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Abstract

Elicitation of answers for sensitive questions is a delicate issue, and even questions of

basic demographics (e.g., age, race, sex) can be offensive to some people. In sample sur-

veys with sensitive questions, randomized response techniques have a huge advantage in

estimating population quantities (e.g., proportion of people cheating on their tax returns)

because they can reduce the bias caused by non-response or untruthful response (mea-

surement error). Using hierarchical Bayesian models, we implement multiple sensitive

questions into the simple unrelated question design for small areas (or clusters).

Most of the work on the unrelated question design rely on large sample sizes to get ad-

missible estimates and there are limited discussions about applications on data from small

areas. Bayesian methods work well because they allow pooling of data from desperate

(limited data) areas and they can utilize prior information. In addition, few discussions

have been made exploring the benefits of a combined design involving multiple items

(e.g., two sensitive questions) under the Bayesian paradigm. Therefore, in our study,

given binary response data from two or more sensitive questions from many small areas,

we use a hierarchical Dirichlet-multinomial model to estimate the sensitive proportions.

A blocked Gibbs sampler is used to sample the joint posterior density and the posterior

distributions of finite population proportions can be obtained. We apply our method to

college cheating data, obtained from our students at WPI with permission from IRB.

We also use a simulation study to validate our method, and we investigate the effects

on posterior inference of increasing the number of areas (clusters) and the correlation

between the sensitive items.

When there is a large number of areas, our procedure is computationally intensive.

Also, the Dirichlet distribution gives negative correlated probabilities and this is inflexible.

Therefore, to make our procedure more useful, we propose a generalized mixed effects

model which will set free the constraint of the Dirichlet parameters that must add up



to unity. Then based on the new parameter setting, we are able to either use a full

Gibbs sampler or an integrated nested normal approximation to make posterior inference

about the finite population proportions of students cheating in different courses. This

alternative method allows for much faster computing and many more areas (courses).

This model has much fewer parameters, and therefore, there are gains in precision when

the finite population proportions are estimated. It also permits incorporating covariates,

when available, in a straightforward manner.

Finally, we propose that our randomized response procedure can be used to provide

masked public-used data, that is an important activity for many government agencies,

where although other procedures are used, the randomized response procedure was never

attempted for privacy protection of released data.
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Chapter 1

Introduction

In this chapter, we give an overview of the randomized response techniques together with

some extensions of their Bayesian solutions, and some extensions for multiple sensitive

items. In addition, we introduce the college cheating data that we will be using through

out the dissertation. Finally a dissertation plan is presented.

1.1 Overview of the Randomized Response Technique

In survey sampling, a curious and problematic issue to consider is the collection of in-

formation about sensitive questions like habitual tax evasion, drunken driving, gambling,

consuming drugs, etc. However, for these sensitive and stigmatizing items, a respon-

dent has great tendency to refuse to answer, or answer untruthfully because of privacy

protection. Accordingly, Warner (1965) gave a standard procedure for estimating the

proportion of people bearing the sensitive character A, on adopting a suitable random-

ization device. In Warner’s design, each individual is required to play a random game,

like flipping a coin, with the probability of getting heads, denoted as p. With the whole

procedure unobserved by the interviewer, the respondent chooses one of two questions

to answer according to the result of heads or tails. That is, with probability p, the re-

spondent will report the true response of the sensitive question A, and he/she will report
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the answer of the opposite question AC with the probability 1 − p. This randomized

response technique is also called the mirrored question design since the true response to

the sensitive question is masked by an opposite one.

In this way the respondents should be more comfortable to answer the question be-

cause the investigator can never know which question the respondents are answering.

When randomized response techniques are used, a respondent’s individual answer is not

of interest, rather inference for the population is wanted. Because the respondent does

not provide a direct answer to the sensitive question, his/her identity is protected while

the true answer to the sensitive question is elicited.

To illustrate this important randomized response technique, we consider for the fol-

lowing questions,

Question 1: I cheated on my income tax return last year, is it true? (A)

Question 2: I did not cheat on my income tax return last year, is it true? (AC)

Circle your response. [Yes, No]

Let πA represent the true probability of A in the population; p represent the probability of

selecting A; λ = pπA+(1−p)(1−πA) represent the proportion of the ‘yeses’; y represents

the total number of ‘yeses’ obtained from the sample of n respondents. Figure 1.1 shows

Warner’s mirrored question design.
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Figure 1.1: Warner’s Design

Under the assumption that these ‘yes’ and ‘no’ reports are made truthfully and are

random, we have

y ∼ Binomial{n, pπA + (1− p)(1− πA)}.

Therefore, the maximum likelihood estimator of πA is obtained by the solving

λ̂ = pπ̂A + (1− p)(1− π̂A),

to get

π̂A =
1

2p− 1
(λ̂+ p− 1), p 6= 1

2
, λ̂ =

y

n
. (1.1.1)

It is known that π̂A is an unbiased estimator of πA; see Warner (1965).

An important extension of the Warner’s mirrored method is the unrelated question

design by Greenberg, et al. (1969). Instead of the opposite question, an unrelated non-

sensitive (innocuous) question is asked. In this design, the true probability of ‘yes’ of the

unrelated characteristic is also unknown. For estimation, two samples are needed. For

the individual from each sample, the following two questions are asked,

9



Question 1: Have you ever cheated in any WPI final exam? (A)

Question 2: Do you like living in Massachusetts? (U)

Circle your response. [Yes, No]

Let πA be the true probability of ‘yes’ of A in the population and πU to be the true

probability of ‘yes’ U in the population. Because there are two unknown parameters,

two samples are needed. In the jth sample (j=1, 2), let pj denote the probability of

selecting the sensitive question and λj = pjπA + (1− pj)(1− πA) denote the probability

of ‘yeses’ collected from both questions; yj is the total number of ‘yeses’ obtained out of

nj respondents. The unrelated question design is shown in Figure 1.2.

Figure 1.2: Unrelated Question Design

Then we have

yj
ind∼ Binomial(nj, pjπA + (1− pj)(1− πA)), j = 1, 2,

10



the conditions for the log likelihood to get a maximum are

λ̂1 = p1π̂A + (1− p1)π̂U ,

λ̂2 = p2π̂A + (1− p2)π̂U .

By solving the set of equations above, one can get the maximum likelihood estimators,

π̂A =
λ̂1(1− p2)− λ̂2(1− p1)

p1 − p2

, λ̂j =
yj
nj
, p1 6= p2. (1.1.2)

Here p1 and p2 cannot be too close, otherwise the estimation is highly likely to exceed 1.

An optimal choice for the random mechanism probability is p1 in (0.1, 0.3) and p2 = 1−p1;

see Greenberg et al. (1969).

A design that is closely related to the unrelated question design is the following.

Because two samples are needed, we can run the unrelated question design on one sample,

and in the other sample only the nonsensitive question is asked. This design is more

efficient than the randomized designs applied to both samples. However, the problem

with this design is that the ‘nonsensitive’ question may be also sensitive to some people.

For example, the question “Were you born in Massachusetts?” may be sensitive to some

respondents. This leads naturally to optional design in which a respondent is given the

option to answer the ‘sensitive’ question if he/she is comfortable to do so (see Gupta,

Gupta and Singh, 2002 and Gupta, Javid and Supriti, 2010 for optional designs for

quantitative data).

Direct questioning exposes a respondent’s privacy which leads to biased estimates.

Any randomized response technique, which adds noise to the response, will be less efficient

than a direct questioning design because of the response burden. One cannot compromise

respondents’ privacy, but one can compromise respondents’ burden and efficiency. Be-

sides, it has been argued that socially desirable answers and refusals are expected when

sensitive questions are asked directly (e.g., see Tourangeau, Rips and Rasinski, 2000 and
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Tourangeau and Yan 2007). Therefore, as supported by many psychologists, sensitive

questions should not be asked directly.

We assume that respondents respond truthfully. It should be obvious that this as-

sumption is more easily attained under indirect questioning than the direct one. In direct

questioning, it is more likely that there will be nonresponse that may be nonignorable,

and we need to develop nonignorable nonresponse models (Nandram and Choi 2002, 2010)

to handle them. So on at least two fronts, indirect questioning is preferred.

There is also an important literature of various randomized response techniques. The

forced response design, introduced by Boruch (1971), is an extension of the mirrored

question design. Fox and Tracy (1986) developed a similar design based on this idea,

but using the results coming from two Bernoulli trials instead. The disguised design

(Kuk, 1990) is conducted the other way around, in terms of the way that the randomized

response (noise) is added. The respondents need to report the results from two Bernoulli

trials based on their answers to the sensitive questions. Blair, Imai, and Zhou (2015)

gave an excellent review paper on these four methods. Other nonrandomised designs like

crosswise and triangular designs (e.g. Tan et al., 2009) can be viewed as extensions of the

unrelated question design, which get rid of the random mechanism. See also Nandram

and Yu (2018a) for a Bayesian extension.

For continuous response, Greenberg et al. (1971) and Eriksson (1973) extended the

unrelated question model of Greenberg et al. (1969) to the case in which the response

is quantitative. Pollock and Bek (1976) described the additive/multiplicative models,

which involve the respondents adding/multiplying the answer to the sensitive question

by a random number from a known distribution. More recently, optional designs for

quantitative data has been discussed in Gupta, Gupta and Singh (2002) and Gupta,

Javid and Supriti (2010). It is worth mentioning here that these optional designs for

quantitative data have been extended to binary data (e.g., see Gupta et al., 2013 for the

unrelated question design).
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1.2 Bayesian Randomized Response Technique (RRT)

There are some concerns for the traditional method of getting the maximum likelihood

estimation of the proportion. First, direct estimates from solving the equation systems

cannot guarantee a reasonable solution between (0,1), and also large sample sizes are

needed to get an admissible estimate (e.g. Lee et al., 2013b). In the unrelated question

design, π̂A and π̂U can be highly correlated, reducing the correlation by increasing the

sample size will be costly. The design-based estimator may be practically biased in small

samples. More discussion about the individual Bayesian model is available in Nandram

and Yu (2017).

There are not many works within the Bayesian paradigm of randomized response

models. Nonetheless, attempts have been made on the Bayesian analysis of designs

using randomized response techniques. For example, Winkler and Franklin (1979) gave

an approximate Bayesian analysis of Warner’s mirrored design, O’Hagan (1987) derived

Bayesian linear estimators for the unrelated question design, and Oh (1994) used data

augmentation to introduce latent variables to Gibbs sampling of the mirrored design,

the unrelated question design and the two-stage designs with binary and polychotomous

responses. van den Hout and Klugkist (2009) proposed Bayesian inference that takes

into account assumptions with respect to non-compliance under simple random sampling.

Also, Tian, Yuen, Tang and Tan (2009) proposed Bayesian approaches to non-randomized

response models without using random mechanisms. Avetisyan and Fox (2012) used beta-

binomial and multinomial-Dirichlet models for empirical Bayes analysis and to a less

extent Bayesian analysis for a small sample from a single population. They considered

multiple items with multiple categories, but this latter work is not within the small area

context, although each person may be considered a small area, see details about the small

area estimation by Rao and Molina (2015). Most recently, Song and Kim (2017) gave a

Bayesian analysis of two unrelated questions with rare outcomes (i.e., Poisson modeling

rather Binomial modeling). Bayesian methods, with useful prior information, deserve

13



more attention because it is easy to obtain proper estimates. In addition, hierarchical

Bayesian models can be used to study data arising from sample surveys with randomized

responses.

In Nandram and Yu (2017, 2018a), binary data are collected from a single small area

using a version of the unrelated-question design, and the sensitive proportion is of interest.

With a random mechanism of probability pj for jth group of size nj, the Bayesian model

is built for each area independently (see Oh, 1994),

yj | π1, π2
ind∼ Binomial{nj, pjπ1 + (1− pj)π2},

where 0 ≤ yj ≤ nj, j = 1, . . . , g ≥ 2. Note that g does not have to be exactly two. With

a flat conjugate prior

π1
ind∼ Beta(1, 1) π2

ind∼ Beta(1, 1).

Then apply the same model repeatedly on ` areas will form the individual area model

(IAM). Obviously, the IAM does not borrow information across the areas. In fact, we

run a sensitivity analysis of the different choices of p1, p2 under different sample sizes, to

illustrate the fact that IAM will be very sensitive to the choice of the random mechanism

when sample sizes are small.

The execution of the randomized response technique requires a known random mech-

anism, which is p1 and p2. In the previous simulation section, for group j, we use pj as

the probability to answer the sensitive questions and (1− pj) to answer the nonsensitive

questions. A lot of studies on the different choices of p have been carried out for the

under the non-Bayesian model.
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In Table 1.1, we provide a Bayesian sensitivity study for π1 = 0.25 both on the different

choices of p1, p2 and the group sample size ` within each group. The sensitivity analysis

shows that when the sample size is reasonable large (` = 300, 400), the estimation is

not sensitive to most of the choices of p1 and p2, except for the combination of (0.3,0.7),

where the estimation is 0.177 and 0.220 respectively. However, if the sample size is not

large enough (especially below 100), certain combination choices of p1, p2 will influence

the estimation.

Table 1.1: Sensitivity analysis of π1 with respect to choices of p1, p2 and `.

`

p1 p2 25 50 100 200 300 400

0.1 0.7 .040.000 .021.015 .083.037 .202.051 .239.045 .243.039

0.1 0.8 .012.006 .053.027 .171.053 .243.044 .248.036 .250.031

0.1 0.9 .030.020 .121.050 .233.051 .248.037 .250.030 .248.026

0.2 0.7 .054.000 .011.006 .045.025 .170.052 .228.049 .243.043

0.2 0.8 .027.003 .015.011 .110.044 .231.047 .247.038 .248.033

0.2 0.9 .017.012 .086.038 .203.051 .247.037 .249.031 .249.026

0.3 0.7 .067.000 .025.003 .025.016 .089.040 .177.050 .220.049

0.3 0.8 .053.002 .013.009 .056.030 .174.049 .235.042 .245.035

0.3 0.9 .034.011 .058.030 .165.048 .231.038 .244.031 .248.027
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Table 1.2 provides a Bayesian sensitivity study for π2 = 0.75 on the different choices

of p1, p2 and the sample size ` within each group. The sensitivity analysis also shows that

when the sample size is reasonable large (` = 300, 400), the estimation is not sensitive

to the choices of p1 and p2. However, if the sample size is not large enough, certain

combination choices of p1, p2 will overestimate π2 more or less.

Table 1.2: Sensitivity analysis of π2 with respect to choices of p1, p2 and `.

`

p1 p2 25 50 100 200 300 400

0.1 0.7 .962.013 .936.031 .835.047 .767.038 .755.031 .753.027

0.1 0.8 .979.012 .919.037 .797.052 .755.037 .752.030 .750.026

0.1 0.9 .969.020 .878.049 .765.052 .753.037 .751.030 .750.026

0.2 0.7 .947.002 .987.008 .950.027 .818.049 .765.042 .755.035

0.2 0.8 .973.003 .987.011 .890.044 .766.047 .757.038 .754.033

0.2 0.9 .989.005 .942.028 .831.052 .758.045 .753.036 .752.031

0.3 0.7 .933.000 .975.003 .976.016 .911.040 .822.050 .781.049

0.3 0.8 .945.000 .990.007 .951.027 .835.052 .771.049 .756.043

0.3 0.9 .966.000 .983.012 .913.038 .802.051 .764.045 .753.039
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In Table 1.3, we keep π1 fixed at 0.25 and modify π2 from 0.1 to 0.9 to see the

estimation effect, under different random mechanisms and sample sizes. We can make a

similar conclusion that large sample will make the estimation for π1 not that sensible to

the values of π2. For extreme values like 0.1 and 0.9, there is still sensitivity, for example

under the random mechanism (p1, p2) = (0.3, 0.7), if π2 = 0.1 or 0.9, even the sample of

size 400 large cannot guarantee a very close estimation of 0.25. But it appears that the

sensitivity will wash out for even larger sample size.

Table 1.3: Sensitivity analysis of π1 with respect to choices of π2 and ` under different
random mechanisms.

`

π2 25 50 100 200 300 400

a. (p1, p2) = (0.2, 0.8)

0.1 .285.077 .298.061 .315.049 .303.040 .278.033 .264.029

0.25 .287.056 .238.046 .245.059 .250.043 .247.034 .251.030

0.5 .143.012 .078.034 .182.055 .243.045 .249.037 .249.032

0.75 .027.003 .015.011 .110.044 .231.047 .247.038 .248.033

0.9 .005.003 .021.014 .083.035 .174.041 .201.035 .216.032

b. (p1, p2) = (0.3, 0.7)

0.1 .335.082 .283.059 .294.044 .323.038 .324.035 .313.033

0.25 .358.044 .258.042 .248.034 .255.058 .248.049 .248.042

0.5 .212.003 .141.009 .075.032 .165.055 .220.053 .243.046

0.75 .067.000 .025.003 .025.016 .089.040 .177.050 .220.049

0.9 .022.002 .011.004 .034.017 .088.034 .147.038 .168.035

When sample sizes are small, IAM is apparently not applicable, thus we come up with

a small area model (SAM) instead in order to combine information across the areas. In

Nandram and Yu (2018b), a hierarchical Bayesian model is used to capture the variation
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in the observed binomial counts from the clusters within the small areas and to estimate

the sensitive proportions for all areas. The SAM is

yij | πi1, πi2
ind∼ Binomial{nij, pijπi1 +(1−pij)πi2}, i = 1, . . . , `, j = 1, . . . , gi ≥ 2, (1.2.1)

πi1|µ1, τ
ind∼ Beta(µ1τ, (1− µ1)τ) πi2|µ2, τ

ind∼ Beta(µ2τ, (1− µ2)τ), i = 1, . . . , `,

π(µ1, µ2, τ) =
1

(1 + τ)2
, 0 < µ1, µ2 < 1, τ > 0.

The subscription i = 1, . . . , ` is added to indicate the corresponding parameters from the

ith area. Using Bayes’ theorem, we have the joint posterior density,

π(π
˜

1, π
˜

2, µ1, µ2, τ1, τ2 | y
˜
) ∝

∏̀
i=1

[
gi∏
j=1

{pijπi1 + (1− pij)πi2}yij{pij(1− πi1) + (1− pij)(1− πi2)}nij−yij
]

× 1

(1 + τ1)2

1

(1 + τ2)2

∏̀
i=1

πµ1τ1−1
i1 (1− πi1)(1−µ1)τ1−1

B(µ1τ1, (1− µ1)τ1)

πµ2τ2−1
i2 (1− πi2)(1−µ2)τ2−1

B(µ2τ2, (1− µ2)τ2)
. (1.2.2)

Latent variables zij and wij are introduced to deal with the difficulty involving the

additional term in (1.2.1); consequently a blocked Gibbs sampler is constructed for the

augmented joint posterior density,

π(z
˜
, w

˜
, π
˜

1, π
˜

2, µ1, µ2, τ1, τ2 | y
˜
) ∝

∏̀
i=1

[
gi∏
j=1

(
yij
zij

)
(pijπi1)zij{(1− pij)πi2}yij−zij

×
(
nij − yij
ωij

)
{pij(1− πi1)}wij{(1− pij)(1− πi2)}nij−yij−wij

]

× 1

(1 + τ1)2

1

(1 + τ2)2

∏̀
i=1

πµ1τ1−1
i1 (1− πi1)(1−µ1)τ1−1

B(µ1τ1, (1− µ1)τ1)

πµ2τ2−1
i2 (1− πi2)(1−µ2)τ2−1

B(µ2τ2, (1− µ2)τ2)
.

The basic scheme is to draw the latent variables from the conditional posterior distribution
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given all the other parameters. Then all the other parameters can be drawn as a whole

block from the conditional joint posterior given the latent variables. Nandram and Yu

(2018b) also demonstrated posterior propriety under noninformative priors for µ1 and µ2.

Theorem

The joint posterior density (1.2.2) is proper for any prior of the form π(µ1, µ2, τ1, τ2) ∝

{µ1(1− µ1)}−s1{µ2(1− µ2)}−s2π(τ1, τ2), where 0 ≤ s1, s2 < ` and π(τ1, τ2) is proper.

Proof

Let zi· =
∑gi

j=1 zij, wi· =
∑gi

j=1wij, ni· =
∑gi

j=1 nij and yi· =
∑gi

j=1 yij, i = 1, . . . , `.

Then, integrating out πi1 and πi2, we get

π(z
˜
, w

˜
, µ1, µ2, τ1, τ2 | y

˜
) ∝ {µ1(1− µ1)}−s1{µ2(1− µ2)}−s2 1

(1 + τ1)2

1

(1 + τ2)2

×
∏̀
i=1

gi∏
j=1

[(yij
zij

)(
nij−yij
wij

)(
nij

zij+wij

) (
nij

zij + wij

)
p
zij+wij
ij (1− pij)nij−zij−wij

]

×
∏̀
i=1

{
B(zi· + µ1τ1, wi· + (1− µ1)τ1)

B(µ1τ1, (1− µ1)τ1)

B(yi· − zi· + µ2τ2, ni· − yi· − wi· + (1− µ2)τ2)

B(µ2τ2, (1− µ2)τ2)

}
.

