster in this mode than in MAX-P mode. Both Ten-

sorRT and Caffe had an overall improvement of 10%. This improvement

results from the new clock-frequency of the GPU, which increased by 16%.

Figure 4.17 illustrate that Caffe is the best framework in terms of usage

of GPU’s power. However, TensorRT can reach a better performance than

Caffe but using 7% less GPU’s cores. This confirms that the implementa-

tion of TensorRT on the NVIDIA platform is better.
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Figure 4.16: Inference Times in MAX-N Mode using OpenPose model

Figure 4.17: Resource Usage during the inference process in MAX-N Mode Using Open-
Pose model

TensorRT and Caffe are focused on using the GPU power of the Jetson

TX2 while DNN OpenCV is focused on using the multiple CPUs architec-

ture. In this mode, OpenCV does not use GPU power, rather it uses 75%

of the total CPUs capacity. Table 4.7 despicts a comparison between the

frameworks’ usage profile in the different modes of the Jetson TX2.
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Table 4.7: Summary of Resource Usage in the OpenPose Model Experiment

Framework MAX-Q Mode MAX-P Core-All MAX-N

Caffe 97%GPU-0%CPU 97%GPU-1%CPU 96%GPU-0%CPU
Tensor RT 92% GPU-2%CPU 90%GPU-3%GPUU 89%GPU-1%CPU
DNN-OpenCV 0%GPU-80%CPU 0%GPU-75%CPU 0%GPU-75%CPU

4.6 Discussion

The GoogLeNet’s experiment illustrated that Caffe was the fastest frame-

work. On the other hand, OpenPose’s experiment resulted that the Ten-

sorRT was the fastest framework. In general terms, the inference time of

these two frameworks during the tests were quite similar. However, Ten-

sorRT has proven to be the best framework considering the inference time in

comparison to the amount of resources consumed. Utilizing TensorRT with

INT8 or FP16 quantization modes in the GoogLeNet experiment, demon-

strated its potential to outperform the inference time of Caffe. From an

implementation standpoint, TensorRT is more difficult to implement in C

++ compared with the other frameworks. A disadvantage of this frame-

work is that in order to optimize the engine, TensorRT constructs static

engines, preventing a change in shape of the deep learning engine with a

different input size. In contrast, Caffe and DNN OpenCV have the capac-

ity to reshape the network, allowing various input sizes. TensorRT is also

a relatively new framework, so the version tested does not support some

neural network architectures. As a result, pre-trained models cannot be
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deployed using this framework.

Caffe has proven to be a very reliable framework with a fast inference

engine. The GPU’s cores usage of this framework is both efficient and

stable. Caffe performance during the experiments is similar to TensorRT.

A primary disadvantage of Caffe is there only exists a small amount of

information about the steps to use its C ++ API library that does the work

hard. Additionally, Caffe does not accept models from other frameworks,

reducing the possibility of using Caffe as a unique framework. Finally,

Caffe is being improved based on a community model, so there are different

versions of this framework. Each framework is personalized, and as a result,

not all of the frameworks support the same networks.

Finally, DNN-OpenCV has proven to be the framework with the lowest

performance for the Jetson TX2 due to its inability to take full advantage

of GPU power. However, this is an excellent framework for systems with

multiple CPUs without GPU support. Additionally, DNN-OpenCV has

proven to have some clear advantages over the other frameworks. For in-

stance, DNN-OpenCV was the most straightforward framework to use and

it is compatible with almost all of the current neural network architectures.

DNN- OpenCV is also a very well documented framework in both C ++

and Python languages. For the previous reasons this framework is an ex-

cellent option for fast developments, however, it is not deal for optimized

applications.
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4.7 Summary

As underscored in this chapter, optimal inference is indeed a critical factor

for the implementation of real-time systems. Optimal resources usage is

essential to build a multitasking system. Inference time and resource usage

were both tested to evaluate their performance capacities as both real-time

and multitasking are characteristic of the software architecture of PABI.

In this chapter, the performance of three deep learning frameworks was

evaluated on the Jetson TX2. TensorRT, Caffe, and the deep learning

module of OpenCV was tested under controlled conditions. The main

factors analyzed were inference time and resource usage.

A multi-factorial experiment was designed in order to evaluate the frame-

works. Two independent variables were chosen for the experiment: work-

load and hardware configuration. Workload included two deep learning

models with a medium and later with a large number of parameters, re-

spectively. The hardware configurations corresponded to three different

modes of operation of the Jetson TX2.

The results indicate that TensorRT is the best framework in terms of

velocity and resource usage. However, this framework was arduous to im-

plement as compared with other frameworks due to its constraints in flex-

ibility and compatibility issues. Caffe showed decent performance in both

velocity and resources usage. The primary disadvantage of Caffe is the lack

of information for its C++ API. Caffe also had compatibility restrictions.
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The deep learning module, OpenCV, proved to be a framework designed

for multicore CPU architectures, yet not for GPU architectures. However,

this framework had excellent compatibility with other frameworks and is

well-documented.
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Chapter 5

Evaluating Performance of
Pre-Trained Deep Learning Models for
Low-Level Feature Extraction in a
Robot-Enhanced ABA Therapy
Framework

Modularity and expandability are two characteristics suggested by the

software architecture designed in Chapter 2. These two characteristics

are particularly important in an ABA therapy context because of the na-

ture of the interactions. People with ADS have behaviors that increase

the complexity of human-robot interaction. Modularity and expandabil-

ity allow building flexible and adaptable systems while maintaining good

performance.

In this chapter, the use of deep learning pre-trained models to build

modular and expandable systems are explored. Two main factors incentive

the use of deep learning models in PABI. First, the hardware architecture

the PABI specially developed for efficiently deploying deep learning models.

Second, the scientific literature that state that deep learning models are
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more robust than classical approaches under uncontrolled conditions. Face

detection, face landmarks detection, and face codification are analyzed.

These feature are important for developing human-robot interactions. At

the end of the chapter, the experimental results are discussed.
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5.1 Motivation and Requirements

Face detection or face recognition using computers is difficult, particularly

under uncontrolled conditions. However, new approaches, such as deep neu-

ral networks and convolution neural networks, have reached performances

that overcome human perception (Russakovsky et al. 2015). The main

applications of these new algorithms have been for devices like personal

computers, tablets, or smartphones. In these platforms, the user inter-

acts directly with the device most of the time. Therefore, the algorithms

or models are trained for peak performance when they work with frontal

faces.

Introducing a robot as part of ABA therapy presents significant chal-

lenges. First, the patient has behaviors that are not present in people

without autism, increasing the complexity of the interaction. Second, the

robot is not the main interface. The robot is only an observer or par-

tial participant of the therapy in some cases. The primary attention of

the patient varies between people or other devices during the treatment.

