A DATABASE FOR EXPLORATORY ANALYSIS OF HUMAN SLEEP

by

Shivin Misra

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

May 2008

APPROVED:

Professor Carolina Ruiz, Thesis Advisor

Professor Sergio A. Alvarez, Thesis Co-advisor Computer Science Department, Boston College

Professor Elke A. Rundensteiner, Thesis Reader

Professor Michael A. Gennert, Head of Department

Acknowledgements

I would like to thank my parents and little brother for all the support and encouragement they give me. I am thankful to my advisors, Prof. Ruiz and Prof. Alvarez for always being there to give me good advice that helped me overcome the obstacles in this thesis, for their patience in going over the details of this project, their valuable feedback that helped me improve the quality of the work, and their encouragement that always kept me motivated. Prof. Ruiz, thank you for carrying hundreds of patient files all the way from the sleep clinic to WPI and back so that our massive data collection could steadily progress. I'd like to thank my thesis reader, Prof. Rundensteiner for her precious time in reading my thesis, the Day Kimball Sleep clinic technicians for the patient files and information on human sleep data, J. Banning, the system administrator at WPI-CS (Computer Science) for his great help in system related arrangements during the data collection, database build and backup phases of this project, the WPI-CS and WPI-CCC (Computing and Communications Center) departments for providing us with computing facilities, and the developers of the excellent PostgreSQL database system. This section would be incomplete without the mention of my friends, Swaraj, Kaus, SK, Salma, Ketki, Venks, Nithin, Natalie, Ryan, Debu, Avraj, Amit with whom I felt like I was at home and had the best time during my Masters.

Abstract

This thesis focuses on the design, development, and exploratory analysis of a human sleep data repository. We have successfully collected comprehensive data for 1,046 sleep disorder patients and created a Terabyte-scale database system to handle it. The data for each patient was collected from the patient's medical records, and from the patient's allnight sleep study (for a total of about 0.6 Gigabytes per patient). Data collected from the patient's medical record contain more than 70 attributes, including demographic data, smoking, drinking, and exercise habits, depression and daytime sleepiness questionnaires, and overall medical history. Data collected from the patient's all-night sleep study consist of 50-55 time-series signals recorded during a period of 6-8 hours at the hospital's sleep clinic. These signals include among others an electroencephalogram, electromyogram, electrooculogram, electrocardiogram, and signals tracking blood oxygen level, body position, limb movements, snoring and blood pressure. 350 additional attributes summarize sleep related events taking place during the night long study, including sleep stages, arousals, and respiratory disturbances.

Particular attention during the development of our database system was paid to a database design that effectively handles the data size and complexity, that describes the structure of sleep data in clinically meaningful terms, and that will facilitates the discovery of patterns in sleep data using machine learning algorithms. We have interfaced our database with Weka, a well known data mining system. To the best of our knowledge, our database is one of the world's largest and most comprehensive in the domain of human sleep disorders.

Contents

1	INTRODUCTION	9
1.1	Scope of the thesis	9
2	BACKGROUND	11
2.1	Databases in Computer Science	11
2.2	Selection of the database	12
2.3 2.1 2.1 2.1	Sleep Medicine. 3.1 Study Types. 3.2 Signal Information. 3.3 Sleep domain definitions	14 14 15 17
2.4	Patient file organization	19
2.5	Existing sleep database repositories	19
2.6	Prior work at WPI	22
3	MACRO DATASET	24
3.1	Context	24
3.2 3.1 3.1 3.1 3.1	Data Description 2.1 Patient demographics 2.2 Epworth questionnaire 2.3 Beck Depression Inventory 2.4 Drink, Exercise, and Smoke habits	25 25 28 32 36
3.3	Macro Database	40
3.4 3.4	Statistics on Macro data	41
ca 3.4 3.4 3.4 3.4	 tegorized by patients' gender and age group Patient distribution with respect to BMI Classification Epworth questionnaire score distribution Depression score distribution Beck depression index with respect to patient's age 	41 43 45 47 49
4	TECHNICAL SUMMARY REPORT	50
4.1	Summary Sections ^{1,2}	50
4.2	Summary Format Types	52

4.3	Attributes: PSG and CPAP studies	58
4.4	Attributes: Split Night studies	72
45	Data Extraction	73
н.5 Д 5	1 File naming scheme	
4.5	2 Code Input and Output	
4.5	3 Handling different format types - A B C	
4.5.4	4 Missing values	77
16	Technical Summary Database	77
4.0	1 Sahama and tablas	
4.0. 4.6	 Schent-Micro study man table 	
4.0.		
4.7	Normative technical summary data for males and females	
4.8	Effect on sleep efficiency	
5 N	MICRO DATASET	
- 1		
5.1	Context	86
5.2	Data Conversion	
5.2.	1 EDF Extraction	
5.2.2	2 Preserve the sampling rates	
5.2.	3 Multiple EDF files	89
5.3	EDF Naming Scheme	89
5.4	EDF Description	
5.4.	1 Header	90
5.4.2	2 Signal Properties Header	92
5.4.	3 Signal Properties Table	95
5.4.4	4 Signal Values	100
5.5	Micro database design	102
56	Building the micro database	104
5.0	1 Schema Management	104 104
5.6	2 Building the database	105
5.6.	3 Testing the signal data	
57	Statistics on micro data	109
5.1	Study distribution with respect to the length of the study	100 100 100
5.7.	i Study distribution with respect to the length of the study	109
5.8	Database system performance	110
6 S	SYSTEM	
6.1	Context	

6.2	Micro Data Collection	112
6.3	System Architecture	112
7 C	ONCLUSIONS AND FUTURE WORK	115
7.1	How does the database design facilitate data analysis?	115
7.2	Alternate design scenarios	116
7.2.1	Using Binary large object (BLOB) data type to store time-series sequence data	116
7.2.2	Using Character large object (CLOB) data type to store set based data	117
7.2.3	Creating tables for every patient to store sequence data	118
7.2.4	Time series data in flat files	118
7.3	Summary of data	119
7.4	Future work	120

References	124

Appendix

A Macro data	125
B Technical summary report	130
C Little endian and big endian distinction	132
D ASCII - Intermediate file format	133
E Interfacing Weka 3.5.4 to PostgreSQL 8.2.5 database	135

List of figures

Figure 2.1 Electrodes on a human cranium	15
Figure 2.2 Signal Waveforms	17
Figure 3.1 Age distribution based on gender	42
Figure 3.2 Patient distribution by BMI class	43
Figure 3.3 Epworth score distribution	46
Figure 3.4 Depression score distribution	48
Figure 3.5 BDI with respect to patient's age	49
Figure 4.1 PSG/CPAP Type C Layout	55
Figure 4.2 Split Type C Layout (Left - half)	56
Figure 4.3 Sleep efficiency and % NREM	84
Figure 4.4 Age and Sleep efficiency	85
Figure 5.1 High level representation of composition of micro data	86
Figure 5.2 REMbrandt EDF exporter utility interface	88
Figure 5.3 EDF Header format (Note: the numbers denote ASCII bytes)	90
Figure 5.4 EDF Signal Header format (Note: the numbers denote ASCII bytes)	92
Figure 5.5 Physical and Digital Scaling	94
Figure 5.6 EDF structure	101
Figure 5.7 Screenshot of an EDF file	101
Figure 5.8 Micro data schema	104
Figure 5.9 Class diagram for Schema management	105
Figure 5.10 Class Diagram of <i>edf2db</i>	106
Figure 5.11 Study type distribution with respect to study duration	109
Figure 5.12 Retrieving time-series data from the database	110
Figure 6.1 The kddrg system architecture	114
Figure 7.1 Schema organization in the Sleep database	116

List of tables

Table 2.1 Postgres DBMS limits	
Table 3.1 Demographics	
Table 3.2 Epworth	
Table 3.3 Depression	
Table 3.4 Drink, Smoke, Exercise habits	
Table 3.5 Patients, Depression, Epworth by age	41
Table 3.6 Epworth questionnaire score distribution	45
Table 3.7 Depression score distribution	47
Table 4.1 Number of reports in each format type	53
Table 4.2 Sleep Stage Summary	58
Table 4.3 Respiratory Disturbance Summary	60
Table 4.4 Limb Movement Summary	66
Table 4.5 Arousals	68
Table 4.6 EKG Summary	69
Table 4.7 Oxygen Saturation Summary	69
Table 4.8 Body Position Summary	
Table 4.9 Sleep parameters	
Table 4.10 Advanced signal table for Oxygen Saturation	73
Table 4.11 Patient-Study Map table	79
Table 4.12 Normative data for males	79
Table 4.13 Normative data for females	81
Table 4.14 Attribute naming for normative data	
Table 4.15 Normative data table	
Table 5.1 Signal properties	
Table 5.2 micro.header	
Table 5.3 A typical signal table	
Table 7.1 Summary of the data statistics	119

1 Introduction

Every year, clinics conducting studies on patients suffering from sleep irregularities collect large amounts of clinical and survey data. Clinical instruments attached to a patient via electrodes are able to record time-series signals that originate from biochemical and physical processes taking place within the sleeping patient's body.

Polysomnography (PSG/sleep study) is a clinical procedure that records physiologic attributes during sleep. A polysomnogram reads the electrical potential of the brain (using EEG - Electroencephalogram); electrical activity of muscles (using EMG – Electromyogram); and electric potentials resulting from eye movements (using EOG – Electrooculogram) into time series signals. Also, signals tracking body processes like electrical activity of heart (using ECG – Electrocardiogram), blood oxygen level, body position, limb movements, snoring and blood pressure are registered. A clinical technician generates a patient's summary report after the end of each sleep study session.

As described in [7], before a sleep study is performed, the patients are asked to fill out survey questionnaires. These questionnaires carry demographic details like age, height, weight, body mass index, and collar size. They also have information on the patient's medical history, the medicines administered, sleep, exercise, smoke, caffeine and alcohol consumption habits. Epworth Sleepiness Scale (ESS) is a set of questions that determines level of daytime sleepiness in a patient. Beck Depression Inventory (BDI) gives insight into the existence and severity of symptoms of depression. Both, ESS and BDI are included in the survey questionnaire.

1.1 Scope of the thesis

There exists a need to collect, organize, represent and store all of the above data for the purpose of computational analysis. To achieve this goal, we develop a platform that can store every patient's data over time. Moreover, the data organization should conform to

the conceptual model of the domain as understood by the medical experts. This thesis work aims at correctly representing and storing clinical sleep data for its analysis with a scope to accrue data of approximately 1000 patients. The data used in this project came from the patients undertaking sleep studies at the Sleep Disorder Center at Day Kimball Hospital, CT.

The sleep clinic registers the polysomnographic time-series signal recordings using the medical software REMbrandt [13], which is a Windows® based sleep monitoring and analysis system for clinical and research applications.

This research work is being conducted in collaboration with Dr. Majaz Moonis from the University of Massachusetts Medical School.

2 Background

2.1 Databases in Computer Science

A database is an organized and well-structured repository of data. Database Management systems (DBMS) help in managing this information by enabling us to systematically add, delete, update, and query the data stored in the database. They also keep a check on the consistency of data.

Within a database, information is stored in tables. A table is a collection of records, with each record containing data, whose properties are identified by the attributes (names of table's columns) that are defined in the table's design. In a good design, a table models a group of related data with each record (also known as a row or tuple) identified by special attribute(s) known as key attribute(s). In a practical database, there exist many tables that may be related to each other by referencing attributes (foreign keys). The overall design of the database is called a database schema [16].

This thesis involves understanding the structure of real human sleep data, modeling it into database tables along with constraints, creating the database, populating it with sleep data and performing pre-processing to prepare the data for computational analyses. The end result is a fully functional database system built from scratch, that hosts nearly 500 GB of rich sleep data for knowledge discovery: the wealth of information that existed only in the form of patient files and compact discs is now available to us scientists for intense computational research.

To design the database for sleep data, the logical data model should reflect the conceptual understanding of the sleep domain by capturing the relationships between the entities and describing their attributes. The physical design phase involves creating a database, defining schemas, tables and primary and foreign keys for organizing and storing sleep data. Apt data types for the attributes should be chosen, and the design must be validated by normalization procedures. Also, it should facilitate exploratory analysis.

11

The clinical sleep data has time-series information collected overnight for each patient. Also, for every patient, we have set valued information like patient's medical history, list of medicines and patient's response to probable reasons for sleep disorder. We need a DBMS equipped with data types that can model this information.

2.2 Selection of the database

We selected our DBMS keeping in mind the nature of data we want to represent:

- Time-series information
- List of values for an attribute

To handle the above data, we needed a database system that could support an array-like data structure with variable length.

Candidate DBMS

From our research into the most popular DBMSs in the industry, we chose PostgreSQL 8.2.5 (PGSQL) as the DBMS for this thesis.

- MySQL 5.1 was ruled out because of its inability to model arrays or user data types.
- Microsoft SQL Server 2005, Express Edition is a freely downloadable DBMS engine, but with a limited set of features.
- Oracle10g1 DBMS was not selected because even though it had facility for custom data types and arrays (VARRAYS), the size of the arrays was fixed and needed to be specified in the table definition. Since our data has varying lengths of sleep study sequences, this was not a feasible choice.

Due to the enormity of data we deal with, further exploration into the abilities of the PGSQL DBMS to scale up to high data sizes yielded the following interesting figures:

	-
Limit	Value
Maximum Database Size	Unlimited
Maximum Table Size	32 Terabytes
Maximum Row Size	1.6 Terabytes
Maximum Field Size	1 Gigabytes
Maximum Rows per Table	Unlimited
Maximum Columns per Table	250 - 1600 depending on column types
Maximum Indexes per Table	Unlimited

PostgreSQL data handling capacity [10]

Table 2.1 Postgres DBMS limits

As from the table above, the data handling capabilities of PGSQL are well suited for the type and amount of data we deal with in this research. The features of PGSQL can support both lists and custom data types. It is an open source, lightweight DBMS that has proven to be capable of satisfying all the needs of this research project.

Note: In the context of PostgreSQL DBMS, a database contains one or more named schemas, which in turn contain tables. Schemas also contain other kinds of named objects, including data types, functions, and operators [11].

2.3 Sleep Medicine

2.3.1 Study Types

There are four types of studies that a encountered in the patient files. The number of signals recorded can vary for different studies.

• Full Polysomnogram (PSG)

Full PSG is the regular night long sleep study which records limb, arm and eye movements, activity of the brain, breathing rate, oxygen level and heart rate into time series data. Patients suffering from sleep related disorders like narcolepsy, sleep walking, restless leg syndrome, nocturnal seizures are advised to take a full PSG study to analyze their sleep.

• CPAP titration

CPAP stands for Continuous Positive Airway Pressure and is usually administered in cases of sleep apnea. A small, comfortable mask is fitted on the patient's nose. The mask is connected to a CPAP unit that can deliver air pressure through the nose to the air passage of the patient. The pressure is titrated (controlled) in order to keep the back of the airway open during the patient's sleep. This allows the patient to breathe in all body positions and helps in achieving a restful sleep.

BiPAP titration

BiPAP stands for Bilevel Positive Airway Pressure. It is meant for patients who are not tolerant/ responsive of CPAP because of the need to exhale against the extra pressure in CPAP. BiPAP delivers what CPAP does, but keeps two levels of pressure, one for inhaling and one for exhaling, thus decreasing the effort made in breathing against the air pressure. • Split Night PSG with CPAP titration

Split night PSG study is conducted when the patient is diagnosed with moderate to severe apnea during the first part of nights study. During the later half of the night, CPAP titration is administered. The technical summary report consists of baseline/ treatment sections corresponding to these two halves of the Split night study, respectively.

2.3.2 Signal Information

EEG, EOG, EMG, and ECG are multidimensional PSG signals that are recorded by keeping sensor electrodes at different places on the body.

Electroencephalogram (EEG) records the electrical activity in the brain. EEG electrodes are placed at different locations on the scalp. EEG is comprised of the following signals named: C3-A2 (left-central), C4-A1 (right central), O1-A2 (left occipital), and O2-A1 (right occipital).

The figure below shows the placement of various electrodes on a human cranium:

Back

Figure 2.1 Electrodes on a human cranium

(Note that the letters are technical names of electrodes [14])

Electrooculogram (EOG) electrodes are placed slightly above the outer canthus of the right eye and slightly below the outer canthus of the left eye. These electrodes help in determining when sleep happens and when REM stage is reached. The EOG signals are: ROC-A1, LOC-A2, XFlow, XSum, RMI, Phase, and RR.

Electromyogram (EMG) electrodes are placed over the chin, arms and legs to track muscle tensions and leg movements. EMG is composed of signals named CHIN1, L LEG2, R LEG3, ARMS4.

Electrocardiogram (ECG) electrodes are placed on the chest to record electrical activity of the heart with every single heart beat (units: μ V). The heart beat rate is also recorded in beats per minute (BPM). The heart activity is tracked by the signals called HEARTRATE and EKG8.

The patient's respiratory response is tracked by electrodes named PSNORE (snoring), CFLOW (CPAP flow), FLOW5 (nasal-oral airflow), CHEST (thoracic), ABDM (abdominal), CPRESS (CPAP pressure) placed near the nose and on the chest of the patient.

SaO2, Oxygen Saturation, is measured by a probe called Oxymeter that is placed on a finger to record the percentage of oxygen level in the blood stream. The probe is like a clip that has a small red light on one side, and a detector on the other to measure the amount of oxygen in the blood.

Note: Electrode names have been referred from [2]

The figure below shows some time-series signals recorded by the different electrodes monitoring patient's sleep, as seen in the REMbrandt [13] Viewer application.

Figure 2.2 Signal Waveforms

2.3.3 Sleep domain definitions

Events

Events are patterns in data that capture time-related occurrences of interest [7]. Some examples of events are: the class of sleep stage (see sleep stages below); body position - back, prone, tight side, or left side; and heart rate – normal, mildly-reduced or low.

Epochs

Every thirty second piece of a sleep recording constitutes an epoch. Sleep stage scoring involves classifying the polysomnogram signals on an epoch – to – epoch basis [7]. The REMbrandt system [13] displays events for every epoch.

Sleep Stages

Sleep is classified into six stages: Wake, Stage 1, Stage 2, Stage 3, Stage 4, and REM stage as per the Rechtschaffen and Kales (R&K) system [12]. The Non-REM stage is made up of Stages 1, 2, 3 and 4.

Some definitions of attributes present in the Chapter 4 Technical Summary Report are given below. These definitions are taken from [19].

Time in Bed (TIB)

Time spent in bed without attempting to sleep or unsuccessfully trying to sleep. Time spent in resting or napping during the day.

Sleep Period Time (SPT)/Total Sleep Period

This refers to the time from sleep onset to the final awakening from the main sleep period of the day. Total sleep period increases with age because of the increase in the number of awakenings.

Total Sleep Time (TST)

This refers to the total sleep period minus the time spent awake during the sleep period. Studies have found the total sleep time to be either reduced or unchanged in the older population compared with younger age groups.

Sleep latency

This is the time from the decision to sleep to the onset of sleep. Studies have found considerable variability in individuals. In females, sleep latency has been related to both age and hypnotic drug use.

Wake after sleep onset (Waso)

This is the time spent awake from sleep onset to final awakening. An increase occurs in the time spent awake after sleep onset in the older population.

Sleep efficiency

This is the ratio of total sleep time to nocturnal time in bed. Most studies have found sleep efficiency to be decreased in the older population.

2.4 Patient file organization

A typical patient file is organized in the following way:

- 1. One or more CDs (backup copy) containing overnight sleep data and technical summary report. The overnight sleep data is in '.msr' format, and can be read with REMBrandt Viewer. There can be different sets of CDs corresponding to different types of sleep study the patient might have undertaken.
- 2. Log of any communication history with the patient.
- 3. Analysis report written by the interpreting physician.
- 4. Medical history of the patient.
- 5. Pre-sleep study form.
- 6. Survey questionnaires.
- 7. Post-sleep study form.
- 8. Print out of technical summary report.
- 9. Technician's notes.
- 10. Miscellaneous information.

2.5 Existing sleep database repositories

Few sleep data repositories seem to exist. We describe below all of those that we could find. Our data repository is by far the largest among them.