Under the double product, the first term is a hypergeometric probability and the second

term is a binomial probability, and so these terms are bounded uniformly in zij and wij.

Therefore,

π(z
˜
, w

˜
, µ1, µ2, τ1, τ2 | y

˜
) ≤ {µ1(1− µ1)}−s1{µ2(1− µ2)}−s2 1

(1 + τ1)2

1

(1 + τ2)2

×
∏̀
i=1

{
B(zi· + µ1τ1, wi· + (1− µ1)τ1)

B(µ1τ1, (1− µ1)τ1)

B(yi· − zi· + µ2τ2, ni· − yi· − wi· + (1− µ2)τ2)

B(µ2τ2, (1− µ2)τ2)

}
.

Assuming that zi· ≥ 1 and wi· ≥ 1, and yi· > zi· and ni· − yi· > wi·, it is easy to show

that

π(z
˜
, w

˜
, µ1, µ2, τ1, τ2 | y

˜
) ≤ 1

(1 + τ1)2

1

(1 + τ2)2
{µ1(1− µ1)}`−s1{µ2(1− µ2)}`−s2 .
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Therefore, any improper prior on µ1 and µ2 of the form, π(µ1, µ2) ∝ {µ1(1−µ1)}−s1{µ2(1−

µ2)}−s2 , where s1, s2 ≤ `, works, and because the zi· and wi· are bounded (finite ranges),

π(τ1, τ2 | y
˜
) ≤ 1

(1 + τ1)2

1

(1 + τ2)2

is proper and the joint posterior density is proper.

Nandram and Yu (2018b) performed two examples, one on college cheating and the

other, a simulation study, to show significant reductions in the posterior standard de-

viations of the sensitive proportions under the small-area model as compared to the

corresponding individual-area model (Nandram and Yu 2017, 2018a). The simulation

study also demonstrates that the estimates under the small-area model are closer to the

truth than for the corresponding estimates under the individual-area model. We are also

working on a new design that does not need specifications of the random mechanism pij.

Our objective is to extend this model to multiple sensitive items.

1.3 RRT for Multiple Sensitive Items

In many instances in reality, multiple sensitive questions are provided all together in a

survey, which leads to various work focusing on estimating the correlations or covariance

matrix between different attributes, see Bellhouse (1995). Edgell et al. (1986) provided

a further statistical efficiency study about the correlation. Kwan et al. (2010) used a

method-of-moments approach to estimate the covariance matrix of sensitive quantitative

attributes. A more recent paper of Chung et al. (2018) made causal inference among

the sensitive attributes. They showed that, based on two loss functions of the covariance

matrix estimators, their Bayesian RRT outperforms Kwan’s (2010). However, there are

limited discussions on how the correlation between the sensitive questions will influence

the estimation accuracy, especially for the small area data.

Randomized response techniques (RRT) currently proposed for the estimation of mul-

tiple sensitive items are based on repeated applications of the randomized response pro-
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cess (e.g., Barksdale, 1971; Clickner and Iglewicz, 1976), where the RRT is implemented

separately for each question pair. Tamhane (1981) has reviewed some of these proposed

repeated randomized response procedures and proposed a new technique called multiple

randomized response trials technique, which is based on the repeated Warner’s tech-

nique and Simmon’s technique earlier proposed by Barksdale (1971). However, Tamhane

(1981) finds that even though the use of repeated applications of RRT provide estimates

of joint proportions, they will be costly and result in lower degree of cooperation even

with only three or four repetitions of RRT. Truthfulness in responding may depend on

which questions were answered on previous trials (see Barksdale, 1971).

Further more, Clickner and Iglewicz (1976), demonstrated that the extension to item-

wise RRT procedures will increase the variance of the estimate of joint probability. Soeken

and Macready (1986) proposed a setwise RRT, which uses a single randomization across

sets of paired questions. They found that the estimated proportions of positive responses

to sensitive items are no more negatively biased under setwise RRT than those obtained

assuming itemwise RRT, though there was no further discussion about the correlation

effect. Actually the setwise RRT and itemwise RRT are two approaches that we will

refereed as the “combined model” and “separate question model” and compare under

the Bayesian scheme later in Chapter 2. However, we use different notifications as com-

bined model and separate question model instead through out the dissertation. Lee et al.

(2013a), have created crossed Warner’s design to get estimates of two sensitive propor-

tions, which is more efficient than applying basic Warner’s design twice on each one. Pal

(2017) also suggest a bootstrap technique in dealing with complex randomized response

surveys with two sensitive characters.

A natural extension of the unrelated question design to the multiple sensitive items is

to ask all at the same time. In this dissertation, with this multi-item unrelated question

design, an attempt is made to assess the correlation effect in estimating the marginal

proportion (proportion of a single sensitive attribute) under the Bayesian paradigm.
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1.4 College Cheating Data

Academic cheating is a serious problem in college. In the cheating proportion study, a

survey with direct questions will obviously tend to underestimate the sensitive proportion.

Some studies show that even when the conventional anonymous survey is conducted, the

under reporting still exists. Scheers and Dayton (1978) compared the cheating proportion

estimation from basic unrelated question design for single question with those from the

anonymous survey, indicating that the anonymous questionnaire is an inadequate data

collection device when a survey involves sensitive issue.

We will use the unrelated question design for multi-item sensitive questions to conduct

a real survey to study the college cheating problem through which we can make inference

about cheating proportions in the final exam and the proportions of the students with the

ambition of getting a high GPA between 3.5 to 4.0. These are the two sensitive features

that of interest, even though asking about students’ ambition to get a high GPA may not

be that sensitive compare to cheating, it could still be sensitive to some students. We

are also interested in the proportion of having both sensitive features (e.g. ‘yes’ in both

questions).

Therefore we proposed the following design for two sensitive questions. First, the sen-

sitive question are set as “Have you ever cheated in any WPI final exam?” and “Are you

very eager to get a GPA between 3.5 and 4.0?”. To pair up with the sensitive questions,

two unrelated questions are necessary so that the answers have the same dimension. In

our design, we use “Do you like living in Massachusetts?” and “Do you like snow during

winter?” as the nonsensitive questions.

The data are collected from students of 15 class sections at WPI, including both

undergraduate and graduate courses, with some sections from the same course. For each

section (area), the students are divided into two groups almost evenly. They are given a

die to generate the random number between 1 to 6, the first group of students will answer

the sensitive questions when they get 3, 4, 5, 6; otherwise they should answer the two

22



nonsensitive questions. For another group, they will answer the sensitive questions when

1, 2 come out, otherwise they go to the nonsensitive ones. In the last step, they need

to provide their answers in one of the following types (No, No), (No, Yes), (Yes, No),

(Yes, Yes). Since the survey still involves the sensitive topic, the data are collected under

the approval of university Internal Review Board of WPI. The questionnaire is carefully

designed under the help of professor Higgins, making the students feel comfortable to give

out the honest responses. Two types of the questionnaires (Type I and Type II) with a

different random mechanism are sent out to students evenly in each area, attached in the

end of this section.

Table 1.4 provides the counts data from 15 class sections, each section having two

sample groups. For example, in section 1, among the 14 students of first group, no one

gives answer of (No, No), 10 students give (Yes, No), 2 students give (Yes, No) and the

other 2 students give (Yes, Yes). Interest is on estimating various proportions of students

cheating in their final exams and the proportions of the students who are eager to get

high GPA between 3.5 to 4.0. Through out this dissertation, we will use this college

cheating dataset for different models. However, the counts data are very sparse.
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Declaration:	  This	  is	  a	  nonprofit	  survey	  designed	  to	  supply	  real	  data	  for	  a	  PhD	  dissertation	  at	  WPI.	  It	  is	  an	  
anonymous	  survey	  designed	  to	  protect	  your	  privacy.	  The	  researchers	  cannot	  know	  who	  submits	  answers	  
to	  which	  questions.	  The	  researchers	  will	  use	  the	  data	  to	  advance	  research	  on	  “survey	  methods”,	  not	  on	  
“student	  cheating”.	  
	  
	  
To	  begin	  with,	  please	  indicate	  your	  categories:	  	  	  
	  
�  Male.	  
�   Female.	  
�   Other.	  
�   Prefer	  not	  to	  answer.	  

�   I	  (or	  a	  family	  member)	  have	  worked	  on	  
an	  undergraduate	  degree	  from	  WPI.	  

�   I	  have	  an	  undergraduate	  degree	  	  
elsewhere.	  

	  
	  
Step	  1.	  Throw	  a	  die	  only	  once	  and	  make	  sure	  that	  the	  result	  is	  known	  to	  you,	  not	  the	  investigator.	  	  
	  
	  
	  
Step	  2.	  Based	  on	  the	  result	  above,	  
	  
If	  you	  get	  1	  or	  2,	  please	  go	  to	  the	  questions	  
below	  (School	  Questions)	  and	  keep	  your	  
answers	  in	  mind.	  	  Do	  not	  mark	  the	  answers	  
in	  this	  box.	  Please	  write	  your	  answers	  in	  Step	  
3.	  

If	  you	  get	  3,	  4,	  5,	  6,	  please	  go	  to	  the	  
questions	  below	  (Life	  Questions)	  and	  keep	  
your	  answers	  in	  mind.	  Do	  not	  mark	  the	  
answers	  in	  this	  box.	  Please	  write	  your	  
answers	  in	  Step	  3.	  
	  

School	  Questions:	  
	  

1.   Have	  you	  ever	  cheated	  in	  any	  WPI	  
final	  exam?	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Yes	  or	  No.	  
	  

2.   Are	  you	  very	  eager	  to	  get	  a	  GPA	  
between	  3.5	  and	  4.0?	  	  	  	  	  Yes	  or	  No.	  

	  

Life	  Questions:	  
	  

1.   Do	  you	  like	  living	  in	  Massachusetts?	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Yes	  or	  No.	  
	  

2.   Do	  you	  like	  snow	  during	  winter?	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Yes	  or	  No.	  

	  
	  (Note:	  The	  definition	  of	  cheating	  is	  based	  on	  the	  WPI	  academic	  dishonesty	  policy.	  DO	  NOT	  answer	  both	  
school	  and	  life	  questions.)	  
	  
	  
Step	  3.	  Now	  mark	  your	  answers	  by	  checking	  one	  of	  the	  boxes	  below.	  (For	  example,	  (No,	  Yes)	  means	  you	  
answer	  “No”	  to	  the	  1st	  question	  and	  “Yes”	  to	  the	  2nd	  question.)	  
	  
�   (No,	  No)	   �   (No,	  Yes)	   �   (Yes,	  No)	   �   (Yes,	  Yes)	  

	  

Questionnaire - Type I
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Declaration:	  This	  is	  a	  nonprofit	  survey	  designed	  to	  supply	  real	  data	  for	  a	  PhD	  dissertation	  at	  WPI.	  It	  is	  an	  
anonymous	  survey	  designed	  to	  protect	  your	  privacy.	  The	  researchers	  cannot	  know	  who	  submits	  answers	  
to	  which	  questions.	  The	  researchers	  will	  use	  the	  data	  to	  advance	  research	  on	  “survey	  methods”,	  not	  on	  
“student	  cheating”.	  
	  
	  
To	  begin	  with,	  please	  indicate	  your	  categories:	  	  	  
	  
�  Male.	  
�   Female.	  
�   Other.	  
�   Prefer	  not	  to	  answer.	  

�   I	  (or	  a	  family	  member)	  have	  worked	  on	  
an	  undergraduate	  degree	  from	  WPI.	  

�   I	  have	  an	  undergraduate	  degree	  	  
elsewhere.	  

	  
	  
Step	  1.	  Throw	  a	  die	  only	  once	  and	  make	  sure	  that	  the	  result	  is	  known	  to	  you,	  not	  the	  investigator.	  	  
	  
	  
	  
Step	  2.	  Based	  on	  the	  result	  above,	  
	  
If	  you	  get	  3,	  4,	  5,	  6,	  please	  go	  to	  the	  
questions	  below	  (School	  Questions)	  and	  
keep	  your	  answers	  in	  mind.	  	  Do	  not	  mark	  the	  
answers	  in	  this	  box.	  Please	  write	  your	  
answers	  in	  Step	  3.	  
	  

If	  you	  get	  1	  or	  2,	  please	  go	  to	  the	  questions	  
below	  (Life	  Questions)	  and	  keep	  your	  
answers	  in	  mind.	  Do	  not	  mark	  the	  answers	  in	  
this	  box.	  Please	  write	  your	  answers	  in	  Step	  3.	  

School	  Questions:	  
	  

1.   Have	  you	  ever	  cheated	  in	  any	  WPI	  
final	  exam?	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Yes	  or	  No.	  
	  

2.   Are	  you	  very	  eager	  to	  get	  a	  GPA	  
between	  3.5	  and	  4.0?	  	  	  	  	  Yes	  or	  No.	  

	  

Life	  Questions:	  
	  

1.   Do	  you	  like	  living	  in	  Massachusetts?	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Yes	  or	  No.	  
	  

2.   Do	  you	  like	  snow	  during	  winter?	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Yes	  or	  No.	  

	  
	  (Note:	  The	  definition	  of	  cheating	  is	  based	  on	  the	  WPI	  academic	  dishonesty	  policy.	  DO	  NOT	  answer	  both	  
school	  and	  life	  questions.)	  
	  
	  
Step	  3.	  Now	  mark	  your	  answers	  by	  checking	  one	  of	  the	  boxes	  below.	  (For	  example,	  (No,	  Yes)	  means	  you	  
answer	  “No”	  to	  the	  1st	  question	  and	  “Yes”	  to	  the	  2nd	  question.)	  
	  
�   (No,	  No)	   �   (No,	  Yes)	   �   (Yes,	  No)	   �   (Yes,	  Yes)	  

	  

Questionnaire - Type II
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Table 1.4: Counts data collected from the questionnaire of 15 class sections from WPI.

Section Group (No, No) (No, Yes) (Yes, No) (Yes, Yes)

1 1 0 10 2 2
2 1 3 4 5

2 1 0 5 1 0
2 1 2 1 2

3 1 3 5 0 5
2 0 7 1 3

4 1 1 3 0 6
2 1 3 1 4

5 1 0 4 0 0
2 0 3 1 0

6 1 1 5 1 0
2 2 2 1 2

7 1 0 6 0 2
2 0 2 0 5

8 1 1 6 2 2
2 1 2 2 5

9 1 2 6 0 1
2 3 1 1 4

10 1 2 8 0 1
2 0 4 4 5

11 1 1 0 1 4
2 0 3 2 1

12 1 2 5 2 3
2 4 2 1 4

13 1 0 4 2 3
2 0 4 0 6

14 1 3 12 2 4
2 3 8 1 9

15 1 4 8 2 8
2 1 12 4 8

1.5 Dissertation Plan

This dissertation serves as a multi-question extension to the work of Nandram and Yu

(2018b). We gain estimation strength by joining multiple sensitive questions and pooling
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small areas. More areas involved is preferred and the correlation effect between the

questions has also been explored. Another contribution is that we propose a parsimonious

generalized mixed effects model to to reduce the variability and improve the computing

efficiency. The plan of the rest of the dissertation is as follows.

In Chapter 2, a hierarchical Bayesian model for the unrelated question design of two

sensitive questions and the computational methodology are presented. In addition, we

present same data analysis on the college cheating data using our Bayesian model and

provide a simulation study for three different models with different number of areas and

correlations.

In Chapter 3, we study the generalized mixed effects model which let us cope with the

intensive computing when large number of areas involved. Meanwhile it also allows us

to use integrated nested normal approximation (INNA). Applying to the college cheating

data, we also present the four-cell proportions estimated from the exact generalized mixed

effects model and its normal approximate model. This leads to improved precision.

Finally, in Chapter 4, concluding remarks and the future work are presented. In

addition, we state how our randomized response procedure can be used to provide masked

data that have the same sensitive (non-sensitive) proportions that the original data would

provide.
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Chapter 2

Unrelated Question Design for

Multi-sensitive Items

In this chapter, we discuss a Bayesian methodology to analyze the binary response data

collected from the combined sensitive questions design for college cheating. Assume

that we have more than one sensitive question from small areas. For each area i, we

sample gi (≥ 2) groups of people, letting them flip an unfair coin, or playing another

random game chosen by the interviewer. Depending on different results (heads or tails),

the respondents will answer different set of questions either sensitive or non-sensitive.

Let pij denote the success probability of jth group (cluster) from ith area, so with the

probability pij the respondents will get the chance to answer the combined sensitive

questions S1&S2; otherwise they should answer the non-sensitive questions N1&N2. Then

we collect the binary response data of four types: (No, No), (No, Yes), (Yes, No), (Yes,

Yes), for example (No, Yes) refer to the response to the first and second questions. Let

y
˜
ij = (yij1, yij2, yij3, yij4) denote the corresponding counts, i = 1 . . . `, j = 1 . . . gi, with

` = 15 and gi = 2 in the college cheating data. Figure 2.1 shows the unrelated question

design for multiple sensitive items.
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Figure 2.1: Unrelated Question Design

Since the interviewer does not know which branch the response comes from, the

respondents will feel more comfortable to give the true response to the sensitive ques-

tions, which will lead to a more accurate estimation of the sensitive population pro-

portion πi1˜ . This will lead to the estimation of the sensitive population proportions

φi11 = πi13 + πi14, the proportion of S1; φi12 = πi12 + πi14 the proportion of S2, with

π
˜
i1 = (πi11, πi12, πi13, πi14) representing the true proportions of four categories coming

from sensitive questions (S1&S2). If applying the traditional method by solving equa-

tions (Greenberg, et al., 1969), exactly two groups of samples are needed for each area.

Then we may solve the system of eight equations

yijk
nij

= pijπ̂i1k + (1− pij)π̂i2k, j = 1, 2, k = 1, . . . , 4, (2.0.1)

subject to the constraints
∑4

k=1 π̂ijk = 1, j = 1, 2. where nij =
∑4

k=1 yijk. But note

that a proper solution is not guaranteed. Another concern would be, even though college
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cheating data gi = 2, in reality, more than two groups of samples maybe available (gi > 2),

thus the above method cannot be applied directly.

2.1 Hierarchical Bayesian Model

In order to estimate the population proportion for each area, instead of combining the

equation system which may not guarantee a solution, we propose a three-stage Bayesian

model with latent variables. It is natural to think of the count data from the four types

of responses for each sample group follow a multinomial distribution with the four cell

probabilities given above. Based on that, we developed the hierarchical Bayesian model

to solve the problem.

2.1.1 Joint Posterior Density

Generally, the model consists of three stages. First,

y
˜
ij | π

˜
i1, π

˜
i2
ind∼ Multinomial{nij, a

˜
ij}, i = 1, . . . , `, j = 1, . . . , gi,

where

a
˜
ij =

(
pijπi11+(1−pij)πi21, pijπi12+(1−pij)πi22, pijπi13+(1−pij)πi23, pijπi14+(1−pij)πi24

)

represents the four cell probabilities for each group, with each cell probability coming from

two sources, sensitive and nonsensitive. Secondly, the parameters (π
˜
i1, π

˜
i2) represent the

inherent probabilities within each area, and they follow independent Dirichlet distribution

given the hyper parameters (µ1
˜

, µ2
˜

, τ),

π
˜
i1
ind∼ Dirichlet{µ1

˜
τ} and π

˜
i2
ind∼ Dirichlet{µ2

˜
τ} .
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Here µ1
˜

and µ2
˜

represent probabilities with all areas grouped together. Here τ can be

treated as a prior sample size that plays a part in weighting the parameters of the Dirichlet

distribution. For simplicity, we assume that there is no difference between π
˜
i1 and π

˜
i2

for sample size, we only use one τ instead of τ1, τ2. Notice that µ1
˜

and µ2
˜

and τ are

independent, µ1
˜
∼ Dirichlet(1, 1, 1, 1) and µ2

˜
∼ Dirichlet(1, 1, 1, 1), so a priori,

π(µ1
˜
, µ2

˜
, τ) =

1

(1 + τ)2

1

[D(1, 1, 1, 1)]2
=

36

(1 + τ)2
,

here µ1
˜

, µ2
˜

and τ are all independent.

The joint probability mass function of y
˜

is

π(y
˜
| π

˜
1, π

˜
2) =

∏̀
i=1

[
gi∏
j=1

nij!

yij1!yij2!yij3!yij4!

4∏
k=1

(pijπi1k + (1− pij)πi2k)yijk
]
.

