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Abstract

Data originating from non-voice sources is expected to play an increasingly
important role in the next generation mobile communication services. To plan
these networks, a detailed understanding of their traffic load is essential.

Recent experimental studies have shown that network traffic originating from
data applications can be self-similar, leading to a different queueing behavior than
predicted by conventional traffic models. Heavy tailed probability distributions are
appropriate for capturing this property, but including those random processes in
a performance analysis makes it difficult and often impossible to find numerical
results.

In this thesis three related topics are addressed: It is shown that Markovian
models with alarge state space can be used to describe traffic which is self-similar
over a large time scale, a Maximum Likelihood approach to fit parallel Erlang-k
distributions directly to time series is devel oped, and the performance of a channel
assignment procedure in awireless communication network is evaluated using the
above mentioned techniques to set up a Markovian model. Outcomes of the per-
formance analysis are blocking probabilities and latency due to restrictions of the
channel assignment procedure as well as estimations of the overall bandwidth that

the system isrequired to offer in order to support a given number of users.
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1 Introduction

The information exchange industry that includes fixed and wireless telephone aswell as
Internet access providersis by far the largest industry in the world [PK02]. Its continu-
ous growth mainly results from the increasing number of Internet and cellular telephone
users, and high hopes still lay on broadband wireless Internet access which is expected
to develop alarge market in the near future. Advantages of wireless systemsarethegain
in convenience for the end user and the efficient deployment of network access pointsin
areas where the existing wired infrastructure is not highly developed. However, wireless
broadband networks are difficult to design and it is questionable if the emerging third
generation (3G) cellular systems as described in the IMT-2000 standard will fulfill the
expectations. Nevertheless, enormous investments have been made in this field, and a
large number of companies are currently working on 3G systems.

For those companies, an important questions to answer is how to dimension cer-
tain parts of the network in order to support a desired number of users. During the
development process, statistical models can be used to predict system performance or to
compare several aternatives.

When setting up a statistical model of anetwork, it is essential to understand the na-
ture of traffic the system has to accommodate, and to choose an appropriate mathemati-
cal description of the traffic; here appropriate means with the desired level of detail and
computationally feasible. For voice applications, detailed and relatively ssmple models
exist, but traffic originating from certain data applicationsisfound to be self-similar and
hence more complicated to model [LWTW93]. Several approaches to describe network
traffic are summarized in [WTE97], and we will introduce two more to model traffic
with a large number of exponential wait states later: One known as the Prony method

[dP95] where a Hyperexponential distribution is used to approximated long tailed prob-



ability distribution functions which can be used to generate self- similar time series,
and a new technique to directly fit parallel Erlang-K distributions to observed data us-
ing Maximum Likelihood estimation. We will use the latter approach in a performance
analysis.

The object under study in thisthesisis a channel assignment procedure in awireless
network similar to the systems specified in the IMT-2000 standard, but optimized for
data traffic. Of primary interest is the network’s access scheme. For the performance
analysis, a Markovian approach with a very large state space is used. However, an on-
going dispute is whether such conventional models can be used in the presence of self-
similar traffic pattern: Some researchers feel it is necessary to develop completely new
techniques to describe network traffic [CB95], other have the opinion that more sophis-
ticated models using conventional techniques are appropriate in most cases [PKC97].
Both points of view are discussed later. To contribute to the discussion, we show that
it is possible to generate traffic which appears self-similar over alarge time scale with
extended Markovian models, supporting the assumption that conventional traffic models
are still useful when dealing with data networks.

Outcomes of the performance evaluation are blocking probabilities due to restric-
tions of the network’s access scheme, where different numbers of possible simultaneous
channel requests and different connection speeds are taken into account.

The remainder of this thesis is organized as follows. In Section 2, a review of the
mathematics needed in the following work is provided, including definitions of the used
time series distributions and self-similarity, as well as an overview of Maximum Like-
lihood estimation and Markovian statistics. Moreover, the essentials of the IMT-2000
code division multiple access (CDMA) system are summarized. In Section 3, an excerpt
of theliterature dealing with network traffic characterizations and modeling is given and

the role of self-similarity in network traffic is discussed. In Section 4, an algorithm to



approximate long tailed distributions using Hyperexponentialsis stated and the quality
of the approximation isexamined. In Section 5, an Maximum Likelihood approach to fit
paralel Erlang-K stages directly to observed dataisintroduced, its Matlab implementa-
tion is given and the goodness of fit is examined. In Section 6, our traffic measurement
on the Internet Protocol layer is described, where packet sizes and packet interarrival
times were recorded. In Section 7, a simple ON/OFF model with long tailed state tran-
sitionsisused to generate self- similar traffic; it is shown that with the Hyperexponential
approximations of those transitions, the generated traffic is still self-similar over alarge
timescale. In Section 8, the model of the access scheme under study isintroduced, using
the traffic traces collected as described in Section 6 and the Erlang-K fitting approach
developed in Section 5 to obtain a Markovian description of the model. Performance
measures for different network configurations are derived. The thesisis concluded in
Section 9, followed by the Appendix with the commented source code of all developed

programs and a complete list of the considered references.



2 Mathematical Background and Essentials of CDM A

This chapter provides a review of the mathematics used in the following work: The
time interval distributions needed are defined and the methodology of Maximum Like-
lihood parameter estimation is introduced. Moreover, the properties of Markovian state
transition diagrams with their matrix form solution are given, and a definition of self-
similarity and long range dependency are stated. Finally, the essentials of code division

multiple access (CDMA) techniques used in communication networks are summarized.

2.1 Timelnterval Distributions

Arrival processes, such as telephone calls reaching a central exchange, are described
mathematically as point processes, consisting of arrivals at instants 7y, 77 ...7T,,. A
mathematically equivalent description is the interarrival time process {A,,}5°,, where
the continuous function A,, = T,, — T,,_; isthetime separating the n'* arrival from the
previous one, often referred to as waiting time. If the A,, are identically and indepen-
dently distributed, one speaks of arenewal process. To describe the statistics behind the
interarrival times, the random processes introduced in the next two subsections will be

used.

2.1.1 Combining Exponential Distributions. Erlang-K, Hyper- and Hypoexpo-

nentials

Exponential distributions are characterized by a single parameter A, often referred to as

the transition rate. The probability density function (pdf) is given by

f)=Xxe™ A>0,t>0 (1)



and the cumulative density function (CDF) by

Ft)y=1—e™ X>0,t>0. 2
The expected valueis
1
= — 3
m= 3
and the varianceis
1
0'2 = F (4)
Given the observed value vector isx = (21, 29, ..., 7,)T, the parameter \ can be esti-
mated with
1 n
A=— Z% )
N

The most important property of an exponentially distributed random process is that
it is memoryless, meaning time until the next event occurs does not depend on the time
passed after the previous event; this characteristic is unique among continuous distri-
butions and makes the random process attractive for analytical uses, for example in
Markovian state descriptions, which are introduced later.

If a random process cannot be accurately modeled by a single exponential state, it
can be useful to combine a number of exponentials leading to the more general class of
phase type distributions; three special cases of phase type distributions, namely Erlang-
K, Hyper- and Hypoexponentials, are introduced in the following. Hypoexponential
distributions are obtained by combining K independent processes with exponential wait-
ing time in series, as shown in Figure 1; this corresponds to addition of k independent
stochastic variables and the probability density function is obtained by convolution.

These distributions are referred to as steep because the variance decreases when

adding more stages while holding the overal mean fixed. In the most general case



A, A2 N3 s s

Figure 1. State Transition Diagram of Hypoexponential with 5 Stages

Hypoexponentials have as many parameters as exponential stages. Restricting the pa-
rameter space to asingle transition rate \ yieldsto a Erlang-K distribution, where K is
the number of exponential wait states. The corresponding probability density function

isgiven as
()\t)Kfl

-t _ —
m)\e s )\>O,t>—0,K—1,2, (6)

ft) =

and illustrated in Figure 2 with K = 5 and K = 50; A5 and )5, are chosen so that the

mean is 1 sec. The expected value and variance of an Erlang-K distribution are

K
m = T (7)
and
K
02 = ﬁa (8)

respectively. For an increasing number K of exponentials the variance becomes smaller

when the expectation value m is held constant
2
2 _
ot =, 9)

and the probability that awaiting time T lieswithin agiven interval around m increases.
For large K this property makes the Erlang-K distribution suitable for modeling deter-

ministic processes.



50 Stages

f@©

5 Stages

I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 12 1.4 16 1.8 2
t

Figure 2: Probability Density Function of Erlang-K distributionswith 5 and 50 Stages
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is referred to as a flat distribution. This type ———(5)—

of random process will be used to approximate Figure 3: Hyperexponential

probability density functions which decay slower than exponentially.
A Hyperexponentia with N stages has N parameter tuples (p;, \;), where the weight
factors p; have to be non-negative and sum up to one, and the \; areindividual transition

rates greater than zero. The probability density function is given by

k
F) =Y phe™ A>0,t>=0,k=1,2,.. (10)
i=1



The j-th non-central moment can be found with

k .
my =1y 2 (11)

J
i=1 Ai

Due to the large parameter space it is difficult to fit Hyperexponential distributions di-

rectly to observed data.

2.1.2 Long Tailed Distributions: Pareto and Weibull

In the following discussion, long tailed (or equivalent: heavy tailed) distributions will
be used to describe packet sizes and interarrival times. Therefore the definition is stated

shortly:

A distributionissaid to be long- or heavy tailed if its complementary cumu-
lative distribution function (CCDF), regardless of its shape for small values

of the random variable, has the following asymptotic behaviour:

P(T>t)~t% for t =00, and 0 < a < 2. (12

Pareto and Weibull distributions are, for certain parameters, heavy tailed.

The Pareto Distribution
The Pareto CDF is a power curve that can be easily fit to observed data. It will be used
to describe packet sizes|ater. Its CDF is given by
L—(p) " ift>k

F(t) = (13)
0 otherwise



The probability for ¢ < k is zero; k is the minimum value which can occur in a sample

set. The probability density function (pdf) is

£(t) = et iftt>k (14

0 otherwise

m = ka a>1 (15)
a—1
ko
2 = 2 1
o (@ —12(a=2) a> 2, (16)

For o« < 1 the mean, and for o < 2 neither the variance nor the mean does exist. This
property makes it difficult to use Pareto distributionsin queuing network analysis.
Referring to Jain [Jai91], the following equation can be used to estimate o for a
given sample vector x = (1, s, ..., x;)", assuming that the smallest possible value k
is known:
1

= U T () an

The Weibull Distribution
Weibull distributions will be needed to describe packet interarrival times. Their CDFs
are given by

Ft)=1—¢ &', with a,b>0, and t > 0; (18)

consequently, the density functionis

bt !
ft) = ——e U’ (19)




where a is the scale parameter, and b the shape parameter. For b < 3.602 Weibull
distributions have a long right tail, for b > 3.602 along left tail. The parameter can be

estimated by solving the following set of equationsfor aand c:

Z ]z (20)

n

o= [(Xaflog(r) (X a5 — + 3 log(r) | 21)

i=1
2.2 Parameter Estimation and Maximum Likelihood Approaches

To describe a phenomenon with random processes, the parameters of the underlying dis-
tributions must be obtained. An optimal tool for thisis Maximum Likelihood estimation
which will be used to fit exponential, Weibull and Pareto distribution to data, as given
above.

Generally speaking, if f«(y |0) isthe pdf of a random vector x dependent on the
unknown parameter vector #, then the optimal parameter choice is those which maxi-
mizes fy(y | #) for agiven sample vector y. In alater chapter, a Maximum Likelihood
approach is introduced to fit a large number of parallel Erlang-K distributions to data.
Referring to [FH98], the maximum likelihood estimation is asymptotically efficient,
meaning that as the number of samples grow to infinity, the mean square error between
the estimated parameters and the true parameters becomes as small as theoretically pos-

sible.

2.3 Markov Processes

In alater chapter a Markovian model of an access scheme for a wireless network will

be developed; therefore the important properties of such processes are stated in the

10



following:

A set of random variables { X (¢)} with a discrete state space form a Markov chain
if the probability that the next stateis z(¢;) depends only upon the current state z(¢;_;)
and not upon any previous value. In other words, a Markov chain is a random sequence
in which the dependency extends backward one unit in time. Therefore, the entire past
history which affects the future must be summarized in the current state of the process.
This implies that the distribution of time that the process remains in a state must be
memoryless. For this reason, in continuous time Markov chains, the state time must
be exponentially distributed. Usually each state of a Markov process is referred to as
an integer number 0...n. The exponential waiting time in state i is specified by the
parameter \;. The probability that, when leaving state i the next state isj is defined as
pi;. A highly useful feature is that the process with n states can be described completely
by anxn matrix P containing the probabilities for going from one state to the other and
by avector of length n containing the waiting time of every state. A nxn transition rate

matrix Q can be set up using the relationship

)\ipij { 7A J

—Ai =]

qij — (22)

The steady state probabilities are found by solving the following set of equationsfor =

1 = 1 (23)

ol = 7Q, (24)

where 0 isthe all zero vector; 1 isthe all ones vector and the i-th element of vector =
represents the steady state probability for being in statei. It is possible to find solutions

for models with a very large state space.

11



2.4 Markov Modulated Processes and Bur styness

In a Markov modulated process the parameters of a model are determined by the state
of an overlaying Markov chain. An exampleis a two state Markov modulated Poisson

process, asillustrated in Figure 4:

Lets assume that the system is initially Transition

in state 1; then the modulated process gen-
erates packets which are separated in time

regarding to an exponential random process

with parameter )\;. After a random time,
Transition
again exponentially distributed but with pa-
rameter 1;, the modulating process transi- >\1 A 2
tions to state 2, causing the modulated pro- Figure 4. A simple 1-Burst Process

cess to generate packets with rate \,, until the system goes back to state 1 and repeats
itself. More generally speaking, in a Markov modulated Poisson process the transition
matrix of the modulated system depends on the state of the modulating process, which
introduces a considerabl e degree of freedom when describing a system.

A special caseis the so-called ON/OFF process, where packets are transmitted dur-
ing the ON state and the generation rate while in the OFF state is set to zero, leading to a
bursty traffic pattern. Bursty traffic is more difficult to handle in a queueing system than
traffic generated from non-bursty sources which produce a more continuous workload.

Transmission burstyness is often measured by the following expression:

b=1—- — 25
5 (25)

A, = peak rate while ON

Kk = average rate over the entire process

12



Clearly 0 < b < 1; for b equal to zero, the source is not bursty, for b approaching 1 we

have a bulk arrival process.

2.5 Sdf-Similarity and Long Range Dependency

Self-similarity is a property used when describing fractals which appear the same re-
gardless the scale at which they are viewed. When talking about stochastic time series,
these series were referred to as self-similar when their aggregated distribution remains
unchanged (except for changesin time scale) compared to the original distribution. This
sort of behavior is different from simple Markovian models: When aggregating traf-
fic generated by simple Markovian models, the resulting traffic stream is less bursty
whereas the aggregation of self-similar traffic sources results in a bursty traffic stream
leading to a different queueing behavior. A summary of the relevant papers covering

thisissue isgiven in chapter 3.

Definition of Self-Similarity

A dtationary time series X = (Xy; ¢ = 1,2,3,...) is statisticaly exact
second-order self-similar if it has the same autocorrelation function

r(k) = E[(X; — p)(Xr — )] asthe series X™ for al m, where X™ isthe
m-aggregated series X ™ = (X\™ : k = 1,2,3,...) obtained by summing
the original series X over nonoverlapping blocks of size m,

X/Em) = %(ka—m—i-l + Xem-mt2 + .. + Xim).

A stationary time series X is statistically asymptotically second order self-
similar if autocorrelation ™ (k) of X™ agreesasymptotically, i.e. for large
k, with the autocorrelation r (k) of X.

A detailed explanation of self-similarity is given by Crovellaand Bestravos, [CB95].

Referring to [Cox84], a self-similar process has the following related properties:

13



e Thevariance of the sample mean decreases more slowly than the reciprocal of the

samplesize, var(X™) ~m™ asm — cowith0 < 3 < 1

e The autocorrelation decays hyperbolicaly rather than exponentially fast. This

shows that a self-similar processis long range dependent.

25.1 Determiningthe Degree of Self-Similarity

Self-similar traffic patterns can be detected by visual observation of traffic plots on dif-
ferent time scales. Self-similar traffic appears similar across many time scales whereas
short range dependent time series ook like noise after aggregating them. The visual test
should be supplemented with a second, more mathematical technique which is discussed
later.

The degree of self-similarity can be defined using the so-called Hurst parameter H,
which expresses the speed of decay of the autocorrelation function. For a self-similar
process, 1/2 < H <1, for H = 1/2 the time series is short range dependent, for H — 1 the
process becomes more and more self-similar.

Since slow decaying variance and long range dependence (i.e. slow decaying auto-
correlation functions) are both related to self-similarity, it is possible to determine the
degree of self-similarity using either of those properties. In this work, the so called
variance-time plot will be utilized, which relies on the slow decaying variance of every
self-similar process.

For a self-similar time series, the variance of an aggregated process decreases lin-
early (for large m) in log-log plots over m. The slope 5 can be estimated using linear

regression, leading to he Hurst parameter which is determined by the relation

=

I

—

|
S

(26)
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Figure 5 shows a variance-time plot with 5 = 0.233 leadingtoa H = 0.88.

log10( Normalized variance )

L L L L L
1 15 2 25 3 35 4
log10(m)

Figure 5: Variance-Time Plot

A second graphical method to determine H is the so-called R/S plot. The ratio R(n)

over S(n) is determined by the following equation:

1 )
S(n) m[mam((), Wi, Wa, oo, W) — min(0, Wy, Wy, ..., W,)], (27)

where o isthe square root of the sample variance

LS (X, — X))’ (28)

k=1

and W, isameasure for the deviation of the process X,

We=(X1+Xo+...+ Xy) — kX(n). (29)

When plotting log[R(n)/S(n)] versus log(n), the slope equals H. A detailed explanation
isgivenin [Rob00].

The drawback of the variance-time and the R/S plot is that both cannot be used to
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derive confidenceintervalsof H. Thisis possible using Whittle' s approximate Maximum
Likelihood approach, which uses the property that any long-range dependent process
approaches fractional Gaussian noise when aggregated to a certain level. The technique
isexplained in [LWTW93]. A paper comparing the various H estimation techniquesis
[TTWOS].