Several of the databases listed below are part of PhysioBank, an archive of physiologic signals developed by PhysioNet for use by the biomedical research community. PhysioNet is formed by a group of computer scientists, physicists, mathematicians, biomedical researchers, clinicians, and educators at MIT, the Beth Israel Deaconess Medical Center/Harvard Medical School, Boston University, and McGill University.

a. The Sleep-EDF Database - Sleep Recordings and Hypnograms in European Data Format (EDF) [17]

This is a publicly available sleep data in the form of EDF files. There are a total of 8 sleep studies recorded from the years 1989 and 1994, consisting of 7 signals and 5 signals respectively. The sleep observations were conducted on Caucasian males and females (21 - 35 years old) without any medications. The signals in the studies are sampled at frequencies 100 Hz and 1 Hz.

The technical names of the signals that appear in the studies are EEG Fpz-Cz, EEG Pz-Oz, EOG horizontal, Resp oro-nasal, EMG submental, Temp body, Event marker, EEG Fpz-Cz, EEG Pz-Oz, EOG horizontal, EMG submental.

b. The Sleep Heart Health Study Polysomnography Database [18]

This database consists of studies conducted on subjects 40 years or older to study the relationship of sleep disordered breathing and cardiovascular disease, with no history of treatment of sleep apnea, no tracheotomy, and no current home oxygen therapy. The studies are in EDF format along with PhysioBank annotation files. From the sample EDF study posted online, there exist 11 signals recorded during the study. The number of data records could not be known by inspecting the header content (see EDF Header) of this EDF file (0000.edf), as this values was "-1". The signals are sampled at the rates 250 Hz, 125 Hz, 50 Hz, 10 Hz, and 1 Hz.

At present, we could find only one such study posted online at the web resource [18], and it is said that upto 1000 PSG studies will be posted in the future.

The technical names of the signals that appear in the study are SaO2, PR, EEG (sec), ECG, EMG, EOG(L), EOG(R), EEG, AIRFLOW, THOR RES, ABDO RES.

c. St. Vincent's University Hospital / University College Dublin Sleep Apnea Database [20]

This repository consists of 25 full night PSG studies conducted on subjects who were 18 years or older, with probable sleep-disordered breathing. From one of the sample EDF study posted online (ucddb003.rec), there are 14 signals recorded having sampling rates 256 Hz, 128 Hz, 64 Hz, and 8 Hz.

The technical names of the signals that appear in the study are EEG C4-A1 [C4A1], EEG C3-A2 [C3A2], EOG E1-A1 [EOGL], EOG E2-A1 [EOGR], EMG-Chin [EMYG], ECG [ECG1], SaO2 [OSAT], Sound, Flow [AFLO], Sum, Thorax [CHMV], Abdomen [ABMV], Position, Pulse.

d. MIT-BIH Polysomnographic Database [5]

From [5], this is a collection of recordings of multiple physiologic signals during sleep. 18 subjects were monitored in Boston's Beth Israel Hospital Sleep Laboratory for evaluation of chronic obstructive sleep apnea syndrome, and to test the effects of constant positive airway pressure (CPAP), a standard therapeutic intervention that usually prevents or substantially reduces airway obstruction in these subjects. The database contains over 80 hours' worth of four-, six-, and seven-channel PSG recordings, each with an ECG signal annotated beat-by-beat, and EEG and respiration signals annotated with respect to sleep stages and apnea.

e. The Sleep Heart Health Study [21]

There were 71 PSG studies to evaluate in this study. The patients underwent overnight EEG-based polysomnography at home. Data was collected for 12 signals (oximetry, heart rate, chest wall and abdomen movement, nasal/oral airflow, body position, EEG, EOG, EMG, and ECG). Along with signal data, the patients were also asked to fill out a sleep

habits questionnaire. The respiratory abnormalities like apneas and hypopneas were the main focus of analysis in this study.

Compared to all the above existing studies that we could find, our database is the largest and most comprehensive, as it has 1319 full night PSG, CPAP and SPLIT type studies of 1046 patients amounting to 7914 hours or 329.75 days (considering that patient has an average of 6 hours of sleep per night) of sleep study data, with each study comprising of 50 to 55 different signals of varying sampling rates. Moreover, we collect data on patient demographics, daytime sleepiness and depression survey, medical history, smoke, drink and exercise habits (total of 70 attributes) and more than 350 attributes in the technical sleep summary generated at the end of every sleep study.

2.6 Prior work at WPI

In previous work at WPI [7] and [8], analysis was performed on subjective (surveys) and objective (clinical observations) sleep data to mine statistically significant rules, by implementing a time window-based association rule mining technique within the WPI-WEKA system. This work made an organization of sleep data into macro (see Chapter 3 Macro dataset, also called subjective data) and micro (see Chapter 5 Micro Dataset, also called objective data) categories with consultation from the medical domain expert, Dr. Moonis at U. Mass Medical School.

For the macro dataset, there were 242 patient records and 63 attributes. These attributes consisted of patient demographics, epworth, depression, habitual attributes as well as technical sleep summary information like time spent in various sleep stages, sleep efficiency, arousal index, periodic leg movement syndrome, etc. The micro data consisted of 6 signals (Heart rate, Epochs, Sleep stages, Oxygen potential in the blood, CPAP and BiPAP pressure, and body position) recorded for a night long study for 120 patients.

Three types of analyses, macro level, micro level and mixed (macro mixed with micro) level were performed on the datasets. As an example, an interesting result from the macro level analysis was the discovery of a statistically significant association between the body mass index and snoring of the patient. The patients in overweight and obese categories exhibited moderate to heavy snoring. The micro level analysis employed a window-based rule mining technique to discover statistically significant associations between events of interest. As an example, one of the results stated with high confidence that the heart rate remains normal when the patient is in wake stage or in stage 1 or in stage 2. The dataset for mixed level analysis had 81 records and consisted of numeric, nominal, set and sequence type data. As an example result from this type of analysis, it was discovered that obese patients with moderate levels of depression frequently experienced sleep stage 2 and REM stage towards the middle and terminal stages of the sleep, while the patients with mild or insignificant depression experienced stage 2 in the first hour of sleep. Hence, stage 2 could be used as an identifier to segregate obese patients suffering from mild or moderate levels of depression (see p113 in [7]).

3 Macro dataset

3.1 Context

What is macro data?

Before a night long sleep study is performed, the patients are asked to fill out survey questionnaires. These questionnaires carry demographic details like age, height, weight, body mass index, and collar size. They also have information on the patient's medical history, the medicines administered, sleep, exercise, smoke, caffeine and alcohol consumption habits. A survey like Epworth Sleepiness Scale (ESS) is a set of questions that determines level of daytime sleepiness in a patient. Beck Depression Inventory (BDI) gives insight into the existence and severity of symptoms of depression. Both, ESS and BDI are included in the survey questionnaire.

When is the macro data collected by the sleep clinic?

The patient is asked to fill out the questionnaires either the day of the test, or sometime before when the study has been scheduled. Even though there may be more than one type of sleep study that the patient has undertaken over time, there is only one survey in every patient file. Exceptions may arise, for example, when two studies are separated by long periods of time (2 to 3 years), they can have 2 different surveys. In this case, we only track the survey that was conducted the latest for which we have the complete micro data. Also, there is a high probability that the old survey was conducted with different (old) structure of micro data, which we are not dealing with in this thesis.

How is the macro data collected for this research?

The macro data is present in paper format. We analyze every section of the survey, eliciting and naming the attributes. The naming of an attribute is done in such a way that one can closely identify it with the sentential question in surveys. Depending on the response to the question, the data type of the attribute is chosen. As part of good database design, we choose the narrowest column that can hold the values of the attribute. To keep the data as complete as possible, no discretization of the attributes is done at this stage.A list of medical disorders is created by reading the medical history of a patient.

For some patient cases, the micro data is incomplete due to missing CDs, CDs that could not be read, corrupt data or CDs having some other patient's data. These cases are eliminated for completeness and correctness of data collection.

The rest of the chapter deals in detail with the description and collection of macro data, how the structure of the data was mapped to the database design, and how we build the macro database.

3.2 Data Description

The macro data consists of following categories:

- 3.2.1 Patient demographics
- 3.2.2 Epworth questionnaire
- 3.2.3 Beck Depression Inventory
- 3.2.4 Drink, Exercise, and Smoke habits

3.2.1 Patient demographics

This section contains information about physical characteristics of the patient (imperial units of measure), sleep/wake up times, residence location, the medical and family history, and the date of survey.

The following table lists the attributes and their corresponding names in the database table - macro.demographics.

Table 3.1 Demographics

No.	Attribute	Description	Attribute name (in	PostgreSQL
	Name		database)	data type
1	Age	Calculated from the data	age	smallint
		of birth of the patient		
2	Gender	Gender of the patient,	gender	"char"
		male or female		
3	Height	X feet, Y inches	height	real
4	Weight	X lbs	weight	real
5	BMI	Body mass index (BMI) ¹	bmi	real
6	Collar size	X inches	collar_size	real
7	Bed Time	Time when patient sleeps	bedtime	time
		$(24 \text{ hour scale})^2$		
8	Wake up	Time when patient wakes	wakingtime	time
	time	up (24 hour scale) ²		
9	City	The city in which patient	city	text
		resides		
10	State	The state in which the	state	text
		patient resides		
11	Indication of	The indication for	indication	text[]
	Study	undertaking of the study		
12	Medical	Handwritten/printed past	medical_hx	text[]
	history ³	pathological and surgical		
		reports of the patient		
13	Family	Handwritten/printed past	family_hx	text[]
	history ³	pathological and surgical		
		reports of the patient's		
		family members		
14	Medications ⁴	List of current	medications	text[]
		medications administered		

		to the patient		
15	Survey date ⁵	Date when the survey	survey_date	date
		data was obtained		
16	Need for	Patient's reason on why	need_study_by_patient	text[]
	sleep study	he/she is undertaking a		
	(by patient) ⁶	sleep study		

Note:

¹Body mass index is a measure of body fat in adult men and women.

- This attribute is calculated from the height and weight of the patient.

- Units: kg/m²
- BMI formula:

BMI $(kg/m^2) = (weight in pounds * 703) / (height in inches)^2$

- BMI Classification [22]

Underweight = <18.5 Normal weight = 18.5 to 24.9 Overweight = 25 to 29.9 Obesity (Class 1) = 30 to 34.99 Obesity (Class 2) = 35 to 39.99 Morbid obesity = 40 or greater

- BMI calculations, if required, were done using the utility at [23].

²If Bedtime and Wake up time are both unknown, then they are both entered as: 0:00. If only bed time is known, then the waking time is entered as 00:01 which is our way to signify that the latter is not known, and vice-versa. ³Appendix A contains abbreviations related to this attribute.

⁴On paper, this attribute's response is present in the drink, smoke, and exercise habits questionnaire, however, it is grouped along with the attributes of the demographics table schema in the database.

⁵This date is near before/on the date of micro study, which, in majority of cases, is a regular PSG study. If this date is missing, then we assume that the survey was conducted on the day of sleep study.

⁶Examples: Wake up frequently at night, snoring problem, physician's recommendation, etc.

3.2.2 Epworth questionnaire

The Epworth sleepiness scale (ESS) is a measure of general level of daytime sleepiness in a patient [9]. The questionnaire follows the demographic section of the survey. The ESS is a collection of first 8 questions in this questionnaire. The remaining questions don't directly refer to the ESS, they were developed by Dr. Moonis and Dr. Baillargeon at the Day Kimball Hospital, CT [24]. All the questions having 4 choices pertaining to the frequency of occurrence of a particular sleep problem. The significant other (spouse, close friend, or a family member) of the patient is also asked to provide the answers to some of these questions to get an observed score. In this thesis, we will refer to the complete questionnaire as "Epworth questionnaire", while the subset of Epworth questionnaire that are the first 8 questions will be referred to as "ESS questionnaire".

Questionnaire scale:

- 0: never or very seldom
- 1: once or twice a month
- 2: one or two times a week
- 3: very often

The following table lists the attributes and their corresponding names in the database table - macro.epworth

Table 3.2 Epworth

No	Attribute text	Attribute name (in
		database) ¹
1. I fall	a. Sitting and Reading	fa_reading
asleep	b. Watching TV	fa_watching_tv
when I am	c. In a movie theater or meeting	fa_theater_meeting
	d. As a passenger in a car for an hour	fa_passenger
	e. Lying down to rest in the afternoon	fa_pm_rest
	when circumstances permit	
	f. Sitting quietly after lunch without	fa_after_lunch
	alcohol	
	g. Driving my car while stopped in	fa_as_driver
	traffic	
	e. Sitting and talking to someone	fa_talking
2	a. Does anyone in your family have a	sleep_problem_family
	sleep problem?	
	b. Are you tired during the day, even	tired
	after a nights sleep?	
	c. Do you fall asleep easily during	fa_meeting_watching_tv
	meetings or watching TV?	
	d. Do you fall asleep while talking with	fa_routine_tasks
	someone or performing routine tasks?	
	e. Do you eat, work, or worry in bed?	eat_work_worry_bed
	f. Do you wake up with a morning	wa_am_headache
	headache?	
3	a. Do you wake up gasping for breath?	wa_gasp

	b. Has anyone told you that you snore	snore_loud
	loudly?	
	c. Has anyone told you that you seem to	stop_breath
	stop breathing while you sleep?	
4	a. Do you get uncomfortable feeling in	leg_uneasy
	your legs that makes it difficult to fall	
	asleep?	
	b. Do you have uncomfortable "crawly"	leg_crawly
	feelings in your legs that is relieved by	
	walking?	
	c. Has anyone noticed your legs or arms	limbs_twitch
	twitching during the night?	
5	a. Do you have episodes of muscular	paralysis
	weakness or paralysis when laughing,	
	angry, or in other emotional situations?	
	b. Do you "act out" your dreams?	act_out_dreams
	c. Have you experienced being unable to	unable_move
	move when falling asleep or upon	
	waking up?	
	d. Do you have realistic, vivid dreams	vivid_dreams_nightmares
	and/or nightmares?	
6	a. Do you walk or talk in your sleep?	walk_talk_sleep
	b. Do you wake up confused?	wa_confused
	c. Do you grind your teeth while	grind_teeth
	sleeping?	
	d. Do you remember your dream upon	recall_dream
	awakening?	
7 ²	Total Epworth score	epworth_score
8 ³	Epworth Sleepiness Scale (ESS) - 1	ess1
9 ⁴	Epworth Sleepiness Scale (ESS) - 2	ess2
10 ⁵	Remarks	remarks

Note:

¹All the attributes, except for remarks (text) are of type - smallint in Posrgresql.
²Calculated sum of patient response to questions in 1 - 6.
³ESS - 1 is the total of patient response to questions in 1.
The following are the ranges for the ESS

0-8: mild 9-16: moderate 17-24: severe

⁴ESS - 2 is the total of patient's significant other/close relative's observed response to questions in 1.

⁵Remarks indicate different Epworth survey format, pediatric cases and missing surveys.

Note A: The missing values are filled as -1. Sometimes, the patient response to a question is "Yes". In this case, the scale value is assumed to be 3. Similarly, for "No" as an answer, the scale value of 0 is assumed. See Note A after depression table.

Note: There are 3 patient cases with old format of Epworth survey (2000, 2001). The old format contains a subset of questions similar to the new format, but with response only as Y (Yes) and N (No). We have used Y as 3, N as 0.

Note B: Sometimes the patient may circle more than one option in a question. In that case, the option indicating higher degree of occurrence is chosen.

Note C: In the above table,

wa = wake up; fa = fall asleep. The complete sorted list of acronyms is in Appendix A

3.2.3 Beck Depression Inventory

This questionnaire is a set of 21 questions pertaining to the depression characteristics in a patient [1]. Each question is scaled from 0 - 3 depending upon the severity of a particular depression feature. At the end, a cumulative score is calculated, which is an indicator of level of depression in a patient:

0-9 is minimal10-16 is mild17-29 is moderate30-63 is severe

The Beck Depression Index was added by Dr. Moonis at the Day Kimball Hospital a few years ago. [24]

The following table lists the attributes and their corresponding names in the database table - macro.depression.

Table 3.3 Depression

No	Attribute text	Attribute name (in database) ¹
1	0-I don't feel sad	feel_sad
	1-I feel sad	
	2-I feel sad all the time	
	3-I am unbearably sad	
2	1-I'm not discouraged	discouraged_future
	2-I feel discouraged about the future	
	3-I have nothing to look forward to	
	4-My future is hopeless	
3	0-I do not feel like a failure	feel_failure
	1-I feel like I failed more than an average person	
	2-I can see lot of failures in retrospect	
	3-I feel like a complete failure	

4	0-I don't get as much satisfaction as before	degree_satisfaction	
	1-I don't enjoy things as before		
	2-I don't get real satisfaction out of anything		
	3-I'm dissatisfied and bored with everything		
5	0-I don't feed guilty	feel_guilty	
	1-I feel guilty for a good part of time		
	2-I feel guilty for most of the time		
	3-I feel guilty all the time		
6	0-I don't feel like being punished	feel_punished	
	1-I feel that I may be punished		
	2-I expect to be punished		
	3-I feel that I'm being punished		
7	0-I don't feel disappointed in myself	feel_disappointed	
	1-I am disappointed in myself		
	2-I am disgusted with myself		
	3-I hate myself		
8	0-I don't feel I'm worse than anyone else	feel_worse	
	1-I am critical of myself for my weaknesses or mistakes		
	2-I blame myself all the time for my faults		
	3-I blame myself for everything bad that happens		
9	0-I don't have any thoughts of killing myself	suicide	
	1-I have thoughts of killing myself, but would not carry		
	them out		
	2-I would like to kill myself		
	3-I would kill myself if I had the chance		
10	0-I don't cry anymore than usual	crying	
	1-I cry more now than I used to		
	2-I cry all the time now		
	3-I used to be able to cry, but now I can't cry even		
	though I want to		
11	0-I'm no more irritated now than I ever am	irritable	
	1-I get annoyed or irritated more easily than I used to		
	2-I feel irritated all the time now		
	3-I don't get irritated at all by the things that used to		
	irritate me		
12	0-I have not lost interest in people	interest_people	
	1-I'm less interested in other people than I used to be		

	2-I've lost most of my interest in other people	
	3-I've lost all of my interest in other people	
13	0-I make decisions about as well as I ever could	make_decisions
	1-I put off making decisions more than I used to	
	2-I have greater difficulty in making decisions than	
	before	
	3-I can't make decisions at all anymore	
14	0-I don't feel I look any worse than I used to	appearance
	1-I'm worried that I am looking old or unattractive	
	2-I feel that there are permanent changes in my	
	appearance that make me look unattractive	
	3-I believe that I look ugly	
15	0-I can work about as well as before	work_capacity
	1-It takes an extra effort to get started at doing	
	something	
	2-I have to push myself very hard to do anything	
	3-I can't do any work at all	
16	0-I can sleep as well as usual	sleep_habit
	1-I don't sleep as well as I used to	
	2-I wake up 1-2 hours earlier than usual and find it hard	
	to get back to sleep	
	3-I wake up several hours earlier than I used to and	
	cannot get back to sleep	
17	0-I don't get more tired than usual	get_tired
	1-I get tired more easily than I used to	
	2-I get tired from doing almost anything	
	3-I'm too tired to do anything	
18	0-My appetite is no worse than usual	appetite
	1-My appetite is not as good as it used to be	
	2-My appetite is much worse now	
	3-I have no appetite at all now	
19	0-I haven't lost much weight, if any, lately	lost_weight
	1-I have lost more than 5 pounds	
	2-I have lost more than 10 pounds	
	3-I've lost more than 15 pounds	
20	0-I'm more worried about my health than usual	worry_health
	1-I'm worried about physical problems such as aches	

	and pains; or upset stomach; or constipation	
	2-I'm very worried about physical problems and its hard	
	to think of much else	
	3-I'm so worried about physical problems that I cannot	
	think about anything else	
21	0-I've not noticed any recent change in my interest in	interest_sex
	sex	
	1-I'm less interested in sex than I used to be	
	2-I'm much less interested in sex now	
	3-I've lost interest in sex completely	
22	Beck Depression Inventory, total score	bdi
23 ²	I'm purposely trying to lose weight by eating less	if_eat_less
24 ³	Remarks	remarks

Note:

¹All the attributes, except attribute 23, ANSD REMARKS are of type - smallint in PGSQL.