Therefore, frontal faces are not available all time, doing the image process

and the interaction harder.
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5.2 Primary contributions of this chapter

The main contribution of this chapter is the analysis of deep learning pre-

trained models for low-level feature extraction in an ABA therapy context.

Face detection, face landmark detection, face recognition are basic features

for human-robot interaction. Therefore, the analysis is focused on these

features. The study includes the performance of the algorithms/models on

the Jetson TX2 as well as their robustness working with non-frontal face

images; a condition commonly found during the ABA therapy. Mainly deep

neural network models are analyzed considering the parallel architecture

of the Jetson TX2.

5.3 Background and related work

As described in chapter one, the three key uses of social robots in autism are

eliciting behaviors; model, teach and practice a skill; and provide feedback

and encouragement. In all these cases, the robot needs to have real-time

social interaction skills. For ABA therapy, an essential interaction skill is

patient and therapist tracking (Laurie A. Dickstein-Fischer et al. 2017).

Once people are tracked, other high-level capabilities like engagement level

detection, attention detection, among others, can be observed during the

therapy. However, in order to build high-level skills, a set of low-level

skills needs to be developed. Some of the low-level skills proposed by this
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Figure 5.1: Low-level feature extraction layer in the multilayer software architecture

work are face detection, face landmark detection, face recognition, and

pose detection. All these low-skill are built in the feature detection layer

according to the proposed model in chapter 2 and shown in Figure 5.1.

5.3.1 Face Detection

Face detection is one of the basic steps in social interaction. There is some

scientific evidence that child born with some information about the struc-

ture of the human face. (Morton and Johnson 1991). Human face detection

from images has been studied for several years, and algorithms with differ-

ent performances have been developed. Traditional approaches like pattern

recognition were initially used; however, those approaches were very sensi-

tive to the illumination, pose, among others factors (Rowley, Baluja, and

Kanade 1996; Yow and Cipolla 1997). Moreover, the processing time re-

quired by those methods made them useless for real-time face detection
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applications. Viola et al proposed in 2001 the first method that has been

extensively used in real-time face detection. (Viola and Jones n.d.) The de-

velop of the Deep Learning and the Convolutional Neural Networks (CNN)

in the last years have contributed to build more robust and fast face de-

tection systems for real-time applications. The deep learning architectures

more used in object detection are Faster R-CNNs (Girshick et al. 2013),

You Only Look Once (YOLO) (Redmon et al. 2015), Single Shot Detec-

tors (SSDs) (Wei Liu et al. 2016). Faster R-CNN, proposed in 2015, has a

high accuracy. However, Faster R-CNN has also a high inference time. In

contrast, YOLO, proposed in 2016, has a lower inference time than Faster

R-CNN but lower accuracy. Finally, Single Shot Detectors which was in-

troduced also in 2016, makes a tradeoff between the inference time and the

accuracy being one of the most used architectures nowadays. The three pre-

vious architectures are built over another two networks: VGG(Simonyan

and Zisserman 2015) and RESNET(He et al. 2015) which acts like fea-

tures extractors. A third architecture called MobileNets proposed in 2017

is being used to build object detectors in mobile devices. Any of the pre-

vious detectors can be trained with human faces allowing the development

of real-time systems for face detection. Figure 5.2 illustrate an example of

face detection using a classical HAAR Cascade detector and a deep learning

model approach.
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Figure 5.2: Example of face detection. In red the bounding box generated by HAAR
Cascade algorithm and in green the bounding box generated by a deep learning model

5.3.2 Face Landmark Points Detection

Once a face is detected, locate the fiducial facial landmark points around

the face is important for different face analysis tasks. The number of the

landmark points detected depend of the subsequent use of that information.

Two number of landmarks are mainly used: sixty-eight points and five

points. The five points model is in general faster than the sixty-eight

model and it is useful for tasks like face alignment or face pose estimation

for instance (Murphy-Chutorian and Trivedi 2009). On the other hand,

the sixty-eight points model provides more information about the face and

it is useful for tasks like non-verbal communication, emotion recognition

(Pantic and Rothkrantz 2000), among others. Figure 5.3 illustrate these

two different approaches.

According (Wu and Ji 2019) the landmark points detection algorithms

can be classify in three categories: holistic methods, Constrained Local

Model (CLM) methods, and the regression-based methods. Wu et al states

79



Eduardo Calle Ortiz CHAPTER 5

Figure 5.3: Examples of landmark points detection. Left) 68 points model, Center ) 5
points model, Right) Eyes and lips model

that Regression-based methods achieve better performance than holistic

methods and CLM methods. Regression methods are also faster which is

particularly useful in real-time application like PABI. Convolutional Net-

work methods for landmark points detection follow the regression-based

frameworks. Some of the popular frameworks based on regression methods

are presented in (Kazemi and Sullivan 2014; Ren et al. 2014; Wu, Hassner,

et al. 2015)

5.3.3 Face Recognition

On step forward in social robot interaction is the capacity of the robot to

recognize specific people. Recognizing people means to identify or verify

the identity of a person based on images. This is a very challenging problem

which has been studied for more than forty years. In fact, one of the ear-

liest researches was done in 1970 (Kelly 1971). One of the main problems

that face recognition revise is the variability of the face images in the real

world. (Trigueros, Meng, and Hartnett 2018) classify the approaches of
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face recognition in five categories: geometry-based methods, holistic meth-

ods, feature-based methods, hybrid methods, and deep learning methods.

Particularly, the develop of the last approach has allowed to supersede the

human capacity of face recognition in the last years. (Weiyang Liu et al.

2017; Schroff, Kalenichenko, and Philbin 2015; Simonyan and Zisserman

2015) The deep learning approach has also allowed the real-time implemen-

tation of face recognition.

5.3.4 Pose Detection

Human pose detection has been extensively studied in recent years. From a

social robot point of view, pose detection provides a new way to understand

social interaction. (Rudovic et al. 2018) uses pose detection to understand

the behavior of patients in autism therapies. Human pose detection con-

sists on locate the joints of the human body in images. Then, a specific

pose can be detected. For pose estimation, there are various approaches.

First,(O’Rourke and Badler 1980; Y. Yang and Ramanan 2013; Hogg 1983)

present a classical approach. In these approaches human pose is represented

as a collection of parts organized in a deformable configuration. Every rigid

part is connected by a spring which allows different configurations. The

second approach is based on deep learning models. This approach has

been growing faster in last years (Toshev and Szegedy 2014). Deep learn-

ing models for pose detection outperformed classical models. Most popular
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deep learning approaches using deep learning to generate is a discrete rep-

resentation of the probability than a joint occurred at each pixel called a

heatmap.

