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Abstract

Computer networking often pushes the limit of available bandwidth. Al-

though bandwidth speed has historically increased 10 fold in recent years,

reusing existing materials to achieve comparable results to installing new in-

frastructure is typically preferred. Moreover, the failure of one high speed link

results in a significant drop in a network’s instantaneous bandwidth. Band-

width aggregation allows for the combining of multiple network links into one

logical interface with the combined bandwidth of the supporting links. This

comes with the benefit of fail over redundancy, allowing the network to adapt

and recover from link failures. This has been achieved at the lowest 3 layers

of the OSI model, with both proprietary and open software solutions in ex-

istence that get the job done.But it has yet to become pervasive in growing

WiFi and WAN networks. Implementations at this level have been proposed

(such as Multipath TCP), only a fraction of which are realizable by the typical

consumer, due to the slow adoption speed of emerging aggregation protocols.

This MQP proposes a new method for bandwidth aggregation, utilize-able

by the typical home network owner. The methods explained herein aggregate

a network of coordinating routers within local WiFi communication range to

achieve increased bandwidth at the application layer, over the HTTP pro-

tocol. Our protocol guarantees content delivery and reliability, as well as

non-repudiation measures that hold each participant, rather then the group

of routers, accountable for the content they download.
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1 Introduction

An influx of bandwidth intensive services over the past decade has placed an in-

creased demand for high speed connections on the shoulders of Internet Service

Providers (ISPs). However, the demand is overwhelming to the typical ISP, which

has to enforce a fair and steady bandwidth between each subscriber in order to keep

the network healthy. It is now common place that ISPs apply traffic shaping rules,

in order to enforce an upper limit on bandwidth alloted to each client. Cellular

service providers, who employ long distance wireless communication channels (such

as LTE) to guarantee Internet coverage to mobile clients, rate limit their clients for

the same reasons.

In urban areas, clients (both mobile users and home owners) are naturally in

close proximity. One can imagine the number of mobile devices crowded together at

a busy bus stop, or the overlap of routers (each with a separate ISP subscription)

within wireless communication range of each other in a city apartment. Combining

these rate-limited neighboring devices can yield download speeds that comes close to

the true sum of the parts. This very idea is enticing to the networking community.

This has lead to a surge of academic works which empirically guarantee bandwidth

aggregation at various layers of the OSI model. However, very few are found in

practice today, and even fewer are practical to the consumer. A great number

of works have focused on aggregating the bandwidth of LTE users into altruistic

communities, which offer higher bandwidth then that of an individual link. However,

in the apartment setting, only a limited number of commercial offerings have been

devised. This MQP seeks to contribute to the latter case.

Existing bandwidth aggregating solutions available to consumers have two short-

comings. Their functioning requires the presence of a special router (for each client),

and they fail to provide strong security guarantees. Our approach leverages the

HTTP protocol in order to aggregate bandwidth between a number of routers, called

peers, in local wireless range of each other. This means that our solution is inher-

ently protocol dependent. However, since web traffic is carried across HTTP, it is

prevalent enough for most use cases. It can be run on any Linux platform (such as

the DD-WRT router firmware), making home installation an achievable reality. Our

solution comes in the form of an HTTP proxy server, targeted to run on a router,

which acts as an intermediary between the client and the router its self. It can be

thought of as the brain behind the aggregation schema, letting the router handle the
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transport of all traffic without having to worry about the mechanisms being used for

aggregation. Further, it safeguards participants from being incriminated for traffic

they unwillingly download on behalf of other peers, through strict enforcement of

non-repudiation. This guarantees that participants in a proxy community can not

be held accountable for traffic they ferry on behalf of neighboring participants.

Our bandwidth aggregation protocol was implemented in Python, and tested on

both real and virtualized hardware, with the majority of our data coming from the

controlled virtualized environment. We found that the bandwidth realized by the

client is close to that of the summed bandwidth of each involved router.

The report is organized as follows. Section 2 provides an extensive overview

of the current bandwidth aggregation client, beginning with its inception in the

late 1990s, up to the modern trends of the past decade. Our initial approach to

implementing the proxy, and explanation of our design rationale is given in section

3. Detailed results of our evaluations, and an overview of the process, can be found in

section 4. Discussion on the various cryptographic primitives and security protocols

adapted for use in this proxy, such as non-repudiation, trust factors, and signature

verification using a public key infrastructure, can be found in section 5. Related

works, and suggested areas for future improvements to our approach, can be found

in section 6.
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2 Background

The practice of link aggregation was first defined in the 802.3-2000 IEEE standard.

It came as a continuation of the work started by a task force that the 802 group

assembled on November of 1997, to address the then disparate trend of link ag-

gregation [1]. They recognized the ubiquity of Ethernet, and that several vendors

already had solutions for aggregating existing physical links to provide a faster Eth-

ernet connection. However, an inter-operable solution was desired. The protocol

they developed became known as the “Link Aggregation Control Protocol”(LACP),

officially as 802.3ad, but later moved to 802.1ax. LACP provides a reliable mecha-

nism for aggregating Ethernet links which implement the same protocol. It allows

for the controlled addition and removal of links from an aggregation group without

disrupting the stream of data frames [2].

One of the core principles behind link aggregation, and this MQP, is cost. Up-

grading to a higher speed link is always an option, but trunking together multiple

existing lower speed links can satisfy most, if not all, of the same needs. This also

provides resilience, since a failure of one link just means a decrease in through-

put, instead of a total loss, as LACP will automatically load balance between the

remaining available links. LACP works well for enterprise network operators who

have access to the necessary physical links and switches, but has a few short com-

ings. LACP is inherently targeted for neighboring physical connections, which can

only be combined through use of additional hardware (namely, a switch). These

shortcoming would become more apparent as demand for high bandwidth wireless

LAN and WWAN grew.

2.1 Heterogeneous Wireless Networks

With the surging popularity of video streaming, high definition media, and online

gaming, bandwidth limits have again become a problem for residential addresses.

Multinode terminal devices (such as smart phones) have the power to actively switch

between Radio Access Technologies (RATs), but few actively use this technique.

Aggregating several RATs, such as LTE and WiFi, would give these devices better

fail over redundancy and increased bandwidth.

Ramaboli et al. present a comprehensive review of the current climate of band-

width aggregation in heterogeneous wireless networks [3]. They identify a number
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of common concerns that various bandwidth aggregation techniques must address

in order to be proficient. Amongst these issues is packet reordering, which becomes

necessary in any situation when items are delivered out of order. This results from

the inherent invariability of link conditions within the Internet. Any response that

travels over different paths will each be subject to differing latencies and delays. It

is an unavoidable consequence of aggregating two separate streams. This introduces

a buffer overhead into the session, which must be absolved by the client, server, or

any intermediary hops along the way (depending on the architecture of the partic-

ular approach). The second issue, battery power, becomes more of an issue on free

roaming mobile devices which aren’t constantly tethered to a power source. This

MQP effectively sidesteps this battery power issue by performing all aggregation

logic on a persistently powered device.

A tenet of successful bandwidth aggregation is the preservation of packet order.

Combining multiple RATs can yield throughput equivalent to the sum of the indi-

vidual lines. This helps reduce load on a particular link by evenly distributing it

over many links, so long as the distribution order preserves packet order. Packet

reordering does not just bloat buffer space, or slow down reassembly at the client

end. Packet reordering outside a certain sequence range will trigger a TCP loss

event, which shrinks the transmission window and negatively affects throughput,

leading to an underutilization of the aggregate bandwidth capacity [3].

Jayasumana et al. suggest a set of metrics to help evaluate packet reordering,

these are Reorder Density (RD) and Reorder Buffer-occupancy Density (RBD). Re-

order Density describes the distribution of out of order packets (normalized to the

number of packets) for any given sequence. Reorder Buffer-occupancy Density mea-

sures the buffer occupancy frequencies normalized to the number of non duplicate

packets. This metric can be good for predicting the amount of resources required

to perform packet reordering [4].

Ramaboli et al. conclude that all wireless bandwidth aggregation techniques can

be pigeonholed into one of two slots, based on how they attempt to circumvent the

need for packet reordering. Adaptive bandwidth aggregation observes various link

conditions in order to smartly route packets of varying size between interfaces. This

would obviously be the preferred method, as it lowers the chances of out of order

delivery. Non-adaptive bandwidth aggregation uses static link selection (such as

round robin) in order to route sub-flows. This can lead to lower throughput when
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link and traffic conditions are not constant (as a result of factors such as jitter) [3].

Bandwidth aggregation has been realized on all network layers except the phys-

ical. The numerous methods at each layer vary significantly in their levels of trans-

parency, administrative overhead, and infrastructure leverage. Each must implement

two basic methods: one to divide traffic over multiple links and one to reassemble

the traffic.

2.2 Application Layer

Solutions for bandwidth aggregation at the application layer have access to multi-

ple outgoing interfaces, and can split the data into several application layer chunks

(as this MQP does with HTTP) which can then be transmitted simultaneously

over these interfaces. However, the aggregation must be application-specific, and

does not provide more general, application agnostic aggregation. Examples include

XFTP, MuniSockets and parallel sockets. XFTP and Parallel Sockets both main-

tain multiple TCP connections over a single interface to any number of distributed

servers [3]. Multiple TCP protocols ( [5], [6]) leverage the idea of parallel sockets for

downloading file portions from distributed servers. This technique alleviates load on

a target server, by spreading requests out to multiple servers (who are assumed to

have the same requested resource). They achieve similar goals to bandwidth aggre-

gation by providing failover redundancy, recovering from server failure by migrating

the remainder of the download to another target. Note that while these methods

do not aggregate multiple network interfaces, they do share some common ground

with this MQP through their technique of parallel segmented downloading.