²Attribute - 23 is of type "char".

- y: yes- n: no- u: unknown/missing

Note A: The missing values are filled as '-1'. Sometimes, the patient response to a question is "Yes". In this case, the scale value of 3 is assumed. Similarly, for "No" as an answer, the scale value of 0 is assumed. We made these assumptions after checking the total depression score for patients with such response. The total score on paper was calculated by a clinic technician, and the Yes responses were interpreted as 3 and the No as 0.

Note B: Sometimes the patient may circle more than one option in a question. In that case, the option with higher degree of severity is chosen.

Note C: For some pediatric cases, the BDI attributes are not applicable. Such records have been highlighted as "pediatric" in the *remarks* column, which will be removed after pre-processing the dataset.

³Remarks indicate different depression survey format, pediatric cases and missing surveys.

3.2.4 Drink, Exercise, and Smoke habits

The following table lists the attributes and their corresponding names in the database table - macro.drink exercise smoke

Table 3.4 Drink, Smoke, Exercise habits

No.	Attribute Description	Attribute Name	Data
			Туре
1. Why do you	stress at work	reason_sleep_problem	text[]
feel you have a	financial problems		
sleep problem?	poor sleep habits		
Check all that	poor eating habits		
apply.	relationship with spouse		
	relationship with children		
	sexual		
	other social		
	other		
2. Do you exercise	If yes, then how often?	exercise_rate	real
regularly?		exercise_remarks	text
3. Do you drink	For example, coffee, tea, cola.	caffeinated_day	real
caffeinated	If so, how many per day ?	caffeinated_remarks	text
beverages			
4. Do you drink	If so, what do you drink on an	glasses_wine	real
alcoholic	average day?	bottles_beer	real
-------------------------------	---------------------------------	-------------------	------
beverages?	I usually drink -	shots_hard_liquor	real
	- glasses of wine, sherry	alcohol_remarks	text
(scale: per week)	- bottles of beer		
	- shots of hard liquor		
5. Do you now or	If yes, how many packs per	smoke	real
ever smoked?	day?	quit_years	real
		smoke_remarks	text
6. Heart disease ¹	Does the patient suffers or has	heart_disease	text
	suffered from heart disease?		

¹This attribute is present in the demographics section of the Technical Summary report (see 4 Technical Summary Report), but is grouped with the attributes in this section.

Note A: The missing values are filled as -1.

Note B: There are many cases with ambiguous responses to attributes 2, 3, 4, 5. The *remarks* column has the values of these attributes exactly like how were written by the patient. The actual values that we want to interpret from these responses was decided in the pre-processing stage and is documented below.

Some examples of vague responses:

1. exercise - "yes", "occasionally on treadmill, but easily tired"; "smoked socially during middle age"

2. smoke - "yes", "cigar + pipe"

3. alcohol - 4 glasses - wine + beer / week; smoke - 1-2 ppd, quit for 18 yrs

Note C: Values of 'heart_disease': Yes, No, N/A, MurMur, Mitral Valve Prolapse, A Fib (Atrial fibrillation), HTN, triple bypass

Modeling Smoke response -

In order to model the smoking habits response of patients, we created two attributes corresponding to the "Do you now or ever smoked?" field -

1. smoke (quantity of smoking, in packs-per-day(ppd))

2. quit_yrs (number of years quit smoking)

If quit_yrs = 0, we only look at 'smoke' column (and the quantity becomes effective for current time). Otherwise, the patient has a history of quit smoking at some point (and the quantity corresponds to the smoke habits when the patient quit smoking). If a past year is a response to when the patient quit smoking, then the number of years quit smoking are calculated with reference to the year the survey was conducted.

An additional attribute called "smoke_remarks" is also present that has the actual response as written by the patient.

The following table gives interpretation of special case responses to the smoking habits of patients:

smoke	quit_yrs	Interpretation
-1	0	Field is left blank, we don't know if the person used to smoke in the past, we don't know if he/she smokes today.
-1	-1	If a patient quit smoking, but we don't know when and how much he/she smoked.
0	-1	Patient used to smoke very rarely in the past.
0	0	If a patient has never smoked at all.

-1	3	If a patient quit smoking 3 years back, but we don't know how much he/she used to smoke.
3	-1	If a patient quit smoking unknown number of years back, and smoked 3 ppd.
1	0	If a patient smokes 1 ppd in the present.
-2	0	If response = "yes"

Table 3.5Modeling smoke response

-2 is used to indicate where the response is "yes", that is, we do not know how much the patient smokes. Unknown information is indicated by -1.

One pack of cigarettes is made of 20 cigarettes. If the patient smokes rarely, then the number of ppd is assumed to be 0. For patients who responded with smoking cigars or pipes, we do not know how to quantify their habit in terms of ppd. Hence, such responses are filled with smoke = -2, quit_yrs = 0.

Sometimes, the comments in remarks column can be appended with some calculation information done by us on the patient's response. This is for reference only, in order to understand how the numeric attributes got their values.

Format: remarks - column <remarks>; <our evaluations> (if any)

Example: Patients who smoke 2 packs / week => 40 cigarettes / week => ~6 cig / day => 0.3 ppd

Modeling Exercise and Caffeine response -

Many responses to caffeine and exercise habits are answered by a "yes". Such responses are filled with "-2".

For caffeine related conversions, 1 US gallon = 16 US cups

Modeling Alcohol response

Patient ticked on wine

glasses_wine	bottles_beer	shots_hard_liquor
-1	0	0

Patient responded with "yes" on beer

glasses_wine	bottles_beer	shots_hard_liquor
0	-2	0

For responses like "2 per week", where the quantity is specified, but not the type of drink, we assume that the patient drinks 2 bottles of beer in a week.

3.3 Macro Database

Each questionnaire of the survey maps to a database table, and its attributes to the fields of the table. We first modeled the tables and its attributes in Microsoft Excel sheets for data entry. This made it convenient for us to collect, view, and edit the data. Later, the content of each table in Excel is saved in comma separated value format (CSV) that was exported to the PGSQL database.

A schema called macro is created within the database. All the macro data related tables are created in this schema:

```
macro.demographics
macro.epworth
macro.depression
macro.drink_smoke_ex
```

By using the PostgreSQL COPY operator, each CSV file can be exported to the PGSQL database. Every record of every macro dataset table is identified by a unique key that is the identifier of the patient.

There are 1046 patients for whom we have complete survey data.

3.4 Statistics on Macro data

3.4.1 Number of patients, average and standard deviations of Epworth and Depression scores categorized by patients' gender and age group

Age	Number of		Epworth score		Depressi	on score
groups	pa	tients	Average/Std. dev		Average	/Std. dev
	Male	Female	Male	Female	Male	Female
20 and	42	25	21 28/12 79	23 64/9 822	7 02/9 11	8 00/8 53
below	72	25	21.20/12.79	23.04/9.022	7.02/7.11	0.00/0.55
(20,30]	50	24	29.68/14.14	29.67/9.62	13.74/11.74	15.88/9.60
(30,40]	100	96	29.59/12.04	30.74/11.57	12.43/10.55	15.02/9.32
(40,50]	142	127	28.45/12.78	30.95/12.26	10.99/8.09	15.31/9.48
(50,60]	111	112	26.96/11.12	27.36/11.18	11.63/9.02	13.44/8.83
(60,70]	71	63	23.34/10.20	24.33/11.65	7.92/5.59	10.17/6.60
(70,80]	38	25	20.02/8.47	24.52/10.09	9.53/7.43	12.84/10.00
above 80	12	8	27.41/10.46	19.63/8.57	11.58/9.67	12.25/5.23

Table 3.5 Patients, Depression, Epworth by age

Figure 3.1 below graphically depicts the distribution of the male and female populations for the various age groups.

Age distribution based on gender

Figure 3.1 Age distribution based on gender

Example queries:

Query 1 - Number of males with age above 20 and age less than or equal to 30.

select count(*) from macro.demographics where age > 20 and age<=30 and gender = 'm'

Query 2 - Average Epworth score for males with age more than 30 and less than or equal to 40.

select avg(epworth_score) from macro.epworth e, macro.demographics d
where age>30 and age <=40 and gender = 'm' and e.pid=d.pid</pre>

Query 3 - Standard deviation from the mean of Beck depression index for females with age above 80.

select stddev(bdi) from macro.depression dep, macro.demographics dev
where age>80 and gender = 'f' and dep.pid=dem.pid

3.4.2 Patient distribution with respect to BMI Classification

BMI ranges, from Section 3.2.1 Patient demographics.

```
Underweight =<18.5
Normal weight = 18.5 to 24.9
Overweight = 25 to 29.9
Obesity (Class 1) = 30 to 34.99
Obesity (Class 2) = 35 to 39.99
Morbid obesity = 40 or greater
```


Figure 3.2 Patient distribution by BMI class

From the graph above, it is seen that a majority of patients with sleep disorders are overweight or obese.

Example query:

Query - Number of patients having BMI between 30 to 34.99

select count(*) from macro.demographics where bmi>=30 and bmi<=34.99</pre>

3.4.3 Epworth questionnaire score distribution

Epworth score sheet	0-%	1-%	2-%	3-%	missing
attributes					%
fa_reading	43.69	15.87	15.20	23.80	1.43
fa_watching_tv	16.73	15.97	23.61	42.64	1.05
fa_theater_meeting	71.80	11.38	6.50	6.98	3.35
fa_passenger	52.68	18.16	8.89	18.36	1.91
fa_pm_rest	19.50	20.27	19.31	39.58	1.34
fa_after_lunch	48.37	17.21	14.63	17.69	2.10
fa_driver	83.27	6.31	3.15	2.87	4.40
fa_talking	83.94	7.74	3.92	2.87	1.53
sleep_problem_family	52.96	8.22	6.69	23.90	8.22
tired	5.26	10.23	19.98	63.58	0.96
fa_meeting_watchingtv	26.96	15.20	19.22	37.48	1.15
fa_routine_tasks	81.26	8.51	5.07	4.02	1.15
eat_work_worry_bed	41.68	19.31	16.73	20.94	1.34
wa_am_headache	40.34	25.14	17.69	15.58	1.24
wa_gasp	60.42	16.44	13.10	7.84	2.20
snore_loud	15.87	9.18	10.61	62.43	1.91
stop_breath	48.76	8.41	11.09	28.97	2.77
leg_uneasy	47.99	18.45	12.72	19.12	1.72
leg_crawly	63.29	12.62	10.80	11.28	2.01
limbs_twitch	54.97	11.28	14.15	16.54	3.06
paralysis	80.02	8.22	5.07	3.92	2.77
act_out_dreams	71.51	11.47	6.21	5.83	4.97
unable_move	78.20	11.85	4.59	3.54	1.82
vivid_dreams_nightmares	29.16	28.30	19.41	21.51	1.63
walk_talk_sleep	62.05	15.97	9.37	10.42	2.20
wa_confused	66.54	18.16	8.32	5.35	1.63
grind_teeth	58.70	12.05	9.08	14.72	5.45
recall_dream	23.71	34.80	20.84	19.02	1.63

Table 3.6 Epworth questionnaire score distribution

From the table above, we see many patients (more than 60%) that very often feel tired during the day. Similarly, the number patients who snore very often are is also very high.

Epworth score distribution

Figure 3.3 Epworth score distribution

Example query:

Query - Number of patients who fall asleep while reading very often.

select count(*) from macro.epworth where fa_reading=3

(See Section 3.2.2 Epworth questionnaire for table and attribute descriptions)

3.4.4 Depression score distribution

					missing-
Depression	0-%	1-%	2-%	3-%	%
feel_sad	63.00	27.25	4.97	2.96	1.82
discouraged_future	67.69	22.94	4.97	2.58	1.82
feel_failure	71.13	17.21	7.55	1.72	2.39
degree_satisfaction	43.31	42.16	6.98	5.93	1.63
feel_guilty	75.14	17.40	3.44	1.91	2.10
feel_punished	82.31	7.93	1.15	5.93	2.68
feel_disappointed	57.93	32.22	6.02	1.91	1.91
feel_worse	53.44	33.94	7.27	3.35	2.01
suicide	86.81	10.42	0.67	0.00	2.10
crying	71.89	18.16	1.91	6.50	1.53
irritable	39.67	47.13	8.22	3.15	1.82
interest_people	62.14	27.63	6.98	1.24	2.01
make_decisions	60.80	22.28	14.44	0.96	1.53
appearance	56.50	22.18	13.67	5.64	2.01
work_capacity	33.65	41.59	19.02	3.92	1.82
sleep_habit	22.18	49.04	15.30	11.09	2.39
get_tired	13.38	52.77	25.62	6.50	1.72
appetite	74.19	15.77	6.12	1.72	2.20
lost_weight	73.90	9.75	4.97	5.74	5.64
worry_health	45.41	40.34	10.52	1.43	2.29
interest_sex	44.93	22.85	15.97	10.52	5.74

Table 3.7 Depression score distribution

(See Section 3.2.3 Beck *Depression Inventory* for table and attribute descriptions)

Depression score distribution

Figure 3.4 Depression score distribution

Example query:

Query - Number of patients who hate themselves

select count(*) from macro.epworth where fa reading=3

3.4.5 Beck depression index with respect to patient's age

BDI with respect to patient's age

From the above graph, patients with majority of severe (30 to 63) depression scores belong to 20 to 60 year age bracket. There are few instances of high depression seen in the senior group of patients of 75 to 90 years of age too. A majority of patients who are less than 20 years of age have minimal (0 to 9) to mild (10 to 16) rate of depression.

4 Technical Summary Report

The technical summary (of a PSG/CPAP/Split Night type study) is a summary of the recordings made during the overnight sleep study of the patient. This technical summary is stored by the REMBrandt system [13] as a Microsoft Excel file within the sleep study.

4.1 Summary Sections^{1,2}

a. Patient's demographic information

See Section 3.2.1 Patient demographics.

b. Sleep and Sleep Stages

This section contains information on total sleep time tracked, the efficiency of sleep, percent sleep period time spent in each of the sleep stages, number of awakenings during the sleep, etc.

c. Respiratory Disturbance (RD)

The number of obstructive, central and mixed - Apneas/Hypopneas, and UARS (Upper Airway Respiratory syndrome) counted during the patients sleep are entered into this section. Time and counts are tracked for REM (Rapid eye movement), Non - REM, Supine, Non - Supine and MT events. Some attributes that are aggregates of these counts (e.g., total number of Supine events) are also present.

d. Limb Movement (LM)

This table contains the counts and index of limb movements, periodic limb movements, and respiratory related limb movements for REM, NREM, Arousal, and Non - Arousal events.

e. Arousals

The counts and index of arousals during sleep events like - Apnea, Hypopnea, Snore, Limb Movements, etc. are present.

Note:

¹All the attributes corresponding to each of the sections are listed later in this chapter. The complete forms of acronyms encountered in the summary reports can be read in Appendix B (a).

²SPLIT and CPAP type studies have another report called SPLIT/CPAP/BILEVEL TABLE along with the standard summary report. We are not storing this data in the database in this thesis. However, they are available for any future research.

f. EKG

This section has the mean heart rate of the patient during events - REM, NREM, Wake, and MT. An overall mean heart rate from the entire length of sleep is also present.

g. Oxygen Saturation (OS)

The oxygen desaturations during NREM, REM, Wake and MT events are tracked in this section. Also present is the information on mean oxygen saturation, mean wake oxygen saturation, lowest desaturation, and time in REM stage in which oxygen saturation was less than 90%.

h. Body Position (BP)

The counts of Apnea, Hypopnea, UARS events and RDI (Respiratory disturbance index) against the Back, Left, Right, Prone/Abdomen, Upright body positions appear in this section.

4.2 Summary Format Types

А

Completely old format that has PSG or CPAP studies only. There are a lot of missing attributes present in this type of format, when compared to the standard Type-C:

- No Total Sleep time (TST) for REM and NREM events in Sleep summary.
- No RD summary for Obstructive, Central and Mixed type Hypopnea events.
- No time attribute for REM, NREM, Wake and MT events in RD summary.
- No UARS for REM, NREM, Wake and MT events in RD summary.
- No attributes for LM, periodic LM (PLM), respiratory related LM (RRLM), and total LM (TLM) for REM, NREM, Arousal, and No arousal events in LM summary.
- No attributes for left and right body positions for LM, PLM and RRLM, during REM and NREM events in LM summary.
- No Mean wake Oxygen Saturation attribute in OS summary.
- No body position summary.

В

Similar to format C, but with different cell indexing and some missing attributes:

- No time attribute for REM, NREM, Wake and MT events in RD summary.
- No UARS for Left, Right, Back, Abdomen and Up body positions in Body position summary.
- No Body position/Time/Stage summary, hence no time attributes for Abdomen, Back, Left, Right, Up body positions for REM, NREM, Wake and MT events.
- No Advanced Signal Time-table in Split type-B studies.

The most current and default format. The majority of the studies (psg/cpap/split) are in this format.

Туре	Format	Count	%
	identifier ¹		
PSG A	psgA	6	0.45
CPAP A	cpapA	6	0.45
PSG B	psgB	39	2.95
CPAP B	cpapB	12	0.91
SPLIT B	splitB	5	0.38
PSG C	psg	830	62.92
CPAP C	cpap	309	23.43
SPLIT C	split	112	8.49
	TOTAL	1319	100

 Table 4.1 Number of reports in each format type

Note: ¹The format identifier is a part of the technical summary filename, and has information needed for distinction between different formats of the reports. See Section 4.5.1 File naming scheme.

The two figures below give an abstract layout of the structure of Type - C PSG and SPLIT summary sheets. Note that CPAP summary has the same format as PSG.

For Split Night however, the structure has to incorporate baseline and treatment attributes (hence there are two tables for every section). The split studies also have two extra sections - Sleep Parameters and Advanced saturation summary. However, note that there are some attributes that have values for the entire length of the SPLIT study (for example, Sleep Period Time (SPT), see B Technical summary report, part (b) for complete list). The figure below shows the layout of a Type-C split study. In the figure,

ALL means total of diagnostic and treatment values NDX O means baseline/diagnostic/DX RX means treatment

O is Obstructive, C is Central, M is Mixed type of apnea or hypopnea. The notation <ALL, NDX O> means the entire summary section is divided into two sub-sections, one corresponding to ALL and other to NDX O for a given event (like REM). Thus, given ALL and NDX O, we can calculate RX = ALL - NDX O.

Figure 4.1 PSG/CPAP Type C Layout

Figure 4.2 Split Type C Layout (Left - half)

Body position summary - Treatment

(Right - half)

Respiratory disturbance information

<ALL NIGHT, NDX O>

ALL apnea, hypopnea

REM apnea, hypopnea O,C,M,ALL

NREM apnea, hypopnea O,C,M,ALL

REM apnea, hypopnea O,C,M,ALL supine/non-supine

NREM apnea, hypopnea O,C,M,ALL supine/non-supine

Wake apnea, hypopnea O,C,M,ALL supine/non-supine

MT apnea, hypopnea O,C,M,ALL supine/non-supine Arousal information <ALL, NDX O>

Limb information ALL | REM <ALL, NDX O> | NREM <ALL, NDX O>

Heart rate information <NDX O, RX>

SaO2 Information <NDX O, RX>

Saturation information <NDX O, RX>

Advanced signal time table NDX O RX

Saturation table diagnostic Body Position/Time/ Stage summary <All night, Baseline, RX>

4.3 Attributes: PSG and CPAP studies

The following tables show the attributes for PSG and CPAP type-C studies only. Since we deal with different formats and types of summary reports, we created a Microsoft Excel file that has the Summary sections, their attributes, cell Indexes and database attribute names for the all possible summary structures.

