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Abstract 

This project uses Mixed Integer Linear Programming and Dynamic Programming to optimize the 

takeoff sequence of aircraft at Dallas/Fort Worth (DFW) by minimizing departure delay while 

also obeying separation requirements and position shifting constraints. We modeled taxi time 

uncertainties based on real data from DFW and analyzed the robustness of the optimization 

solution and the feasibility of using these methods in real-life. The runtimes of these methods 

proved to be feasible in real-time, however the solutions failed to be robust, creating a future 

need for a stochastic optimization. 
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Executive Summary 

Due to growing demand for air travel, surface traffic congestion at many of our nation’s busiest 

airports causes significant delays. These delays add up over time, enough to raise costs for 

airlines in terms of fuel, maintenance, and staffing, and to cause passengers to miss connecting 

flights. These associated costs cause airlines and airports to adopt practices that minimize the 

effects of delay, though such practices have their own costs. These problems will only worsen as 

demand increases with time, as the Federal Aviation Administration (FAA) predicts it to on a 

large scale over the next 20 years. Several possible solutions exist for dealing with the problem 

of congestion and delays, including but not limited to expanding physical capacity, charging 

airlines more for using runways during peak hours, and limiting the number of Air Traffic 

Controller (ATC) operations per hour at some of the busiest airports.  

This project, however, considers optimizing the sequence in which aircraft take off by 

minimizing departure delay while balancing safety, equity and efficiency. Much research has 

been done over the years to optimize aircraft departure sequences, though it has mainly focused 

on re-sequencing aircraft at the runway and has only considered the deterministic case, in which 

uncertainty is not taken into account. Before any optimization techniques can be deployed to the 

real world, however, they must first be able to satisfy two requirements in addition to those 

specified above: they must run to completion in a reasonable amount of time, and they must 

produce adequate results when real-world stochastic variables replace their deterministic 

counterparts in models that take the predictability of such variables for granted. 

Our goal was to first develop solutions that optimize the sequence and time that aircraft are 

released from a designated area on the surface of the airport, called the “spot”, from which they 

taxi to the runway. This effectively relocates delay from the runway to the spot, saving fuel 

because aircraft can shut off one or more of their engines while waiting at the spot, which they 

cannot do at the runway. Secondly, we model uncertainty by perturbing the amount of time it 

takes for aircraft to taxi from the spot to the runway based on real data from Dallas/ Fort Worth 

Airport (DFW), and then compare the resulting departure delay to that of the deterministic case 

where the taxi times are known and unchanging. 



We utilize two methods for the deterministic optimization, which have both been used 

extensively in re-sequencing research: Mixed Integer Linear Programming (MILP) and Dynamic 

Programming (DP). The MILP formulation focused on the runway activities as they are 

predicted to be based on spot releases, whereas the DP formulation looked at the spot activities 

in the present while indirectly obeying future separation constraints at the runway. The 

sequences are optimized by finding the minimum departure delay based on separation 

requirements at the runway specified by the FAA, while being sure to respect operational 

constraints imposed on the spot release sequence. The separation requirements at the runway 

ensure safety while the operational constraints at the spot ensure equity by not allowing aircraft 

to be shifted too far from their original spot release position, which is called Constrained Position 

Shifting (CPS).  

The biggest challenge in the implementation of the Mixed Integer Linear Programming 

optimization was efficiency; to make the problem solvable, we grouped into bins those flights 

within smaller windows of time. The main difficulty in optimizing with Dynamic Programming 

was that the problem did not appear to have an optimal substructure. That is, we were unable to 

define a relationship between steps n and n+1 such that the optimal solution for step n would be 

guaranteed to lead to the optimal solution for step n+1. Such a recursive relationship between 

adjacent steps is crucial for a DP algorithm to produce an exact, optimal solution. Ideally, if both 

methods were capable of computing a globally optimal solution, the spot release schedules 

produced by them would be identical, except possibly in cases where there exists more than one 

solution that gives the same minimal departure delay. 

The DP and MILP were both suboptimal due to differences between spot sequences and runway 

sequences caused by differences in taxi times. We used DP heuristics instead of an exact solution 

and MILP used a relaxed CPS constraint that alters the results slightly in a positive direction. 