The summation term will cause difficulties in applying the Gibbs sampler, so we introduce

the latent variables ω
˜
ij = (ωij1, ωij2, ωij3, (yij4−ωij4)) denoting those 4-cell counts elicited

from the sensitive questions. For example, ωij1 is the number of respondents from the

sensitive item (No, No) among yij1, see Figure 2.1. So the augmented joint posterior

density function is

π(y
˜
, ω
˜
| π1

˜
, π2

˜
) =

∏̀
i=1

[
gi∏
j=1

4∏
k=1

(
yijk
ωijk

)
(pijπi1k)

ωijk((1− pij)πi2k)yijk−ωijk
]
,

where 0 ≤ ωijk ≤ yijk.

By incorporating the priors from the other two stages, we get the joint posterior density

31



by Bayes’ theorem,

π(π1
˜
, π2

˜
, ω
˜
, µ1

˜
, µ2

˜
, τ | y

˜
, ω
˜

)

∝ π(y
˜
, ω
˜
| π1

˜
, π2

˜
)π(π1

˜
, π2

˜
| µ1

˜
, µ2

˜
, τ)π(µ1

˜
, µ2

˜
, τ)

=
∏̀
i=1

[
gi∏
j=1

[
4∏

k=1

(
yijk
ωijk

)
(pijπi1k)

ωijk((1− pij)πi2k))yijk−ωijk
]]

×
∏̀
i=1

(
2∏
s=1

(
πµs1τ−1
is1 πµs2τ−1

is2 πµs3τ−1
is3 π

(1−
∑3
k=1 µsk)τ−1

is4

D(µs1τ, µs2τ, µs3τ, (1−
∑3

k=1 µsk)τ)

))

× 36

(1 + τ)2
. (2.1.1)

2.1.2 Blocked Gibbs sampler

We intend to build a blocked Gibbs sampler to get draws of π1
˜

using the following

sampling scheme that has two blocks,

π(ω
˜
| π1

˜
, π2

˜
, µ1

˜
, µ2

˜
, τ, y

˜
) and π(π1

˜
, π2

˜
, µ1

˜
, µ2

˜
, τ | ω

˜
, y
˜
).

Based on the joint probability density function, we can run the blocked Gibbs sampler

from the conditional distribution. The nice thing is that the latent variables have simple

distributions, which are independent binomial distributions. Also, πi1
˜
, πi2

˜
follow Dirichlet

distributions.

Step 1. ω
˜
| π1

˜
, π2

˜
, µ1

˜
, µ2

˜
, τ, y

˜
The latent variable ωijk follow binomial distributions independently

ωijk | πi1
˜
, πi2

˜
, y
˜

ind∼ Binomial{yijk,
pijπi1k

pijπi1k + (1− pij)πi2k
},

i = 1, . . . , `, j = 1, . . . , gi, k = 1, 2, 3, 4. Thus, given data and other parameters, we can

draw ωijk easily from a simple form distribution.

By the multiplication rule,
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π(π1
˜
, π2

˜
, µ1

˜
, µ2

˜
, τ | ω

˜
, y
˜
) = π(π1

˜
, π2

˜
| µ1

˜
, µ2

˜
, τ, ω

˜
, y
˜
)π(µ1

˜
, µ2

˜
, τ | ω

˜
, y
˜
).

By integrating out (πi1
˜
, πi2

˜
) from π(πi1

˜
, πi2

˜
, µ1

˜
, µ2

˜
, τ | ω

˜
, y
˜
), we can apply grid method

based on the conditional joint pdf of (µ1
˜
, µ2

˜
, τ) below.

Step 2. µ1
˜
, µ2

˜
, τ | ω

˜
, y
˜

π(µ1
˜
, µ2

˜
, τ | ω

˜
, y
˜
) ∝

∏̀
i=1

(
D(ωi1· + µ11τ, ωi2· + µ12τ, ωi3· + µ13τ, ωi4· + (1−

∑3
k=1 µ1k)τ)

D(µ11τ, µ12τ, µ13τ, (1−
∑3

k=1 µ1k)τ)

× D(yi1· − ωi1· + µ21τ, yi2· − ωi2· + µ22τ, yi3· − ωi3· + µ23τ, yi4· − ωi4· + (1−
∑3

k=1 µ2k)τ)

D(µ21τ, µ22τ, µ23τ, (1−
∑3

k=1 µ2k)τ)

)

× 36

(1 + τ)2
.

This is a complex form involving fractions of Dirichlet functions. Thus we could only

draw µ1
˜
, µ2

˜
, τ by grid method. Here we actually use a variable substitution letting

ρ = 1/(1 + τ)2. So we can draw the new parameter ρ from the (0,1) range, and change

it back later to get draws of τ .

Step 3. π1
˜
, π2

˜
| µ1

˜
, µ2

˜
, τ , ω

˜
, y
˜

πi1
˜
| µ1

˜
, µ2

˜
, τ, ω

˜
, y
˜

ind∼ Dirichlet(ωi·1 + µ11τ, ωi·2 + µ12τ, ωi·3 + µ13τ, ωi·4 + (1−
3∑

k=1

µ1k)τ),

πi2
˜
| µ1

˜
, µ2

˜
, τ, ω

˜
, y
˜

ind∼ Dirichlet(yi·1 − ωi·1 + µ21τ, yi·2 − ωi·2 + µ22τ, yi·3 − ωi·3 + µ23τ,

yi·4 − ωi·4 + (1−
3∑

k=1

µ2k)τ),

where ωi·k =
∑gi

j=1 ωijk, yi·k =
∑gi

j=1 yijk, k = 1, 2, 3, 4.

Once we obtain draws from π1
˜
, π2

˜
, µ1

˜
, µ2

˜
, τ , we go back to the first step to update ω

˜
and

continue with this Gibbs sampling scheme until it converges.

We can obtain Rao-Blackwellized estimators of πi1
˜

and πi2
˜

, which provide smaller

mean square error, because the joint distribution conditioned on data y
˜

only can be
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expressed as

π(πi1
˜
, πi2

˜
| y

˜
) =

∫
τ

∫
µ2
˜

∫
µ1
˜

yi1∑̃
ωi1
˜

=0

. . .

yigi∑̃
ωigi

˜
=0

π(πi1
˜
, πi2

˜
| ω

˜
, µ1

˜
, µ2

˜
, τ, y

˜
)π(ω

˜
, µ1

˜
, µ2

˜
, τ | y

˜
)

=

∫
τ

∫
µ2
˜

∫
µ1
˜

yi1∑̃
ωi1
˜

=0

. . .

yigi∑̃
ωigi

˜
=0

π(πi1
˜
| ω

˜
, µ1

˜
, µ2

˜
, τ, y

˜
)π(πi2

˜
| ω

˜
, µ1

˜
, µ2

˜
, τ, y

˜
)π(ω

˜
, µ1

˜
, µ2

˜
, τ | y

˜
).

Let ω
˜

(h) = (ω
(h)
ijk), j = 1, . . . , gi, k = 1, . . . , 4, h = 1, . . . ,M , denote a random sample of

size M from the posterior density, π(ω
˜
| y

˜
), obtained from the Gibbs sampler. So that,

the Rao-Blackwellized density estimator of π(πi1
˜
, πi2

˜
| y

˜
) is

̂π(πi1
˜
, πi2

˜
| y

˜
) =

1

M

M∑
h=1

π(π
˜
i1 | ω

˜
(h), µ1

˜

(h), µ2
˜

(h), τ (h), y
˜
)

π(π
˜
i2 | ω

˜
(h), µ1

˜

(h), µ2
˜

(h), τ (h), y
˜
), i = 1, . . . , `.

Then we can get the Rao-Blackawellized estimator of the sensitive proportion φi11 =

πi13 + πi14 and φi12 = πi12 + πi14, i = 1, ..., ` for each area.

Next, we are able to do the prediction in a finite population under simple random

sampling. Assume that each sample unit is drawn from a finite population of size N, let

Xs denote the total counts of ‘yeses’ from sth sensitive question. Therefore,

Xs | φi1s
ind∼ Binomial(N, φi1s), s = 1, 2.

Then, the finite population proportion Ps = Xs/N, s = 1, 2, and inference about the Ps

can be made in a straightforward manner under the Bayesian model by using the draws.

For generality, we assume a sample of 0.1% from a finite population in the college cheating

data.
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2.2 Application on College Cheating Data

In this section, we will use this unrelated question design to analyze the college cheating

data. Also we provide a comparison of results with those from separate question model

and individual area model.

Table 2.1 and Table 2.2 show a comparison of the combined model and the separate

question model in posterior means (PM), posterior standard deviations (PSD) and cor-

relations (Cor) between φ11 and φ12. They indicate the combined model has a smaller

PSD and CV than the individual area model and the separate question model. For the

combined model, we are not surprised finding that the cheating proportion in the final

exam are all less then 0.224, since the majority of students will follow WPI’s policy of

academic honesty. Besides, the proportion of those who are very eager to get high GPA

between 3.5 to 4.0 are almost about 0.8, indicating the importance of grades to most but

not all of the college students. The separate question model has similar results, whereas

the individual model could have aberrant estimates for class sections 3, 4, 11, 13, 15.

Comparing the three different methods, the combined model always has a smaller poste-

rior standard deviation, except for the φ11 in class section 9 with the separate question

model giving a little bit smaller PSD of 0.094 than 0.095 from the combined model. Ad-

ditionally, we can obtain the correlation estimation between cheating and their ambition

to get a higher GPA, which seems to be negative consistently across 12 classe sections,

with the other three sections have a very small positive correlation not more than 0.082.

As expected, the separate question model gives a correlation close to 0, failing to catch

any correlation between the cheating proportion and their ambition of the higher GPA.

As for the individual area model, the correlation estimations are quite unstable, vibrating

between large positive and negative correlations, and even cannot be calculated due to

the sparsity of some individual sections.
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Table 2.1: Comparison of the Combined model and the Separate question model us-
ing posterior means (PM), posterior standard deviations (PSD), posterior coefficient of
variations (PCV)

φ11 φ12

PM PSD PCV PM PSD PCV Cor

a. Combined model

1 0.172 0.099 0.574 0.835 0.086 0.103 -0.309
2 0.163 0.102 0.624 0.820 0.094 0.115 -0.264
3 0.175 0.104 0.596 0.808 0.086 0.106 0.029
4 0.215 0.122 0.567 0.810 0.095 0.117 0.082
5 0.152 0.095 0.625 0.839 0.086 0.103 -0.289
6 0.161 0.097 0.601 0.791 0.101 0.128 -0.161
7 0.169 0.106 0.624 0.849 0.084 0.099 -0.105
8 0.187 0.108 0.576 0.792 0.096 0.121 -0.266
9 0.157 0.095 0.602 0.777 0.103 0.132 -0.028
10 0.150 0.092 0.614 0.821 0.086 0.105 -0.115
11 0.224 0.122 0.544 0.789 0.101 0.128 -0.058
12 0.193 0.110 0.572 0.757 0.107 0.141 0.019
13 0.202 0.114 0.562 0.828 0.095 0.115 -0.215
14 0.157 0.091 0.583 0.805 0.090 0.111 -0.112
15 0.198 0.106 0.537 0.800 0.085 0.106 -0.102

b. Separate question model

1 0.139 0.111 0.796 0.849 0.103 0.122 -0.040
2 0.129 0.108 0.838 0.831 0.112 0.135 -0.005
3 0.149 0.120 0.807 0.834 0.106 0.127 0.048
4 0.206 0.155 0.752 0.856 0.098 0.114 0.047
5 0.119 0.104 0.876 0.850 0.105 0.124 0.011
6 0.120 0.104 0.872 0.806 0.126 0.156 0.019
7 0.138 0.112 0.813 0.883 0.082 0.093 0.052
8 0.157 0.123 0.785 0.815 0.115 0.142 0.034
9 0.112 0.094 0.842 0.821 0.118 0.144 -0.014
10 0.109 0.097 0.886 0.834 0.111 0.133 0.035
11 0.237 0.166 0.699 0.799 0.133 0.167 0.026
12 0.155 0.125 0.803 0.786 0.134 0.171 0.015
13 0.190 0.139 0.731 0.843 0.099 0.118 0.026
14 0.126 0.102 0.812 0.825 0.106 0.129 0.017
15 0.172 0.127 0.738 0.809 0.108 0.134 -0.044
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Table 2.2: Comparison of the Combined model and the Individual area model using poste-
rior means (PM), posterior standard deviations (PSD), posterior coefficient of variations
(PCV)

φ11 φ12

PM PSD PCV PM PSD PCV Cor

a. Combined model

1 0.172 0.099 0.574 0.835 0.086 0.103 -0.309
2 0.163 0.102 0.624 0.820 0.094 0.115 -0.264
3 0.175 0.104 0.596 0.808 0.086 0.106 0.029
4 0.215 0.122 0.567 0.810 0.095 0.117 0.082
5 0.152 0.095 0.625 0.839 0.086 0.103 -0.289
6 0.161 0.097 0.601 0.791 0.101 0.128 -0.161
7 0.169 0.106 0.624 0.849 0.084 0.099 -0.105
8 0.187 0.108 0.576 0.792 0.096 0.121 -0.266
9 0.157 0.095 0.602 0.777 0.103 0.132 -0.028
10 0.150 0.092 0.614 0.821 0.086 0.105 -0.115
11 0.224 0.122 0.544 0.789 0.101 0.128 -0.058
12 0.193 0.110 0.572 0.757 0.107 0.141 0.019
13 0.202 0.114 0.562 0.828 0.095 0.115 -0.215
14 0.157 0.091 0.583 0.805 0.090 0.111 -0.112
15 0.198 0.106 0.537 0.800 0.085 0.106 -0.102

c. Individual are model

1 0.240 0.178 0.741 0.853 0.144 0.169 -0.58
2 0.227 0.228 1.004 0.807 0.207 0.257 -0.619
3∗ 0.452 0.217 0.480 0.772 0.155 0.201 0.208
4∗ 0.633 0.238 0.376 0.873 0.140 0.160 0.324
5 0.097 0.202 2.083 0.903 0.202 0.223 0.999
6 0.201 0.198 0.982 0.712 0.229 0.321 -0.368
7∗ 0.216 0.226 1.045 1.000 0.000 0.000 NaN
8 0.362 0.214 0.592 0.715 0.194 0.271 -0.42
9 0.176 0.180 1.023 0.773 0.199 0.257 0.114
10 0.165 0.163 0.988 0.827 0.143 0.173 -0.286
11∗ 0.779 0.217 0.278 0.700 0.242 0.345 0.138
12 0.396 0.205 0.517 0.669 0.202 0.303 0.067
13∗ 0.505 0.276 0.546 0.827 0.151 0.182 -0.318
14 0.222 0.152 0.683 0.774 0.135 0.174 -0.139
15∗ 0.531 0.184 0.346 0.723 0.137 0.189 0.048

∗ Aberrant areas, note the computational instability in class section 7.
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Figure 2.2 gives the comparison 95% HPD intervals of φ11.

Figure 2.2: 95% HPD interval of φ11

Figure 2.3 provides a direct comparison of the coefficient of variation (CV) for φ11.

Figure 2.3: Coefficient of Variation (CV) of φ11

Figure 2.4 gives the 95% HPD interval of φ12.
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Figure 2.4: 95% HPD interval of φ12

Figure 2.5 provides a direct comparison of the coefficient of variation for φ12. The

combined model also gives a smaller CV for both π1 and π2.

Figure 2.5: Coefficient of Variation (CV) of φ12
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2.3 Simulation study

In Section 2.3.1, we preform a simulation study to assess the performance of the combined-

area model compared with individual-area model and separate question model. In Section

2.3.2, we adjust the parameter setting to increase the number of areas and the correlation

within the sensitive and non-sensitive questions to see the possible gains in estimation

accuracy.

2.3.1 Comparison of three models

In this section, we are going to test our combined model using the simulated data. Based

on the 1000 simulated runs, we provide a comparison of our combined model with the

separate question model and the individual area model. The combined model is discussed

in Section 2.2; next we list the individual area model and separate question model for

multi-item RRT here.

Individual Area Model for Multi-item Case

Because the areas are modelled individually, only a flat Dirichlet prior is used for π
˜
i1, π

˜
i2,

y
˜
ij | π

˜
i1, π

˜
i2
ind∼ Multinomial{nij, a

˜
ij}, i = 1, . . . , `; j = 1, . . . , gi ≥ 2,

where a
˜
ij = (pijπi11 + (1− pij)πi21, pijπi12 + (1− pij)πi22, pijπi13 + (1− pij)πi23,

pijπi14 + (1− pij)πi24), denoting the four cell probabilities for each group with size nij =∑4
k=1 yijk.

π
˜
i1
ind∼ Dirichlet(1, 1, 1, 1) π

˜
i2
ind∼ Dirichlet(1, 1, 1, 1), i = 1, . . . , `.

Separate Question Model

The separate question model is the SAM we introduced in Section 1.2 being applied to
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each single sensitive question,

yij | πi1, πi2
ind∼ Binomial{nij, pijπi1 + (1− pij)πi2},

i = 1, . . . , `, j = 1, . . . , gi ≥ 2,

πi1|µ1, τ
ind∼ Beta(µ1τ, (1− µ1)τ) πi2|µ2, τ

ind∼ Beta(µ2τ, (1− µ2)τ),

i = 1, . . . , `,

π(µ1, µ2, τ) =
1

(1 + τ)2
.

Assuming that the probability of answering ‘yes’ to the first and second sensitive questions

are φ11 and φ12; the probability of answering ‘No’ to the first and second nonsensitive ques-

tions are φ21 and φ22. Then we simulated the correlated response data with correlation

ρ1= 0.5 and ρ2= 0.5 with respect to the sensitive and nonsensitive questions correspond-

ingly among 10 areas. In other words, with true value set as φ11 = 0.5, φ12 = 0.5, the four

types of response (No, No), (No, Yes),(Yes, No),(Yes, Yes) for the sensitive questions are

generated with the probability π
˜
i1. After we construct µ1

˜
= (µ11, µ12, µ13, µ14) formulated

as

µ11 = (1−φ11)(1−φ12)+γ, µ12 = (1−φ11)φ12−γ, µ13 = φ11(1−φ12)−γ, µ14 = φ11φ12+γ,

where γ = ρ1

√
φ11(1− φ11)φ12(1− φ12). Because we have selected φ11 and φ12 equal, we

0 < ρ < 1; see Yu, Bhadra and Nandram, (2017). We can get π
˜
i1
ind∼ Dirichlet(µ1

˜
τ) where

the above equations give µ1
˜

when we substitute φ11 = 0.5, φ12 = 0.5 and τ = 100.

Again we can generate the response from correlated nonsensitive questions in the same

way for π
˜
i2, with the true value set as φ21 = 0.4, φ22 = 0.4.

Now we want to simulate the sampling process as follows. For each individual from

ith area and jth group (i = 1, .., ` = 10, j = 1, .., gi ≥ 2). At first, we generate the number

of groups uniformly from 2 to 5. For each individual coming from ith area and jth group
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with size ngi= (20, 25, 30, 35, 40), we choose a random mechanism with probability pij=

(.25, .75, .2, .7, .3) to answer the sensitive questions and (1-pij) to answer the nonsensitive

questions. Following the simulation process, we are able to collect the combined binary

response data from both sensitive and nonsensitive questions, without knowing which

exact question the respondent answer.

To find the finite population estimation of the probability of answering ‘yes’ to the

sensitive questions, we can fit the three-stage Bayesian models to get the estimates of

individual π
˜
i1’s first, and then get the corresponding finite population estimation after-

wards based on the probability relationship φi11 = πi13 + πi14 and φi12 = πi12 + πi14. We

calculated the relative absolute bias, RAB = (PM − T )/T , and the posterior root mean

squared error, PRMSE =
√

(PM − T )2 + PSD2, where T denotes the true proportions,

φ11 or φ12 (known by simulation). To compare the combined model with the individual

area model and separate question model, we present a 95% boxplot of the RAB and

PRMSE of the 1000 simulations from 10 areas.

In Figure 2.6, we can observe that the combined model always has a smaller relative

absolute bias than the separate question model and individual area model. In Figure 2.7,

the combined model still outperforms the other two in the sense of the posterior mean

square error across all the areas.
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Figure 2.6: Boxplot of RAB for combined model, separate question model and individual
area model of 10 areas for 1000 simulations under the combined model

43



Figure 2.7: Boxplot of PRMSE for combined model, separate question model and indi-
vidual area model of 10 areas for 1000 simulations under the combined model

2.3.2 Discussion of the effect of number of locations and corre-

lation

In order to test the model with more areas and compare the effect of the number of loca-

tions, besides RAB and PRMSE, we also computed their average width (Wid) of the 95%

HPD intervals and the coverage (C), which is the proportion of intervals containing the

true value in the 1000 simulated runs. We simulated the correlated data with correlation

ρ = 0.5 with respect to the sensitive and nonsensitive questions correspondingly among

10 areas.
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In Table 3.5, we provided the simulation results from different area sizes (` = 10, 25).