Table 4.2 Sleep Stage Summary

Attribute Name	Cell - Index	Database attribute	Туре
Total Recording Time - min	E24	total rec time min	real
Sleep Period Time - min	E25	sleep_period_time_m	real
TST NREM - min	E26	tst nrem min	real
TST REM - min	E27	tst rem min	real
Sleep Latency - min	E28	sleep latency min	real
Latency to REM (from Sleep onset) - min	E29	latency_to_rem_min	real
Number of Awakenings(NW)	E30	awakenings_count	smallin t
Sleep Efficiency - %	E31	sleep_efficiency_per c	real
Waso - min	C37	waso_min	real
Stage 1 - min	C38	stage1_min	real
Stage 2 - min	C39	stage2_min	real
Stage 3 - min	C40	stage3_min	real
Stage 4 - min	C41	stage4_min	real
REM - min	C42	rem_min	real
Total NREM - min	C43	nrem_min	real
MT - min	C44	mt_min	real
Supine and REM - min	C45	supine_rem_min	real
SPT ¹			
Waso - % spt	D37	waso_spt	real
Stage 1 - % spt	D38	stage1_spt	real
Stage 2 - % spt	D39	stage2 spt	real
Stage 3 - % spt	D40	stage3_spt	real
Stage 4 - % spt	D41	stage4_spt	real
REM - % spt	D42	rem_spt	real
Total NREM -% spt	D43	nrem_spt	real

MT - % spt	D44	mt spt	real
Supine and REM - % spt	D45	supine_rem_spt	real
TIB ²			
Waso - % tib	C37/AF41 * 100	waso_tib	real
Stage 1 - % tib	C38/AF41 *	stage1_ tib	real
Stage 2 - % tib	C39/AF41 *	stage2_tib	real
Stage 3 - % tib	C40/AF41 *	stage3_tib	real
Stage 4 - % tib	C41/AF41 *	stage4_ tib	real
REM - % tib	C42/AF41 *	rem_ tib	real
Total NREM -% tib	C43/AF41 *	nrem_tib	real
MT - % tib	C44/AF41 *	mt_tib	real
Supine and REM - % tib	C45/AF41 * 100	supine_rem_ tib	real
Lights Off ³	AE29	lights off time	time
Lights On ³ Wake ³	AE30 AE38	lights_on_time	time
Time in Bed	AE41	time in bed	real
Total Sleep Time ³	AE42	total sleep time	real
Wake /SPT ³	AE53	wake spt	real
TST Supine ³	AF55	tst supine	real
TST Non Supine ³	AF56	tst_non_supine	real
Referring Physician ³	C21	refer_phy	text
Interpreting Physician ³	I21	interpret_phy	text

Note:

The ¹%**SPT** (Sleep Period Time) and ²%**TIB** (Time in bed) calculated for sleep stages in PSG/CPAP studies are for the entire length of the study. However, for SPLIT type studies, the % TIB for sleep stages corresponds to baseline or treatment study duration, while the % SPT corresponds to the entire length of the study (because the SPLIT summary does not give the SPT values exclusively for baseline and treatment). For example, waso_spt for a SPLIT studycorresponds to waso durtation for baseline on SPT.

³ These attributes correspond to the entire length of the sleep study for SPLIT studies. See Appendix B (b) for a complete list of such attributes.

Table 4.3 Respiratory Disturbance Summary

Attribute Name	Cell - Index	Database attribute	Туре
Apneas Obstructive REM Apneas Obstructive REM Supine	D68 D69	apnea_obs_rem apnea_obs_rem_supine apnea_obs_rem_non_s	integer integer
Supine	D70	upine	integer
Apneas Obstructive NREM	D71	apnea_obs_nrem apnea_obs_nrem_supin	integer
Apneas Obstructive NREM Supine	D72	e I	integer
Apneas Obstructive NREM Non Supine	D73	apnea_obs_nrem_non_ supine	integer
Apneas Obstructive Wake	D74	apnea_obs_wake	integer
Apneas Obstructive Wake Supine	D75	e apnea obs wake non	integer
Supine	D76	supine	integer
Apneas Obstructive MT Apneas Obstructive MT Supine	D77 D78	apnea_obs_mt apnea_obs_mt_supine	integer integer
Apneas Obstructive MT Non Supine	D79	apnea_obs_mt_non_su pine	integer
Apneas Central REM	E68	apnea_central_rem	integer
Apneas Central REM Supine	E69	ine apnea central rem no	integer
Apneas Central REM Non Supine	E70	n_supine	integer
Apneas Central NREM	E71	apnea_central_nrem	integer
Apneas Central NREM Supine	E72	apnea_central_nrem_su	integer

Apneas Central NREM Non Supine	E73	pine apnea_central_nrem_n on_supine	integer
Apneas Central Wake	E74	apnea_central_wake	integer
Apneas Central Wake Supine	E75	apnea_central_wake_su pine	integer
Apneas Central Wake Non Supine	E76	apnea_central_wake_n on_supine	integer
Apneas Central MT	E77	apnea_central_mt	integer
Apneas Central MT Supine	E78	apnea_central_mt_supi ne	integer
Apneas Central MT Non Supine	E79	apnea_central_mt_non _supine	integer
Apneas Mixed REM	F68	apnea_mixed_rem	integer
Apneas Mixed REM Supine	F69	apnea_mixed_rem_supi ne	integer
Apneas Mixed REM Non Supine	F70	apnea_mixed_rem_non _supine	integer
Apneas Mixed NREM	F71	apnea_mixed_nrem	integer
Apneas Mixed NREM Supine	F72	apnea_mixed_nrem_su pine	integer
Apneas Mixed NREM Non Supine	F73	apnea_mixed_nrem_no n_supine	integer
Apneas Mixed Wake	F74	apnea_mixed_wake	integer
Apneas Mixed Wake Supine	F75	apnea_mixed_wake_su pine	integer
Apneas Mixed Wake Non Supine	F76	apnea_mixed_wake_no n_supine	integer
Apneas Mixed MT	F77	apnea_mixed_mt	integer
Apneas Mixed MT Supine	F78	apnea_mixed_mt_supin e	integer
Apneas Mixed MT Non Supine	F79	apnea_mixed_mt_non_ supine	integer
Hypopneas Obstructive REM	G68	hypopnea_obs_rem	integer
Hypopneas Obstructive REM Supine Hypopneas Obstructive REM Non	G69	hypopnea_obs_rem_su pine hypopnea_obs_rem_no	integer
Supine	G70	n_supine	integer

Hypopneas Obstructive NREM Hypopneas Obstructive NREM	G71	hypopnea_obs_nrem hypopnea_obs_nrem_s	integer
Supine	G72	upine	integer
Hypopneas Obstructive NREM Non Supine	G73	hypopnea_obs_nrem_n on_supine	integer
Hypopneas Obstructive Wake Hypopneas Obstructive Wake	G74	hypopnea_obs_wake hypopnea_obs_wake_s	integer
Supine	G75	upine	integer
Hypopneas Obstructive Wake Non Supine	G76	hypopnea_obs_wake_n on_supine	integer
Hypopneas Obstructive MT	G77	hypopnea_obs_mt hypopnea_obs_mt_suni	integer
Hypopneas Obstructive MT Supine Hypopneas Obstructive MT Non	G78	ne hypopnea obs mt non	integer
Supine	G79	_supine	integer
Hypopneas Central REM	H68	hypopnea_central_rem	integer
Hypopneas Central REM Supine	H69	_supine hypopnea_central_rem	integer
Supine	H70	_non_supine	integer
Hypopneas Central NREM	H71	hypopnea_central_nre m	integer
Hypopneas Central NREM Supine	H72	m_supine hypopnea_central_nre	integer
Supine	H73	m_non_supine	integer
Hypopneas Central Wake	H74	hypopnea_central_wak e hypopnea_central_wak	integer
Hypopneas Central Wake Supine Hypopneas Central Wake Non	H75	e_supine hypopnea_central_wak	integer
Supine	H76	e_non_supine	integer
Hypopneas Central MT	H77	hypopnea_central_mt hypopnea_central_mt_s	integer
Hypopneas Central MT Supine	H78	upine hypopnea central mt	integer
Hypopneas Central MT Non Supine	H79	non_supine	integer
Hypopneas Mixed REM	I68	hypopnea_mixed_rem	integer
Hypopneas Mixed REM Supine	I69	supine	integer

Hypopneas Mixed REM Non Supine	170	hypopnea_mixed_rem_ non_supine	integer
Hypopneas Mixed NREM	I71	hypopnea_mixed_nrem	integer
Hypopneas Mixed NREM Supine Hypopneas Mixed NREM Non	I72	_supine hypopnea mixed nrem	integer
Supine	173	_non_supine	integer
Hypopneas Mixed Wake	I74	hypopnea_mixed_wake hypopnea_mixed_wake	integer
Hypopneas Mixed Wake Supine Hypopneas Mixed Wake Non	I75	_supine hypopnea mixed wake	integer
Supine	I76	_non_supine	integer
Hypopneas Mixed MT	I77	hypopnea_mixed_mt hypopnea_mixed_mt_s	integer
Hypopneas Mixed MT Supine	I78	upine hypopnea_mixed_mt_n	integer
Hypopneas Mixed MT Non Supine	179	on_supine	integer
REM Supine Time - minutes	C69	rem_supine_min	real
REM Non Supine Time - minutes	C70	rem_non_supine_min	real
NREM Supine Time - minutes	C72	nrem_supine_min	real
NREM Non Supine Time - minutes	C73	nrem non supine min	real
Wake Supine Time - minutes	C75	wake_supine_min	real
Wake Non Supine Time - minutes	C76	wake_non_supine_min	real
MT Supine Time - minutes	C78	mt_supine_min	real
MT Non Supine Time - minutes	C79	mt_non_supine_min	real
Apneas Obstructive Total	D80	apnea_obs_total	integer
Apneas Central Total	E80	apnea_central_total	integer
Apneas Mixed Total	F80	apnea_mixed_total	integer
Hypopneas Obstructive Total	G80	hypopnea_obs_total	integer
Hypopneas Central Total	H80	hypopnea_central_total	integer
Hypopneas Mixed Total	180	hypopnea_mixed_total	integer
REM UARS	J68	uars rem	integer
REM Supine UARS count	J69	uars_rem_supine	integer
REM Non Supine UARS count	J70	uars_rem_non_supine	integer
NREM UARS	J71	uars_nrem	integer
NREM Supine UARS count	J72	uars_nrem_supine	integer
NREM Non Supine UARS count	J73	uars_nrem_non_supine	integer

Wake UARS	J74	uars wake	integer
Wake Supine UARS count	J75	uars_wake_supine	integer
Wake Non Supine UARS count	J76	uars_wake_non_supine	integer
MT UARS	J77	uars_mt	integer
MT Supine UARS count	J78	uars_mt_supine	integer
MT Non Supine UARS count	J79	uars_mt_non_supine	integer
UARS Event totals	J80	uars_events_total	integer
		resp_events_supine_tot	
Total Events Supine - Count	D83	al	integer
		resp_events_non_supin	
Total Events Non- Supine - Count	D84	e_total	integer
Total Respiratory Events - Count	D85	resp_events_total	integer
		resp events surine in	
Total Events Sunine - Index	E83	dex	real
Total Events Supilie Index	105	resp events non supin	Icui
Total Events Non- Supine - Index	E84	e index	real
Total Respiratory Events - Index	E85	resp events index	real
Total Respiratory Divents Index	100	resp_events_maex	icui

Respiratory	Info
A T T	

ALL			
All Apneas (Event Totals:			
obs+central+mixed)	AL4	apneas_total	integer
All Hypopneas (Event Totals:			
obs+central+mixed)	AL5	hypopneas_total	integer
All Apneas B	AL6	apneas_supine_total	integer
		hypopneas_supine_tota	
All Hypopneas B	AL7	1	integer
		apneas_non_supine_tot	
All Apneas NS	AL8	al	integer
		hypopneas_non_supine	
All Hypopneas NS	AL9	_total	integer
REM Respiratory Info			
All Hypopneas	AL16	hypopneas_rem_total	integer

All Hypopneas	AL16	hypopneas_rem_total	integer
	D68 +		
	E68 +		
All Apneas *	F68	apneas_rem_total	integer

NREM Respiratory Info

All Hypopneas	AL26 D71 +	hypopneas_nrem_total	integer
	E71 +		
All Apneas *	F71	apneas_nrem_total	integer

REM Supine / Non Supine

All Hypopneas - Supine	AL37	hypopneas_rem_supine _total hypopneas rem non s	integer
All Hypopneas - Non Supine	AL44 D69 +	upine_total	integer
All Apneas * - Supine	E69 + F69 D70 +	apneas_rem_supine_tot al	integer
All Apneas * - Non Supine	E70 + F70	apneas_rem_non_supin e_total	integer

NON-REM Supine / Non Supine

1 1		hypopneas nrem supin	
All Hypopneas - Supine	AL53	e_total	integer
		hypopneas_nrem_non_	
All Hypopneas - Non Supine	AL60	supine_total	integer
	D72 +		
	E72 +	apneas_nrem_supine_t	
All Apneas* - Supine	F72	otal	integer
	D73 +		
	E73 +	apneas_nrem_non_supi	
All Apneas* - Non Supine	F73	ne_total	integer

WA	KE
----	----

AL70 D74 + E74 +	hypopneas_wake_total	integer
F74	apneas_wake_total	integer
	hypopneas_wake_supin	
AL77	e_total	integer
	hypopneas_wake_non_	
AL84	supine_total	integer
D75 +		
E75 +	apneas_wake_supine_t	
F75	otal	integer
	AL70 D74 + E74 + F74 AL77 AL84 D75 + E75 + F75	AL70hypopneas_wake_totalD74 +E74 +E74 +apneas_wake_totalF74apneas_wake_totalAL77e_totalhypopneas_wake_supinAL84supine_totalD75 +E75 +E75 +apneas_wake_supine_tF75otal

All Apneas * - Non Supine	D76 + E76 + F76	apneas_wake_non_supi ne_total	integer
МТ			
All Hypopneas	AL93 D77 +	hypopneas_mt_total	integer
	E77 +		
All Apneas *	F77	apneas_mt_total	integer
		hypopneas_mt_supine_	
All Hypopneas - Supine	AL100	total hypopneas mt non su	integer
All Hypopneas - Non Supine	AL170	pine_total	integer
	$D^{7}8 + D^{7}8 + D$	· · , ,	
All Annaga * Sumina	E/8+ E79	apneas_mt_supine_tota	intogar
All Aplieds - Supilie	Г/8 D79 +	1	meger
	E79 +	anneas mt non sunine	
All Apneas * - Non Supine	F79	_total	integer

* Apnea aggregate attributes were absent in Microsoft Excel sheet. Hence, they were made up by us to complement the "hypopnea" aggregate attributes.

Table 4.4 Limb Movement Summary

Attribute Name	Cell - Index	Database attribute	Туре
Limb movements - REM	E91	lm_rem	integer
Limb movements - NREM	F91	lm_nrem	integer
Limb movements - Arousal	G91	lm_arousal	integer
Limb movements - No Arousal	H91	lm_no_arousal	integer
Limb movements - Total	I91	lm_total	integer
Limb movements - Index	J91	lm_index	real
Periodic Limb movements - REM	E92	plm_rem	integer
Periodic Limb movements - NREM	F92	plm_nrem	integer
Periodic Limb movements -			
Arousal	G92	plm_arousal	integer
Periodic Limb movements - No			
Arousal	H92	plm_no_arousal	integer

Periodic Limb movements - Total	I92	plm_total	integer
Periodic Limb movements - Index	J92	plm_index	real
D			
Respiratory related Limb			
movements - REM	E93	rrlm_rem	integer
Respiratory related Limb			
movements - NREM	F93	rrlm_nrem	integer
Respiratory related Limb			
movements - Arousal	G93	rrlm_arousal	integer
Respiratory related Limb			
movements - No Arousal	H93	rrlm_no_arousal	integer
Respiratory related Limb			
movements - Total	I93	rrlm_total	integer
Respiratory related Limb			
movements - Index	J93	rrlm_index	real
Total Limb movements - REM	E94	total_lm_rem	integer
Total Limb movements - NREM	F94	total_lm_nrem	integer
Total Limb movements - Arousal	G94	total_lm_arousal	integer
Total Limb movements - No		total_lm_no_arou	
Arousal	H94	sal	integer
Total Limb movements - Total	I94	total lm total	integer
Total Limb movements - Index	J94	total_lm_index	real

Limb Information

ALL			
LM Both	AU16	lm both	integer
LM Left	AU17	lm_left	integer
LM Right	AU18	lm_right	integer
PLM Both	AU19	plm both	integer
PLM Left	AU20	plm_left	integer
PLM Right	AU21	plm_right	integer
RRLM Both	AU22	rrlm_both	integer
RRLM Left	AU23	rrlm_left	integer
RRLM Right	AU24	rrlm_right	integer
REM			
LM Both	BB16	lm_rem_both	integer
LM Left	BB17	lm_rem_left	integer
LM Right	BB18	lm_rem_right	integer
PLM Both	BB19	plm_rem_both	integer
PLM Left	BB20	plm_rem_left	integer
PLM Right	BB21	plm_rem_right	integer
RRLM Both	BB22	rrlm_rem_both	integer

RRLM Left RRLM Right	BB23 BB24	rrlm_rem_left rrlm_rem_right	integer integer
NREM			
LM Both	BI16	lm_nrem_both	integer
LM Left	BI17	lm_nrem_left	integer
LM Right	BI18	lm_nrem_right	integer
PLM Both	BI19	plm_nrem_both	integer
PLM Left	BI20	plm_nrem_left	integer
PLM Right	BI21	plm_nrem_right	integer
RRLM Both	BI22	rrlm_nrem_both	integer
RRLM Left	BI23	rrlm_nrem_left	integer
RRLM Right	BI24	rrlm_nrem_right	integer

Table 4.5 Arousals

Attribute Name	Cell - Index	Database attribute	Туре
Apnea - count	C100	apnea_count	integer
Hypopnea - count	C101	hypopnea_count	integer
Snore - count	C102	snore_count	integer
Desaturation - count	C103	desat_count	integer
Spontaneous - count	C104	spontaneous_count	integer
Limb Movement - count	C105	lm_count	integer
Periodic LM - count	C106	plm_count	integer
Respiratory RLM - count	C107	rrlm_count	integer
Total - count	C108	arousal_total	integer
Apnea - index	D100	apnea index	real
Hypopnea - index	D101	hypopnea index	real
Snore - index	D102	snore index	real
Desaturation - index	D103	desat index	real
Spontaneous - index	D104	spontaneous index	real
Limb Movement - index	D105	lm_index	real
Periodic LM - index	D106	plm_index	real
Respiratory RLM - index	D107	rrlm_index	real
Total - index	D108	arousal_index	real

Table 4.6 EKG Summary

Attribute Name	Cell - Index	Database attribute	Туре
Mean Heartrate Mean RFM	J100	heartrate_mean	real
Heartrate	J101	heartrate_rem_mean	real
Heartrate	J102	heartrate_nrem_mean	real
Mean Wake Heartrate	J103	heartrate wake mean	real
Mean MT Heartrate	J104	heartrate_mt_mean	real

Table 4.7 Oxygen Saturation Summary

Attribute Name	Cell - Index	Database attribute	Туре
Mean SaO2 - %	D121	mean_sao2_perc	real
Lowest Desat - %	D123	lowest_desat_perc	real
Minutes TRT SaO2 < 90%	D125	trt_sao2_LT90	real
Mean Wake SaO2	D126	mean_wake_perc	real
Desaturations 4% or $>$ ¹ - Count	D129	desat_MT4	integer
NREM Desaturations - Count	D130	nrem_desat	integer
REM Desaturations - Count	D131	rem_desat	integer
Wake Desaturations - Count	D132	wake_desat	integer
MT Desaturations - Count	D133	mt_desat	integer
Desaturations 4% or > - index	E129	desat_MT4_index	real
NREM Desaturations - index	E130	nrem_desat_index	real
REM Desaturations - index	E131	rem_desat_index	real
Wake Desaturations - index	E132	wake_desat_index	real
MT Desaturations - index	E133	mt_desat_index	real
Saturation time table			
110- 95 minutes	AR49	sttmin_110_95	real
95- 90 minutes	AS49	sttmin_95_90	real
90- 85 minutes	AT49	sttmin_90_85	real
85- 80 minutes	AU49	sttmin_85_80	real
80-75 minutes	AV49	sttmin_80_75	real
75- 70 minutes	AW49	sttmin_75_70	real
70- 65 minutes	AX49	sttmin_70_65	real

65-60 minutes	AY49	sttmin_65_60	real
60- 55 minutes	AZ49	sttmin_60_55	real
55- 50 minutes	BA49	sttmin_55_50	real
50-45 minutes	BB49	sttmin_50_45	real
45-40 minutes	BC49	sttmin_45_40	real
40-35 minutes	BD49	sttmin_40_35	real
35-30 minutes	BE49	sttmin_35_30	real
30- 0 minutes	BF49	sttmin_30_0	real
110- 95 % time	AR50	perc time 110 95	real
95- 90 % time	AS50	perc time 95 90	real
90- 85 % time	AT50	perc time 90 85	real
85-80 % time	AU50	perc_time_85_80	real
80- 75 % time	AV50	perc_time_80_75	real
75- 70 % time	AW50	perc_time_75_70	real
70- 65 % time	AX50	perc_time_70_65	real
65- 60 % time	AY50	perc_time_65_60	real
60- 55 % time	AZ50	perc_time_60_55	real
55- 50 % time	BA50	perc_time_55_50	real
50- 45 % time	BB50	perc_time_50_45	real
45-40 % time	BC50	perc_time_45_40	real
40- 35 % time	BD50	perc_time_40_35	real
35- 30 % time	BE50	perc_time_35_30	real
30- 0 % time	BF50	perc_time_30_0	real

Note: ¹Type-A studies have "Desaturations 3% or >" instead of "Desaturations 4% or >". "4% or >" can be read as "4% or more".