Therefore they do not give the same exact optimization delays, but the results are fairly close 

between the two and the optimizations can still be compared. The timing results proved that the 

optimizations are feasible in real-time situations. We ran the optimizations on Dell desktops that 

had four dual-core processors with 4GB of RAM. The MILP optimization took about 45 seconds 

in total to run on a full day of data split into 15-minute bins, independent of CPS. The DP 

optimization took under a second to build the graph and solve it using a CPS of one and about 30 



seconds for a CPS of two. These timing results prove that the optimizations would be feasible in 

real-time situations. For a full day of flights, the DP heuristics cannot finish in a reasonable 

amount of time when CPS is set to three positions or higher. Similarly, MILP cannot finish in a 

reasonable amount of time if the day is not broken down into bins since its approach to the 

problem is computationally intractable. 

We set our deterministic baseline to be First Come First Serve (FCFS) at the runway with 

enforced minimum separation requirements, because this would be the easiest improvement in 

practice. DFW already uses FCFS at the runway, but they do not enforce that flights take off as 

soon as they safely can. We expected any of our optimizations to be able to do better than FCFS 

and so we were surprised when they did not. We quickly realized that this was because FCFS is a 

CPS of zero at the runway, but we were imposing CPS at the spot. The optimization delays under 

uncertainties were larger than the non-optimized delays, proving that the optimization is not 

robust under stochastic conditions. The reason for this was that the aircraft were waiting at the 

spot until their optimal spot leave time, however the uncertainties in taxi times changed the times 

and sometimes sequence in which they arrived at the runway. This created delay at the runway 

which was added to the delay at the spot, which was often more than the non-optimized 

stochastic delay at the runway. This result shows that a deterministic optimization is not 

beneficial in a stochastic world. 

The change in runway sequence adds another dimension to the measure of the robustness of the 

optimization solutions. We measured sequence change three different ways. First, we looked at 

the sum of spaces that each flight shifted from the optimal takeoff sequence due to taxi time 

perturbations. Next we looked at relative sequence change and weighted relative sequence 

change. The relative sequence change was measured by the number of aircraft pairs where 

aircraft i was supposed to come before aircraft j in the optimal sequence, but instead j came 

before i in the final sequence. The weighted relative sequence change added in weights for how 

many positions these pairs were separated by. For some days the sequence did not change at all 

and for others a mere two flights switch positions with each other. More common was that 

separation times were violated, causing extra delay at the runway. 

The next addition to our project would be to add in arrival crossing to the optimization and again 

test the effects of uncertainty. Once arrivals are added into the optimization, effects of 



uncertainty could be measured in the same way as the departures only optimization. Departure 

delay would be computed as the sum of the differences between when flights were ready at the 

runway and when they were assigned to either take off or cross. After a deterministic 

optimization of both departures and arrivals has been studied under stochastic conditions, the 

next step to further this project would be to create a stochastic optimization. This type of 

optimization would take into account uncertainties as it optimizes, creating a more robust 

solution. 
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1.0 Introduction 

The National Airspace System (NAS) is responsible for all aircraft activity on the surface and in 

the air above the United States. They are in charge of 14,500 air traffic controllers (ATC), 19,000 

airports, and on average 50,000 flights per day (FAA, 2008).  The ATC communicates with 

aircraft pilots to manage the effects of weather and traffic conditions on the safety of the aircraft. 

The Federal Aviation Administration (FAA) predicts that aircraft congestion will become worse 

in the future as many major airports will come close to doubling their number of passengers by 

2030 (“Terminal Area Forecast Summary, Fiscal Years 2010-2030”, 2010). This congestion 

affects many people and businesses, including passengers, local and ground controllers, airlines, 

and even the environment.  

The capacity of an airport is primarily determined by its runways, but the ability of an airport to 

achieve this capacity without becoming overly congested is determined by the efficiency of ATC 

on the surface of the airport. Currently it is up to each individual controller to make decisions to 

reduce traffic and maintain safe conditions for the aircraft. Although the controllers undergo the 

same training, different controllers can handle situations in different ways. Research has recently 

begun to look into decision support tools to ease controller workload while also reducing 

congestion, delay, and improving the efficiency of airports. A few examples of what decisions 

must be made include assigning gates, taxiways, and runways; scheduling takeoff, landing, and 

runway crossing sequences and times; and the overall airport configuration.  