Mohamed et al. propose Multiple Network Interface Sockets (MuniSockets), a

protocol which performs true aggregation of multiple physical interfaces, maintaining

a separate thread for each connection, on both the client and server end. A counter

is used to compute sequence numbers for each data chunk. Each chunk awaits a

vacancy in the send buffer before it is sent out. Naturally, chunks may arrive out of

order at the receiver. MuniSockets holds these chunks in a reorder buffer until they

can be properly spliced into the data passed back to the client. It uses selective

acknowledgments (in a vain similar to that of TCP) to deal with retransmissions.

Unfortunately, it assumes static, unchanging network conditions, and thus does not

respond to jitter or delays [7].

As application layer solutions isolate modifications to the most infrastructure
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independent layer, they are more realizable in the short term. Although modification

at the client and server is a demanding requirement of application layer solutions,

they are available to end users who are motivated to upgrade. Solutions at other

layers tend to require infrastructure changes on a far wider scale. Due to the ossified

nature of the Internet, realizing most lower layer solutions on a wide scale is an

ambitious and difficult endeavor.

2.2.1 Transport Layer

Transport layer bandwidth aggregation solutions come with an array of benefits.

They provide path transparent congestion control, work transparently between the

application and network layers, and have experienced a surge in research over the

past decade [8]. However, TCP is not inherently optimized for timely delivery,

so using it as a mechanism for aggregation only provides so much gain. Popular

streaming services, which are fairly bandwidth intensive, such as Netflix and Spotify,

use UDP and can not be remedied by TCP protocol modifications.

Multipath TCP (MTCP) has been defined by the IETF in 2011. It extends the

TCP protocol to support multi-homed endpoints (a multi-homed client has multiple

IP addresses). A Linux Kernel implementation of MPTCP has been developed and is

currently undergoing community experimentation, as its popularity grows [9]. Apple

caused a spike in interest in MPTCP by subtly building it into their iOS7 software.1

While it is only used for their Siri service in order to provide smooth Internet access

when one RAT unexpectedly cuts out, it represents the first commercial adoption

of the protocol.

Multipath TCP works by breaking outgoing data from the application layer into

multiple streams that can travel out different interfaces. The MPTCP stack on the

host communicates each available peer address at its disposal to the server, with each

address denoting a unidirectional path to the instance. It also handles separating

each TCP subflow out and gluing returning data from these flows back together, so

they can be delivered to the application. Across the network, these subflows are just

typical TCP connections, which are handled by each hop as they would normally.

This transparency enables MPTCP to work in any situation which traditional TCP

would have worked [10].

1Their technical documentation does not advertise their use of MPTCP, but WireShark captures
reveal that iOS7 sends MPTCP specific requests under certain use cases.
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Stream Control Transmission Protocol (SCTP), has multi-homing support build

in. By default, it only uses one stream (the primary path) per transport direction,

instead of one stream for both (as in TCP). All other available streams are used

when the primary path fails. The collection of SCTP streams are denoted as an As-

sociation, and data packets sent over them are divided into chunks, which may be

delivered out of order. The SCTP stack on the end hosts then handles reordering of

these packets. SCTP [8] enforces a congestion control window similar to TCP’s over

each path, and mimics many of TCP’s default functionality over each of its streams.

Although SCTP was not designed around multi-homing specifically, it provides a

framework for experimental work. Many SCTP variants achieve bandwidth aggrega-

tion, some of which are described in our overview of adaptive bandwidth aggregation

solutions.

2.2.2 Network Layer Solutions

Network layer bandwidth aggregation solutions provide transparency to upper lay-

ers. Unfortunately, they are prone to out of sequence arrivals, which must be handled

while consuming as little buffer space as possible.

The Round Robin packet scheduling algorithm, which runs in O(1) time, is

a simple preexisting network layer approach to bandwidth aggregation. Packets

(assumed to be of the same size) from the same flow are assigned to multiple paths

in a circular matter. The Round Robin scheduler only works so well in theory

because it assumes homogeneous packet size and transmission rate. However, this is

very rarely the case. In realistic scenarios, the round robin approach to scheduling

may limit the effective bandwidth to that of the slowest path [3].

Kim et al. (2008) proposed a bandwidth aggregation scheme which employs two

metrics for scheduling; bandwidth estimation and packet partition scheduling [11].

The former determines the amount of bytes that can safely be transmitted across a

link without triggering congestion. The latter decides how packets can be assigned to

different paths in order to effectively balance load. A partition counter is assigned to

each path, which is used to determine whether the associated path can accommodate

a new packet.

Evensen et al. introduce a method that uses network stripping, a process which

splits traffic over multiple different links, in order to aggregate bandwidth for multi-

homed clients [12]. In order to minimize reordering at the client, they employ a smart
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proxy to buffer out of order deliveries, and delegate packets to different interfaces.

The proxy acts as both a scheduler and delay equalizer. It decides which links to

send traffic through based off of observed throughput. The delay equalizer is used

to mitigate client side reordering, by delaying packet retransmission.

2.2.3 Data link Layer

The data link layer was where earlier solutions to bandwidth aggregation lived. It

was not until the mobile network boom that attempts to aggregate heterogeneous

RATs at the link layer began again. One such realization of this practice is the

Generic Link Layer (GLL) protocol. GLL is a multi access radio architecture that

aims to unite differing RATs under a transparent session. GLL allows for Multi

Radio Transmission Diversity.

MRTD is defined as the data flow split (on IP or MAC PDU level) be-

tween two communicating entities over more than one RAT. This com-

prises parallel transmission, or dynamic switching between the available

RATs [13].

MRTD can select its links based off criteria such as traffic requirements and esti-

mated link quality. However, like many others, this approach to bandwidth aggre-

gation struggles with the issues of packet reordering and unbalanced load distribu-

tion [3].

2.3 Adaptive bandwidth aggregation

The pitfalls of the näıve approach (non-adaptive bandwidth aggregation) manifest

themselves at every layer. Static decision making for link selection ultimately lead

to out of order delivery of differing data segments, which must then be addressed by

packet reordering. Adaptive bandwidth aggregation considers the varying link and

traffic conditions when organizing sub-flows between multiple interfaces. A variety

of these approaches exist, of which Ramboli et al. provide an excellent overview.

At the application layer, Luo et al. [14] split traffic into important and non-

important stream, delivering each stream over a different RAT. Protocols such as

HTTP, which mix important main page objects with unimportant inline objects

(such as photos and advertisements), benefit greatly from this dissection. A small

training packet is sent along each link to calculate the RTT and delays, this is
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done intermittently and allows their implementation to better split traffic between

different links. Splitting traffic into streams is often done with video content, where

a base layer (necessary for decoding the video) is separated from different high level

enhancement layers, which enrich viewing of the video. Each of these streams are

sent over different channels, with the lower layers (starting with the base layer)

receiving higher priority. Here, the base layer is assigned to the most reliable path,

ensuing layers are assigned to the remaining available paths based on their priorities

[15].

Multimedia data transfer over multiple access channels was explored by Kasper

et. al, in an attempt to asses the improvements to video-on-demand playback given

by bandwidth aggregation. They note that startup latency (the waiting time before

the video can begin) and large buffer overheads are amongst the greatest challenges

in progressive downloading over multiple channels. Accordingly, segment size plays

a key role in determining the extent of these challenges. The larger the segment

size, the bigger the buffer requirements. They identify that the number of network

interfaces used as part of aggregation also increase the buffer requirement. This

leads to an issue of algorithmically determining the optimal segment size, in order

to minimize startup latency and buffer requirements [16].

W-SCTP, an extension of the stream control protocol, uses a bandwidth aware

scheduler (implemented on the sending end) to manage subflows across multiple

paths [Casetti and Gaiotto (2004)]. It maintains separate send buffers per interface,

and sends each segment down the fastest one until each path has reached its con-

gestion window limit. This approach does not deal with segment reordering, and

fails to use the vast majority of metrics for optimal link selection.

Also see LS-SCTP, which achieves one logical congestion window made up of

the aggregate of the participating paths. Flow control is separated from congestion

control, allowing each path to have its own congestion window, while flow control

logic happens by association with the session. Data is divided into chunks and

assigned to the best path based on continuously measured channel statistics (such

as bandwidth). The congestion window is closely monitored in order to determine

which path to send a particular chunk across [17].

Arrival time matching load balancing (ATLB) [18], presents a solution to the or-

dering problem. ATLB scores each path by end-to-end delay, and uses this heuristic

(lower is better) to assign each segment to a path. This significantly cuts down on
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out of order delivery, but a reorder buffer at the client must be maintained to deal

with infrequent reordering issues.