We observed that for both the combined Bayesian model (cb) and the separate question

model (Sep), the average ralative absolute bias and the root mean squared error get

smaller as the number of areas increase from 10 to 25 for both φ11 and φ12; the average

width of 95% HPD interval for φ11 is 0.21, shorter than 0.28. Even though we obtained

a smaller coverage of 0.948 when the number of areas equal to 25, it is still very close to

the expected 95%, given a shorter 95% HPD interval. However, the 95% HPD interval

for the individual area model is much wider. Similar conclusions can be drawn for φ12.

In the case of ` = 10, the FORTRAN codes running at 30 computers in parallel will

take about 12 hours to finish 1000 simulations for combined model and about 6 hours for

the separate question model. The individual area model will finish in 2.9 seconds. The

computing time for 25 areas is 1.5 times longer.

Table 2.3: Relative absolute bias, posterior root mean squared error, coverage of 95%
credible intervals and width of 95% credible interval averaged over the 1000 runs and
different area sizes (`=10, 25) for combined model (cb), separate question model (sep)
and individual area model (ind) .

φ̂11 φ̂12

` Model RAB PRMSE C Wid RAB PRMSE C Wid

10 cb 0.099 0.092 0.976 0.280 0.100 0.092 0.975 0.280

Sep 0.106 0.103 0.983 0.322 0.106 0.103 0.983 0.321

Ind 0.192 0.170 0.945 0.494 0.193 0.170 0.945 0.495

25 cb 0.086 0.073 0.948 0.210 0.087 0.073 0.944 0.210

Sep 0.087 0.080 0.974 0.244 0.088 0.080 0.971 0.245

Ind 0.194 0.171 0.942 0.493 0.187 0.164 0.944 0.493
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In Table 2.4, we showed the comparison results of different correlations when the

number of areas is fixed to be 10. First, for the estimation of π1 from the combined model

(cb), we observed that the relative absolute bias (RAB) is 0.097 for the highly correlated

data (ρ = 0.9), which is pretty close to 0.102 of the independent data (ρ = 0). The

PRMSE is .087, which is also just a little bit smaller than 0.093 for the less correlated

one. The changes according to the correlation under the combined model can also be

seen in Figure 2.5 and Figure 2.6, where we show the boxplot of RAB and PRMSE of

the combined model.

Table 2.4: Relative absolute bias, posterior root mean squared error, coverage of 95%
credible intervals and width of 95% credible interval averaged over the 1000 runs and 10
areas under different levels of correlations (ρ1, ρ2) = (0, 0), (0.5, 0.5), (0.9, 0.9).

φ̂11 φ̂12

ρ1, ρ2 Model RAB PRMSE C Wid RAB PRMSE C Wid

0, 0 cb 0.102 0.093 0.972 0.283 0.103 0.094 0.973 0.283

(0.153, 0.094) Sep 0.109 0.104 0.981 0.322 0.110 0.104 0.980 0.322

Ind 0.188 0.168 0.948 0.490 0.188 0.168 0.951 0.490

0.5, 0.5 cb 0.099 0.092 0.976 0.280 0.100 0.092 0.975 0.280

(0.525, 0.556) Sep 0.106 0.103 0.983 0.322 0.106 0.103 0.983 0.321

Ind 0.192 0.170 0.945 0.494 0.193 0.170 0.945 0.495

0.9, 0.9 cb 0.097 0.087 0.967 0.259 0.097 0.087 0.967 0.259

(0.948,0.892) Sep 0.104 0.101 0.982 0.314 0.104 0.101 0.982 0.314

Ind 0.203 0.174 0.934 0.496 0.204 0.157 0.934 0.496

NOTE: (ρ̂1, ρ̂2) = (0.153, 0.094), (0.525, 0.556), (0.948, 0.892) are the actual correlations
of the simulated data.

In Table 2.5, we find the correlation effect on bias, posterior mean, posterior standard
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deviation and coefficient of variation also change little as the correlation varies for the

combined model.

Table 2.5: B, PM, PSD, CV averaged over the 1000 runs and 10 areas under different
levels of correlations (ρ1, ρ2) = (0, 0), (0.5, 0.5), (0.9, 0.9).

φ̂11 φ̂12

ρ1, ρ2 Model B PM PSD CV B PM PSD CV

0, 0 cb 0.002 0.503 0.073 0.147 0.001 0.502 0.073 0.148

(0.153, 0.094) sep 0.003 0.503 0.083 0.168 0.001 0.502 0.083 0.168

ind -0.007 0.494 0.128 0.279 -0.009 0.492 0.128 0.280

0.5, 0.5 cb 0.000 0.501 0.072 0.146 0.000 0.500 0.072 0.146

(0.525, 0.556) sep 0.001 0.501 0.083 0.168 0.000 0.501 0.083 0.168

ind -0.003 0.497 0.129 0.281 -0.004 0.496 0.130 0.281

0.9, 0.9 cb 0.001 0.501 0.067 0.135 0.001 0.502 0.067 0.135

(0.948,0.892) sep 0.001 0.502 0.081 0.164 0.001 0.502 0.081 0.164

ind -0.002 0.499 0.130 0.284 -0.001 0.499 0.130 0.284
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Figure 2.8: Boxplot of RAB for 1000 simulations per area of different correlations under
the combined model

Figure 2.9: Boxplot of PRMSE for 1000 simulations per area of different correlations
under the combined model
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Since it is not intuitive that there are just small changes as the correlation increases

(see Table 2.5, Table 2.6 Figure 2.8, Figure 2.9), to further study the correlation effect on

the proportion estimation, we provide a study on the four-cell probability. Table 2.6 gives

the bias (B) and posterior mean (PM) estimation of the four-cell probability of π1 and

π2 generated under three different correlation levels (0,0.5, 0.75). We use correlation 0.75

instead of 0.9 to avoid the extreme situation that there is no counts of the off-diagonal cell

(No&Yes, Yes&No), seeing that 0.75 is a comparative larger correlation which already

makes the off-diagonal cell probability lower than 0.08.

Table 2.6: B and PM comparison of π1 and π2 under different correlations

Model ρ π̂1 π̂2

B
cb 0 0.000 -0.001 0.001 0.000 -0.002 0.000 0.000 0.002

0.5 -0.003 0.002 0.002 -0.002 -0.005 0.004 0.003 -0.001

0.75 -0.010 0.010 0.010 -0.010 -0.013 0.011 0.011 -0.009

ind 0 0.006 -0.001 0.001 -0.007 -0.103 0.010 0.010 0.083

0.5 -0.004 0.005 0.005 -0.006 -0.109 0.010 0.010 0.089

0.75 -0.015 0.015 0.015 -0.016 -0.118 0.018 0.018 0.082

PM
cb 0 0.251 0.249 0.250 0.250 0.359 0.240 0.240 0.162

0.5 0.372 0.127 0.127 0.374 0.475 0.124 0.122 0.279

0.75 0.428 0.072 0.072 0.428 0.528 0.071 0.071 0.330

ind 0 0.257 0.250 0.250 0.243 0.257 0.250 0.250 0.243

0.5 0.371 0.130 0.130 0.370 0.371 0.130 0.130 0.370

0.75 0.422 0.078 0.078 0.422 0.422 0.078 0.078 0.422
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Table 2.7 and Table 2.8 give the comparison for posterior standard deviation (PSD),

posterior critical value (PCV), relative absolute bias (RAB) and posterior root mean

square error (PRMSE). As the correlation increases, there tends to be more counts in

the diagonal of the contingency table, which have the counts for (No, No) and (Yes, Yes

). While for the off-diagonal, the counts of (No, Yes) and (Yes, No) are getting smaller.

The changes of the contingency table result in a smaller bias on the diagonal cell. The

PSD for the off-diagonal cell is decreasing because it rarely has counts there; the PSD

for the diagonal shows an increasing trend first and then it decreases as the correlation

change from 0.5 to 0.75. The changes of the PRMSE are consistent with PSD since the

bias changes a little. In comparison, we also provide the estimation results for individual

model.

The second step of the block Gibbs sampler in drawing µ1
˜
, µ2

˜
, τ mainly takes time

since the conditional posterior distribution is a complicated function when building the

grids. Moreover, the Dirichlet probability parameter µ1
˜

and µ2
˜

have self constraints which

keep changing the range for the grid method, slowing down the convergence. Another

concern about the Multinomial Dirichlet model is that the Dirichlet distribution only

models negative correlated probabilities which is not very flexible. We address these

issues in Chapter 3.
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Table 2.7: PSD and PCV comparison of π1 and π2 under different correlations

Model ρ π̂1 π̂2

PSD
cb 0 0.062 0.061 0.061 0.060 0.062 0.056 0.056 0.049

0.5 0.068 0.046 0.046 0.067 0.064 0.042 0.042 0.059

0.75 0.067 0.035 0.035 0.066 0.062 0.032 0.032 0.059

ind 0 0.113 0.108 0.108 0.102 0.113 0.108 0.108 0.102

0.5 0.124 0.078 0.078 0.121 0.124 0.078 0.078 0.121

0.75 0.128 0.059 0.058 0.125 0.128 0.059 0.058 0.125

CV
cb 0 0.256 0.251 0.251 0.245 0.175 0.237 0.237 0.315

0.5 0.187 0.382 0.380 0.182 0.137 0.355 0.358 0.214

0.75 0.159 0.503 0.506 0.157 0.119 0.466 0.465 0.181

ind 0 0.515 0.507 0.508 0.495 0.515 0.507 0.508 0.495

0.5 0.379 0.731 0.729 0.370 0.379 0.731 0.729 0.370

0.75 0.331 0.899 0.902 0.344 0.331 0.899 0.902 0.344
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Table 2.8: RAB and PRMSE comparison of π1 and π2 under different correlations

Model ρ π̂1 π̂2

RAB
cb 0 0.176 0.174 0.177 0.169 0.110 0.148 0.150 0.198

0.5 0.129 0.278 0.273 0.125 0.085 0.228 0.230 0.132

0.75 0.109 0.497 0.499 0.109 0.075 0.389 0.395 0.113

ind 0 0.335 0.326 0.327 0.307 0.359 0.382 0.382 0.700

0.5 0.252 0.432 0.423 0.248 0.287 0.504 0.507 0.464

0.75 0.249 0.585 0.591 0.249 0.281 0.642 0.647 0.402

PRMSE
cb 0 0.080 0.078 0.078 0.076 0.077 0.069 0.069 0.061

0.5 0.088 0.059 0.059 0.086 0.080 0.052 0.052 0.073

0.75 0.087 0.044 0.044 0.086 0.078 0.039 0.039 0.074

ind 0 0.148 0.142 0.142 0.135 0.184 0.149 0.149 0.156

0.5 0.165 0.099 0.098 0.161 0.199 0.103 0.103 0.185

0.75 0.188 0.076 0.076 0.187 0.222 0.078 0.078 0.205
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Chapter 3

Generalized Mixed Effects Model

and Approximation

In this chapter, we build a generalized mixed effects model in which the parameters take

values on the real line. Recall the underlying distribution for the counts is

y
˜
ij | π

˜
i1, π

˜
i2
ind∼ Multinomial{nij, a

˜
ij}, i = 1, . . . , `, j = 1, . . . , gi ≥ 2,

where

a
˜
ij = (pijπi11+(1−pij)πi21, pijπi12+(1−pij)πi22, pijπi13+(1−pij)πi23, pijπi14+(1−pij)πi24)

and

πi1k =
exp (θ1k + ν1i)

1 +
∑3

t=1 exp (θ1t + ν1i)
, k = 1, 2, 3; πi14 =

1

1 +
∑3

t=1 exp (θ1t + ν1i)
,

πi2k =
exp (θ2k + ν2i)

1 +
∑3

t=1 exp (θ2t + ν2i)
, k = 1, 2, 3; πi24 =

1

1 +
∑3

t=1 exp (θ2t + ν2i)
,

i = 1, . . . , `.
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The reparameterization actually permits a one-to-one map through log( πi1k
1−πi1k

) = θ1k +

ν1i, k = 1, 2, 3, where we see that the logit of πi1k is determined by the cell effect θ1k

and the area effect ν1i together. Consequently, we can modify the combined model to

a generalized mixed effects model which allow us to sample the parameters from an

approximate normal distribution.

The generalized mixed effects model will allow for an integrated nested normal ap-

proximation (INNA) and improve the computation efficiency in two folds. First, they

form a fast but approximate computing approach. Second, we use the approximations to

feed into the exact method. In the end, we also apply it to the college cheating data to

compare the two models.

3.1 Generalized Mixed Effects Model

The model after the reparameterization is

y
˜
ij | θ

˜
1, θ

˜
2, ν1i, ν2i

ind∼ Multinomial{nij, a
˜
ij(θ

˜
, ν
˜
)}, i = 1, . . . , `, j = 1, . . . , gi,

with a
˜
ij(θ

˜
, ν
˜
) = (pijπi11 + (1− pij)πi21, pijπi12 + (1− pij)πi22,

pijπi13 + (1− pij)πi23, pijπi14 + (1− pij)πi24),

where

πi1k =
exp (θ1k + ν1i)

1 +
∑3

t=1 exp (θ1t + ν1i)
, k = 1, 2, 3; πi14 =

1

1 +
∑3

t=1 exp (θ1t + ν1i)
,

πi2k =
exp (θ2k + ν2i)

1 +
∑3

t=1 exp (θ2t + ν2i)
, k = 1, 2, 3; πi24 =

1

1 +
∑3

t=1 exp (θ2t + ν2i)
,

i = 1, . . . , `. (3.1.1)

This parameter setting allows for
∑4

k=1 πi1k = 1, with the cell probability π
˜
i1 is only

determined by a main cell effect θ
˜

1 = {θ1k} (k = 1, 2, 3) and an area effect ν
˜

1 = {ν1i} (i =

1, . . . , `). Notice that θ1k and ν1i can take any values under the scheme. Similarly, θ
˜

2
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and ν
˜

2 are the re-parameterized parameters for π
˜
i2. Here we consider the situation of flat

priors on θ
˜

1, θ
˜

2, ν
˜

1, ν
˜

2 momentarily; later we will put informative prior in them. Let

τ
˜

1 =

(
ν
˜

1

θ
˜

1

)
, τ

˜
2 =

(
ν
˜

2

θ
˜

2

)
,

then, conditional on ω
˜

, we have the following joint posterior density of τ
˜

1, τ
˜

2,

π(τ
˜

1, τ
˜

2 | y
˜
, ω
˜

) =

π(ν
˜

1, ν
˜

2, θ
˜

1, θ
˜

2 | y
˜
, ω
˜

) ∝∏̀
i=1

[
gi∏
j=1

3∏
k=1

( pij exp (θ1k + ν1i)

1 +
∑3

s=1 exp (θ1s + ν1i)

)ωijk( pij

1 +
∑3

s=1 exp (θ1s + ν1i)

)ωij4]
∏̀
i=1

[
gi∏
j=1

3∏
k=1

( (1− pij) exp (θ2k + ν2i)

1 +
∑3

s=1 exp (θ2s + ν2i)

)yijk−ωijk( 1− pij
1 +

∑3
s=1 exp (θ2s + ν2i)

)yij4−ωij4]

= h1(τ
˜

1)h2(τ
˜

2),

where

h1(τ
˜

1) =
∏̀
i=1

[
gi∏
j=1

3∏
k=1

( pij exp (θ1k + ν1i)

1 +
∑3

s=1 exp (θ1s + ν1i)

)ωijk( pij

1 +
∑3

s=1 exp (θ1s + ν1i)

)ωij4]

and

h2(τ
˜

2) =
∏̀
i=1

[
gi∏
j=1

3∏
k=1

( (1− pij) exp (θ2k + ν2i)

1 +
∑3

s=1 exp (θ2s + ν2i)

)yijk−ωijk( 1− pij
1 +

∑3
s=1 exp (θ2s + ν2i)

)yij4−ωij4]

We can separate out this likelihood by h1(τ
˜

1)h2(τ
˜

2) since given y
˜
, ω
˜

, the parameter set

θ
˜

1, ν
˜

1 and θ
˜

2, ν
˜

2 are independent.

We need to approximate this likelihood to a multivariate normal density, then putting

conjugate priors to ν
˜

1, ν
˜

2, θ
˜

1, θ
˜

2, so that we have the simple forms for posterior densities

for ν
˜

and θ
˜
. We exemplify this procedure by approximating h1(τ

˜
1) and h2(τ

˜
2) separately

by considering a generic function h(τ
˜
) .
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3.2 Approximation

Lemma Let h(τ
˜
) be a unimodal density function with a vector parameter τ

˜
. Then

approximately τ
˜

has a multivariate normal distribution

τ
˜
∼ Normal(τ

˜
∗ −H−1g

˜
,−H−1),

where g
˜

is the gradient vector of f(τ
˜
) = log h(τ

˜
) evaluated at some point τ

˜
∗ near the mode

and H is the Hessian matrix evaluated at τ
˜
∗. Since the multivariate Taylor expansion of

f(τ
˜
) at τ

˜
∗ is

f(τ
˜
) ≈ f(τ

˜
∗) + (τ

˜
− τ

˜
∗)′g

˜
+ 1

2
(τ
˜
− τ

˜
∗)′H(τ

˜
− τ

˜
∗);

so that

h(τ
˜
) ≈ exp (f(τ

˜
∗) + (τ

˜
− τ

˜
∗)′g

˜
+ 1

2
(τ
˜
− τ

˜
∗)′H(τ

˜
− τ

˜
∗))

has a kernel of multivariate normal distribution (e.g., Nandram, Chen, Fu and Manand-

har, 2018). It is costly to fit the exact methods because generally there are numerous

parameters (e.g. INLA). For our study, we set τ
˜
∗ as the quasi-modes, which are calcu-

lated from the EM algorithm.

Approximation Theorem

For the unimodal density,

h1(τ
˜

1) =
∏̀
i=1

[
gi∏
j=1

3∏
k=1

( pij exp (θ1k + ν1i)

1 +
∑3

t=1 exp (θ1t + ν1i)

)ωijk( pij

1 +
∑3

t=1 exp (θ1t + ν1i)

)ωij4]
,

by approximation Lemma, τ
˜

1 approximately has a multivariate normal distribution

(
ν
˜

1

θ
˜

1

)
= τ

˜
1 ∼ Normal(τ

˜
∗
1 −H−1

1 g
˜

1,−H−1
1 ), τ

˜
∗
1 =

(
ν
˜
∗
1

θ
˜
∗
1

)
,

where τ
˜
∗
1 is the quasi-mode, g

˜
1 and H1 are the gradient vector and the Hessian matrix of

log h1(τ
˜

1) evaluated at τ
˜
∗
1.
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The same approximation Lemma applies for τ
˜

2, with the density function

h2(τ
˜

2) =
∏̀
i=1

[
gi∏
j=1

3∏
k=1

( pij exp (θ2k + ν2i)

1 +
∑3

t=1 exp (θ2t + ν2i)

)yijk−ωijk( pij

1 +
∑3

t=1 exp (θ2t + ν2i)

)yij4−ωij4]
,

to get the normal approximation for ν
˜

2,

(
ν
˜

2

θ
˜

2

)
= τ

˜
2 ∼ Normal(τ

˜
∗
2 −H−1

2 g
˜

2,−H−1
2 ), τ

˜
∗
2 =

(
ν
˜
∗
2

θ
˜
∗
2

)
,

where τ
˜
∗
2 is the quasi-mode, g

˜
2 and H2 are the gradient vector and the Hessian matrix of

log h2(τ
˜

2) evaluated at τ
˜
∗
2.

Construction of Quasi-Modes

Next, we describe how to find quasi-mode τ
˜
∗
1 and τ

˜
∗
2. To find the quasi-modes, we consider

∏̀
i=1

{
gi∏
j=1

[
3∏

k=1

(pijπi1k)
ωijk(pij(1−

3∑
k=1

πi1k))
ωij4

3∏
k=1

((1− pij)πi2k)yijk−ωijk((1− pij)(1−
3∑

k=1

πi2k))
ωij4−ωij4

]}
,

where

πi1k =
exp (θ1k + ν1i)

1 +
∑3

t=1 exp (θ1t + ν1i)
, k = 1, 2, 3; πi14 = 1−

3∑
k=1

πi1k,

πi2k =
exp (θ2k + ν2i)

1 +
∑3

t=1 exp (θ2t + ν2i)
, k = 1, 2, 3; πi24 = 1−

3∑
k=1

πi2k,

and

log(
πi1k

1−
∑3

t=1 πi1t
) = θ1k + ν1i, i = 1, . . . , `, k = 1, 2, 3,

log(
πi2k

1−
∑3

t=1 πi2t
) = θ2k + ν2i, i = 1, . . . , `, k = 1, 2, 3.