2.6 Essentialsof CDMA

When more than one user share a common media in a communication network, a tech-
nique must be employed to manage the access to this common media. In wireless sys-
tems, common techniques are frequency division multiple access, FDMA, where a cer-
tain frequency band is assigned to a user, or time division multiple access, TDMA,
where data is transmitted separated in time. A different approach is code division mul-
tiple access, CDMA. Using CDMA, multiple simultaneous transmissions at the same
frequency are separated using coding theory so that data streams which "collide" are
added linearly and can be separated at the receiver.

A technigue which can be employed for code division multiple access is direct se-
guence spread spectrum, DSSS. Using DSSS, each transmitted bit is mapped into N
smaller pulses, referred to as a chip sequence, and sent using a conventional digital mod-
ulator. At the receiver the signal is demodulated and correlated with the chip sequence;
apeak in the correlation function represents the original bit. The name spread spectrum
technologyexpresses that after the mapping process an N-fold increase in bandwidth is
necessary to transmit the bit in the same time.

In a multiuser environment, different unique spreading codes ("keys") are assigned
to different users. The codes are chosen such that during decoding of the superimposed

data stream, the frame originating from a single user can be obtained by a correlation
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with the user specific chip sequence!. The correlations of data encoded with other keys
do not show a distinct peak, but are a source of noise when detecting the desired data,
which limits the number of users who can simultaneous transmit data. Therefore, in or-
der to increase the system capacity, interference istypically reduced with power control
mechanisms minimizing the transmission power per terminal.

Spread spectrum CDMA (DS-CDMA) systems have a number of advantages over
conventional TDMA or FDD techniques. DSSS is resistant against multipath and fre-
guency selective fading, and aso against jamming, which makes the technique interest-
ing for military applications. Moreover, COMA systems provide a higher capacity? and
ahigher flexibility for integration of serviceswith different bandwidth requirement, such
as telephony and Internet access. For third generation (3G) cellular systems, CDMA is
the technology of choice.

Ideally, no channel requests are necessary in CDMA systems where every user has
its own spreading code and enough bandwidth is available. However, both, bandwidth
and the number of spreading codes are limited, such that prior to alonger transmission a
key hasto be requested and the decision hasto be made if enough bandwidth is available
for another user. In this work, a channel allocation procedure of a CDMA network
is evaluated. The system under study follows the IMT-2000 standard for 3G cellular
implementations, but has minor modifications to optimize it for computer data traffic.
The channel request procedure of a WCDMA mobile station as defined in [Ins97] is
summarized and the differences to the modeled network are pointed out in the following:

In WCDMA, one uplink access channel is provided and announced by the base station?®.

LCommonly used spearing sequences are orthogonal Walsh codes for synchronized systems and Gold
codes, which are non-orthogonal but show an excellent correlation behavior even if no precise synchro-
nizationis available.

2The gain in capacity is far less than expected when comparing the second generation cellular phone
systems |S-95 (CDMA) and GSM (FDD/TDD), for example.

3To be precise: One access channel is available in every SMHz frequency band that the available
spectrum is divided into.
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The mobile stationsuse arandom access technique similar to slotted ALOHA to transmit
small amounts of data to the base station. Such packets are referred to as random access

bursts and have the structureillustrated in Figure 6:

Preamble part | MS ID Req. Ser. | Optional user packet | CRC

\

-l [
- L |

16*256 chips Variable length

Figure 6: IMT-2000 Random Access Burst

The preamble part contains a chip sequence, randomly chosen from a set of 16

orthogonal code words.

The MS-ID sequence specifies which device is requesting service.

The data part contains the optional payload.

CRC isthe checksum over the whole packet.

Before a packet is sent, the mobile station has to synchronize itself with the time slots
of the base station. The mobile station then transmits the random access burst with a2n
ms time offset to the slot boundary, where n is chosen randomly between 0 and 4. An

exampleisdepicted in Figure 7.

With this scheme, 16x5 mobile stations may transmit within a 10 ms frame without
collision, where 16 represents the different spreading codes and 5 the possible time
offsets.

The system under study is optimized for data traffic, for example originating from
Internet browsers. Due to its bursty nature, channels are assigned more often and for
shorter durations than in networks which carry mostly voice traffic, leading to a higher

utilization of the access channel. For the model discussed in Section 8.1, the number of
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Figure 7: Random Access Burst Scheduling

unique spreading codes used for the access channel is increased to 256, and the burst
duration is conjectured to be 3.33 ms; a mobile station then selects a random time of
3.33nms, n = 0,1, 2 as offset to a frame boundary. With that modification, 256x3

stations may transmit within a 10 ms frame*.

4The frame durations were suggested by Beamreach Networks, Inc. for the performance analysis
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3 Literature Research

Studies performed in the last couple of years have presented convincing evidence that
network traffic often cannot be accurately described by standard Poisson models, imply-
ing that a number of existing traffic models lead to false predictions. In the following,

the major resultsin thisfield of research are presented.

e First, papers examining the traffic structures occurring in communication net-

works are summarized.

o After that, different studies pointing out either the importance of self-similarity to
network performance or the irrelevance of the need for capturing self-similarity in

traffic modeling are discussed.

e Finaly, an outline of different existing traffic modelsis given.

3.1 Traffic Structuresin Communication Networks

Prior to 1993, network traffic was exclusively modeled using Poisson processes, which
were well understood and capable of precisely describing traffic patterns originating
from conventional telephone systems. In the paper "On The Self-Similar Nature of Eth-
ernet Traffic" [LWTWO3], Leland et al. demonstrate that local area network traffic can
show fractional behavior, which is different from both, conventional telephone traffic
and from Poisson related packet traffic models used at thistime. The main differenceis
that Poisson traffic becomes smoother (less bursty) as the number of sources increases,
whereas this is not the case for the traffic traces Leland et a. observe: The aggregated
traffic stream remains bursty even for a large number of superimposed sources. More-

over, the traffic streams look similar when viewed at different time scales, as shown in
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Figure 8. A behavior like this indicates self-similar traffic patterns in the underlying

jprocesses.

To support his hypothesis, Leland

recorded traffic traces on various local
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0.8 and 0.95. Figure 8: Pictorial Proof for Self-Similarity

Leland et al. conclude that the inability of recent traffic models to capture net-
work traffic’s self-similar behavior is the reason for obtaining different packet delays
and packet loss probabilities between trace driven measurements and those based on
conventional traffic models. The results presented in this paper led to a number of other

publicationsin thisfield.

Another significant work in this areawas published under thetitle"Explaining World
Wide Webs Traffic Self-Similarity” by Crovella and Bestravos [CB95] in 1995. The

authors examined WWW traffic with similar techniques Leland et al. used for local area

5This graph is taken from [LWTW93], Figure 1(b),1(c),1(d)
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network traffic.

Crovella collect client based traces of HTTP traffic on the application level using a
M osaic browser which was modified to log all users accessto the Web. The size of each
file accessed, including the protocol overhead as well as the time required to transfer
the file from a server is recorded. Files contained in Mosaic's cache are excluded from
the measurement since only transferred files were of interest. Overall, the traces contain
approximately 600 users and capture the transfer volume of 2 TB of data. Timestamps
are accurate to 10 msec. To convert the traffic trace to atime series, the bytes transferred
in each request are allocated equally into bins spanning the transfer duration, using
a granularity of 1 sec. This time series is used to show the burstyness of the trace
at varying time scales, indicating self-similar traffic patterns. The Hurst parameter H
was estimated with the techniques as described in Section 2.5.1 of this thesis. With a
confidence of 95 percent H is determined to lay within the interval (0.77, 0.87) for the
examined traffic trace.

To explain the fractional structure of Web traffic, the authors use a method of con-
structing self-similar processes described by Mandelbrot, stating that a self-similar pro-
cess can be constructed by superimposing many simple renewal processes, in which
the inter-renewal times are drawn from a heavy tailed distribution. The connection be-
tween Mandelbrot’s result and the traffic structure is the following: A traffic source
can be approximated as an ON/OFF process which isin turn a ssmple renewal process.
The essential heavy "taildness" of the inter-renewal timesis found to result from heavy
tailed "file transmission times' (due to the distribution of file sizes) and from heavy
tailed "silent times" (introduced by user behavior). Both, transmission times and silent
times are examined in greater detail, and found to be heavy tailed; their complementary

cumulative distribution functions are given in Figure 9°

5This graph is taken from [CB95], Figure 8(b) and Figure 13

22



Lot DTN Toraiisidssscinnm T s i Secon -4 - 2 -1 i 3 1 4
Lo VU et Tiimie in Seeomds

A

Figure 9: Distribution of Transmission and Silent Times

The transmission time is found to be much heavier tailed than the silent time; for
that reason Leland et al. assume that the file sizes are a major reason for World Wide
Web traffic’'s self-similarity. This conclusion is augmented in the work of Tagqu, which
showsthat the value of the Hurst parameter H is determined by whichever distributionis
heavier tailed. Related to this work, Park, Kim and Crovella showed that it is sufficient
to draw file sizesfrom aheavy tailed distribution to generate self-similar network traffic.

Other papers using traffic traces from physical network measurements to identify
scale invariant burstyness and proposing models capable of generating synthetic traffic

with matching characteristics are:

e [GW94] and [HDLW95] for variable bit rate video traffic,
e [PF94] for wide areatraffic and

e [WTSWO5] for local area network traffic on the source level.

3.2 Sdf-Similarity: Important or Irrelevant?

The presence of self-similarity in network traffic iswidely accepted. The question which

arises now is how prevalent such traffic patterns are in network performance studies.
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Beyond researchers, two different opinions are common: One is that nearly al exist-
ing models have to be rewritten using completely different approaches, the other is that
more sophisticated but conventional models are sufficient for traffic modeling and per-
formance analysis. In the following, reasons for both points of view are summarized.

The papers discussed so far, especially [CB95] and [LWTW93], point out that con-
ventional models are not sufficient for performance analysis. [LWTW93] mention that
packet loss and delay behavior differ between trace driven simulations based on their
traffic measurement and those based on former traffic models. However, Leland et al.
do not specify the extent of discrepancy. In [CB95] Crovella and Bestravos suggest
the use of multiple ON/OFF sources with long tailed renewal times for modeling appli-
cations at the source level, but also without quantifying the mismatch of conventional
models.

Numerical results are given in "On The Effect of Traffic Self-Similarity on Net-
work Performance” by Park et al. [PKC97]. The authors examine the influence of long
range dependent traffic on different transport layer protocols. The connectionless Uni-
fied Datagram Protocol (UDP) and the connection oriented Transfer Control Protocol

(TCP) with itsimplementations Tahoe, Reno and Vegas are eval uated.
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Figure 10 relates the mean queue length Figure 10: Influence of Self-Similarity on
for different link buffer sizes to «,, which Packet Loss Rates

isin turn related to the Hurst parameter H = (3 — «)/2. The Protocol under study in
this Figure is TCP Reno, the offered average throughput is held constant and the link
bandwidth is set to 1.5Mbps.
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o, again for constant average offered traf- Figure 11: Influence of Self-Similarity on
fic and TCP Reno. Again the influence of Mean Queue Length

a (or H = (3 — «)/2) depends on the link buffer size: TCP implementations with small
buffers (3kbyte) are invariant against the Hurst parameter, whereas the packet loss rate
increases with H for large link buffers (128kbyte).

The comparison of different TCP implementations Tahoe, Reno and Vegas shows

"This graph is taken from [PK C97], Figure 18
8This graph is taken from [PK C97], Figure 20
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that even under highly self-similar traffic conditions the performance gap is preserved
through the three congestion control agorithms. The performance gain from Tahoe
to Reno is relatively minor while the performance gain from Reno to Vegas is more

pronounced, asit is under non long range dependent traffic.

In [ST99] Sahinoglu and Takinay present a survey on the self-similar phenomenon
observed in multimediatraffic and itsimplicationson network performance. The authors
concentrate on Quality of Service (QoS) in the network layer.

It is said that, in the presence of self-similar traffic, buffers needed at switches and
multiplexers to obtain a desired overflow or cell 1oss probability must be bigger than
those predicted by traditional queuing analysis, which is in accordance to the results
described in [PKC97]; larger buffers lead to greater delays, which are an important
measure for real time applications such as video conferencing and Internet telephony.

Sahinoglu and Takinay point out that, for self-similar multimedia traffic, increas-
ing the buffer size is far less effective for decreasing the cell or packet loss probabil-
ity: With non long range dependent traffic, alinear increase in buffer size will produce
nearly exponential decrease in packet loss. For self-similar traffic they find that these
assumptions do not hold. The decrease in packet loss with buffer size is far less than
expect. Figure 12° shows the relationship between queue size and utilization for dif-
ferent degrees of self-similarity. For H = 0.5, representing traffic which shows no long
range dependence, the queue size grows exponentially with the utilization. For H = 0.9,
which is approximately the Hurst parameter Leland et al. [LWTW93] found in Ethernet
traffic, the mean queue size is approximately the same as for H = 0.5 for a utilization
smaller than 35 percent, but for higher utilizationsthe degree of self-similarity has major

influence on the queue size.

9This graph is taken from [ST99], Figure 2

26



10
1
2

g ' H=.9

d e H=10.75

%]

g , |

nes)
¢ H =05
|
14
O T R L B e R o e L R R Rl R R ia s
S oSN P RR TR EF S
s TR = O . AR . S e (SR R = L R . SRR R . SRR pR . SR i v R

Litilization

Figure 12: Queue Size over Utilization for Different Hurst Parameters

In accordance to [PKC97], Sahinoglu and Takinay use this plot to support their the-
sis that network performance, as captured by throughput, packet loss rate and packet
retransmissions under certain conditions degrades gradually with degree of long range
dependency. To possibly overcome this performance loss, the authors conclude that a
tool capable of detecting self-similarity in real time is necessary to optimize adaptive

resource allocation techniques, but without suggesting a certain approach.

Contrary opinions are stated in the following:

In [RE96] Ryun and Elwaid defend their thesisthat it is unnecessary to capture the long
term correlations of areal variable bit rate (VBR) video source under "realistic ATM
buffer dimensioning scenarios' [RE96], as far as cell loss rates and delays are con-
cerned as quality of service metrics. The authors define realistic buffer dimensioning as
buffers with a capacity of approximately 20 msec to 30 msec timesthe average datarate
of asingle source and a utilization chosen so that the cell loss rate is lessthan 1075, A
simulation is used to show that, for the parameters they have chosen, even in the pres-

ence of self-similar traffic long range correlations do not have a significant impact on
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the cell loss rate. Moreover they show that simple Markov models, which capture the

short term correlations, provide good approximations of cell lossrates.

In accordance to Ryun et al. Heyman and Laksman [HL96] show that even for
sources with a large Hurst parameter, Markov chains could be used to estimate buffer
occupancy when the buffers sizes were no larger than 10 msfor asingle source. Lin and
Suda [LS98] show that for ATM frame assembly operations, were aso small per flow
buffers are used, both, the model capturing long range dependency and a conventional

Markov model shows similar queueing behavior.

3.3 Include Long Range Dependency in a Network M odel?

There seems to exist no single answer to this question; however, the following conclu-

sion can be drawn from the discussion above:

e Self-similar traffic is needed for a precise performance analysis if the buffersin
the system are big, or if the utilization is higher than 35 percent. (35 percent isa
rule of thumb taken from [ST99])

e Self-similar traffic patterns can be neglected in case of a Hurst parameter smaller
than H = 0.7, in case of small buffers for a given source bandwidth, or when the

utilization of asystemislow.

However, researchers who question the usage of conventional approaches tend to use
rather simple Poisson modelsto support their thesis. We will justify the use of extended
Markovian modelsin Section 7.2 where we show that they can be used to generate traffic

whichis self similar over alarge time scale.
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3.4 Existing Traffic Models

To reduce the design complexity, most communication networks are hirachically orga-
nized using a layer concept. A layer has defined interfaces, and offers a number of
services to the layer above. An Example is the TCP/IP reference model, illustrated in
Figure 13:

The layer on top is the application layer. It contains the higher level protocols
such as the File Transfer Protocol (FTP), the Simple Mail Transfer Protocol (SMTP)
and the Hypertext Text Transfer Protocol (HTTP). Thetransport layer offersareliable
end-to-end connection using the transmission control protocol (TCP), embedding flow
control, connection management and congestion control. The second protocol in the
transport layer is the User Datagram Protocol (UDP), which offers a unreliable and

connectionless service.

The Internet layer defines a packet osl TCP Reference
7 Application Application
format and protocol caled IP (Internet :
6 Presentation Not present in
5 Session the model
Protocol). Features such as packet rout-
4 Transport Transport
ing and congestion avoidance are imple- 3 Network Internet
. . . . 2 Data link
mented inthislayer. Not defined in greater ) orvcical Host-to-Netork
ysical

detail within the TCP/IP reference isthe Figure 13: 1SO OS| and TCP Reference

Host-to-Network layer. It hasto beable
model

to inject and or to accept | P packetsto or
from the layer above.

Dueto the complexity of acommunication network, it makes senseto use the layered
structure not only for designing but also for modeling a network. In the following,

several examples of models dealing with mechanisms on different layers are introduced.
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3.4.1 Modelingthe Application Layer

An empirical model for traffic originating from Web browsers is proposed by Deng
[Den96]. In this work, a ssmple ON/OFF model is developed, with the ON state de-
scribing a user who is downloading content from the Internet and no traffic generated
whilein the OFF state.

A traffic trace spanning 4.5 hours and containing 293 active users, each connected
to a service provider with a T1 line, is used to derive the random variables describing
the duration of the ON and OFF states as well as the interarrival times, i.e. the time
difference between two consecutive document downloads.

An ON periodisconsidered a sequence of arrivalswith lessthan 60 seconds between
any two events. If arrival A is separated by more than 60 seconds form arrival B, then
A marks the beginning of an OFF period. Two OFF periods divided by a single event
are considered a single OFF period. Although the 60 second time period is chosen
heuristically, theresulting distributions are, referring to Deng, insensitiveto time periods
on the order of 30 to 120 seconds. Deng found that the ON period and the interarrival
time of documents can be described by a Weibull distribution, while the OFF period can
be modeled by a Pareto distribution. Sizes of the transferred files are not examined but

taken from [CB95]. Thedistributionsand their parameter are summarizedin Table 3.4.1.

With these parameters, both, ON and OFF times are heavy tailed. Problems arise
due to the infinite mean and variance of the OFF distribution: It is, for example, not

possible to derive the average time spent in the ON state.