5.4 Experimental methods

Different experiments were run to evaluate the robustness of the deep learn-

ing models. For face detection, landmarks face detection, and face recogni-

tion the metric was the robustness of the model to different faces poses and

the inference time on the Jetson TX2. For the pose detection, the analysis

was focus on the inference time of the models on the JetsonTX2.

5.4.1 Experimental setup: Images Dataset and hardware

Images Dataset

Robustness of the face detection, landmarks face detection, and face recog-

nition algorithms were evaluated using the Pointing’04 face data set(Gourier,

Hall, and Crowley n.d.). This database consists of two sets of 15 people

in different face poses. Each pose is defined by a vertical angle and a hor-

izontal angle. The vertical angles used by this dataset are -90, -60, -30,

-15, 0, +15, +30, +60, +90 degrees while the horizontal angle are -90, -75,

-60, -45, -30, -15, 0, +15, +30, +45, +60, +75, +90 degrees. The database

provides 2790 images in total. Figure 5.4 illustrates an example of the sev-

eral images of one user in the dataset. The resolution of the images in the
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Figure 5.4: Multipose Pointing’04 face data set

dataset is 384x288 pixels.

Hardware platform

For the experiments a Jetson TX2 platform with JetPack 3.2 installed

was used. The JetPack 3.2 included Ubuntu 16.04 LTS and CUDA 9.0.

OpenCV 3.4.1 for ARM processors and CUDA support was built from the

source code and installed and used for the experiments. The Jetson TX2

was configured in MAX-N mode.

5.4.2 Face Detection Experimental Setup

Face detection models were evaluated by using two metrics: processing time

and face detection performance. For the first metric, the number of clock-

cycles was used to measure the inference time. For the second metric, the
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result of the face detector on faces in different poses was registered. Then,

the true positive detections and the false positive detections were used to

build a probability map.

Neural networks

Two approaches were analyzed for face detection. The first approach was

the classical HAAR Cascade detection algorithm. This method was used

like a baseline for contrasting the performance of a deep learning model.

The previous version of PABI used this algorithm for the face detection

stage (Pereira 2017). The second approach is based on a deep learning

model.

The deep learning model used in the experiment consisted of a Single

Shot Detector pipeline with a RESNET-10 architecture as a backbone.

This model was trained for human face detection by the OpenCV group

using Caffe framework. This model is one of the most popular pre-trained

models for face detection. This model is included with OpenCV 3.4.1

Experiment procedure

The experiments were executed using OpenCV 3.4.1 with CUDA support

and C++11. Two experiments were built for each model. The first exper-

iment was focused on measure the face detection performance while the

second experiment was focused on measure the processing time.

For the first experiment, every face in the dataset was evaluated through
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Table 5.1: Tested angles. Each pose from each user was tested using a HAAR and DNN
algorithm. The sizes of the input images during the experiment were 266x200, 400x300
and 666x500 pixels.

Horizontal Angles

Vertical Angles -90 -75 -60 -45 -30 -15 0 +15 +30 +45 +60 +75 +90

-90 x

-60 x x x x x x x x x x x x x

-30 x x x x x x x x x x x x x

-15 x x x x x x x x x x x x x

0 x x x x x x x x x x x x x

+15 x x x x x x x x x x x x x

+30 x x x x x x x x x x x x x

+60 x x x x x x x x x x x x x

+90 x

the face detectors. Then, the result was registered and classified as a true

positive, or false positive. Finally, the probability that a face detector

detects a face in a specific pose was calculated as:

P (TruePositive[HAngle, VAngle]) =
TruePositive[HAngle, VAngle]

NroFaces[HAngle, Vangle]

(5.1)

For each pose, a total of 30 true positives cases are available (2 sets x 15

people). The experiment was repeated using different sizes for the input

images. The sizes used was 266x200, 400x300 and 666x500 pixels. Table

5.1 shows the experiments executed.

For the second experiment, 200 random images from the dataset were
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taken and the processing time was calculated. Nine different size of the

input image were used to calculate the inference time.

5.4.3 Face Landmark Points Detection Experimental Setup

For landmarks face detection two metrics was used: processing time and

the error in the landmarks position. For the first metric, the number of

clock-cycles was used to measure the processing time. For the error, the

distance between every detected landmark and its labeled position were

calculated using equation 5.2.

Neural networks

For face landmarks detection two approaches were evaluated. The first ap-

proach is the classical Local Binary Feature (LBF) landmarks detection al-

gorithm (Ren et al. 2014). This algorithm, based on a regression approach,

is one of the fastest non-deep learning approaches used for landmarks de-

tection. This method as a baseline for landmarks detection comparison.

The second method is a deep learning approach presented in (Wu, Hass-

ner, et al. 2015). This model was chosen because of authors state that the

model has a good performance for extreme poses.

The Pointing’04 face dataset described in the previous section was used

as input. However, landmark points were manually labeled by the author

of this thesis, in order to calculate the error of the tested models using this
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Figure 5.5: Example of a manually labeled image

dataset. Figure 5.5 shows an example of labeling.

Experiment procedure

The experiments were executed using OpenCV 3.4.1 with CUDA support

and C++11. Two experiments were built for each algorithm/model. The

first experiment was focused on measuring the face landmarks detection

performance while the second experiment was focused on measure the pro-

cessing time. For the first experiment, every face in the set one was eval-

uated through the face landmark detectors. Then, the Euclidian distance

between every calculated landmark and the corresponding manually la-
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beled landmark was calculated. A Euclidean distance equal to zero means

no error. The bigger the Euclidian distance the bigger the error. The av-

erage error for a pose with an H horizontal angle and V vertical angle is

calculated as:

Error[H,V ] =

∑NroFaces[H,V ]
1

(∑NroLandmarks
1

√
(Pcxi − Plxi)

2 + (Pcyi − Plyi)
2
)

NroFaces[H,V ]

(5.2)

where Pci is the calculate landmark point and Pli is the manually labeled

point.

In order to measure the inference time, 1000 random images of the

dataset and the processing time were calculated. We repeat the experiment

for 9 different sizes of the input image.

5.4.4 Face Encoding Experimental Setup

Face encoding analysis was focused on deep learning approaches due to

the high accuracy reported in the literature. Evaluating a deep learning-

based face encoder is difficult because of a preprocessing stage is necessary.

Any modification in the preprocessing stage can affect the performance a

face encoder. Figure 5.6 illustrates the preprocessing stage before applying

a face encoder. Three procedures are necessary before applying a face
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Figure 5.6: Preprocessin stage for face encoding

encoder: face detection, face landmark detection and face alignment. The

first and second procedures were described in the previous sections. For

the face alignment procedure, the landmark points detected are used to

obtain a normalized rotation, translation, and scale representation of the

face.