2.4 Mobile Devices as an Aggregation Platform

Multi-homed mobile devices (most prominently smart phones) offer a low hanging

opportunity for bandwidth aggregation. With the typical person carrying one ac-

tive mobile device on them at all times, the potential to treat each device as a

hand held router opens up an exciting array of possibilities for intelligent and dy-

namic bandwidth aggregation. Typically, a bandwidth pool between client devices

is achieved through inverse multiplexing. The challenges of this set up come from

the ephemeral nature of the participating community members. A mobile user may

enter a bus with dozens of other users, where a community may or may not already

exist. Another user may exit at the next stop, and the community would have to

adapt to the sudden loss.

Sharma et al. simulate these ideas in order to justify future research in collab-

orative bandwidth aggregation for mobile systems. They devise a system in which

mobile peers dynamically form ad hoc Mobile Collaborative Communities, in which

each member creates a communication channel to the inverse multiplexer (opti-

mally a proxy), which can then be used (partially or in full) by other members of

the community. The summation of these channels can be logically combined by

an inverse multiplexing protocol in order to offer one logical high speed aggregate

channel [15]. Their simulations show that bandwidth increases linearly with each

added participant to the pool [15].

2.5 Non-Repudiation and Willingness to Participate

Sharma et al. pose the question: do mobile users desire to share their personal

communication channels (in a utilitarian fashion)? Once the question of how to

aggregate has been solved, the end user still has to agree to participate. This is

especially the case when aggregation hinges on the participation of a client’s own

device (such as a mobile phone, laptop, or router). Fortunately, user bandwidth is

low cost, and users can volunteer as little as they desire. A good protocol should

prioritize individual user experience, so that one peer can never interfere with the

quality of service of another peer. [15] Optimistically looks at the the success of peer
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to peer services, inferring that users who are willing to share their data will also be

readily willing to share their communication resources. However, there is one final

concern that users should not have to worry about: accountability. There must be

a system in place to ensure that a peer cannot be prosecuted for blindly passing

along malicious or illegal traffic that enters the pool.

Non-repudiation allows us to provide this guarantee. It facilitates liability and

thus self accountability through a guarantee of indeniability for any particular in-

teraction. This can be more clearly illustrated through a message exchange between

Alice and Bob, a quintessential cryptographic metaphor for a sender / receiver. If

Alice sends a message to Bob, who receives it, neither Alice or Bob should be able

to deny their transmission or receipt of the message (respectively). This introduces

the notion of fairness to non-repudiation. In our example, Alice would maintain

a non-repudiation of origin record (proving that she was in fact the sender), and

Bob would hold a non-repudiation of receipt record (proving that he did indeed

receive the message). This essentially guarantees that one party cannot deceive the

other [19].
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3 Approach

A detailed assessment and overview of the optimal design for an HTTP bandwidth

aggregating proxy is given in the proceeding section. We implemented a proof of

concept python implementation, that has been stripped of some of the auxiliary

features described herein, but serves as a foundation which could be extended to

accomplish all of them.

3.1 Core Design Components

Here, we decouple the design logic from our software, in order to emphasize the

important factors which were considered while developing the proxy. These not

only include the questions of how to perform aggregation, but when to aggregate in

the first place.

3.1.1 Determining when to aggregate

Certainly, not all Internet traffic merits bandwidth aggregation. A typical web

request, be it for a JavaScript library or page markup, rarely exceeds the double

digit range in kilobytes. The small overhead given by the inter-router communication

needed for our protocol outweighs the download time of the small packet. A näıve

approach would be to find the response size for every packet, and judge based on

that. The HTTP protocol provides us with a way to do this, using the HEAD

method, which asks the server for only the headers (including content-length) of

the target resource. These requests are very small in size, but still suffer from an

end to end delay between the client and server. Since today’s web pages often

require dozens of resources to be fetched from various locations before a page can

be completely displayed, many HTTP HEAD requests would have to be made, on

top of the standard GET request (used to retrieve the data) in order to load a single

page. For a large number of small requests, the round trip delay of sending a HEAD

request for every packet introduces an unfavorable latency for typical web sessions.

Our solution was to issue all requests in a normal manner, without trying to

ascertain whether or not bandwidth aggregation was necessary before passing the

request to the server. When a response comes back, the content-length header is

always specified, which gives us a better clue of the size of the impending response.

If the dictated size is over a certain threshold, the connection is terminated and the
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same request is issued again, this time in the context of our bandwidth aggregation

scheme.

3.1.2 Negotiating Peer Involvement

Our protocol works by mustering a garrison of neighboring routers (neighboring

herein will be used interchangeably with peers, and will refer to network devices

within wireless range of each other who are capable of running our software) to

farm aggregation out to. In order for a peer to participate, it must be within

wireless signal range of the initiating router, where the connection between the two

is consistent and unlikely to cut out. This elicits the notion of reliability. The peer

must be capable of providing the services requested in a timely manner. Peers who

frequently timeout or drop requests mid session are considered to be unreliable. This

measure requires a good amount of auditing and record keeping to be done by each

router.

Optimally, each peer router would determine how much of it’s total bandwidth it

can commit to the session. If a download session would negatively effect the Quality

of Service the router provides to its own client, then it should opt out of the session.

The idea behind this is to maximize unused bandwidth, while still guaranteeing

the normal amount available to each individual router. Our implementation was

developed as a proof of concept, and does not support this bandwidth estimation

functionality. It is there fore left as a suggestion for future work.

3.1.3 Security and Liability

Our schema utilizes multiple neighboring routers to download differing sections of

the same resource. Further down the Internet pipe, an observer would perceive each

neighbor as requesting the same source. Therefore, any illegal traffic downloaded

using aggregation can potentially be traced back to the owners of each participating

router. This risk must be understood by each participating user. To combat this

concern, our protocol guarantees non-repudiation, eg. an aggregation session can

always be traced back to the originator. This is achieved using digital signatures for

each session, using a trusted third party, and is explained in further detail in our

discussion.
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3.1.4 Request Segmentation and Distribution

This MQP proposes two methods for request division and segmentation. The first

is an adaptive solution, which requires peers to keep track of their own bandwidth

utilization at any given time. When requesting peers for help in a download session,

a peer will respond with the bandwidth they can offer at the time of the request. The

peer would then be given a localized chunk size that is derived from their advertised

bandwidth and the size of the file. In an ideal situation, each peer would finish their

section in a similar interval. The non adaptive solution assigns fixed size chunks to

each router in a round robin fashion, never delegating more then n chunks at a time

(to safeguard against buffer bloat) before the first chunk has been received and sent.

In this approach, chunk size quickly becomes an issue. The amount of buffer space

and memory on the device will play a key role in determining this. On embedded

devices, such as traditional routers, the buffer cannot be to big, due to the limited

memory typically available on these family of devices.

3.2 Deciding on a Device

Originally, we focused our methodology on adopting a single device to implement a

platform specific aggregation solution on. Later, we extended our implementation

to run on any network capable device which can run python.

We narrowed down the scope of our device search to three major families of

devices: routers, single-board computers, and traditional desktop computers running

Linux. The first of the single-board family is the Raspberry Pi. Small, cheap,

and robust, with a personalized flavor of Linux and support for just about any

framework desired, the Pi was an attractive choice. It can be modified to meet a

wide variety of needs, one of which includes emulating a router. The Pi can supports

a growing number of programming languages and boasts 2 GB of free disk space on

the cheapest model. However, with a limited number of outgoing ports (2 USB and

1 Ethernet), the quality of router this device could mimic is not favorable.

Second, a conventional Linux box could have been used. There is a large variety

of network purposed Linux distributions and debian derivatives of various capabil-

ities, which could be installed on any Linux platform. This could enable us to use

multiple network interfaces and a powerful CPU with plenty of memory, which could

perform well as router. This flexibility makes the combination of a robust distri-

bution and powerful hardware a difficult option to ignore. However, this heightens
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the deployment cost if an existing device was not available. Although the goal of

this project is to provide a proof of concept prototype for our model of bandwidth

aggregation, a cost effective implementation would be beneficial.

The third possibility was to use an existing wireless router and flash it with

open firmware that would allow it to be more easily altered. The configuration

options provided by a commercial router out of the box would not allow for low

level modification, and bandwidth aggregation cannot simply be achieved through

altering a few NAT tables, so firmware replacement was a necessity. Because of an

oversight of the GNU public license, Linksys developers were force to make their

WRT-54G drivers completely public in order to comply with the license. This

opened up the door for a variety of hacked WRT firmware variants to be developed,

eventually leading to DD-WRT. A large variety of common commercially available

routers can run this firmware.

DD-WRT is a popular implementation amongst do-it-yourself networking enthu-

siast. It provides a large amount of functionality not present on the original router

firmware, most of which is exposed in its configuration options. While the added

functionality was useful, we were more concerned with the ability to load and run

custom applications onto the router. For this, OpenWRT (a cousin of DD-WRT)

seemed like a better solution.

OpenWRT functions similar to DD-WRT, but it has more developer support and

a livelier community then that of the DD-WRT. It comes preloaded with a package

manager that makes installing custom software easy, which allows for the creation

of C/Python packages and even Kernel Modules. These add-ons can be flashed onto

the router as executables, or bundled with the original firmware image.