Strategies to increase existing capacity include metering, re-sequencing aircraft at a spot on the 

surface of the airport, and re-sequencing at the runway. The benefit of metering, which entails 

holding aircraft until they can taxi unimpeded to the runway, is the reduction of congestion and 

fuel burn. Re-sequencing aircraft at the runway minimizes the delay that is experienced by 

ordering aircraft based on their weight classes. Re-sequencing at the spot accomplishes the same 

goal by planning ahead, attempting to avoid long queues at the runway in the first place. These 

techniques have been looked at to optimize aircraft traffic on the ground (Malik, 2010 and 

Balakrishnan, 2007), but there has not been a large enough focus on optimizing surface 

conditions while also looking at the effects of uncertainties, which is the focus of our project. 



The goal of this project was to measure the effects of uncertain taxi times on optimal departure 

and arrival crossing sequences that are constructed by optimizing spot release times. We did this 

by implementing scheduling algorithms using Mixed Integer Linear Programming and Dynamic 

Programming that can operate in real-time, which were tested with real data from Dallas/Fort 

Worth International Airport (DFW). We compared the departure delay incurred by optimal 

sequences with deterministic taxi times against those with stochastic taxi times to quantify the 

effects of uncertainty. This helped us conclude whether deterministic scheduling algorithms are 

appropriate for sequencing aircraft at the spot or if more robust solutions that take uncertainty 

into account are required.  

 

 

  



2.0 Background 

The goal of this project is to test the effect of uncertainty on optimal recommended schedules for 

aircraft taking off and crossing a single runway. This chapter examines previous work in this 

area. First we address the responsibilities of the National Airspace System in controlling all 

aircraft and airports to avoid accidents and congestion. We then introduce several ways of 

reducing congestion on the surface of airports and detail the advantages and disadvantages of 

each. From there we describe two methods for finding an optimal departure takeoff and arrival 

crossing sequence. We use Mixed Integer Linear Programming and Dynamic Programming to 

set up and solve the problem. Finally the chapter concludes with the effects of uncertain taxi 

times on the optimal sequence and how to model and measure those effects.  

2.1 National Airspace System (NAS) 

The National Airspace System (NAS) deals with everything related to airspace above the United 

States. Airspace is a block of air at any given place or time. There are several classes of airspace, 

which dictate whether NAS has control over them or not and how well known the area is. NAS is 

in charge of 14,500 air traffic controllers (ATC), 19,000 airports, and on average 50,000 flights 

per day (FAA, 2008). Air Traffic Control is an important aspect of NAS. For example, on 

September 11, 2001, all aircraft were forced to land or turn around and return to their place of 

origin. Air Traffic Control was in charge of dealing with the large amount of planes that needed 

to land (Paramount Business Jets, 2011).  

2.1.1 Air Traffic Control (ATC) 

In the United States, Air Traffic Control (ATC) helps to avoid accidents between aircraft.  In 

addition to regulating traffic in the air, ATC must also control traffic on the ground to ensure that 

the aircraft take off safely and in a timely manner. The responsibility of controlling traffic on the 

ground is shared among the Ramp, Ground, and Local Controllers. The generic layout of an 

airport is shown in Error! Reference source not found..  First, the Ramp Controller (RC) decides 

when aircraft should push back from the gate and begin taxiing towards a predetermined spot on 

the airport surface, labeled “Spots” in the figure. This happens in the upper section of the picture, 

labeled “Ramp”. The Ramp Controller is often an airline employee and so the focus of this 

project will be on the decision making of the Ground and Local Controllers from the spots to 



takeoff.  The Ground Controller (GC) tells the aircraft when to leave the spots and directs traffic 

so that all aircraft arrive safely and timely at the appropriate runway. The GC is in charge of the 

“Taxiway” area in the figure. Finally, the Local Controller (LC) manages the runway to avoid 

conflict by telling the aircraft when to take off. The LC is also in charge of arriving aircraft 

which need to cross the runway to reach the terminal. An arriving aircraft can be seen at the 

bottom of the figure and just below the word “Runway” as it waits to cross (Malik, 2010).  

 

Figure 1: Generic Airport Configuration (NASA Aviation Systems Division, 2011) 

2.1.2 The Bottleneck of an Airport 

The capacity of an airport is determined by its runways, which are considered to be the 

bottleneck of the airport during peak hours (Malik, 2010). Throughput is the number of aircraft 

that take off during a certain time period. This rate is often used as a measure for the capacity of 

an airport. As the number of aircraft on the ground increases, the throughput of departing aircraft 

also increases. Once the number of aircraft becomes too large, throughput begins to saturate 

which causes delays. Throughput eventually becomes saturated because separation requirements 

imposed by the Federal Aviation Administration (FAA) dictate how long an aircraft must wait 

after another has just taken off. The saturation of throughput for Dallas/Fort Worth Airport is 

shown in Figure 2, parameterized by the number of arrival crossings. Currently the controllers 

tell aircraft to leave the gate and spots as soon as they safely can which can cause congestion at 

the taxiway and runway. This could be avoided with better surface decision tools to aid the 

controllers, which would allow more aircraft to take off. Other measures of how well an airport 



is operating include its efficiency, which is measured by departure delay, and equity, which is 

measured by maximum delay. 