Face encoding is sensitive to face alignment. A good alignment generates

a good performance of the face encoder. Similarly, the quality of the face

alignment is affected by the performance of the face landmarks detector.

High error in the landmarks produce a bad face alignment. Therefore, there

are an accumulated error in the processing stage that is transferred to the

performance of the face encoder. For the experiments the face detector was

set to the SSD-RESNET model and the landmarks detector to a vanilla

model.

Two metrics were used to evaluate the face encoder models. First, the

inference time of each model on the Jetson TX2 was measure. Second, the

capacity of the models for verifying if two faces belong to the same person
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was evaluated.

Neural networks and input data

Three different models were evaluated: OpenFace (Schroff, Kalenichenko,

and Philbin 2015), SphereNet (Weiyang Liu et al. 2017), and VGGFace

(Simonyan and Zisserman 2015). The first model proposes a loss function

called triplet-loss to train the network. The triplet consists in two matching

faces and one non-matching face. The loss function objective is to separate

the correct pair from the incorrect pair using a distance margin. This model

mapped a face in a 128-dimensional Euclidean space. The distances in this

space directly correspond to faces similarity. Faces of the same person have

small distances while faces of different people have large distances. Thus,

identical faces have a Euclidian distance of 0 while two totally different

identities have a Euclidian distance of 4.

The second model propose a more complex loss function call Angu-

lar softmax to learn angular discriminate features. The main idea of

SphereFace respect to OpenFace, is to separate the feature by imposing

an angular margin instead of a distance. Exist different pre-trained models

of SphereFace. The reported model mapped faces in a 512-dimensional

space. Figure 5.7 illustrate the intuition behind OpenFace and SphereFace

Finally VGGFace architecture in more complex than FaceNet but it also

uses a triplet-loss to train the network. However, this model mapped a face
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Figure 5.7: Difference between euclidian margin loss (used by OpenFace) and A-softmax
loss (used by SphereNet). Adapted from SphereFace: Deep Hypersphere Embedding for
Face Recognition by W.Lui et al, 2017, 2017 IEEE Conference on Computer Vision and
Pattern Recognition, 6738-6746

in a 4096-dimensional Euclidean space.

Experiment procedure

. The experiments were completed using OpenCV 3.4.1 with CUDA sup-

port and C++11. Two experiments were developed. The first experiment

consisted on measuring the capacity of the model of matching the same

person. For this, five thousand random pairs of images that match the

same person were chosen using the dataset aforementioned. Each face was

encoded using a deep learning model and a metric was calculated in order to

measure the similarity of the faces. Similarly, five thousand random pair of

images that unmatched the same person was chosen and the similarity cal-

culated. After that, a threshold that maximizes number of correct matches

pairs and correct unmatched pairs was calculate. The true positives, true
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Table 5.2: Experimental setup for face encoding

Model Framework used Number of features used to the face codification Face detector Landmarks detector

OpenFace Caffe 128 SSD-ResNet Vanilla 5 points
SphereFace Caffe 512 SSD-ResNet Vanilla 5 points
VGGFace Caffe 4096 SSD-ResNet Vanilla 5 points

negatives, false positives and false negatives was registered.

Because of the extreme poses in the database, two different ways of us-

ing the code generated by the encoders was tested. The first way was to

use directly the code generated by the encoders to calculate the similarity

between faces. The second way was to calculate the similarity using an

average code. The average code is generated using the original code gener-

ated for a face and the code generated using the horizontal mirror of that

face. Table 5.2 present the details of the experiment.

5.4.5 Experimental Setup for Body Pose Detection

No formal experiments were built for body pose. Mainly, the pre-trained

model used in chapter 3 to evaluate the frameworks was tested. Although

there are several neural networks in the literature, only OpenPose model

was available. The inference time of OpenPose was measured in the chapter

3.
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5.5 Experimental results

5.5.1 Experimental Result for Face Detection

The deep learning model had better performance compared with the HAAR

detector algorithm. The model exhibited high robustness to the extreme

pose variations. As is illustrated in Figure 5.8 the model covered almost

all possible changes in the pose in both vertical and horizontal angles.

In contrast, the HAAR detector had a good performance only in poses

between -30 and 30 degrees in both the vertical and horizontal angles. The

reason is that the HAAR detector uses kernels that were specially designed

for frontal faces. Exist HAAR variations for profile detection which was

not evaluated in this experiment. Figure 5.8 also illustrate that the deep

learning model diminish its performance with small size images.

The inference time of the two approaches is very similar. Figure 5.9

illustrate a comparison of the inference time between HAAR and the deep

learning model. For a small input, HAAR is slightly faster than the deep

learning model. However, for a higher input size, the deep learning model

is marginally faster than HAAR. So, in term of inference time, the models

do not present a significative difference. For an input size of 400x300, both

methods reached a rate of 18 frames per second in average on the Jetson

TX2.

93



Eduardo Calle Ortiz CHAPTER 5

Figure 5.8: Probability of true positives for face detectors. The two upper images
illustrate the probability maps of HAAR detector (left) and DNN model detector (right)
using an input size of 266x200. The two lower images illustrate results of the detectors
using an input size of 400x300
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Figure 5.9: Inference time of the two face detector under different sizes

5.5.2 Face landmark points detection

Figure 5.10 illustrate the average error of face landmark points detection

algorithms. The deep learning model evidenced better performance that

LBF for extreme poses. In the horizontal angle, the model shows a accept-

able performance between -60 and 60 degrees while in the vertical angle the

acceptable performance is located between -45 and 75 degrees. In contrast,

LBF shows an acceptable performance between -30 and 30 degrees in the

horizontal angle and -45 and 45 degrees in the vertical angle. Figure 5.11

show the difference between the landmarks generated by the deep learning

model (lower row) and the landmarks generated by the LBF algorithm.

Figure 5.12 illustrate the inference time of the two methods. The deep
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Figure 5.10: Average error for two landmarks detectors. Left) Deep learning model
rigth) Local Binary Feature method

Figure 5.11: Landmark points detected by LBF (upper row) and the deep learning
model (lower row)
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Figure 5.12: Inference time

learning model was faster; however, the LBF methods is calculating more

points of reference.

5.5.3 Experimental Results for Face encoding

The results presented in the section are based on the configuration of the

experiment defined in section 5.4.4. A better or worst performance of the

deep learning face detectors can be reached using a different face encoder

and/or a different face landmarks detector.