Table 4.8 Body Position Summary

Attribute Name	Cell - Index	Database attribute	Туре
TST - Back	C144	tst_back	real
TST - Left	D144	tst_left	real
TST - Right	E144	tst_right	real
TST - Prone	F144	tst_prone	real
TST - Upright	G144	tst_upright	real
Total events - Back	C145	back_events_total	integer
Total events - Left	D145	left_events_total	integer
Total events - Right	E145	right_events_total	integer
Total events - Prone	F145	prone_events_total	integer
Total events - Upright	G145	upright_events_total	integer

Apneas - Back	C146	back apnea total	integer
Apneas - Left	D146	left apnea total	integer
Apneas - Right	E146	right apnea total	integer
Apneas - Prone	F146	prone apnea total	integer
Apneas - Upright	G146	upright apnea total	integer
1 10			C
Hypopneas - Back	C147	back_hypopnea_total	integer
Hypopneas - Left	D147	left_hypopnea_total	integer
Hypopneas - Right	E147	right_hypopnea_total	integer
Hypopneas - Prone	F147	prone_hypopnea_total	integer
Hypopneas - Upright	G147	upright_hypopnea_total	integer
UARS - Back	C148	back_hypopnea_uars	integer
UARS - Left	D148	left_hypopnea_uars	integer
UARS - Right	E148	right_hypopnea_uars	integer
UARS - Prone	F148	prone hypopnea uars	integer
UARS - Upright	G148	upright_hypopnea_uars	integer
			-
RDI ¹ - Back	C149	back_rdi	real
RDI - Left	D149	left_rdi	real
RDI - Right	E149	right_rdi	real
RDI - Prone	F149	prone_rdi	real
RDI - Upright	G149	upright_rdi	real
REM Abdomen	AZ58	abdomen_rem_min	real
REM Back	AZ59	back_rem_min	real
REM Left	AZ60	left_rem_min	real
REM Right	AZ61	right_rem_min	real
REM Up	AZ62	up_rem_min	real
NREM Abdomen	AZ63	abdomen_nrem_min	real
NREM Back	AZ64	back_nrem_min	real
NREM Left	AZ65	left_nrem_min	real
NREM Right	AZ66	right_nrem_min	real
NREM Up	AZ67	up_nrem_min	real
Wake Abdomen	AZ68	abdomen_wake_min	real
Wake Back	AZ69	back_wake_min	real
Wake Left	AZ70	left_wake_min	real
Wake Right	AZ71	right_wake_min	real
Wake Up	AZ72	up_wake_min	real
N/T A1 1	A 770	11 .	1
MI Abdomen	AZ/3	abdomen_mt_min	real
MT Back	AZ/4	back_mt_min	real
MI Lett	AZ/5	lett_mt_min	real
MT Right	AZ/6	right_mt_min	real

MT Up	AZ77	up_mt_min	real
-------	------	-----------	------

Note: ¹**RDI** appears as **A+H** (apnea plus hypopnea) in type-B format (psg/cpap/split) type summaries.

4.4 Attributes: Split Night studies

The attributes for split night studies are the same as CPAP and PSG, but there exist two tables for every section (baseline and treatment). Also, there are 2 extra sections - Sleep parameters and Advanced signal saturation time table that are exclusive to Split Night studies only. These are documented below.

Table 4.9 Sleep parameters

Attribute Name	Cell - Index	Database attribute	Туре
Back and REM	BP4	back_rem	real
Wake after Sleep per CPAP Index	BP5	wake_after_sleep	real
End of CPAP Index	BP7	end_time	time
Duration of CPAP Index	BP8	duration	real
Total Sleep Time per CPAP Index	BP9	tst	real
Sleep Efficiency per CPAP Index	BP10	sleep efficiency	real
Number of Awakenings per CPAP Index	BP11	awakenings	smallint
MT per CPAP Index	BP12	mt	real
REM per CPAP Index	BP13	rem	real
Stage 1 per CPAP Index	BP14	stage1	real
Stage 2 per CPAP Index	BP15	stage2	real
Stage 3 per CPAP Index	BP16	stage3	real
Stage 4 per CPAP Index	BP17	stage4	real
Wake per CPAP Index	BP18	wake	real
TRT	BP19	trt	real
TST Supine	BO21	tst_supine	real
TST Non Supine	BQ21	tst non supine	real
SPT	BP6	spt	real
CPAP ON			
------------	------	-------------	------
TST	BO61	tst_cpap_on	real
TIB	BO62	tib_cpap_on	real
SE	BO63	se_cpap_on	real
so_cpap_on	BO65	so_cpap_on	real
REM Onset	BO66	rem_onset	real

Table 4.10 Advanced signal table for Oxygen Saturation

Attribute Name	Cell - Index	Cell - Index	Database attribute	Туре
	baseline	treatment		
20-30 minutes	AR68	AR86	min_20_30	real
30-40 minutes	AS68	AS86	min_30_40	real
40-50 minutes	AT68	AT86	min_40_50	real
50-60 minutes	AU68	AU86	min_50_60	real
60-70 minutes	AV68	AV86	min_60_70	real
70-80 minutes	AW68	AW86	min_70_80	real
80-90 minutes	AX68	AX86	min_80_90	real
90-100 minutes	AY68	AY86	min_90_100	real
20-30 % time	AR69	AR87	perc_time_20_30	real
30-40 % time	AS69	AS87	perc_time_30_40	real
40-50 % time	AT69	AT87	perc_time_40_50	real
50-60 % time	AU69	AU87	perc_time_50_60	real
60-70 % time	AV69	AV87	perc_time_60_70	real
70-80 % time	AW69	AW87	perc_time_70_80	real
80-90 % time	AX69	AX87	perc_time_80_90	real
90-100 % time	AY69	AY87	perc_time_90_100	real
MIN<90% 20-90 min	AR56	AR61	min_lt90_20_90	real
MIN<90% 20-90 % time	AR57	AR62	perc_time_lt90_20_90	real

4.5 Data Extraction

The technical summary files are Microsoft Excel format sheets embedded in the REMBrandt format data that can be viewed using the REMBrandt Viewer utility. We manually copied and saved them in a Microsoft Excel Workbook. A workbook is a collection of Excel sheets. For our research, each workbook has Excel sheets for 100

patients. There can be more than one sleep study conducted for each patient, and thus, more than one summary sheet per patient (Format Type A, Type B, or Type C).

4.5.1 File naming scheme

(a) Sheet naming

The Excel sheets within a workbook are named using the following naming convention. Note that this name is the same as the name of the folder that contains the raw sleep data. Each sheet name is pre-appended by a study identifier that is an incrementally generated integer.

For type C:

```
1316.56.cpap.2006_07_02
study identifier = 1316
folder name = 56.cpap.2006_07_02
patient identifier = 56
study type + format type = cpap, C
study date = 2006_07_02 (YYYY_MM_DD)
```

Note: Study type can be: cpap, psg, split. There is no need to specify the format type as Type C is the default format.

For type B:

```
60.416.psgB.2004_01_02
```

```
study identifier = 60
folder name = 416.psgB.2004_01_02
patient identifier = 416
study type, format type = psg, B
study date = 2004_01_02 (YYYY_MM_DD)
```

Similarly, for type B cpap and split studies, the study type is "cpapB" and "splitB" respectively.

For type A:

345.123.cpapA.2003 11 17

study identifier = 345
folder name = 123.cpapA.2003_11_17
patient identifier = 123
study type, format type = cpap, A
study date = 2003_11_17 (YYYY_MM_DD)

Similarly, for type A cpap study, the study type is "cpapA". Note that there are no split type A studies in the data we have.

(b) Workbook naming

The workbooks are named with regards to the patients they contain.

301.400.summaryWorkbook.xls

The above workbook contains sheets from studies of patients whose identifiers go from 301 - 400.

4.5.2 Code, Input and Output

The code to extract data was written using the Java programming language in Eclipse IDE using the Apache POI 3.0.1 library to access the Excel files.

A run of the code reads the target Excel workbook, and iterates through all the summary sheets contained within it. Within each sheet, the values are extracted from each of the sections and appended to a CSV file corresponding to that section:

```
arousalSummary.csv
bodyPositionSummary.csv
ekgSummary.csv
limbMovementSummary.csv
oxygenSaturationSummary.csv
respiratoryDisturbanceSummary.csv
sleepSummary.csv
```

and for split only -

```
splitAdvancedSaturationSummary.csv
splitSleepParametersSummary.csv
```

Each of the CSV files above contains data for all the patients. The header of the CSV files are the database attributes listed in Section 4.3 Attributes: PSG and CPAP studies and Section 4.4 Attributes: Split Night studies. Each record is identified by the attributes study ID and type of study. The study ID does not suffice as a key attribute, because for split studies are divided into baseline and treatment observations. The study ID for these is the same, but study type differs (split.dx and split.rx, corresponding to baseline and treatment studies). Hence, the study type too is required along with Study ID and they form a composite key pair.

4.5.3 Handling different format types - A, B, C

The code identifies the type of format by extracting this detail from the name of the sheet and then handles it appropriately.

4.5.4 Missing values

The missing values in the data sheets are replaced by -1 for integers, -1.0 for doubles.

(a) Blank cells

If the cell is blank, a runtime Null Pointer exception is thrown. The code catches this exception and handles it by returning a -1 value, indicating the value was not known.

(b) Numeric cells with '-' as values

Sometimes a cell that is expected to contain an Integer or a Double can contain a character '-'. Thus, the code to read Integer or Double values first checks if the content of the cell is of string type. If it is, then it recognizes it as a missing value. If not, it goes ahead and reads the numeric value in the cell.

(c) #VALUE ? or #DIV/0! as cell values

Some split studies encountered had #VALUE ? or, #DIV/0! as cell values. These were manually replaced by -1.

4.6 Technical Summary Database

Each section of the technical summary Excel sheet maps to a database table, and its attributes to the fields of the table.

4.6.1 Schema and tables

A schema called summary is created within the database. All the summary-data related tables are created in this schema:

```
summary.arousal
summary.bodyposition
summary.ekg
summary.limbmovement
summary.oxysat
summary.rd (respiratory disturbance)
summary.sleep
```

split only -

```
summary.advoxyst
summary.sleepparam
```

By using the PostgreSQL COPY operator, each CSV file corresponding to a summary section can be exported to the PGSQL database.

There are 1319 studies for which we have complete survey data.

4.6.2 Patient-Micro study map table

Using the Study ID and Patient ID information present in the name of every technical summary report, we have created a patient - study map table, since a patient can undergo more than one type of micro study over time. Study ID is the primary key <PK> constraint of this table.

Table 4.11 Patient-Study Map table

No.	Attribute name	Description	Туре
1	sid <pk></pk>	Identifier of the study	int
2	pid	Identifier of the patient	int
3	study_type	Type of study	text
4	pname	Patient initials	text

4.7 Normative technical summary data for males and females

This is a reference table that gives durations of different sleep period types, sleep stages and sleep efficiency, number of awakenings and REM periods of various normal male and female age groups.

Note: The normative data could differ in the values of few attributes from one study to the other based on subpopulations between the patients [24]. The following tables give the normative data for a study.

Table 4.12 Normative data for males

Part I

	20 - 29		30 - 39		40 - 49	
	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.
TIB	442.23	12.22	434.55	20.49	429.1	39.17
SPT	424.64	14.42	427.85	23.16	414.95	36.86
TST	419.27	14.51	421.45	21.93	389.1	46.5
Sleep Efficiency	0.95	0.04	0.97	0.02	0.91	0.06
# Awakenings	3.05	2.57	2.5	1.43	4.65	2.27
# REM Periods	4.05	0.65	4.5	0.71	4.35	0.94
Sleep Latency	14.55	11.38	5.8	3.85	10	7.87
REM Latency	88.27	21.32	85.35	30.08	71.65	32.77
Wake (%SPT)	1.26	1.08	1.47	1.94	6.29	5.56
Stage 1	4.44	1.62	5.71	3.43	7.56	3.03
Stage 2	45.54	5.17	56.89	7.36	54.75	11.14

Stage 3 Stage 4	6.21 14.55	1.35 4.38	5.67 6.79	1.46 5.2	5.37 3.18	3.27 6.25
REM	28	5.66	23.47	3.86	22.85	4
DELTA	20.76		12.46		8.55	

Part II

	50 - 59		60 - 69		70 - 79	
	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.
TIB	422.58	44.93	451.55	37.7	493.09	49.48
SPT	406.96	45.88	441.2	37.47	448.86	35.31
TST	389.79	49.54	407.3	44.65	372.86	87.22
Sleep Efficiency	0.95	0.92	0.04	0.9	0.07	0.77
# Awakenings	3.05	5.67	1.78	7.55	3.69	7.09
# REM Periods	4.05	4.17	0.84	4.55	0.72	4.14
Sleep Latency	14.55	11.92	10.52	8.25	7.2	32
REM Latency	88.27	84.79	19.37	83.9	38.12	111.14
Wake (%SPT)	1.26	4.33	2.33	7.73	6.02	16
Stage 1	7.56	3.94	9.73	3.97	9.47	3.46
Stage 2	61.71	10.3	56.79	8.76	55.49	16.62
Stage 3	1.69	3.2	2.06	3.34	1.36	2.34
Stage 4	4.92	7.7	0.6	1.9	0	0
REM	21.48	4.01	23.09	3.59	17.68	6.63
DELTA	6.61		2.66		1.36	

Sleep stage pie-chart distribution:

	MEAN	STD DEV
Stage 1	7.56	3.03
Stage 2	54.75	11.14
Stage 3	5.37	3.27
Stage 4	3.18	6.25
REM	22.85	4
DELTA	8.55	

Table 4.13 Normative data for females

Part I

	20 - 29		30 - 39		40 - 49	
	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.
TIB	445.65	24	443.65	18.64	441.45	22.9
SPT	432.3	22.4	433.25	19.48	432.32	23.82
TST	429.95	21.71	425.7	31.53	425.18	23.32
Sleep Efficiency	0.96	0.02	0.96	0.06	0.96	0.02
# Awakenings	1.1	0.78	1.4	1.15	3.09	2.1
# REM Periods	4.2	0.89	4.3	0.63	3.95	0.61
Sleep Latency	12.9	9.62	9.8	9.51	7.82	6.01
REM Latency	100.2	44.18	78.65	19.47	82.32	34.04
Wake (%SPT)	0.53	0.49	1.84	3.97	1.63	1.3
Stage 1	4.18	2.39	4.17	1.65	5.64	2
Stage 2	52.37	5.89	53.77	7.73	54.01	8.55
Stage 3	5.27	1.97	6.42	3.51	7.51	3.48
Stage 4	12.42	6.24	7.58	6.67	4.54	6.91
REM	25.23	3.63	26.22	5.27	26.67	4.1
DELTA	17.69		14		12.05	

Part II

	50 - 59		60 - 69		70 - 79	
	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.
TIB	466.73	47.2	465.68	45.21	507.05	56.29
SPT	454.77	44.26	444.14	47.51	470.7	46.88
TST	430.77	34.94	404.95	55.8	413.55	36.64
Sleep Efficiency	0.96	0.93	0.07	0.87	0.09	0.82
# Awakenings	1.1	4.64	2.12	4.36	2.17	8.35
# REM Periods	4.2	4.32	0.93	4.04	0.96	4.5
Sleep Latency	12.9	10.59	4.99	16.5	13.83	15.4
REM Latency	100.2	85.73	26.52	90.14	41.82	88.45
Wake (%SPT)	0.53	4.95	6.48	8.93	8.47	11.69
Stage 1	4.85	2.2	7.69	4.12	6.59	2.28
Stage 2	57.8	6.5	54.78	8.59	52.22	8.34
Stage 3	6.49	2.38	4.5	3.99	6.3	4.03
Stage 4	4.14	5.28	2.67	3.04	3.74	5.68
REM	21.77	3.26	21.43	4.04	19.46	4.23
DELTA	10.63		7.17		10.04	
REM Latency Wake (%SPT) Stage 1 Stage 2 Stage 3 Stage 4 REM DELTA	12.9 100.2 0.53 4.85 57.8 6.49 4.14 21.77 10.63	10.59 85.73 4.95 2.2 6.5 2.38 5.28 3.26	4.99 26.52 6.48 7.69 54.78 4.5 2.67 21.43 7.17	16.5 90.14 8.93 4.12 8.59 3.99 3.04 4.04	13.83 41.82 8.47 6.59 52.22 6.3 3.74 19.46	13 88. 11. 2. 8. 4. 5. 4.

Sleep stage pie-chart distribution:

	MEAN	STD DEV
Stage 1	5.64	2
Stage 2	54.01	8.55
Stage 3	7.51	3.48
Stage 4	4.54	6.91
REM	26.67	4.1
DELTA	12.05	

This normative data for males and females is stored in summary schema, in 2 tables table called normative.male and normative.female tables corresponding to male and female data for every study (See Table 4.15 Normative data table). The attribute values of this table are the means and standard deviations of all the attributes that are mapped from the normative table. The following tables give an idea of the naming of the attributes in the database:

Table 4.14 Attribute naming for normative data

	20 - 29	
	Mean	Std.Dev.
TIB	tib_mean_20_29	tib_sdev_20_29
SPT	spt_mean_20_29	spt_sdev_20_29
TST	tst_mean_20_29	tst_sdev_20_29
Sleep Efficiency	sleep_eff_mean_20_29	sleep_eff_sdev_20_29
# Awakenings	awakenings_mean_20_29	awakenings_sdev_20_29
# REM Periods	rem_periods_mean_20_29	rem_periods_sdev_20_29
Sleep Latency	sleep_latency_mean_20_29	sleep_latency_sdev_20_29
REM Latency	rem_latency_mean_20_29	rem_latency_sdev_20_29
Wake (%SPT)	wake_spt_mean_20_29	wake_spt_sdev_20_29
Stage 1	stage1_spt_mean_20_29	stage1_spt_sdev_20_29
Stage 2	stage2_spt_sdev_20_29	stage2_spt_sdev_20_29

The above attributes and corresponding values exist in the table as:

summary.normative_male

sid	study	tib_mean_20_29	tib_sdev_20_29	spt_mean_20_29	spt_sdev_20_29	••
1	psg	442.23	12.22	424.64	14.42	
2	cpap	442.23	12.22	424.64	14.42	

Table 4.15 Normative data table

The attributes study id (sid), and the study (study) act as a composite key to identify every row of the table.