A more detailed model for Web traffic isintroduced by Choi and Limb in[CL99]; its

basic structure is illustrated in Figure 14 1% A Web request occurs when a user clicks

OThefigure is taken from [CL99]
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Table 1: Parameter of Deng’s Empirical Model
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Figure 14: Overview of Choi’sBasic HTML Traffic Model
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onalink or entersa URL [BLMM94]. The first object transferred is referred to as main
object, most likely aHTML document containing references for pictures or ajava script
applet. These documents, whose download is initiated by the browser, are called in-line
objects, each using its own TCP connection, which can be either back-to-back or in
paralel, depending on the HTML protocol version. The authors utilize a traffic trace
containing HTML and TCP header information to derive the statistical parameters used
to describe the model, such as main and in-line object sizes and interarrival times, pars-
ing time, page viewing time and number of Web requests. The state transition diagram

for Web traffic generation is given in Figure 15 *: When a new Web request isinitiated

@—. M Ciypacl —M Farsing Dins h::m:;r‘

Indlirvee Divber-
Arrreal
Temiedil

Indine Object
{il

| YES

L
At the and of
Wiewving Time: In-line
chjects

Figure 15: Choi’s State Transition Diagram for Web Traffic Generation

by the user, the main object is loaded, containing the information for the browser on
how to proceed (e.g. from where to load the inline objects). After the parsing time (the
time needed by the browser to process the main object), the inline objects are loaded.
When all downloads are completed, the user usually works with the page for a certain
time, introduced as viewing time. The process starts again with a new Web request.
Referring to Choi and Limb, the model generates traffic which closely matches traffic

patterns measured on area network.

UThefigureis taken from [CL99]
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3.4.2 Modeling at the Transport and Internet L ayer

For the Transport layer a large number of models exist, describing connection arrivals
or performance of features such as routing and congestion control. [GCMMO01] uses
complex queueing theory to derive approximations for network performances such as
latency and TCP packet loss probabilities. However, the underlying Internet layer is
only roughly approximated by M/M/1 queues, providing a good example how alayered
network structure can be used to simplify a modeling approach.

Ananalytic model of wide area TCP connectionsfor telnet, nntp, snmp and ftp traffic
is given by Paxon [Pax93]. Referring to Paxon, ideally, an analytical model has few
bound parameters, which makes it easy to understand, and no free parameters, which
makes it predictive. However, most analytica models also have free scale or offset
parameters which have to be estimated before the model can be used to derive numerical
results.

The author used a traffic trace containing 2.5 million TCP connections to obtain the
parameter for his model. A complete description of the random variables associated
with the wide area connections is provided in [Pax93], as well as a comparison with
empirically derived models, showing that the analytical approach describes connection
interarrivals well and provides a good estimation of the amount of data transferred.

Very many other traffic modelsexist, all concentrating on different features at differ-
ent levels of detail. A comprehensive summary of several approaches for traffic model-

ingisprovidedin [WTE9Q7] by Willinger and Tagqu.
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4 Approximating Long Tailed Distributionswith Hyper-
exponentials

This chapter deals with the approximation of long tailed distributions, which are often
used in performance evaluations, with alarge number of exponential stages. It is orga-
nized asfollows:

First, reasons for the usefulness of exponential approximations are given, and the struc-
ture of the exponential fit isexplained. Secondly, an algorithm capable of fitting a group
of exponential stages to a large class of distributions is introduced. Thirdly, the good-
ness of fit is examined and the drawbacks of the approach are summarized. In the last
part of the chapter, the algorithm is extended such that it becomes applicablefor alarger

class of Pareto distributions.

4.1 Why Approximate Long Tailed Distributions with Hyperexpo-

nentials?

The reason why exponential approximations of long tailed time interval distributions
are useful is simple: Performance models tend to be easier to analyze when phase type
distributions are used. In some cases, an exponential approximation makes it possible
to solve queueing models that could not be solved before, for example by using Marko-
vian statistics. Another advantage is that convenient Laplace transforms exist for the
approximation, which is not the case for most long tailed random processes.

How does one put single exponential wait stages together to mimic long tailed be-
havior?
The CDF of long tailed distributions for large t decays slower than the tail of a sin-

gle exponential. The same is true for a Hyperexponential distribution, as introduced



in Section 2.1.1, which makes them suitable for an approximation. In a more mathe-
matical sense, referring to [FW97]: The class of probability distributions with a com-
pletely monotone pdf can be approximated arbitrary closely with Hyperexponentials. A
function is completely monotone if all derivatives exist and the following inequality is
satisfied:

(=1)"f™@E) >0, t>0,n>1 (30)

The following statement is referred to as Bernstein Theorem:
If Fisa CDF with a completely monotone pdf, then there are Hyperexpo-
nential CDFs with n stages, F(™), n > 1, i.e. CDFsof the form
kn
FO(t) =3 pu(l —e ™), t>0 (31
i=1
with \,,; < oo and ppy + Ppo + ... + puk, = 1, suchthat F™ — F as
n — oQ.

An example for random variables which are completely monotone are Weibull distribu-

tions, which are examined now.

4.2 Deriving the Parameters of the Exponential Fit

The following algorithm was first described by de Prony in 1795 [dP95] and recently
by Feldmann and Whitt [FW97]. After introducing the basic procedure, we extend the
algorithm so that it can be used for alarger class of Pareto distributions. Itsimplemen-

tation in Matlab is givenin Appendix A.1.1.

Definitions

Let F°(¢) be the complementary cumulative density function, CCDF, F'¢ = 1 — F'(t) of
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a completely monotone pdf which isto be approximated, and let

k
h(t) =" pirie ™ (32)
i=1

be the pdf of the Hyperexponential distribution; k is the approximation order (the num-
ber of exponential wait states), p; and \;, i = 1... k are the parameters which are to be
adjusted to achieve the best fit.

A region of interest, i.e. the time interval which is important for later analysis,
is chosen as [T1nin, Timaz|- Then k points ¢y, .. ., ¢, are selected for which the fitting
algorithm will compute parameters such that the Hyperexponential CCDF matches the
CCDF of the given distribution on this points. They are chosen according to Equation 33

to 36 such that they are spaced equally at alogarithmic scale.

¢k = Tmin, (33)
¢1b = Tnaas (34)
c=cz Y, k=2 k-1 (35)
with
in( k)
T=e Tk . (36)

Thefree parameter b, b < CCT for al i, can be used to adjust the mean of the exponential

fit to the expected value of the original function.

TheFitting Algorithm

Having defined the parameters, the fitting routine can be introduced. The pair (A;, p;)
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are, beginning with - = 1 and ending with i = k& — 1, chosen such that

pie M = Ff(t) fort=c; (37)
and

pie™ M = FF(t) fort = be; , (38)

where F£(t) is the given CCDF minus the aready computed parts of the Hyperexpo-

nential fit, if thereisany, i.e.
i—1
FE(t) = Fo(t) = Y pje " (39)
7=1

The last weight factor p;. is determined by the relationship Zlep,» = 1 after p;,i =

1,...,k — 1 have been found. A, ischosen so that
pre M= FE(t) fort=cy. (40)

This can be done for several b until the mean is sufficiently approximated.

As an example, a Weibull distribution with a = e*® = 90 and b = 0.5%2, leading to
a CCDF F<(t) = e(@)"", is approximated with a 3 stage Hyperexponential (k=3).
The region of interest is assumed to be the interva from 7,,,;, = 2 t0 T}, = 2500
seconds, the free parameter b is set to b = 5. With Equation 34 and Equation 33, one
gets c3 = 2 and ¢; = 500. Using Equation 35 and Equation 36, # = 15.81 and
co = 31.62 isobtained. Now the fitting procedure can be used: Thefirst step (i=1) isto

12These parameters are taken from Deng’s model
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solve Equation 37 and Equation 38 for p and ), leading to

1

A=
(b — 1)02

In(Fy/F}) (41)

pi = F{rehe (42)

With Equation 37 and 7 = 1, F! isjust the CCDF of the given function, F¢(t) =
e~(%)"" leading to A\; = 0.001547 and p; = 0.1962. For i = 2, one can proceed as
before, except that F! = F°(t) — pe=*t%; Ay = 0.009502 and p, = 0.4935. Now the
last tuple (A3, p3) can be determined: p; = 0.3103 is found using Equation 42; with
Equation 41, where F} = F(t) — pje ! — pe 2!, A3 = 0.2677028 is obtained. The
given Weibull distribution and the Hyperexponential fit are compared in Figure 16; for
only 3 exponential stages, the obtained approximation is not very accurate. However,

(o}
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107 ~ E
107 - E
r Parameter of Hyperexponential approximation
107} 4
E’ E lambda, = 0.00145658145957
| [ lambda, = 0.00950191995060 ]
107k Iambda3 = 0.26770280083091 o4
[ p, = 0.19622220181052
10°° - p, = 0.49353018801272 4
E p; = 0.31024761017676 k|
10°F E
-7
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Time t in seconds; solid: Hyperexponential, dotted: Weibull

Figure 16: 3-Stage Hyperexponentia Fit to Weibull(exp(4.5),0.5)

with a larger number of stages, it is possible to approximate a long tailed distribution
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very closely. Figure 17 and Figure 18 show the CCDF and the CDF of a 16-stage
Hyperexponential fit to a Weibull distribution with ¢ = 245 and b = 0.75. The relative
error for both, CCDF and CDF, isbelow 3 percent within the largeinterval t = 5+ 10~*

to 3 x 103 sec. Thisaccuracy should be sufficient for most applications.

lO " " " PR | " " " PR | " " " PR | " " " PR
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Figure 17: 16-stage Hyperexponentia Fit to Weibull(exp(5.5),0.75), CCDF

39



-6 - . i . i . i . i

Relative error

107 1072

10° 10°

Time t in seconds; solid: Hyperexponential, dotted: Weibull

w
T

N
T

T T T

T T T

i

Figure 18: 16-stage Hyperexponential Fit to Weibull(exp(5.5),0.75), CDF
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Transition rates

Weightfactors

Ao1 = 0.00000001832904* 1.0e+5
Aoz = 0.00000002613571* 1.0e+5
Aoz = 0.00000003800343* 1.0e+5
Ao4 = 0.00000006377714* 1.0e+5
Aos = 0.00000014956361* 1.0e+5
Aos = 0.00000052083900* 1.0e+5
Ao7 = 0.00000217207189* 1.0e+5
Aos = 0.00000923601009* 1.0e+5
g9 = 0.00003876731793* 1.0e+5
A1p = 0.00016096097697* 1.0e+5
A11 = 0.00066450851037* 1.0e+5
A12 = 0.00273719956837* 1.0e+5
A13 = 0.01127039192866* 1.0e+5
A14 = 0.04642587104368* 1.0e+5
A15 = 0.19137571400107* 1.0e+5
A1 = 1.00129050187363* 1.0e+5

po1 = 0.00000000006819
Pos = 0.00031139594117
o3 = 0.06823208434681
Doy = 0.40150703463163
pos = 0.35479903100208
os = 0.12232600606005
oy = 0.03596635460883
Pos = 0.01123820157313
Doy = 0.00370485880446
1o = 0.00125604354496
pi1 = 0.00043133215001
pia = 0.00014891554052
P13 = 0.00005150636801
14 = 0.00001781920947
15 = 0.00000616238589
16 = 0.00000325376479

Table 2: Parameter of 16-Stage Hyperexponential Fit to Weibull(exp(5.5),0.75)
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4.3 Describing Pareto Distributions with Exponentials

A drawback of the Hyperexponential approximationisthat it isnot applicableto genera

Pareto distributions, which have a pdf of the form

;o ift >k

0 otherwise.

At t=k, the derivative of f(t) does not exist and therefore the Bernstein Theorem does

not hold. However, a Hyperexponential approximation does exist for the shifted version

flt)=ft+v) t>0 (43)

For f(t) thefitting routine can be used as described before; to obtain the approximation
of f(t), the time shift is reversed by combining the Hyperexponential fit of f(¢) with
a deterministic wait state. But how does one obtain an approximation for the non-
shifted version by using only exponential stages? The answer isto approximate the wait
state with an Erlang-K distribution. The state transition diagram is given in Figure 20.
AEriang 1S Chosen so that the expectation value of the added stage equals the time v the

Flat Part of Pareto

Steep Part of Pareto p2 12
————»
Is Is Is
OO _O——"520-
> —
p4 14
—»

Figure 19: State Transition Diagram for an Approximation of a Pareto Distribution

original function was sifted with. This leads to Agyi4n, = % For K — oo, Erlang-

K distributions behave like deterministic wait states. In the model which is introduced
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later, K = 200 was empirically chosen; with a probability of 90 percent the waiting
time lieswithin 5 percent around the mean.

An example to demonstrate the quality of the overall approximation is given now,
where an Erlang-K distribution with 200 stages together with an Hyperexponential con-
sisting of 10 stagesisfit to an Pareto distribution witha = 1.5 and 5 = 60. In Figure 20
the CDF and the CCDF of the original function and approximation is given. The CDF
plot shows the behavior for small t, whereas the CCDF shows the goodness of fit at the
tails. For small t, a better approximation would have been achieved if the number of
exponentia states of the Erlang-K distributions had been chosen to be larger, for ex-
ample 500 instead of 200, but for a larger number of states one encounters numericall
difficulties when computing the convolution to obtain the probability density function
which is necessary to generate the plot.

The tail behavior of the fit approximates the original Pareto distribution closely, as
illustrated in the CCDF plot. From ¢; = 103 till £, = 3 * 10° both curves are hard to
distinguish. For larger t, the asymptotic behavior of the fit becomes those of a short
tailed distribution. However, if the number of exponential stages in the Hyperexpo-
nential part of the fit is increased, for example from 10 to 20 which would not have a
significant impact on the mathematical complexity of the solution, the upper bound ¢,
can be made larger if necessary. The parameter of the fit are given in Tabel 4.3; \; and
p; fori =1...10 are computed with the algorithm as described in Section 4.2, K .. was
empirically chosen, and )., was computed with Equation 7.

The Hyperexponential fitting procedure can very accurately approximate the tails of
given slow decaying random processes. When a phase type distribution is needed, one
would first match along tailed distribution to the data, what is easily done due to the
small parameter space of such a distribution, and then apply the fitting routine to it. If

the underlying statistic of the dataistruly those of along tailed distribution -for example
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Figure 20: 10-stage Hyperexponential and 100 stage Erlang-K Fit to Pareto(1.5,60),
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Transition rates

Weightfactors

Aer =03
Ao1 = 0.00000074257647
Aoz = 0.00000393676652
Aoz = 0.00001425439220
o4 = 0.00004706387335
Aos = 0.00015126708993
Aos = 0.00048142934558
Aoz = 0.00151932541277
Aos = 0.00470791523456
Aog = 0.01398707060832
A10 = 0.04044703155438

K,, =200
po1 = 0.00000072553115
Dys = 0.00000567131482
Doz = 0.00003439450937
pos = 0.00019822230376
pos = 0.00112123759216
os = 0.00620495447972
por = 0.03241586287740
Dog = 0.14288407402354
oo = 0.39768178349492
1o = 0.41945307387316

Table 3: Parameter of Markovian Fit to Pareto(1.5,60)
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Pareto or Weibull- this method provides good results. However, if thisis not the case,
what is very likely because complex technical processes are rarely fully described by
only two parameters, thefirst fit will not precisely describe the data resulting in an inac-
curate Hyperexponential fit. In other words, in such a case the algorithm cannot utilize
the great flexibility of the large number of exponentia stages with its large parameter
space. The method we have developed provides this flexibility. It isintroduced in the

next chapter.



5 Fitting Datato Parallel Erlang-K Distributions

In this chapter, aroutine is introduced to fit various phase type distributions to random
processes. It is possible to find the parameters of arbitrarily grouped exponentials, for
example Hyperexponentials, Hypoexponentials or combinations of both, as long as the
probability density function can be written down in closed form. However, we obtained
the best results by using parallel Erlang-K distributions.

In the following, the properties of parallel Erlang-K distributions are summarized, a
Maximum Likelihood approach to find the parameters of the fit is introduced, and the
optimization problem and its Matlab implementation is explained. Equipped with the

new tool, an exampleis given to examine the quality of the fitting procedure.

5.1 Parallel Erlang-K Random Processes

We define the weighted sum of parallel Erlang-K distributions as parallel Erlang-K pro-
cess, where a single exponential state is contained as a specia case. An example for

a state trangition diagram is illustrated in Figure 21: A token which enters the process

Figure 21: Structure of Paralel Erlang-K Stages

selects branch j with probability p; and then passes through N; serial exponential wait

states with a homogeneous waiting time ;. Such a system has a probability density
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function of atheform

m )\t N;—1

sz ] Ne Mt X >0, t>0,forall possiblei (44)
where m denotes the model order, i.e. the number of parallel stages and, as before, IV,
denotes the number of exponentialsin a branch i, each with transition rate A;. It can be
seen that Equation 44 is the weighted sum of pdf’s of single Erlangian stages given by

Equation 6. The j-th non-central moment of the overall processis given by

_y, U AN =D

=1

This equation will be used to determine the quality of an approximation once a fit is

obtained.

5.2 A Maximum Likelihood Approach for Parameter Estimation

If f:(t | @) istherandom valuet dependent on the unknown parameter vector ¢, then the
optimal parameter choice is those which maximizes f,(t | #) for a given sample vector
y. In our case, # contains two parameter vectors A and p, and t represents the durations

of timeintervals. The function which isto be maximized can be denoted as

=

fML pa Z t | pa a (46)

where N is the length of the sample vector. Valid constraints are that the sum of non-
negative weightfactors p; hasto equal one, and that the transition rates have to be bigger
than zero:

C. ¥,pi=1l,andforali p;, >0, X\ >0 (47

46



The mathematical notation of the problemis

b

=arg max faur(p, A) (49)
by (p,A\)Te C

With the probability density function specified by Equation 44, one obtains the final

expression which isto be solved to find the optimal parameter set:

m )\tN -1 —/\it)

=arg rnax Z In( Z 1) A e

(49)

With Equation 49 the optimal set of parameters can be found by solving an nonlinear
constrained optimization problem. However, this problem is computationally intensive;
assuming a sample size of N = 2000 and a model order of m =5 (i.e. 5 parallel Erlang-
K stages), the innermost part of the sum in Equation 49 has to be computed 10,000
times, just to test for one set (p, A). Therefore, specia care is taken to speed up the
computation of the two sums and to reduce the number of times the equation needs to

be evaluated. Animplementation in Matlab isintroduced in the following.