The first experiment consisted of using the code generated by the en-

coder without modification, to identify if two people match or not. The

upper histograms in Figure 5.13 illustrate the results. According to the

experiment, SphereFace was the model with less accuracy. 62.1% of the

pairs of faces were correctly classified in matched or non-matched using

this model. OpenFace was just 4.7% more accurate than SphereFace.The

most accuracy model was VGG face, which was 18.6% more accurate than

OpenFace. The metric that give the best performance for OpenFace and
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Figure 5.13: Accuracy of the face encoders. The upper row uses a simple code for
matching faces while the lower row uses an average code

SphereFace was the Euclidian distance. For VGG was the cosine similar-

ity. The values of the metrics was found using a 10-fold cross-validation.

The best thresholds were 0.9279 for OpenFace, 592.57 for SphereFace and

0.31134 for VGGFace.

For the second experiment, two codes were generated and then the aver-

age was calculated. The first code corresponds to the original face detected

and the second code corresponds to the face horizontally flipped. With this

modification a more balance code is expected. Lower histrograms in Figure

5.13 illustrate de results. With the average code, all models were more ac-

curate than using the single code. OpenFace improved 3.36%, SphereFace

improved 10.16% and VGGFace improved 7.9%. VGGFace was still the
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Figure 5.14: ROC curves for the faces encoders. Left) ROC using single code right)
ROC using average code

best model, however, the second best model after the modification was

SphereFace. The metrics used for each model was the same than in the

previous experiment. The new thresholds were 0.806 for OpenFace, 198.98

for SphereFace and 0.3135 for VGGFace. Figure 5.14 illustrates the ROC

curves comparing the performance of the three face detectors.

In terms of inference time, SphereFace was the faster model. VG-

GFace was the slowest model, for instrance, it was five times slower than

SphereFace. OpenFace was three times slower than SphereFace. Figure

5.15 illustrates the inference times.

5.6 Discussion

Experiments executed in this chapter demonstrate that deep learning mod-

els can outperform the traditional algorithms in image processing. Partic-

ularly, for face processing, the evaluated deep learning models has shown
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Figure 5.15: Inference time of the face encoders

to have equal or better performance that classical non-deep learning algo-

rithms. Despite the deep learning models have not been trained specifi-

cally for their use in ABA therapy, they showed the capability of gener-

alization and response with good performance in this environment. Using

pre-trained deep learning models on embedded systems such as the Jetson

TX2 produce some advantages. One advantage is that high performance

models can be executed in real time. The training process, which is the

hardest part of getting a pre-trained model, is not executed on the de-

vice. This helps to release resources on the device to improve other tasks.

That is excellent for systems like social robots that need executed several

tasks simultaneously. Another advantage is that the pre-trained models

have countless possibilities for enhancement, improving the overall systems

without modifying the code. Using pre-trained models also reduces the

amount of code helping to minimize the error produced by bugs in the
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code. Some non-deep learning approaches require hard coding and they

are more susceptible to run-time mode errors.

Disadvantages of using pre-trained models is that they are inflexible

prototypes. Once a model has been trained, parameters cannot be modified

to adapt it to different conditions for those which were used in training.

This makes it challenging to match models and build larger systems due to

pre-trained models that are sensitive to the trained conditions. Landmarks

detectors, for instance, are very sensitive to the face detector. If the face

detector generates a slight variation in bounding boxes, the performance

of the landmark detector is affected, resulting in an inaccurate portrayal of

the facial features and a lower overall performance.

5.7 Summary

This chapter explores the use of pre-trained models to support two char-

acteristics of the software architecture proposed: modularity and expand-

ability. The use of deep learning models was incentivated because of the

AI hardware architecture of PABI and the performance of deep learning

models under uncontrolled conditions. The deep learning models evaluated

focused on face detection, face landmark points detection, and face recog-

nition. Those low-level features are the base in many application related

with human-robot interaction.

Various experiments were designed to evaluate each deep learning model.
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However, in general, two main variables were evaluated: robustness to ex-

treme face poses and time processing. The experimental results indicate

that deep learning models overpass traditional approaches, providing a

rapid way of adding more characteristics to the robot. The main disad-

vantage of using deep learning models is the difficulty of combining two or

more models in a process. The reason for this is because the deep learn-

ing models are very sensitives to the conditions that were used during the

training. This problem can be overcome by retraining the models; however,

the complexity of some models make that solution daunting. Deep learning

models can still be used, but it would result in a lower performance.
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Chapter 6

A Patient-Tracking Algorithm to
Improve the Usability of PABI in
Autism Treatments

Effectively incorporating a robot in a robot-enhanced ABA therapy is

a challenging task. The design requires provision of high-level abilities in

the robot such as identifying and maintaining attention of a particular

individual. On the other side, the design needs to improve the usability of

the robot for ease of use by the therapist. In an ABA therapy context in

particular, the robot needs to track the patient in order to understand his

or her behavior throughout the session. Information collected by the robot

will be used later for improving its social interactions with the patient, thus

increasing the effectiveness of ABA robot-enhanced therapies.

In this chapter, a patient-tracking algorithm is designed to improve the

usability of PABI in autism treatments. The proposed algorithm is focused

on improving the usability of the device while providing the robot with a

high quality tracking system. One of the key ideas in this algorithm is to

use an Open-set approach instead of a classical closed-set approach. Thus,
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the problem of identifying an individual, the heart of the tracking system

proposed, is constructed using a large-margin features approach instead

of a classification approach. This chapter also presents the details of the

research methodology implemented to evaluate the algorithm.
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6.1 Motivations and Requirements

Attention is a cognitive process that consists on determining the correct

stimulus around which a behavior is organized, ignoring other perceivable

information.(Breazeal 2004). Maintaining attention in uncontrolled envi-

ronments is relatively easy for humans, however, it is a challenging tasks

for social robots such as PABI. In the framework of ABA therapy, attention

begins by first recognizing the patient and the therapist during an ABA

therapy session and tracking them, as well as disregarding extraneous in-

formation such as other individuals or stimulus in the scene.

Previous versions PABI implemented the aforementioned tracking sys-

tem using deep learning and close-set approaches. In close set approaches,

for each new patient added, a sample of images of the patient are taken

and a deep learning model is trained. From a technical perspective, this

approach works appropriately; however, from a usability perspective, the

training process necessary to add a new patient, increases the complexity

of robot use for the therapist. Thus, a tracking process that maintains the

technical performance and reduces the complexity of robot use is necessary.

Furthermore, the tracking system needs to have a real-time approach and

be implemented on the high-level application layer proposed in Chapter 2.
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6.2 Primary Contributions

The primary contribution of this chapter is the design of a tracking algo-

rithm based on an open-set approach. In the proposed open-set approach,

instead of training a new deep learning model each time that a new patient

is added, an identity verification approach is used. This process consists

in using patient information provided by the therapist before each therapy

session, including an image of the patient. Then, a deep learning model for

face encoding, combined with unsupervised methods, allows verification of

individuals detected in the scene based on the patient image provided by

the therapist. The proposed approach increase the usability of the robot

by reducing its complexity setting for use during the therapy.