After reviewing all the device choices, we decided to use OpenWRT for the

project. Implementing router to router bandwidth aggregation on a router seemed to

be the most straightforward option. But as the project evolved, it became clear that

a router implementation was an end goal, the software which we were to write could

function better on a higher power Linux machine with multiple network interfaces

and plentiful amounts of memory and disk space. The goal was to implement a

software solution that was largely device independent, using an interpreted language

such as Python. This would allow end users to run the software on their choice of

Python capable hardware, be it a flashed router, Linux computer, or Raspberry Pi.
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3.3 First Design Iteration

After choosing to implement the project on routers flashed with OpenWRT, we

began to map out the technical implementation:

1 A daemon will run on each router, monitoring traffic coming through the

router, and deciding (based on some selection algorithm) whether or not to

perform bandwidth aggregation for the request.

2 The router will ask neighboring routers to participate in an aggregation session

for the specified request.

3 The initiating router will then divide the request into a number of chunks, and

distribute them to each neighbor.

4 Each neighbor will download the chunk, and forward the response data to the

initiating router, who will send it to the client.

Our first hurdle was to figure out how to make the routers exchange data to

and from the server, in a way that preserves the router’s credentials. For instance,

if router A sends a packet to router B that is meant for the server that the host

originally requested a file from, B would not know the address of the server, as B

only sees the source address from A, and the destination address as its own. We

quickly realized that encapsulation was needed.

21



Figure 1: Initial plan for router to router communication, using encapsulation and
NAT.

Because the two routers need to exchange information freely, we would have to

open a TCP connection between both routers. This connection would be set up

when a router agreed to participate in an aggregation session. The initiating router

would then send request information (URL of server, the size of the file) to the

participating router, who would then issue its own request to the destination. The

participating router would then set up a mapping, perhaps using Network Address

Translation (NAT), to forward the responses it gets from the server back to the

initiating router, which would then deal with the data accordingly. Eventually, we

came to a model similar to this, in which neighboring routers relay response data

back to the initiating router.
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It became apparent that the core firmware of the router would have to be mod-

ified in order to achieve certain goals. Even the flexibility granted by Open-WRT

would not be sufficient to permit per packet inspection and decision making. The

issue was that we were trying to make routers do something outside of their original

purpose (to agnostically route packets). Per packet inspection, especially at the

application layer, is a task left better suited to a proxy server.

A proxy server acts as an intermediary agent between a client computer and

another server with which it wishes to communicate. We realized that running a

proxy server on each router would give us the authority to do as much as we wanted

with each packet going through the router. For this reason, we examined a number

of proxy solutions.

3.4 Squid proxy

Squid proxy, commonly refereed to as Squid Cache, is a caching proxy server for

Linux that supports a wide array of features. Its behaviors are entirely defined by

a configuration file that gives flexibility to the proxy. The default configuration fea-

tures include URL rewriting, request forwarding, dropping, and redirection, content

caching, and transparent proxying.

For the project to be implemented, the proxy would need to be able to inspect

a packet, create two new requests based on that packet’s headers, and split these

requests up between multiple TCP connections. However, since Squid’s capabilities

are strictly defined by the configuration file, if any functionality was not supported,

then Squid’s source code would have to be modified to accommodate.

Squid enables all of the standard proxying functions: URL rewriting, content

modification, request forwarding, and caching. However, splitting a single request

into multiple smaller requests, a necessity for the project, was not supported. This

left us with a choice to either modify the Squid source code, or find another solution.

After examining the source, we found that the code base was cluttered, and lacked

an active and excited community of contributors.

3.5 Proxying with Python

Python is a popular high level programming language with a standard library that

can accomplish both small and large scale needs. With the language’s focus on ease
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of use and readability, implementing a proxy from scratch was both achievable and

realistic under our time constraints.

Many simple Proxies have already been written in python. A convenient list is

maintained at: http://proxies.xhaus.com/python/. Most of these proxies extend

the httplib python library, which provides a simple interface for setting up stable

HTTP connections. Python also has a native socket library for TCP/UDP flows,

as well as a fair count of other choices for HTTP connections. These libraries range

in scale from pet project to proprietary endeavors, with their power and flexibility

reflecting the needs of the developers.

At the top of these offerings, lies a popularized and well maintained open source

framework, known as Twisted. The Twisted Web Framework is an event driven

networking framework for Python. It allows for a fully functioning HTTP proxy to

be created in less then 20 lines of code. Because Twisted is a programming frame-

work, defining new tools and custom functionality is a simple matter of extending

the existing tools and combining them in a useful way. The source was available

online, acting as a thorough set of documentation. It’s class hierarchy allows its

components to be extended and tweaked to suit any need. Twisted allowed us to

deploy a working prototype relatively quickly, in weeks instead of months.

3.6 Developing a Prototype

We started by writing a simple HTTP proxy server in Python using the Twisted web

framework. After installing the framework, writing a proxy that could perform basic

request logging was simple. This allows us the opportunity to hook into each request,

to determine if aggregation was necessary. This is when peer communication must

be initiated. For this to happen effectively, a clearly defined protocol for router-to-

router communication must be defined.

3.6.1 Peer communication protocol

The participants involved participants will not only exchange response data, but

record keeping and control information needed to keep each peer up to date as well.

We first considered a minimalist approach, in which the coordinating node queries

nearby peers with the URL of the server. If the peers accept, then the coordinator

would send requests to each peer continuously, asking for a different bit of the file

each time. When a peer had replied with that much data, the chunk was assumed to
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be delivered, and was passed to the client. This approach fails on a variety of levels.

What if the peer never finishes responding? How can the peer send control messages

and response data along the same pipe? These questions are best addressed by a

well defined peer communication protocol.

A request is broadcasted to neighboring peers by a coordinator who wishes to

begin an aggregation session with its constituents. This request contains all infor-

mation necessary for a peer to establish a connection to the desired resource. This

includes the URI, protocol, and port at a bare minimum. A peer should optimally

know the size of the file to be downloaded ahead of time, so it can estimate how

much time the session would require of it, and whether that would negatively im-

pact the QoS of its clients. Identification information, proving the source of the

request, must also be provided in the headers. This is achieved through asymmetric

cryptography by encrypting the URL and time stamp of the request with a private

key specific to each router. When a neighbor gets a request, they will attempt to

decrypt using that peer’s public key. If the decryption is invalid, then the peer is

either not a trusted neighbor, or has been spoofed.

An Accept/Decline message is sent by a peer who wishes to participate in a ses-

sion, or to be left out (respectively). For accept, the peer should include the original

URL, as well as a code indicating that they ACCEPT the session. An ACCEPT message

optionally responds with the instantaneous bandwidth that the peer can promise. A

DECLINE message responds with a reason, such as “too busy” or “unwilling to work

for untrusted peer”, which would give the requester some insight into its relationship

with the peer.

Should a peer chose to remove themselves from a session at any time, they may

respond to any query from the coordinator with a DROP message. This message gives

a reason indicating why the peer has terminated its involvement. It may optionally

specify an opt-out duration, so that the initiator does not bother it with subsequent

session requests in the future.

A chunk message requests a specific byte range from the target resource. This

message is passed to a peer who is then expected to either retrieve the data and

pass it back to the coordinator, or respond with a drop request. The response from

the peer indicates the length of the content downloaded, so that the segment can

be properly reordered into the coordinators outgoing buffers.

Since the Twisted framework provides convenient HTTP functionality, we con-
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sidered using it as an underlying mechanism for our peer communication protocol.

We decided that this would in fact be the proper protocol to use, as it is relatively

lightweight, but still powerful and verbose enough to articulate the needs of each

peer during any arbitrary interaction. HTTP allows for non-standard headers to be

included. Any subset of ASCII characters can be included as a header name, which

would allow us to encode any information into the headers.

We realized that when working for a coordinating router, peers act in an isolated

request/response manner, rather then a persistent open stream that need not follow

the request implies response architecture. Since the coordinating router is in charge

of dispatching work for particular file portions to each peer, the involved peer only

needs to know two things: what to get, and where to get it from. With HTTP, we

were able to separate each request that a coordinator would send to a peer, and map

it to its own URL. The outcome is a lightweight API running on each peer. Each

message type is bound to a URL that the peer listens to. It fetches the resource (if

one is requested) for the coordinator and pipes the response back over a persistent

TCP connection opened up when the coordinator requests the /INIT URL. This

connection can be closed by requesting the /DROP URL. The HTTP implementation

allows for the interactions with each peer to be very clear and well known. The

URL format follows that of [protocol]://[IP]:[port]/[REQUEST TYPE].

3.6.2 Role of the Coordinating Router

Since the involved peers act as stateless worker drones, preforming the bare minimum

work required per request (fetching the target resource), it is left up to the initiating

router (known as the coordinator) to manage reassembling the data and pipelining it

back to the client. The very first responsibility of the coordinator is to decide when

aggregation is necessary. The sheer volume of HTTP requests required to load a

typical webpage in today’s modern web, is a double digit number. Each associated

resource is relatively small, and can be downloaded effectively using traditional

methods. Keeping in mind that the startup overhead of our protocol can sometimes

outweigh the time it would take to download a small resource conventionally, the

coordinator will pass on aggregation opportunities for file sizes under a set threshold.

All the coordinator needs to do in this regard, is inspect the content-length of the

returned resource, and compare it against the minimum aggregation threshold.

If the peer is fortunate enough to have many neighbors willing to contribute to
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an aggregation session, it may fine pick a subset of them for optimal performance.