 

Figure 2: DFW Airport throughput saturation (Jordan, 2011, Personal Communication) 

2.1.3 Issues of Congestion 

The congestion of an airport affects many people and businesses, including passengers, local and 

ground controllers, airlines, and even the environment. Passengers are interested in getting to 

where they are going without any delay. The workload of controllers increases when there is 

traffic. They must make immediate decisions to attempt to reduce the congestion or at least avoid 

any dangerous situations. Stop and go traffic results in high fuel burn due to the high thrust 

needed to achieve taxi speeds (Malik, 2010). This raises fuel costs and affects the environment 

negatively. Additionally, missing appointed schedules increases costs for airlines in terms of pay 

for crews, maintenance, and the potential for cancelled flights.  

The National Center of Excellence for Aviation Operations Research (NEXTOR) conducted a 

study to measure the overall cost of flight delay in 2007 (Ball et al, 2010). They measured direct 

costs similar to those listed above, but also considered the cost of lost demand, the costs to 

passengers when their flight is canceled or they miss a connection on a multi-leg trip, the indirect 



cost to the U.S. economy, and many other subtle and indirect costs. As a result of their analysis, 

NEXTOR determined that in 2007, delay cost airlines $8.3 billion, passengers $16.7 billion, $2.2 

billion in lost demand, and lowered the U.S. gross domestic product (GDP) by an estimated $4 

billion, for a total overall cost of $31.2 billion. The authors note that other studies computed 

similarly high figures. They also note that though not all delay can be removed from the system 

due to untimely events such as adverse weather conditions or mechanical problems, they predict 

that at least 50-60% of the cost from delay in 2007 could have been eliminated had the system 

had a higher capacity and had more efficient procedures and policies been in place (Ball et al, 

2010). 

The Federal Aviation Administration (FAA) predicts that congestion will become significantly 

worse in the future.  Air travel demand is expected to increase at a constant rate through at least 

the year 2030. In a report entitled “Terminal Area Forecast Summary, Fiscal Years 2010-2030” 

by the FAA, they predict that many major airports will come close to doubling their number of 

passengers by 2030. The top airports in terms of growth will be Washington Dulles, John F. 

Kennedy and Charlotte, which are forecast to grow by 4.2, 3.6 and 3.6 percent each year, 

respectively. Overall, the report forecast that the number of passengers at the airports that were 

studied would increase from 515,474,000 in 2009 to 927,498,000 in 2030 (“Terminal Area 

Forecast Summary, Fiscal Years 2010-2030”, 2010).  

2.2 Methods of Reducing Congestion 

Because air travel demand in 2030 is expected to be almost double what it is currently, it is 

important to address the issue of airport capacity, which is widely considered to be the limiting 

factor in the expansion of the NAS. Lee discussed different categories of solutions to alleviate 

arrival congestion that also apply to departures: physically increasing capacity, shifting 

congestion from peak hours, and using existing airport capacity more efficiently (Lee, 2008). 

2.2.1 Increasing Physical Capacity 

One solution that would certainly increase the overall capacity of the NAS would be to extend 

existing airports by adding more runways, or by building new airports altogether. With more 

airports and runways, each individual runway in the system would have less demand, reducing 

congestion and delay and their associated problems. 



However, building new airports or just adding more runways is not the ideal solution for two 

major reasons. The first reason is that doing either is very expensive and requires significant 

planning. The last major airport built in the U.S. was Denver International Airport (DIA) 

(Ishutkina, 2009), which cost $4.8 billion and took six years to construct, from when it began in 

1989 to when it opened for business in April 1995. DIA’s impact on the capacity of the NAS was 

limited in that it was built as a replacement for nearby Stapleton International Airport. 

Additionally, the final cost of the construction of the airport was nearly $1 billion more than its 

initial predicted cost, and the opening of the airport was delayed 16 months due to complications 

with its automated baggage system, which was added after the original planning of the airport 

(US General Accounting Office, 1995). The DIA case hardly inspires future airport construction 

in the United States without better planning in place. 