4.8 Effect on sleep efficiency

We present a couple of visualizations produced when we compared the attributes of sleep summary data and the macro data.

% NREM and Sleep efficiency

Figure 4.3 Sleep efficiency and % NREM

The above graph shows a high correlation between the sleep efficiency and the time patient spends in the Non-REM stage (Stages 1, 2, 3, and 4) in our data.

The correlation between the sleep efficiency and the age of the patient shows a falling scatter over time, as seen in the following scatter plot.

Age with respect to sleep efficiency

Figure 4.4 Age and Sleep efficiency

5 Micro Dataset

5.1 Context

Micro level data, also known as objective data, is the time-series signal data obtained during conduct of overnight sleep observation on the patient. Clinical instruments attached to a patient via electrodes are able to record time-series signals that originate from biochemical and physical processes taking place within the sleeping patient's body. Polysomnography (PSG/sleep study) is a clinical procedure that records physiologic attributes during sleep. A polysomnogram reads the electrical potential of the brain (using EEG - Electroencephalogram); electrical activity of muscles (using EMG – Electrooculogram) into time series signals. Also, signals tracking body processes like electrical activity of heart (using ECG – Electrocardiogram), blood oxygen level, body position, limb movements, snoring and blood pressure are registered.

In a typical PSG/CPAP/Split Night study, data is collected from approximately 50 - 55 different signals for an average of around 7.2 hours of sleep.

All the required signal information is stored in a REMbrandt proprietary format file [13]. Data of each patient occupies 375 MB on an average of storage on Compact Disc media.

Figure 5.1 High level representation of composition of micro data

From the above figure, at the lowest level, the micro data is composed of signal values generated at a certain fixed cycle rate per second, which constitute a signal. Each record is composed of a series of signals (and thus, the signal data points). One record is generated every second. All the records constitute a signal block in a micro study file.

The study file also has some meta-data about the signal properties (units, dimensions, physical and digital minimums and maximums, sampling rates etc), called as signal header, and a global header (patient name, date of study, number of records, number of signals, and duration of each record) for the sleep study).

The large file size of one sleep study is due to the high sampling rates of the majority of the signals. Almost 30 signals are sampled at 200 Hz, with each sample being a short integer type. For a 7.2 hour long study (26000 seconds), storage occupied by one such signal amounts to: 200 Hz * 26000 seconds * 2 Bytes \sim 10 MB (each data point is a 2 byte short integer). For 30 such signals, the storage needed increases to 300 MB.

After completing the surveys, the patient is asked to undertake the overnight sleep study. The sleep clinics have study labs that appear like hotel suites designed to keep the patient as comfortable as possible for a good night's sleep. Electrodes are then attached on different parts of patient's body to collect the signal data. (For information on electrode placements, see Section 2.3.2 Signal Information).

Each patient file comes with a Compact Disc media that has a sleep study recorded in REMBrandt format. The average size of this data is 375 MB.

5.2 Data Conversion

5.2.1 EDF Extraction

The signal data from the sleep study is in a file of REMBrandt format. It can be viewed using the REMBrandt viewer utility along with other aspects of the sleep study like the

technical summary report and patient's profile. However, REMbrandt viewer does not have the feature to extract the signal data into a file so that we can store it in the database (nor the structure of data in REMBrandt format is known). Instead, the REMBrandt package comes with a utility called "REMbrandtEDFexport.exe" to extract the data into European Data Format (EDF). EDF is a single file that contains information about the study, properties of the signals and the signal data points for an overnight of observation. The European Data Format (EDF) [3], first published in 1992, was the outcome of an effort to devise a common format to compare sleep-wake analysis results coming from different sources.

Figure 5.2 REMbrandt EDF exporter utility interface

5.2.2 Preserve the sampling rates

During the REMbrandt -> EDF conversion, the sampling rate of all the signals is preserved. Thus, the signals are available at their natural frequency which significantly reduces the data storage costs. For instance, the signal that tracks patient's heart beat is sampled at 2 Hz per second (or 2 data points per second). For a sleep study lasting 7.2 hours (26,000 seconds), the size of signal data amounts to: 26000 sec * 2 Hz * 2 bytes = 104,000 bytes or 101.56 KB (each data point is a 2 byte short integer). If this signal is re-

sampled to 256 Hz during the conversion, the storage would go up to: 26000 sec * 256 Hz * 2 bytes = 13,31,2000 bytes or 12.7 MB.

5.2.3 Multiple EDF files

As observed during EDF extraction, the conversion of a REMbrandt CPAP and Split study file to EDF may result in the creation of more than one EDF file (2 to 3 files may be generated). One of these files (the largest in size, usually 300 - 500 MB) corresponds to the overnight sleep study. The remaining files are much smaller in size (usually less than 5 MB) and may have to do with the minor test runs of the sleep monitoring system before the major night study is conducted. The minor CPAP EDF files may deal with experimenting whether the patient can be administered a CPAP procedure or not.

5.3 EDF Naming Scheme

The micro data for every study belongs to a source folder that was named as per the following semantics:

When an EDF file is extracted by using the "REMbrandtEDFexport.exe" utility, the file generated is put in a separate directory that contains EDF files and is renamed to bear the same name as that of the source folder (For instance, the name of EDF file is: 56.cpap.2006_07_02.edf). Additionally, a study identifier is pre-appended to the EDF file name by referring to the name of the corresponding technical summary data sheet (see Section 4.5.1 File naming scheme, part (a)). Thus the study id, patient id and study type information available in the EDFs name. This will help us identify the study when it is uploaded into the database.

5.4 EDF Description

An EDF file is capable of storing multi-channel biological signals. The specification of the structure of an EDF file is provided in [3]. The EDF format has undergone extensions over time, the latest format being called EDF+. However, the data that we deal with is in old EDF format (Version 0).

The body of an EDF file consists of 3 major sections, in the following order:

5.4.1 Header

The topmost section of the EDF is the header file which is 256 bytes in size, and contains global information on the EDF file.

EDF FORMAT VERSION	PATIENT ID	RECORDING ID	START DATE dd.mmyy	START TIME hh.mm.ss	BYTES IN HEADER	RESERVED	DATA RECORD COUNT	DATA RECORD DURATION	NUMBER OF SIGNALS
8	80	80	8	8	8	44	8	8	4

Figure 5.3 EDF Header format (Note: the numbers denote ASCII bytes)

Description:

- 1. EDF Format Version 8 ASCII bytes
 - Version of the EDF format we are dealing with
 - Value: 0
- 2. Patient ID 80 ASCII bytes
 - Local Patient Identification
 - Value: Patient's name

- Format: LASTNAME, FIRSTNAME

3. Recording ID - 80 ASCII bytes

- Local Recording Identification
- Value: This field appears blank in all the studies

4. Start Date - 8 ASCII bytes

- The date of the study
- Format: DD.MM.YY
- Sample value: 23.02.06
- 5. Start Time 8 ASCII bytes
 - The start time of the study
 - Format: HH.MM.SS
 - Sample value: 06.30.12

6. Bytes in Header - ASCII bytes

- Number of bytes in the header and signal header
- Value: (256 + 256 * Number of signals) bytes
- 7. Reserved 44 ASCII bytes
 - No data
- 8. Data record count 8 ASCII bytes
 - Number of data records in the EDF file
- 9. Data Record Duration 8 ASCII bytes
 - Number of seconds
 - Value: 1 (for all the sleep studies)
- 10. Number of signals ASCII bytes
 - 50 to 55 signals in every study

- 65 different signals that we know

5.4.2 Signal Properties Header

Following EDF header is specific signal information, whose size depends upon the number of signals present in the recordings (256 bytes * number of signals).

NAME OF	TRANSDUC-	PHYSICAL	PHYSICAL	PHYSICAL	DIGITAL	DIGITAL	PREFILTER-	SAMPLING	RESERVED
SIGNAL	-ER TYPE	DIMENSION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	ING	RATE	
16	80	8	8	8	8	8	80	8	32

Description:

The information in the signal header is structured so that information in one type of field is grouped together for all the signals. For instance, for a study consisting of 55 signals, the first 16*55 = 888 Bytes are occupied by the 'Name of Signal' field for all the signals. This also defines the ordering of the signal properties for the rest of the header fields, and also the sequence of signals that make up a record of the signal block.

- 1. Name of Signal
 - Example: 'heartrate', 'bodyposition', 'snore', 'cflow', 'oxysat', etc.
 - Size: (16 * number of signals) Bytes

2. Transducer Type

- Example: 'AgAgCl cup electrodes'
- For sleep study EDF, this field is left blank
- Size: (80 * number of signals) Bytes

- 3. Physical Dimension
 - Units of the signals recorded
 - Example: 'mbar' for snore pressure, '%' for oxygen saturation, 'bpm' for heart rate
 - Size: (8 * number of signals) Bytes
- 4. Physical Minimum
 - Minimum extreme of physical value of a signal data point
 - Unique for every signal
 - Example: '-3276.8' for Heart rate
 - Size: (8 * number of signals) Bytes
- 5. Physical Maximum
 - Maximum extreme of physical value of a signal data point
 - Unique for every signal
 - Example: '3276.7' for Heart rate
 - Size: (8 * number of signals) Bytes
- 6. Digital Minimum (-32768)
 - Minimum extreme of digital value of a signal data point
 - Same for all the signals
 - Size: (8 * number of signals) Bytes
- 7. Digital Maximum (+32767)
 - Minimum extreme of digital value of a signal data point
 - Same for all the signals
 - Size: (8 * number of signals) Bytes

Each signal data point is a 2 byte type short integer, and is a digital value. The conversion between digital and physical values can be done as follows:

Figure 5.5 Physical and Digital Scaling

Using the 2-point from equation of a line:

x - DGTLmax

y = PHYmax + _____ * (PHYmax - PHYmin)

DGTLmax - DGTLmin

Equation 5.1 Two point form of a line

Where,

y = physical value can be calculated by plugging in x (digital value from the EDF file) and the specified physical and digital extremes of the signal.

From [3], attributes 4,5,6,7 often are the extreme output values of the A/D converter. They specify the offset and amplification of the signal.

8. Prefiltering

- High Pass Filtering information in Hz (HP), for example, HP: 0.1Hz
- Low Pass Filtering information in Hz (LP), for example, LP: 75Hz
- For sleep study EDF, this field is left blank
- Size: (80 * number of signals) Bytes
- 9. Sampling Rate
 - Number of samples generated per second
 - Example: 200 Hz for signal 'chest6'
 - Size: (8 * number of signals) Bytes
- 10. Reserved
 - Blank
 - Size: (32 * number of signals) Bytes

The size of the signal header can be calculated as: 256 Bytes * Number of Signals

5.4.3 Signal Properties Table

Following signal properties is the third and the largest part of an EDF file, the signal block - a collection of data records made of signals of data points. The table below lists all the signals (65) and their different sampling rates and physical extremes encountered while going through all the sleep studies. Any given study contains a subset of these signals (50 to 55 signals).

Table 5.1 Signal properties

No.	Signal	Signal name,	Sampling	Physical	Physical	Physical
	electro-	placements	Rate	Minimum	Maximum	Dimens-
	-des					-ion
						(Units)
1	al	EEG, EOG.	200	-3276.8	3276.7	uV
		cranium				
2	a2	EEG, EOG,	200	-3276.8	3276.7	uV
		cranium				
3	c3	EEG, cranium	200	-3276.8	3276.7	uV
4	c4	EEG, cranium	200	-3276.8	3276.7	uV
5	c3_a2	EEG (potential	200	-3276.8	3276.7	uV
		difference: C3-				
		A2)				
6	01	EEG, cranium	200	-3276.8	3276.7	uV
7	o2	EEG, cranium	200	-3276.8	3276.7	uV
8	fp1	cranium	200	-3276.8	3276.7	uV
9	fp2	cranium	200	-3276.8	3276.7	uV
10	f7	cranium	200	-3276.8	3276.7	uV
11	f3	cranium	200	-3276.8	3276.7	uV
12	fz	cranium	200	-3276.8	3276.7	uV
13	f4	cranium	200	-3276.8	3276.7	uV
14	f8	cranium	200	-3276.8	3276.7	uV
15	t3	cranium	200	-3276.8	3276.7	uV
16	cz	cranium	200	-3276.8	3276.7	uV
17	t4	cranium	200	-3276.8	3276.7	uV
18	t5	cranium	200	-3276.8	3276.7	uV
19	p3	cranium	200	-3276.8	3276.7	uV
20	pz	cranium	200	-3276.8	3276.7	uV
21	p4	cranium	200	-3276.8	3276.7	uV
22	t6*	cranium	200	-2621440.0	2.62136E7	uV
23	loc	EOG	200	-3276.8	3276.7	uV
24	roc	EOG	200	-3276.8	3276.7	uV
25	xflow	EOG.	10	-0.26214	0.262136	V/s
	[24]	Combined	-	-32768.0	32767.0	
		output from		-262144.0	262136.0	
		chest and		-0.03276	0.032767	
		abdomen belts				
		(semi-				
		quantitative				
		signal). [24]				
26	xsum	EOG,	10	-262144.0	262136.0	V
	[24]	Calculated sum		-32768.0	32767.0	

		of the chest and		-0.03276	0.032767	
		abdomen belts.		-0.26214	0.262136	
		[24]				
27	rmi	EOG,	10	-32768.0	32767.0	0
		(Respiratory				
		Mechanics				
		Instability)				
		Measurement of				
		paradoxical				
		movements				
		from the chest				
		and abdomen				
		belts. [24]				
28	phase	EOG,	10	-32768.0	32767.0	0
	[24]	Difference				
		between the				
		chest and				
		abdomen belts.				
		Numerical				
		value on the				
		charts copied,				
		now we can				
		look at a				
		respiratory				
		loop. [24]	-			
29	rr	EOG,	1	-32768.0	32767.0	BPM
	[24]	Respiratory				
		rate, taken from				
		PFLOW				
		(cannula) or				
		CFLOW (CPAP				
20	1 . 1	mask). [24]	200	2276.0	22767	17
30		EMG	200	-32/6.8	32/6.7	uv
31	neg2	EMG	200	-32/6.8	3276.7	u v
32	rieg3	EMG	200	-32/6.8	32/0./	u v
33	arms4	EMG	200	-2621440.0	2621360.0	uv
24	1000001	EMC	200	-3270.8	3270.7	лV
25	rorm5	EMG	200	-2021440.0	2621360.0	uv uV
33	Tarms	ENIG	200	-2021440.0	2021300.0	uv
26	aka	ECG	200	2 62144	2 62126	V
30	ekgo	ECG	200	-2.02144	2.02130	v
27	haartrat	ECG	2	2776 0	22767	hnm
51			$\begin{bmatrix} 2\\ 3 \end{bmatrix}$	-32/0.8	32767	opm
30	-U nenora	Respiratory	200	-5270.0 8102.0	<u>3270.7</u> 8101 75	mhar
30	psnore	response	200	-0192.0	0171./3	moal
		response				

39	cflow	Respiratory	100	-162985.0	162980.4	L/m
		response, CPAP		-3276.8	3276.7	
		mask		-6553600.0	6553400.0	
				-162985.0	162980.3	
				-6553600.0	6553400.0	
40	flow5	Respiratory	10	-2621440.0	2621360.0	uV
		response,	200	-32768.0	32767.0	
		Temperature				
		gradient from a				
		thermistor or				
		thermocouple				
		is placed under				
		the nose. It has				
		both nasal				
		prongs and an				
		oral prong				
		to measure				
		nasal/oral flow.				
		[24]				
41	chest	Respiratory	10	-32768.0	32767.0	mV
		response				
42	chest6	Respiratory	200	-32768.0	32767.0	uV
		response		-2.62144	2.62136	
				-2621440.0	2621360.0	
43	abdm	Respiratory	10	-32768.0	32767.0	mV
		response				
44	abdm7	Respiratory	200	-32768.0	32767.0	uV
		response				
45	snore	Respiratory	200	-3276.8	3276.7	uV
		response				
46	snore4	Respiratory	200	-32768.0	32767.0	uV
		response				
47	snore5	Respiratory	200	-32768.0	32767.0	uV
		response				
48	snoring	Respiratory	10	-32768.0	32767.0	uV
	sensor	response				
49	cpress	Respiratory	10	-529.83	529.8145	cmH2O
		response		-442.817	442.8041	
				-16.384	16.3835	
				-806.694	806.6696	
				-496.351	496.3365	
				-445.585	445.572	
				-445.195	445.1814	
			100	-196.787	196.7817	
				-177.443	177.4383	
50	sao2	Oxygen	2	-3276.8	3276.7	%

		saturation	3	-3276.8	3276.7	
51	bodyp-	Patient unit	10	-3276.8	3276.7	0
	osition	strapped around				
		the mid section				
		of				
		the patient,				
		between the				
		chest and				
		abdomen belts.				
		[24]				
52	co2	One cannula	100	-6.5536	6.5534	V
	[24]	under the nose.				
		co2 is a				
		waveform. [24]				
53	etco2	Same cannula	10	-327680.0	32/6/0.0	mmHg
	[24]	as of co2. etco2	100	-675.353	675.333	V
		is numerical		-6.5536	6.5534	V
5 4	•,	value. [24]	10	22.7(0	22.7(7	
54	gravity		10	-32.768	32.767	g
55	X		10	22.769	22 767	~
22	gravity		10	-32.768	32.767	g
5(y 11.	Calardatad	10	702.001	702 0774	T /
50			10	-/92.901	/92.8//4	L/m
	[24]	from CDAD				
		machine/mask				
		interface [24]				
57	nowah		200	0.00327	0.003277	V
57	-annel		200	-0.00327	0.003277	v
58	nflow		200	-8192.0	8191 75	mhar
59	pliesmo		75	-3276.8	32767	V
57	presino		100	-3276.8	3276.7	•
60	pulse	Pulse rate	10	-6 5536	6 5534	BPM
00	puide		100	-6 5536	6 5534	DIM
61	refx1		200	-3276.8	3276.7	uV
62	ribs		200	-3276.8	3276.7	uV
63	spo2	Back-up	2	-3276.8	3276.7	%
	~ F -	oximeter in the	10	-1665.35	1665.308	
		ETCO2				
		machine. Probe				
		goes on the				
		finger when				
		used as a back-				
		up monitor. [24]				
64	thermi-		10	-32768.0	32767.0	uV
	-stor					

65	vt	Inspiratory	100	-33037.5	33036.54	ml
		volume from				
		the CPAP				
		machine/mask				
		interface.				
		Actual volume.				
		[24]				

Note: Digital Minimum = -32768 and Digital Maximum = 32767 for all the signals * Except for signal 't6', Digital min = -36, Digital max = 0.

Some signals in the above table have more than one row because their physical extremes and sampling rates can vary from one study to the other. For one particular study however, a signal has one physical extreme and sampling rate only.