To make an informed decision, the coordinator must maintain transaction records

for a given peer. These records are updated after each session with a peer, and

include information about timeouts and disconnects, as well as the validity of the

data. From these records, the coordinator can infer if a candidate peer is likely to

disconnect or deliver false content.

In order to be certain that each peer is in fact sending back truthful data, the

coordinator must verify a small subsection of each request with the actual resource.

This would be done by concurrently issuing a request for a small range of bytes

from within the dispatched request, and comparing it against the response from the

peer. This introduces a number of caveats when dynamic content comes into play.

There are a variety of factors that could influence false verification. The server its

self could lie, or send back updated content, or a CDN could send cached content

older then the original request. An accusation of lying is a time consuming process.

The coordinator also handles dividing the request into appropriately sized chunks,

and distributing them to both its self and peers in a round robin fashion. To do

this, the request size is examined, and an appropriate static range size is determined

(based off of buffer availability of the platform, and the size of the request). A queue

of totalsize
chunksize

chunks are created. Each time a peer (or the coordinator its self) is ready

to retrieve more content, a chunk range is popped off the queue. Chunks that are

never retrieved are inserted back on the head of this queue, so they can be made

up immediately. Additionally, the coordinator has to buffer chunks returned by its

peers, and transmit them in the correct order back to the client.

Finally, each coordinator is responsible for downloading portions of the file as

well. It must first modify the response headers given back by the first segment, so

that the client sees it as a full request (instead of a partial-content response).

Pycrypto, a Python cryptography library, can be used to generate and store

public/private key pairs to be used with the RSA system. These key objects can

be exported/imported to/from a file, allowing the keys to be passed between nodes.

Each participating node holds a mapping between neighbor IP addresses and public

keys. This is indexed whenever a request from a peer router comes in. Their

corresponding public key is loaded in from the table and used to verify the message’s

signature. This signature is produced by the initiating peer in the following manner.

First, the URL of the target resource is hashed using the MD5 algorithm. The hash
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is then signed with the senders private key. As long as the private key has not been

compromised, the signature can act as non-repudiative proof of origin.

In the case that a participant’s private key has been compromised, then poten-

tially anyone could have signed the message. To counteract this, a third router

(separate from the sender and receiver) is involved. This router acts as a notariz-

ing agent, who adds a timestamp to the original signature, and encrypts the newly

combined message with its own private key. This is sent back to the sender, who

finally forwards it to the receiver, along with the necessary information to decrypt

it (namely, the IP of the notarizing router).
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4 Evaluation

We conducted an initial evaluation of our prototype on virtualized Linux machines.

A physical evaluation was later performed using real hardware. Our network setup

is modeled after that of a small apartment complex, in which each resident’s router

is assigned a limited bandwidth by their ISP, but can communicate with neigh-

bors in its subnet relatively quickly. Playing the role of an ISP, we capped the

downlink bandwidth on each device using a Unix command geared towards traffic

control (aptly named tc). Each VM was outfitted with a number of network in-

terfaces (NICs) in order to logically divide the communication channels that were

in use. This allowed us to make isolated changes to one interface without affecting

networking performance for the entire machine.

Each router has two network interfaces, one for communicating with each other,

and one for communicating with the server. We outfitted a VM with Apache Web

server in order to emulate a typical server. Unix’s powerful traffic shaping utility,

tc, comes with robust queuing functionality which allows upload limits to be en-

forced very deterministically. However, shaping download bandwidth rates proved

problematic and performed too unpredictably for a suitable evaluation environment.

Bandwidth limiting (in a vane similar to that of a typical ISP) was achieved by ap-

plying upload rate rules to each client that contacts the server. A static configuration

allowed each router VM to have a separate tc queue on the server with an associated

outgoing bandwidth limit. Each router communicates with each other over another

network interface, which emulates a local wireless connection (between apartment

rooms). These interfaces can further be rate limited in order to better represent the

wireless bandwidth of a typical 802.11 a/b/g router. For our tests, we chose to limit

these connections to 54mbps, as it is closer to the bandwidth that the typical home

router of today provides.
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Figure 2: Our virtualized test suite

Initial evaluation results were promising. Our baseline case consisted of two

routers, each with a 10mbps throttled connection to the server, and an unthrot-

tled (near instantaneous) connection with each other and their clients. Using a 40

Megabyte test file, downloaded in 1 Megabyte chunks, the total download speed (re-

alized by the client) was close to being doubled, at 18mbps. A significantly smaller

test file of 7mb yielded speeds of 17.3mbps, suggesting that the small overhead

induced by our aggregation techniques is diminished with larger file sizes. After ex-

tensive testing in our controlled virtualized environment, we found that the realized

bandwidth of the client converged towards 90% of the combined offered bandwidth

of each router.

4.1 Effect of Chunk Size on Realized Bandwidth

Our algorithm for aggregating bandwidth works by segmentally downloading a tar-

get file in consecutive chunks of a fixed size. As the size of the chunk (relative to that

of the file) directly determines the number of requests which must be sent to the

server (then processed by the proxy), we sought to find a desirable chunk size which

would accrue as little overhead as possible. Since our target environment (embedded

Linux systems) have limited memory, we chose an upper bound of 32mb, as larger
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chunk sizes would quickly exhaust buffer space. Bandwidth gains increased loga-

rithmically with respect to chunk size. However, gains actually shrank considerably

when using chunk sizes larger then 5mb.

Figure 3: Average bandwidth with respect to chunk size. Three routers were used,
with their server connections fixed at 10mbps

On the opposite end of this spectrum, lies the invariably smaller chunk sizes (of

less then 100kb). We found that chunk sizes below this limit yielded poor download

times. The minimum test chunk size used was 1kb, which produced results far

less then the offered bandwidth of a single router, even when multiple routers were

used in aggregation. For this chunk size, the realized bandwidth was a tenth of a

percent of the offered bandwidth from the pool. Using 10kb, the overheads were

less pronounced, at 21.5% of the offered bandwidth. Using 100kb chunks produced

a combined bandwidth that was 75% of the theoretical offered bandwidth of the

participating routers.

31



Figure 4: Growing bandwidth for smaller chunk sizes.

Further investigation of the lower chunk ranges showed a steep logarithmic raise

as chunk sizes grew from 1kb to 1mb. Increasing the chunk size past 1mb garners

only fractional throughput gains, and presents a greater risk to buffer bloat. Chunk

sizes less then 60kb did not perform better then a single router would have without

involving peers. After 80kb, the observed bandwidth began to grow, showing sub-

stantial gains, up until the megabyte chunk range, where it leveled off (as illustrated

in Figure 4.1). For this, we concluded that a lower bound on chunk size of 100kb

was necessary in order for aggregation to become practical, and note that optimal

sizes range between 400kb and 1mb.
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4.2 Real World Tests

After gathering conclusive data through our virtualized test suite, we conducted

a brief proof of concept test using real hardware. We ran Ubuntuu 12.04 desktop

on two PCs, each equipped with USB Wireless NICs. These dongles allowed us

to create wireless inter-router communication, so that our real world tests came as

close to replicating the router environment as possible. Since we were limited to

only two machines, each computer had to take on a double roll in the tests. Each

acted as a router. One doubled as a client, the other doubled as our server. The

latter ran a local instance of Apache Web server, and used a special module to rate

limit connections from each client to a specified throughput. This allowed us to

enforce per-connection bandwidth constraints.
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5 Discussion

Devising a proper approach to bandwidth aggregation at the application layer spurs

a plethora of discussions, some of which are unique in scope to this paper. As far

as these authors know, no existing works in the field of bandwidth aggregation take

the issue of security as seriously as this MQP attempts to do. This is partly due

to the OSI layer in which our aggregation protocol operates (the application layer).

Solutions which operate at lower levels of the protocol stack only have to worry about

optimizing the routing of transport and network layer segments. Our software makes

application layer decisions based off of the nature of the resource being requested,

allowing every router to snoop on the traffic that it helps its peers download. The

implications of the inherent man in the middle nature of our software, are discussed

in the coming sections.

5.1 Rationale for various Design decisions (and their alter-

natives)

We identified a number of key design points involved with our software. This sections

attempts to highlight both the naive and optimal way of approaching many of our

design problems. We note that the finished software implements the former in most

cases, but could be extended to achieve the optimal approach for each design case.

5.1.1 Packet Segmentation Algorithm

We first devised a näıve approach to splitting up the work for a particular file, which

works as follows. Given a peer network of n routers, give each router: FILESIZE
n

.

However, different routers download at different rates, so the file download is not

complete until the slowest router has downloaded and transmitted its chunk back

to the host. The effective download time becomes a function of the download speed

of the slowest router. A better approach is to divide up the file into chunks using a

relation between individual router bandwidth and total pool bandwidth.

