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Abstract

Wireless communication systems utilize the wireless medium to perform over-the-air

(OTA) data transfer. There are many factors that can impact the quality of wireless

communications, such as medium imperfection, interfering environment, mismatch of

transceivers, etc. To mitigate these problems and improve the quality of service (QoS),

this research study is conducted on three important topics including synchronization tech-

niques, impairment estimation theory and techniques, and interference alignment tech-

niques.

In this thesis, it firstly present a dual link algorithm to align and manage the inter-

ference of multiple-input and multiple-output (MIMO) networks. A field-programmable

gate array (FPGA) prototype is designed for software defined radio (SDR) platforms. As

one of the key components, a hardware efficient architecture is proposed for the imple-

mentation of singular value decomposition (SVD). Secondly, it proposes a maximum-

likelihood (ML) based synchronization approach for carrier frequency synchronization

for MIMO systems. The algorithm is also implemented on FPGA for real-time perfor-

mance evaluation. Finally, as an exemplary study of machine learning techniques for

wireless communications, a neural network (NN) based estimator is proposed to perform

coarse frequency offset estimations for MIMO systems. The proposed NN based estima-

tor can accommodate various channel models and the results show promising performance

in terms of accuracy and estimation range.

In summary, this thesis provides a comprehensive study on interference alignment,

carrier synchronization, and impairment estimation using different approaches. Efficient

hardware implementations for the key algorithms are also presented.
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Chapter 1

Introduction

The demand of communications from a far location and the development of electrical

and electronic technology gave birth to the telecommunications in modern society where

telecommunication is defined by the International Telecommunication Union (ITU) as the

transmission, emission or reception of any signs, signals or messages by electromagnetic

systems [2]. Later in 1864, the postulation of Maxwell’s equations laid the foundations

of wireless systems which was patented first by Marconi in 1897. For the first many years

of wireless systems, the term “wireless” was treated equal as radio since the receiver

of a radio was called wireless because there were no wires between a radio station and a

listening radio device. In the same era, telephone patented by Bell and inventions of diode

and triode stimulated the development of long distance telephony. These inventions, along

with micro-electronic circuits, brought the possibility of reducing the size of receiving

devices, as well as the size of antennas for reception of wireless signals. In 1979, the

first commercial automated cellular network, launched in Japan, indicated that wireless

communications officially stepped into the times of personal use. Around two decades,

the original version IEEE 802.11 standard was released in 1997 and clarified in 1999,

started the blossom of local wireless networks and rapidly grew into a family of standards
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for local wireless networks.

1.1 Motivation

With the rapid development of wireless communication systems, newly invented and

deployed high-technologies, such as wider band and complicated modulation methods,

make wireless systems more and more complicated [3]. In the meantime, to accommo-

date a larger number of users and provide better user experience, the standards for wireless

communications become rigorous and harder to comply, which also requires the advance-

ment of technologies in physical layer. Therefore to deal with the issues above, some of

the important conditions that should be taken into consideration are listed as follows:

• Interference signal brought by other nearby users in the same network [4–6]. In

a broadcasting multiuser network, each user broadcasts the message. Therefore

if multiple users broadcast at the same time, the received signal could be ruined

that nobody receives the correct message. To solve this problem, it is important

to manage the interference so that each user can catch the correct message from

wireless media.

• Carrier frequency offset (CFO) introduced because of mismatch of oscillators, rel-

ative displacement of transceivers, or other reasons [7–9]. The carrier frequency

offset makes the transmitted signal drifting and consequently results in the failure

of message representation. To recover the CFO, we need to estimate it according

to the characteristics of received signal and then perform the compensation. CFO

estimation usually consists of two steps: coarse and fine estimations.

• Symbol timing offset (STO) introduced due to asynchronous sampling moments

[10, 11]. In a wireless communication system, the data is oversampled to resist

11



the inter symbol interference (ISI). However, the introduced timing offset holds the

chance to bring samples far away from the maximum amplitude points in the wave-

form. Hence, well designed STO estimation method could help the samples stay

close to expected constellation points and thus obtain lower bit error rate (BER).

• Impact of channel during over-the-air transmission [12–15]. Channel has many

different kinds of influences on the transmitted signal. The most commonly dis-

cussed channels are additive white Gaussian noise (AWGN), fast fading, slow/flat

fading, multipath and time-varying channels. If complex surrounding environment

and strong interference plus noise occurs, the impact of channels can be extremely

harmful to the signal. Therefore, a well modeled channel and corresponding chan-

nel estimation method are an important step in the receiver.

1.2 Contributions of The Thesis

Being motivated by the description above and to meet the challenges, we conduct research

studies in interference alignment, baseband synchronizations and wireless system SDR

implementations. The contributions of this thesis with these research studies in wireless

communications are:

• We present a dual link algorithm [16] and the design of an FPGA prototype target-

ing SDR platforms. Compared with execution of the algorithm on CPU as most of

the SDR implementations do, our FPGA based prototype requires less time on al-

gorithm convergence, resulting in a speedup factor 2 or higher. Meanwhile, the dual

link algorithm has the advantage that converges monotonically to a stationary point

with very high convergence speed. Detailed contribution of this research work is

reflected in [17]:
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1. Zhou, Mingda, Xinming Huang, Yuteng Zhou, Xing Li and Youjian Liu, “An

FPGA prototype of dual link algorithm for MIMO interference network”.

2017 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2017.

• In the FPGA prototype of dual link algorithm, Cholesky decomposition is applied

to perform signal covariance matrix and adjust the transmit power, but the com-

plexity of Cholesky decomposition grows exponentially. Therefore in addition, we

proposed a hardware-efficient architecture for singular value decomposition (SVD).

The proposed architecture accommodates arbitrary matrix order and the matrix or-

der becomes an input so that it can be changed according to users’ demand. In

the mean time, the hardware utilization of proposed SVD architecture is very low

and does not change along with the order of matrices. Detailed contribution of this

research work is reflected in [18]:

1. Zhou, Mingda, Youjian Liu, Tian Xia and Xinming Huang. “An efficient

and scalable hardware architecture for singular value decomposition towards

massive MIMO communications.” 2017 IEEE 60th International Midwest

Symposium on Circuits and Systems (MWSCAS). IEEE, 2017.

• We propose a maximum likelihood (ML) based frequency offset estimation algo-

rithm for multiple-input & multiple-output (MIMO) system, with an asymptotically

optimal closed form solution to the estimator, as well as an efficient hardware ar-

chitecture for our ML based CFO estimation algorithm. The proposed method has

close-to-bound performance and large acquisition range, where the corresponding

architecture is hardware efficient (can be easily fitted in a small FPGA), pipelined

(minimal processing latency) and reconfigurable (compatible with various frame

structures). Detailed contribution of this research work is reflected in [19]:
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1. Zhou, Mingda, Zhe Feng, Youjian Liu and Xinming Huang. “An efficient al-

gorithm and hardware architecture for maximum-likelihood based carrier fre-

quency offset estimation in MIMO systems”. IEEE Access 6 (2018): 50105-

50116.

• We study the signal distortion brought by CFO and propose a neural network which

consists of long short-term memory (LSTM) and dense layers, to perform coarse

CFO estimations for single carrier (SC) systems and integer frequency offset (IFO)

estimations for orthogonal frequency-division multiplexing (OFDM) systems. The

proposed neural network based estimator has the ability to accommodate a variety

of system models without changing the network architecture. It also has higher

accuracy on coarse/integer frequency offset estimations, under some certain condi-

tions, comparing to other estimation methods Detailed contribution of this research

work is reflected in [20]:

1. Zhou, Mingda, Xinming Huang, Zhe Feng and Youjian Liu, “Coarse Fre-

quency Offset Estimation in MIMO Systems Using Neural Networks: A So-

lution with Higher Compatibility”. IEEE Access 7 (2019): 121565 - 121573.

• We also propose a joint MAP frequency offset and channel estimation for MIMO

systems. The solution allows the time invariant channel to have arbitrary spatial

correlation and mean with a circularly symmetric complex Gaussian distribution.

The Bayesian Cramér-Rao Lower bound (BCRLB) is also derived in closed form

for the frequency offset estimation with prior knowledge. The BCRLB provides

insight on the pilot/training signal design, including the effect of time spreading,

and structures of periodic pilot and time division pilot. Detailed contribution of this

research work is reflected in:

1. Zhou, Mingda, Zhe Feng, Xinming Huang and Youjian Liu, “Maximum A Pos-
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teriori Probability (MAP) Joint Fine Frequency Offset and Channel Estima-

tion for MIMO Systems with Channels of Arbitrary Correlation”. 2019 IEEE

Global Communications Conference (GLOBECOM), 2019

Some other subdominant contributions of mine in this area are reflected by the list of

publications below [21–23]:

1. Cai, Xin, Mingda Zhou, and Xinming Huang, “Model-based design for software

defined radio on an FPGA.” IEEE Access 5 (2017): 8276-8283.

2. Cai, Xin, Mingda Zhou, Tian Xia, Wai Fong, Wing Lee and Xinming Huang, “Low-

Power SDR Design on an FPGA for Intersatellite Communications.” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems 99 (2018): 1-12.

3. Zhe Feng, Xing Li, Victor Palacios, Peter Mathys, Youjian Liu, Mingda Zhou, Xin-

ming Huang and Xin Cai, “Software Defined Radio Implementation of the Dual

Link Algorithm in TDD Mode using USRP E310.” Proceedings of the GNU Radio

Conference. Vol. 1. No. 1. 2016.

1.3 Outline of The Thesis

This thesis primarily focus on specific topics in the physical layer baseband communica-

tions of wireless communication systems, including interference alignment, synchroniza-

tion approaches and SDR implementations. The rest of this thesis is organized as follows:

in Chapter 2, we present an overview of wireless communication systems, including a

glance at different types of wireless systems and impairments that making the wireless

transmission imperfect. In Chapter 3, the development history of wireless communica-

tion systems, related literature and research studies are reviewed. The review of literature

and research studies in Chapter 3 mainly focuses on carrier frequency offset estimation

15



techniques, MIMO interference alignment techniques and the hardware implementations

of these techniques. Related works on other estimations and synchronizations of other

common impairments, as well as SDR techniques are also reviewed and discussed in

this chapter. Chapter 4 presents the methods we proposed during our research studies.

This chapter covers the methods and hardware architectures of carrier frequency offset

synchronizations, hardware architectures proposed for improvement of MIMO systems.

Following Chapter 4, we conduct simulations and experiments in Chapter 5 to verify the

performance of proposed methods and architectures. Comparisons with related methods

are also made in this chapter. Finally in Chapter 6, we conclude our work and present the

future directions of our research at the same time.
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Chapter 2

Overview of Wireless Communication

Systems and Impairments

In this chapter, we discuss the back ground of wireless communication systems. First,

wireless communication systems is categorized according to different disciplines such

as modulation scheme, number of antennas and so on. Then, we focus on modulation

schemes and take a more comprehensive look at specific system models. Finally, we

discuss the impairments that a robust wireless system should take care of to obtain correct

messages. In addition, analysis of advantages and disadvantages of these systems are also

posted in this chapter.

2.1 Overview of Wireless Communication Systems

Following the establishment of Maxwell’s equations, scientists and engineers realized the

huge potential of wireless media [24]. With the rapid development of technology, wireless

transmission in nowadays is one of the most commonly used technologies in a variety of

applications [25–29]. For instance, Wi-Fi [30] and cellular networks [31] are essential
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parts of our life, we can simply dial the number on our cellphones and call friends and

family members living far away, or connect the Wi-Fi at home to entertain ourselves.

These common activities are supported heavily by a variety of wireless communication

systems.

transmitter receiver

wireless media

Figure 2.1: General model of a wireless communication system

A wireless communication system contains at least one transmitter and one receiver

[32], the transmitter generates information bits and emit the signal out while at the re-

ceiver the messages are captured and represented, as shown in Figure 2.1. However, the

structures of transmitters and receivers may vary according to system models. The de-

tails of different types of systems regarding to modulation scheme will be demonstrated

explicitly in following two sections.

2.2 Single Carrier Systems

Traditionally, a certain bandwidth at a certain time is assigned to a single user, and the

user could make use of the allocated bandwidth for information exchange [21]. Therefore,

the information bits is modulated into symbols and entirely loaded to the single carrier.

The wireless communication systems in this kind is called single carrier (SC) system.
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Figure 2.2: Structure of general transmitter and receiver in a single carrier system

A general structure of single carrier system is illustrated in Figure 2.2. The trans-

mitter is responsible for data generation, baseband modulation and pulse shaping which

is against inter-symbol interference (ISI) effects [33], while the receiver is in charge of

recovering the signals from all kinds of impairments.

When a transmitted frame is received, the first thing is to adjust the received signal’s

amplitude using automatic gain control (AGC) [34], then a matched filter is applied to

detect the transmitted digital symbols [35]. Later, the symbols at hand is combined with

frequency offset, timing offset and channel influence, therefore frequency synchronization

(coarse and fine), timing synchronization units are employed to eliminate the offsets.

Frame synchronization (or frame detection) is performed so that the receiver could find

the pilot sequence in a frame to estimate the channel. Finally, recovered symbols pass the

demodulator and are represented to users.
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2.3 OFDM Systems

With the rapid development of wireless communication technology and increase of cus-

tomers of wireless communication products, the bandwidth usage regulated by federal

communication commission (FCC) is limited comparing to the huge demand. Also, the

complex metropolitan environment causes severe multipath effect. Therefore, orthogo-

nal frequency division multiplexing (OFDM) technology has grown as one of the key

modulation schemes in modern wireless communications [36].

In general, an OFDM system occupies the bandwidth using a number of subcarriers

each with a small portion of the entire allocated spectrum [37]. To mange the subcarrier

in a easier way, the information symbols are loaded to subcarriers in frequency domain

instead of directly manipulated in time domain.
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Figure 2.3: Structure of general transmitter and receiver in an OFDM system

Figure 2.3 demonstrates the structure of a general OFDM system. From this figure we

see that the concept of OFDM system is making the use of separated subcarrier so that

interference and crosstalk are reduced.
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2.4 Common Impairments in Wireless Communication

Systems

Under most conditions, transmission over wireless medium is not simple as it sounds like

[38]. Since transmitter and receiver are separate devices, the oscillators, clocks and other

components could work asynchronous at transmitter an receiver, which leads to frequency

and timing offset. On the other hand, the wireless media are not ideal, either. There exists

interference from other users whose spectrum may overlap with yours, background noise,

and fading or multipath channels. These factors also result in degradation of wireless

communication systems’ performance.