5.4.4 Signal Values

The signal header information is followed by data records. A record contains digital values of all the signals recorded with their respective sampling rates and order. Each value occupies 2- bytes and is represented in two's complement, little-endian order (least significant byte first). The duration of a data record can be determined from the global header. In our research the duration of data record is always 1 second. The figure below gives an idea about the structure of this data:

Figure 5.6 EDF structure

Figure below shows a screenshot of an EDF file when opened in a text editor:

0	LASTNAM	E, FIRST	NAME																		
06.09.0	622.17.2	2313312						263	38 1	51	C3		C4		01		02		Al		
A2		REF X1		TOC		ROC		CHIN1		L LEG2		R LEG3		ARMS4		SNORE 5		EKG8		PSNORE	
PFLOW		CHEST6		CHEST		ABDM		ABDM7		CFLOW		CPRESS		Gravity	X	Gravity	γY	C3 - A3	2	Fpl	
F3		P3		F7		T3		T5		Fp2		F4		F8		T6		Cz		P4	
T4		Pz		Fz		SA02		HEARTRA	TE	PLESMO		Body P	osition	SNORE		Phase		RMI		RR	
XFlow																					
XSun																					
uV	uV	uV	uV	uV	uV	u₹	uV	uV	uV	uV	uV	u₹	uV	uV	mbar	mbar	uV	mV	шV	uV	L/m
cmH20	g	g	uV	uV	uV	u₹	uV	uV	uV	uV	uV	u₹	uV	uV	uV	uV	u₹	uV	÷	BPH	¥
0	uV	0	0	BPM	V/s	A															
-3276.8	0-3276.8	30-3276.8	30-3276.	80-3276.8	30-3276.8	30-3276.0	30-3276.8	30-3276.8	0-3276	.80-3276.	80-3276.	80-26214	40-32768.	0-6553.6	50-8192.0	0-8192.0	00-262144	0-32768	0-32768.	0-32768.	0-6553600-4
96.351-	32.7680-	32.7680	3276.80	-3276.80-	-3276.80-	3276.80	-3276.80-	3276.80-	3276.8	0-3276.80	-3276.80	-3276.80	-2621440-	-3276.80-	3276.80	-3276.80	-3276.80-	3276.80	-3276.80-	3276.80-	3276.80-327
6.80-32	76.80-32	2768.0-32	2768.0-3	2768.0-26	5214426	52144.32	76.700327	6.700327	6.7003	276.70032	76.70032	76.70032	76.70032	76.700327	6.70032	76.70032	76.700327	6.70026	21360.327	67.00655	3.4008191.7
508191.	75026213	360.3276	.003276	7.0032763	7.0065534	100.496.3	336532.76	570032.76	700327	6.7003276	.7003276	.7003276	7003276.	7003276.	7003276.	7003276	7003276.	7003276.	70026213	86003276.	7003276.700
3276.70	03276.70	03276.70	03276.7	003276.70	003276.70	03276.70	003276.70	032767.0	032767	.0032767.	00262136	.0262136	0-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768
-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-3276	8 -32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768
-32768	-32768	-32768	-32768	-36	-32768	-32768	-32768	-32768	-3276	8 -32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	-32768	32767	32767
32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767	0	32767	32767	32767	32767	32767	32767	32767	32767	32767	32767
32767	32767	32767	32767																		
32767																					
256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256
256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256
256	256	256	256	256	256																
256																					
2222222	????????	?????????	?????????	222222222	?????????	??????????	?????????	222222222	222222	222222222	??????????										
2222222	?????????	?????????	?????????	222222222	?????????	??????????	??????????	222222222	???????	222222222	??????????										
2222222	22222222	22222222	22222222	222222222	222222222	22222222	222222222	222222222	2222222	222222222	222222222		- Sie	mal	Val	ne h	wtes	!			
222222	????????	?????????	?????????	?????????	?????????	??????????	??????????	?????????	2222222	222222222	??????????)	018	Snar	v ui	uct	y i Co	,			
2222222	22222222	22222222	?????????	222222222	??????????	??????????	222222222	222222222	???????	222222222	??????????										

Figure 5.7 Screenshot of an EDF file

5.5 Micro database design

The micro data consists of sleep studies, each recorded in a file in EDF format. The EDF file is further composed of a global header, signal headers and the actual signal data as described in Section 5.4 EDF Description). We need to model this information into relational tables in order to store the data in a database.

We start with creating a schema called "micro" that will store the header and signal data. Next, we create a table to model the global header information, with each tuple identified by the study number:

No.	Attribute description	Database attribute	PostgreSQL Type		
		name			
1	Study Identifier	sid <pk, fk=""></pk,>	integer		
2	Start Date of study	start_date	date		
3	Start Time of study	start_time	time		
4	Number of records	number_records	integer		
5	Duration of record	duration_record	smallint		
6	Number of signals	number_signals	smallint		
7	List of signal names recorded in	signals	text[]		
	the study				

Table 5.2 micro.header

The primary key (PK) Study ID attribute, as a foreign key (FK), refers to the sid attribute in the Patient-Study Map table (see Section 4.6.2 Patient-Micro study map table).

To store the signal data, one table is modeled after each type of signal. Thus, there are 65 tables to store data for all the signals (see Section 5.4.3 Signal Properties Table). The table name is same as that of the name of the signal. Since PostgreSQL supports a

variable length array data type, we can store time-series signal information in the database in a single tuple for every patient, indexed by a study identifier. Also, as observed from the Study Properties table, the Physical Minimum, Physical Maximum, and the sampling rates of a given signal may change for all the studies. Hence, information corresponding to the signal's properties is also added to each table.

No.	Attribute description	Database attribute	PostgreSQL Type		
		name			
1	Study identifier	sid <pk, fk=""></pk,>	integer		
2	Time-series information (signal	digital_values	smallint[]		
	values)				
3	Sampling rate	sampling_rate	smallint		
4	Physical minimum	phy_min	real		
5	Physical maximum	phy_max	real		
6	Physical dimension (unit)	unit	text		

Table 5.3 A typical signal table

The Primary Key (PK) Study ID attribute, as a foreign key (FK), refers to the sid attribute in the Patient-Study Map table. (see Section 4.6.2 Patient-Micro study map table).

The figure below gives the schema as it exists in the database for micro data.

signal 1

signal 2

signal 3

Figure 5.8 Micro data schema

5.6 Building the micro database

5.6.1 Schema Management

To create the micro database schema and the required relational tables, we wrote a Java application that establishes a database connection, and executes data definition language (DDL) SQL queries. The tables (their attributes and types, and the constraints) are defined within the *DbObjectManager* class.

The *main()* routine within this class then creates an instance of type *DbObjectManager* that sets up a connection to the sleepdb (see Chapter 6 System) database. The user then

can execute *DbObjectManager*'s operation of creating the micro schema and the objects within it.

Figure 5.9 Class diagram for Schema management

5.6.2 Building the database

(a) Implementation

To extract signals from the EDF and put them in the database, we wrote a standalone application "EDF2DB" that reads the EDF files, one at a time and, for each EDF, with the help of properties specified in the global and signal header (signal name, sampling rate and duration of a data record), extracts the signal values and uploads them to the database using the Java Database Connectivity (JDBC) API.

This application creates a connection to the sleep database (*sleepdb*, see above Figure 5.10 Class Diagram of *edf2db*) and runs on a collection of EDF files in a directory. As per our file organization scheme, there are 100 patient cases in each folder on the storage device, which amounts to approximately 130 studies. The *main()* routine within *Exporter* fetches this collection of filenames with the help of *utility.FileManager*. For each EDF file, *main()* creates an instance of *Exporter* class. The instance sets up an input read stream to the EDF study and sets the study and patient identifiers and the study type using *utility.StudyProperties* (see Section 5.3 EDF Naming Scheme). The *Exporter* type object then uses the instance of the class *HeaderReader* to read and translate header bytes and set the *Header* object. Subsequently, it uses the class *SignalReader*, which creates a collection of *Signal* objects and sets their values. Each signal object is composed of the signal's properties and its sequence for the entire length of the study. All the contents of the EDF file are read into objects in the system's memory. The *Header* is then exported to

the database using *HeaderExporter* that calls on db*Util.QueryDeployer* helper class to execute an insert query on the *micro.header* table. Similarly, the signal properties and sequences are also exported to the *micro. <signalname>* tables.

(b) The little, big Endian distinction

The signal value bytes read from the EDF are present in little-endian order while Java's virtual machine uses the big-endian format (most significant byte first). Thus, we use the *utility.ByteToShortConverter* class to convert between the byte orderings and also translate bytes to a short integer value (see Appendix C Little endian and big endian distinction) [25].

(c) Memory issues

Since EDF2DB deals with large input file sizes, in order to prevent the Java's Virtual Machine running out of available memory, the following steps were taken:

1. Java Virtual Machine is started with 900 MB memory heap size.

2. As the exports of the signals to the database progresses, we remove signal objects containing sequences that have been uploaded. This way, as more data gets uploaded, more memory becomes available.

3. Java's garbage collector is forced to execute at strategic points during the runtime of the program to free up memory (as per the memory profiling statistics - forcing garbage collector to sweep away de-referenced objects increased available memory immediately, a phenomenon that was not observed when only the Java's virtual machine was in control of the garbage collection).

4. We split up the data upload size of every signal into half (hence first half of a signal was uploaded by an insert query and the latter half by an update query). This reduced the

object size representing the data (the object here being comma separated string of signal values), hence occupied less main memory, with little or no effect on the data upload time. The object was immediately de-referenced when its use was over.

5.6.3 Testing the signal data

Since the magnitude of time and storage needed by the micro database is very high, it was necessary to test the correctness of signal values exported to the database before the actual data transfer began.

In order to test the signal values in the database, we wrote an application that compares the signal values generated from a third-party software like EDF2ASCII [4] (test file) with the corresponding signal in the database.

The EDF2ASCII application is capable of extracting one signal at a time from an EDF study to an ASCII format, with user choosing the delimiters types (commas, CRLF, spaces or tabs) between signal values. Given a study, we extract a signal, for example, heartrate at its natural frequecy of 2 Hz to a file called heartrate.ascii. This is our test file.

For the same study, we determine the study id in the database. The user then specifies the path of test file, name of the signal ("heartrate"), sampling rate (2 Hz) and the study identifier to the testing application. The application then fetches the target signal sequence from the database into a database_seq array, reads the values in the heartrate.ascii file into a test_seq array compares the two arrays.

5.7 Statistics on micro data

We have a total of 1319 studies for 1046 patients. There are approximately 130 studies in a folder of 100 patient cases. The upload time for a study into the database on an
average is about 10 minutes, thus for 130 studies, \sim 22 hours. The average size of a study is 360 MB.

5.7.1 Study distribution with respect to the length of the study

The following graph shows the distribution of summary, cpap and split studies with respect to the duration of the study. Maximum number of instances belong to the PSG type of study, with durations from 6 - 8 hours.

(Above graph was visualized in Weka 3.5.4 system with a high degree of jitter, See Appendix E Interfacing Weka 3.5.4 to PostgreSQL 8.2.5 database)

Figure 5.11 Study type distribution with respect to study duration

5.8 Database system performance

The database system showed impressive scalability to a massive amount of micro data that was uploaded in a period of approximately 12 days. In order to benchmark how the database performance scaled with retrieval of time-series data (the largest type of data that we have), we wrote a Java routine that pulls time-series data from random studies from the table for signal c3 (See Table 5.1 Signal properties) that is sampled at 200Hz (Note: signal c3 is recorded in all the studies).

The following graph shows how the database responded to incremental requests to fetch the sequence data from 25 studies:

Figure 5.12 Retrieving time-series data from the database

As it can be seen from the above graph, the response is linear with respect to time. The slight gap in the dot plot that is seen between 250 to 300 seconds is due to Java's garbage collector clearing up the heap to make way for more data.

The PostgreSQL 8.2 DBMS supports most of the major features in SQL: 2003 standard. [11]. Thus, the most common types of queries with selects, sub-selects, joins, set operations, aggregates, and database, schema, table, row and column level manipulations can be executed against the database.

The database performance could be affected by the type of query issued by the user. SQL, being a declarative language, only specifies the data that is needed as a result, not how the query itself will be executed by the database kernel. Finding an optimal way (plan) from different possibilities (plan search space) to execute the query is the responsibility of the DBMS's planner component. The search space widens as the queries become more complex. An example of a good decision made by the planner could be that it chose a hash-based join over nested-loop join when joining a large table with a relatively smaller one to give better query performance in terms of time. PostgreSQL has tunable system parameters that can affect query performance to a good extent when specific queries run slow. The plan tree selected by PostgreSQL can be visualized in the standard output and studied in detail by writing the EXPLAIN VERBOSE command just before the query expression. The user of the database should always keep the database statistics updated so that the planner can choose the best amongst the better possible plans for completing the query. Furthermore, query performance can benefit from the use of index objects.

6 System

6.1 Context

Since a rich part of this thesis deals with collection, organization and movement of enormous amount of data into the database, it became inevitable for us to create a resourceful system that can act a backbone to help us attain our objectives.

6.2 Micro Data Collection

During the data collection phase, we used to get batch of around 100 patient files from Day Kimball Hospital every week. The CD data corresponding to the sleep studies were downloaded to a central data repository rous.wpi.edu, arranged by the WPI-CS system administrator. To expedite the data download capacity, we used to keep several CCC machines (10-15 machines, when not in use by students) busy with the job of downloading the raw micro data.

The data on rous-server was later transferred to our own 750 GB external storage device kddrg-hdd-raw in the laboratory. For the sake of file organization, the folders for each study were named as per the folder naming method described in Section 5.3 EDF Naming Scheme. Each parent folder corresponding to the data download session contained sleep studies for 100 patients.

6.3 System Architecture

Before starting to build the database, we had a couple of issues to deal with - one was to have a storage space for at least 500 GB of data, and the other was the actual medium to transfer the data to the database. If the data was to be transferred from kddrg-hdd-raw to a remote machine hosting the database over the network, then this would imply a

large usage of network bandwidth. The most feasible solution was to create our own server, install kddrg-hdd-raw and the new storage device kddrg-hdd-database that will host the database sleepdb in the server, setup the PostgreSQL DBMS and the Java environment required running the micro data export application. This new server was named kddrg.

About the kddrg server:

The kddrg server runs on OpenSuse 10.3 Linux Operating system. There are two 750 GB drives installed in this system (kddrg-hdd-raw and kddrg-hdd-database), along with the machine's own 60 GB storage. The server runs on a 3 GHz Pentium 4 CPU with 1 GB of available memory. The machine is network accessible and the storage devices can be network mapped on a Windows XP operating system, however, the access has been restricted to WPI campus network due to data security reasons. Since kddrg is essentially a Unix machine, to run a Windows based utility like "REMbrandt to EDF data conversion" (see Section 5.2.1 EDF Extraction), an application called VMWare server was installed on kddrg. The VMWare server simulates machine hardware so that an operating system can be installed on it. Windows XP was installed as an operating system running on this simulated machine.

Figure 6.1 The kddrg system architecture

7 Conclusions and future work

The project aimed at designing, building, and analyzing a terabyte-scale database comprising complex data including patient questionnaire responses, their medical history, time-series data and clinical summary for 1046 patient cases. We successfully created a data repository of 1319 sleep studies of 563 GB in size that will provide a high quality dataset and one of the world's largest and most comprehensive for performing in depth computational analyses on human sleep in the future. We gathered a few exploratory facts that were presented in graphs.

7.1 How does the database design facilitate data analysis?

For the analyst to get a clear understanding of the sleep database in order to perform the analysis on it, the database design features an intuitive organization of data at the schema, table and attribute levels. It grasps the relation between the different types of data we deal with, ensures that native or custom data types have been chosen to best represent the clinical information, and that they have been named for readability to benefit the analyst. A table is made to represent a single entity only.

At the schema level, there exist macro, summary and micro schemas that contain tables corresponding to the 3 distinct types of datasets we described in Chapters 3, 4 and 5 respectively. A link table called patientstudymap that relates patients to their studies using identifiers can help the analyst in fetching survey, technical or time-series recording data (or meta-data, like study or signal properties) for any number of patients (restricted only by the available memory in the system) on the fly. The analyst can filter out patients based on an interesting demographic feature of interest, for example, a particular disease, and then retrieve their over night studies for in-depth study.

Figure 7.1 Schema organization in the Sleep database

7.2 Alternate design scenarios

The information that was encountered in this research could be represented using different data types within PostgreSQL DBMS. Most of the design decisions in this project were influenced by the features offered by the PostgreSQL database system that help representing the information at hand, and greatly reduce the complexity involved in retrieving data of interest for its analysis. Below we discuss alternate designs that were not adopted due to analysis considerations.

7.2.1 Using Binary large object (BLOB) data type to store time-series sequence data

If BLOBs are used to store the signal data, then data needs to be converted from binary to the short-integer type before it can be analyzed. There will be an extra time and space overhead during this conversion, and it will need to be done every time the analyst wants to look at the time-series recording a patient. Furthermore, based on the system's hardware architecture, there may be little endian, big endian issues involved (See Section 5.6.2 (b)) in the conversion process.

Choosing short integer array type (supported by PostgreSQL DBMS) to represent timeseries data as a part of design greatly simplifies the task of storing and retrieving timeseries data without any time, or storage overhead involved. The analyst also has the facility to index the array and look at any time-window of interest, thanks to the advanced features of the PostgreSQL database.

7.2.2 Using Character large object (CLOB) data type to store set based data

Information like patient medical history is a list of diseases gathered from the patient's medical records. A CLOB data type can be used to store this long string type data, with commas separating the diseases' names. Usage of CLOBs can get inconvenient from the analysis point of view. For instance, in a scenario where the analyst wants to find the patients with a particular disease, like "type 2 diabetes", he/she has to pull the CLOB data for a patient, parse strings to make a list of diseases and then search this list for "type 2 diabetes" and repeat this process for every patient in the database, while keeping a track of patients who met the search criteria. Instead of CLOBs, we chose string type arrays to represent set-based data during the database design phase. In our example, each element of the array stores a string that is the name of a disease. PostgreSQL provides a feature to search for any element within an array structure, and we can make our search span across the entire length of the table through a simple query like:

```
select pid from macro.demographics where 'type 2
diabetes'=ANY(medical hx)
```

(See Section 3.2.1 Patient demographics, for descriptions of attributes in the query above).

7.2.3 Creating tables for every patient to store sequence data

In this design approach, there is one table for every patient in the micro schema. The first attribute is the signal's name that is of type text, and the second attribute is the time series information for a given signal, of type smallint[]. This is an inconvenient design choice, because this would result in too many tables (equivalent to the number of studies) to manage in the schema. Moreover, the queries to retrieve signal data for an interesting group of patients would involve large number of joins (which is an expensive database operation by itself) that will be cumbersome to write or interpret. Thus, this design choice was dropped in favor of having one table dedicated to every signal type. This helps the analyst to retrieve sequence data of any signal for any number of patients (bounded by the systems memory limit).

To simplify things further, we added an attribute called signals (See Section 5.5 Micro database design) of type text[] to the header table in the micro schema. This attribute contains a list of signals that were recorded for every study. Since there are 65 different signals known to us in this research, and a typical study has around 50 -55 signals, it would become inconvenient to examine every signal table to locate whether if a signal was recorded during a particular study, or not. This problem is now solved as the analyst can quickly look into the signals list associated with every study, to find out which signals were recorded during the study.

7.2.4 Time series data in flat files

The time-series data can also exist in the flat files. The drawback of this approach is that it would really miss out on of the facilities of the database to store data in an organized manner and keep its integrity. Lots of flat files can become very difficult to keep. If we decide to store all the signals in a single file (See Appendix D, ASCII - Intermediate file format), there is considerable time spent in performing I/O routines to parse and read the signal data from the files. On the other hand, if we decide to store

every signal in a separate file for a given study, then there would be 50-55 different files for every study. For 1319 studies, the number of files will become almost impossible to manage.

There could be two approaches as to how we want to store signal data in the flat file - in binary format or in ASCII text. If the signal data is in binary format, there is an overhead of converting it to short integers, as described (See Section 7.2.1) above. If they are stored in ASCII format, then the storage costs increase manifold, as each character occupies 1 byte of physical memory. This approach is not recommended if the data needs to be used for analysis purposes.

7.3 Summary of data

Number of patients	1046
Number of clinical studies	1319
Number of PSG studies	875
Number of CPAP studies	327
Number of SPLIT studies	117
Number of schemas in the database	3
Number of tables in macro schema	4
Number of tables in summary schema	11
Number of tables in micro schema	67
Size of macro data	1064 KB
Size of summary schema	2648 KB
Total size of micro schema	563 GB
Total size of raw (REMBrandt [13] format)	489 GB
data	

7.4 Future work

To perform analysis on the sleep data in the future, we have interfaced a well known data mining tool - Weka with the Sleep database hosted by PostgreSQL DBMS. See Appendix E, that documents the Interfacing Weka 3.5.4 to PostgreSQL 8.2.5 database to fetch the dataset of interest using the power of Structured Query Language (SQL).

There are existing modifications of the Weka toolkit that enable it to mine data in relational tables. In WekaDB [28], Weka's functionality was extended to support data mining on relational database systems. There is another extension of Weka that can work with relational databases - Relational WEKA [26]. WPI-WEKA [27] [6] [15] has support for set and sequence types for data mining. All these features can help us perform data analysis on the *sleepdb*.