5.3 Matlab Implementation

The constrained non-linear maximization problem of Equation 49 is solved using the
Matlab function FMINCON, which is part of the optimization toolbox. The function is
called with the following command:

X = FMINCON( FUN, X0, Aeq, Beqg, LB, UB, NONLCON, h, N ) FMINCON finds
the argument vector X for which the function specified in "FUN" has its minimum; it

has the following input variables:

e X0 is a vector of the same length m as the argument vector X; it contains the
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starting point of the optimization.

Aeq, Beq specify the linear equality constraints; for this problem, Aeq is a vector
of length m and Beq is a scalar, leading to the condition

Aeg(1) X(1) + Aeq(2) X(2) +...+ Aeg(m) X(m) = Beg.

LB and UB are vectors of length m; they define the lower and upper bounds of the

elementsgivenin X

LB() < X(i) < UB() fori =12,...,m.

NONLNCON specifies the name of the m-file containing expressions for non-

linear constraints. This option isnot needed here.

h and N are optiona parameters; h represents the name of the file containing the
sampledatat,. N isavector which describes the structure of the random process;
as before, the i-th element of the vector N represents the number of exponential

stagesin thei-th branch of the parallel Erlang-K distribution.

For this optimization problem, "FUN" specifies the name of an m-file which takes the

arguments X, h and N as input and returns the scalar result of Equation 46. X con-

tains the parameter vectors which is tested by FMINCON. The function is so flexible

that results for every possible combination of Erlang-K stages can be obtained without

changing the source code.

A straight forward implementation to cal culate Equation 49 would make use of two

for loops, one for every sum. However, for loopsin Matlab are very slow. Surprisingly

it is possible to express f),;, by using only matrix operations while keeping N (and

with N the structure of the process) a flexible system parameter. The crucia part of the

Matlab implementation is given in the following lines, starting with the inner part of the
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sum and evaluating the overall sum of Equation 49:

inner = p. x (\."IN)./ fractvec(N — 1) x (exp((N' — 1) x In(t)). x exp(— )\ = t)
(50)

f = — ones(1, length(inner) ) x [n(inner)’ (51)

Element wise multiplication, division and exponentiation are denoted as .*, ./ and ., re-
spectively, facts computes the element wise factoria of a vector, and’ denotes a trans-
position. p, A and IN are row vectors of length m, where k is the number of parallel
Erlangian stages. t isthe data vector and can have arbitrary length 1.

Theresult of p. x (\."N)./ fractvec(IN — 1) isarow vector of length m:

( A P2 P AN )
(N —1)!7 (N, =1)!7 7777 (N, = 1)!

(52)

The last part of Equation 50, (exp((IN' — 1) * In(t)). * exp(—\' * t), produces ak x |

matrix

Ni-1 Ni—1 it Ni-1
el Tl e Mt

t{\bflefz\gtl té\bflef)\gtg ti\bflef)\gtl

...... (53)

After the matrix multiplication of Equation 52 and Equation 53 one obtains the follow-

ing row vector of length I:
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N N NT??,
( Ejglél%37t¥i_le_A1“ +—Ej§363;37tfi_16_A”1-+ . +—E%?Eémjjjtfi_le_kﬁla
1 — . 2 — . m .

N 2 Nm
pl)\l ! tlel —A1ta + pz)\Q tlelef)\QtQ + + pm)‘m tlelef/\th , (54)

A (N, — 1)1 TN, — 1)
A Ay m AN
7(]611_11) tNi—te=t +7(]€§_21)’ti“‘le‘k2“ + ... +7(]€ _ml),tfv“le”l“)

In Equation 51 f isthe negative sum of the logarthmized elements of the vector inner; it
istaken times (-1) so that Matlab’s minimization routine can be used for maximization.
By replacing the loops with the matrix form solution, the speed is increased by factor 8
to 10.

It is possible to reduce the number of function calls by providing the optimization

routine with a gradient of the function which is to maximize. For Equation 55, the

gradient is
0f(¢) of(t) of(t) af(t)
( apl""’apm’aAl"“’aAm) (55)
with
Of(t) B (N —=1) Y
S ey R (%0
and
oy __ gt (—tA)7 + N ) eV g (57)

oN  (N;—1)!
The negative sign again results from the fact the a minimization routine is used for
maximization, and q is the inner part of the deviation, i.e. the inner argument of the
logarithm:

m N;— 1
(Ait) it

q= sz ) x e~ N (58)
The computation of the derivativesisalso donein matrix from. Our routine allowsto fit

50



8 parale Erlang-K stagesto 50,000 data points within about 5 minutes.

5.4 Examining the Goodness of Fit

The remainder of this chapter concerns itself with the quality of our parallel Erlangian
approximation. In two examples the obtained fit of processes matching the statistics of

packet interarrival times and packet transmission durations are analyzed.

Exampleone: Transfer Times

The measurement of packet arrivals and their description as interval time processes is
explained in the next chapter and is of no relevance for now. So far it is only important
to know that the statistics of those interval lengths are to be determined.

To do so, the first step is to chose the structure of the parallel Erlang-K process.
Normally, no prior knowledge of an appropriate structure is available. In this case, an
Erlang-K process as shown in Figure 21 can be used: If one branch is not needed to
describe the underlying statistics of the random vector, the weight factor for this branch
issimply found to be zero, so no problem results from offering more parallel stagesthan
necessary.

The second step is to chose a starting point for the optimization problem. During
our experiments it turned out that, due to the robustness of the optimization procedure,
the algorithm converges for amost every starting point.

After the structure and the starting point have been chosen, no further user interac-
tion is required; the function which is to optimize is automatically generated and the
parameters are computed. Figure 22 shows the results of a fit: The Erlang CDF is
painted in red, approximating the CDF of the data (in blue) remarkably well; for com-
parison, asimple one moment fit is given in black. The first 6 moments are compared in

Table 4: The difference between the first momentsis smaller than 2.6 « 10~ percent, the
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1 15 2 25
Waiting time t in seconds

Figure 22: Erlangian Fit of Interarrival Times

Non-central moments Non-central moments
of measured data of exponential fit
m() =0.1517498 m() = 0.1517494
m(? = 0.2658355 m(? =0.2635139
m) =0.9767670 m() = 0.9723445
m*) = 4.4134095 m) = 45612237
m) = 21.829472 m(®) = 24517985
m(®) = 113.54659 m(®) = 146.20628

Table 4: Comparison: Moments of Data vs. Moments of Fit, Interarrival Times

difference between the second and the third moment is smaller than 0.9 and 0.5 percent,

respectively. The set of calculated parameters is summarized in Table 5.

Exampletwo: Interarrival Times
The second example is intended to show the robustness of the fitting procedure. The
same Erlang-K structure and the same starting point as in the previous example are used
to determine the statistics of transfer duration times.

For this dataset it turns out that no single exponential stages are needed to describe

the random process. The weightfactors p; and pgs converge to zero. The parameters of
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Structure of parallel branch

Transition rates

Weight factors

Erlang K with one stage
Erlang K with one stage
Erlang K with four stages
Erlang K with four stages
Erlang K with six stages
Erlang K with six stages

A1 = 1144.32934951
A2 = 58.9633706868
A3 = 67.6736889003
Ay = 21.0484523593
A5 = 6.55865724787
A¢ = 1.83856848483

py = 0.22255139784
P = 0.20445402521
p3 = 0.34693781019
pa = 0.16424534436
ps = 0.04485583223
ps = 0.01695559018

Table 5: Parameter of Erlangian Fit, Interarrival Times

thefit are givenin Table 6. The goodness of fit is visualized in Figure 23.

Structure of parallel branch Transition rates Weight factors
Erlang K with four stages A1 = 15.23759 p1; = 0.129225
Erlang K with four stages A9 = 55.35309 p2 = 0.701139
Erlang K with six stages A3 =5.627248 ps = 0.072976
Erlang K with six stages Ay = 1.130448 p4 = 0.096659

Table 6: Parameter of Erlangian Fit, Transfer Duration

4 5 6
Waiting time t in seconds

Figure 23: Erlangian Fit of Transfer Durations

The approximation again is very accurate. Both CDFs are hard to distinguish, and

the moments of the fit, given in Table 7, also match those of the data very precisely.
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Figure 24: Erlangian Fit of Transfer Durations, CCDF on Log Scale

Non-central moments
of measured data

Non-central moments
of exponential fit
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Table 7. Comparison: Moments of Data vs. Moments of Fit, Transfer Duration



6 Traffic Measurement

In the previous chapters two approaches have been stated making it possible to de-
scribe random time intervalswhich are characteristics for communication networks with
Markovian statistics. The data collection necessary to obtain those time intervalsisin-
troduced now: First, techniques to measure Internet traffic are summarized; after this
the tools used to conduct those measurements and the user group participating in this

survey is described. Finaly, the results of the measurement are given.

6.1 Internet Traffic Measurement Techniques

Three general techniques are used to measure Internet traffic: Server logs, client logs
and packet traces. All techniques have certain advantages and disadvantages which are

stated shortly.

6.1.1 Server logs

Server logs are easy to obtain: A Web server is set up to record times of all file requests,
together with file sizes and individual file transfer times. The obtained statistics can be
used to create awork load model for file servers, but no general model can be devel oped
since the statistics change significantly depending on the content of the Web server.
Server logs are used in [AW96], [Mog95].

A drawback isthat no single-user behavior can be obtained because access patterns
across multiple servers are not captured. Moreover protocol overheads are not included

in the statistics.
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6.1.2 Client logs

For Web traffic, client logs are obtained by using modified Internet browsers. They
can capture single user behaviour characterized by online session duration, number of
requested pages or request times and frequencies, and record file sizes and individual
file transfer times. Moreover it is possible to find statistics of document cashing. Client
logs are used in [CP95], [CBC95] and [CB95], for example.

A problem with client logs is that no source code widely used browsersis available
anymore, making it impossible to modify popular programs like Netscape or Microsoft
Internet Explorer. Moreover it is difficult to provide a large number of user with new

browsers.

6.1.3 Packet Traces

A third approach is to collect packet traces. This can be done either on a subnet which
carries HTTP traffic, or, similar to client logs, on individual computers. Typicaly a
tracefile consists of packet headers, sizes, addresses and timestampsfor all packets of a
specified type. An advantages of this method is that protocol overhead® and document
caching are already included in the statistics. It is possible to record al traffic which is
sent over the PC’s ethernet card, and by listening only to a certain port, for example port
80 for HTTP traffic or 21 for FTP traffic, packet traces for specific applications can be
obtained.

In alarge number of papers packet traces recorded on subnets [Bru97], [Den96],

[LPCE99], [CDIM91] or ondial in routers[Vic97], [FBC99] are used.

In thiswork, a packet-based approach was chosen to collect data. A trace recording tool

was installed on a number of individual clients, not necessarily in asingle subnet. This

13To be precise: The overhead of the higher level protocolsis included
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approach has several advantages. Without making the user change hisor her browser, as
it is necessary when using traditional client logs, it is possible to obtain per user statis-
tics. Moreover, the collected traces can capture activities on the IP layer, which is close
to the hardware interface modeled in the next chapters. The downside of this approach
isthat not 100 percent of the packets are captured when the processor utilization of the
client is high, and that the trace recording process may slow down the computer. This

issues are discussed in detail in [Deg00].

6.2 Toolsfor the Trace Record

As mentioned before, the aim was to collect traffic traces on individual clients. This
is possible with the packet capturing software tcpdump which was developed at the
University of Berkeley. Tcpdumpis a command-line tool for filtering and capturing
network traffic from protocols such as IP, ICMP*, ARP®, RARP', UDP!" and TCP. It
is possible to specify the protocols and ports of interest tcpdumpis supposed to listen
to, aswell asthe detail of information which is recorded.

An example for atypical program call istcpdump-n -tt ip and port 80 » dump.txt.
Unformatted timestamps (-tt) of all | P packets, incoming and outgoing, (ip), which carry
HTTPtraffic (port 80) arewritteninthelocal file dump.txt, including source and destina-
tion addresses (-n). A complete list of the available options and commands for tcpdump
isgiven in the Appendix.

The major drawback of tcpdumpis that it does not run under Microsoft operating
systems, excluding alarge number of potentia users from the traffic observations. This

problem was most recently addressed by Loris Degioanni, [Deg00], who introduced a

I nternet Control Message Protocol, [SPES]]
15Address Resolution Protocol, [PIug2)
16Reverse Address Resolution Protocols, [Plug2]
17User Datagram Protocol, [BLMM94]
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Windows port named windump which provides the same functionally and uses the same

commands as tcpdump

However, windump is still a command-line based tool; in order to make it easy to
use, a number of batch files for Windows 98, WinNT and Win2000 were written during
the research project which allow the user to start and stop the packet capturing process
with a single mouse click. Moreover the program’s installation is automated and the
user is asked to enter the following information for the completeness of the statistics
when the program is started the first time:

e age

e gender

e private, educational or professional use

e speed of Internet connection

e timezone

Windumpwas configured to record source and destination addresses, packet sizes,
and the arrival or departure times for al incoming and outgoing I P packets which carry
HTTP traffic. The timestamps are given with a resolution of 100 microseconds.

Since the traffic traces are saved on the local machines, it is necessary to transfer,
them to a central server. Thisis done automatically: When a new traffic measurement
is started, the recent log file is concatenated with the personal information, compressed
and given a unique name. For the file transfer the MS-DOS ftp client is used. The
commented scripts are provided in Appendix B.

On the central server a batch script is used to append the individual user statisticsto
adatabase which allows queries to obtain packet traces of a subset of users or separation
of incoming and outgoing packets. The database is used to generate files serving as

input to Matlab routines for further processing of the data.
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6.3 User Profile

In previous studies, traffic measurements were conducted on corporate or university
networks. One can assume that user behaviour in those surroundings differs from the
habits of private users for several reasons. The time for a browsing session as well as
the downloaded content is likely to be different. Thisis can be explained as a result of
different costsfor being online, and because it is not recommended to visit certain pages
during work. This motivated us to examine traffic traces which originate from private
surroundings rather than using existing measurements.

Windumptogether with the automated trace upload can be installed on individual
private computers, which makes it possible to obtain packet statistics for users of all
ages, in al surroundings, and after working hours. Thisisamajor advantage for service
providers with alarge number of private customers. Therefore our scripts together with
windumpmy be of interest for other researchersin thisfield.

Since the network which is modeled later works at 768 kbps, traffic traces captured
at Internet connections with similar speeds are of primary interest, so that assuming
similar user behaviour on the network under study and the trace generating network is
realistic. Two different types of network connections were available which fulfill the
bandwidth requirement: The 1 Mbps Internet access in the WPI dormitories, and DSL
connections operating at a maximum speed of 768 kbps.

During a period of two months, from beginning of February until the end of March,
30 userswith desired connection speeds, most of them students, were constantly record-

ing their traffic traces.
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6.4 Results

Trace records represent 30 users transferring 760 MB of data. The two hours with the
highest bandwidth demand, referred to as busy hours, were found to be those from 3 am
to 5 am. With a probability of 20 to 33 percent a user was online at least once during
this two hour period.

Since the behaviour of a network under highest realistic traffic loads is of primary
concern, the traces generated during busy hours were used to derive statistics for packet
interarrival times and packet sizes. The traces contain two million data points, which
is sufficient to obtain precise results for those short term characteristics; techniques to
find the interarrival times and to calculate transfer durations for packets on the network
under study are discussed in the next two chapters.

However, alarger number of users had been necessary to compare traffic patterns of
different user groups, or to find reliable statistics for changes of traffic demand during a
week. Moreover the time of the busy hour and the traffic intensity is likely to be biased
because the group of usersis not representative.

Nevertheless, windumptogether with the automated trace upload can be used to
obtain the necessary amount of data even for the long term statistics. Perhaps these
issues may be addressed in a future research project when more time for the packet

collection isavailable.
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7 TheOuter ON/OFF Model

In the remaining two chapters, the performance of a wireless network is evaluated by
employing the statistical tools which have been introduced in the previous part of the
thesis. For the performance analysis, the traffic originating from a single source is de-
scribed using two ON/OFF models, where the outer process modulates the inner one:
When the outer process is in its OFF state, no traffic is generated, representing a user
which isreading a previously downloaded document, for example. This state isreferred
to as active OFF - active because the user has at least once generated network traffic
during the measurement, OFF because he or she is not causing network traffic at the
moment. A user who is currently down- or uploading content with a browser is rep-
resented by the outer ON state, referred to as active ON. The traffic generated while
being in this state is inherently bursty and not sufficiently modeled as a simple Poisson
arrival process. For this reason, a second ON/OFF process, in the following called ac-
cess model, is introduced, modeling packet arrivals while being in the active ON state

in greater detail. The model isillustrated in Figure 25.

OFF to ON \
// N
\ / OFF to ON \
/aMrdownloadmg é\@

Actlve OFF w Active User \SF/z\ (Active ON) J
/ \ ON to OFF )%
\ ON t6 OFF 7777/

Figure 25: Transition Diagram Complete Model

The underlying statistics of the state transitions for the access model were obtained
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from traffic measurements. For the outer process, the collected traces were only suf-
ficient to derive first order statistics, not enough data was available to accurately fit
distributionsto it. However, reasonable estimates for the probability of being in the ac-
tive ON or active OFF state are obtained which can be used to find overall probabilities

when examining the access model.

7.1 State Probabilities of the Outer M odel

An active user is defined as a user who has at |east once generated network traffic during
ameasurement period. For measurements taken during the busiest two hours of the day,
the probability of a user to be categorized as active was found to lay within 25 and 33
percent. These numbers must be used with care; traffic traces spanning a longer time
period and capturing a more representative user group are necessary to obtain more
accurate results. However, the main emphasis lies on the evaluation of the access model
in Section 8. The outer ON/OFF model is basically intended to show that traffic which
is self-similar over a large time scale can be generated with a Markovian model. This

donein the following sections.

7.2 Generating Self-Similar Traffic

Referring to [LWTW93], [WTE97] and [Den96], ON/OFF models can be used to gen-
erate self-similar traffic when the time being in either state is described by long tailed

distributions. This statement is supported by the following experiment:
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A single traffic source is approximated using the Transition

model illustrated in Figure 26; network traffic isgen-

erated with continuous rate only while being in the

ON state, and transitions from ON to OFF and OFF
to ON are described by Pareto distributionswith o =

Transition

1.2 =5a=1.5p =60, respectively. The tail pa-
rameters are taken from [LWTW93]. Traffic from Figure 26: Simple Two State

100 identical and independent sources is superim- Model

posed. A resulting synthetic trace is given in Figure 27.
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Figure 27: Aggregation of Synthetic Traffic Trace

The simulation is written in Matlab with the source code given Appendix A.3; care

was taken that initial conditions do not have an influence on the measurement by ignor-

ing the first 10,000 transitions.