6.3 Background and Related Work

Focusing on the patient is an essential task for a robot during a robot-

enhanced ABA therapy. Based on this task, subsequent tasks like face

landmark detection or face encoding will be realized. However, although

attention is easy for humans, it is a challenging task for the robot. At-

tention requires one to identify the target and track it. In the context of

a robot-enhanced therapy, identifying the target signifies recognizing the

patient and tracking him or her.

For the object tracking problem, several algorithms have been developed
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in the last decade (Kalal, Mikolajczyk, and Matas 2012; Kalal, Mikolajczyk,

and Matas 2010; Henriques et al. 2015; Babenko, M.-H. Yang, and Belongie

2009). Modern approaches of tracking are both fast and accurate. However,

tracking alone cannot identify the object that needs to be tracked. This

chapter is focused on the patient recognition, which is the base for the

tracking system.

Two approaches have developed in the last years for identifying indi-

viduals: the closed-set approach and the open-set approach. The first

approach addresses the problem of identifying people as a classification

problem. The second approach addresses the problem using large-margin

features (Weiyang Liu et al. 2017). Below these two approaches are de-

scribed.

6.3.1 Patient Recognition Using a Closed-Set Approach

Close-set approaches address the problem of patient recognition as a classi-

fication problem. Thus, a classifier is trained to identify a patient between

a set of patients. Pereira (Pereira 2017), for instance, uses a deep learning

approach to train a classifier for a robot-enhanced ABA therapy. 6.1 (left)

illustrates the closed-set approach.

A closed-set approach involves several stages. First, a set of patient

images is necessary to build a training-set. The training-set includes patient

images in different poses, improving the quality of the classifier. In the

107



Eduardo Calle Ortiz CHAPTER 6

Figure 6.1: Closed-set approach (left) and Open-set approach (rigth)

next stage, the classifier is trained by combining the patient images with a

supervised learning algorithm. Then, the trained classifier is used during

the therapy session to identify the patient among a set of patients that

includes the training set. If a new patient needs to be added, images of the

new patient must be added to the training-set and the model must then

be re-trained.

6.3.2 Patient Recognition Using a Open-Set Approach

Contrary to closed-set approaches, open-set approaches (Günther et al.

2017) address the problem as a metric learning one rather than one of

classification. Figure 6.1 (right) illustrates an open-set approach. In this

approach, a training-set is used to train a model that maps faces in a
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discriminating n-dimensional features space. For each face, a specific n-

dimensional vector is generated. Then, n-dimensional vectors are used to

compare two faces in order to verify the identity of two faces. In this

instance, it is unnecessary that the patient images are used in the training

set. In fact, any set of images can be used to train the model. Additionally,

the model needs to be trained once rather than multiple times as, for

example, in a closed-set approach. Therefore, adding a new patient does

not require retraining the model.

6.4 Tracking-Patient Algorithm Based on Face Veri-

fication

The main disadvantage of using a close-set approach for patient-tracking is

that the model must be trained every time that a new patient is added to

the list of patients. The training process reduces the usability of the robot

because it implies additional procedures to use the robot. In some cases, the

therapist is not able to execute this procedure without technical support.

In contrast, in an open-set approach, the usability of the robot is increased

and any procedure performed by the therapist is more streamlined. In

the proposed algorithm, the patient profile is used to build an open-set

approach for patient-tracking.

109



Eduardo Calle Ortiz CHAPTER 6

Figure 6.2: Examples of the PABI therapist interface

6.4.1 Robot-Enhanced ABA Therapy Interface.

In a robot-enhanced ABA therapy, prior to the therapy session, some rou-

tine procedures need to be completed by the therapist. These procedures

involve selecting the patient, for example, or creating a medical profile of

the patient if one does not exist or select the therapy to be applied, etc. For

this work, the Therapy Configuration System defined in the robot-enhanced

ABA therapy framework is used. Figure 6.2 illustrates the session infor-

mation interface proposed for PABI.

6.4.2 Patient Recognition Algorithm for a Robot-Enhanced ABA

Therapy

The proposed patient recognition algorithm is based on a open-set ap-

proach. The heart of the algorithm is a face-encoder based in deep learn-

ing. In order to recognize the patient during the therapy session, the faces
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detected by the robot are compared with the image of the patient register

in his or her medical profile. Some constraints are needed in the design of

the algorithm due to the nature of the therapy session and reduce computa-

tional costs. Constraints of the ABA therapy session include the following:

• Close proximity of both patient and therapist for robot detection.

• Robot positioning with a specific orientation allowing faces to be cap-

tured.

• No more than two individuals present during the ABA therapy session.

Figure 6.3 illustrates the algorithm. First, the algorithm begins by de-

tecting all possible faces in the input video frame. For each new frame,

a new vector of faces are detected. It is important to note that there is

not a particular order in which the faces are detected. Therefore, an ele-

ment in the vector of faces detected does not represent the same user in

each frame.In order to match the faces with the corresponding users, the

Hungarian Algorithm is used (Kuhn 1955).

Once each of the faces have been assigned using the Hungarian algo-

rithm, a code for every face is generated using a face encoder. A metric

is then calculated between the detected faces and the facial image in the

patient’s medical profile. To reduce the variability in the metric, a moving

average filter is applied. Finally, a threshold is used to identify the patient

between the possibles candidates.
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Figure 6.3: Patient Tracking Algorithm Based on an Open-Set Approach
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6.5 Experimental Methods

Evaluating the patient recognition algorithm proved to be fraught with dif-

ficulty because it is contingent upon several changing factors. For example,

the position of the camera, the configuration of the space during the ther-

apy session, the internal parameters of the algorithm, among other things,

can change the performance of the algorithm. However, in order to test the

algorithm, two different videos where utilized. First, a previously recorded

video of an experimental session using PABI was used. Second, a public

video available on YouTube (Lesha Zaslonkin, Invierno 2014, Comienzo de

Clases - YouTube 2019) was used to compare the algorithm’s effectiveness

in each scenarios, presenting the algorithm with various performance tasks.