2.4.1 Carrier frequency offset

Carrier frequency offset (CFO) often occurs because of the frequency mismatch between

oscillators in transmitter and receiver, or the Doppler shift caused by relative displacement

of transmitter and receiver. If left unattended, the carrier frequency offset will lead to

drifting of the signal and finally ruin the received signal. The symbols points affected by

CFO is shown in Figure 2.4. As can be seen in the figure (left), the symbols with additive

noise are still gathered around constellation points, while the CFO causes rotation and

therefore it is hard to demodulate.

2.4.2 Symbol timing offset

Symbol timing offset (STO) often occurs due to the mismatch of sampling moments.

In a wireless communication systems, pulse shaping is usually performed to avoid inter

symbol interference (ISI), and therefore requires upsampling and downsampling. Un-

fortunately, if upsampling and downsampling moments don’t match up, the recovered
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Figure 2.4: Effects of CFO on noised symbols

symbols may stay far away from correct sample points and therefore the amplitudes of

samples are scattered everywhere, as shown in Figure 2.5.
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Figure 2.5: Effects of STO on noised symbols

2.4.3 Channel impacts

Channel usually refers to the wireless transmission medium in wireless communications

systems, and has important influences to received signal. Since channel is complex, it may

affect the magnitude and phase during the transmission. If the environment is complicated
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where multipath channel appears, your transmitted signal may suffer reflections and you

even may have multiple received signals overlaying with each other.

2.4.4 Interference and noise

Interference and noise are disturbance from different sources. Interference is the signal

from other transmitters occupying the same bandwidth, thus it is hard to simply split the

interference out by implementing filters. On the other hand, noise is usually from physical

surrounding objects, passively or actively. Slightly different from interference, signals

can be relieved from noise by applying filters so that the noise outside signal bandwidth

could be removed. Technically, by applying interference aligning method, some specific

interference can be aligned while some other interference cannot. In addition, unless

background noise is dominating, it can be left in the system as long as it does not result

in severe degradation in general cases.
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Chapter 3

Background and Related Works

3.1 History of Wireless Communication Systems

The history of “wireless world” started with understanding of electromagnetic phenomena

around us. In 1865, Maxwell predicted the existence of electromagnetic waves by deriv-

ing the electromagnetic wave equation in his paper “A Dynamical Theory of the Electro-

magnetic Field”. Since then, the history of wireless communications started, and finally

human stepped into the era of wireless communications. In the first several decades, how-

ever, the development of wireless communication systems didn’t ramp to its highway until

Marconi demonstrated wireless telegraph in 1896. In the next decade, Marconi continued

his experiments on wireless radio signal transmission, and started commercializing his

wireless telegraphy equipment.

With the first radio transmission of voice in 1914, the development of wireless com-

munications pushed the content of wireless transmission to a more instant form. 13 years

later in 1927, the first long-distance TV transmission was conducted by AT&T Bell Labs,

opening the gate to modern life with TV shows. Since then, the market of commercial

service of wireless communications grew exponentially: The first TV station settled in
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New York in 1928, first FM radio patented in 1935. Growth of the market stimulated

the development of wireless communication services. In 1946, public switched telephone

network (PSTN) operated its first interconnection of mobile users and soon in 1946, Fed-

eral Communications Commission recognized mobile radio as a new class of wireless

service. The number of mobile users of PSTN in the next 20 years increased dramatically

from less than 50,000 to more than 1,400,000. With the explosion of mobile user popula-

tion, improved mobile telephone service (IMTS) was merged to PSTN in 1964 to support

functions such as full-duplex and auto dial services.

Later on, the wireless communications technologies are being overwhelmingly devel-

oped and deployed [31, 39, 40]. First cellular communication system was deployed in

Tokyo in 1979, initiated the new age of personal cellular communications. In the fol-

lowing 40 years, cellular communications has rapidly evolved from the first generation

(1G) to the fifth generation (5G). During the evolution from 1G to 2G, the radio signal

evolved from analog to digital, and short message service (SMS) was introduced. Then

with the development of code-division multiple access (CDMA) technology, 2G evolved

to 3G and the 3G network higher and higher data rate. In addition to 3G, 4G technol-

ogy provides broadband internet access and the orthogonal frequency-division multiple

access brought 4G users much higher data rate. 40 years after the birth of 1G, we are now

standing at the edge of 5G, which is promising to bring users 1Gbit/s data rate and way

lower communication latency.

Along with the development of cellular communication, wireless local area network

(WLAN) also gained its popularity in the past 30 years [41, 42]. The first wireless prod-

uct fitting the IEEE 802.11 standards, WaveLAN, was invented in 1991. In the following

years, IEEE 802.11 family grew up quickly with evolving standards. The modulations

used in the standards also brought higher data rate by making use of OFDM and MIMO

technologies. Nowadays, people can enjoy the perks brought by most recent Wi-Fi tech-
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nology at home, such as ultra high definition (UHD) video, wireless video casting and so

on.

3.2 Literature Review

In this section, the literature review covers a variety of topics, but mainly focuses on car-

rier frequency offset estimation techniques, MIMO interference alignment techniques and

the hardware implementations of these techniques. Related works on other synchroniza-

tion techniques, as well as SDR techniques are also briefly reviewed and discussed in this

section.

3.2.1 High-level wireless communication system design and synchro-

nization

As discussed in last section, wireless communications has been under development and

investigation for many decades. Every generation of engineers and researchers have their

understanding of wireless communications and these precious knowledge is recorded to

benefit the next generation. For the many years of wireless communication systems de-

velopment, [1, 43–45] are widely used textbooks for wireless receiver design on base-

band. Besides, [46] is a well know book that covers more comprehensive topics of the

entire procedure of wireless communications. These books draw the general picture of

how wireless communication systems work, what kinds of imperfections exist in practical

wireless communication systems and how we should recover the wireless systems from

the imperfections. Researchers have devoted their efforts on developing and improving

techniques to fix the imperfections.
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3.2.2 Carrier frequency synchronization

CFO is one of the most common impairments in wireless communication systems, which

often occurs due to the oscillator frequency mismatch or Doppler shift [47]. Once CFO

occurs, the received signal is shifted by a certain amount in frequency domain and is dis-

torted in time domain, preventing users from obtaining correct messages. Therefore, CFO

estimation is usually the first step at receiver side. CFO estimation usually consists of two

steps: coarse estimation and fine estimation [48]. The coarse CFO estimation roughly

estimate the carrier frequency offset so that the residual after coarse CFO compensation

has minimal negative influence on next synchronization module. On the other hand, fine

CFO estimation is expected perform very high-accuracy estimation of the residual CFO

so that the the received signal can be perfectly recovered to avoid message errors.

Nasraoui et al [49] proposed a pilot aided correlation method, taking the sliding cor-

relation of structured preamble to estimate the frequency offset in a closed form solution.

The method had low complexity, however its estimation accuracy was not the best among

all competitive algorithms. Pilot aided correlation method provides a tradeoff between

performance and complexity. A correlation-based estimation method was proposed for

MIMO systems in [50]. It took the advantages of orthogonal pilots to eliminate the in-

terference among antennas and calculate the frequency offsets between each pair of an-

tennas. Due to this fact, the complexity of this algorithm was relatively high. The other

disadvantage of this algorithm was that the mean squared error (MSE) of frequency es-

timation diverged from given Cramer-Rao bound when the signal-to-noise ratio (SNR)

became higher, showing that the algorithm was not optimal.

In [51], a maximum-likelihood based estimator (MLE) for frequency offset was pro-

posed for single-input single-output (SISO) system, followed by different solutions to the

MLE. Among these solutions, the linear approximation utilizes only small part of the re-

ceived signal to avoid phase unwrapping, which leads to a degradation of its performance.
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Newton search and local grid search were also applied in [51] to refine the estimates of

linear approximation method, while the Newton search frequently fails because of local

maximums and the accuracy of uniform search depends heavily on resolution and search

range. Recently, an high resolution CFO estimation algorithm was proposed in [52].

This algorithm uses Golay sequence as pilot signal and provides closed form solution to

CFO estimation. Another advantage of this algorithm is that the MSE of estimated CFO

keeps dropping along with the SNR increase while that of the method in [51] almost stops

decreasing at high SNR. Unfortunately, in spite of its competitive performance, this al-

gorithm is designed with the assumption that the communication system is SISO. On the

other hand, by avoiding phase wrapping and unwrapping, this algorithm has limited CFO

acquisition range.

Besides the CFO estimation algorithms for non-OFDM systems, CFO estimation

methods are also proposed for OFDM systems. In [53], a maximum likelihood (ML)

based CFO estimation method using null subcarrier insertion scheme was proposed. The

advantage of this method is that the inserted null subcarriers extend the frequency acqui-

sition range so that the proposed method can estimate both integer and fractional CFO of

an OFDM system. However, the expanded acquisition range is achieved at the expense of

spectral efficiency, resulted by the inserted subcarriers.

In last decade, the combination of OFDM and MIMO system brought us a dramatic

increase of wireless data transmission rate, and CFO estimation techniques were also in-

vestigated in a number of research studies. In [54], an CFO estimator for MIMO OFDM

system based minimum the channel residual energy (CRE) is proposed while the corre-

sponding solution to finding the minimum CRE is not given. Grid search of the maximum

was employed in [55]. Iterative search via alternating projection frequency estimator

(APFE) and approximate alternating projection frequency estimator (AAPFE) were em-

ployed in [56]. The grid search approach in [55] showed a clear gap between MSE of
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frequency estimation and corresponding CRLB while the approaches in [56] got closer

to corresponding CRLB. All these searching methods showed divergence from CRLB

at high or low SNR. Besides, in [57], authors proposed a closed form data-aided least

square (LS) estimator to estimate the phase change due to the frequency mismatch in

MIMO system. This closed form estimator, however, still diverged from corresponding

CRLB at high SNR. In [58–61], a group of researchers investigated the CFO estimation

problem in massive MIMO multiuser OFDM systems where multipath channel models

are considered. In [58], a computationally efficient blind CFO estimator was presented

for MIMO OFDM system where the minimization of cost function is computationally

efficient. The proposed method in [59] utilized scattered pilot subcarriers to separately

estimate CFO for each user so that multidimensional search can be avoided. Another

CFO estimator for multi-user MIMO OFDM systems was proposed in [60], taking a joint

spatial-frequency alignment procedure so that the CFO can be estimated for users sep-

arately. Later in [61], an angle-domain adaptive filtering based CFO synchronization

method was proposed. This method performs a two-stage multiuser interference (MUI)

suppression so that the CFO of users with separate or overlapped angle-of-arrival regions

can be estimated individually.

3.2.3 Interference alignment

The available radio spectrum under current FCC standards is becoming more and more

limited, an important method of increasing network capacity has been increasing spatial

reuse by reducing the cell size and letting cells reuse the same spectrum. However, in-

creasing the density of access points or base stations cannot truly resolve the capacity

crunch without proper interference management, meaning the transmit signals should be

designed to strike an optimal balance between maximizing a link’s own rate and reducing

interference to other links [62, 63]. A simple example of MIMO interference networks is
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Figure 3.1: A simple example of interference networks

shown in Figure 3.1, where data links mutually interfere with each other.

For MIMO interference networks, two important algorithms had been proposed to

maximize the weighted sum rate of the wireless network. They are the weighted minimum

mean square error (WMMSE) algorithm [64] and polite water-filling (PWF) algorithm

[65, 66]. However, both the WMMSE and PWF algorithms have drawbacks. The PWF

algorithm has a fast speed of convergence while it is not guaranteed to be monotone.

The WMMSE algorithm converges to a stationary point while it converges slower. A

dual link algorithm for MIMO interference networks was proposed in [16], in order to

manage the interference and maximize the weighted sum rate of interference networks.

The dual link algorithm is scalable and has the advantages of both WMMSE and PWF

algorithms, i.e., fast monotone convergence. It jointly optimizes the covariance matrices,

or equivalently, the beamforming matrices, of transmit signals of multiple transmitters,

assuming Gaussian transmit signal and the availability of all channel state information.

The dual link algorithm is ideally suited for distributed implementation that only requires

local channel information in a time division duplex (TDD) system.

To maximize the data rate of MIMO interference networks, decomposition of matri-

ces are commonly employed. The singular value decomposition (SVD) is a key technique
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in many signal processing algorithms that perform factorization of real and complex ma-

trices. It is employed in a number of applications in wireless communications such as

channel estimation, interference alignment and so on. With the rapid development of

MIMO technology, SVD is more and more widely engaged with modern communication

systems. Because of its importance, a number of researches of SVD algorithm and its

hardware implementation for MIMO systems are conducted in recent years. In [67] the

authors proposed an adaptive SVD algorithm with low complexity that can track the chan-

nel response matrix. This algorithm, however, causes accuracy degradation in hardware

implementation because of a sequence of division operations. And the authors of [68]

presented a steering matrix computation architecture performs SVD operation yet its con-

vergence speed may missed the convergence requirement. To avoid these drawbacks,

in [69], the authors proposed a super-linear SVD algorithm that can be implemented on

hardware with enough accuracy for MIMO size up to 4-by-4.

More recently, massive MIMO makes a clean break with traditional MIMO through

the implementation of a very large number of service antennas that are operated fully co-

herently and adaptively. Extra antennas help by focusing the transmission and reception

of signal energy into smaller regions of space. This brings huge improvements in network

throughput and energy efficiency, especially when combined with simultaneous schedul-

ing of a large number of user terminals [70]. A massive MIMO system, though differs

from traditional MIMO systems, still requires SVD operations as long as the system con-

tains precoding schemes or any other matrix factorization. Therefore, the SVD with large

complex matrices becomes an important part of massive MIMO.