For comparison the same model but with exponentially distributed state transitions
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was set up. The exponential waiting times were chosen such that the throughput of a
single source is equal in both models.

The difference between the traffic pattern becomes apparent when the synthetic
traces are aggregated: When the underlying statistics are heavy tailed, illustrated in
Figure 27 (a) and (c), the aggregated traffic remains bursty but smooths out for expo-
nential holding times, given in Figure 27 (b) and (d). The corresponding variance-time

plot are shown in Figure 28 and Figure 29.
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Figure 28: Variance-Time Plot of Traffic Originating from Heavy Tailed Sources

For the long tailed model, the slope of the variance-time plot is found to be 5 =
0.233 using linear regression. Thisyieldsto a Hurst parameter of H = 1 — g = 0.88
which is the same result [LWTW93] obtained when working with the real traffic trace
characterized by the afore mentioned Pareto distributions. For the exponential model, H
isfound to be H = 0.52, which is close to the theoretical value of H = 0.5 for short

range dependent processes.
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Figure 29: Variance-Time Plot of Traffic Originating from Exponential Sources

The previous example shows that the "long tailed model” is capable of describing
self-similar characteristics of network traffic and the two-state exponential model is not.
The advantage of the exponential model isthat the traffic model can be defined by using
only Markovian statistics, leading to feasible computationsin performance analysis; the
sameistrue for Hyperexponentia holding times.

A question we want to answer now is whether self-similar network traffic can be
generated by using the Hyperexponential approximation as introduced in Section 4.2.
Therefore the Pareto distributions in the previous example are replaced by their 16-
stage Hyperexponential fit. The state transition diagram corresponding to Figure 26
with Hyperexponential approximationsisillustrated in Figure 30.

The degree of self-similarity of the synthetic traffic trace originating from the Hy-
perexponential model is again determined by a variance-time plot, shown in Figure 31.

As expected, the traffic is not truly self-similar and smooths out after a certain level
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Figure 31: Variance-Time Plot of Traffic Originating from Hyperexponential Sources
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of aggregation, reflecting the not truly long tailed underlying distributions. However,
for an aggregation level of up to 1000 (i.e. for up to 1000 independently distributed
sources) the trace shows self-similar characteristics. If the Hurst parameter is computed
for less than 1000 sources, it isfound to be H = 0.87 which isvery closeto its original
value of H = 0.88. When approximating long tailed distributions with a larger number
of exponential stages, the self-similarity and with it the burstyness of a trace can be
maintained for alarger number of sources.

From the last example one can conclude that extended models using standard tech-
niques are capable of describing network traffic even in the presence of self-similarity.
This result can be seen as an argument in favor of the opinion that it is not necessary to

rewrite the queueing theory for data networks as predicted in [PKC97].
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8 TheAccess M odel

Two ON/OFF processes are used to model traffic originating from a single source. In
the previous chapter the outer process, which modulates or, in other words, activates
the inner process, was introduced. The inner process is discussed in the following;
it models the channel requests in a simplified wireless network and is based on the
following assumptions which are valid for a system currently developed at Beamreach

Network Inc. described below:

e The number of access servers, i.e. the number channels which can be assigned

simultaneously is restricted.
e The channel assignment takes a deterministic time on the order of 3 msec.

e \When a mobile station asks for a channel, a random access channel similar to
those of an IMT-2000 compliant system as introduced in Section 2.6, but with a

larger number of orthogonal codes such that collisions of requests are negligible.

e Theoverall system bandwidth is assumed to be unrestricted, i.e. auser is blocked

only due to limitations of the channel assignment process.

In the following chapter, the access model is introduced, and its state transitions
are approximated using the parallel Erlang-K fitting method from Section 5. Having
done that, a Markovian state diagram is developed such that the access model can be
described in matrix form. With the matrix representation, blocking probabilities or the

utilization of the transmitter are derived.

8.1 A Detailed Description of the M odel

The access model consists of five states, named Transfer OFF, Access Request (AR),

Access, Wait and Transfer ON. Its state transition diagram is given in Figure 32.

68



ON to OFF [«

Wait

Transfer OFF Transfer ON

Pb
o O

Access

Figure 32: Inner Traffic Model

One can think that atoken circulatesin the state diagram: When a download begins,
thetoken isinserted in the transfer OFF state. After arandom time described by the OFF
to ON transition a packet or a group of packetsis ready to send and the token passesto
state AR, indicating that an access channel is requested. With probability P, no access
server isavailable and the token enters the Wait state, where it staysfor an exponentially
distributed random time until a new request is made, again with a blocking probability
of P,. The token leaves state AR to the Access state with 1 — P, the probability that a
server isavailable. The duration of assigning a channel is deterministic, so after a fixed
time the token passes to the Transmission state, indicating that data can be transferred
without prior scheduling. After arandom time defined by the ON to OFF transition, the
token enters the Transfer OFF state and the channel isreleased. The process starts again
when the next packet or group of packets is ready to be sent. For a complete model

description, the state transitions have to be determined, which is done now.

8.1.1 Determiningthe State Transitions

The exponential waiting time in case of blockage and the deterministic time until a
free access channel is assigned are given system parameter, whereas the ON to OFF
and OFF to ON transitions also depend on factors such as user behavior and file size
distributions. For these transitions, the underlying statistics are obtained using traffic

traces which were recorded on Internet connections with similar bandwidth constraints
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and pricing policies as present in the system under study. Therefore one can expect
similar user behavior resulting in approximately the same traffic pattern.

The traffic trace contains packet arrival times and sizes of individua sources; to
derive the statistics for the state transitions it is necessary to first find the time intervals
of being in the transmission ON and transmission OFF state if the recorded trace had
been a network load on the system under study. The trace contains per user packet
arrival times and packet sizes. With thisinformation it is possible to calculate the time
between the end of a transfer and the next access request, referred to as inter transfer
time T;4, and the time for being in the transfer state 7}, referred to as transfer time. For
this calculation it is necessary to take into account that, if possible, packets are grouped
together into larger units to reduce the number of channel assignment procedures. This

isdone using the following heuristic:

e When a packet becomes ready to send while no access channel is assigned, a
request for a channel is generated, independent of events in the future or in the

past.

e Packets which are generated while a channel is requested by, or assigned to the
packet generating station use the same channel, i.e. the system does not need to

alocate anew one.

o After apacket is sent and no further packet is already generated, the system stays
inthetransmission state for afixed timeto wait for an eventually generated packet.
We assume a additional waiting time of 30ms*®. If a packet is generated during

thiswaiting time, it is sent using the open channel.

In Figure 33 an example is provided illustrating the transmission process at a wireless

connection.

18The waiting time was a suggestion from Beamreach Networks Inc.
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Figure 33: Time Line of Packet Arrivals

At time T,,, asecond packet isto be
sent. Time T;, between the previous re-
|ease of the access channdl, T,.,, and the next request, 7,,., isreferred to asinter transfer
time.

L et’sconsider the case where anumber of other packets become ready to send during
the channel allocation, the actual sending process, or a short time after the transmission
of the first packets. These packets are sent using the assigned channel, therefore it is
not necessary to go to the access state again. In this case the duration being in the
transmission state 7, is determined by the sum of packet sizes.

The Matlab routine which is used to find the time intervals of agiven traffic trace is

givenin Appendix A .4.

8.2 Fitting Data to Erlang-K Distributions

Having obtained the intervals it is now possible to find probability distributions to de-
scribe the time spent in the Transfer ON and Transfer OFF state. However, it is not

possibleto accurately fit acommon distribution to the data. With Weibull, Pareto, Log-
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normal or exponential distributionsit is only possible to match the first one or two mo-
ments. On the other hand, using the Erlang-K approximation as introduced in Section 5
provides good results. The difference between the first moment islessthan 0.01 percent,
between the second moments less than 1 percent and between the third moments less
than 0.6 percent. The pdfs are approximated very precisely; as an example, two such

pdfs are given in Figure 34, with the data's pdf in blue, the Erlang-K fit in red.
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Figure 34: Erlangian Fit for Incoming Data on a 768 kbps Network: (a) Transmission
Duration; (b) Interarrival Times
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8.3 Markovian Description and Solutions for Steady State Proba-
bilities

It is desirable to use only exponential wait states when describing the transitions in

Figure 32. Doing so, it is possible to represent the access model with a transition ma-

trix and derive steady state probabilities by solving a matrix equation. Utilizing the

parallel Erlang-K fit for the Transmission OFF and Transmission ON times, the only

non-exponential waiting time is used to model the channel assignment, which is a de-

terministic process.
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Figure 35: Transition Diagram of Access Model

As mentioned in Section 2.1.1, deterministic processes can be approximated arbi-
trary closely by a single Erlang-K random process if the number of exponential stages
goesto infinity. 500 equal exponential waitstates are used to model the channel assign-
ment, therefore the time spent in the system with a confidence of 90 percent lies 2.5
percent around the mean.

Now the Markovian state transition diagram can be drawn: The exponential wait
states 1 until 6 correspond to the Transfer ON, states 9 until 13 represent Transfer OFF.
Blockage is modeled with states 7 and 8, the deterministic channel assignment is given

by 14 until 14+N. The model we used describesthe Transfer states with ahigher number
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Figure 36: Markovian State Transition Diagram of the Access Model

of exponentials. A nazn transition matrix P can be written down with the elements

Aipij 1F# ]

—Ai i=]

qij — (59)

asintroduced in Section 2.3. A Matlab routine is used to set up P; the matrix contains
about 260,000 elements, mostly due to the approximation of the deterministic part, and
depends on the structure of the parallel Erlang-K approximation.

The steady state solution for the probability is obtained by solving

1 = 1 (60)

0" = 7Q, (61)
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for 7. With the Matlab implementation given in Appendix A.4, thisis done in less
than 10 seconds. Knowing which exponential state corresponds to which state in the
non Markovian access model in Figure 32, the steady state probabilities of being in the
Transfer OFF, Transfer ON, Access and Wait state, can be obtained.

8.4 Blocking Probabilitiesdueto Restrictions of the Access Server

So far a single user was modeled independently from other sources. This assumption
no longer holds for a large number of usersin the system: The access scheme can only
process up to N, channel requests at the same time; if more requests occur, they are
blocked. Therefore the probability of blockage, P, i.e. the probability that more than
N, users request a channel within a time slot, depends on the total number of users.
The computation of P, isdiscussed in the following: First it is shown how to compute
P, under the condition that N users are in the active ON state. Then the pdf is derived
relating the number of subscribed users NV, to the number of active ON users N, and
findly P, isgivenasafunction of N,. For now, bandwidth isof no concern and the only
restricted resource is the maximum number of channel requests the system can process
at atime. We show that the utilization of the access scheme is low, and following the
discussion in [ST99], we conclude that the self-similar property of network traffic is
of no significant importance for the evaluation of the blocking probability, at least for
the multiserver case, allowing us to use binomial distributions to compute the number
of users in the Transfer ON state. The utilization of the access scheme is shown in
Figure 37.

The probability P,....s for asingle active ON user to have a channel request being
processed at a given time can be found with the matrix Equation 61, assuming that
blocking probability P, is known. However, thisis not the case, but it is possible to

derive P, and P,....s recursively:
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Figure 37: Utilization of the Access Scheme for 2, 4 and 6 Access Servers

P,y = 0 ischosen for thefirst calculation of Py.cess. With P,...ss ad N usersin the
active ON state, each of them described by an individual access model, the probability
density function of n out of N users asking for a channel can be given by a binomial

distribution, given in Equation 62.
N N
f(n | (Paccess =Pp | Pb,O)) = pn(l - p) " (62)

With Equation 63 the probability that users ask for a channel when all IV, access servers

are busy can be derived:

Ne¢
p(Paccess | Pb,O) =1~ Z f(n | Paccess | Poo — p)a (63)

n=0

which is the probability of blocking P, ; under the condition P, . In the next step, P,
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isused to calculate P, » and so on. The recursive relation can be expressed as:

Pb,i = p(n|(Paccess | Pb,i—l))- (64)

Equation 64 converges fast. Usually, for = 10 the difference between P, ; and P, ;_; is

smaller than 0.01 percent, leading to a very good approximation of P;.

So far the probability of blocking P, for an individual source is expressed as a func-
tion of the number of usersin the active ON state. In the following, P, isrelated to the
number of subscribed users.

L ets assume that the access scheme should support NV, subscribed users. In the worst
case of all traffic logs collected during the two busiest hours of the day, less than 1/3 of
the subscribed users are working with their Internet connection in a way that they are
described by the outer ON/OFF model. From the NV, active users 25 to 37 percent were
found to be in the active ON state, indicating that they are currently down- or uploading
content from the Internet.

The probability of 37 percent for an active user to be in the active ON state was
chosen to compute the probability density function of the number of traffic sources
being described by the access model, f,(n), assuming a binomial distribution. The pdf
fa(n) isthen scaled by 3 so that it relates the number of subscribed users to the number

of users described by the access model.

Na
f(ntrans) — pgﬁrans/3(1 — pon)Na_ntrans/-?) (65)

Ntrans/3
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The blocking probability can be expressed as

pb(nsub) = Zp(nact|nsub)pb(nact) (66)

Nact

8.4.1 Probability of Blockage for Different Network Configurations

In the following, the influence of per user bandwidth and number of access servers on
the blocking probability will be examined. The underlying statistics were obtained from
the traffic trace described in Section 6.4, where the Matlab routine extract 2 is used
to find the durations of all ON and OFF periods, depending on the per user bandwidth
of the target network. For all transmission speeds of the up- and downlink which are
examined in the following, an individual parallel Erlang-K description of the transfer
ON and OFF state is derived. The mean of the exponentially distributed waiting timein
case of blockage is assumed to equal 30 msec, and the service time of an access server

is set to 3 milliseconds.

Figure 38 shows the blocking probability over the number of subscribed usersfor a
downlink with 768 kbps per user bandwidth. The systems are assumed to have only one
and two access servers.

If only one access request can be processed every 3 milliseconds, the blocking prob-
ability due to restrictions of the access server is bigger than P, = 0.1 for 900 subscribed
users and P, = 0.2 for 1500 users. Since in this case the low utilization assumption
does not hold, the graph only provides an estimate for the blocking probability in the
single server case. For al other network configurations the low utilization assumption
is satisfied.

In a system which can process two requests at once, P, is significantly smaller: For

900 subscribed users, P, = 0.025, increasing to P, = 0.06 for 1500 users. However,
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Figure 38: Downlink, One and Two Access Servers, 768 kbps

when aiming at 3000 customers, two access servers are not sufficient.

In Figure 39 the performance of systems with 2, 3, 4 and 6 servers is compared.
Again, the downlink with a per user bandwidth of 768 kbpsis evaluated.

If the target isto dimension the access scheme so that 3000 customers can be served
without degrading the performance due to restriction of the access scheme, it has to be
possible to process four to six channel requests at the same time. Figure 39 indicates
that with four access servers the probability of blocking is smaller than 4 percent, and

for six servers even less than 0.5 percent.

The utilization of the access scheme and with it the blocking probability also de-

pends on the speed of the network connection. Figure 40 indicates why:
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If two consecutive packets are generated .
A Packet Transmission

separated by a time which depends mostly on

the speed of a Web server, the time gap be- H H
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islarger if the connection speed ishigher. This
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Figure 40: Time Line of Packet Ar-

sary. Another important factor is that the user
behaviour depends on the avail abl e bandwidth.
However, the traffic logs were recorded on a rivels
network with about 500 to 800 kbps, so the statistics for the slower connections, espe-

cialy for the 192 kbps link, should be treated with care. Figure 41 relates the blocking

80



probability for different network speeds to the number subscribed users. The systemis

assumed to have three access servers.
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Figure 41: Three Access Servers, 768 kbps (black), 384 kbps (red), 192 kbps (blue),

The blocking probability is more than twice as high for the 768 kbps link compared
to the 384 kbps source. For the 192 kbps connection, P, is much lower than expected,
most likely because the traffic trace from which the statistics are obtained describes a
user behavior which is not realistic for such a slow connection: During a download a
user stays almost all the time in the transfer ON state, making new channel requests

unnecessary.

In the following the blocking probability of up- and downlink are compared. It
turns out that the uplink shows a higher probability of blockage, even for an asymmetric
network connection.

In Figure 42, P, isgiven for two different networks: One with a per user bandwidth

of 768 kbps and 384 kbps for down- and uplink, respectively, and one with a transmis-
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sion rate 384 kbps and 192 kbps. In both cases, three access servers are assumed for

either direction.
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Figure 42: Downlink 768 and 384 kbps; Uplink (red) 384 and 192 kbps, Three Access
Servers

Why isthe uplink more difficult to handle than the downlink? A possible explanation
is that, during a file download, the models for up- and downlink stay almost the same
time in the active ON state, and nearly the same number of packets are sent in either
direction. The difference is that the packets transferred to the client during a download
tend to be larger than the acknowledgment packets sent in the reverse direction. There-
fore the time gap between the end of one packet transmission and the beginning of the
next is likely to be larger, resulting in a higher number of channel releases and new
channel requests when the channel is only kept alive for a certain fixed time after the
last packet has been transmitted. This causes a higher utilization of the uplink access
servers and with it a higher probability of blocking.

A way to reduce the utilization of the access scheme could be to |eave the channel
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open for alonger time, waiting for packets to be sent. A welcome side effect would be
that latency is reduced because less time consuming channel requests were necessary.
However, by doing so, resources are wasted (e.g. spreading codes in a code division
multiple access system or frequency bands in a frequency division multiple access sys-

tem), resulting in alower available aver all bandwidth.

8.5 Latency dueto Restrictions of the Access Server

The time between the completed channel request and the first packet which can be sent
is referred to as latency. In our access model, latency is the sum of two time periods:
The first is a integer multiple of 3 milliseconds and reflects the random process of as-
signing a channel dependent on the blocking probability, the second is a constant system
dependent parameter describing the time it takes until the first packet can be sent after
the channel has been assigned, and assumed to be 10 msec.

When alarge number of access serversisused, achannel isamost always assigned
within 3 milliseconds: For a 768 kbps downlink, with a confidence of 1 — P, = 0.95 and
1 — P, = 0.97 the latency eguals 13 milliseconds on a system with four and six access
servers, respectively.