In the first video, an ABA therapy is conducted by a therapist while

the robot is recording the session. The robot is positioned in front of a

young girl, the patient, and the therapist is positioned next to the girl

facing the PABI robot. The therapist is not able to be viewed in all of the

frames, however, the patient is always front and center, in the focal point

of the robot’s view. The therapist conducts the ABA therapy session for

approximately four minutes and seventeen seconds. There are additional

individuals in the background of the video, however, they are undetectable

by the robot because they are not close enough in proximity to the PABI

robot. The robot video is distorted in its shape due to the robot’s fish-eye

lens. A head shot of the patient was necessary for the robot to track the
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Figure 6.4: Scenario 1: ABA therapy session using PABI and the face of reference used
for this scenario

patient and, as such, a screen shot was taken from one video frame during

the session. However, any frontal image can be used for this task. So, the

image can be captured using a tablet, a phone o uploaded. The aim of

this frontal patient photo was to assist the robot in identifying the patient

throughout the session. Both therapist and patient face PABI and it is

easy to identify the patient throughout the session as a result. Figure 6.4

illustrates a frame example of the ABA therapy and the reference face.

The second scenario is a video recording of about fifteen minutes of

an ABA therapy session. There are several noticeable differences in the

second scenario as compared to the first. The recording was not taken by

PABI, but rather by a normal video recorder. In this case, the therapy
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Figure 6.5: Scenario 2: Autism Therapy Session and the Face Used as a Refer-
ence in Scenario. Centro de terapia ABA (Producer). (2017, August 12). Le-
sha Zaslonkin, invierno 2014, comienzo de clases [Video file]. Retrieved from
https://www.youtube.com/watch?v=-wro1VYry1g

is conducted with the therapist face-to-face with the patient rather than

side-to-side such as in the first scenario. Because the faces of both the

patient and therapist are recorded from a lateral view, it prevents a clear

image of their faces. Similar to the previous scenario, a head shot of the

patient was necessary for the robot to track the patient and a screen shot

was taken from one video frame during the session. Figure 6.5 illustrates

this scenario.

The applied conditions for the experiment are illustrated in Table 6.1.

The moving average filter was used with 10 points and the threshold cal-

culated in section 5.5.3 was utilized.

As a metric, the quality of matching between the patient’s faces detected
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Table 6.1: Experimental Setup

Parameters Configuration

Face detector: SSD-RES10
Face Landmarks detector: Vanilla 5 Points
Face Encoding: VGG Face Encoder
Jetson TX2 Mode MAX-N

and the reference face was used. When a face was correctly matched, the

face served as a reference for tracking the patient, however, when the face

was lost, a tracking algorithm continued to track the user.

6.6 Experimental Results

6.6.1 Experimental Results Using the ABA Therapy Video

Figure 6.6 illustrates the results of the robot’s patient recognition using

2500 frames. In this scenario, a moving average filter was not used. In

total, the patient’s face was detected in 2236 frames. From these faces de-

tected, 2230 faces were over the threshold, signifying the algorithm matched

99.73% the reference face of the patient to the faces detected during the

therapy. All the detected faces of the therapist were under the threshold,

so false positives were not generated. Using a moving average filter with

size, 100% of the faces were correctly classified. Results using a moving

average filter, size 10, are illustrated in the Figure 6.7.

To compare, Figure 6.8 illustrates the results of the algorithm using a

SphereFace Encoder. It is important to note that the metrics are different
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Figure 6.6: Similarity of faces detected with respect to the reference face in Scenario 1.
The patient is marked in blue and the therapist in orange. The red line is the threshold
used to separate the patient from the therapist.

Figure 6.7: Similarity of the faces detected with respect to the reference face using a
10 element moving average filter in Scenario 1. Blue signifies the patient and orange
marks the therapist. The red line is the threshold used to separate the patient from
the therapist.
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Figure 6.8: Similarity of the faces detected with respect to the reference face SphereFace
in Scenario 1. The patient is marked in blue and the therapist in orange. The red line
is the threshold used to separate the patient from the therapist.

and in this case, the matching face is under the threshold. The reason for

this is that the lower the L2 norm, the higher the probability of two faces

matching.

6.6.2 Experimental Results Using the public Therapy Video

Figure 6.9 illustrates the results of the robot’s patient recognition using

2500 frames. In this case, a moving average filter was not used. In total,

the patient’s face was detected in 791 frames. From these faces detected,

476 faces were over the threshold. This means that the algorithm matched

60.17% of the times the reference face of the patient was paired with the

faces detected during the therapy. All of the detected faces of the therapist
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Figure 6.9: Similarity of the faces detected respect to the reference face in Scenario 2.
The patient is marked in blue and the therapist in orange. The red line is the threshold
used to separate the patient from the therapist.

were under the threshold, so false positives were not generated. Using a

moving average filter with size then, 36.60% of the faces were accurately

classified. Results using a moving average filter ,size 10, is illustrated in

the figure 6.10.

The frame rate of the algorithm using the experimental setting specified

in Table 6.1 was 2.4 frames per second. The algorithm is capable of reaching

a frame rate of 10 frames per second when using SphereFace instead of VGG

Face.
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Figure 6.10: Similarity of the faces detected respect to the reference face using a 10
element moving average filter. The patient is marked in blue and the therapist in
orange. The red line is the threshold used to separate the patient from the therapist.

6.7 Discussion

Experimental results demonstrate that an open-set approach has the po-

tential to be effective in patient recognition. In Scenario 1 the algorithm

had an almost perfect performance despite the varying conditions of the

test. In this scenario, the PABI robot was included as a central part of the

therapy.

In Scenario 2, performance dropped drastically. In this scenario, the

algorithm was tested in an environment in which the robot was not consid-

ered. One of the main reasons for the lower performance was the position

of the camera. In this scenario, most of the time, the therapist and patient

worked face-to-face. It is evident that the location of the robot respect to

the patient and the therapist played a key role in the performance of the
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algorithm in face detection. Therefore, involving a robot in an ABA ther-

apy requires not only appropriate technology but also a sound methodology

to establish a proper work space to incorporate the robot in the therapy

effectively.

In the algorithm proposed, complex methods for unsupervised learning

were not included. The main reason for this was to improve the velocity

of the algorithm. However, incorporating better learning algorithms have

the potential to improve the performance in harder scenarios such as the

example in Scenario 2.

Finally, the experimental results demonstrate that exploring open-set

approaches improve human-robot interaction in a robot-enhanced ABA

therapy and should be considered.

6.8 Summary

In this chapter, the use of an open-set approach to identify the patient

during an ABA therapy session is explored. Identifying and tracking the

patient are two essential tasks for better understanding of the robot-patient

relationship. In the proposed approach, a patient image available in his or

her medical profile is used by an algorithm in order to identify him or

her throughout the duration of the therapy session. This approach varies

with the closed-set approach where a set of images of the patient need to

be taken, and the system must be re-trained each time a new patient is
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added.

The algorithm consists of two important stages. After detecting the

faces in an input image, the faces are assigned to the correct users using

a Hungarian Algorithm. Second, the face of every user is encoded using a

deep learning face encoder model. The code generated is compared with the

image registered in the database using a specific metric. Finally, a threshold

is used to know if the user corresponds to the user in the patient database.