3.2.4 Hardware implementation of algorithms and applications

As discussed above, the algorithms and applications proposed by researchers sometimes

are only verified in simulations. To realize these algorithms and applications, directly fab-
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ricate them on matured commercial wireless communication systems could be way too

costly. Under this condition, SDR might be a better choice. SDR was initially regarded as

a promising solution to the tremendously increased demand of customized radio system

and has become a popular platform for realizing and prototyping wireless communication

systems with special functionalities. The SDR systems, in most cases, implement only ba-

sic digital signal processing operations on FPGA while the algorithms are usually running

on CPUs [71] [72]. But for high performance SDR system, field programmable gate array

(FPGA) is often employed as a key component where customized hardware logic can be

implemented. Therefore, the discussed algorithms and applications can be implemented

on the hardware of SDR platforms. When compared with a general purpose processor,

FPGA has the advantages of higher computing performance at lower power consump-

tion for an application-specific task. Utilizing its rich resources of computational units,

an FPGAs can accelerate the implementation of complex algorithms even with strict real-

time requirement [73], such that the customized algorithms can be all implemented on the

FPGA. In [21], a modular designed wireless communication system was implemented on

an FPGA-based SDR platform.

Some other hardware implementations of wireless communication systems were pro-

posed in [74–77], but these implementations focused more on decoding where frequency

synchronization was not considered. As mentioned in Section 3.2.2, without accurate fre-

quency synchronization, communications may suffer higher bit error rate (BER) because

of the mismatch between oscillators, or the transmission could even be ruined. Some

other recent works [78–81] proposed architectures and implementations of CFO synchro-

nizations for orthogonal frequency division duplex (OFDM) based or non-OFDM based

SISO systems.

32



Chapter 4

Methodology

In this chapter, our approaches for CFO estimation and MIMO interference alignment

are presented in detail. In Section 4.1, we propose an hardware architecture of dual

link rate maximization algorithm. However the decomposition employed in Section 4.1

is Cholesky decomposition, the hardware consumption of which increases dramatically

along with the number of antennas. Therefore in Section 4.2, we propose a hardware-

efficient SVD implementation which has almost invariant resource consumption for any

number of antenna. On the other hand, transceivers in a wireless communication sys-

tem can not communicate if there exists carrier frequency offset. Thus, in Section 4.4, a

asymptotically optimal CFO estimation algorithm as well as hardware efficient architec-

ture is demonstrated. Later in Section 4.5, we dive into the area of coarse CFO estimation

and propose a neural network architecture for coarse CFO estimation.
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4.1 Hardware Implementation of Dual Link Algorithm

4.1.1 Algorithm Description

4.1.1.1 The Dual Link Algorithm

We consider a general interference network withL interfering data links. Link l’s physical

transmitter is Tl, which has LTl many antennas. Its physical receiver is Rl, which has LRl

many antennas. The received signal at Rl is

yl =
L∑
k=1

Hl,kxk + nl, (4.1)

where xk ∈ CLTk×1 is the transmit signal of link k and is modeled as a circularly sym-

metric complex Gaussian vector; Hl,k ∈ CLRl×LTk is the channel state information (CSI)

matrix between Tk and Rl; and nl ∈ CLRl×1 is a circularly symmetric complex Gaussian

noise vector with identity covariance matrix.

The optimization problem to be solved is the weighted sum-rate maximization under

a total power constraint:

WSRM TP: maxΣ1:L

L∑
l=1

wlIl (Σ1:L) (4.2)

s.t. Σl � 0, ∀l,
L∑
l=1

Tr (Σl) ≤ PT,

where wl > 0 is the weight for link l, and we can set wl = 1 such that each link are

equally weighted. Assuming the channels are known at both the transmitters and receivers

(CSITR), an achievable rate of link l is

Il (Σ1:L) = log
∣∣∣I + Hl,lΣlH

†
l,lΩ

−1
l

∣∣∣ (4.3)
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where Σl is the covariance matrix of xl; and Ωl is the interference-plus-noise covariance

matrix of the lth link,

Ωl = I +
L∑

k=1,k 6=l

Hl,kΣkH
†
l,k. (4.4)

The Dual Link algorithm for this optimization problem is given in Algorithm 1. It

is an iterative algorithm with fast and monotone convergence [16]. Since the problem is

non-convex, the algorithm converges to a local optimal point. Name the original channel

forward link channel. The terms Σ̂l and Ω̂l in the algorithm are corresponding terms in

a reverse link channel, where the roles of the transmitters and receivers are exchanged

and the channel Hl,k is replaced by H†l,k. The reverse links can be virtual links for the

description of the algorithm. But in a TDD system, the reverse links exist physically,

leading to a distributed implementation of the algorithm.

Algorithm 1: The Dual Link Algorithm

1. Initialize Σl’s, s.t.
∑L

l=1 Tr (Σl) = PT

2. R⇐
∑L

l=1wlIl (Σ1:L)
3. Repeat
4. R′ ⇐ R
5. Ωl ⇐ I +

∑
k 6=l Hl,kΣkH

†
l,k

6. Σ̂l ⇐
PTwl

(
Ω−1
l −(Ωl+Hl,lΣlH

†
l,l)
−1
)

∑L
k=1 wktr

(
Ω−1
k −(Ωk+Hk,kΣkH

†
k,k)

−1
)

7. Ω̂l ⇐ I +
∑

k 6=l H
†
k,lΣ̂kHk,l

8. Σl ⇐
PTwl

(
Ω̂−1
l −(Ω̂l+H†l,lΣ̂lHl,l)

−1
)

∑L
k=1 wktr

(
Ω̂−1
k −(Ω̂k+H†k,kΣ̂kHk,k)

−1
)

9. R⇐
∑L

l=1wlIl (Σ1:L)
10. until

∣∣R−R′∣∣ ≤ ε or a fixed number of iterations are reached.

4.1.1.2 Distributed Algorithm and Local Channel Information Estimation

In a TDD system, the dual link algorithm can be readily implemented in a distributed and

low complexity fashion. We take advantage of the physical reverse link for the distributed

algorithm. For example, in Step 6 of Algorithm 1, to update the reverse link l’s transmit
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signal covariance Σ̂l, we only need to estimate local interference plus noise covariance

Ωl and local total received signal covariance Ωl + Hl,lΣlH
†
l,l from the forward link re-

ceived signal. This can be done with low complexity because the channel has summed the

interference for us for free. There is no need to estimate Hk,l for all k and l. The reverse

link calculation in Step 8 can be done similarly using the physical reverse link received

signal.

The distributed algorithm and local channel information estimation for Step 6 is as

follows. Assume forward link l uses precoding matrix Vl to transmit orthogonal pilot

signal Pl ∈ CLTl×n with n channel uses, where VlV
†
l = Σl and PlP

†
l = nILTl×LTl . For

example, Hadamard matrices may be used for the pilots. In practice, pilots of different

users can be near orthogonal. The received signal of forward link l is

Yl =
L∑
k=1

Hl,kVkPk + Nl ∈ CLRl×n.

The least square based estimation of link l’s own signal covariance is

Hl,lΣlH
†
l,l

.
= Al =

(
YlP

†
l

n

)(
YlP

†
l

n

)†
. (4.5)

The estimated total received signal covariance of link l is

Ωl + Hl,lΣlH
†
l,l

.
= Bl =

YlY
†
l

n
. (4.6)

Then, instead of using Step 5, which requires global channel knowledge, the interference

plus noise covariance Ωl can be estimated as

Ωl
.
= Bl −Al. (4.7)
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Using (4.6) and (4.7), Step 6 can be calculated. Note that the normalization in Step 6 is to

satisfy the total power constraint and can be implemented by adjusting in small steps and

sharing one scalar constant

µ =
1

PT

L∑
l=1

wltr
(

Ω−1l −
(
Ωl + Hl,lΣlH

†
l,l

)−1)
, (4.8)

similar to power control in CDMA networks. Step 8 of Algorithm 1 can be similarly

calculated using reverse link pilot and received signals. Once the covariance matrices

Σl and Σ̂l are calculated, the precoding or beamforming matrices Vl and V̂l can be

calculated using Cholesky decomposition using FPGA [82].

As seen from the above, the distributed algorithm is scalable and only needs local

information, except for the sharing of the normalization constant µ.

4.1.1.3 Algorithm Simulation
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Figure 4.1: Simulation results of rate maximization algorithm

After applying our rate maximization algorithm with a cluster of 10 users each with

2-by-2 MIMO and the pilot length is set to be 4000, the relationship between sum rate of
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Figure 4.2: Overall system diagram of FPGA prototype

the network and the number of iterations is illustrated in Figure 4.1. It can be observed

that the dual link sum rate maximization algorithm converges to its final result fast yet

smoothly. Meanwhile, the sum rate of the network goes very close to its final value after

around 10 iterations.

4.1.2 System Prototyping Using FPGA

A typical MIMO system usually consists of two parts: receiver and transmitter [83].

Receiver is responsible for receiving signals from antennas and transmitter is responsible

for sending out designated signals through multiple antennas. Resembling basic radio

structures, in our prototype design, we introduce an additional computational module

called covariance matrix calculator that computes Ω and Σ in every iteration. If we

allocate multiple users in a mutually detectable environment and assign them initialized

signal covariance matrices, these users will send constructed pilot signals to each other,

train signal covariance matrices on each link, and finally force those matrices converge to

their optimal values. The top-level system diagram of an individual user is illustrated in

Figure 4.3. Note that YI , YQ, XI and XQ represent the real and imaginary part of received

signal and transmitted signal, respectively.
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4.1.2.1 Receiver Module Design

Figure 4.3 is the diagram of receiver module of a single user which receives the signals

from the wireless channel and prepares necessary matrices for computation of signal co-

variance matrix. As the pilot Y is received, multiply accumulator computes the signal

covariance and accumulator outputs are then dividThe order of sections in this chapter is

the same as in Chapter 4.ed by the length to produce the intermediate matrices B and A

as in (5) and (6). Owing to the independent Gaussian noise and mutual orthogonality of

pilots, it is not necessary to find the summation of interference and noise by adding them

up. We can simply exploit received signal and foregone pilots to compute intermediate

matrices and process them later in the covariance matrix calculator. Part (a) of Figure 4.3

depicts the receiver module of fixed point structure and part (b) depicts that of floating

point structure. The difference between two structures is that two “constant & matrix

multiplier” units in floating point structure are employed working parallelly while a mux

controller is used in fixed point structure to make it work serially. Detailed comparison

between the parallel structure and serial structure is discussed at the end of Section 4.1.2.

4.1.2.2 Covariance Calculator Module Design

Figure 4.4 illustrates the hardware processing steps leading to signal covariance matrix

Σ. After computation of A and B, we subtract A from B to find the interference-plus-

noise matrix Ω as in (7). Applying matrix inversion and another subtraction, the signal

covariance matrix Σ can be obtained. In terms of the matrix inversion, adjoint matrix

method [84] is employed in our design, which requires to calculate the reciprocal of the

determinant of a complex matrix. Since the determinant of a complex matrix is a complex

number under most conditions, we need to compute the reciprocal of a complex number

during matrix inversion module. We write our own complex reciprocal submodule for

fixed point structure owing to the fact that there is no complex reciprocal Xilinx IP core

39



provided for fixed point calculation. Assume we have a complex number aI + aQj, and

its reciprocal is bI + bQj, where bI = aI
a2I+a

2
Q

and bQ =
−aQ
a2I+a

2
Q

.

4.1.2.3 Transmitter Module Design

The transmitter module shown in Figure 4.5 is simply a serial structure. With intermediate

input Σ and the power adjustment coefficient µ (as in (7) and (13)) which is given by a

central controller in the network, it is easily to obtain adjusted signal covariance matrix

Σ̂. From the derivation in Section 4.1.1, it is obvious that both Σ and Σ̂ are positive semi-

definite matrix. Although strictly speaking Cholesky decomposition is only applicable to

positive definite matrix, we can still apply Cholesky decomposition to Σ and obtain the

decomposed lower triangular matrix V [85]. We then transmit the product of V and pilot

Pl.

4.1.3 Comparison between parallel and serial structure

Many units in the fixed point structure perform computations serially while the units in

the floating point structure work in parallel. Every of these units performs more than one

complex multiplication operations. The parallel structure of the floating point is shown in

Figure 4.6. Each unit with parallel structure instantiates multiple complex multipliers that

operate in parallel, and each complex multiplier requires 4 multipliers computing real and

imaginary parts. On the contrary in Figure 4.7, floating point units only instantiate one

complex multiplier which consists of only a single multiplier, but this multiplier is reused

frequently in the operation.

Therefore, the emphasis of parallel structure and serial structure differs — parallel

structure clings to timing performance while serial structure sticks to resource utilization

efficiency. For instance, computational latency of a floating point multiplier is 8 cycles

while that of a fixed point multiplier is 1 cycle. However, each 2×2 complex matrix mul-
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tiplication requires 8 complex multiplications and each complex multiplication requires

4 multiplication operations. Consequently, a fixed point serial structure takes at least 32

cycles to complete a complex matrix multiplication, while a parallel structured floating

point complex matrix multiplier takes only 8 cycles to complete the same operation since

it has 32 multipliers working simultaneously.

4.2 Hardware-Efficient Scalable Singular Value Decom-

position

Suppose we have a MIMO system with N transmitter antennas and N receiver antennas

equipped, and the channel between transmitter and receiver antennas is H ∈ CN×N . If

we perform a channel matrix decomposition using SVD technique [13], we have

H = UΣV† ⇔ Σ = U†HV (4.9)

where U ∈ CN×N and V ∈ CN×N are unitary matrices . Σ ∈ CN×N is the singular

value matrix with non-negative real entries on diagonal.