However, the blocking probability on a system which can only process one request
at atime can be as high as 42 percent for 3000 subscribed users. In thiscaseit islikely
that a channel request is blocked several times which makesit necessary to consider the
backoff strategy of the wireless network when computing the latency.

The system under study uses a binary exponential backoff scheme to reschedule
blocked requests. After a station’s " collision, a random number between 0 and 2/ — 1
is chosen until the packet is sent again. Assuming a constant blocking probability for

each dlot, apercentile plot of the latency for the single server caseis givenin Figure 43.
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Figure 43: Percentile Plot Latency, 1 access server, 768 kbps

8.6 Determining the Target System Throughput

The network model was designed to eval uate the performance of awireless access mech-
anism. No restrictions concerning the total system throughput ~ are taken into account.
Nevertheless is it possible to determine an approximation of the required bandwidth,
referred to as total target system throughput R, which is needed to support N, cus-
tomers. Thisis done using the probability density function of the number of usersnin
the Transfer ON state, p(n, N;). Assuming that every user in this state is continuously
transferring data at rate r, the probability that the total target system throughput R is

sufficient for IV, customers can be determined by the relation

Prob(y < R|Ns)= > rnp(n, Ny), (67)

<R
n.n<r



where sufficient means that no user is blocked due to bandwidth constraints of the sys-
tem.

Figure 44 shows the desired total target system throughput for 500, 1000 and 3000
subscribed users. The network is assumed to have 3 access servers, and the numbers are

derived for the downlink.
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Figure 44: Target Total System Throughput for N = 500, 1000, 3000 User with an
Individual Bandwidth of 384 kbps

With aprobability of 90 percent, atotal bandwidth of 12 Mbpsis sufficient to support
1000 customers. For the same confidence, 30.5 Mbps are needed for 3000 customers,
which is less then three times the requirement of a 1000 user pool. A reason for thisis
that the blocking probability isnot negligible for 3000 users, which makesit morelikely
that a user isin the waitstate and not transferring data.

Another remarkable result is that a small difference in the target total system band-
width leads to a significant change in system performance: Increasing the available

bandwidth by 22 percent from 25 to 30.5 Mbps increases the probability that the band-
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width is sufficient from 30 to 90 percent.

The required system throughput for different per user bandwidths is shown in Fig-
ure45. Again the downlink of asystem with 3 access serversis examined; theindividual

bandwidth is 384 kbps and 768 kbps, the total number of customersis 3000.
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Figure 45: Target Total System Throughput for N = 3000 User and an Individual Band-
width of 768 kbps and 384 kbps

Figure 45 indicates that the target total system throughput is similar for both link
bandwidths. With a probability of 90 percent, about 30.5 Mbps are necessary to support
384 kbps connections whereas 37 Mbps are needed to for link speeds of 768 kbps. One
may expect the difference in bandwidth demand to be almost twice as high for individual
link speeds of 768 kbps compared to the 384 kbps system. However, taking into account
that after a certain bandwidth threshold the user behavior for HTML browsing, and only
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HTML traffic is modeled, does not change significantly, the result is redlistic.

The plots provided in this chapter, with the main emphasis on the blocking prob-
abilities due to limitations of the access server, are intended to help dimensioning the
channel assignment facility in a wireless network. With the Matlab code provided in
the Appendix, plots for other network settings can be generated; it may be of interest to
examine the influence of different access server speeds or to evaluate the performance
of shared access serversfor up- and downlink. With minor modifications the model can
also be used to describe random access channel request in the IMT-2000 systemsUMTS
and CDMA2000.
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9 Summary and Conclusion

The self-similar behavior of network traffic has been supported by numerous experimen-
tal studies. This finding raised the fundamental question whether classical telegraphic
statistical modeling methods are still useful.

One contribution of thisthesisisto provide a positive answer to this question:

An algorithm for approximating long tailed probability distributions by Hyperexponen-
tialswas extended to become applicable for general Pareto random processes. Equipped
with this tool, an ON/OFF model with long tailed Pareto transition rates was approxi-
mated using a large number of exponential stages. We showed that the extended Hy-
perexponential model is capable of generating traffic which is self-similar over a large
time scale. The Hurst parameter calculated with a variance-time plot for an aggregation
level of 1000 indicates that the traffic’s degree of self-similarity of 32 state Hyperexpo-
nential model matches those of the long-tailed ON/OFF model very closely, at least for
up to 1000 traffic sources, showing that extended but conventional models can be used
to describe long range dependent traffic. This result gives strong support to the use of
classical telegraphic methods for analyzing network behavior.

The second contribution of this thesisis a new approach to obtain a Markovian de-
scription of arandom process. A Maximum Likelihood estimation is used to fit parallel
Erlang-K distributions to observed data.

Where the extended Hyperexponential fitting algorithm is intended to approximate
one probability distribution by another, the Erlang-K approach is used to directly de-
scribe observed data. This is a major advantage when data cannot be accurately de-
scribed by a conventional distribution function. It was shown that paralel Erlang-K
approximations provide very precise fits of both, the moments of a random process and

thetail behaviour of the underlying distribution.
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An application of the latter fitting technique is introduced in the last part of the the-
sis: A wireless CDMA network is modeled to derive the performance of its channel
assignment procedure by using parallel Erlang-K approximations to describe the pro-
cesses within the network. These processes, such as channel request interarrival times
and packet transmission durations, are obtained using measurements on real networks.
For this purpose the traffic analyzing tool windumpwas extended with scripts for an
automatic installation and measurement upload procedure, making it possible to collect
traffic traces on individual PCs using a cable or DSL Internet connection. Windumpto-
gether with our scripts may be of interest for researcher who want to examine network
traffic in a home environment.

Equipped with fitting procedure and network data, a Markovian description of the
model is presented, such that standard queueing theory techniques can be used to eval-
uate the network. Outcomes of the performance anaysis are estimations of blocking
probabilities and latencies due to restriction of the access server for different network

configurations.
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A Matlab Source code

A.1 Hyperexponential Fitting Routines
A.11 ip_on_web to hyp

The following routine fits a Hyperexponential to a Weibull distribution.
function X = ip_on_wei b_t o_hyp(PHAT)

%
% |l nput: PHAT is a vector with two el enents;

% the first element is the Paraneter a, the
% the second the paranmeter b of the Wi bull
% distribution as defined in the paper.

% Qutput: X is (step,2) matrix X = [p,landa] with

% contai ning the paranmeter of the Hyperex-
% ponential distribution; each row descri bes
% a exponential with weightfactor p_i and

% and wai tingtinme landa_i. steps is the

% order of approximtion.

Wei b_para_a = PHAT(1) % Prints out the paraneter
Wei b_para_b = PHAT(2) % of Weibull distribution
b =12 % wi dt h bet ween approxi mati on points
steps = 12 % Nunber of fitting points

%initialisation

| anda = zeros(steps,1); % | anda contains the waiting tinme of
% si ngl e exponenti al ;

p = zeros(steps,1); % p contains the weigthfactors of the
% exponenti al s

von = 0.0001; % Borders of draw ng

bi s = 200000;

ap(1) = 10000; % Bor ders of approxi nmation

ap(steps) = 0.001;
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first fit_point = ap(1) % first

last_fit_point = ap(steps) % and last fitting point
for i = 2:steps % seperation into intervals
ap(i) = ap(1) * ( exp( log( ap(steps)/ap(1l) ) / (1-steps)) )
AM-(1-1));
end

% obt ai ning first paranmeter |anda and p

lamda(l) = 1/ ((b-1)*ap(1))*log(getFi weib(ap(1), 1, anda, p, PHAT)/
getFi _wei b(b*ap(1), 1,1 anda, p, PHAT) ) ;

p(l) = getFi _weib(ap(1),1,!anda, p, PHAT) * exp(landa(1)*ap(1l));

%iteration to obtain parameter 2 till max-1
for i = 2:(steps-1)
landa(i)= 1/ ((b-1)*ap(i))*log((getFi _weib(ap(i),i,landa, p, PHAT)
/getFi _wei b((b*ap(i)),i,landa, p, PHAT)));

p(i) = getFi _weib(ap(i),i,landa, p, PHAT) * exp(landa(i)*ap(i));
end

% | ast paraneter p using that sumof all p nust sumto 1
p(steps) = 1;

for i = 1:(steps-1)
p(steps) = p(steps) - p(i);
end

% cal cul ation of |ast |anda
| anda(steps) =1/ap(steps) * log(p(steps) /
get Fi _wei b(ap(steps), steps, | anda, p, PHAT) ) ;

% Qutprint of original CDF and approximation

% speedi ng up the output routine by reducing the nunber of points
% for plotting

t = zeros(10000, 1); % Lengt h(t) = Nunber pf points when plotting
const = exp( -(log(von/bis)/length(t)));

for i = 1. length(t)
t(i) = bis * const”(-i);
end
hyp _ex = 0; % conputi ng val ues for approximation
for i = 1:steps
hyp_ex = hyp_ex + p(i)*exp(-(lanmda(i)*t));
end
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hyp_ex = 1-hyp_ex;

figure(3);
subplot(2,1,1); % Qut print of CDF
| ogl og(t, hyp_ex, b, t,(1- exp(- (t./PHAT(1))."PHAT(2) )), k:");
grid on;
title(’' COF of a Hyperexponential with 12 stages fit

to Weibull(1.12, 0.54)");
xlabel (" Time t in seconds; solid: Hyperexponential,

dotted: Weibull’);

yl abel (" Probability of t {on} <1t’);

subplot(2,1, 2); % outprint of relative errors of CDF

sem | ogx(t, abs(hyp_ex-((1-exp(-(t./PHAT(1))." PHAT(2))))) ./
(mn((l-exp(-(t./PHAT(1))."PHAT(2))), hyp_ex)))

grid on;

xlabel ("Time t in seconds’);

yl abel (' Rel ative error’);

figure(4);
subplot(2,1,1); % out print of CCDF
| oglog(t,1-hyp ex,’' b, t,1-(1l-exp(-(t./PHAT(1)).~PHAT(2))), k:");
grid on;
title(’ CCDOF of a Hyperexponential with 12 stages fit to

Wei bull (1.12, 0.54)");
xlabel (" Time t in seconds; solid: Hyperexponential, dotted:

Wei bul 17);

yl abel (" Probability of t {on} >1t");

subplot(2,1, 2); % outprint of relative errors of CCDF
sem | ogx(t, abs(1-hyp_ex-(1-(1-exp(-(t./PHAT(1)).~PHAT(2))))) ./
(eps+min(1-(1-exp(-(t./PHAT(1)).~PHAT(2))), 1-hyp_ex)))

grid on;
xlabel (" Time t in seconds’);
yl abel (' Rel ative error’);

| anda_hyp = | anda % out put of conputed paraneters
p_hyp = p

mom1 hp = p’ *(landa. *-1) % out put of noments
nmom 2 _hp = 2*p’ *(| anda. ~- 2)

nom 3_hp = 6*p’ *(Il anda. *- 3)

mm4 hp = 24*p’ *(1 anda. *- 4)
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nmom 5 hp = 120*p’ * (| anda. ~-5)

var_hp = nom 2 _hp-nom 1 hp"2
X = [p,landa]; % return val ues of Hyperexponenti al

function [ X] = getFi _weib(x,i,!|anbd, p, PHAT)

% used in the Feldmann fittingrourine

% conputes the difference between the inverse
% CDF of Weibull (a,b) and the Hyperexponenti al
%wth the paraneters given in the vectors

% | anbd and p

a = PHAT(1); % Wi bul | paraneter a
b = PHAT(2); % Wei bul | paraneter b
help = 0;

%in the for loop the value of x pluged in the

% al ready existing part of the Hyperexponential "CCDF" is conputed
for k = 1:(i-1)

help = help + p(k) * exp(-(x*lanbd(k)));

end

% The di fference between the Weibull CCDF and the Hyperexponenti al
% CCDF (or a part of the Hyperexponential if it is not already

% conpl etely devel oped) is conmputed and returned.

X = (exp(-((x./a).”b))) - help;

A.l2 ip_on_par_to hyp

The following routine fits a Hyperexponential to the shifted version of a Pareto distribution. The
time shift is reversed by concatenating the Hyperexponential and an Erlang-K distribution.
function X = ip_on_wei b_t o_hyp(PHAT)

%
% lnput: PHAT is a vector with two el enents;

% the first element is the Paraneter a, the
% the second the paraneter b of the Wi bull
% distribution as defined in the paper.

% Qutput: X is (step,2) matrix X = [p,landa] with

% containing the paraneter of the Hyperex-
% ponential distribution; each row descri bes
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% a exponential with weightfactor p_i and

% and wai tingtine landa_i. steps is the

% order of approximtion.

Wei b_para_a = PHAT(1) % Prints out the paraneter

Wei b_para_b = PHAT(2) % of Weibull distribution

b =12 % wi dt h bet ween approxi mati on points
steps = 12 % Nurber of fitting points

%initialisation

| anda = zeros(steps,1); % | anda contains the waiting time of
% si ngl e exponenti al ;

p = zeros(steps,1); % p contains the weigthfactors of the
% exponenti al s

von = 0.0001; % Borders of draw ng

bi s = 200000;

ap(1l) = 10000; % Borders of approximtion

ap(steps) = 0.001;

first_fit_point = ap(1) % first

last _fit _point = ap(steps) % and | ast fitting point

for i = 2:steps % seperation into intervals

ap(i) = ap(1) * ( exp( log( ap(steps)/ap(1l) ) / (1-steps)) )
~-(-1));
end

% obt ai ning first paranmeter |anda and p

lamda(l) = 1/ ((b-1)*ap(1))*log(getFi par(ap(l), 1, anda, p, PHAT)/
getFi _par(b*ap(1), 1,1 anda, p, PHAT) ) ;

p(l) = getFi _par(ap(1l), 1,1 anda, p, PHAT) * exp(landa(l)*ap(1));

%iteration to obtain paraneter 2 till max-1
for i = 2:(steps-1)
lamda(i)= 1/ ((b-1)*ap(i))*log((getFi par(ap(i),i,|anda, p, PHAT)
/getFi _par((b*ap(i)),i,landa, p, PHAT)));

p(i) = getFi _par(ap(i),i,landa, p, PHAT) * exp(landa(i)*ap(i));
end
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% | ast paraneter p using that sumof all p nust sumto 1
p(steps) = 1;

for i = 1:(steps-1)
p(steps) = p(steps) - p(i);
end

% cal cul ation of |ast |anda
| anda(steps) =1/ap(steps) * log(p(steps) /
get Fi _par (ap(steps), steps, | anda, p, PHAT)) ;

% Qutprint of original CDF and approxi mation

% speedi ng up the output routine by reducing the nunber of points
% for plotting

t = zeros(10000, 1); % Lengt h(t) = Nunber pf points when plotting
const = exp( -(log(von/bis)/length(t)));

for i = 1. length(t)
t(i) = bis * const”(-i);
end
hyp_ex = 0; % conputi ng val ues for approximation
for i = 1:.steps
hyp_ex = hyp_ex + p(i)*exp(-(lanmda(i)*t));
end

hyp_ex = 1-hyp_ex;
figure(l);

subplot(2,1,1); % outprint of CDF (original and approxi mati on)
| ogl og(t +PHAT(2), hyp_ex, b’ ,t,1 - (PHAT(2)./(t)).~(PHAT(1)), k:");
grid off;
title(’ COF of a Hyperexponential with 7 stages fit to flat part

of Parto(0.82, 0.0016)");
xlabel (" Time t in seconds; solid: Hyperexponential, dotted:

Pareto’);

yl abel (" Probability of t_{on} >1t");

subplot (2,1, 2); % outprint of relative errors of CDF

sem | ogx(t,abs( hyp_ex-(1-(PHAT(2)./(t+PHAT(2))).(PHAT(L1)))) ./
mn((eps+m n( 1- (PHAT(2)./t).~(PHAT(1)), hyp_ex))));

grid on;

xlabel ("Time t in seconds’);

yl abel (' Rel ative error’);
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figure(2); % out print of CCDF (original and approxi mation)

subplot(2,1,1);
| ogl og(t+PHAT(2), 1-hyp _ex, b’ ,t,1-(1-(PHAT(2)./(t))
-MPHAT(1)) ), " ki™);
grid off;
title(’ CCDOF of a Hyperexponential with 7 stages fit to flat part
of Parto(0.82, 0.0016)");
xlabel (" Time t in seconds; solid: Hyperexponential, dotted:
Pareto’);
yl abel (" Probability of t {on} <1t");

subplot(2,1, 2); % outprint of relative errors

sem | ogx(t, abs((21-hyp_ex)-(1-((1-(PHAT(2)./(t+PHAT(2)))."
(PHAT(1)))))./(eps+tm n(1-(1-(PHAT(2)./t).~(PHAT(1))), (1-hyp_ex))))
axi s([ 1070 1077 0 0.05])

grid on;

xl abel ("Time t in seconds’);

yl abel (' Rel ative error’);

| amda_hyp = | anda % out put of conput ed paraneters

p_hyp = p
X = [p,landa];

function [ X] = getFi_par(x,i,|and, p, PHAT)

% used in the Fel dmann fittingrourine

% conputes the difference between the inverse CDF of Pareto(a,k)
% and the Hyperexponential with the parameters given in the

% vectors lanmd and p a delay of PHAT(2) is necessary to obtain
% the correct approximation

a PHAT( 1) ;
b PHAT( 2) ;
help = 0;
for k
hel p
end

(i-1)
Ip + p(k) * exp(-(x*lanmd(k)));

1:
he

X = (b/(x+b)).~(a) - help; %1 - f(x) - help
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A.2 Maximum Likelihood Estimation
A21 ml_fit 05

The following routine computes the Maximum Likelihood estimation of the parameters for a
paralel Erlang-K description. The function objfun_05is called; it derives the numerical result
of Equation 46. After the fit is obtained, the first five moments of the original data and of the
Erlangian approximation are calcul ated.

function [ XX, kk, fname] = nm _fit_05

%fits data to parallel flexible structured Erlang K

k =12,2,3,5,5]; % order of parall el
% Erl ang K st ages
fname = "acc_in_trans_384 01'; % Nane specifying the File

% containing the tine intervalls
% whi ch are to describe

%initial guess for paraneter
x0 =[0.11.00.11.80.31.00.12.120.10.50.10.5];
k =[1,1,4,4,6, 6];

h = | oad(f nane); % | oads the sanpl e vector
constraints _vec = [1,0]; % defines the vecor whis is
for i = 2:1ength(k) % used to force that all p