A consideration to keep in mind is that the host router may not be directly

connected to each available peer, and certain peers may be connected to each other

better then the host router. It could be the case that the host has 3 peers, who

each have 3 other peers in wireless communication range. When the router splits up

these chunks, the advertised bandwidth of a router that he is directly connected too
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should reflect the average bandwidth of all of that routers peers. So if A connects

to B, who has 2mbps of bandwidth, but B can talk to C and D, who each have a

10mbps connection, B could advertise to A that his bandwidth is

B + C + D

3
mbps

. This will help A more accurately decide how to manage the file segmenting. When

B is passed this chunk, it can do the same with each peer in his network. However,

this only works to a certain degree,

The problem of overlapping neighbors does immediately become an issue. This

would be addressed at the implementation level. The host could generate a random

session key, and pass the key along when it communicates with its neighbors during

the negotiation period. Each neighbor will store this key, and until a cancel request

is sent from the host, the router will reject any negotiating requests whose key

matches their stored key. This way, a router will not commit its bandwidth too two

different neighbors on the same file download.

Pseudo code of the algorithm:

for all peer in neighbors(host) do

netBandwidth← netBandwidth + peer.bandwidth

end for

for all peer in neighbors(host) do

Chunkpeer ← peer.bandwidth
netBandwidth

× fileSize

end for

for all peer in neighbors(host) do Delegate Chunkpeer

AmountRemaining ← AmountRemaining − Chunkpeer

end for

Issue HTTP GET for AmountRemaining

5.1.2 Boundaries on segment size

There are a number of pitfalls that this type of segmentation produces. When a

file is downloaded in one session under normal conditions, the round trip time for

the request (reaching the server, getting the first response) has a negligible impact.

As TCP’s AIMD pattern begins, an appropriate window size is established and

transmission time smooths out. Fortunately, the TCP overhead can be amortized
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because HTTP 1.1 uses persistent TCP connections, so the setup only has to happen

once for each peer, just as with a normal download.

The round trip delay (RTT), while negligible for single session downloads, presents

an issue when the download is broken into segments. The RTT overhead is applied

to each segment request, for each peer. This gives the following relation:

Overhead =
filesize

segmentsize
∗RTT

The overhead grows as segment size decreases, so a larger segment is desirable. This

presents a problem for devices with limited buffer space. For example, a typical

home router will have anywhere between 1 and 32MB of buffer space to spare. This

is because the router has to buffer the request data in RAM, where its firmware (pre-

sumably OpenWRT, as well as our program) also resides. To use all the available

buffer would exhaust buffer space, leaving it with little room for other applications

and ultimately leading to congestion at the link. As such, a fraction of the buffers

total space should be used. Clearly, we need to optimize for lower buffer consump-

tion. This means that each router can only download a set amount at a time, and

must wait until the client is ready to request more. This idle time should also be

considered. Fortunately, the overhead is outweighed by the gains of downloading in

parallel, especially when multiple other peers are involved.

In our implementation, we used the näıve approach, and aimed for smaller chunk

sizes, that could be held in a queue on the coordinating router without using an

excessive amount of RAM. One might imagine a target resource as an array of

contiguous, fixed length chunks, which are allocated to peer helpers on a first come,

first served basis. These chunks are written back to the client, in order, as they

come in.

5.2 Security Goals

The biggest problem with our approach to bandwidth aggregation, is that it puts

the end client in control. Our chief concerns are data integrity and download liabil-

ity. The former can be achieved through an implementation of the zero knowledge

protocol, the latter is addressed with a digital signature exchange, using asymmet-

ric cryptography. In addition, the goals of availability and confidentiality will be

considered. Availability is by far the most important factor, as a disabled router
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will certainly lead to quality of service concerns on the client end. Confidentiality

is certainly desirable, but difficult to achieve in our case, as the operator of a peer’s

router has the right and power to view any traffic allocated to it. From a security

standpoint, any peer can be thought of as a required man in the middle, who’s

presence must be tolerated for the sake of the aggregation.

The easiest scenario to envision for accessibility issues is that of a denial of

service, instigated by a peer. If a peer could simply demand bandwidth from its

neighbors endlessly until they were no longer capable of serving their own clients,

then accessibility is certainly breached. For this reason, peer routers volunteer at

will to join aggregation sessions. If a client on a peer’s network suddenly demands

more bandwidth, the peer may opt out of the session, and the initiating router will

react accordingly. The routers will listen on a shared TCP port, which any peer

may close themselves if they wish to opt out of bandwidth aggregation (in either

direction).

Blindly accepting file data from a peer router would certainly be a huge security

hole. As the data being sent back to the client is stored directly to their hard disk

(presumably with the pretense of being accessed very soon) a corrupted or perni-

cious file in the guise of meaningful content could cause havoc on the compromised

computer. In cryptography, the Zero Knowledge Proof [20] is a technique in which

two parties, a prover and a verifier, exchange and verify the truth of a piece of data

without the use of external information. In the case of this MQP, the coordinator

(the verifier) must check segment data coming back from each peer (the prover) for

validity. To do so, the coordinator will choose a random section of bytes within

the range of the segment range it asked the peer for. When the peer responds, it

will check the response against the verify bytes that it downloaded its self, rejecting

the response if the bytes do not match. A malicious peer has no way of knowing

which segment the coordinator will check, so the possibility of being caught out-

weighs the small probability that the attacker correctly guesses the piece that the

verifier will choose2. The peer has no choice but to send the legitimate segment.

This is both a secure and easy to implement solution, with only a small degree of

additional overhead. The RTT for each segment is now doubled, as two requests

must be made to the server, but these requests would reuse the TCP connection

2With a segment size of 1000 bytes, and a verification size of 4 consecutive bytes, the probability
of both the verifier and prover choosing the same sequence is 2.006× 10−9, which is small enough
to be considered secure
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already established with the server for normal chunk downloads, which mitigates the

impact of the overhead. The overhead is certainly a concern, but can be alleviated

by decreasing the rate of verification as peers become more trusted. The coordinator

could dynamically back of and only check a few times per session. The potentially

malicious peer still has no way of knowing if the coordinator will verify any given

transaction, so the zero knowledge principle can be assumed here as well.

While our application of the Zero Knowledge protocol works well in theory, it

makes two dangerous assumptions, namely, that the content being verified is static

(at least within the window of verification), and that the server is truthful. The for-

mer issue may be overlooked, when one assumes that most large file downloads are

static. But this assumption limits the application of our software to resources con-

forming to this type, a facetious endeavor by all accounts. Internet video streaming

is a paragon of dynamic web content. Streaming sites, such as Netflix, determine

an optimal video quality for each session, in a similar way to TCP’s congestion

control. This means that content downloaded before a quality increase is helpless

to be verified after one. Now, we have an added level of complexity to the seem-

ingly straightforward verification process given by the Zero Knowledge proof. To

complicate things even more, we may consider the case where the host server is

untruthful. Suppose the server is asked for byte range 200 through 205, but really

returns bytes 205 through 210. The verifier would again mistakingly incriminate the

prover, when in fact, the server had been the cause of error. For these reasons, the

verifier can at best only speculate the truthfulness of the prover. To ensure greater

accuracy when verifying peer requested content, a more elaborate approach would

be required. The increasing complexity behind properly verifying dynamic content

introduces a processing overhead which can only be endured offline. The result of

these post mortus evaluations would contribute towards an expanding trust factor

for the peer in question, helping to mitigate future offenses.

5.2.1 Trust Platform, and Reliability

Trust is fuzzy since trust is imprecise and vague. Trust is dynamic

since it is not stable and it changes as time goes by. Trust is also

complex since different ways are possible for determining trust. [21]

For the sake of this MQP, we define trust as follows. Trust is a quantified belief

held by a peer, which is formed through the observations and recommendations,
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with respect to another peers ability to complete a particular task successfully.

It is important in our aggregation model, that participating routers have a well-

founded trust established between each other. For example, a peer who is caught

sending virulent data should be subject to significantly more skepticism then a

peer who has no violations. Similarly, a peer may not wish to involve its self in

a session that an untrusted neighbor is initiating. A security trust relationship is

needed, and it must be dynamic and responsive. Selecting peers with desirable

resources (bandwidth) and trust can be achieved in a variety of ways. While in

certain scenarios, a trusted third party could alleviate some or all of the pressure

involving trust calculations, we are unable to make use of it. The trust model must

be dynamic and self regulating. A reputation based model could be used, where

peers seek information about the quality of past experiences other peers have had

with a untrusted peer, evolving into a semi-complex who-trusts-who social network.

All of these demands are present in the peer-to-peer (P2P) network model. We

looked to this field for answers and insights into how we might go about developing a

trust model for our protocol. As it turns out, this is an open area of research in P2P,

so there was a great collection of data to check over. One such model employs data-

signing in order to verify how credible data coming back is. Peers who have more

valid data-signatures are deemed more trust-worthy. This is a popular approach

to trust in file sharing P2P applications. In larger P2P networks, a single client

cannot possibly interact with every other node itself in order to evaluate trust. This

puts forth the need for a reputation based trust model, where a peer evaluates the

trust level of another peer through the claims of other peers who have interacted

with the peer in question. Xiong et al. identify a number of other concerning

characteristics of the reputation model. For instance, if the feedback mechanism is

not incentivized, then a peer being asked for information regarding its experience

with another peer may simply lie, and poison the asker’s understanding of the peer

in question. A peer may also discreetly raise and lower trust by preforming many

small transactions truthfully, in order to build sufficient trust to be involved in a

larger session, which it may then lie about (a sting operation) [22].