4.2.1 The Jacobi SVD Method

Luk proved that by taking orthogonal two-sided Jacobi rotations to the channel matrix H

on both sides iteratively, the Jacobi method helps generate the matrix Σ [86]. Suppose

we are in the kth sweep with Hk, then by taking the kth left-side and right-side Jacobi

rotation we have

Hk+1 = JL†k HkJ
R
k (4.10)

which finally results in:
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Σ = Hn; U =
n−1∏
k=0

JLi ; V =
n−1∏
k=0

JRi (4.11)

The Jacobi rotation matrices JL and JR are generally in the form

Jij =



Jpp = cosφ;

Jpq = sinφ; p < q

Jqp = −sinφ; p < q

Jqq = cosφ;

δij; elsewhere

(4.12)

The rotation angle φ is selected to diagonalize the 2 × 2 submatrix formed by the

elements in channel matrix H at indices (p, p), (p, q), (q, p), (q, q):

 cosφL sinφL

−sinφL cosφL


† Hpp Hpq

Hqp Hqq


 cosφR sinφR

−sinφR cosφR

 =

H ′pp 0

0 H ′qq

 (4.13)

where φL and φR are the left and right rotation angles obtained by:

φL + φR = tan−1
Hqp +Hpq

Hqq −Hpp
φL − φR = tan−1

Hqp −Hpq

Hqq +Hpp
(4.14)

4.2.2 Complex SVD With Real Processing Elements

As discussed in subsection 4.2.1, a 2 × 2 SVD operation is performed in each iteration,

which diagonalize a specific submatrix in H. This 2×2 SVD unit is defined as a process-

ing element (PE). In MIMO communication, the signals and channels are all in complex

form, which leads to the fact that the SVD computations are expected to be compatible
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with complex numbers. A SVD design with complex PEs, however, is obviously more

complicated than that with real PEs. To reduce the hardware resource consumption, a

complex SVD design with real PEs becomes an urgent need.

Consider a complex matrix H = HI + jHQ, where HI is the real part and HQ is

the imaginary part of H, respectively. Suppose we have SVD decomposition of H that

H = UΣV†, the singular value matrix Σ must be a real matrix. Then we have

H = UΣV† = (UI + jUQ)Σ(VI + jVQ)†

= (UIΣVT
I + UQΣVT

Q) + j(UQΣVT
I −UIΣVT

Q)

(4.15)

Taking (4.15) into an extended real matrix He =

HI −HQ

HQ HI

 with both real and

imaginary parts of H, we have

He =

UI −UQ

UQ UI


Σ

Σ


 VI VQ

−VQ VI


T

(4.16)

Therefore, the SVD design with real PEs can also perform complex SVD calculation

with help of the extended real matrix in (4.16). Note that if the singular value in Σ is

large-to-small ordered, column permutation is necessary so that UI , UQ, VI and VQ can

be ordered correctly.

4.3 Design and Implementation

This section provides an overview of structure of the hardware-efficient complex SVD

implementation. To avoid heavy resource utilization, the system is designed in serial
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structure and PEs are reused for computational operations. Meanwhile, only two lay-

ers are constructed in order to simplify the whole structure. The top layer monitors and

controls the system with a finite state machine (FSM) and updates the matrices in every

iteration. The bottom layer is simply a 2 × 2 SVD module that only processes real ma-

trices. Figure 4.8 shows the generic structure of the our design. The coordinate rotation

digital computer (CORDIC) based 2× 2 SVD module within the red bounding box is the

bottom layer and the rest in the green bounding box is on the top layer.

4.3.1 Top Level Design

The top level has two different functions: controlling and updating. The controller is a

FSM that monitors the current indices and decide what to do next. The updating module

is responsible for taking rotations to the matrices so that H , U and V can be updated

properly.

4.3.1.1 Controlling

The system is running under the control of a FSM. In each iteration, the FSM tracks the

row and column indices of the extracted entries from extended channel matrix He. For

instance, Hpp, Hpq, Hqp and Hqq are extracted when the tracked indices are p and q. With

these tracked indices, the FSM helps determine where to start, what to do in the next

iteration and when to stop. The diagram of FSM is shown on the left hand side in Figure

4.9 and the sequence flow of tracked indices is shown on the right hand side.

4.3.1.2 Updating

After the 2 × 2 SVD calculation, matrices are expected to be updated. Instead of doing

matrix multiplications which require fixed matrix size as well as a larger amount of re-

sources, only pth and qth rows and columns are involved in matrix update. Figure 4.10
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shows the flow chart of update process of singular value matrix which finally leads to

Σ after the convergence requirement is met. Note that off(H) =
∑

p 6=qHpq is the off-

diagonal norm of the matrix, and ε is the threshold for convergence. The update processes

of left-side and right-side Jacobi rotation matrices only hold the process inside left and

right bounding box in Figure 4.10, respectively.

4.3.2 Bottom Level Design

The bottom level is a 2 × 2 SVD module for real elements. The trigonometric functions

operated in (4.13) and (4.14) are accomplished using CORDIC provided by the design

tool (Vivado Design Suite from Xilinx Inc.). Diagram of the bottom level is shown in

Figure 4.11. In each iteration, the FSM controller select proper elements to form a 2× 2

submatrix A and send it to the bottom level. After the rotation matrices (RL and RR) are

calculate, the input matrix A can be diagonalized by S = RLARR.

4.4 Maximum likelihood based CFO estimation and its

hardware efficient architecture

In this section, we propose an asymptotically optimal algorithm that can accurately es-

timate the carrier frequency offset as well as an efficient hardware implementation for

proposed algorithm. More practically, since the proposed algorithm assumes one sample

per symbol where timing synchronization is a prerequisite, we consider the case that the

timing synchronization is completed so that our algorithm can be directly applied without

further treatment. The advantages of the proposed approach are as follows:

1. We propose a maximum likelihood based frequency offset estimation algorithm for

MIMO system, with an asymptotically optimal closed form solution to the estima-
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tor, giving the result that the MSE of proposed method approaches corresponding

lower bound as SNR increases. The proposed method has large acquisition range

up to 25% of bandwidth.

2. We present an efficient hardware architecture for our ML based CFO estimation

algorithm. By avoiding matrix inversion and searching for maximum which are

common in the existing solutions to CFO estimation, hardware implementation of

our algorithm is efficient and therefore can be easily fitted in a small FPGA.

3. The proposed hardware architecture is pipelined so that the processing delay is

minimal. Meanwhile, the architecture is reconfigurable to different pilot lengths,

which makes it possible to accommodate various frame structures.

4.4.1 System Model

The notations that are used in Section 4.4 for system model description and algorithm

derivation are summarized in Table 4.1. Besides, The operators in this section are as

follows: [~ax]x denotes a tall vector whose x-th row of vector is ~ax, [A]x1,x2 denotes a

block matrix whose block at x1-th row and x2-th column is A, <[·] and =[·] stand for real

and imaginary part, E[·], (·)† and Tr(·) denote expectation, conjugate transpose and trace,

respectively.
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Table 4.1: Notation List
Parameter Notation

Pilot Length n
# of Transmit Antennas lt
# of Receiver Antennas lr

Sample Period tb
Symbol Energy ρ

Channel Variance σ2
h

Noise Variance σ2
n

Identity Matrix I
Fisher Information Matrix I

CFO Estimate f̂δ
Symbol Energy Es
Kronecker Delta δ[r1 − r2]

To investigate the frequency synchronization of a MIMO systems, this section con-

siders the system model as follows. Suppose the transmitter has lt antennas, the receiver

has lr antennas and the MIMO system is located where the channel has flat-fading or

slow fading that the channel state can be assumed to be constant during the transmission

of pilot [87]. Let hr,t be the channel coefficient from the t-th transmit antenna to the

r-th receive antenna and define ~hr = [hr,t]t=1:lt
∈ Clt×1 as the vector of channel states

at the r-th receive antenna. The channel state matrix H =
[
~hTr

]
r=1:lr

∈ Clr×lt com-

prises circularly symmetric complex Gaussian random variables with joint distribution

CN
(
~0,
[
E
[
hr1h

†
r2

]]
r1=1:lr,r2=1:lr

)
. Define N =

[
~nT
r

]
r=1:lr

∈ Clr×n as the noise at re-

ceiver with distribution CN
(
~0,
[
E
[
~nr1~n

†
r2

]]
r1,r2∈{1,2,...,lr}

)
; H and N are independent.

We send length n pilot signals ST =
[
~sTt
]
t=1:lt

∈ Clt×n, through the channel, with sam-

ple period tb. The pilot signals, known to the receivers, for different transmit antennas

are orthogonal, i.e., ~st1 ⊥ ~st2 , ∀t1 6= t2, S†S = nρ
lt
Ilt×lt , where ρ is the symbol energy

and S’s energy satisfies Tr
(
S†S

)
=
∑lt

i=1

∑n
k=1 |si,k|2 = ρn > 0. At the receiver, as-

suming perfect symbol timing recovery is applied so that with a frequency offset fδand
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additive white Gaussian noise (AWGN) with double sided power spectral density 2N0,

the received signal can be written as:

Y T = HSTF + NT

=
[
~hTr

]
r

[
~sTt
]
t
F +

[
~nT
r

]
r

(4.17)

where the frequency offset matrix

F =



ej2πfδtb·0 0 · · · 0

0 ej2πfδtb·1
. . . ...

... . . . . . . 0

0 · · · 0 ej2πfδtb(n−1)


(4.18)

is a diagonal matrix, which rotates the pilot signal according to the frequency offset fδ.

We consider the simplest case that channels are independent where E
[
~hr1

~h†r2

]
=

σ2
hIδ[r1 − r2] and i.i.d. noise E

[
~nr1~n

†
r2

]
= σ2

nIδ[r1 − r2]. It is the case of choice

when we have little knowledge of the channel. To write the model in the familiar linear

transformation form, we define tall vectors ~y = [~yr]r ,
~h =

[
~hr

]
r
, ~n = [~nr]r , and block

matrix

...
X =


X 0 0

0
. . . 0

0 0 X

 = [X]r,r=1:lr

= Ilr ⊗X (4.19)

where Ilr is a lr × lr identity matrix and ⊗ is the Kronecker product. With these notation,
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the received signal can be written as

~y =
...
X~h + ~n. (4.20)

For r-th receive antenna, the received signal can be written as:

yr(k) = xr(k) + nr(k)

=
∑
k

∑
t

hr,tst,ke
j2πfδktb + nr (4.21)

4.4.2 Proposed CFO Estimation Algorithm

To perform ML estimation of frequency offset, we need to obtain the estimate from

f̂δ = arg max
fδ

f~y|fδ(~y|fδ) (4.22)

We observe that ~y is a summation of Gaussian random variables and has distribution

CN
(
~0,Σ~y(fδ)

)
, where the covariance matrix of ~y can be written as

Σ~y(fδ) = σ2
h

...
X

...
X
†

+ σ2
nI

= σ2
hIlr ⊗ (FSS†F †) + σ2

nI (4.23)
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Therefore,

f̂δ = arg max
fδ

f~y|fδ(~y|fδ)

∝ arg max
fδ

e−~y
†Σ~y(fδ)

−1~y

= arg min
fδ

~y†Σ~y(fδ)
−1~y

= arg min
fδ

∑
r

~y†r
1

σ2
n

(
σ2
h

σ2
n

FSS†F † + I

)−1
~yr (4.24)

Apply Woodbury identity [88] to (4.24) and bear in mind that F †F = I , S†S = nρ
lt
I ,we

can obtain

f̂δ = arg min
fδ

∑
r

~y†r

=

(
I − FS

(
S†F †FS +

σ2
n

σ2
h

I

)−1
S†F †

)
~yr

= arg max
fδ

∑
r

~y†rFS

(
nρ

lt
I +

σ2
n

σ2
h

I

)−1
S†F †~yr

= arg max
fδ

∑
r

~y†rFSS†F †~yr︸ ︷︷ ︸
g(~y,fδ)

(4.25)

In general, (4.25) is not explicitly solvable. Exhaustive search over the candidates may

produce the estimate, but it requires extensive resources for hardware implementation, as

well as has potentially large quantization errors. A common way to solve this problem is

to find an explicit solution to the first derivative of the estimator.

First, we need to construct the pilot sequence. In this section, we employ periodic

structure:

50



S =
√
ρ[ci]i,i=1:n︸ ︷︷ ︸

C

[Ilt ]i=1:mO︸ ︷︷ ︸
[O]i=1:m

(4.26)

has a structure of scrambled periodic matrix [O]i=1:m =


O

O

...

 ∈ Cn×lt , which is a

block matrix with m copies of an unitary matrix O ∈ Clt×lt on top of each other. Matrix

O satisfies O†O = OO† = Ilt . We assume the pilot length n = mlt, m ∈ Z+. The

scrambling code is ~c = [ci]i=1:n ∈ Cn×1, where |ci| = 1, ∀i. Diagonal matrix C’s

diagonal elements are from the scrambling code ~c.

Due to the considerations that searching algorithms require potentially large quanti-

zation errors (exhaustive search) or indefinite convergence time (iterative search), we can

attempt to solve the first derivative of g(~y, fδ) to avoid these drawbacks.

To find ∂g(~y,fδ)
∂fδ

= 0, we calculate the differential first:

g(~y, fδ + dfδ)− g(~y, fδ)

=
∑
r

~y†rF (fδ + dfδ)SS
†F (fδ + dfδ)

†~yr

−
∑
r

~y†rF (fδ)SS
†F (fδ)

†~yr

= 2<

[∑
r

~y†rF (fδ)SS
† (F (fδ) (j2πdfδtbJ))† ~yr

]
+o(dfδ)

= 4πtb=

[∑
r

~y†rF (fδ)SS
†F (fδ)

†J ~yr

]
dfδ

+o(dfδ) (4.27)
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where we have used

F (fδ + dfδ) = F (fδ)F (dfδ)

= F (fδ) (I + j2πdfδtbJ + o(dfδ)) (4.28)

F (dfδ) = [1 + j2πdfδtb(i− 1) + o(dfδ)]i,i=1:n

.
= I + j2πdfδtbJ (4.29)

and

J =



0 0 · · · 0

0 1
. . . ...

... . . . . . . 0

0 · · · 0 (n− 1)


(4.30)

From the differential, the first order derivative can be expressed as

∂g(~y, fδ)

∂fδ
= 4πtb=

[∑
r

~y†rF (fδ)SS
†F (fδ)

†J ~yr

]
(4.31)

and therefore to find the frequency offset, we solve

0 = =

[∑
r

~y†rF (f̂δ)SS
†F (f̂δ)

†J ~yr

]
(4.32)

It is obvious that directly solve (4.32) requires matrix operations which is not easy.

Therefore, we transform these matrix operations into scalar form. Define d , ej2πf̂δtblt ,
[
dk−1

]
1,k=1:m

=[
d0 · · · dm−1

]
, and let ~yc,r = C†~yr to be the unscrambled received signal which is

partitioned into length lt vectors ~yc,r(k) ∈ Clt×1such that ~yc,r = [~yc,r(k)]k=1:m. Define
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the sample correlation βk,i ,
∑lr

r=1 < ~yc,r(i), ~yc,r(k) > with the property βk,i = β∗i,k.