% nmust sumup to 1
constraints_vec = [constraints_vec , [1,0]];
end

t =h.dT; % copyi ng the datastructure given in h in an array
options = optinset(options,’ GadChj’,’ on’);

%’ GradCbj’,’ on’: use the gradients as supplied in the objfun

% routine
% defines that all paraneter nust be bigger than 0

I b = zeros(1, 1 ength(x0))+2*eps;

% no upper bound (but still all p must sumto 1)

ub = [];

% Starts the optinization process
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[x,fval,exitflag,output] = fm ncon(’ objfun_05,x0,constraints_vec,
[1],[1.,[],1b,ub,[],options,h,k);

% print out the obained val ues:

fval

out put

% conmutati on of the 1st to 6th central nonent
fitt _nmean = 0;
i = 1;
for s = 1. (length(x)/2)
fitt_mean = fitt_mean + x(2*s-1)*factorial (i+k(s)-1) /
factorial (k(s)-1)*x(2*s)™(-i);

end
fitt_mean_1 = fitt_nmean
sanp_nmean = nmean(t)

fitt _nmean = 0;
i = 2;
for s = 1:(length(x)/2)
fitt_mean = fitt_nmean + x(2*s-1)*factorial (i+k(s)-1) /
factorial (k(s)-1)*x(2*s)™(-i);
end
fitt_mean_2 = fitt_nmean
sanmp_nm2 = var(t)+(mean(t)"2)

fitt _nmean = 0;
i = 3;
for s = 1:(length(x)/2)
fitt _mean = fitt_nmean + x(2*s-1)*factorial (i+k(s)-1) /
factorial (k(s)-1)*x(2*s)"(-i);
end
fitt_mean_3 = fitt_nean
samp_nmB = 1/ (length(t)-1)*ones(1,length(t))*((t."3)")

fitt_nmean = O;
i = 4
for s = 1:(length(x)/2)
fitt_mean = fitt_nmean + x(2*s-1)*factorial (i+k(s)-1) /
factorial (k(s)-1)*x(2*s)"(-i);
end
fitt _mean_ 4 = fitt_nean
sanp_m} = 1/ (length(t)-1)*ones(1,length(t))*((t."4)’")

fitt _nmean = 0;
i =5;
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for s = 1. (length(x)/2)
fitt_mean = fitt_mean + x(2*s-1)*factorial (i+k(s)-1) /
factorial (k(s)-1)*x(2*s)™(-i);
end
fitt_mean 5 = fitt_nmean
samp_nb = 1/ (length(t)-1)*ones(1,length(t))*((t."5)")

fitt _nmean = 0;
i = 6;
for s = 1. (length(x)/2)
fitt_mean = fitt_mean + x(2*s-1)*factorial (i+k(s)-1) /
factorial (k(s)-1)*x(2*s)™(-i);
end
fitt_mean_6 = fitt_nean
samp_nmb = 1/ (length(t)-1)*ones(1,length(t))*((t."6)")

XX
kk

% prints out the parameter of the fit

X;
k

A.2.2 objfun_05

In the following function, the numerical result of Equation 46 is derived.
function [f, G = objfun_05(x, h, k)

% x contains the paraneters wich are vari ed,;

% h contains the sanpl e vector

% k descri bes the nunber of exponential stages
% in each parallel exponential stage

al pha = x(1:2:end); % separating the paraneter given in X
%intp beta representing the transistion

beta = x(2:2:end); % rate and al pha representing the probability
t =h.dT ; % copyi ng the datastructure given in h in an array
md =0 ; %if the error massage | og of zero occures set nd

to eps

% conputes the evaluation of the function which is to nmaxin ze;
g = (((al pha. *(beta.k)./fact_vec(k-1))) * (exp((k-1)"*log(t)) .*
exp(-(beta)’*t)));
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% gi ves back the negative sumto that the mnimzation algorithm
% can be used for maxim sation
f = -(ones(1,1ength(q))*log(g+nd)’);

% conputes the gradiant at for the paraneter
% (variables in this case) for given h and k
G help = zeros(1,length(x));
for u= 1:1ength(k);
fg = (beta(u) k(u)/factorial (k(u)-1) .* t.~(k(u)-1)
*exp(-beta(u).*t))./(q+nd);
G hel p(2*u-1) = ones(1,length(fg))*fg ;
fg = ((al pha(u)/factorial (k(u)-1)) .* (k(u)*beta(u)*(k(u)-1)-t *
beta(u)”(k(u))) .*exp(-beta(u)*t) .* t.~(k(u)-1))./(g+nmd);
G _hel p(2*u) = ones(1,length(fg))*fg ;
end

G = -G_hel p; % gi ves back the negative value so that the

% m nim zation algorithmcan be used for
% maxi ni zati on

A.3 Outer ON/OFF Model

A.3.1 outer_on_off get para

The following routine computes the steady state probabilities for being in active OFF and active
ON state based on the traffic trace saved in the file masterincoming.ext.

function outer_on_off_get para

% separate user in the input streamare separated by (0,0)

%data is fit to longtailed distributions describing the data as
%a two state ON OFF nodel. For the outer ON OFF process

of fset = 12; % determ nes the maxi numti me
% bet ween to packets for which
% the user is still assunmed to
% be in the ON state

S1 = | oad(’ masterincom ng.ext’); %load S with incomng trace

nunmber _of _dat apoi nts_i nconm ng = | engt h(S1);

inlength = ones(1,length(Sl))* Si(:, 2); % print out sum of sizes
% of t he recorded packets

S2 = | oad(’ mast erout goi ng. ext’); %load S with outgoing trace
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nunmber _of _dat apoi nt s_out gong = | engt h(S2);
outength = ones(1,length(S2)) * S2(:,2) ;

S = S2; % CHOOSE | F PROCESSI NG | N OR OQUTGO NG DATA

duration = S(end, 1) - S(1,1); % print out duration of trace
% count er variables for |oops

k
i
j

n
=

% determ ng the duration of the ON and OFF peri ods:

while k < length(S(:,1)), % while the index k is snmaller than
%the length of the sanple vector S
if S(k,1l) == % do avoiding to record data
k = k+1 X % twi ce of the user changes
% = i-1;
% =1]-1;
end
hel p = S(k, 1); % remenber the possile start of an
% ON perid

while ((k<length(S(:,1))) & (S(k+1,1)-S(k,1) < offset) &
not (S(k+1,1) == 0))
k = k+1 ; % repeat until two consecutive packeges are
% seperated by a period | onger than of fset
% seconds or until end of string is reached
%erg = S(k+1,1)-S(k, 1)
end
k =k
S(k, 1);
if ((S(k+1)-S(k))>offset) %if two consecutive packeges are
% seperated by a period | onger than

kold = k; % of f set seconds find the OFF tine
%hile (((k+l)<length(S(:,1))) & (S(k+2,1)-S(k+1,1)>o0ffset))
% k = k+1; % si ngel packets within a 15 second
% interval are ignored (not ending

%end % the off period)
if S(k+1)-S(kold) < 900

toff(j) = S(k+1)-S(kol d); % of f tine appended to the

i =]+ % vector toff
end
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end

if ((S(k) - hel p)>0) %if there is nore than one packet
ton(i) = S(k) - help; %to send on periods are appended
i = i+1; %to the vector ton
end
k = k+1;
end
toff = toff(1: end) % the | ast on and off periods are
ton = ton(1:end) % not det ect ed

t_off_sum= sunm(toff);
t _on_sum = sun{(ton);

p_aktive =t _on_sum/ (t_off _sum+ t_on_sum

% Estinmating the paraneter
% Par aneter for ON period, Weibull distributed
[ PHAT on] = Weibfit(ton); %fit Wibull to inter transfer tine
% Print out results for Weibullfit:
Wei b_on_a = PHAT on(1)
Weib _on_b PHAT on(2)

% Par aneter for ON period, Pareto distributed

%toff normalized so that toff >= 1

%to use Jain s Max. Likelyhood nethod

% Maxi mum | i kel yhood estimate for paranmeter of Pareto distribution
ton_sum= 1log(ton/1) * ones(length(ton),1);

% Print out result of Paretofit

a Pareto_on = 1/ ( 1/length(ton) * ton_sum)

b _Pareto_on of f set

% Paraneter for OFF period, Pareto distributed

%toff normalized so that toff >= 1

%to use Jain's Max. Likelyhood nethod

% Maxi mum | i kel yhood estinmate for paranmeter of Pareto distribution
toff_sum= log(toff/offset) * ones(length(toff),1);

% Print out result of Paretofit

a_Pareto_off 1/ ( l/length(toff) * toff _sum)

b Pareto_off of f set
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A.3.2 on_off sim

Thisroutine produces avector representing the number of users active over time using atwo state

ON/OFF model with long tailed state durations; it can be emploied to simulate user behavior for

alarge number of sources.

The obtained vector is used in the routine aggreg to test for the degree of self-similarity.

function on_off_sim

user = 100;
gran = 1; % poi nts per second
t max = 200000; %tinme in seconds

t = zeros(1, (gran*tnmax));
counterh = 0;

told = 0;
ton = O;
toff = O;
for n = 1:user
n
told = 0O;

whi | e t ol d<t nax,
counterh = counterh +1;
dton = 5*(1/(1l-rand(1,1)))"(1/1.2);
dtoff = 60*(1/(1-rand(1,1)))"(1/1.5);
% on(counterh) = dton;
% of f (counterh) = dtoff;
a=round(tol d*gran) +1;
b=r ound( (t ol d+dt on)*gran);
if (told+dton) < tnax
t(a:b) =t(a:b) + 1;

el se
t(a:end) =t(a:end) + 1;
end
told = tol d+dt on+dt of f ;
end

end

t = t(100001: end);

save on_off _simnou 02 t;
% on = sum(ton)

% of f = sum(toff)
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counter = counterh

A.3.3 on_off hyper _sim

This routine produces a vector representing the number of users active over time using a two
state ON/OFF model with Hyperexponential distributed state durations; it can be emploied to
simulate user behavior for alarge number of sources. Uses the random generator hyperrnd.

The obtained vector is used in the routine aggreg to test for the degree of self-similarity.

function on_off _hyper_sim

user = 100;

gran = 1; % poi nts per second
%tinme in seconds

tmax = 200000:;

[phat] = ip_off _par_to hyp2 for vt([1.5,5],5);
pon=phat (:,1);
| ambdaon=phat (:, 2);

[phat] = ip_off _par_to _hyp2 for_vt([1.2,60], 60);
pof f =phat (:, 1);
| ambdaof f =phat (:, 2);

t = zeros(1, (gran*tnmax));
counterh = 0;

told = O;
ton = O;
toff = O;
for n = 1:user
n
told = 0;

whi | e t ol d<t max,
counterh = counterh +1;
dt on = hyperrnd(pon, | anbdaon) +5;
dtof f = hyperrnd(poff,|anbdaoff) +60;
a=round(tol d*gran) +1;
b=r ound( (t ol d+dt on) *gr an);
if (told+dton) < tmax
t(a:b) =t(a:b) + 1;
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el se
t(a:end) =t(a:end) + 1;
end
told = tol d+dt on+dt of f;
end
end

t = t(100001: end);

save on_off _hyper_simnou 02 t;
ton = sun(ton)

toff = sum(toff)

counter = counterh

function X = hyperrnd(p, | anbda);

p = cumsun(p);
P =0
hel p = rand;
for i=1:1ength(p),
i f hel p<p(i)
X = exprnd(1/1anmbda(i));
br eak;

end
end

A.3.4 var_time plot

The following routine produces a variance-time plot of the datavecor which is loaded.
function var_tinme_pl ot

| oad(’ on_of f _hyper _si mnou_02");
h.t;

= lengt h(t)

vart = var(t)

st = 10

for i = st:40 % 35:62 was good

h
t
It

i
m(i) round(107(0. 1*i));
tagg 0;
for j = L:floor(lt/n(i))
tagg(j) = sunm(t( (j-1)*nm(i)+1 : j*n(i)) )/ n(i);

end
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| engt h(tagg)
taggv(i) = logl0O(var(tagg)/vart);
end
%l ot (t (1:100: end))
figure(3);
pl ot (1 ogl0(m(st:end)), taggv(st:end),’ x')
% sline
grid on
title(’Variance-tine plot’);
x|l abel (" 1 oglO(m’);
yl abel (' 1 og1l0(Normal i zed vari ance)’);

A.4 Access Model

A.41 extract 2

In the following routine a measured traffic trace is used to generate a time series which can be

used to describe the access model. Moments of the data are computed.

function extract 2

S1 = | oad(’ masterincom ng.ext’); %load S with incom ng trace

 engt h(S1);

inlength = ones(1,length(S1)) * S1(:,2); %print out sum of sizes
% of recorded packets

S2 = | oad(’ mast erout goi ng. ext’); % load S with outgoing trace

| engt h(S2);
outength = ones(1,length(S2)) * S2(:, 2)

time = S1(1,1)-S1(end, 1);

% outl ength = ones(1,length(S)) * S(:,2) %print out sumof sizes
% of recorded packets

% throwing away | ast and first values (sonetimes not recorded

% correctly) and taking into account that \textit{tcpdunp} only gives
% out the length of the payl oad
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S1 =[ Si(2:length(S1)-1,1),
S2 = [ S2(2:1ength(S2)-1,1),
S = S1;

duration = S(end, 1) - S(1,1)

fixdelay = 0.012
bandw dth = 192000/ 8;

of fset = 10;
gap = 0.03
n =1;

k = 1;

while k <= (length(S)),

if not(S(k,1) == 0)
Tar(n) = S(k,1);
PLengt h(n) = S(k, 2);

dTs = fixdelay + PLength(n)/bandwi dt h;

T2(n) = Tar(n) + dTs;

k k+1;

%
%

S1(2:length(S1)-1,2)+24 ];
S2(2:1ength(S2)-1,2)+24 ];

% CHOOSE | F PROCESSI NG | N OR QUTGO NG DATA

; % print out duration of trace

%time | ost in access scheme
% aver age bandwi th of trans-
%mtter in byte per second

%time waited in send state
% f or anot her packet to come
% count er variables for |oops

% loop to find time for going
%fromoff to on (Tar)
%and fromONto OFF ( T2 )

% OFF to ON request when arrival
% occures while not sending

% the absolute tine of nth request
%is recorded in Tar(n)

% record packet length

% dTs is the time from
% access request till

% packet transfer of the
% first packet ends

% absolute tine of end of packet
%transfers is recorded in T2(n)
% | oop counter increased

% Packets are grouped together when generated whil e sending
% and within a certain tinme after sending:
while ((k<=(length(S)))& S(k, 1)<(T2(n)+ gap))& not (S(k, 1)==0)),

Tgap = O;
if S(k,1) > T2(n);

Tgap = S(k, 1) - T2(n);
end
PLengt h_new(n) = S(k, 2);
PLengt h(n)

% Tgap is time waited for
% a possible arrival

PLengt h( n) +PLengt h_new( n) ;
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dTs = PLengt h_new(n)/bandw dth + Tgap;

T2(n) = T2(n) + dTs; % abs tinme of end of transfer of
k = k+1; % actual packet is wittenin T2
end
n = n+l;
el se
k = k+1;
end

end

% Ti me delta between downl oad and next request:
for n =1 : (length(Tar)-1)

dT1l(n) = Tar(n+l) - T2(n);

end

% Ti me deltas for downl oad:
for n =1 : (length(T2))

dT2(n) = T2(n) - Tar(n) - fixdel ay;
end

%rint out first 30 conmputed tines:
downl oadti me_dT2 = dT2(1: 30)

i nterdownl oadti em dT1 = dT1(1: 30)
Packet | ength = PLengt h(1: 30)

% sorting out the times for not beeing in the active state:
n =1;
for i =2 : length(dTl)
if ((dT1(i) < offset) & (dT1(i) > 0))
%if a timegap greater than 15
% seconds occures the correspondi ng
% deltaT is excluded (it belongs to
% the inactive state)
dT1 _on(n) = dT1(i);
n = n+l ;
end
end

| engt h_data = | engt h(dT1_on)

dT = dT1_on;
save acc_in_inter__ 01 dT;

dT = dT2;
save acc_in_trans__ 01 dT;
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nmom1_inter = 1/(l ength(dT1_on)-1)*ones(1,|ength(dTl_on))*
((dT1_on.”1)")
var_inter = var(dT1l_on)
mom 2 inter = 1/ (length(dTl on)-1)*ones(1,|ength(dTl _on))*
((dT1l_on.”2)")
mom 3 inter = 1/ (length(dTl on)-1)*ones(1,|ength(dTl _on))*
((dT1_on.”3)")
mmd4 inter = 1/ (length(dTl on)-1)*ones(1,|ength(dTl _on))*
((dT1l_on.”4)")
nmom5_inter = 1/(l ength(dT1_on)-1)*ones(1,|ength(dT1l_on))*
((dT1_on.~5)")
nom 6_inter = 1/(l ength(dT1_on)-1)*ones(1,|ength(dTl_on))*
((dT1_on.”6) ")
nom7_inter = 1/(l ength(dT1_on)-1)*ones(1,|ength(dTl_on))*
((dT1l_on.~7)")
nom1 trans = 1/ (1 ength(dT2)-1)*ones(1,|ength(dT2))*((dT2./1)")
var_trans = var (dT2)
nmom 2_trans 1/ (I engt h(dT2)-1)*ones(1, | engt h(dT2))*((dT2.72)")
nmom 3 _trans 1/ (Il engt h(dT2)-1)*ones(1, 1 ength(dT2))*((dT2.73)")
nmom 4 _trans 1/ (length(dT2)-1)*ones(1, 1 ength(dT2))*((dT2.74)")
nom5 _trans 1/ (1 ength(dT2)-1)*ones(1, 1 ength(dT2))*((dT2.75)")
nmom 6_trans 1/ (Il ength(dT2)-1)*ones(1, 1 ength(dT2))*((dT2."6)")
nmom 7_trans 1/ (I engt h(dT2)-1)*ones(1, | ength(dT2))*((dT2.77)")

A.4.2 single on_prob 7

In the following function, the Markovian state transition matrix describing the access model is
set up and the steady state probabilities for a single user is derived, assuming that the blocking

probability is known.

function [p_act _off, p_acc_wait, p_acc, p_send] =
single_on_prob_7(p_bl ock, para_pro, |, para_int, k)