Xiong et al. introduce an elaborate approach that attempts to fix most of the

outlined problems with a reputation based model. This includes feedback scope,

which adds a context to the feedback (was the interaction trivial or monumental),

as well as credibility factor for each peer, which is used to asses the trustworthiness
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of a feedback provider [22]. For our application, the reputation model may not

be necessary. In the practical sense of our application, there will likely be a small

number of peer nodes in a single wireless bandwidth pool. Further, since each

peer is within a somewhat close proximity, and each peer is maintained by a real

individual (the router owner), it is less likely that either a peer or its owner will never

interact with another peer. However, if we assume a more optimistic level of adoption

(where every router on an entire city block runs our proxy), then a strong reputation

model again monumental. Where we to do one, it would likely work as follows: at

the end of an aggregation session, the coordinating peer would broadcast its peer

feedback report to all peers involved in the session, so participants would gain a

better understanding of other participants who they were not directly involved with.

The benefit here is that a malicious peer can be identified immediately. However,

the downside is that the coordinating peer has too much power. It can easily lie

about any interaction it had.

Accumulating trust through record keeping is a reliable method, but falls short

because due to its slow start methodology [23].Our bandwidth aggregation schema

is more static, in that neighboring peers who involve themselves are likely to be

in a relationship for a long time. A real world example to relate would be that of

a new neighbor moving into an apartment complex. Suppose that some or all of

the residents in this complex are using the bandwidth aggregation model described

herein. If the new neighbor wishes to join in, the other routers will at first be wary,

possibly choosing to include him in only a subset of interactions. But once trust

has been built, it will pervade until the peer performs a malicious action, or the

peer router’s owner moves away. Since new nodes are not continuously swapped

in and out on a daily basis, a local trust model should suffice for our application.

However, this slow start trust accumulation could be averted if the operators of

the participating routers already have a firm mutual trust with each other. This

hinges on the climate in which our protocol is deployed, as no assumptions about

the connections between operators can be made.

These trust calculations can be modeled mathematically. One approach, sug-

gested by Medic et al., is to represent a peer’s trust factor as a tuple of Trust and

Untrust. Mathematically F = [T, U ], where T = Trust, and U = Untrust. The

benefit of this model is that differing weights can be assigned to each trust factor

component. A weighted average could be simulated, if T = Trust ∗ TrustWeight
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and U = Untrust ∗ UntrustWeight.

In our protocol, it may be the case that a peer who misbehaves in the past

corrects themselves for all future interactions. In such a case, their past violation

should only count as a minor offense, and not hurt their trust factor for the rest of

their existence. This desire suggests a weighted average of each trust factor, between

past and recent interactions. Past interactions would be weighed less heavily when

computing a peer’s trust factor, whereas recent interactions (within the past 12

hours) would be assigned a heavier weight. This allows for a peer’s trust to evolve

with their actions, and scale off better recent behavior. Each trust value will be

within the interval of [0,1].

Leveraging Xiong et al.’s approach to trust computation, we chose to store trust

on a transaction level. Here, a transaction represents one download session held

between a coordinator and a peer. The transaction will hold the computed trust

factor for that session. Ideally, the value will be [1,0]. However, if the peer made

any untrustworthy actions, the second value (untrust) will be higher, resulting in a

lower trust value. The trust factor metric is computed by the summation of each of

these transactions (with a higher weight assigned to more recent transactions, good

or bad). In their PeerTrust model, Xiong et al. model feedback that the coordinator

has with peer u from transaction i as S(u, i). We will use this normalized amount of

satisfaction for the formation of our trust factor score. Note that I(u) denotes the

number of transactions the coordinator has had with peer u, W (u, i) denotes the

weight assigned to the feedback the coordinator has had with peer u at transaction

i (based off the time of transaction), and R(u, i) denotes the untrust feedback from

transaction i with peer u. With this information, T (u) (trust) and U(u) (untrust)

are calculated as follows:

T (u) =

I(u)∑
i=1

S(u, i) ∗W (u, i)

I(u)
, U(u) =

I(u)∑
i=1

S(u, i) ∗W (u, i)

I(u)

Once the metric has been computed, the trust making logic is fairly simple. If

T (u) > U(u), then the peer is trustworthy. If not, the peer cannot be trusted. Since

trust is just one of the many metrics that will go into peer selection, simply assessing

trust on a binary level is sufficient.

Given this formula for averaging trust, we still must add one more vital compo-

nent before a score can be derived, the trust value. In examining multiple papers
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on P2P trust analysis, we found a number of terms and considerations that need

be introduced. With unforgeable identities (in our case, private keys generated by

a trusted central source), it should be difficult for a peer to erase their given iden-

tity (and reputation associated with it) and begin anew with a fresh identity. Such

a peer could use this technique, known as whitewashing, in order to rebuild their

reputation. This is an issue in systems where new peers are trusted from the start.

Stakhanova et al. present a through outline of Trust information, in terms of

what is gathered and how it is scored. The transaction quality can be modeled as

positive, negative, or a combination of both. They note that a versatile model will

consider both, as relying on only negative feedback may lead to wrongful elimination,

while relying on only positive can allow malicious peers to fake benevolence [24].

Trustworthiness can be modeled in multiple ways, where the chosen method is

entirely dependent on the needs of the system. Some P2P systems, such as XREP

and Travos, store trust as a binary value, meaning that the transaction was or was

not satisfactory [25]. The converse approach is to model trust as a discrete value on

the scale of [0,1], allowing for partial trust to be modeled [24]. In many systems, it is

important to record the time of the interaction. This allows recency to be factored

into trust decision making, like giving less weight to older values. Recency allows

past mistakes to be redeemed by continuous good behavior.

Different approaches to transaction storage will yield different trust values. The

memory efficient approach would be to store one average record, and update each

component on a per transaction basis. This has great appeal on devices with low

memory (such as routers), but it sacrifices the elements of recency that help con-

tribute to a more accurate understanding of the peer’s trust. However, storage

requirements in this scenario increase linearly over time as the number of peers in

the system grow.

Stakhanova et al. note that in cases where a few well known peers interact with

each other often, storing trust locally is sufficient for each of them to make decisions.

This obvioulsy doesn’t scale for applications with millions of participants. This

project will adopt the former approach, as the number of involved peers are limited

to a finite local wireless range, which would not typically exceed more then a dozen

peers [24].

How do we compute the actual trust calculation? The smallest scale we can start

on, is at the per-chunk level. Selcuk et al present a solution that uses a bit-vector of
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m interactions. The bits are either 1 or 0, when the data is authentic or inauthentic,

respectively. For our project, each peer has a chance to verify every chunk that is

sent. The bit vector could hold m bits, where m is the number of chunks verified. As

trust grew, m could become smaller and smaller, reducing the verification overhead.

The overal trust from a transaction is computed by treating the m significant bits

in the vector as a signed integer [24].

m− bitvector

2m

Dividing by 2m produces a score on the interval of [0,1). This score can then be

stored in the transaction record, and used in the averaging function mentioned

above. The benefit of the system is that it accumulates a continuous trust value

from many binary transactions. When a file is verified, it either passes verification

or fails. Selcuk et al also provide a formula for calculating the inverse of the trust

value, distrust [26]. The method is the same as with trust, except that the m-bit

vector is inverted (isolating the failure cases). During a download session, a running

value of the distrust could be kept, so that once a certain threshold is reached, the

malicious peer can be dropped. An isolated distrust value allows us to apply our

own weight to distrust, so that a inauthentic response can be weighed more heavily.

5.2.2 Responsibility with Asymmetric Cryptography

Since bandwidth aggregation is often used as a means to accelerate download speeds

for large files, some considerations regarding these very types of files arise. Large files

can be many things, such as a computer application, a compressed music library,

or video data. All these cases are susceptible to copy right infringement due to

illegal download. This scenario introduces a key problem concerning each peer. If

a client wishes to download copyrighted material illegally, and aggregation is used,

each peer router’s owner is liable for the infringement, not just the client. This is

explained in the legality section of this paper. Since it is impossible for each peer

to asses the legality of a file being downloaded, there is little that a peer can do to

prevent themselves from incriminating their clients (the network owners).

If a peer router maintained a log of each session that it participated in, which

could definitively map each request made back to the coordinating host, then the
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peer could deny their liability in the implication, at least to some extent3. If the log

file could be falsified or changed, then it would not be valuable evidence. Thankfully,

asymmetric cryptography provides a way to map each request back to its originator:

digital signatures. Commonly referred to as public key cryptography, this crypto-

graphic algorithm works by using two keys or signatures to encrypt or decrypt a

piece of data. One key is made public, while the other is kept private. These two

keys are intimately tied to each other. If the private key is used to encrypt a piece

of data, only the associated key can decrypt it. Conversely, if the public key is used

to encrypt, only the private key can decrypt. The former allows a piece of data to

be definitively tied to the owner of the public key that decrypts it. If the decryption

fails, then the message was not encrypted by the owner associated with the public

key. In the latter situation, when the public key is used to encrypt, then only the

owner of the associated private key may decrypt, so one and only one person can

read the data.

Implementing a fair non-repudiation protocol usually requires the presence of

a trusted third party (TTP) [27]. It’s involvement can range from frequent to

sparing, being required for every request, or less then once per session. The extra

communication and computational overhead caused by a TTP are hard to ignore. Its

involvement can introduce a bottle neck in communication, and its trustworthiness

is difficult to calculate [19]. A TTP that involves its self in every interaction between

Alice and Bob for a given message exchange is said to be inline. An online TTP only

has to intervene a single time per exchange, avoiding unnecessary communication.