Also bearing in mind that for a matrix A, = [A] = 0 is equivalent to A−A† = 0. Then

(4.32) is equivalent to

0 =

[(∑
r

~y†rF (fδ)SS
†F (fδ)

†J ~yr

)

−

(∑
r

~y†rF (fδ)SS
†F (fδ)

†J ~yr

)†
= ρ

∑
r

[
dk−1

]
1,k=1:m[

~yc,r(k1)
† (k2 − k1) Ilt~yc,r(k2)

]
k1=1:m,k2=1:m[(

d†
)k−1]

k=1:m

= −ρlt
m∑

k1=1

m∑
k2=1

dk1−k2(k1 − k2)βk1,k2 (4.33)

Take a further step simplification of (4.33), let rie−jθi =
∑m

k=i+1 βk,k−i, we have

0 = −2jρlt=

[
m∑
k=2

k−1∑
i=1

i · diβk,k−i

]

−2jρlt=

[
m−1∑
i=1

eji2πf̂δtblt
(
i · rie−jθi

)]

−2jρlt

[
m−1∑
i=1

i · ri sin
(
i2πf̂δtblt − θi

)]
(4.34)

Consequently, if we denote α = 2πtbltf̂δ, the solution to (4.32) is

0 =
m−1∑
i=1

i · ri sin (iα− θi) (4.35)
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For high SNR, iα−θi approaches 0 for all possible i, under which condition sin(x) ≈

x can be applied to (4.35) obtain (4.36)

0 =
m−1∑
i=1

i · ri(i2πf̂δtblt − θi) (4.36)

and we can calculate the estimate of frequency offset easily from (4.36).

However the approximation iα− θi ≈ 0 may not be suitable for lower SNR case. We

consider the Taylor series sin(x) =
∑∞

k=0
(−1)k
(2k+1)!

x2k+1 which stands under all conditions,

(4.36) may be expanded as

0 =
m−1∑
i=1

i · ri(
∞∑
k=0

(−1)k

(2k + 1)!
(iα− θi)2k+1) (4.37)

Since there is no general solution to a quintic or higher order equation, a third order Taylor

series approximation is applied to (4.36) and we obtain (4.39)

0 =
m−1∑
i=1

i · ri(
1∑

k=0

(−1)k

(2k + 1)!
(iα− θi)2k+1) (4.38)

and therefore we have

α3

m−1∑
i=1

−i4ri
6

+ α2

m−1∑
i=1

i3riθi
2

+

α
m−1∑
i=1

i2ri(1−
θ2i
2

) +
m−1∑
i=1

iri

(
θ3i
6
− θi

)
= 0 (4.39)

Define a =
∑m−1

i=1
−i4ri

6
, b =

∑m−1
i=1

i3riθi
2
, c =

∑m−1
i=1 i2ri(1− θ2i

2
) and d =

∑m−1
i=1 iri

(
θ3i
6
− θi

)
,

(4.39) now is

aα3 + bα2 + cα + d = 0 (4.40)
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Algorithm 2: ML based CFO estimation algorithm for MIMO system

1. Input: ~yr ∈ Cn×1, r = 1, ..., lr, one sample per symbol

2. Unscramble ~yr and perform a partition so that ~yc,r = C†~yr =

 ~yc,r(1)
...

~yc,r(m)

,

~yc,r(k) ∈ Clt×1, r = 1, ..., lr, mlt = n

3. For i = 1, ...,m− 1

(a) βsum = 0

(b) For k = i+ 1, ...,m

i. βk,k−i =
∑lr

r=1 < ~yc,r(k − i), ~yc,r(k) >

ii. βsum = βsum + βk,k−i

(c) ri = |βsum| , θi = ∠βsum

4. θi = unwrap (θi) , i = 1, ...,m− 1

5. α =
∑m−1
i=1 i3·riθi∑m−1
i=1 i4ri

6. f̂δ = α
2πtblt

7. Output: f̂δ.

Since the frequency offset is a real number and there should exist only one solution, the

real valued solution to (4.40) is α = − b
3a

, plug in α = 2πtbltf̂δ, we have

f̂δ
.
=

1

2πtblt

−
∑m−1

i=1
i3riθi

2

3
∑m−1

i=1
−i4ri

6

=
1

2πtblt

∑m−1
i=1 i3riθi∑m−1
i=1 i4ri

(4.41)

The entire procedure of proposed method is shown in Algorithm 2.
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4.4.3 CRLB: Performance Guideline

The CRLB of a random variable λ is

σ2
λ >

1

I ~y(k)|λ
(4.42)

where ~y(k) is the received signal and I ~y(k)|λ is the Fisher information matrix with λ to

be estimated. I ~y(k)|λ = E
[
(∂f
∂λ

)2|λ
]

= E
[
∂2f
∂λ2
|λ
]

where f is the log likelihood func-

tion. Consider a channel with circularly symmetric complex Gaussian random noise, the

received signal observed during an interval ntb can be expressed as

~y(k) = ~x(k) + ~n(k) (4.43)

In (4.43), ~x(k) is the information-bearing signal with frequency offset and ~n(k) is the

additive white Gaussian noise with double sided power spectral density 2N0. Then the

Fisher information matrix can be written as

I ~y(k)|λ = −E

[
2

N0

∑
k

(~y(k)−~x(k))
∂2~x

∂λ2
− (

∂~x

∂λ
)2

]
(4.44)

Consider that the noise is AWGN, we haveE [~y(k)−−→x (k)] = −E [~n(k)] = 0, therefore

the Fisher information matrix in (4.44) is

I ~y(k)|λ =
2

N0

E

[∑
k

(
∂~x

∂λ
)2

]
(4.45)

Since we are seeking the CRLB of frequency offset and consider a MIMO case in which

an user has lt transmitter antennas and lr receiver antennas, let λ to be the frequency offset
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then we have [89]

σ2
fδ

>
N0

2
∑lr

r=1 E
[∑

k

∣∣∣∂ ~xr∂fδ

∣∣∣2] (4.46)

Under MIMO case, suppose the observation and estimation process starts at t0, the re-

ceived signal at the r-th receiver antenna with frequency offset is (as also shown in 4.21,

Section 4.4.1)

yr(k) = xr(k) + nr(k)

=
∑
k

lt∑
t=1

hr,t,kst,ke
j(2πfδktb−t0)) + nr (4.47)

Assume that the channel on a transmission link is invariant during the observation time

ntb and has a Gaussian distribution with variance σ2
hr,t

, we have

xr(k) =
∑
t

hr,t
∑
k

st,ke
j(2πfδ(ktb−t0)) (4.48)

Using (4.48) it is found that

∑
k

∣∣∣∣ ∂~x∂fδ
∣∣∣∣2 = 4π2

∑
s

hr,t
∑
k

st,k(ktb − t0)2 (4.49)

Since the channel is independent from pilot symbols, we have

E

[∑
k

∣∣∣∣ ∂~x∂fδ
∣∣∣∣2
]

= E
[
h2
r,t

]
E

[
(
∑
k

st,k(ktb − t0)2)2
]

(4.50)

Suppose that the pilot for fine frequency estimation has n symbols and is uniformly dis-

tributed on the constellation points, also according to Section 4.4.1 and (4.50), we can
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easily know that

E
[
h2
r,t

]
= σ2

hr,t (4.51)

E

[
(
∑
k

st,k(ktb − t0)2)2
]

= EsE

[∑
k

(ktb − t0)2
]

(4.52)

Note that the symbol is fixed where the expectation of its square is symbol energy. Sub-

stituting (4.52) and (4.51) into (4.49) yields

E

[∑
k

∣∣∣∣∂ ~xr∂fδ

∣∣∣∣2
]
= 4π2

∑
t σ

2
hr,t
EsE [

∑
k(ktb − t0)2] (4.53)

Since CRLB is a lower bound, we are interested in the maximum achievable value of the

bound, which can be obtained by choosing t0 as the midpoint of observation time where

we have t0 = ntb
2

. Then with the summation in (4.53), we have

E

[∑
k

∣∣∣∣∂ ~xr∂fδ

∣∣∣∣2
]
= 4π2

∑
t σ

2
hr,t
Es

t2b(n
3+3n2+2n)

12
(4.54)

Plug (4.54) into (4.46), we eventually obtain

σ2
fδ

>
N0

2
∑

r(4π
2
∑

t σ
2
hr,t
Es

t2b(n
3+3n2+2n)

12
)

=
3

2π2(n3 + 3n2 + 2n)lrt2b
ρσ2

h

σ2
n

(4.55)

where σ2
hr,t

= σ2
h, ∀r, t and ltEs

N0
=

ρσ2
h

σ2
n

(see also Section 4.4.1).
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4.4.4 Architecture for Proposed Algorithm

Figure 4.12(a) shows the architecture of proposed method, and Figure 4.12(b) shows the

architecture of method in [1] which is a commonly adopted architecture for searching

algorithms. From the figures we can observe that for the architecture of method in [1],

each potential CFO candidate requires an extra processing unit while a large number of

candidates could consume significant resources. Furthermore, multiple antennas require

multiple times of resources for a single antenna architecture. Therefore, it is hard to find

the balance between hardware consumption and searching accuracy for the method in [1].

To limit the resource consumption, the proposed method avoids searching techniques so

that the resource consumption is only related to the number of receivers. From 4.12(a) it

is clear that when pilot length changes, the overall architecture keeps the same as long as

the memories that store unscrambled received signal are not overflowed. In the proposed

architecture, the pilot length is an coefficient for control logic that tells what to do at

specific states. Therefore, the architecture is reconfigurable to different pilot lengths.

To accommodate frames with various structures, frame lengths and pilot lengths, only

the pilot length and corresponding valid signal are required for proposed architecture to

reconfigure the FSM.
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Figure 4.12: Architectures of ML CFO estimators. (a)Architecture of proposed method.
(b)Architecture of approach in [1]

4.4.4.1 Memory based sample correlation

Take a glance at (4.33) and (4.41), we find that sample correlation β is an important step

when approaching the final solution. Considering that each unscrambled received pilot

symbol/sample may appear more than once during the process, we allocate a dual port

block memory or two single port block memories for each antenna to store the received

pilot. After receiving the pilot signal, multiplication with the conjugate pilot signal is
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performed to acquire the unscrambled received signal ~yc,r for each antenna, and then the

unscrambled received signal is stored in the memory bank, waiting to be read for further

operations. After all pilot symbols are received, a finite state machine (FSM) controlled

accumulator works on preparing the sample correlation for next steps. Figure 4.13 shows

the architecture of memory based sample correlation. The control signals consists of

valid signal for incoming data and memory read and write address indices along with the

valid signal. Once the incoming data is valid, it is unscrambled with pilot symbols and

then stored in specific entries of the BRAMs. Once the unscrambled pilot signals are

stored, the FSM controlled accumulator accumulates the sample correlation. The states

transitions of FSM during the accumulation process is controlled by the indices from

control logic.

RAM

FSM

controlled

accumulator

valid

valid
ctrl

logic

Pilot

conj

Figure 4.13: Architecture of memory based sample correlation

4.4.4.2 Sample based phase unwrapping

From Figure 4.12(a), it is easy to observe that the output of memory based sample corre-

lation is then turned into magnitude and angle. The constantly increasing or decreasing
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angle reflects the impact of frequency offset, but the complex-to-angle module output al-

ways stays within the range (−π,+π). To solve this issue, we design a state controller

that tracks the phase change and compensates for the phase increment. Every time the an-

gles of two consecutive output cross π or−π, the coefficient for compensation increase or

decrease by 1. Therefore, we can always know how much we need to compensate to the

angle. After the phase unwrapping, parameters are delivered for CFO calculation, which

contains only arithmetic operations, as shown exactly the same in (4.41). The architec-

ture of implemented phase unwrapping is shown in Figure 4.14. Different from frame

based phase unwrapping which takes a whole frame of symbols as input and unwraps the

phase, sample based phase unwrapping is uses delay-and-compare to find out whether the

phase exceeds detection range, performs phase unwrapping accordingly, and therefore

has shorter processing latency.

Unwrapped
delay

Compare
Compensation

coefficient

2π

Figure 4.14: Architectures of phase unwrapping
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Figure 4.15: Architecture of CFO calculation

4.4.4.3 CFO calculation with accumulators

For the CFO estimate shown in (4.41), it is a weighted average of θi. However, instead

of keeping all calculated weights and doing average which may causes longer process-

ing delay higher resource consumption, two self-defined accumulators are implemented

to realized the weighted average of θi. And also, noticing that both the numerator and

denominator in (4.41) have the specific term i3ri, the resources can be further optimized.

Figure 4.15 shows the architecture of CFO calculation with the accumulators. When

βsum(definition given in Algorithm 2) and corresponding index i are provided, the el-

ements of numerator and denominator are calculated and accumulated, until the index

value increases to a certain point. The coefficient 1
2πtblt

is a fixed constant as long as the

properties of the communication system do not change.