We perform the EM algorithm to obtain π̂i1k, k = 1, 2, 3, 4 separately in each area to
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obtain

̂θ1k + ν1i = log(
π̂i1k

1−
∑3

t=1 π̂i1t
), ̂θ2k + ν2i = log(

π̂i2k

1−
∑3

t=1 π̂i2t
), k = 1, 2, 3.

Then, we repeat the EM algorithm for all areas combined into a single one (setting

ν1i = 0, ν2i = 0), to get

θ̂1k = log(
π̂1k

1−
∑3

t=1 π̂1t

), θ̂2k = log(
π̂2k

1−
∑3

t=1 π̂2t

), k = 1, 2, 3.

Then

ν̂1i =
3∑

k=1

( ̂θ1k + ν1i − θ̂1k)/3, ν̂2i =
3∑

k=1

( ̂θ2k + ν2i − θ̂2k)/3, k = 1, 2, 3.

We need to check that −H−1
1 is positive definite at τ

˜
∗
1 and −H−1

2 is positive definite at

τ
˜
∗
2, where τ

˜
∗
1 = (ν̂1i, i = 1 . . . , `, θ̂1k, k = 1, 2, 3), τ

˜
∗
2 = (ν̂2i, i = 1 . . . , `, θ̂2k, k = 1, 2, 3)

and τ
˜
∗
1, τ

˜
∗
2 are the solutions just obtained. If these negative Hessian matrices are not

positive definite, we jitter τ
˜
∗
1 and τ

˜
∗
2 until they become positive definite. More details of

obtaining the quasi-modes are provided in the Appendix A.

Integrated Nested Normal Approximation

From the derivation above, the approximate joint posterior density of ν
˜

1, θ
˜

1 | ω
˜

is

τ
˜

1 =

(
ν
˜

1

θ
˜

1

)
| ω

˜
∼ Normal

{(µ
˜
ν1

µ
˜
θ1

)
,−H−1

1

}
.

Here µ
˜
ν1 and µ

˜
θ1 are calculated with g

˜
1, H1 and τ

˜
∗
1, where τ

˜
∗
1 is the quasi-mode calculated

from EM algorithm.

Similar approximation can be made for ν
˜

2, θ
˜

2 | y
˜
, ω
˜

and we get

τ
˜

2 =

(
ν
˜

2

θ
˜

2

)
| y

˜
, ω
˜
∼ Normal

{(µ
˜
ν2

µ
˜
θ2

)
,−H−1

2

}
.

Now we need to specify g
˜

and H evaluated at τ
˜
∗
1, τ

˜
∗
2. Consider the log likelihood
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function

∆ = f(τ
˜
) = log h(τ

˜
) =

∑̀
i=1

{ gi∑
j=1

[ 3∑
k=1

ωijk(θ1k + ν1i)−
4∑

k=1

ωijk log(1 +
3∑
t=1

eθ1t+ν1i)
}]

+
3∑

k=1

1

2
λaiθ

2
1k +

∑̀
i=1

1

2
λbiν

2
1i,

with λak (k = 1 . . . 3) representing the coefficient of the regularization term 1
2
λakθ

2
1k for

θ
˜

1 and λbi (i = 1 . . . `) representing the coefficient of the regularization term 1
2
λbiν

2
1i for

ν
˜

1. This term is introduced to get rid of the multicollinearity in solving the inverse

Hessian matrix. Just like in ridge regression which proceeds by adding a small value to

the diagonal elements of the correlation matrix, here the added term 1
2
λbiν

2
1i (or 1

2
λakθ

2
1k)

actually result in a λbi (λak) more variance for the variance of ν1i (θ1k), where λbi (λak)

takes a very small value. In the actual calculation, a λbi (λak) is chosen to be a small

value proportional to the variance, we use 0.001 here. These regularization terms work

like the priors of the ν1i (θ1k).

Obtain the Approximate Normal Distribution

Consider τ
˜

1 first, once we got τ
˜
∗
1, g

˜
and H evaluated at the approximate posterior mode

τ
˜

1 = τ
˜
∗
1 can also be obtained as

g
˜

1 =
( ∂∆

∂ν11

· · · ∂∆

∂ν1`

∂∆

∂θ
˜

1

)T
|ν
˜
1=ν

˜
∗
1, θ

˜
1=θ

˜
∗
1
,

H1 =



∂2∆
∂ν211

· · · 0 ∂2∆
∂ν11∂θ

˜
1

...
. . .

...
...

0 · · · ∂2∆
∂ν21`

∂2∆
∂ν1`∂θ

˜
1

∂2∆
∂ν11∂θ

˜
1

. . . ∂2∆
∂ν1`∂θ

˜
1

∂2∆
∂θ

˜
2
1


|ν
˜
1=ν

˜
∗
1, θ

˜
1=θ

˜
∗
1
.
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The partial derivatives can be expressed in terms of latent variables ωijk as

∂∆

∂θ1k

=
∑̀
i=1

gi∑
j=1

ωijk −
∑̀
i=1

gi∑
j=1

4∑
s=1

ωijs
exp (θ1k + ν1i)

1 +
∑3

t=1 exp (θ1t + ν1i)
, k = 1, 2, 3;

∂∆

∂ν1i

= −
gi∑
j=1

ωij4 +

gi∑
j=1

4∑
s=1

ωijs
1

1 +
∑3

t=1 exp (θ1t + ν1i)
, i = 1 . . . `;

∂2∆

∂θ2
1k

= −
∑̀
i=1

gi∑
j=1

[ 4∑
s=1

ωijs
exp (θ1k + ν1i)(1 +

∑3
t6=k exp (θ1t + ν1i))

(1 +
∑3

t=1 exp (θ1t + ν1i))2

]
∂2∆

∂θ1k∂θ1h

=
∑̀
i=1

gi∑
j=1

[ 4∑
s=1

ωijs
exp (θ1k + ν1i) exp (θ1h + ν1i)

(1 +
∑3

t=1 exp (θ1t + ν1i))2

]
, 1 ≤ k 6= h ≤ 3;

∂2∆

∂ν2
1i

= −
gi∑
j=1

[ 4∑
s=1

ωijs

∑3
t=1 exp (θ1t + ν1i)

(1 +
∑3

t=1 exp (θ1t + ν1i))2

]
,

and

∂2∆

∂ν1i∂θ1k

= −
gi∑
j=1

[ 4∑
s=1

ωijs
exp (θ1k + ν1i)

(1 +
∑3

t=1 exp (θ1t + ν1i))2

]
.

We use notation g
˜

1 =

g˜11

g
˜

12

 and H1 = −

D1 C ′1

C1 B1

 for computational convenience,

where

g
˜

11 =
( ∂∆

∂ν11

· · · ∂∆

∂ν1`

)T
, g

˜
12 =

∂∆

∂θ
˜

1

,

B1 = −∂
2∆

∂θ
˜

2
1

+ Λa, C1 = −
( ∂2∆

∂ν11∂θ
˜

1

· · · ∂2∆

∂ν1`∂θ
˜

1

)
, D1 = −


∂2∆
∂ν211

· · · 0

...
. . .

...

0 · · · ∂2∆
∂ν21`

+ Λb,

where Λa = diag(λa1, λa2, λa3) and Λb = diag(λb1, . . . , λb`). Here B1 is a 3×3 non-positive

definite square matrix; D1 is a `th order diagonal matrix which is also non-positive definite.

The variance-covariance matrix −H−1
1 can then be constructed from the block matrices

above, since D1 is a nonsingular matrix and the Schur complement B1−C1D
−1
1 C ′1 of D1
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is invertible,

−H−1
1 =

D1 C ′1

C1 B1


−1

=

E1 F ′1

F1 G1

 ,

where

E1 = D−1
1 +D−1

1 C ′1(B1 − C1D
−1
1 C ′1)−1C1D

−1
1 ,

F1 = −(B1 − C1D
−1
1 C ′1)−1C1D

−1
1 ,

G1 = (B1 − C1D
−1
1 C ′1)−1.

According to the Lemma, the estimated mean of the multivariate normal distribution is

τ
˜
∗
1 −H−1

1 g
˜

1 =

ν˜∗1
θ
˜
∗
1

+

E1 F ′1

F1 G1


g˜11

g
˜

12

 =

ν˜∗1 + E1g
˜

11 + F ′1g
˜

12

θ
˜
∗
1 + F1g

˜
11 +G1g

˜
12

 .

Letting

µ
˜
ν1 = ν

˜
∗
1 + E1g

˜
11 + F ′1g

˜
12,

µ
˜
θ1 = θ

˜
∗
1 + F1g

˜
11 +G1g

˜
12,

then the joint posterior density of ν
˜

1, θ
˜

1 | y
˜
, ω
˜

is

ν˜1

θ
˜

1

 | y
˜
∼ Normal

{µ˜ν1
µ
˜
θ1

 ,−H−1
1

}
.

By a property of the multivariate normal distribution, the conditional posterior density

of ν
˜

1 | θ
˜

1, y
˜
, ω
˜

and θ
˜

1 | y
˜
, ω
˜

are

ν
˜

1 | θ
˜

1, y
˜
, ω
˜
∼ N(µ

˜
ν1 −D−1

1 C ′1(θ
˜

1 − µ
˜
θ1), D

−1
1 ),

θ
˜

1 | y
˜
, ω
˜
∼ N(µ

˜
θ1 , G1).
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Similarly for τ
˜

2, g
˜

and H evaluated at the approximate posterior mode τ
˜

2 = τ
˜
∗
2 can also

be obtained as

g
˜

2 =
( ∂∆

∂ν21

· · · ∂∆

∂ν2`

∂∆

∂θ
˜

2

)T
|ν
˜
2=ν

˜
∗
2, θ

˜
2=θ

˜
∗
2
,

H2 =



∂2∆
∂ν221

· · · 0 ∂2∆
∂ν21∂θ

˜
2

...
. . .

...
...

0 · · · ∂2∆
∂ν22`

∂2∆
∂ν2`∂θ

˜
2

∂2∆
∂ν21∂θ

˜
2

. . . ∂2∆
∂ν2`∂θ

˜
2

∂2∆
∂θ

˜
2
2


|ν
˜
2=ν

˜
∗
2, θ

˜
2=θ

˜
∗
2
.

The partial derivatives can be expressed in terms of latent variables ωijk as

∂∆

∂θ2k

=
∑̀
i=1

gi∑
j=1

(yijk − ωijk)−
∑̀
i=1

gi∑
j=1

4∑
s=1

(yijs − ωijs)
exp (θ2k + ν2i)

1 +
∑3

t=1 exp (θ2t + ν2i)
, k = 1, 2, 3;

∂∆

∂ν2i

= −
gi∑
j=1

(yij4 − ωij4) +

gi∑
j=1

4∑
s=1

(yijs − ωijs)
1

1 +
∑3

t=1 exp (θ2t + ν2i)
, i = 1 . . . `;

∂2∆

∂θ2
2k

= −
∑̀
i=1

gi∑
j=1

[ 4∑
s=1

(yijs − ωijs)
exp (θ2k + ν2i)(1 +

∑3
t6=k exp (θ2t + ν2i))

(1 +
∑3

t=1 exp (θ2t + ν2i))2

]
∂2∆

∂θ2k∂θ2h

=
∑̀
i=1

gi∑
j=1

[ 4∑
s=1

(yijs − ωijs)
exp (θ2k + ν2i) exp (θ2h + ν2i)

(1 +
∑3

t=1 exp (θ2t + ν2i))2

]
, 1 ≤ k 6= h ≤ 3;

∂2∆

∂ν2
2i

= −
gi∑
j=1

[ 4∑
s=1

(yijs − ωijs)
∑3

t=1 exp (θ2t + ν2i)

(1 +
∑3

t=1 exp (θ2t + ν2i))2

]
,

and

∂2∆

∂ν2i∂θ2k

= −
gi∑
j=1

[ 4∑
s=1

(yijs − ωijs)
exp (θ2k + ν2i)

(1 +
∑3

t=1 exp (θ2t + ν2i))2

]
.

We use notation g
˜

1 =

g˜21

g
˜

22

 and H2 = −

D2 C ′2

C2 B2

 for computational convenience,

where

g
˜

21 =
( ∂∆

∂ν21

· · · ∂∆

∂ν2`

)T
, g

˜
22 =

∂∆

∂θ
˜

2

,
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B2 = −∂
2∆

∂θ
˜

2
2

+ Λc, C2 = −
( ∂2∆

∂ν21∂θ
˜

2

· · · ∂2∆

∂ν2`∂θ
˜

2

)
, D2 = −


∂2∆
∂ν221

· · · 0

...
. . .

...

0 · · · ∂2∆
∂ν22`

+ Λd ,

where Λc = diag(λc1, λc2, λc3) and Λd = diag(λd1, . . . , λd`). Here B2 is a 3×3 non-positive

definite square matrix; D2 is a `th order diagonal matrix which is also non-positive

definite. The variance-covariance matrix −H−1
2 can then be constructed in the same way,

−H−1
2 =

D2 C ′2

C2 B2


−1

=

E2 F ′2

F2 G2

 ,

where

E2 = D−1
2 +D−1

2 C ′2(B2 − C2D
−1
2 C ′2)−1C2D

−1
2 ,

F2 = −(B2 − C2D
−1
2 C ′2)−1C2D

−1
2 ,

G2 = (B2 − C2D
−1
2 C ′2)−1.

The mean estimation for τ
˜

2 is

τ
˜
∗
2 −H−1

2 g
˜

2 =

ν˜∗2
θ
˜
∗
2

+

E2 F ′2

F2 G2


g˜21

g
˜

22

 =

ν˜∗2 + E2g
˜

21 + F ′2g
˜

22

θ
˜
∗
2 + F2g

˜
21 +G2g

˜
22

 .

Let

µ
˜
ν2 = ν

˜
∗
2 + E2g

˜
21 + F ′2g

˜
22,

µ
˜
θ2 = θ

˜
∗
2 + F2g

˜
21 +G2g

˜
22,
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then the joint posterior density of ν
˜

2, θ
˜

2 | y
˜
, ω
˜

is

ν˜2

θ
˜

2

 | y
˜
∼ Normal

{µ˜ν2
µ
˜
θ2

 ,−H−1
2

}
.

Therefore, the conditional posterior density of ν
˜

2 | θ
˜

2, y
˜
, ω
˜

and θ
˜

2 | y
˜
, ω
˜

are

ν
˜

2 | θ
˜

2, y
˜
, ω
˜
∼ N(µ

˜
ν2 −D−1

2 C ′2(θ
˜

2 − µ
˜
θ2), D

−1
2 ),

θ
˜

2 | y
˜
, ω
˜
∼ N(µ

˜
θ2 , G2).

So far, we have a closed form of the approximate normal distribution of ν
˜

1 | θ
˜

1, y
˜
, ω
˜

and

θ
˜

1 | y
˜
, ω
˜

; ν
˜

2 | θ
˜

2, y
˜
, ω
˜

and θ
˜

2 | y
˜
, ω
˜

, based on which we build the integrated nested normal

approximation Model (INNA).

3.3 The Integrated Nested Normal Approximation

Model

Now we plan to add priors for ν
˜

1 and ν
˜

2 upon the approximate conditional densities. We

will keep the prior π(θ
˜

1) = 1, π(θ
˜

2) = 1 meanwhile.

3.3.1 Case of Independent ν1 and ν2

First, we consider the situation when ν
˜

1 and ν
˜

2 are independent, with priors

ν
˜

1 | δ2
1 ∼ N(0

˜
, δ2

1I), ν
˜

2 | δ2
2 ∼ N(0

˜
, δ2

2I)

and together with the joint prior

π(δ2
1, δ

2
2) ∝ 1

(1 + δ2
1)2

1

(1 + δ2
2)2

.
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then we have the following approximation model for (ν
˜

1, θ
˜

1) and (ν
˜

2, θ
˜

2) separately, and

the conditional distribution of all the stages are normal distributions, Finally, by the

multiplication rule, we can write out the posterior joint distribution of all the parameters

as

π(ν
˜
, θ
˜
, δ2

1, δ
2
2 | y

˜
, ω
˜

) ∝π(ν
˜
| θ

˜
, y
˜
, ω
˜

)π(θ
˜
| y

˜
, ω
˜

)π(ν
˜
| δ2

1, δ
2
2)π(δ2

1, δ
2
2)

∝π(ν
˜

1, θ
˜

1, δ
2
1 | y

˜
, ω
˜

)π(ν
˜

2, θ
˜

2, δ
2
2 | y

˜
, ω
˜

)

∝π(ν
˜

1 | θ
˜

1, y
˜
, ω
˜

)π(θ
˜

1 | y
˜
, ω
˜

)π(ν
˜

1 | δ2
1)

×π(ν
˜

2 | θ
˜

2, y
˜
, ω
˜

)π(θ
˜

2 | y
˜
, ω
˜

)π(ν
˜

2 | δ2
2)

×π(δ2
1, δ

2
2).

Observing that ν
˜

1 and ν
˜

2 are independent and also the prior for (δ2
1, δ

2
2) are separable so

that we can deal with the parameter set (ν
˜

1, θ
˜

1, δ
2
1) and (ν

˜
2, θ

˜
2, δ

2
2) independently given

the data y
˜

and latent variable ω
˜

. Hence we study the posterior joint distribution for

(ν
˜

1, θ
˜

1, δ
2
1) first

π(ν
˜

1, θ
˜

1, δ
2
1 | y

˜
, ω
˜

)

∝ π(ν
˜

1 | θ
˜

1, y
˜
, ω
˜

)π(θ
˜

1 | y
˜
, ω
˜

)π(ν
˜

1 | δ2
1)π(δ2

1)

∝ 1

|D−1
1 )|1/2

e−
1
2

[ν
˜
1−(µ

˜
ν1−D

−1
1 C′1(θ

˜
1−µ

˜
θ1

))]′D1[ν
˜
1−(µ

˜
ν1−D

−1
1 C′1(θ

˜
1−µ

˜
θ1

))]

× 1

|G1|1/2
e−

1
2

(θ
˜
1−µ

˜
θ1

)′G−1
1 (θ

˜
1−µ

˜
θ1

) × 1

|δ2
1I|1/2

e−
1
2
ν
˜
′
1(δ21I)

−1ν
˜
1 × 1

(1 + δ2
1)2

,

and consequently get the posterior conditional distributions for each parameter. Start

with ν
˜

1, we have

ν
˜

1 | δ2
1, θ

˜
1, y

˜
, ω
˜
∼ N{(D1 +

1

δ2
1

I)−1(D1µ
˜
ν1 − C ′1(θ

˜
1 − µ

˜
θ1)), (D1 +

1

δ2
1

I)−1}.
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Since ν
˜

1 has a multivariate normal distribution, we can integrate out ν
˜

1 from the joint

posterior density π(ν
˜

1, θ
˜

1, δ
2
1 | y

˜
, ω
˜

) and get the joint posterior density of θ
˜

1 and δ2
1 as

π(θ
˜

1, δ
2
1 | y

˜
, ω
˜

)

∝ e−
1
2
{[µ

˜
ν1−D

−1
1 C′1(θ

˜
1−µ

˜
θ1

)]′(D1+δ21I)
−1[µ

˜
ν1−D

−1
1 C′1(θ

˜
1−µ

˜
θ1

)]+(θ
˜
1−µ

˜
θ1

)′G−1
1 (θ

˜
1−µ

˜
θ1

)}

× |D1|1/2

|D1 + 1
δ21
I|1/2|δ2

1I|1/2|G1|1/2
1

(1 + δ2
1)2

.

So that,

θ
˜

1 | δ2
1, y

˜
, ω
˜
∼

N{(C1D
−1
1 (D−1

1 + δ2
1I)−1D−1

1 C ′1 +G−1
1 )−1[(µ

˜
ν1 + µ

˜

′
θ1
C1D

−1
1 )(D−1

1 + δ2
1I)−1D−1

1 C ′1 + µ
˜

′
θ1
G−1

1 ]

, (C1D
−1
1 (D−1

1 + δ2
1I)−1D−1

1 C ′1 +G−1
1 )−1} .

Now by integrating out θ
˜

1

δ2
1 | y

˜
, ω
˜
∝

|D1|1/2

|D1 + 1
δ21
I|1/2|δ2

1I|1/2|G1|1/2
1

(1 + δ2
1)2
|C1D

−1
1 (D−1

1 + δ2
1I)−1D−1

1 C ′1 +G−1
1 |1/2.

Then we can draw δ2
1 using grid method. A Similar approach applies for the parameter

set (ν
˜

2, θ
˜

2, δ
2
2) with data y

˜
− ω

˜
instead of ω

˜
in obtaining the second order derivatives.