Once the patient is identified, a traditional KCF tracking algorithm is used

to track the patient.

In this chapter, the algorithm is tested using two scenarios of ABA

therapy sessions. In the first scenario, the video of an enhanced-robot

ABA therapy is used. In this scenario, the robot is located directly in front

of the patient and the therapist. In the second scenario, the algorithm is

tested over a regular ABA therapy without the use of a robot-enhanced

therapy and the patient has a more severe case of autism.

The experimental results demonstrate that the proposed algorithm has a

very high performance in a structured session where the robot is considered

and strategically located. However, the performance drops in a regular

ABA therapy without the use of a robot primary due to the camera position

and position of both therapist and patient.

Finally, the proposed approach is advantageous by improving the usabil-

ity of the robot. No additional procedures are necessary for adding a new
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patient. Further, no additional images of the patient need to be recorded

for tracking purposes. This protects the identity of the patient while saving

resources in the system.
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Chapter 7

Discussion and Future Work

One of the biggest challenges of designing a computer framework for a

Socially Assistive Robot in ABA Therapy is the absence of a medical frame-

work to provide insights about the design itself. Scientific literature has

made several attempts to incorporate Socially Assistive Robots in autism

therapy. However, there is no formal framework to help streamline the pro-

cess of introducing SARs in therapy. This work presented a first attempt at

combining both Social Assistive Robots and Applied Behavioral Analysis

within the same framework. The robot-enhanced ABA therapy framework

is a small step forward toward building effective robots for the treatment

of autism. The framework must be expanded with the contributions of

therapists, psychologists, and parents or guardians.

This work also demonstrated that emerging technologies in artificial

intelligence and AI embedded devices can be an opportunity to improve

the performance of Socially Assistive Robots. Some of the advantages of

using the JETSON TX2 were its small size, low-power consumption, and

memory protection. The small size of the JETSON TX2 allows innovation
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in the mechanical body of PABI, minimizing the constraints due to the size

of its computing hardware. Low-power consumption provides autonomy

and further reduces the cost of the therapy. The memory protection of the

JETSON TX2 provides an extra layer of privacy protection, which is an

essential characteristic in medical robots.

In this work, pre-trained models where tested as proof of a specific

concept. However, training deep learning models for particular conditions

of an ABA therapy session, such as extreme face poses, could improve the

overall performance of the robot. Additionally, networks combining various

processes such as MTCNN could be further explored.

Improved social interactions with both patients and therapists play a

key role in the integration of this new technology as a therapeutic device

to support people affected by ASDs. Using the open-set approaches for

patient tracking that was proposed in chapter six is a preliminary step

toward this aim. The algorithm was designed for a basic ABA therapy

session. However, the algorithm could be improved to be used in more

complex therapy environments with multiple patients. Using algorithms

like Kalman Filter, the tracking system can have the robustness to identify

multiple patients while additionally improving the robot’s usability.

Below the primary contributions and future work are presented.

125



Eduardo Calle Ortiz CHAPTER 7

Design of the Robot-Enhanced ABA Therapy Framework

The Robot-Enhanced ABA Therapy Framework designed in this work is

a novel approach for developing socially assistive robots in the treatment

of ASDs. One core advantage of the framework is that it intertwines both

reactive and deliberate therapeutic behaviors. The framework makes an

abstraction of the physical body and the input/output interfaces are flexible

and useful for any robotic platform. In other words, this framework has

wide applications because it can be used with any type of robot and any

kind of interface.

Future work on the Robot-Enhance ABA Therapy Framework includes

fine-tuning of the proposed subsystems based on the feedback of experi-

mental results. A multidisciplinary approach is necessary to do this work.

Social interactions that make the robot effective must be studied, combin-

ing both technological and therapeutic approaches.

In this work, I proposed a multi-layer architecture software for sup-

porting the proposed framework. However, different architectures can be

designed and experimented with using the designed framework.
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Impact of Deep Learning Frameworks in the Implementation of Real-Time

and Multitasking Software Architecture

Experimental results in this work demonstrate the importance of selecting

the proper software for an AI embedded device. Despite the availability

and existence of several deep learning frameworks, not all of them present

similar characteristics. Experimental results in this research reflect new

ways to use the frameworks while in their parallel computing model.

One of the main disadvantages of having several deep learning frame-

works is a general lack of standards in order to deploy this technology. Sev-

eral limitations were discovered due to the incompatibility between frame-

works. This limitation increased the complexity of using deep learning

to support the designed software architecture. The Open Neural Network

Exchange Format (ONNX) is the first attempt of companies, dedicated

to deep learning, to tackle this issue, merging technology toward common

standards.

Future work in the evaluation and implementation of deep learning

frameworks in AI devices includes testing the ONNX standard over the em-

bedded system to increase the efficiency of the deep learning frameworks.

Additionally, upgrading the test with a new version of the frameworks is

necessary.
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Evaluating Performance of Pre-Trained Deep Learning Models for Low-Level

Feature Extraction

Experimental results demonstrate pre-trained deep learning models sur-

passed the traditional approaches. Despite using a model that was not

exclusively trained for application in a Robot-Enhanced ABA Therapy con-

text, they exhibited robustness toward extreme poses present in therapy.

An additional advantage of using deep learning models is that they aid in

the creation of fault tolerant systems.

One of the main disadvantages of using deep-learning models is their

sensitivity to training conditions. Therefore, a small deviation in the input

with respect to the data that was used for the training, resulted in a drastic

decrease in accuracy levels. This issue was observed, for instance, in the

face-encoder. The face-encoder was highly sensitive to the output of the

face landmarks detector.

Future work in this area includes training specific models to increase

the overall performance of the robot for implementation in ABA therapies.

Exploring combined approaches such as MTCNN, merging face detection

with landmark detection, should be explored further.

Improving the Usability of PABI in Robot-Enhanced ABA Treatments

A simple open-set approach algorithm showed to be powerful enough to

successfully identify and track the patient in an ABA therapy session. By
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using this algorithm, complexity was decreased when using the robot during

therapy, while concurrently increasing the robot’s usability.

Future work in this area of investigation suggests improving the algo-

rithm’s performance in more challenging environments such as uncontrolled

settings. Improvements to the algorithm should include avoidance of un-

necessary individuals in the scene, while using the most useful algorithms

for tracking both patient and therapist. Integration of the algorithm in the

mechanical body should also be completed.

Extrapolating the algorithm in more complex environments is the next

challenge. More intelligent algorithms, combining face-detectors with track-

ing systems, need to be developed in order to achieve greater efficiency.
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