4.4.4.4 Pipeline and throughput

Table 4.2: Number of Cycles for Stages in Estimation Process
TW TR TS TCO TP TC

Cycles n+ 2 n2−nlt
2l2t

4 7 2 4
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In spite of unscrambled pilot read and write, the architecture of proposed method

is pipelined. Figure 4.16 sketches the timing series and processing latency of proposed

architecture. The latency of an entire estimation process consists of 6 parts: unscrambled

pilot write and read (TW and TR), sample correlation (TS), coordinate rotation digital

computer (CORDIC) based complex to magnitude and angle conversion (TCO), phase

unwrapping (TP ) and CFO computation (TC). In Figure 4.16, the read process starts

after all unscramble pilot symbols are written in the BRAMs, while other modules start

immediately when the data comes out of memories, taking the advantage of pipeline

architecture. Therefore, the processing latency of an estimation process is Tsingle = TW +

TR +TS +TCO +TP +TC . The number of cycles for each stage in the estimation process

is shown in Table 4.2. Note that n and lt are length of pilot and number of transmit

antennas, as described in Section 4.4.1. Consider a burst mode transmission, where the

burst data is first loaded to buffer after reception, and the estimation process starts with full

speed, as shown in Figure 4.16. Therefore, suppose there are N frames that require CFO

estimations, the achievable throughput S of the proposed architecture can be expressed

with processing latency:

S =
1

N(TW + TR) + TS + TCO + TP + TC

Figure 4.16: Process of pipeline architecture
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4.5 Coarse Carrier Frequency Offset Estimation Using

Neural Networks

4.5.1 System and Channel Models

We send length n pilot signal S = [~sk,t]k,t ∈ CN×lt through the channel, with sample

period tb. The pilot signals, known to the receivers, are orthogonal for different transmit

antennas , i.e., ~st1 ⊥ ~st2 , ∀t1 6= t2, S†S = Nρ
lt
Ilt×lt , where ρ is the symbol energy, ~st1is

the transmitted pilot signal at t1-th transmit antenna (similar definition for ~st2), and the

energy of pilot satisfies Tr
(
S†S

)
=
∑lt

t=1

∑n
k=1 |st,k|2 = ρn > 0. Define x ∈ CN×lt

as the pilot signal with the effect of carrier frequency offset, tb denotes the sample period

and fδ denotes the CFO, we have

x = FS (4.56)

where

F (fδ) =



ej2πfδtb·0 0 · · · 0

0 ej2πfδtb·1
. . . ...

... . . . . . . 0

0 · · · 0 ej2πfδtb(N−1)


(4.57)

is the CFO matrix.

The general model of a MIMO system is shown in Figure 4.17.
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Figure 4.17: General model of a MIMO system

4.5.1.1 AWGN Channel

AWGN channel is the the most basic channel model of wireless communication systems.

In an AWGN channel, additive white Gaussian noise is the only disturbance and channel

does not bring any phase rotation to the transmitted signal. Assume the transmitter has

lt antennas, the receiver has lr antennas and the MIMO system is in a place where the

channel of each link is an AWGN channel. Let hr,t be the channel coefficient from the t-

th transmit antenna to the r-th receive antenna, then we have h = [ht,r] t,r ∈ Clt×lr where

ht,r = 1, ∀t, r. Define n = [~nr]r=1:lr
∈ CN×lr as the noise at receiver, and the noise

has complex normal distribution CN
(
~0,E

[
~n†r~nr

])
. Taking the signal model in Equation

(4.56), the received signal can be expressed as

y = xh + n

= x + n (4.58)
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For r-th receive antenna, the received signal can be written as [90]

yr(k) =
lt∑
t=1

ht,rst(k)ej2πfδktb + nr(k)

=
lt∑
t=1

st(k)ej2πfδktb + nr(k) (4.59)

4.5.1.2 Flat/slow Fading Channel

Suppose the transmitter has lt antennas, the receiver has lr antennas and the MIMO system

is in a flat fading or slow fading channel where the channel state is assumed to be constant

during the transmission of a single frame. Define channel coefficient matrix as h =

[ht,r]t,r ∈ Clt×lr where ht,r is the channel coefficient from the t-th transmit antenna to the

r-th receive antenna. Define n = [~nr]r=1:lr
∈ CN×lr as the noise at receiver, and the noise

has complex normal distribution CN
(
~0,E

[
~n†r~nr

])
. Taking the signal model in Equation

(4.56), the signal at receiver is

y = xh + n (4.60)

For r-th receive antenna, the received signal can be written as [19]

yr(k) =
lt∑
t=1

ht,rst,ke
j2πfδktb + nr(k) (4.61)

4.5.1.3 Multipath Channel

In wireless communications, multipath channel is a channel through which the signal has

two or more paths. The causes of multipath fading include reflection, diffraction, scatter-

ing and some other physical phenomena. The multipath channel model is demonstrated

as follows. Consider the transmitted pilot signal as described at the beginning of Sec-

tion 4.5.1. During the transmission, the signal travels through a multipath channel. For
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the channel between t-th transmit antenna and r-th receive antenna, the length of chan-

nel response ~ht,r is m. Define n = [~nr]r=1:lr
∈ CN×lr as the noise at receiver, and the

noise has complex normal distribution CN
(
~0,E

[
~n†r~nr

])
. Assume frequency offset fδ

does not change during each frame, then the received signal at r-th receive antenna can

be expressed as

~yr =
lt∑
t=1

~ht,r ∗ ~xt + ~nr (4.62)

or in scalar form as

yr(k) =
lt∑
t=1

N∑
n=1

ht,r(m− k)st(k)ej2πfδktb + nr(k) (4.63)

where ht,r(m− k) = 0, ∀k > m.

4.5.2 Neural Network Based Estimator

In this section, some traditional coarse CFO estimation methods are briefly reviewed and

discussed, and then NN based coarse CFO estimator is illustrated, including architecture

of proposed NN estimator and details about layers in the network. Due to limited space,

however, some details such as loss function and activation layer are demonstrated in short.

4.5.2.1 Traditional coarse CFO/IFO Estimation Methods

Before machine learning methods are emerging into the blueprint, traditional CFO es-

timation methods of wireless communications were mainly mathematical methods. For

the coarse CFO estimation in wireless systems, the most intuitive method is fast Fourier

transform (FFT). The receiver takes FFT of the received signal, finds the peak of spectrum
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and roughly calculates how much frequency the signal has been shifted. The FFT based

method is intuitively straightforward, but the FFT module is very complex and sometimes

noise could ruin the estimation results.

There are some other methods besides the FFT based estimator. For example, the

distortion introduced by CFO results in a phase shift between adjacent samples, therefore

by tracking the phase shift using phase-lock-loop (PLL) or Costas loop based estimator,

one can compensate the impact brought by CFO. Decision-directed method, which is

a frequently used constellation-dependent CFO estimation method, compares the phase

difference between the received signal and constellation to estimate the CFO.

ML based estimator is another promising solution to coarse CFO estimations. Re-

searchers formulate the ML based estimators for different MIMO systems and propose

the solutions to find the corresponding coarse CFO estimates which maximize the pro-

posed likelihood functions.

For all the methods above, however, there are still drawbacks need to be improved.

First, the CFO acquisition range of tracking approaches such as PLL is limited. If a wire-

less system suffers severe CFO, the tracking methods do not function well. Second, the

likelihood functions for maximum-likelihood estimators are derived for specific systems

models, leading to the fact that the estimator derived for one system model cannot be

applied to another, or vise versa.

4.5.2.2 Neural Network for Coarse/Integer Frequency Offset Estimation

In recent years, traditional wireless communications is taking a shift towards “smart”

wireless communications, which indicates the convergence of machine learning technolo-

gies and wireless communications. Therefore, applying neural network to solve the coarse

CFO estimation problem may contribute to the transition progress. For the system and

channel models demonstrated in Section 4.5.1, the NN estimator for coarse CFO estima-
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tions is expected to take the received signal, learn the estimation rules accordingly and

find out the CFO estimate f̂δ. In traditional wireless communications, ML based grid

search is one of the most popular solutions to coarse CFO estimation problem [1, 55, 56].

The grid search method calculates the value of likelihood function with a number of pos-

sible CFO candidates and searches for the optimal CFO candidate that maximizes the

likelihood function. Now reconsider the idea of ML based grid search method in the way

of classification. Instead of trying out all candidates and searching for the optimal one,

using the classification method we can classify which CFO candidate is the one closest

to ground truth. Therefore, inspired by the ML based grid search method, we propose an

NN estimator, and the NN estimator classifies the optimal CFO candidate.

Figure 4.18 shows the general process of coarse CFO estimations using proposed NN

estimator. During the training process, training data is captured and splitted for training

and validation. The data for training is first fed to the proposed NN estimator to train

the network parameters, then the data for validation is fed to the network to examine the

performance. Later, the next epoch starts to modify and update the network for a smaller

value of the loss function. Once the entire training process is finished, one can feed the test

data to the trained NN estimator to perform coarse CFO estimations. As can be seen from

Figure 4.18, the output of proposed NN estimator is a vector indicating which candidate is

the one closest to true CFO. Therefore by applying the proposed NN estimator, the coarse

CFO estimation problem is transformed into a classification problem.
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Figure 4.18: Coarse CFO estimations using proposed NN estimator

4.5.2.3 Neural Network Layers in The NN Estimator

The architecture of proposed NN estimator is shown in 4.19. The proposed NN estimator

contains an LSTM layer, multiple dense layers with a sigmoid activation layer and a

dense layer with a softmax activation layer for output. In the proposed NN estimator,

LSTM layer is firstly employed to extract the time sensitive features brought by CFO.

Then dense layers are employed to learn the rules for coarse CFO estimation. It can also

be observed that a data reshaping and selection module is employed before proposed NN

network.

Preprocessing: data reshaping and selection module We assume that the network has

no prior knowledge about the number of antennas in the MIMO system, therefore a data

reshaping and selection module is introduced to make the NN estimator more generic and

adaptive to different numbers of antennas.

The data reshaping and selection module takes the received signal and format it to a

certain shape. Since the number of receive antennas lr is not know to the NN estimator,
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the data reshaping and selection module conducts a cross-antenna sort so that data fed

to NN estimator contains CFO information gathered from all receive antennas. Consider

the received signal is y ∈ CN×lr (see also Section 4.5.1), the input size of proposed NN

estimator is L×2. The input has two channels, one for real part of the received signal and

the other for imaginary part. Once the signal is detected, the data reshaping and selection

module takes one block of symbols from each antenna in turn, concatenates the blocks of

symbols and feeds the concatenated sequence to input memory until full. The diagram of

how data reshaping and selection module works is shown in Figure 4.20. If the received

signal does not fill up the input memory, zeros padding is employed.

radio front end of MIMO system

data reshaping & selection

LSTM layer

dense layers with sigmoid 

( ) activation layer

dense layer with soft-max 

layer

optimal candidate of CFO 

estimates

network

Figure 4.19: Architecture of proposed NN estimator for coarse CFO estimation
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Figure 4.20: Diagram of data reshaping and selectin module

LSTM layer An LSTM layer, as shown in Figure 4.21, has a number of connected

LSTM units (σ is a sigmoid function). Each general LSTM unit consists of a cell, a forget

gate, an input gate and an output gate. As can be seen, when the output of last cell and

the input of current cell are obtained, the forget gate tells how much information will be

removed from the last cell state. Later, the updated cell state is added by a value given

from input gate. The value is obtained from a function of the input of current cell and

the output of last cell; Finally, the output gate computes the output of current LSTM unit,

and transfers the output as well as current cell state to the next LSTM unit. Since the

architecture of LSTM units makes them sensitive to important events in a time series, the

LSTM layer is suitable for time series data processing and classification.

Usually, the larger number of LSTM units are cascaded in an LSTM layer, the more

features of time series data can be collected. However, when the number of LSTM units

is greater than the size of input data under which case zero padding is needed, no extra

amount of features should be expected. In our case, the number of LSTM units in the

LSTM layer is 128. However it is adjustable according to different frame structure.
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Figure 4.21: Structure of an LSTM layer

Dense layers The dense layer has a straightforward architecture, easy-to-use features

for mapping and regression and it has been proven to be a universal approximator as long

as the number of nodes is sufficient [91]. On the other hand, unfortunately, due to the

fact that a dense layer does not take any sequential data, it is insensitive to time related

features of the input signal. Therefore, the dense layers (or hidden layers in this letter) are

responsible for mapping the LSTM layer output features to the classification results.

In dense layers the information always moves forward and never goes backwards. The

structure of dense layers in the proposed NN estimator is shown in Figure 4.22. The first

dense layer takes input data and then in each hidden layer, every single node takes data

fed from the nodes in previous layer, multiplies the data with weights, adds biases and

feeds to the next layer.
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Figure 4.22: Structure of dense layers

Activation layers Activation layer is a layer made of a number of activation functions,

and it is an important part of a neural network. The activation function defines whether

a node is activated or to what level the node is activated. An activation layer takes the

output data from previous layer and maps the values into a bounded range. The activation

functions used in the activation layers in proposed NN estimator are listed in Table 4.3.

Note that both the input and output of softmax layer are vectors.

As may be noticed in Figure 4.19, the activation layer for the last dense layer is a

soft-max layer. This soft-max layer also prepares the data for the calculation of loss of

the proposed neural network. Since the number of CFO candidates (classes) is more

than 2, the loss function used in the proposed NN estimator is a categorical cross-entropy

function.

Table 4.3: Activation functions used in proposed NN estimator
Name Function

Sigmoid σ(x) = 1
1+e−x

Softmax η(~x) = e~x∑
e~x
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Figure 4.9: Diagram of top layer FSM
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Chapter 5

Results and Analysis

In this chapter, results of the proposed approaches in Chapter 4 are illustrated and ana-

lyzed. The order of sections in this chapter is the same as in Chapter 4.

5.1 Results of Dual Link Algorithm Implementation

The performance comparison is listed between two different structures proposed in Sec-

tions 4.1.2. To compare the performance of our prototype designs, simulation and syn-

thesis for FPGAs are targeted on Xilinx ZYNQ-7 ZC706 which is one of the designate

FPGA boards for Analog Devices AD-FMCOMMSx-EBZ series SDR platforms.
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5.1.1 Synthesis and Resource Utilization

Table 5.1: FPGA resource utilization of an individual user on ZC706
Structure Resource Utilization Available Utilization Max

% Clock

Rate

LUTs 6654 218600 3.04

Fixed Registers 9923 437200 2.27 181.82

Point DSP 160 900 17.78 MHz

Block RAM 4 545 0.73

LUTs 30933 218600 14.15

Floating Registers 54466 437200 12.46 337.84

Point DSP 408 900 45.33 MHz

Block RAM 4 545 0.73

Table 5.1 illustrate the resource utilization of both fixed-point and floating-point designs

on ZC706, respectively. It is obvious that the resource usage of floating-point structure is

much higher than that of fixed-point structure, except for the block memory which stores

pilot signals. On the other hand, the achievable clock rate of floating-point structure is

337.84 MHz while fixed point structure only achieves 181.82 MHz clock rate, only around

half of 337.84 MHz. This is because the fixed-point structure with resource reuse needs

strict timing control where the paths of controlling signal becomes the critical path, hence

the maximum clock rate of fixed-point structures drops down. This controller design will

be improved in our future work.