Based on the joint posterior distribution for (ν
˜

2, θ
˜

2, δ
2
2)

π(ν
˜

2, θ
˜

2, δ
2
2 | y

˜
, ω
˜

)

∝ π(ν
˜

2 | θ
˜

2, y
˜
, ω
˜

)π(θ
˜

2 | y
˜
, ω
˜

)π(ν
˜

2 | δ2
2)π(δ2

2)

∝ 1

|D−1
2 )|1/2

e−
1
2

[ν
˜
2−(µ

˜
ν2−D

−1
2 C′2(θ

˜
2−µ

˜
θ2

))]′D2[ν
˜
2−(µ

˜
ν2−D

−1
2 C′2(θ

˜
2−µ

˜
θ2

))]

× 1

|G2|1/2
e−

1
2

(θ
˜
2−µ

˜
θ2

)′G−1
2 (θ

˜
2−µ

˜
θ2

) × 1

|δ2
2I|1/2

e−
1
2
ν
˜
′
2(δ22I)

−1ν
˜
2 × 1

(1 + δ2
2)2

.
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So that,

ν
˜

2 | δ2
2, θ

˜
2, y

˜
, ω
˜
∼ N{(D2 +

1

δ2
2

I)−1(D2µ
˜
ν2 − C ′2(θ

˜
2 − µ

˜
θ2)), (D2 +

1

δ2
2

I)−1}.

Similarly, we can integrate out ν
˜

2 from the joint posterior density π(ν
˜

2, θ
˜

2, δ
2
2 | y

˜
, ω
˜

) and

get the joint posterior density of θ
˜

2 and δ2
2 as

π(θ
˜

2, δ
2
2 | y

˜
, ω
˜

)

∝ e−
1
2
{[µ

˜
ν2−D

−1
2 C′2(θ

˜
2−µ

˜
θ2

)]′(D2+δ22I)
−1[µ

˜
ν2−D

−1
2 C′2(θ

˜
2−µ

˜
θ2

)]+(θ
˜
2−µ

˜
θ2

)′G−1
2 (θ

˜
2−µ

˜
θ2

)}

× |D2|1/2

|D2 + 1
δ22
I|1/2|δ2

2I|1/2|G2|1/2
1

(1 + δ2
2)2

.

So that,

θ
˜

2 | δ2
2, y

˜
, ω
˜
∼

N{(C2D
−1
2 (D−1

2 + δ2
2I)−1D−1

2 C ′2 +G−1
2 )−1[(µ

˜
ν2 + µ

˜

′
θ2
C2D

−1
2 )(D−1

2 + δ2
2I)−1D−1

2 C ′2 + µ
˜

′
θ2
G−1

2 ]

, (C2D
−1
2 (D−1

2 + δ2
2I)−1D−1

2 C ′2 +G−1
2 )−1}.

Now by integrating out θ
˜

2

δ2
2 | y

˜
, ω
˜
∝

|D2|1/2

|D2 + 1
δ22
I|1/2|δ2

2I|1/2|G2|1/2
1

(1 + δ2
2)2
|C2D

−1
2 (D−1

2 + δ2
2I)−1D−1

2 C ′2 +G−1
2 |1/2.

Then we can draw δ2
2 using grid method.

67



3.3.2 Case of Correlated ν1 and ν2

Now we assume a general case that ν
˜

1 and ν
˜

2 are correlated with the correlation denoted

as ρ, which is

ν1
˜
, ν2

˜
| δ2

1, δ
2
2, ρ ∼ Normal

{
0
˜
,M
}

where M =

 δ2
1I`×` ρδ1δ2I`×`

ρδ1δ2I`×` δ2
2I`×`

, representing the covariate matrix with correlation

ρ and I is a `× ` identity matrix, together with the joint prior of δ2
1, δ

2
2

π(δ2
1, δ

2
2, ρ) ∝ 1

(1 + δ2
1)2

1

(1 + δ2
2)2

.

With the combined parameter vector ν
˜

=

ν˜1

ν
˜

2

 and θ
˜

=

θ˜1

θ
˜

2

, the joint probability

density function

π(ν
˜
, θ
˜
, δ2

1, δ
2
2, ρ | y

˜
, ω
˜

)

∝π(ν
˜
| θ

˜
, y
˜
, ω
˜

)π(θ
˜
| y

˜
, ω
˜

)π(ν
˜
| δ2

1, δ
2
2, ρ)π(δ2

1, δ
2
2)

∝ 1

|D−1)|1/2
e−

1
2

[ν
˜
−(µ

˜
ν−D−1C′(θ

˜
−µ

˜
θ))]′D[ν

˜
−(µ

˜
ν−D−1C′(θ

˜
−µ

˜
θ))]

× 1

|G|1/2
e−

1
2

(θ
˜
−µ

˜
θ)′G−1(θ

˜
−µ

˜
θ) × 1

|M |1/2
e−

1
2
ν
˜
′M−1ν

˜ ×
1

(1 + δ2
1)2

1

(1 + δ2
2)2

where D =

D1 0

0 D2

 , C =

C1 0

0 C2

 , G =

G1 0

0 G2

 , and D1, C1, G1 are the

matrix corresponding to the latent variable ω
˜

in obtaining the Hessian matrix of ν
˜

1, θ
˜

1;

D2, C2, G2 are those corresponding to y
˜
− ω

˜
in obtaining the Hessian matrix of ν

˜
2, θ

˜
2,
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with µ
˜
ν =

µ˜ν1
µ
˜
ν2

 and µ
˜
θ =

µ˜θ1
µ
˜
θ2

 . Then,

ν
˜
| θ

˜
, δ2

1, δ
2
2, ρ, y

˜
, ω
˜
∼ N{(D +M−1)−1(Dµ

˜
ν − C ′(θ

˜
− µ

˜
θ)), (D +M−1)−1}.

Similarly ν
˜

has a multivariate normal distribution, we can integrate out ν
˜

from the joint

posterior density π(ν
˜
, θ
˜
, δ2

1, δ
2
2, ρ | y

˜
, ω
˜

) and get the joint posterior density of θ
˜

and δ2
1, δ

2
2, ρ

as

π(θ
˜
, δ2

1, δ
2
2, ρ | y

˜
, ω
˜

)

∝ e−
1
2
{[µ

˜
ν−D−1C′(θ

˜
−µ

˜
θ)]′(D+M)−1[µ

˜
ν−D−1C′(θ

˜
−µ

˜
θ)]+(θ

˜
−µ

˜
θ)′G−1(θ

˜
−µ

˜
θ)}

× |D|1/2

|D +M−1|1/2|M |1/2|G|1/2
1

(1 + δ2
1)2

1

(1 + δ2
2)2

.

So that,

θ
˜
| δ2

1, δ
2
2, ρ, y

˜
, ω
˜
∼

N{(CD−1(D−1 +M)−1D−1C ′ +G−1)−1[(µ
˜
ν + µ

˜

′
θCD

−1)(D−1 +M)−1D−1C ′ + µ
˜

′
θG
−1]

, (CD−1(D−1 +M)−1D−1C ′ +G−1)−1} .

Now by integrating out θ
˜
,

δ2
1, δ

2
2, ρ | y

˜
, ω
˜
∝

|D|1/2

|D +M−1|1/2|M |1/2|G|1/2
1

(1 + δ2
1)2

1

(1 + δ2
2)2
|CD−1(D−1 +M)−1D−1C ′ +G−1|1/2 .

Then we can draw δ2
1, δ

2
2, ρ using a Gibbs sampler with grid method. When ρ = 0, it can

be shown that the correlated model degenerates to the model of the independent ν
˜

1, ν
˜

2

case.
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3.4 Complete Generalized Mixed Effects Model With-

out Approximations

We now use a proper Cauchy prior on θ
˜

1, θ
˜

2,

π(θsk) =
1

πσ∗sk[1 + (
θsk−θ∗sk
σ∗sk

)2]
, s = 1, 2, k = 1, 2, 3,

where θ∗sk and σ∗sk are the posterior mean and standard deviation of θsk, calculated from

the Gibbs sampler from the approximation model with correlated ν
˜

1, ν
˜

2. The Cauchy

prior is necessary here which helps to avoid the extremely long range dependence in the

Gibbs sampler. Back to the posterior density function of the generalized mixed effects

model, under the correlated prior of ν
˜

1 and ν
˜

2, which is

π(ν
˜

1, ν
˜

2, θ
˜

1, θ
˜

2, δ
2
1, δ

2
2, ρ | y

˜
, ω
˜

)

∝ π(y
˜
, ω
˜
| ν

˜
1, ν

˜
2, θ

˜
1, θ

˜
2)π(ν

˜
1, ν

˜
2 | δ2

1, δ
2
2, ρ)π(δ2

1, δ
2
2)π(θ

˜
1, θ

˜
2)

=
∏̀
i=1

{
gi∏
j=1

[
3∏

k=1

( pij exp (θ1k + ν1i)

1 +
∑3

s=1 exp (θ1s + ν1i)

)ωijk( pij

1 +
∑3

s=1 exp (θ1s + ν1i)

)ωij4
3∏

k=1

( (1− pij) exp (θ2k + ν2i)

1 +
∑3

s=1 exp (θ2s + ν2i)

)yijk−ωijk( 1− pij
1 +

∑3
s=1 exp (θ2s + ν2i)

)yij4−ωij4]

× 1

2πδ1δ2

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[ν2
1i

δ2
1

− 2ρν1iν2i

δ1δ2

+
ν2

2i

δ2
2

])}
× 1

(1 + δ2
1)2

1

(1 + δ2
2)2

×
2∏
s=1

3∏
k=1

1

πσ∗sk[1 + (
θsk−θ∗sk
σ∗sk

)2]

∝
∏̀
i=1

{
gi∏
j=1

[
exp

∑3
k=1(θ1k + ν1i)ωijk

[1 +
∑3

s=1 exp (θ1s + ν1i)]
∑4
k=1 ωijk

exp
∑3

k=1(θ2k + ν2i)(yijk − ωijk)
[1 +

∑3
s=1 exp (θ2s + ν2i)]

∑4
k=1 yijk−ωijk

]

× 1

2πδ1δ2

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[ν2
1i

δ2
1

− 2ρν1iν2i

δ1δ2

+
ν2

2i

δ2
2

])}
× 1

(1 + δ2
1)2

1

(1 + δ2
2)2

×
2∏
s=1

3∏
k=1

1

πσ∗sk[1 + (
θsk−θ∗sk
σ∗sk

)2]
.

Thus based on the joint posterior distribution above, we construct the conditional dis-
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tribution of each parameter and execute a complete Gibbs sampler among the full parame-

ter space. We denote the samples drawn from section 3.3.2 as {θ
˜

(h)
1 , θ

˜

(h)
2 , δ

2(h)
1 , δ

2(h)
2 , ρ(h)} , h =

1, . . . ,M , with avg() and std() representing the process of taking the sample mean and

the sample standard deviation.

Step 1 Start from some initial values of δ
2(0)
1 , δ

2(0)
2 , ρ(0), ν

˜

(0)
1 , ν

˜

(0)
2 , ω

˜
(0);

Step 2 Draw θ
˜

(0)
1 from θ

˜
1 | ν

˜

(0)
1 , ω

˜
(0), y

˜
using grid method, using the intervals

(avg(θ
˜

(h)
1 )− 10 · std(θ

˜

(h)
1 ), avg(θ

˜

(h)
1 ) + 10 · std(θ

˜

(h)
1 ));

draw θ
˜

(0)
2 from θ

˜
2 | ν

˜

(0)
2 , ω

˜
(0), y

˜
using grid method, using the intervals

(avg(θ
˜

(h)
2 )− 10 · std(θ

˜

(h)
2 ), avg(θ

˜

(h)
2 ) + 10 · std(θ

˜

(h)
2 )).

Step 3 Draw τ
(1)
1 = 1/(1+δ

2(1)
1 ), τ

(1)
2 = 1/(1+δ

2(1)
2 ), ρ(1) from τ1, τ2, ρ | θ

˜

(0)
1 , θ

˜

(0)
2 , ν

˜

(0)
1 , ν

˜

(0)
2 , ω

˜
(0), y

˜
using the grid method with the intervals (0,1), (0,1), (-1,1) correspondingly.

Step 4 Draw ω
˜

(1) from binomial distribution given θ
˜

(0)
1 , θ

˜

(0)
2 , ν

˜

(0)
1 , ν

˜

(0)
2 , y

˜
,

ωijk | πi1k, πi2k, yijk
ind∼ Binomial{yijk,

pijπi1k
pijπi1k + (1− pij)πi2k

},

i = 1, . . . , `, j = 1, . . . , gi, k = 1, 2, 3, 4

with

πi1k =
exp (θ1k + ν1i)

1 +
∑3

t=1 exp (θ1t + ν1i)
, k = 1, 2, 3; πi14 =

1

1 +
∑3

t=1 exp (θ1t + ν1i)
,

πi2k =
exp (θ2k + ν2i)

1 +
∑3

t=1 exp (θ2t + ν2i)
, k = 1, 2, 3; πi24 =

1

1 +
∑3

t=1 exp (θ2t + ν2i)
.

Step 5 We begin with a simplification step for the prior of ν
˜

1, ν
˜

2. Given the multivariate
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normal distributionν˜1

ν
˜

2

 ∼ Normal

{0
˜
0
˜

 ,

 δ2
1I`×` ρδ1δ2I`×`

ρδ1δ2I`×` δ2
2I`×`

},
by the property of the multivariate normal distribution, the conditional distribution of

the multivariate normal still follows normal distribution, so we draw ν1i and ν2i simulta-

neously as

ν1i ∼Normal{0, δ2
1}

ν2i | ν1i ∼Normal{ρδ2

δ1

ν1i, δ2

√
1− ρ2}, i = 1, . . . , `.

so that we can draw ν1i independently from ν2i. The conditional posterior distribution

of ν1i is

gi∏
j=1

[
exp

∑3
k=1(θ1k + ν1i)ωijk

[1 +
∑3

s=1 exp (θ1s + ν1i)]
∑4
k=1 ωijk

][
− 1√

2πδ2
1

exp(− ν
2
1i

2δ2
1

)

]
,

then we can draw ν
˜

(1)
1 from the conditional distribution ν

˜
1 | δ2(1)

1 , θ
˜

(1)
1 , ω

˜
(1), y

˜
using grid

method with interval

(ν
˜
∗
1 − 10 · avg(δ

(h)
1 ), ν

˜
∗
1 + 10 · avg(δ

(h)
1 )),

where ν
˜
∗
1 is the quasi-mode, and δ

(h)
1 is the square root of δ

2(h)
1 .

Next ν
˜

2 = {ν2i, i = 1, . . . , `} is drawn from the conditional posterior distribution

gi∏
j=1

[
exp

∑3
k=1(θ2k + ν2i)(yijk − ωijk)

[1 +
∑3

s=1 exp (θ2s + ν2i)]
∑4
k=1 yijk−ωijk

][
− 1√

2π(1− ρ2)δ2
2

exp(−
(ν2i − ρδ2

δ1
ν1i)

2

2δ2
1(1− ρ2)

)

]
,
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given ν
˜

(1)
1 , θ

˜

(1)
2 , δ

2(1)
2 , ρ(1), ω

˜
(1), y

˜
, with grid interval for ν

(1)
2i constructed as

(
ρ(1)δ

(1)
2

δ
(1)
1

ν
(1)
1i − 10 · δ(1)

2

√
1− (ρ(1))2,

ρ(1)δ
(1)
2

δ
(1)
1

ν
(1)
1i + 10 · δ(1)

2

√
1− (ρ(1))2

)
.

Once we get the ν
˜

(1)
2 , we complete one circle of the full Gibbs sampler and get back to

the first step to continue.

3.5 Application to College Cheating and Compar-

isons

In this section, we provide a detailed 4-cell estimation results on the college cheating

data.

In summary, the full Gibbs sampler on the generalized mixed effects model provides a

similar posterior mean with the combined Bayesian model. Since the generalized mixed

effects model have less parameters, the posterior standard deviation is smaller for the

first three cells. However, the posterior mean are similar.

Also, all the approximation methods based on the generalized mixed effects model,

with the different degree of the flexibility involved, will provide a reasonable estimation

for the finite population proportion estimation for most areas, except for area 3, 4, 11 and

15, the estimation seems to be larger than Bayesian combined model and the generalized

mixed effects model.

Here we first consider a goodness-of-fit statistic called conditional predictive ordinate

(CPO). Larger values of CPO indicates better fit, see Geisser and Eddy (1979). Then for

each area group (ij), a Monte Carlo approximation of CPOij is

ĈPOij =
{ 1

M

M∑
h=1

1

f(nij | π
˜

(h)
ij )

}−1

, j = 1, . . . , nj = 2; i = 1, . . . , `,
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where

π
(h)
ijk = pijkπ

(h)
i1k + (1− pij)π(h)

i2k, k = 1, . . . , 4; h = 1, . . . ,M,

π
(h)
i1k and π

(h)
i2k, k = 1, . . . , 4; h = 1, . . . ,M, are the samples from the block Gibbs sampler

in Chapter 2, with f(nij | π
˜
ij) denoting the multinomial likelihood function. Correspond-

ingly, from the re-parameterization equation (3.1.1), π
˜

(h)
ij for the generalized mixed effects

model can be obtained by transforming the samples of θ
˜

1, θ
˜

2, ν
˜

1, ν
˜

2,

π
(h)
ijk = pijkπi1k(θ

˜

(h)
1 , ν

˜

(h)
1 ) + (1− pij)πi2k(θ

˜

(h)
2 , ν

˜

(h)
2 ), h = 1, . . . ,M.

In fact, ĈPOij the harmonic mean of the likelihoods f(nij | π
˜

(h)
ij ), h = 1, . . . ,M . A

summary statistic of the CPOij, log pseudo marginal likelihood (LPML) is given by

LPML =
∑̀
i

ni∑
j

log(ĈPOij).

Also, larger value indicates a better fitting.

With respect to the cheating data, 18 out of the 30 CPOs are larger for the generalized

mixed effects model than the Bayesian combined model in Chapter 2. LPML for the

generalized mixed effects model is -137.6, which is larger than -140.9, indicating that the

generalized mixed effects model fits the college cheating data better.

For the 325 observations from 15 areas, the multinomial-Dirichlet model in Chapter 2

takes about 20 minutes while the approximation methods M1, M2.A, M2.B will all take

less than 1 minute; the full Gibbs sampler on the exact generalized mixed effects model

M2.C also takes about 6 minutes even though the process will experience a long run to

reach the convergence.

When the number of areas increased to 105 by simply concatenating 7 college cheat-

ing data samples into a single one, the computation took more than 1 hour in Chapter

2 while the generalized mixed effects model took less than 3 minutes. The computing

times are calculated based on the FORTRAN codes, and R program took more than an
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hour, even after improving the efficiency by Rcpp package. In this regard, it will be a

huge difference with more areas involved.

Table 3.1 shows the result from the approximation model with independent ν
˜

1 and ν
˜

2

(M1). We keep the latent variable fixed at ω
˜

= ω
˜
∗, which comes from the EM algorithm

in obtaining the quasi-modes. ν
˜

1, θ
˜

1, δ
2
1 and ν

˜
2, θ

˜
2, δ

2
2 can be drawn independently. After

drawing ν
˜

1 and θ
˜

1 are drawn from the posterior conditional distribution which are both

normal, and then δ2
1 can be drawn from the grid method. Finally we get 1000 set of

samples of (ν
˜

1, θ
˜

1, δ
2
1) and (ν

˜
2, θ

˜
2, δ

2
2), where we can get our finite population proportion

estimation. Also, these samples are saved to fed into the full Gibbs sampler in the

complete generalized mixed effects model.
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Table 3.1: Finite population proportion estimation for π1, π1 of the college cheating
data using the approximation method with independent ν1, ν2 (M1) in compare with
the combined model.