A TTP is said to be offline if its involvement in a session is conditional [19]. An

overview of some notable TTP based non-repudiation protocol proposals follows.

Zhang et al. devised a system in which the TTP broadcasts session information

assigned to each message exchange to a publicly accessible board or web page [27].

In our scope, the TTP could be any other router, and it could publish the session

information to a central server which stores the information. The downside is that

the records must be stored indefinitely, so the disk space will grow indefinitely [28].

Zhou et al. propose a non-repudiation protocol which uses an online TTP to

complete the non-repudiation process. The message exchanged between Alice and

Bob is split into two parts; a key K, generated by Alice which is sent to the third

party, and a commitment C (produced by encrypting a message M with K). The

3As no such case of copyright infringement by one party using multiple routers has occurred,
there is no precedent to cite, so the outcome of such a trial is difficult to predict.
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protocol begins with Alice generating K and a session label L. The non-repudiation

or origin and receipt messages are produced by signing a concatenation of the re-

ceiving router’s IP, L, and C with the senders private key. She then sends her non-

repudiation of origin message to Bob, who then replies with his non-repudiation of

receipt message. Bob cannot read M without first retrieving K from the TTP. Alice

then sends K,L,and the IP of Bob, encrypted with her private key, to the TTP. The

TTP decrypts this 3-tuple and logs the information to a publicly accessible place,

affirming Alice’s proof of submission of K. Next, both Alice and Bob request a

confirmation of K. This is the combination of both Alice and Bobs IPs, K, and L,

encrypted with the TTP’s private key. Alice simply logs this information, and Bob

uses the retrieved key K to finally decrypt the original commitment C, producing

the message M [27].

In this case, when Alice attempts to dispute sending a message to Bob, Bob

will be able to prove she is lying, provided he has the information from above. A

judge would have to examine the confirmation of K sent by the TTP, as well as the

non-repudiation of origin message originally sent to Bob by Alice. The one case that

this fails is when Alice claims that her key was compromised, and that the signature

on all of her messages was used by someone else [27].

The integrity of the key pairs used for signing and verifying a message is of

utmost importance. If a key is compromised, a non-repudiation protocol must be

able to determine whether a signature was generated before or after they key was

compromised. The straightforward approach would have Alice and Bob include

a timestamp in their exchange, acting as evidence of the date of the interaction.

Booth points out the issues with traditional public key encryption when used with

time-stamps for non-repudiation.

if A’s secret key is suspect, it makes no sense to rely upon a timestamp

which has been included in a message whose authenticity is attested to

by that key. Any malicious agent (possibly B or even A himself) could

easily concoct, timestamp, and sign such a message at any time after the

supposed compromise and no one would be the wiser. [29]

Booth proposes a TTP who acts as a notarizing agent [29]. The TTP, acting as

an authenticator, will append their copy of the sender’s public key to the message,

and sign it with their own. This practice is similar to that of a Notary-Public.

Popek et al. proposed a similar system which also incorporates timestamps into
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the notarizing agent’s contribution. Here, Alice first sends her signed message to

a notary TTP who adds a timestamp and then encrypts the message with their

own signature. Alice appends the relevant information (about the Notary whose

private key was used to encrypt the message), and sends it to Bob [30]. They point

out that while using a single TTP as a notary adds substantial resilience to denial

arising from compromised keys, the system can be exponentially enhanced with the

addition of more notaries for each request.

In the case of a compromised or revoked key, the time-stamp of a particular

exchange must simply be compared to the date of revocation in order to verify

whether the signing key was strictly private at the time of the interaction. We

could modify the fair non-repudiation protocol devised by Zhou et al. to include

this measure. The TTP could time stamp each interaction it coordinates, storing

the time T along with the session key and commitment message. When Alice and

Bob retrieve the key for their own purposes, T would be included so that all parties

have a copy of the time stamp. In situations where a dispute arises, the Judge can

simply compare the timestamp to the last known instance of the compromised key’s

validity.

For our protocol, every peer could distribute their public key to each neighboring

peer. The RSA cryptosystem could then be used for signing and verifying the

message data. The sending peer would hash the original message, then sign the hash

using their private key, and the RSA encryption method, and attach the computed

hash as a HTTP header in the request. Each peer who receives the request simply

has to match the sender’s IP to their public key, and use it to verify the signature.

This signature information could be logged to a file, along with IP, time stamp,

port, and URL requested and used in all subsequent HTTP headers, so that the

originators identity is preserved. The pycrypto library provides all the necessary

functions to accomplish this.

For a trial prototype, storing a text file of the IP to public key mapping is

sufficient. For full scale deployment however, this fails to suffice.

5.2.3 Peer selection by a variety of metrics

So far, we have discussed a few ways to evaluate and choose between peers. The

decision is not one to one, a coordinator must asses a given peer by a variety of

metrics. These include estimated bandwidth, connection strength/reliability, and
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trust factor. But there exists a balance between speed and security. Certainly,

a peer that is well trusted and has a high estimated bandwidth would be a good

candidate for an aggregation session, but the two factors might not always balance.

The coordinating peer must decide between a fast peer who is untrusted, and a

slow peer who is well trusted. Although the goal of bandwidth aggregation is speed,

we cannot ignore the inherent need for a secure system. So in the aforementioned

scenario, an untrusted peer would not be picked.

Reliability is another factor that will influence peer selection. Peers will be

monitored for timeouts. If a peer fails to response to a resource request within a

dynamically computed threshold (expressed as a worst case download time), the

peer will be dropped for the session. After the session is ended, the number of

timeouts the coordinator experienced with that peer will be recorded.

Network reliability is not a new field. There are a plethora of metrics we could

use for our evaluation, but we are only concerned with a small subset of them. A

“reliable” peer is one that transmits correct data in a quick and responsive manner.

The first of these is channel capacity, a measurement of the number of bits that can

be transmitted across a channel in a unit of time. This roughly corresponds to bits

per second.
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6 Related Work

AT&T Mobility li LLC holds a patent that applies similar strategies used in this

MQP to aggregate WWAN clients who each have a static bandwidth allowance that

is rarely in use. At a high level, the patent discusses a strikingly similar approach

as this MQP, but is expressed strictly in terms of WWAN. Since this project aims

to aggregate WLAN bandwidth, it is not a realization of the invention defined in

patent no US7720098 B1 [31].

Octopus+ is a daemon that allows a computer with multiple means of accessing

the Internet to dynamically combine the potential links to increase speed. This is

most likely a round robin approach between the same Internet connections, and the

product doesn’t do any request splitting. It does gracefully handle link failures and

selects the best link for each packet.

There are also a number of commercial services that aim to bring bandwidth ag-

gregation to the home. Multipath Networks offers an all in one aggregating router

which uses Multipath TCP. They have a cloud infrastructure which handles reorder-

ing and aggregate traffic between any WiFi, 3G, or 4G link. Telefonica, a Brazilian

broadband and telecommunications provider, has been researching and developing a

wireless aggregation solution, BeWifi, which claims to double bandwidth speeds for

its customers. They follow a peer-to-peer philosophy, and construct a mesh network

of cooperating routers in close proximity. Sleeping routers contribute their unused

bandwidth to demanding neighbors, allowing potential bandwidth to be highly uti-

lized at all times. Currently, they require a modified router to be installed by a

technician, but hope to one day deploy a plug and play software upgrade. As this

is a closely guarded commercial implementation, their research on the matter is all

private. They note that fairness and security are a priority in their software, but

fail to detail any of the underlying mechanism involved. They also fail to outline

any counter measures in place to enforce repudiation between clients.

Many load balancing routers (D-Link DI-LB604, FatPipe XTREME, AstroCom

PowerLink Pro) have been created, targeting both home users and enterprise busi-

nesses. These typically work by combining multiple links into a single one.
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7 Future work

The software we developed is open sourced and publicly accessible on Github4. We

note that the proxy itself could be extended and improved in a number of ways. For

instance, while the proxy functions well with HTTP traffic, it does not provide any

support for HTTP over TLS/SSL. With the growing prevalence of HTTPS, support

for it in our proxy becomes a necessity.

We further suggest a method to decrease web page load times using our proxy

software. In today’s Internet, a typical web page request has dozens of related

resource dependencies (such as JavaScript libraries, CSS files and static images), all

of which must be fetched before the page can be properly loaded. We can think

of this group of related requests as being chunks of a file, and farm each request

out to neighbors, to download in parallel, as we do with large files already. If the

proxy intercepts the first request for the web page, we can preemptively farm related

requests out to neighbors, and deliver the entire payload at once. This would likely

speed up the overall load time of web pages.

8 Conclusion

Bandwidth aggregation is an actively growing field, with many avenues for future

research, and a growing potential for commercial adoption. Yet with all this promise,

it is of limited accessibility to consumers. Through this MQP, we fill the gap between

research and realization of bandwidth aggregation. We provide an eloquent yet

simple approach to aggregating bandwidth with neighboring routers over WiFi.

From our analysis, we conclude that these methods are effective in combining the

bandwidth offered by multiple wireless routers, retaining nearly 90% of throughput

potential.

4https://github.com/doctorOb/MQP/tree/master/code/proxy
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