5.1.2 Performance Evaluation

Simulations are performed to evaluate the processing latency and accuracy of two struc-

tures. We also conduct simulations of single user single iteration 1, 000, 000 times on an

Intel i5 quad-core CPU with 8GB memories as performance guideline. Table 5.2 shows

a single iteration processing latency of a single user which includes all process time after

receiving the signal and before transmitting the signal out.
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Table 5.2: Comparison between FPGA and CPU
Platform FPGA CPU

Device ZC706 ZC706 i5 quad core

Structure fixed point floating point floating point

Error range ≈ 3× 10−3 10−4 − 10−3 ≤ 10−4

Single user

single iteration 1579ns 880ns 3380ns

processing latency

Speedup factor 2.14 3.84 1

From Table 5.2 we find that when comparing with floating point structure, the fixed

point structure has both advantages and disadvantages. The fixed point structure with

many serial structured computational units utilizes less FPGA resources while it generates

a wider range of errors, as well as long latency. Both proposed structures on an FPGA,

however, can accommodate a shorter processing latency than that performed by CPU,

with a speed up factor of 2.14 and 3.84, respectively.

5.2 Results of Hardware-Efficient SVD Architecture

5.2.1 Simulation Results

The performance of the proposed architecture is compared against the BLV in terms of

average number of sweeps needed to reduce the off diagonal norm to a specified thresh-

old. When the off diagonal norm is reduced to the threshold, the singular value matrix

is regarded as convergent and the SVD process is done. The performance of BLV ar-

chitecture is obtained from Reference [92] while that of the proposed architecture comes

from Monte-Carlo simulations with same configurations: uniformly distributed complex

matrix elements and same threshold (10−12 of its original value). Figure 5.1 illustrates the

average number of sweeps required for convergence with various matrix orders.
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Figure 5.1: Average number of sweeps needed for convergence

It can be observed from Figure 5.1 when the matrix order is greater than 40, the

number of sweeps of both architecture is nearly a proportion of the matrix order. On the

other hand, the average number of sweeps of proposed architecture is smaller than that of

BLV architecture at all matrix orders.

5.2.2 Hardware Resource Utilization

Since the primary goal of the proposed architecture is to provide a hardware-efficient so-

lution for SVD in massive MIMO system, the hardware resource utilization is illustrated

and compared with that from Reference [93] and [94]. Unfortunately, since the targeted

FPGA board in this section is Zynq 7 ZedBoard and Xilinx’s new product Vivado does

not support Vertex 5 or 6 series anymore, we are not able compare our design with Ref-

erence [93] and [94] on same devices. Even with different FPGA platforms, however,

the hardware resource utilization still reflects the hardware efficiency in a certain condi-

tion. In other words, if we implement the proposed design on Vertex 5 or 6, the hardware

resource utilization will reported to be almost the same as on ZedBoard. The hardware

resource utilization is shown in Table 5.3.
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Table 5.3: Resource utilization
Proposed BLV array Mrudula Architecture I

Architecture (8×8) [93] (8×8) [93] Ibrahim [94]
Selected Device Znyq 7 Virtex 6 Virtex 6 Virtex 5

ZedBoard VLX365 VLX365 VLX350
Achievable Frequency 128.2 MHz 147.0 MHz 146.6 MHz 146.0 MHz

Slice LUTs 1098 45343 51254 19542
Slice Registers 1333 42322 47749 25113

DSP48E1s 23 160 160 N/A

From Table 5.3 it can be found that the slices engaged in BLV and Reference [93]

are around 40 times more than that in the proposed architecture. And in terms of DSPs,

the proposed architecture consumes less than one fifth of the total number occupied in

Reference [93]. Meanwhile, though the number of DSPs is not given in Reference [94],

the number of slices is still around 20 times more than that in the proposed architecture. In

addition, from Table 5.3 we can observe that the achievable clock rate of proposed design

is slightly lower than that in [94], however, we still observe a better timing performance

of proposed design, which is shown in Section 5.2.3.

5.2.3 Timing and Throughput

To facilitate a faster design and evaluation with different orders of matrices, we model

the timing and throughput in this section. Figure 5.2 sketches the processing latency of

a single iteration to provide an overview of the timing schedule. The latency of a single

iteration consists of 4 primary parts: controlling (TC , 15 cycles), raw data extraction (TR),

2× 2 SVD (TSV D) and matrices update (TH , TU and TV ).
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Figure 5.3: Comparison between CPU and proposed architecture
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Figure 5.4: Comparison between different architectures

Trw (1 cycle), Ta (1 cycle), Tm (1 cycle), TCORDIC (13 cycle)in Figure 5.2 denote

the latencies of memory read/write, address computation, multiplication and CORDIC

operation, respectively. Hence, throughput S of one sweep for the proposed architecture

can be expressed with processing latency:

S =
1

Lp(N(N − 1)/2)
=

2

N(N − 1)Lp
(5.1)
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whereN is the order of factorized matrices andLp = 2(N+1)(Tm+Trw+Ta)+2TCORDIC

represents the processing latency of a single iteration.

Based on our previous work, the proposed architecture is aiming to be implemented

on FPGA based software defined radio (SDR) platforms instead of on CPU as most SDR

platforms do. Therefore to evaluate the timing performance of proposed architecture,

comparison with CPU (i5 660 dual core, 3.3GHz) simulation and the architectures in

Reference [94] are conducted and illustrated in Figure 5.3 and Figure 5.4, respectively.

As can be seen in both figures, the proposed architecture performs much faster than CPU,

especially when matrix order becomes large, and also competitive to the architectures in

Reference [94]. Meanwhile, the error of computation of SVD matrices goes up to 1% in

Reference [94] while the error in our design is at most 2−8 ≈ 0.4% of the singular values

of matrices.

5.3 Results of Hardware Efficient ML Based CFO Esti-

mation

In this section, simulations are conducted to analyze the performance of the hardware ef-

ficient ML based CFO estimation approach. The relationships between normalized MSE

and SNR, as well as pilot length, are discussed. Besides, the acquisition range is also

tested. Simulations of other synchronization algorithms are also conducted under same

conditions to compare with. This section also quantifies the hardware resource consump-

tion for an FPGA-based implementation, showing that the low hardware resource utiliza-

tion of proposed architecture makes it accessible for a number of target devices, especially

for FPGA-based software defined radio (SDR) where the vacant hardware resource could

be distributed to other essential parts in an entire communication system.
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5.3.1 Simulation Results

We consider a general 2x2 MIMO system with random complex Gaussian channel with

unit variance and i.i.d noise-plus-interference with unit variance as the scenario. To ac-

quire accurate simulation results, we conduct Monte-Carlo simulation and gather the

mean square error (MSE) over the simulations. With these given parameters, CRLBs

with different SNRs are calculated to compare with simulation results as the performance

guideline. For convenience, we normalize the CFO, where the normalized CFO is set

to be a proportion to baseband bandwidth 1
tb

. Simulations of our algorithm and those

in [1, 51, 57] are conducted and compared under same conditions.

5.3.1.1 SNR and pilot length
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Figure 5.5: Influence of SNR and pilot length on MSE of CFO estimation

Figure 5.5 shows the relationship between SNR and normalized MSE of CFO estimation

with different pilot lengths. To emphasize the influence of SNR, for each given pilot

length, simulations are conducted with the normalized CFO held at 1% of the bandwidth,

in a 2x2 MIMO system. As the SNR increases, the MSE for each pilot length drops fast

between -5dB and 0 dB, and then keeps approaching corresponding CRLB. At the same
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time, Figure 5.5 reveals that at each time the pilot length is doubled, both the MSE and

corresponding CRLB have around 9 dB drops, which matches the derivation in (4.55).

5.3.1.2 Acquisition range
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Figure 5.6: Acquisition range of CFO estimation methods

Figure 5.6 shows the acquisition range of different CFO estimation methods. Since the

acquisition range of searching methods is also confined by the searching range, we ex-

clude estimators with searching techniques from this comparison and compare the pro-

posed method with those in [51, 52, 57] which are also closed form estimators. For all

four methods, we conduct simulations under the same conditions: pilot with 32 sym-

bols, 20 dB SNR, 2x2 MIMO system for proposed method and the method in [57], SISO

system for the methods in [51, 52] which are dedicated for SISO. From Figure 5.6 we

notice that by avoiding phase unwrapping, the acquisition range of CFO estimation tech-

niques in [51, 52, 57] are limited, while the MSE of the method in [52] is stable within

the acquisition range. If we recognize normalized MSE at 10−4 as a threshold for suc-

cessful CFO estimations, the maximum detectable normalized CFOs are 25%, 3%, 3%

88



and 2%, respectively for proposed method, Chen’s method, Mehrpouyan’s method and

Kuo’s method. On the other hand, MIMO with different number of antennas using pro-

posed method are also tested. From Figure 5.6 we can observe that due to the scrambled

periodic matrix [O]i=1:m in (4.26), the acquisition range is closely related to the number

of transmit antennas where every time the number of transmit antennas is doubled, the

acquisition range reduced by one half.

5.3.1.3 Mean square error
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Figure 5.7: MSE comparison of different CFO estimation techniques

To examine the performance, we conduct simulations of different CFO estimation meth-

ods over a wide range of SNRs and obtain their normalized MSE to compare proposed

method with others. To make the comparison more realistic, we extend the CFO esti-

mator for SISO system in [1] to an estimator for MIMO system, so that the comparison

could be made under same conditions. However, the methods in [51, 52] are designed

for SISO systems. For the test cases, pilot length is 32 symbols, normalized CFO is

1% and all simulations run with a 2x2 MIMO system except for the methods in [51, 52]

which runs in a SISO system where all system settings are the same except for the num-
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ber of antennas. For the MLE in [1] which searches among a number of potential CFO

candidates, the searching range lays between −30% and 30%, and the interval between

adjacent candidates is 0.3%. The performance comparison of proposed method with the

methods in [1, 51, 52, 57] is shown in Figure 5.7. It can be seen that the proposed method

holds a competitive performance when the SNR is low, and the best performance when

SNR goes higher. The linear approximation employed in [51] results in a degradation

in the performance where the quantization error plays a vital role. At low SNRs (≤10

dB), the performance of proposed method is competitive with the method in [57]. But the

normalized MSE of methods in [51, 57] almost stop decreasing when SNR goes higher

than 20 dB. Besides, the normalized MSE of the method in [1] is way higher than that of

other methods, which is led by the fact that the searching grid is not fine enough. Besides

2x2 MIMO, the proposed method is also tested with 4x2 and 4x4 MIMO systems and

the results verifies that the number of receive antennas has influence on the MSE (more

receive antennas, lower MSE) while the number of transmit antennas does not, as shown

in (4.55).

5.3.1.4 Bit error rate

With the CFO estimates, the communication systems compensate the CFOs and recover

the distorted signals so that the transmitted data can be correctly revealed. Therefore,

we simulate an entire communication system with other impairments corrected, add the

CFO synchronization methods and perform CFO synchronization to examine the BER

performance. The BER comparison of different CFO estimation methods is shown in

Figure 5.8. The setup of communication system is the same as that described in Section

5.3.1.3. Each transmitted frame consists of 32 pilot symbols and 288 payload symbols

where the symbols are QPSK modulated. From Figure 5.8 we can observe the same trend

shown in Figure 5.7. There is a noticeable case that the BER performance of the method
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in [1] stays on the same level throughout the entire SNR range. This is caused by the

quantization error of grid search and therefore we conclude that the grid search without

high resolution may not be suitable for fine frequency estimation.
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Figure 5.8: BER comparison of different CFO estimation techniques

5.3.2 Implementation Results

The circuits are synthesized and implemented using Xilinx Vivado 2017.2, targeting one

of the popular FPGA development boards Xilinx Zynq XC7Z020 ZedBoard. The imple-

mentation results in terms of flip-flops (FFs), lookup tables (LUTs), DSP blocks, block

RAMs (BRAMs) and achievable frequency are reported in Table 5.4.

Table 5.4: Resource Utilization and Achievable Frequency
Architecture FFs LUTs DSPs BRAMs Frequency

Prop 2rec
1640 2638 13 2

125.8MHz
(2%) (5%) (6%) (1%)

Prop 2recS
1640 2638 13 2

90.9MHz
(3%) (8%) (11%) (3%)

Prop 4rec
1492 2793 16 4

125MHz
(1%) (5%) (7%) (3%)

Search 10can
35280 18550 70 10

83.3MHz
(33%) (35%) (32%) (7%)
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Due to the fact that there is a lack of published ML based frequency synchronization

implementation techniques, we extend the method in [1] to MIMO case and implement

the corresponding architecture shown in Figure 4.12(b), in the case of a 2x2 MIMO sys-

tem, for the purpose of comparison.

Search 10can refers to the architecture we implemented for the method in [1] with

10 potential CFO candidates. As is shown in Table 5.4, Search 10can shows signifi-

cant resource utilization compared with proposed architectures Prop 2rec and Prop 4rec.

Unfortunately, it is hard to find a balance between hardware resource consumption and es-

timation accuracy for Search 10can. Even though additional CFO estimation candidates

result in smaller searching interval (assume same searching range) which leads to smaller

quantization error, these additional candidates bring about higher hardware consumption,

potentially exceeding the available amount.

Prop 2rec and Prop 4rec refer to the architecture of proposed method, with 2 receiver

antennas and 4 receiver antennas respectively. According to Figure 4.12(a), there is extra

hardware consumption brought by additional receiver antennas. However, the extra hard-

ware resource consumption mainly consists of BRAMs for pilot storage and DSPs for

received signal aggregation. The proposed architecture consumes only a trivial portion of

available resources, and the rest can be allocated for other parts of an entire communica-

tion system. Or, on the other hand, the proposed architecture can be easily fitted in small

FPGAs such as Xilinx Spartan-7 XC7S50CS (Prop 2recS). It is also worth noticing that

the achievable frequencies of proposed architectures are around 40MHz higher than that

of Search 10can. When CFO estimation unit is connected to other units in a communica-

tion system, lower achievable frequency may becomes the bottleneck of achieving high

processing speed.

The maximum circuit frequency, reported as post-route, is 125.8MHz for proposed

architecture with 2 receiver antennas implemented on ZedBoard. During our tests, pilot-
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only frames are employed and each pilot-only frame has 32 QPSK symbols. Assume

that the frames are received in burst mode, as discussed in Section 4.4.4.4, the proposed

architecture can accomodate symbol rate up to 53.08Mbps, comfortably exceeds the re-

quirements for MIMO communication systems under most conditions.