PM PSD
Area π11 π12 π13 π14 π11 π12 π13 π14

a. Combined model

1 0.099 0.729 0.065 0.106 0.063 0.107 0.067 0.082
2 0.120 0.717 0.060 0.103 0.078 0.119 0.063 0.084
3 0.149 0.677 0.044 0.131 0.077 0.114 0.045 0.098
4 0.142 0.643 0.049 0.166 0.083 0.128 0.053 0.119
5 0.109 0.739 0.052 0.100 0.070 0.114 0.055 0.081
6 0.149 0.690 0.060 0.102 0.087 0.116 0.062 0.080
7 0.105 0.725 0.046 0.124 0.067 0.117 0.051 0.100
8 0.137 0.676 0.072 0.115 0.076 0.120 0.071 0.090
9 0.174 0.670 0.050 0.107 0.097 0.119 0.052 0.083
10 0.130 0.720 0.049 0.101 0.074 0.106 0.053 0.082
11 0.139 0.637 0.072 0.152 0.084 0.124 0.074 0.111
12 0.175 0.632 0.068 0.125 0.099 0.120 0.064 0.096
13 0.104 0.694 0.068 0.135 0.071 0.125 0.066 0.101
14 0.145 0.698 0.050 0.107 0.079 0.110 0.050 0.080
15 0.143 0.659 0.057 0.141 0.070 0.116 0.055 0.099

b. Approximation method M1

1 0.129 0.727 0.087 0.057 0.028 0.056 0.028 0.057
2 0.125 0.705 0.084 0.087 0.030 0.085 0.029 0.099
3 0.071 0.402 0.047 0.479 0.024 0.101 0.020 0.129
4 0.057 0.319 0.038 0.586 0.023 0.109 0.019 0.139
5 0.122 0.685 0.082 0.111 0.032 0.104 0.029 0.127
6 0.126 0.707 0.084 0.083 0.031 0.085 0.029 0.100
7 0.127 0.712 0.085 0.076 0.029 0.068 0.029 0.077
8 0.126 0.711 0.085 0.079 0.029 0.084 0.028 0.099
9 0.126 0.711 0.084 0.079 0.029 0.081 0.029 0.095
10 0.128 0.722 0.086 0.064 0.029 0.069 0.028 0.077
11 0.050 0.278 0.033 0.639 0.028 0.138 0.020 0.177
12 0.114 0.640 0.076 0.170 0.028 0.085 0.025 0.100
13 0.112 0.629 0.075 0.185 0.028 0.087 0.026 0.107
14 0.130 0.736 0.088 0.046 0.027 0.056 0.028 0.055
15 0.079 0.444 0.053 0.424 0.021 0.078 0.019 0.098
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Figure 3.1: The posterior density plot of θ1, θ2, δ2
1, δ2

2 and ρ
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Table 3.2 shows the case when ν
˜

1 and ν
˜

2 are correlated (M2.A). With the latent

variable ω
˜

still fixed at ω
˜
∗, those 1000 samples of (δ2

1, δ
2
1) are fed into the model to draw

the correlation parameter ρ, and in the end we get 1000 sets of samples of (θ
˜

1, θ
˜

2, δ
2
1, δ

2
2, ρ)

to get the proportion estimation. Figure 3.1 shows the posterior density plot of those

samples.

Table 3.2: Finite population proportion estimation for π1, π2 of the college cheating
data using the approximation method with correlated ν1, ν2 (M2.A) in compare with
the combined model.

PM PSD
Area π11 π12 π13 π14 π11 π12 π13 π14

a. Combined model

1 0.099 0.729 0.065 0.106 0.063 0.107 0.067 0.082
2 0.120 0.717 0.060 0.103 0.078 0.119 0.063 0.084
3 0.149 0.677 0.044 0.131 0.077 0.114 0.045 0.098
4 0.142 0.643 0.049 0.166 0.083 0.128 0.053 0.119
5 0.109 0.739 0.052 0.100 0.070 0.114 0.055 0.081
6 0.149 0.690 0.060 0.102 0.087 0.116 0.062 0.080
7 0.105 0.725 0.046 0.124 0.067 0.117 0.051 0.100
8 0.137 0.676 0.072 0.115 0.076 0.120 0.071 0.090
9 0.174 0.670 0.050 0.107 0.097 0.119 0.052 0.083
10 0.130 0.720 0.049 0.101 0.074 0.106 0.053 0.082
11 0.139 0.637 0.072 0.152 0.084 0.124 0.074 0.111
12 0.175 0.632 0.068 0.125 0.099 0.120 0.064 0.096
13 0.104 0.694 0.068 0.135 0.071 0.125 0.066 0.101
14 0.145 0.698 0.050 0.107 0.079 0.110 0.050 0.080
15 0.143 0.659 0.057 0.141 0.070 0.116 0.055 0.099

b. Approximation method M2.A

1 0.129 0.729 0.088 0.055 0.026 0.052 0.029 0.051
2 0.122 0.690 0.083 0.105 0.030 0.099 0.030 0.119
3 0.066 0.371 0.045 0.518 0.022 0.100 0.020 0.128
4 0.058 0.330 0.040 0.572 0.023 0.110 0.020 0.142
5 0.118 0.671 0.081 0.130 0.032 0.109 0.030 0.135
6 0.122 0.690 0.084 0.105 0.029 0.095 0.029 0.115
7 0.130 0.734 0.089 0.047 0.027 0.057 0.030 0.057
8 0.129 0.730 0.088 0.053 0.027 0.061 0.029 0.064
9 0.127 0.718 0.087 0.069 0.028 0.068 0.028 0.074
10 0.128 0.725 0.088 0.060 0.026 0.060 0.028 0.061
11 0.047 0.265 0.032 0.656 0.026 0.136 0.020 0.175
12 0.114 0.643 0.078 0.166 0.026 0.077 0.026 0.089
13 0.116 0.656 0.080 0.148 0.026 0.079 0.028 0.092
14 0.131 0.742 0.090 0.037 0.026 0.046 0.029 0.038
15 0.078 0.441 0.054 0.428 0.019 0.079 0.020 0.099
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Table 3.3 (M2.B) shows the estimation result when the latent variable ω
˜

are drawn

from the binomial distributions fixed at the quasi-mode of ν
˜
∗. All the approximation

methods so far will provide a reasonable finite population proportion estimation compared

to the combined model in Chapter 2.

Table 3.3: Finite population proportion estimation for π1, π2 of the college cheating data
using the third approximation method with correlated ν1, ν2 and flexible ω (M2.B) in
compare with the combined model.

PM PSD
Area π11 π12 π13 π14 π11 π12 π13 π14

a. Combined model

1 0.099 0.729 0.065 0.106 0.063 0.107 0.067 0.082
2 0.120 0.717 0.060 0.103 0.078 0.119 0.063 0.084
3 0.149 0.677 0.044 0.131 0.077 0.114 0.045 0.098
4 0.142 0.643 0.049 0.166 0.083 0.128 0.053 0.119
5 0.109 0.739 0.052 0.100 0.070 0.114 0.055 0.081
6 0.149 0.690 0.060 0.102 0.087 0.116 0.062 0.080
7 0.105 0.725 0.046 0.124 0.067 0.117 0.051 0.100
8 0.137 0.676 0.072 0.115 0.076 0.120 0.071 0.090
9 0.174 0.670 0.050 0.107 0.097 0.119 0.052 0.083
10 0.130 0.720 0.049 0.101 0.074 0.106 0.053 0.082
11 0.139 0.637 0.072 0.152 0.084 0.124 0.074 0.111
12 0.175 0.632 0.068 0.125 0.099 0.120 0.064 0.096
13 0.104 0.694 0.068 0.135 0.071 0.125 0.066 0.101
14 0.145 0.698 0.050 0.107 0.079 0.110 0.050 0.080
15 0.143 0.659 0.057 0.141 0.070 0.116 0.055 0.099

b. Approximation method M2.B

1 0.122 0.693 0.084 0.101 0.029 0.094 0.029 0.113
2 0.118 0.668 0.081 0.133 0.032 0.125 0.030 0.155
3 0.079 0.450 0.054 0.416 0.026 0.122 0.023 0.155
4 0.064 0.364 0.044 0.527 0.027 0.133 0.023 0.172
5 0.118 0.671 0.082 0.130 0.031 0.116 0.030 0.143
6 0.116 0.657 0.080 0.148 0.032 0.127 0.030 0.159
7 0.124 0.701 0.085 0.091 0.030 0.101 0.031 0.123
8 0.123 0.697 0.085 0.095 0.030 0.103 0.030 0.126
9 0.122 0.691 0.084 0.103 0.030 0.104 0.030 0.127
10 0.123 0.698 0.085 0.094 0.029 0.092 0.029 0.111
11 0.049 0.279 0.034 0.637 0.029 0.152 0.023 0.196
12 0.113 0.635 0.077 0.175 0.029 0.100 0.028 0.125
13 0.115 0.648 0.079 0.158 0.029 0.098 0.028 0.122
14 0.126 0.714 0.087 0.074 0.028 0.087 0.029 0.102
15 0.088 0.500 0.061 0.351 0.025 0.108 0.024 0.136

79



In the end, Table 3.4 provides the estimation result from the full Gibbs sampler for the

exact posterior function model of the generalized mixed effects model assisted with the

intervals provided by the approximation in M2.A. The finite population mean estimations

for π
˜

1 from both models are similar, the standard deviation estimation for π11, π12 and

π13 using the generalized mixed effects model are smaller than the combined model in

Chapter 2. Meanwhile the standard deviation estimation for π14 tend to be larger since π
˜

1

are added up to a fixed value 1. Table 3.5 also gives the corresponding 95% HPD interval

estimation, illustrated by Figure 3.2 to Figure 3.5. In comparison with the combined

model, the generalized mixed effects model gives shorter estimation intervals for π11,

π12 and π13. Especially for π12, the generalized mixed effects model provide informative

smaller interval estimations for section 4, 11 and 13, which are consistent with the counts

data we collected. As a result in Figure 3.5, the intervals are larger for π14 at those

sections. For other sections, even though the generalized mixed effects model are slightly

wider, they are still quite close with the intervals estimation given by the combined model.

We are able to draw the similar conclusion for interval estimations for φ11 and φ12.

We run 25,000 iterations burning the first 5,000 and gap every 20th to get a con-

verged sample of 1,000 with the Geweke test and the effective sample size indicating the

convergence. The computing time is 22.52 seconds compared with the 20 minutes for the

Bayesian combined model. However, without taking advantage of the approximate inter-

vals and the Cauchy prior, the full Gibbs sampler will need 210,000 iterates, with 10000

burn-in and taking every 200th sample to get a satisfactory convergence diagnostics.

In fact, the generalized mixed effects model is more parsimonious with much fewer

parameters, which result in less variability. Meanwhile, it allows more flexible correlation

than the multinomial-Dirichlet model. Besides, it is very convenient for adding covariates

over the exponential part. Most important advantage is that we can achieve the fast

computing through the generalized mixed effects model and its approximation.
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Table 3.4: Finite population proportion estimation for π1, π2 of the college cheating data
using a full Gibbs sampler generalized mixed effects model (M2.C) in compare with the
combined model.

PM PSD
Area π11 π12 π13 π14 π11 π12 π13 π14

a. Combined model

1 0.099 0.729 0.065 0.106 0.063 0.107 0.067 0.082
2 0.120 0.717 0.060 0.103 0.078 0.119 0.063 0.084
3 0.149 0.677 0.044 0.131 0.077 0.114 0.045 0.098
4 0.142 0.643 0.049 0.166 0.083 0.128 0.053 0.119
5 0.109 0.739 0.052 0.100 0.070 0.114 0.055 0.081
6 0.149 0.690 0.060 0.102 0.087 0.116 0.062 0.080
7 0.105 0.725 0.046 0.124 0.067 0.117 0.051 0.100
8 0.137 0.676 0.072 0.115 0.076 0.120 0.071 0.090
9 0.174 0.670 0.050 0.107 0.097 0.119 0.052 0.083
10 0.130 0.720 0.049 0.101 0.074 0.106 0.053 0.082
11 0.139 0.637 0.072 0.152 0.084 0.124 0.074 0.111
12 0.175 0.632 0.068 0.125 0.099 0.120 0.064 0.096
13 0.104 0.694 0.068 0.135 0.071 0.125 0.066 0.101
14 0.145 0.698 0.050 0.107 0.079 0.110 0.050 0.080
15 0.143 0.659 0.057 0.141 0.070 0.116 0.055 0.099

b. Generalized mixed effects model (M2.C)

1 0.128 0.676 0.076 0.120 0.034 0.075 0.025 0.082
2 0.129 0.680 0.077 0.114 0.033 0.077 0.025 0.082
3 0.119 0.626 0.071 0.185 0.033 0.096 0.024 0.113
4 0.094 0.495 0.056 0.356 0.034 0.130 0.023 0.164
5 0.130 0.685 0.077 0.108 0.034 0.079 0.025 0.085
6 0.129 0.683 0.077 0.111 0.034 0.078 0.025 0.085
7 0.119 0.632 0.071 0.177 0.033 0.102 0.025 0.120
8 0.123 0.650 0.073 0.154 0.034 0.089 0.025 0.103
9 0.126 0.667 0.075 0.132 0.034 0.082 0.025 0.091
10 0.129 0.681 0.077 0.113 0.034 0.074 0.025 0.078
11 0.101 0.532 0.060 0.307 0.036 0.139 0.025 0.175
12 0.122 0.640 0.072 0.166 0.034 0.088 0.025 0.105
13 0.112 0.596 0.067 0.225 0.033 0.117 0.024 0.139
14 0.128 0.674 0.076 0.122 0.033 0.074 0.025 0.079
15 0.113 0.598 0.067 0.222 0.032 0.097 0.024 0.115
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Table 3.5: Comparison of 95% HPD intervals of the Bayesian combined model and the
full Gibbs sampling of the generalized mixed effects model.

Section Model π11 π12 π13 π14

1 BC (0, 0.219) (0.543, 0.961) (0, 0.196) (0, 0.262)
GME (0.059, 0.189) (0.536, 0.820) (0.033, 0.130) (0.008, 0.285)

2 BC (0, 0.260) (0.469, 0.919) (0, 0.187) (0, 0.260)
GME (0.060, 0.188) (0.526, 0.822) (0.030, 0.126) (0.010, 0.286)

3 BC (0, 0.293) (0.461, 0.895) (0, 0.132) (0, 0.317)
GME (0.051, 0.177) (0.429, 0.774) (0.028, 0.121) (0.013, 0.397)

4 BC (0, 0.295) (0.403, 0.894) (0, 0.153) (0, 0.385)
GME (0.032, 0.158) (0.217, 0.713) (0.016, 0.099) (0.080, 0.693)

5 BC (0, 0.237) (0.502, 0.920) (0, 0.167) (0, 0.259)
GME (0.066, 0.196) (0.535, 0.839) (0.033, 0.131) (0.009, 0.298)

6 BC (0, 0.306) (0.466, 0.924) (0, 0.185) (0, 0.252)
GME (0.063, 0.195) (0.517, 0.816) (0.032, 0.129) (0.007, 0.287)

7 BC (0, 0.235) (0.516, 0.945) (0, 0.149) (0, 0.306)
GME (0.059, 0.184) (0.422, 0.812) (0.025, 0.123) (0.009, 0.424)

8 BC (0, 0.273) (0.439, 0.906) (0, 0.212) (0, 0.279)
GME (0.062, 0.192) (0.474, 0.817) (0.027, 0.125) (0.007, 0.354)

9 BC (0, 0.344) (0.405, 0.871) (0, 0.153) (0, 0.262)
GME (0.060, 0.190) (0.497, 0.816) (0.032, 0.128) (0.009, 0.320)

10 BC (0, 0.262) (0.515, 0.910) (0, 0.161) (0, 0.251)
GME (0.063, 0.193) (0.544, 0.814) (0.031, 0.128) (0.007, 0.258)

11 BC (0, 0.285) (0.385, 0.864) (0, 0.220) (0, 0.360)
GME (0.038, 0.173) (0.231, 0.751) (0.017, 0.109) (0.029, 0.657)

12 BC (0, 0.350) (0.407, 0.870) (0, 0.191) (0, 0.313)
GME (0.058, 0.190) (0.459, 0.796) (0.028, 0.121) (0.006, 0.371)

13 BC (0, 0.245) (0.465, 0.944) (0, 0.197) (0, 0.322)
GME (0.053, 0.185) (0.364, 0.801) (0.022, 0.114) (0.015, 0.499)

14 BC (0, 0.288) (0.466, 0.892) (0, 0.156) (0, 0.254)
GME (0.062, 0.191) (0.529, 0.810) (0.029, 0.125) (0.014, 0.290)

15 BC (0, 0.264) (0.426, 0.865) (0, 0.162) (0, 0.322)
GME (0.052, 0.173) (0.396, 0.768) (0.023, 0.115) (0.022, 0.441)
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Figure 3.2: Comparison of 95% HPD intervals of the Bayesian combined model and the
full Gibbs sampling of the generalized mixed effects model of π11.
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Figure 3.3: Comparison of 95% HPD intervals of the Bayesian combined model and the
full Gibbs sampling of the generalized mixed effects model of π12.
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Figure 3.4: Comparison of 95% HPD intervals of the Bayesian combined model and the
full Gibbs sampling of the generalized mixed effects model of π13.
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Figure 3.5: Comparison of 95% HPD intervals of the Bayesian combined model and the
full Gibbs sampling of the generalized mixed effects model of π14.
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Figure 3.6: Comparison of 95% HPD intervals of the Bayesian combined model and the
full Gibbs sampling of the generalized mixed effects model of φ11.
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Figure 3.7: Comparison of 95% HPD intervals of the Bayesian combined model and the
full Gibbs sampling of the generalized mixed effects model of φ12.
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Appendix

3.A Quasi-modes

We intend to get the quasi-modes of θ
˜

1 and ν
˜

1 through the EM algorithm. We consider

the likelihood function,

π(θ
˜

1, ν
˜

1, θ
˜

2, ν
˜

2 | y
˜
, ω
˜

) ∝
∏̀
i=1

[
gi∏
j=1

4∏
k=1

(pijπi1k)
ωijk((1− pij)πi2k))yijk−ωijk

]
,

where

πi1k =
exp (θ1k + ν1i)

1 +
∑3

t=1 exp (θ1t + ν1i)
, k = 1, 2, 3; πi14 =

1

1 +
∑3

t=1 exp (θ1t + ν1i)
,

πi2k =
exp (θ2k + ν2i)

1 +
∑3

t=1 exp (θ2t + ν2i)
, k = 1, 2, 3; πi24 =

1

1 +
∑3

t=1 exp (θ2t + ν2i)
.

It is worth noting that the reparameterization of π
˜
i1 and π

˜
i2 allows for a one-to-one

mapping, so for the simplicity of computation we only need to apply the EM algorithm

to π
˜
i1 and π

˜
i2 and transform back to θ

˜
1, θ

˜
2 later. Here we use (θ1k+ν1i), k = 1, 2, 3, for i =

1, . . . , `, to represent mean effect combining all the areas θ1k, incorporating with the area

effect ν1i.

i) Get the MLE of global effect ̂θ1k + ν1i, ̂θ2k + ν2i, i = 1, . . . , `.

Start with initial value of π
˜

(0)
i1 and π

˜

(0)
i2 , we can draw the latent variables ωijk independently
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from Binomial distribution

ωijk | π
˜
i1, π

˜
i2, y

˜

ind∼ Binomial{yijk,
pijπi1k

pijπi1k + (1− pij)πi2k
}, i = 1, . . . , l; j = 1, . . . , gi; k = 1, 2, 3, 4.

Step 1. Update ω
˜

,

ω
(0)
ijk = yijk

pijπi1k
pijπi1k + (1− pij)πi2k

.

Since

π
˜
i1 | ω

˜

ind∼ Dirichlet(ωi1·, ωi2·, ωi3·, ωi4·),

π
˜
i2 | ω

˜
, y
˜

ind∼ Dirichlet(yi1· − ωi1·, yi2· − ωi2·, yi3· − ωi3·, yi4· − ωi4·),

where ωi·k =
∑gi

j=1 ωijk, yi·k =
∑gi

j=1 yijk, k = 1, 2, 3, 4.

Step 2. Update π
˜
i1 and π

˜
i2,

π
(1)
i1k =

ω
(0)
i·k∑4

k=1 ω
(0)
i·k

and π
(1)
i2k =

yi·k − ω(0)
i·k∑4

k=1 yi·k − ω
(0)
i·k

.

Step 3. Back to step 1 to get ω
(1)
ijk with (π

(1)
i1k, π

(1)
i2k) and continue with step 2 to get

π
(2)
i1k and π

(2)
i2k. Keep updating the parameters until convergence to π̂i1k and π̂i2k, i =

1 . . . `, k = 1, 2, 3.

Step 4. Transform back to get ̂θ1k + ν1i, ̂θ2k + ν2i, i = 1, . . . , `.

̂θ1k + ν1i = log
π̂i1k

1−
∑3

t=1 π̂i1t
, ̂θ2k + ν2i = log

π̂i2k

1−
∑3

t=1 π̂i2t
.

ii) Get the MLEs of global effects θ∗1k and θ∗2k.

For the mean effect, there is no area difference so we combine all the samples with the

same random mechanism pij into 5 large groups. As a result, the likelihood function with

only the global effect is

π(θ
˜

1, θ
˜

2 | y
˜
, ω
˜

) ∝
5∏
j=1

4∏
k=1

(pjπ1k)
ω·jk((1− pj)π2k))

y·jk−ω·jk
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where ω·jk =
∑`

i=1 ωijk, y·jk =
∑`

i=1 yijk, k = 1, 2, 3, 4.