References

[1] A. T. Beck, R. A. and G.K. Brown, "Manual for the Beck Depression Inventory-II". San Antonio, TX: Psychological Corporation, 1996.

[2] J.J. Harrington and Teofilo Lee-Chiong Jr. "Sleep and Older Patients". Clin Chest 28, pp 673-684, 2007.

[3] B. Kemp, A. Varri, A.C. Rosa, K.D. Nielson, J. Gade, "A simple format for exchange of digitized polygraphic recordings", *Electroencephalography and Clinical Neurophysiology*, Vol.82, p.391S, 1992.

[4] EDF2ASCII by B. Kemp and M. Roessen. Exports one of the signals in an ASCII file and all EDF header information, including calibration, about this signal in an additional textfile. 2004.

Web resource: http://www.edfplus.info/downloads/downloads.html

[5] Y. Ichimaru, G.B. Moody. Development of the polysomnographic database on CD-ROM. Psychiatry and Clinical Neurosciences 53:175-177 (April 1999). MIT-BIH
 Polysomnographic Database. PhysioNet. MIT. Cambridge, MA.

[6] Keith A. Pray. "Mining Association Rules from Time Sequence Attributes". MS Thesis. Department of Computer Science, Worcester Polytechnic Institute. May 2004.

[7] P. Laxminarayan. "Exploratory Analysis of Human Sleep Data". MS Thesis. Department of Computer Science, Worcester Polytechnic Institute. Jan. 2003.

[8] P. Laxminarayan, S.A. Alvarez, C. Ruiz, M. Moonis. "Mining Statistically Significant Associations for Exploratory Analysis of Human Sleep Data". *IEEE Transactions on Information Technology in Biomedicine (TITB)*. Vol. 10, No. 3, pp. 440-450, July 2006.

[9] J.W. Murray, "A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale". Sleep, 1991

[10] PostgreSQL DBMS. "About PostgreSQL"Web resource: http://www.PostgreSQL.org/about/

[11] PostgreSQL 8.3 Documentation.

Schema.

Web resource: http://www.postgresql.org/docs/current/static/ddl-schemas.html Appendix D. SQL Conformance. Web resource: http://www.postgresql.org/docs/8.2/static/features-sql-standard.html

[12] A. Rechtschaffen & A. Kales, "A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subject", US Government Printing Office, National Institute of Health Publication, Washington DC, 1968.

[13] REMbrandt Windows® based sleep monitoring and analysis system for both clinical and research applications.

Web resource: http://www.embla.com/products/analysis/rembrandt/index.asp

[14] R. Rozensky. "Doing it right. Proper electrode measurement and placement will greatly improve the quality of the polysomnogram". ADVANCE for Sleep.

Web resource: http://sleepmedicine.advanceweb.com/Editorial/Content/Editorial.aspx?CC=33781

[15] Christopher Shoemaker. "Mining Association Rules over Set-Valued Data". MS Thesis. Department of Computer Science, Worcester Polytechnic Institute. May 2001. [16] A. Silberschatz, H.F. Korth, S. Sudarshan, "Database System Concepts", 4th Ed, McGraw-Hill, 2001.

[17] B. Kemp, The Sleep-EDF Database. Sleep Recordings and Hypnograms in European Data Format (EDF). Sleep Centre, MCH-Westeinde Hospital, Den Haag, The Netherlands. PhysioNet. MIT. Cambridge, MA. Web resource: http://www.physionet.org/physiobank/database/sleep-edf/

[18] The Sleep Heart Health Study Polysomnography Database. Data contribution by cohort members of Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), the Cornell/Mt. Sinai Worksite and Hypertension Studies, the Strong Heart Study (SHS), the Tucson Epidemiologic Study of Airways Obstructive Diseases (TES) and the Tucson Health and Environment Study (H&E). PhysioNet. MIT. Cambridge, MA. Web resource: http://www.physionet.org/pn3/shhpsgdb/

[19] S. Vij and A. Gentili. "Sleep Disorder, Geriatric". emedicine from WebMD.Web resource: http://www.emedicine.com/med/topic3179.htm

[20] W. McNicholas, L. Doherty, S. Ryan, J. Garvey, P. Boyle, E. Chua, St. Vincent's University Hospital / University College Dublin Sleep Apnea Database. St. Vincent's University Hospital Sleep Disorders Clinic. PhysioNet. MIT. Cambridge, MA. Web resource: http://www.physionet.org/pn3/ucddb/

[21] The Sleep Heart Health Study. Coordinating Center - University of Washington, the Sleep Reading Center - Case-Western Reserve University, the Project Officer - National Heart, Lung, and Blood Institute, and six Investigative Centers (University of Arizona, Boston University, University of California-Davis/University of Pittsburgh, Johns Hopkins University, University of Minnesota, and New York University). Web resource: http://www.jhucct.com/shhs/details/manual/protocol/default.htm [22] Classification of Overweight and Obesity by BMI, Waist Circumference, and Associated Disease Risks. National Heart Lung and Blood Institute.Web resource: http://www.nhlbi.nih.gov/health/public/heart/obesity/lose_wt/bmi_dis.htm

[23] Calculate your body mass index. National Heart Lung and Blood Institute.Web resource: http://www.nhlbisupport.com/bmi/

[24] Information from Sleep Disorder Center at Day Kimball Hospital, CT.

[25] A.S. Tanenbaum, "Structured Computer Organization", 4th Ed, Prentice Hall, 1999.

[26] A. Woznica. "Relational WEKA" software tool. Web resource: http://cui.unige.ch/~woznica/rel_weka/

[27] Zachary Stoecker-Sylvia. "Mining for Frequent Events in Time Series". ". MS Thesis. Department of Computer Science, Worcester Polytechnic Institute. Aug 2004.

[28] B. Zoul, X. Mal, B. Kemmel, G. Newton, D. Precup. "Data mining using Relational Database Management Systems". McGill University, Montreal, Canada and National Research Council, Canada. 2006. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Singapore, April 2006.

Appendix

A. Macro data

a. List of abbreviations for medical history of patient

Complete form
Anterior cruciate ligament
Attention Deficit Disorder
Attention- Deficit Hyperactivity Disorder
Attention- Deficit Hyperactivity Disorder Not Otherwise
Specified
Amyotrophic lateral sclerosis
Alanine aminotransferase
Morning
Antinuclear antibody panel
Adult-onset diabetes mellitus
Atherosclerotic coronary artery disease
Atrial septal defect
Atherosclerotic heart disease
Arteriovenous malformation
Avascular necrosis
Beck's depression inventory
Bi-level Positive Airway Pressure
Benign prostatic hyperplasia
Bright Red Blood Per Rectum
Bilateral salpingo-oophorectomy
Centre/central
Coronary Artery Bypass Graft
Calcium
Coronary artery disease
Cervical Disc Disease
Chronic fatigue syndrome
Coronary heart disease
Congestive heart failure
Cervical intraepithelial neoplasia
Gestational diabetes mellitus
Central nervous system
Chronic obstructive pulmonary disease
Cerebral palsy
Continuous positive air pressure
Creatine phosphokinase
Cardiopulmonary resuscitation
Limited scleroderma
Clear to Auscultation Bilaterally
Carpal tunnel syndrome

cva	Cerebrovascular accident
dbp	Vitamin D-binding protein
dcis	Ductal carcinoma in situ
ddd	Degenerative disc disease
dexa	Dual energy X-ray absorptiometry
did	Degenerative joint disease
dm	Diabetes Mellitus
doe	Dyspnea on exertion
dvt	Deep vein thrombosis
ed	Erectile dysfunction
edf	Excessive davtime fatigue
eds	Excessive daytime sleepiness
ead	Esophagogastroduodenoscopy
eomi	Extra Ocular Muscles Intact
ess	Enworth Sleeniness scale
eswl	Extracorporeal shock wave lithotripsy
etd	Eustachian tube dysfunction
ett	Endotracheal tube
etoh	Alcohol
fa	Fall asleen
fess	Functional Endoscopic Sinus Surgery
ft 1	Frederickson type 1
fu	Follow up
dad	Generalized anxiety disorder
gerd	Gastroesonhageal reflux disease
ha	Headache
hcle	Hypercholestrolemia
hetz	Hydrochlorothiazide
hevd	Hypertensive cardiovascular disease
heent	Head Eves Ears Nose and Throat (medical)
high blood P	High blood pressure
hny2	Human Panilloma Virus 2 (wart)
htad	Hypertrialyceridemia
htp	Hypertension
htz	Hydrochlorothiazide
ibe	Irritable bowel syndrome
icd	Implantable cardiac defibrillator
iddm	Insulin dependent diabetes mellitus
iat	
ibee	Idionathic hypertrophic subaortic stenosis
irbbb	Incomplete Pight Bundle Branch Block
ira	luvenile rheumatoid arthritis
jia I	
	Left (fland/leg)
idp Idl	low density linearetein test
	Loop electrosurgical excision procedure
iech	Liver Eulertion Test
nt III	Liver Fullcholl Test
iii Ila	Left lower quadrant (quarter)
liq	Len lower quadrant (quarter)
ihi	Lai yngopriai yngear renux

lvh	Left Ventricular Hypertrophy
mch	Mean cell haemoglobin
mcv	Mean cell volume
meds	Medications
mi	Myocardial infarction
ms	Multiple sclerosis
mslt	Multiple sleep latency test
mva	Motor vehicle accident
mvp	Mitral Valve Prolapse
mvr	Mitral Valve Regurgitation
na	Not available/missing data
nad	No abnormalities detected
nash	Non-alcoholic steatohepatitis
niddm	Non-insulin-dependent diabetes mellitus
02	Oxygen
oa	Osteoarthritis
000	Occasional
ocd	Obsessive-Compulsive Disorder
odd	Oculodentodigital dysplasia
052	Obstructive Sleep Appea
osa - h	Obstructive Sleep Aprea - Hypopnea Syndrome
osas	Obstructive sleep appeal syndrome
nan	Papanicolaou test/ Pap smear
pbc	Primary billiary cirrhosis
pdd	Pervasive developmental disorder
pe	Pulmonary embolism
perri	Punils Equal Round Reactive to Light (used by emergency
point	room personnel)
pft	Pulmonary function test
plma	Periodic leg movement activity (doesn't imply PLM disorder)
plmd	Periodic leg movement disorder
pls	Primary Lateral Sclerosis
pm	Afternoon/Evening
pmds	Persistent Mullerian duct syndrome
pmr	Polymyalgia rheumatica
pms	Premenstrual syndrome
pna	Pneumonia
pnd	Paroxysmal nocturnal dyspnea
pots	Postural orthostatic tachycardia syndrome
ppd	Postpartum depression; Purified protein derivative (the PPD
	skin test for tuberculosis)
psa	Prostate-specific antigen; Prostate cancer screening test
psp	Progressive supranuclear palsy
ptca	Percutanerous Transluminal Coronary Angioplasty
ptsd	Post-traumatic stress disorder
pud	Peptic ulcer disease
рус	Premature ventricular contraction
pvd	Peripheral Vascular Disease
pvd2	Posterior vitreous detachment
R	Right (hand/leg)
r/o	Rule out

rad	Reactive Airways Disease
rap	Recurrent aspiration pneumonia
rbbb	Right bundle branch block
rbd	REM behavior disorder
rca	Right coronary artery
rdi	Respiratory disturbance index
rhm	Routine Health Maintenance
rls	Restless legs syndrome
rrr	Regular Rate and Rhythm
rsd	Reflex Sympathetic Dystrophy
rtc	Return to clinic
ruq	Right upper quadrant (quarter)
s/p	Status post
sa	Stay awake
sbe	Subacute bacterial endocarditis; Sporadic bovine
	encephalomyelitis
sdb	Sleep-Disordered Breathing
sob	Shortness of breath
SSS	Sick sinus syndrome
svt	Supraventricular tachycardia
SX	Symptoms
SZ	Seizure
tah	Total abdominal hysterectomy
tah-bso	Total abdominal hysterectomy with bilateral salpingo-
	oopherectomy
tb	Tuberculosis
tsh	Thyroid stimulating hormone
tia	Transient ischemic attack
tkr	Total knee replacement
tle	Temporal lobe epilepsy
tmj	Temporo-mandibular joint
tnt	Toss n turn
uad	Upper Airway Disease
uao	Upper airway obstruction
uaod	Upper airway Obstructive disease
uars	Upper Airway Resistance Syndrome
up3/uppp	Uvulopalatopharyngoplasty
uri	Upper Respiratory Infection
wa	Wake up
wbc	White blood cells

b. List of abbreviations for tracking family's medical history

Abbreviation	Meaning
2c	second cousin
a	aunt
b	brother

ch	child
d	daughter
f	father
fam	family
ft	fraternal
h	husband
m	mother
ma	maternal aunt
mc	maternal cousin
mgf	maternal grand
	father
mgm	maternal grand
	mother
n	nephew
par	parents
pgf	paternal grand father
pgm	paternal
	grandmother
pt	paternal
pu	paternal uncle
rel	relatives
S	sister
sib	sibling
SO	son
sor	sororal
u	uncle

Example usage:

1. Mother has a history of Coronary artery disease and second son suffers from migraine headaches =>

{m-CAD,s2-migraine HA}

2. Family history of high depression => {high depression} (note: no prefix for mention of general family history)

B. Technical summary report

a. List of acronyms seen in a summary

- TST Total sleep time
- SPT Sleep period time
- TIB Time in bed
- MT Melatonin
- NDX0 Baseline
- RX Treatment
- SO Sleep onset
- Waso Wake after sleep onset
- B Back/Supine
- NS Non Supine
- NR Non REM
- R REM
- UARS Upper airway resistance syndrome
- TRT Total REM time
- DX Diagnosis/Baseline
- RD Respiratory disturbance
- LM Limb Movements
- PLM Periodic Limb Movements
- **RRLM** Respiratory related Limb Movements
- TLM Total Limb Movements
- **BP** Body Position

b. Split Type-C attributes for entire duration of study

Sleep Summary

- Total Recording Time
- Sleep Period Time

Sleep stage Information

- Lights Off
- Lights On
- Wake
- Total Sleep Time
- Wake/SPT
- TST Supine
- TST Non Supine

Saturation Time Table (All attributes)

C. Little endian and big endian distinction

Data points in EDF are bytes in little-endian order:

Short integer

Orden in momony	Byte	1	Byte	0
Order in memory	base	addre	ess+0	Byte0
	base	addre	ess+1	Bytel

Java's internal representation has big-endian order

Order in memory

base	address+0	Bytel

base address+1 Byte0

D. ASCII - Intermediate file format

During the early stages while looking into the micro data, in order to overcome memory limitations in the system (512 MB) when reading the EDF, we had devised a structure to store the signal data in the ASCII format for as an intermediate format for future reading into the database. The motivation behind the structure was the need to keep all the information in a single file (and not have a file correspond to each signal, as that would increase the number of files to manage) and export the more costly data (in terms of storage) to the database as the file was read, instead of storing the signal information all at once in memory. The largest signal matrix (see below) was made of 200 Hz signals, and was read into the database in 3 block transfers. The signals grouped in lower frequencies (100, 10, 2, 1) could be read all at once in the memory and exported to the database. With the new system (kddrg server, see chapter 6) that had 1 GB of memory, the problem of memory limitation was solved, and the EDF was directly read into the database.

Description of structure:

For signals having same sampling frequencies; the code builds a rectangular matrix. The 200 Hz signals get written first, followed by 100Hz, 10Hz, and 2 Hz and 1Hz signals. Each matrix is separated by a delimiter specifying the sampling rate for following matrix. The first row of every matrix is the name of signals separated by commas, followed by their digital values. The header content is also present in the data file. ASCII file structure:

```
<<SOF>>
@header
patient_id, start_date, start_time, number_records,
duration each record, number signals
@signals
name, sampling rate, phy min, phy max, digi min, digi max,
phy dimension
@values
@200
names of signals
   matrix [m X n]
00
@100
names of signals
 matrix [m X n]
90
@10
names of signals
 matrix [m X n]
9
02
names of signals
matrix [m X n]
8
01
names of signals
    matrix [m X n]
90
<<EOF>>
```

Note:

Dimension of rectangular matrix = [(number of records * sampling rate) X (number of signals)] = [m X n]

where, m = rows, n = columns

SOF = start of file EOF = end of file

E. Interfacing Weka 3.5.4 to PostgreSQL 8.2.5 database

In Eclipse IDE 3.2.2 configured to run with Java 1.5,

1. Create a new Java project and name it: weka 3.5.4.

2. Create a src folder within this project. This folder will contain the Weka source code.

3. Import weka-src.jar into the src folder.

4. Add PostgreSQL JDBC API jar file to the project build path (we used

PostgreSQL-8.2-504.jdbc3.jar)

5. After importing Weka's source code within Eclipse's Java environment, we have to set the configuration files responsible for Weka to talk with the sleep database and execute queries on it.

6. In weka.experiment package, locate DatabaseUtils.prop

In section

The comma-separated list of jdbc drivers to use

Put:

jdbcDriver=org.PostgreSQL.Driver

And, in section:

The url to the experiment database

Put the database connection URL:

jdbcURL=jdbc:PostgreSQL://hostname:port_number/database_name

or, you can hardcode the database authentication information as:

```
jdbcURL=jdbc:PostgreSQL://hostname:port_number/database_name?user=user_
id&password=user pass
```

In this way, the user doesn't have to specify the username and password every time Weka has to connect to the database.

Replace fields *hostname*, *port_number*, *database_name*, *user_id* and *user_pass* with their respective values.

7. In section:

#the method that is used to retrieve values from the db (java datatype
+ RecordSet.<method>)

Add the following types:

```
int2=5
int4=5
float4=7
text=0
date=8
time=8
bpchar=0
```

Save all the modifications.

8. The Weka GUI can be started by executing the class GUIChooser.java within package weka.gui

Running SQL SELECT queries from Weka:

To execute a simple select query on the database from Weka's database interface, follow the steps below:

1. Start Weka GUI and select Explorer mode. In the Preprocess tab, locate and click on button "Open DB..."

This will open Weka's SQL-Viewer interface. The database connection URL should appear in the URL text field.

2. Next, click on "User..." button next to this test field to provide the authentication information required to connect to the database (if this information was hard-coded in the DatabaseUtils.prop file, then skip this step).

3. Click on "Connect" button to connect with the database. If connection was successful, the following message appears in the "Info" field:

connecting to: jdbc:PostgreSQL://hostname:port_number/database_name =
true

Now we are ready to execute queries on the database.

The figure below is a screenshot of Weka executing a select query. The results of the query can be seen in the Weka Result pane:

📥 SQL-'	View	er							×
Connect	tion –								
<u>U</u> RL	esql://	/localhost:543	32/sleepdata?user	= & & & & & & & & & & & & & & & & & & &		er	Connect	:	History
Query									
sele	select * from macro.epworth								
									<u>C</u> lear
								His	tory
								max. ro	ws 100 🛨
-Result -									
Row	pid	fa_reading	fa_watching_tv	fa_theater_meeting	fa_passenger	fa_pm_rest	fa_a	1	Close
1	1	0	1	0	0	1	-		ilose <u>a</u> ll
	2	2	2	0	2	2		Re-	use guery
4	4	1	3	2	2	3		Opt	imal width
5	5	0	3	0	0	3		<u> </u>	
6	6	2	2	0	1	2			
8	8	3	2	1	0	3			
I	•			-			Ð	4	
Query	'1 [-	
_Info									
	necti	ing to: idhe:n	ostaresal: (/localbo	st:5432/sleendata?us	er=	ssword=	= tri	ie	Clear
1 🕅 Qu	inecci iery: s	select * from I	macro.epworth	351,3132/3100pddta:d3		331101 d-	- 40		
10	46 rov	ws selected ()	100 displayed).						
			Current query: s	elect * from macro.ep	worth			ок І	Cancel
			Current query: s	elect * from macro.ep	worth			ок [Cancel

After executing the select query, the user can come out of the SQL-Viewer by pressing the OK button.

The rows gathered after the execution of the query become instances within the Weka environment ready for further pre-processing and analysis. They can also be saved to a convenient ARFF (Attribute Relational File format) type file format if desired.