In this section, simulations are conducted to analyze the performance of proposed NN

estimator. The accuracy and performance of proposed NN estimator is presented and dis-

cussed in a variety of aspects including SNR range, channel models, number of antennas

and CFO acquisition range. Simulations of some traditional synchronization algorithms

are also conducted under same conditions as the guideline of performance evaluation. It

is shown in the results that the proposed approach has consistent performance over a wide

SNR range, and has the largest acquisition range among all tested coarse CFO estima-

tion approaches. Meanwhile, the proposed NN estimator accommodates all the channel

models we mentioned in Section 4.5.1, as well as tested numbers of antennas.

5.4 Results of Neural Network Based Coarse CFO Esti-

mator

In this section, simulations are conducted to analyze the performance of the proposed NN

estimator in Section 4.5.1. The accuracy and performance of proposed NN estimator is

presented and discussed in a variety of aspects including SNR range, channel models,

number of antennas and CFO acquisition range. Simulations of some traditional syn-

chronization algorithms are also conducted under same conditions as the guideline of

performance evaluation. It is shown in the results that the proposed approach has con-

sistent performance over a wide SNR range, and has the largest acquisition range among

all tested coarse CFO estimation approaches. Meanwhile, the proposed NN estimator

accommodates all the channel models we mentioned in Section 4.5.1, as well as tested
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numbers of antennas.

5.4.1 Configurations for NN estimator: training and testing

In Section 4.5.2, the proposed NN estimator is discussed while some details about the NN

are not revealed for network training and testing. These detailed configurations for NN

estimator training and testing are as follow.
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Figure 5.9: Performance over SNR range in AWGN channel
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Figure 5.10: Performance over SNR range in flat/slow fading channel
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Figure 5.11: Performance over SNR range in multipath channel

5.4.1.1 Training configurations

• In simulations, the center frequency is 2.4GHz and sampling frequency is 10MHz.

However, instead of presenting CFO in Hz, we normalize the CFO so that the fre-

quency offset presented as a ratio to sampling frequency:fδtb. The training dataset

is generated across the normalized CFO range (−0.5, 0.5] with 0.01 resolution

([−0.49,−0.48, ..., 0.5]).

• The training dataset contains 5 different MIMO systems: 2× 2, 3× 3, 4× 4, 5× 5

and 6× 6.

• All 3 channel models discussed in Section 4.5.1 are included in the training dataset.

• For flat/slow fading channel, the channel coefficient ht,r has symmetric complex

Gaussian distribution CN
(

0, σ2
ht,r

)
and σ2

ht,r
= 1, ∀t, r.2

• For multipath channel, we randomly generate the number of multipath and delay

spread for each path. The delay spread should be less than the length of pilot signal
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(32 symbol periods). In our case, we set the delay spreads to be 10 symbol periods

or less for shorter simulation time.

• There are 32 QPSK pilot symbols in each frame, and the pilot signal on each an-

tenna is orthogonal to others. The length of payload symbols in each frame is 64.

The payload symbols are randomly generated for simulations, but since proposed

NN estimator is a pilot-added method, the randomly generated payload symbols

does not contribute to the training.

• The input size of proposed NN estimator is 128, and the length of each pilot block

(defined at the beginning of Section 4.5.2.2) for data reshaping is 8. Therefore, the

maximum number of receive antennas that the proposed NN can accommodate is

128
8

= 16.

• To avoid the disturbance of noise in training process, the SNR is assumed to be

infinity. Under this case, the NN estimator could learn the estimation rules accord-

ingly without the impairment from noise.

• There are 1000 frames per channel model per system per CFO candidate. Ac-

cording to the given conditions above, the datasets contains 100 normalized CFO

candidates, 3 channel models and 5 MIMO systems. Therefore, the total number of

frames contained in the training dataset is 1500000.

• When training the NN estimator, the batch size is set to be 15000 (10% of the

training dataset) and the training process in total has 200 epochs.

5.4.1.2 Testing configurations

• Test cases are as follows: (1) Test for AWGN channel over SNR range {−10dB,−8dB, ..., 0dB, 2dB},

normalized CFO = 0.05; (2) Test for flat/slow fading channel over SNR range
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{−10dB,−8dB, ..., 0dB, 2dB} where ht,r has symmetric complex Gaussian dis-

tribution CN
(

0, σ2
ht,r

)
and σ2

ht,r
= 1, ∀t, r, , normalized CFO = 0.05; (3) Test

for multipath channel over SNR range {−10dB,−8dB, ..., 0dB, 2dB} where the

delay spread of each path is less or equal to 10, normalized CFO = 0.05; (4) Test for

AWGN channel over different normalized CFOs in the set {−0.5,−0.45, ..., 0.45, 0.5},

SNR = 0dB. (5) Test for flat/slow fading channel over different normalized CFOs

in the set {−0.5,−0.45, ..., 0.45, 0.5}, where the channel is the same as described

in (2), SNR = 0dB; (6) Test for multipath channel over different normalized CFOs

in the set {−0.5,−0.45, ..., 0.45, 0.5}, where the channel is the same as described

in (3), SNR = 0dB.

• The testing datasets are generated according to test cases instead of an ensemble of

datasets containing all test cases.

• 10000 frames are generated and tested per SNR per antenna size in test case (1) –

(3); 10000 frames are generated and tested per normalized CFO per antenna size in

test case (4) – (6).
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Figure 5.12: Performance with different CFOs in AWGN channel

97



-0.5 0 0.5
normalized CFO

0

20

40

60

80

100

P
ro

ba
bi

lit
y 

of
 s

uc
es

s 
(%

)

Performance for flat/slow fading channel for different CFOs

NN estimator, 2x2 MIMO
NN estimator, 4x4 MIMO
NN estimator, 6x6 MIMO
Grid search, 2x2 MIMO
Grid search, 4x4 MIMO
Grid search, 6x6 MIMO

Figure 5.13: Performance with different CFOs in flat/slow fading channel
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Figure 5.14: Performance with different CFOs in multipath channel

5.4.2 Performance over SNR range

To analysis the performance of proposed NN estimator, we generate testing dataset with

different SNRs, ranging from−10dB to 2dB at 2dB resolution. As mentioned in Section

4.5.2.2, the scheme of NN estimator is classifying the CFO candidate closest to real CFO

value fδ, which is inspired by the ML based grid search coarse CFO estimation method.

Therefore, we also conduct simulations for the ML based grid search method [1] as per-
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formance evaluation guideline. The performance evaluation metric used in this section is

probability of success, which is the probability that estimators successfully classify the

optimal coarse CFO candidate (candidate closest to fδ).

Figure 5.9 (test case (1) in Section 5.4.1.2) shows the performance of proposed NN

estimator and grid search method in AWGN channel. As can be seen, the probability of

success increases rapidly along with SNR. The performance of proposed NN estimator,

under the same condition is better than the grid search method, especially at low SNRs.

In the meantime, we can observe that the number of antennas could improve the coarse

CFO estimation performance of a MIMO system in AWGN channel.

Figure 5.10 (test case (2) in Section 5.4.1.2) and 5.11 (test case (3) in Section 5.4.1.2)

show the performances of coarse CFO estimators in flat/slow fading and multipath chan-

nel, respectively. From Figure 5.10, we can draw similar conclusion that the probability

of success of estimators grows with the increment of SNR, and the proposed NN estimator

has a better performance comparing to grid search method.

For multipath channel, however, the probability of success of grid search method is

less than 20% throughout the tested SNR range, regardless of the number of antennas.

This performance degradation is brought by the limited assumptions of channel model.

Therefore in Figure 5.11, it can be concluded that the ML based grid search method can

not be applied directly to multipath channel. On the other hand, taking the advantage of

adequate training dataset, the proposed NN estimator still shows a promising performance

in multipath channel.

Taking Figure 5.9 - 5.11 together and we can observe that the probability of success

for multipath channel is lower than AWGN and flat/slow fading channels. This observa-

tion also reflects the higher complexity of multipath channel. In addition, the proposed

NN estimator can accurately select the optimal CFO candidate under all test cases for

SNR > 0dB, showing a high probability of success (around 100%) as long as the signal
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energy is higher than noise energy. Considering the fact that in real world, SNR > 0dB

is guaranteed under most of the conditions for successful transmissions, the performance

of proposed NN estimator is promising.

5.4.3 CFO Acquisition range

The CFO acquisition range is another dimension for performance analysis. The wider the

acquisition range, the better a MIMO system could survive large CFOs. Similar to Section

5.4.2, the tests of CFO acquisition range are performed in AWGN, flat/slow fading and

multipath channels. As can be seen from Figure 5.12, 5.13 and 5.14 (test case (4) – (6) in

Section 5.4.1.2 respectively), the probability of success of proposed NN estimator stays

around 100% across the entire trained range (−0.5 to 0.5) and all tested channel models.

The only exception is the 2 × 2 MIMO system around −0.3 normalized CFO in which

case the probability of success is about 90%.

For ML based grid search method in a 2×2 MIMO system with AWGN and flat/slow

fading channels, severe degradation can be observed in range [−0.15,−0.05] and [0.05, 0.15]

of normalized CFO. The CFO acquisition range of ML based grid search method is up to

0.25 of the sampling frequency. Therefore, the CFO acquisition range of proposed NN

estimator is twice as wide as the acquisition range of ML based grid search method. In

multipath channel, the coarse CFO estimation process of grid search method is likely to

be a “random selection” within acquisition range and shows a great performance degra-

dation. This observation also verifies that the ML based grid search method in [1] does

not work for multipath channel.

The proposed estimator also has the advantage of being compatible with multipath

channel, comparing to grid search method.

As some other studies conducted in [19], the acquisition range of closed form ML

based fine CFO estimation for flat/slow fading channel is up to 0.25 for 2 × 2 MIMO
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system and up to 0.125 for 4× 4 MIMO system. There are three other closed form CFO

estimators mentioned and compared in [19], and the acquisition ranges of these estimators

are less than 0.05.

5.4.4 Compatibility analysis: channel model and number of anten-

nas

In this section, the proposed NN is trained with data from MIMO systems with different

channel models and different numbers of antennas. From the results shown above, the

proposed NN estimator is adaptive to all trained channel models as well as MIMO systems

with different numbers of antennas. Consider a change of the wireless environment which

results in a change of channel model, the methods derived for specific channel model will

not work. Under this case, the proposed NN estimator may be considered as a better

solution to accommodate the change. Meanwhile, the wide acquisition range of proposed

NN estimator helps a MIMO system survive when it is suffering severe CFO impairment.

With the ability of accommodating different channel models and change of number of

antennas, it can be concluded that the proposed NN estimator has higher compatibility to

different system models, and can easily fit in different MIMO systems if trained using an

adequate dataset.

101



Chapter 6

Conclusion and Future Directions

In this chapter, an overall conclusion of this thesis is addressed. Besides, some future

research directions are discussed, as well as possible improvements of proposed methods

in this thesis.

6.1 Conclusion

In this thesis, we first introduce wireless communication systems and common impair-

ments occur in the systems. Then our research studies concentrate on two common yet

important impairments: interference and carrier frequency offset. The main body of this

thesis consists of four proposed methods to solve the focused impairments. Two of the

proposed methods are for interference alignment and the others are for carrier frequency

offset. Based on the detailed results and analysis in Chapter 5, the conclusions of our

work are drawn and listed below:

1. By designing the dual link rate maximization algorithm in a distributed manner and

prototyping it on FPGA, it is running at least 2 times faster than on a CPU platform.

We implement both fixed-point structure with serial units and floating-points struc-
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ture with parallel units. The floating-point structure has a shorter processing time

and higher accuracy comparing with fixed-point structure while it cannot fit into a

small FPGA such as ZC702 on the ZedBoard. The fixed-point structure has longer

processing time and its error range is wider, but resource efficiency makes it a more

economical solution to realizing our dual link rate maximization algorithm.

2. The proposed hardware efficient SVD architecture consumes less hardware re-

source and can operate on matrices of arbitrary sizes. The processing time is com-

petitive to existing designs when evaluated on an FPGA. The proposed architecture

can be used to accelerate SVD computations in massive MIMO wireless communi-

cation systems.

3. Investigate CFO estimation in MIMO communication systems. The proposed ML

based CFO estimation method is a closed form MLE and has close-to-bound perfor-

mance. Since CFO estimation has significant influences on communication quality

as well as the complexity of a MIMO synchronizer design, the proposed ML based

CFO estimation method is important for MIMO systems where CFO estimation ac-

curacy and time consumption of CFO estimation are sensitive. On the other handm,

the hardware efficient architecture of our algorithm is also proposed. The proposed

architecture is reconfigurable to different pilot lengths, and therefore can accom-

modate various frame structures without changing the architecture. Meanwhile, by

avoiding searching techniques, the hardware resource consumption of proposed ar-

chitecture is reduced hugely and is only related to the number of receiver antennas.

Implementation results show that the proposed architecture consumes only a trivial

amount of hardware resources, and therefore can be easily fitted into small FPGAs.

The achievable frequency, at the same time, allows the system to approach high

data rate.
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4. The proposed NN based coarse CFO estimator is adaptive to different channel

models, numbers of antennas, and shows promising performance on coarse CFO

estimations. Meanwhile, the proposed NN estimator has wider acquisition range,

which helps the MIMO system survive when severe CFO impairment is encoun-

tered. With its promising performance and higher compatibility, the proposed NN

estimator could provide inspiration of designing traditional wireless systems in a

“smarter” way in the future.

6.2 Future Directions

In this thesis, the topics covered in research studies are just a small portion of synchroniza-

tion techniques in wireless communication systems. Therefore, the possible directions of

future research studies are of broad interests in wireless communications. The directions

of our future research studies include but not limited to:

1. Extension of proposed MIMO interference alignment to OFDM MIMO systems.

2. Extension of proposed carrier frequency offset estimation methods to OFDM MIMO

systems.

3. Further investigation into baseband synchronization techniques in single carrier

wireless systems, such as sampling frequency offset, sampling timing offset and

so on.

4. End to end neural network powered baseband transceiver design of wireless com-

munication systems.
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