With the likelihood function above, we apply the EM algorithm in the same way. Start

with initial value of π
˜

(0)
1 and π

˜

(0)
2 , we can draw the latent variables ω·jk independently

from Binomial distribution

ω·jk | π
˜

1, π
˜

2, y
˜

ind∼ Binomial{y·jk,
pjπ1k

pjπ1k + (1− pj)π2k

}, j = 1, . . . , 5; k = 1, 2, 3, 4.

Step 1. Update ω
˜

= (ω·jk), j = 1, . . . , 5; k = 1, . . . , 4,

ω
(0)
·jk = y·jk

pjπ1k

pjπ1k + (1− pj)π2k

.

Since

π
˜

1 | ω
˜

ind∼ Dirichlet(ω·1·, ω·2·, ω·3·, ω·4·),

π
˜

2 | ω
˜
, y
˜

ind∼ Dirichlet(y·1· − ω·1·, y·2· − ω·2·, y·3· − ω·3·, y·4· − ω·4·),

where ω·k· =
∑5

j=1 ω·jk, y·k· =
∑5

j=1 y·jk, k = 1, 2, 3, 4.

Step 2. Update π
˜

1 and π
˜

2,

π
(1)
1k =

ω
(0)
·k·∑4

k=1 ω
(0)
·k·

and π
(1)
2k =

yi·k − ω(0)
·k·∑4

k=1 y·k· − ω
(0)
·k·

.

Step 3. Back to step 1 to get ω
(1)
·jk with (π

(1)
1k , π

(1)
2k ) and continue with step 2 to get π

(2)
1k and

π
(2)
2k . Keep updating the parameters until converge to π∗1k and π∗2k, k = 1, 2, 3.

Step 4. Transform back to get θ∗1
˜
, θ∗2

˜
.

θ∗1k = log
π̂1k

1−
∑3

t=1 π̂1t

, θ∗2k = log
π̂2k

1−
∑3

t=1 π̂2t

.

iii) Get ν
˜
∗
1, ν

˜
∗
2.

In consideration of the relationship between the global effect and the area effect, for each

area, we can get the area effect ν∗1i (ν∗2i), i = 1, . . . , ` by subtracting the mean effect θ∗1k

91



(θ∗2k) from the total effect ̂θ1k + ν1i ( ̂θ2k + ν2i),

ν∗1i =
3∑

k=1

( ̂θ1k + ν1i − θ∗1k)/3, ν∗2i =
3∑

k=1

( ̂θ2k + ν2i − θ∗2k)/3.
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Chapter 4

Concluding Remarks and Future

Work

4.1 Concluding Remarks

We provided a Bayesian method to estimate the finite population proportions for sensitive

quantities through the unrelated question design when there are more than one sensitive

question.

An application on the college cheating data also show that the combined model out-

performs the individual area model and the separate question model in the terms of

posterior standard deviation, coefficient of variation and correlation. Furthermore, the

simulation study shows that for data from small areas, the Bayesian combined model (cb)

gives a more accurate estimation, in terms of relative absolute bias and posterior root

mean square error, compared to the individual area model (ind) and separate question

model. In addition, we can gain strength by increasing the number of areas.

Although it seems that the variations in correlation rarely make any difference, the

combining effect is significant. It could be the case that even if we are only interested in

one sensitive question, we can include other sensitive questions into the design to get a

better estimate, under the same degree of corporation of the respondents. Of course, the

93



same number of unrelated questions should be constructed since the masked responses

should have the same dimension. Even though there might be a concern of extra cost by

asking more questions, the availability of online survey tools will make the collection of

data easier, but this might lead to nonprobalibity samples.

The generalized mixed effects model will provide a consistent finite population pro-

portion estimation to the Bayesian combined model, with smaller posterior standard

deviation for some cells, and fitted better. All kinds of INNA approach based on the

generalized mixed effects model can also provide a similar estimation results for most

of the areas compared to the combined model with at least 10 times faster computing

process.

We have used proper prior for both models. This allows proper posterior densities.

Improper posterior densities will make the MCMC suffer from slowly mixing, so that a

large burn-in and huge thinning are needed. But proper prior do not guarantee a proper

posterior.

Theorem Given π∗(θ) = g∗(θ)π(θ), the posterior π∗(θ) is proper if and only if g∗(θ) ≤

A <∞ provided the prior π(θ) is proper.

Proof

Suppose g∗(θ) ≤ A <∞,
∫
π(θ)g(θ)dθ ≤ A

∫
π(θ)dθ = A <∞;

Suppose π∗(θ) is unbounded, then there exists c such that π∗(θ) ≥ c, so that
∫
π(θ)g(θ)dθ ≥

c
∫
π(θ)dθ = c. Thus when c→∞, the posterior density is improper.

In general, the essence of the study is borrowing information across small areas and

multiple questions to make a better inference. In addition, we also proposed a generalized

mixed effects model which is more flexible while allowing improved precision and fast

computing.
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4.2 Data Masking

We discuss how to provide public-used data from confidential data. This is a practical

issue which is of concern for many government agencies, referred as statistical disclosure

limitation.

The confidential data values are replaced with the predicted ones from a statistical

model, to create a synthetic dataset (e.g. Rubin, 1993; Reiter 2003, 2005; Fienberg and

Jin, 2009). Hu, Reiter and Wang (2018) recently present a Dirichlet process mixture

model for nested categorical data, and further for use of generating masked public-used

files for household data especially for confidential variables. The key point of data masking

is that the masked data can be used to draw a similar conclusion as if the original

data were analyzed. Here we propose our randomized response procedure to mimic a

masking procedure, and compare the estimation results with those from Bayesian logistic

regression model.

4.2.1 Data Description

We mimic the body mass index (BMI) and bone mineral density (BMD) data from the

third National Health and Nutrition Examination Survey (NHANES III) to provide an

example. Note the design is not implemented in reality, in fact we have their responses to

the sensitive questions, and also the nonsensitive ones. However we can obtain the binary

response assuming that every individual gives his/her response following the design. As a

result, only part of the responses are taken, which constitute the masked data. Thus, this

example can provide a masking procedure using our Bayesian unrelated question model.

Obesity is one of today’s leading public health problems and it increases the risk of

morbidity due to diseases such as diabetes and hypertension. The survey is a program

of studies run by CDC (Center of Disease Control and Prevention) to assess the health

and nutritional status of adults and children in the United States, and it was conducted

during the period October 1988 through September 1994. This survey contains BMI and
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BMD data together with covariates of age, race and sex, where BMI is measured by an

individual’s weight and height and BMD is measured using Dual X-ray Absoptionetry

(DEXA).

The final data set for this study uses only 6557 samples of the 35 largest counties

with a population at least 500,000. Due to confidentiality reasons, the original sensitive

attributes BMI and BMD are transformed to categorical data based on the criteria defined

by the World Health Organization (WHO). So that there are 4 levels of BMI (=1,2,3,4)

and 3 levels of BMD (=1,2,3), where BMI = (3, 4) represents the BMI value greater

than 25 which can be considered as overweight; and BMD = (2, 3) means the BMD

value smaller than 0.82 which indicates osteopenia or osteoporosis. In our case, our

interest is the proportion of people from the targeted population who are overweight

or have osteoporosis, and both can be considered as sensitive. Though mechanisms by

which body weight influences bone mineral density are still unknown, many studies have

shown a strong association between bone mineral density and body mass index for large

populations (e.g., Nandram, Kim and Zhou, 2019). Hence we believe that the overweight

and the osteoporosis are two correlated attributes. Of course, we can apply the Bayesian

RRT twice for each attribute, yet we are more interested in whether we can benefit from

utilizing the correlated data.

As compared to our survey design, the two sensitive questions are set to be ‘Are you

overweight?’ and ‘Do you have osteoporosis?’. In order to simulate our design, the other

two unrelated non-sensitive questions need to be constructed from the covariates. Thus

race and sex are selected to be the non-sensitive question as ‘Are you white? ’ and ‘Are

you male?’, which are unrelated with the sensitive ones, assuming that there is no sex

effect on the BMD. The combined response for the sensitive questions could only be four

types (No, No), (No, Yes), (Yes, No), (Yes, Yes), same for the unrelated questions.

In the masking procedure, all the samples from each county are divided to 2-5 groups.

For each individual from ith county and jth group, we set pij = (.25, .75, .2, .7, .3) according

to the group size. Then the sensitive responses are selected with probability pij, as the
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Figure 4.1: Masking procedure for the NHANES data

nonsensitive attributes are selected with 1−pij. In other words, either the response from

the sensitive attributes or those from the nonsensitive attributes can be selected for each

individual. Figure 4.1 illustrates the masking procedure. As a result, the counts data

that we gathered using the randomized procedure can be treated like the data masked

for the original data. Afterwards, we pass in the data into our Bayesian combined model

to get the inference of the finite population proportions.

4.2.2 Bayessian Logistic Regression Estimation

The intuition of utilizing the mimicking data is to evaluate if the Bayesian hierarchical

model designed for multiple sensitive questions provides the reliable proportion estima-

tion. The “true” sensitive proportion that we intend to compare with is obtained from

logistic regression exact method on the full sample, involving more information about age,

race and sex. We consider the following Bayesian logistic model of the binary response
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with covariates age, race and sex. The binary variable yij is an overweight indicator.

yij | νi, β
˜

(0)
ind∼ Bernoulli{ ex˜

′
ijβ

˜
(0)+νi

1 + ex˜
′
ijβ

˜
(0)+νi

},

νi | β0, δ
2 iid∼ Normal(β0, δ

2),

π(β
˜
, δ2) ∝ 1

(1 + δ2)2
, δ2 > 0, i = 1, . . . , `, j = 1, . . . , ni.

From the joint posterior density of the parameters (ν
˜
, β
˜
, δ2 | y

˜
)

π(ν
˜
, β
˜
, δ2 | y

˜
) ∝ π(y

˜
| ν

˜
, β
˜

(0))π(ν
˜
| β(0), δ

2)π(β
˜
, δ2)

∝
∏̀
i=1

{[ ni∏
j=1

e(x
˜
′
ijβ

˜
(0)+νi)yij

1 + ex˜
′
ijβ

˜
(0)+νi

][ 1√
2πδ2

e−
(νi−β0)

2

2δ2

]}
× 1

(1 + δ2)2
.

Next we can use a blocked Gibbs sampler based on the conditional distribution π(ν
˜
|

β
˜
, δ2, y

˜
) and π(β

˜
, δ2 | ν

˜
, y
˜
).

To assist the Gibbs sampler in the logistic regression model, we use Bayesian Fay-

Herriot model to get the grid range constructed by the posterior draws of (β
˜
, δ2). Briefly,

the Bayesian Fay-Herriot model is

θ̂i ∼N(θi, σ̂
2
i ),

θi ∼N(x
˜
′
iβ
˜
, δ2),

π(β, δ2) =
1

(1 + δ2)2

where i = 1 . . . `, j = 1 . . . ni, θ̂i = log( yi+1/2
ni−yi+1/2

), σ̂2
i = (ni+1)(ni+2)

ni(yi+1)(ni−yi+1)
, and x

˜
′
i are covari-

ates. Then the following posterior densities can be obtained (see Nandram, Erciulescu

and Cruze, 2019)

θi | β
˜
, δ2, θ̂i

ind∼ Normal{λiθ̂i + (1− λi)x
˜
′
iβ
˜
, (1− λi)δ2}, i = 1, . . . , `,
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β
˜
| δ2, θ̂

˜
∼ Normal(β̂

˜
, Σ̂),

π(δ2 | θ̂
˜
) ∼ Q(δ2)

1

(1 + δ2)2

where

λi =
δ2

σ̂2
i + δ2

, i = 1, . . . , `,

β̂
˜

= Σ̂
∑̀
i=1

θ̂ix
˜
i

σ̂2
i + δ2

, Σ̂−1 =
∑̀
i=1

x
˜
ix
˜
′
i

σ̂2
i + δ2

,

Q(δ2) = |Σ̂|1/2
∏̀
i=1

1

(σ̂2
i + δ2)1/2

exp
{
− 1

2

∑̀
i=1

1

σ̂2
i + δ2

(θ̂i − x
˜
′
iβ
˜

)
}
.

Then we can draw 1000 samples of β
˜

from β
˜
| δ2, θ̂

˜
which is normal and δ2 from π(δ2 | θ̂

˜
)

using grid method. The grid ranges are constructed as

(avg(β
˜

(h))− 10 · std(β
˜

(h)), avg(β
˜

(h)) + 10 · std(β
˜

(h))),

(avg(δ(2h))− 10 · std(δ(2h)), avg(δ(2h)) + 10 · std(δ(2h))), h = 1, . . . ,M.

Let zi = vi−β0
δ

with the standard normal distribution, the joint posterior density of

π(z
˜
, β
˜
, δ2 | y

˜
) becomes

π(z
˜
, β
˜
, δ2 | y

˜
) ∝

∏̀
i=1

{[ ni∏
j=1

e(x
˜
′
ijβ

˜
+δzi)yij

1 + ex˜
′
ijβ

˜
+δzi

][ 1√
2πδ2

e−
z2i
2

]}
× 1

(1 + δ2)2
.

Then we run a block Gibbs sampler between π(z
˜
| β

˜
, δ2, y

˜
) and π(β

˜
, δ2 | z

˜
, y
˜
) using the

grid method to draw zi, i = 1, . . . , `, within a range of (−5, 5) and draw (β
˜
, δ2) from the

ranges given by the Fay-Herriort model. We use 1,2000 iterates here with burn-in the first

2000 and take every 10th getting 1000 converged samples of (β
˜

(h), δ2(h)) and {z(h)
i }, i =

1, . . . , `, h = 1, . . . ,M . Correspondingly, the samples of {ν(h)
i }, i = 1, . . . , ` can be

obtained from ν
(h)
i = δ(h)z

(h)
i + β

(h)
0 , h = 1, . . . ,M . With all the coefficient estimated, we
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are able to make inference about the binary response yij and get the proportion estimation

further.

4.2.3 Comparisons

In Table 4.1 we compare the overweight proportion estimates of 35 areas from the logistic

regression exact method and those from the Bayesian hierarchical model. Let yi and

ni denote respectively, the number of ‘yeses’ and sample size within each area for each

question. The direct estimates are calculated directly from dividing ni by yi.

We treat estimates from the logistic regression as a close value to the true proportion

since it is obtained based on all the samples from each area utilizing all the covariates

available. Figure 4.2 provides the 95% HPD intervals of the overweight proportion φ11

from Bayesian combined model. We find that the logistic regression estimates are all in-

side the 95% HPD interval. These results demonstrate that we are able to get a masked

data through the randomized response technique while maintaining the overweight pro-

portion within certain range.
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Figure 4.2: 95% HPD interval of the overweight proportion φ11 from Bayesian combined
model for 35 counties.
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Table 4.1: Comparison of the logistic regression estimates (L) and the Bayesian estimates
(B) of the overweight proportion φ11 (BMI) for 35 counties.

Area [1] -[9] L 0.564 0.606 0.643 0.642 0.564 0.564 0.604 0.595 0.592

B 0.481 0.576 0.672 0.635 0.506 0.569 0.607 0.646 0.555

Area [10] -[18] L 0.631 0.598 0.576 0.606 0.544 0.573 0.607 0.595 0.576

B 0.578 0.524 0.620 0.595 0.518 0.617 0.636 0.606 0.489

Area [19] -[27] L 0.603 0.605 0.578 0.582 0.590 0.597 0.568 0.588 0.616

B 0.576 0.593 0.521 0.640 0.648 0.568 0.580 0.599 0.551

Area [18] -[35] L 0.588 0.582 0.617 0.580 0.662 0.625 0.573 0.551

B 0.650 0.592 0.564 0.624 0.670 0.611 0.618 0.476

Table 4.2 and Figure 4.3 show the corresponding result for the osteoporosis proportion

φ12. Even though 3 areas out of 35 areas fail to fall between the 95% HPD interval, the

finite population proportion estimation from the masked data are still close to those

estimates from the Bayesian logistic regression model.
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Figure 4.3: 95% HPD interval of the osteoporosis proportion φ12 from Bayesian combined
model for 35 counties.
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Table 4.2: Comparison of the logistic regression estimates (L) and the Bayesian estimates
(B) of the osteoporosis proportion φ12 (BMD) for 35 counties.

Area [1] -[9] L 0.222 0.188 0.194 0.179 0.225 0.201 0.198 0.257 0.272

B 0.187 0.134 0.149 0.127 0.153 0.175 0.150 0.171 0.173

Area [10] -[18] L 0.176 0.189 0.223 0.161 0.248 0.199 0.140 0.204 0.191

B 0.140 0.259 0.220 0.217 0.180 0.154 0.148 0.087 0.287

Area [19] -[27] L 0.146 0.217 0.213 0.197 0.177 0.153 0.173 0.180 0.204

B 0.187 0.205 0.145 0.323 0.168 0.185 0.158 0.126 0.239

Area [18] -[35] L 0.181 0.230 0.240 0.169 0.238 0.163 0.166 0.268

B 0.161 0.258 0.274 0.111 0.211 0.147 0.154 0.236

Further more, we can generate the response for individual from each area. The re-

sponse variable yij, j = 1, . . . , Ni, indicates which group the individual falls in, the fol-

lowing types, “has neither overweight nor osteoporosis issues”, “has osteoporosis but is

not overwieght ”, “overweight but does not have osteoporosis”, “have both issues”.

yij
ind∼ Multinomial{1, π̂

˜
i}, i = 1, . . . , `,

where Ni is the sample size, π̂
˜
i is the estimated finite population proportion estimation

given by Table 4.3. Consequently, we are able to obtain a synthetic data set from any

given sample size for each area in practice.
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Table 4.3: Finite population proportion estimation for the four-cell probability of the
NHANES III data using a Bayesian combined model.

PM
Area π11 π12 π13 π14

1 0.382 0.139 0.435 0.044
2 0.333 0.091 0.536 0.041
3 0.226 0.103 0.627 0.044
4 0.268 0.091 0.608 0.033
5 0.363 0.129 0.425 0.082
6 0.329 0.103 0.495 0.073
7 0.306 0.083 0.543 0.068
8 0.244 0.110 0.585 0.061
9 0.335 0.114 0.494 0.058
10 0.310 0.111 0.548 0.031
11 0.328 0.148 0.416 0.108
12 0.248 0.132 0.536 0.083
13 0.289 0.120 0.494 0.097
14 0.346 0.135 0.477 0.042
15 0.291 0.094 0.556 0.060
16 0.302 0.065 0.550 0.083
17 0.331 0.060 0.586 0.023
18 0.291 0.221 0.426 0.063
19 0.323 0.103 0.490 0.085
20 0.283 0.129 0.514 0.074
21 0.387 0.095 0.474 0.044
22 0.191 0.174 0.490 0.146
23 0.275 0.078 0.560 0.087
24 0.322 0.113 0.492 0.073
25 0.304 0.115 0.537 0.043
26 0.331 0.075 0.541 0.054
27 0.271 0.179 0.491 0.059
28 0.233 0.116 0.606 0.045
29 0.212 0.197 0.530 0.062
30 0.293 0.142 0.435 0.130
31 0.304 0.071 0.586 0.039
32 0.245 0.086 0.545 0.123
33 0.337 0.053 0.517 0.093
34 0.267 0.112 0.578 0.042
35 0.393 0.132 0.374 0.101
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4.3 Future Work

We discuss four possible extensions. These are about incorporating covariates in our

combined model, survey weights, numerous items instead of two and polychotomous

(more than two options) responses.

First, covariates are very useful, not only in constructing the non-sensitive questions

like what we did in the survey example, but also can be incorporated into the probability

parameters in a way similar to logistic regression. Furthermore, based on the proportion

estimation results of each area given by either the Dirichlet-Multinomial model in Chapter

2 or the INNA model in Chapter 3, a masked data set with the same size can be generated

through modeling with covariates.

Second, many complex surveys have survey weights. These can be included in our

model using a normalized composite likelihood. This will help to reduce selection bias.

Third, the design can be generalized to the multiple-item case straightforwardly. How-

ever, the computation will be more expensive. As the number of items get larger, the

model will be more complicated and even the blocked Gibbs sampler would experience a

slowly mixing effect, which means more iterates are needed to get the converged draws

in the end.

Fourth, it can also be extended to the polychotomous outcomes. Then the latent

variables will follow multinomial distributions. A similar idea as in the combined model

might be needed to avoid slow mixing in a Gibbs sampler. Of course, computation time

will increase and we will need a way to minimize computational cost. This is also true in

the third extension.

However, further effort still needed to explore whether the correlations will affect the

estimation strength other than changing the contingency table of the counts.
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