%1 represents the structure of the approxi mation of the Erlang K

% di stributon for of the packet sending tine. For exanple

%l =12,1,4] consists of 2 Erlang K=1, 1 Erlang K=2 and 4 Erl ang

% K=3

% wei ght factor and service rate of Erlang K approxi mation for packet
%interarrival tine

send_offset = 0.0025; % needed to transfer a mi ni munsi zed packet
% 24 byte, 384kbit/5
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% p_int contains the paraneter of the inter transfer tine
% appr oxi mati on of the downlink p_pro contains the paraneter
% of the download tine approximtion of the downlink

%waiting tine for exponentials of inter transferetine
| anda = para_int(2:2:1ength(para_int));

% wei ght factors for exponentials of inter transferetinme
p = para_int(1l:2:1length(para_int));

%waiting tinme for exponentials of transfer duration
mu = para_pro(2:2:1ength(para_pro));

% wei ght factors for exponentials of inter transferetinme
g = para_pro(1:2:1ength(para_pro));

Nd = 100; % nunber of states for Erlang-K for determnistic
% access schene

Nt = 100; % nunber of states for Erlang-K for threshold

Td = 0.012; %tinme "request access” to "begin of transfer™

Tt = 0.0016; % steep part of Pareto representing m ninmm
% packet size

delta = Nd/ Td; % conputation of service rates for

trash = Nt/ Tt; % exponential series

Pb = p_bl ock; % probability of bl ocking

Tb = 0.03; % bl ocking waiting tine

kb = sun(k) +2; % short hand for state representing
% t he bl ocki ng probability
Ns = Kb+Nd+Nt ; % short hand for state representing

%the | ast state of steep
% part downl oad time
Q = zeros(Ns+sun(l), Ns+sum(l)); %initialize transistion matrix

%witing the transistion probabilities in the Q Matri Xx:
% setting up the Erlangi en description of the interarrival tine
for j = 1.1 ength(k) % for Erlang K, K = 1..1ength(k)
for i = 1:(k(j)-1) %transistion to follow ng state
% wi thin one Erl angi an stage
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Qsum(k(1:(j-1)))+i,sum(k(1:(j-1)))+i+1) = landa(j);
end
%transistion fromlast exponential state
% of Erlangian stage to access servers
Qsum(k(1:(j))), kb-1) = landa(j);
end

% setting transistions to waitstate if access server bl ockes

Qsum( k) +1, kb) = Pb*del t a; % Pb is the probability that
Qsum k) +1, kb+1) = (1-Pb)*delta; % all servers are busy

Q sum( k) +2, sum( k) +1) = 1/ Th; %the waiting tine Tb is set
for i = 1. (Nd) % Exponentials representing the waiting

%time while in the access server
Q kb+i , kb+i +1) = delta;
end

for i = 1:(Nt-1) % Exponentials representing the steep
% part of the downl oadti ne
Q kb+Nd+i , kb+Nd+i +1) = trash;

end
for i = 1:1ength(l) % Transi stion to the fl at
% part of the downl oadtine
Q(Ns, Ns+sunm( I (1:(i-1)))+1) = trash*q(i);
end

for j = 1:1ength(l)
for i = 1:(1(j)-1)
Qsun(l (1:(j-1))) +Ns+i, sun(l (1: (j-1)))+Ns+i +1) = mu(j);
end
for m= 1:1ength(k)
QNs+sun(l (1:(j))), I+sun(k(1: (m1)))) = mu(j)*p(m;
end
end

% conputing the diagonal of the matrix; each row of the matrix
% nmust sumto one
help = Q * ones(Ns+sum(l), 1);
for i= 1:(Ns+sum(l))

Qi,i) = -help(i);
end

% Q has rank I ength(Q_colum)-1

QQ = [Q ;ones(1, Ns+sun(l))]; %the fact that the resulting
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% probability vector nmust sum

%to one is used; the equation

% pi _1+...pi_n =1 is appended
p_ss = QA [zeros(Ns+sun(l),1);1]; %solving the matrix equation

% printing out the results:
% probability for beeing in the...
p_act _off = ones(1, sun(k))*p_ss(1l:sumk)); %.. active off state

p_acc_wait = ones(1,1)*p_ss(kb:kb); % .. access waite state
% due to bl ocking

p_acc = ones(1, Nd)*p_ss(kb+1: kb+Nd)/ 4; % ... access state
% the prob. is devided by 3 because we are
%interested in only in the three four
% of the access process mliseconds
% probability for beeing in the transfer state
p_send = ones(1,sun(l))*p_ss(Ns+1: Ns+sun(l)) + ones(1, Nt) *
p_ss(kb+Nd+1: kb+Nd+Nt ) ;

A43 erg

In the following routine the steady state probabilities of being in the Transfer OFF, Transfer ON,

Wait and Access state are derived for different numbers of usersin the system.
function erg = find_bl ock
% det erm nes the bl ocking probability for the traffic nodel

% par anet er of Erl angi an approxi mati on

I =11,1,4,4,6,6]; % acc_in_trans_384_01:

k =12,2,4,4,6, 6]; % acc_in_inter_384 01:

nu_max = 500; % Nunber of users in active state
ns = 3; % Nunber of servers

erg_mat _act = zeros(nu_max, 5);
for nu = 1: nu_max

% lnitialization:
p_b =0.1; % start value for probability
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p_b alt =1, % start value for conparison of
% consecutive iterations
i =0; % iteration counter

%Wteration for finding p_b

while ((abs(p_b_alt - p_b) > p_b/1000) & (i < 20)),
% Repeat until desired precision is reached, i.e. until
% bl ocki ng probability in nodel equals the bl ocking
% probability for nu users and ns servers

i = i+1;

if i == 20
o=

end

p_b alt = p_b;

% for a blocking probablity p_b find the probability of
% beeing in the access server
[p_act _off, p_acc_wait, p_acc, p_send] =
acc_nod_prob(p_b,para _pro,l,para_int,k);

%_acc = p_acc % f or debuggi ng pur pose
% acc_wait = p_acc_wait

% find the bl ocking probability for nu users and ns servers
%wth the new probaility for beeing in the access server
p_b = acc_nod_conp_bl ock(p_acc, nu, ns);
% _b_over_all =p_b

end

p_act _off = p_act_off;
p_acc _wait = p_acc_wait;
p_acc = p_acc;

p_send = p_send

computing for_nu = nu

erg_mat _act(nu,1) = p_b;

erg _mat_act(nu,2) = p_acc_wait;
erg_mat _act (nu, 3) = p_send;
erg_mat_act(nu,4) = p_acc;
erg_mat _act (nu,5) = p_act_off;

end
erg = erg_mat _act;
save erg_act_out_3_ 192 test erg;
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B Dos Scriptsand Installation Routines

B.1 wpiwinnt.bat
This batch file for Win2000/NT starts the whole data collection and file processing.

Change into C:/Whpiipres directory
e Launch userinfo.exe if userinfo.exe exists to collect user information
e Call tokennt.bat, which defines variables used for file processing

e Call wpidumpnt.bat, which processes the data files and uploads them to the WPI-IP Re-
search FTP site

e Rename userinfo.exe to userid.exe, so that userinfo.exe only runs once
e Delete unnecessary ZIP filesto clean the directory

e Launch windump to collect | P Packets and save datainto atext file

@cho wpi wi n. bat

cd c:\wpiipres

i f exist userinfo.exe call userinfo.exe

call tokennt. bat

cal | wpi dunpnt. bat

renane useri nfo.exe userid. exe

del *.zip

del *.ZIP

Wi ndunmp -n -q -tt ip and port 80 >>%Conput er nane%aser nane% t xt

B.2 wpiwin98.bat

This batch file for Win98 starts the data collection and file processing.

Change into C:/Whpiipres directory

Launch userinfo.exe if userinfo.exe exists to collect user information

Call wpidump98.bat, which processes the data files and uploads them to the WPI-IP Re-
search FTP site

e Rename userinfo.exe to userid.exe, so that userinfo.exe only runs once
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e Deélete unnecessary ZIP filesto clean up the directory

e Launch windump to collect | P Packets and save datainto atext file

@cho Of

cd c:\wpiipres

i f exist userinfo.exe call userinfo.exe

cal |l wpi dunp98. bat

rename userinfo.exe userid. exe

del *.zip

Wi ndunmp -n -q -tt ip and port 80 >>data.txt

B.3 tokennt.bat
This batch file for Win2000/NT defines ID informationused in addidnt.bat.

e Set IP Addressinto variable "IP"
e Set system date into variable "StrDate"

Set system time into varible " StrTime"

Set both system time and username into variable

"UngStr” for use as Zip file name in wpidump.bat

Set both system date and time into variable "ntdate"

Add IP Address to user_id.txt

@cho of f

for /f "skip=5 tokens=1,2,12*" %A in ('ipconfig ) Do set WA=

for /f "tokens=2" %4 in ('Date /T ) Do set StrDate=%4

for /f "tokens=1,2* delinms=" WK in ("Tinme /T ) Do set StrTi me=%&K%A
set UngStr=%str Ti me%4Jser nane%

set ntdate=%st rDat e%®/&t r Ti me%

B.4 wpidumpnt.bat

This batch file for Win2000/NT gets text files ready for upload to the FTP site and cleans up the
directory.

e Call addidnt.bat, which adds ID information to the original datatext file
e Compressuser_id.txt fileinto aZIPfile. Variable "Username" isused asthe ZIPfile name
e Compress ntdata.txt into a ZIPfile. Variables "OP" and "UngStr" are used as the ZIP file

name
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e Delete unneeded text files"user_id.txt", "ntdata.txt" and "%computername%e%oUsernamedo.txt"
to clean up the directory

e Call transfer.bat, which opens the FTP connection and uploads the ZIPfiles.

@cho of f

cal | addi dnt. bat

pkzi p %Jser name% ZI P user _i d. t xt
pkzi p %JnqStr% zi p ntdata.txt

user id.txt
nt dat a. t xt
Y Conput er name%AJser nane% t xt

call transfer. bat

B.5 wpidump98.bat

This batch file for Win98 gets text files ready for upload to the FTP site and cleans up the
directory.

Call addid98.bat, which add ID information to the original datatext file

Compress user_id.txt fileinto a ZIP file. Variable "Uname" is used as the ZIP file name

Compress 98data.txt into aZIPfile. Variables"OP" and "D" are used as the ZIP file name

Delete unneeded text files "user_id.txt", "data.txt" and "98data.txt" to clean up the direc-
tory

e Run transfer.bat, which opens the FTP site and ready to upload ZIP Files

@cho Of

cal | addi d98. bat

pkzi p %uname% ZI P user _i d. t xt
pkzi p Y%op%d% zi p 98dat a. t xt

user id.txt
dat a. t xt
98dat a. t xt

call transfer. bat

B.6 wpiftp.bat

This batch file containing the FTP commands is used when transfer.bat opens the WPI-IP Re-
search FTP site.

e Open FTP session
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Enters FTP site username

Enters FTP site password

Changes to the public FTP directory

Set the upload mode to binary

Upload ZIPfiles

Close FTP session

user
ftp

mat t b@wi . edu

cd pub/mattb/incomn ng
bi n

mput *.zip

nmput *.ZIP

quit

B.7 transfer.bat

This batch file opens the WPI-IP-Research FTP site.
e Open the WPI-IP Research FTP site

e Call wpiftp.bat to get the commands for FTP site

user
ftp

mat t b@wi . edu

cd pub/mattb/incomn ng
bi n

mput *.zip

nmput *.ZIP

quit

117



References

[AW96]

[BLMM94]

[Brug7]

[CBYS]

[CBC95]

[CDIMO1]

[CL99]

[Cox84]

[CP95]

Martin Arlitt and Carey Williamson. Web server workload characterization: The
search for invariants. In ACM SIGMETRICS Conference on Measurement and Mod-

eling of Computer Systenhiladelphia, USA, May 1996.

T. Berners-Lee, L. Masinter, and M. McCahill. Uniform resource locators (url),

internet rfc 1738, December 1994.

Mah Bruce. An empirical model of HTTP network traffic. In Proceedings of the
IEEE INFOCOM 97 pages 592-600, Kobe, Japan, April 1997.

M. E. Crovellaand A. Bestravos. Explaining world wide web traffic self similarity.
Technical Report TR-95-015, Boston University, August 1995.

Carlos Cunha, Azer Bestravos, and Mark Crovella. Characteristics of www client

based traces. Bu-cs-95-010, Boston University, July 1995.

Ramon Caceres, Peter Danzig, Sugih Jamin, and Danny Mitzel. Characteristics
of wide area tcp/ip conversations. In ACM SIGCOMM ’91 Zurich, Switzerland,
September 1991. ACM SIGCOMM '91.

H. Choi and J. Limb. A behaviora model of web traffic. In International Confer-

ence of Networking Protocol (ICNP "99%eptember 1999.

D. R. Cox. Statistics: An Appraisalchapter Long Range Dependence: A Review,
pages 55-74. |owa State University Press, 1984.

Lara Catledge and James Pitkow. Characterizing browsing strategies in the world-
wide web. In Third International World Wide Web Conferend@armstadt, Ger-
many, April 1995. Third International World Wide Web Conference.

118



[Deg0a]

[Deng6]

[dP95]

[FBC99]

[FHO8]

[FW97]

[GCMMO1]

[GW94]

[HDLW95]

[HL96]

Loris Degioanni. Development of an Architecture for Packet Capture and Network
Traffic Analysis PhD thesis, Politecnico di Torino Facolta di Ingegneria, Corso di

Laurea in Ingegneria Informatica, March 2000.

S. Deng. Empirical model of WWW arrivals at access link. In Proceedings of ICC
1996.

R. de Prony. Essai experimentale et analytique. pages 2426, 1795. Ecole Poly-

technique.

J. Férber, S. Bodamer, and J. Chrazinski. Stetistical evaluation and modelling of
internet dial-up traffic. In SPIE’s International Symposium on Voice, Video and

Datacommunicationsl999.

James J. Filliben and Alan Heckert. Engineering Statistics Internet Handbgok

volume 1. http://www.itl.nist.gov/div898/handbook/index.htm, 1998.

Anja Feldmann and Wars Whitt. Fitting mixtures of exponentials to long-tail dis-
tributions to analyze network performance. In INFOCOM Kobe |lEEE INFOCOM,

April 1997.

M. Garetto, R. Lo Cigno, M. Meo, and M. Ajmone Marsan. A detailed and accurate

closed gueueing network model for many interacting TCP flows. Infocom, 2001.

M. Garrett and W. Willinger. Analysis, modeling and generation of self similar vbr
video traffic. pages 269-280. ACM SIGCOMM ’ 94, 1994.

C. Huang, M. Devetsikiatis, |. Lambadaris, and D. Wilson. Modeling and simula-
tion of self-similar variable bit rate compressed video: A unified approach. pages
114-125. ACM SIGCOMM ’95, 1995.

D. P Heyman and T. V. Laksman. What are the implications of long-range depen-
dence for vbr-video traffic engineering. Number 4 in 3, pages 301-17. |[EEE Trans.

Networking, June 1996.

119



[INs97]

[Jai91]

[LPCE9Q]

[LS98]

European Telecommunications Standards Institute. Universal mobile telecommu-
nications system (umts), tr 101 146 v3.0.0. Technical report, European Telecom-

munications Standards | nstitute, December 1997.
Raj Jain. The Art of Computer Systems Performance Analy&fisey, 1991.

A. Reyes Lecuona, E. Gonzales Parda, E. Casilari, and A. Diaz Estrella. A page-
oriented WWW traffic model of wireless system simulations. In Proceedings of the

16th International Telegraffic Congredsdingurgh, United Kingdom, 1999.

G. Linand T. Suda. On the impact of long-range dependent traffic in dimensoning
atm network buffer. pages 1317-1324. |IEEE INFOCOM ’ 98, 1998.

[LWTW93] Will E. Leland, Walter Willinger, Murad S. Taqqu, and Daniel V. Wilson. On the

[LXP+95]

[Mog95]

[Pax93]

[PFo4]

[PKO2]

self-similar nature of ethernet traffic (extended version). pages 1-15. IEEE/ ACM

Transactions on Networking, September 1993.

LBL, Xerox, PARC, UCB, and USC/ISI. The network simulator - ns-2.

http://www.isi.edu/nsnam/ns/, 1995.

Jeffrey Mogul. The case for persistent-connection http. In ACM SIGCOMM 95
Cambridge, USA, August 1995. ACM SIGCOMM ' 95.

Vern Paxson. Empirically-derived analytic models of wide-area tcp connections,

June 1993.

V. Paxon and S. Floyd. Wide area traffic: The failure of poisson modeling. pages
257-268. ACE SIGCOMM '94, 1994.

Kaveh Pahlavan and Prashant Krishnamurthy. Principles of Wireless Networks - A

Unified Approachvolume 1. Prentice Hall PTR, 1 edition, 2002.

120



[PKC97]  Kihong Park, Gitae Kim, and Mark Crovella. On the effect of traffic self-similarity
on network performance. Technical report, Pride University, Department of Com-

puter Science, 1997.

[Plu82] David C. Plummer. An ethernet address resolution protocol, internet rfc 826.
November 1982.

[RE96] Bong K. Ryun and Anwar Elwaid. The importance of long-range dependence of
vbr video traffic in atm traffic engineering: Myths and realities. SIGCOMM ' 96,
1996.

[Rob0Q] Thomas G. Robertazzi. Computer Networks and Systems: Queueing Theory and

Performance EvaluatianSpringer Verlag, 3 edition, 2000.

[SPE81] DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION. Internet control

message protocol , internet rfc 792, September 1981.

[ST99] Zafer Sahinoglu and Sirin Takinay. On multimedia networks. Self-similar traf-
fic and network performance. Number 37, pages 48-52. |IEEE Communications
Magazin, January 1999.

[TTW95] M. S. Tagqu, V. Teverovsky, and W. Willinger. Estimators for long range depen-

dence: Anempirical study. In Fractals number 4 in 3, pages 785798, 1995.

[Vic97] N. Vicari. Measurement and modeling of WWW-sessions. Technical Report 184,

University of Wirzburg, 1997.

[WTE97] Walter Willinger, Murad S. Tagqu, and Ashok Erramli. A bibliographical guide
to self-similar traffic and performance modeling for modern high speed networks,
1997.

[WTSW9I5] W. Willinger, M. Tagqu, R. Sherman, and D. Wilson. Self-similarity through high
variability: Statistical analysis of ethernet lan traffic at the source level. ACM
SIGCOMM 95, 1995.

121