The second reason is that the surrounding area may not lend itself to physical expansion. While 

DIA, among other airports such as Dallas/Fort Worth (DFW), were designed to be extendable to 

cater to future demand, not all airports have the luxury of having enough land to expand their 

physical capacity. Airports such as London’s Heathrow and New York’s JFK airports are in 

densely populated areas that provide either no physical room for expansion or whose plans for 

expansion are met with public opposition (Ishutkina, 2009). In Boston, it took 30 years for a new 

runway to be approved at Logan International Airport, and only on the condition that flights 

would not make overland takeoffs or arrivals, limiting the noise pollution experienced by the 

surrounding community (Marchi, 2005). Additionally, in anticipation of the new runway, the 

location of the Hyatt Harborside Hotel was carefully chosen by state legislators to be built 

directly in line with where the runway would be to limit its length and the resulting effect on the 

community (Howe, 2006). 

2.2.2 Shifting Congestion from Peak Hours 

Given the costs and other factors involved with building new airports and runways, another 

option to control congestion at existing airports is to shift flights away from peak hours through 

either rationing or changing the schedule. Rationing the runways would be done by either 

increasing fees to use them or by limiting the number of flights that can take off and land during 

peak hours. Boston’s Logan Airport tried to do something like this in 1988 with their Program 

for Airfield Capacity Efficiency (PACE), but it was unsuccessful since it was determined to be 



unreasonable and discriminatory to owners of small aircraft by the Department of 

Transportation. This was later upheld by the First Circuit Court of Appeals (Hardaway, 1991). 

Under this scheme, flat fees for landing were roughly quadrupled, while weight-based rates were 

significantly reduced. This caused significant reductions in fees for large aircraft, but the 

opposite for small aircraft, and was applied over the entire day rather than just for peak hours. 

This reduced congestion throughout the entire day. The unfairness of the plan led to the decision 

by the Department of Transportation to order Logan to abandon PACE (LA Times, 1988). A 

similar plan does not seem to have been attempted since then, though the FAA recently gave 

airport operators more flexibility in pricing landing slots (USDOT, 2008).  Even if runways were 

rationed by the number of aircraft allowed to use them during a given time period, it would not 

increase the overall capacity of airports since the congestion of peak periods would just be 

reallocated to less-congested periods. Such periods may not exist for airports already running at 

nearly full capacity, such as Heathrow and JFK (Ishutkina, 2009). 

Another idea that has been considered is to encourage customers to fly during non-peak periods, 

such as late at night, by offering reduced ticket prices. This however would be difficult to 

implement across the board since individual airlines determine their own ticket prices and they 

would not change their schedules unless there was a market for late night travel or some other 

incentive (Venkatakrishnan, 1991). 

2.2.3 Decision Support Tools for ATC 

Given the drawbacks to the first two approaches, more emphasis has been placed on increasing 

existing airport capacity through decision support tools for air traffic controllers. There are many 

decisions that must be made on the surface of an airport to ensure that it is operating safely and 

efficiently. Griffin et al. looked at the optimizations of most of these surface decisions. They 

developed five optimizations which they named the “Taxiway Planner”, “Runway Planner”, 

“Configuration Planner”, “Runway Assigner”, and “Gate Assigner” and optimized them in the 

order that they were presented (2010). The goal of the Taxiway Planner was to minimize taxi 

time, fuel burn, and emissions by controlling the gate pushback and achieving unimpeded taxi 

times. The Runway Planner maximized throughput by sequencing takeoffs and landings based 

on weight classes. These two decision support tools are named metering and re-sequencing and 

are discussed in greater detail below, as they are the tools that will be used in this project. The 



Configuration Planner decides upon the best airport configuration to maximize airport capacity. 

An airport’s configuration is a set of runways that are being used and depends on factors such as 

weather and traffic. The Runway Assigner assigns aircraft to a runway in order to minimize 

emission costs and balance runway usage. Finally the Gate Assigner assigns gates for aircraft so 

that ramp congestion is minimized. They tested these optimizations on data from Detroit 

Metropolitan Wayne County (DTW) and determined that the Taxiway Planner had the greatest 

effect on reducing taxi times and taxi time delay (Griffin, 2010). 

Our project will look at parts of the “Taxiway Planner” and the “Runway Planner” optimizations. 

In “Managing departure aircraft release for efficient airport surface operations”, researchers at 

the NASA Ames Research Center also considered the benefits of metering and re-sequencing as 

decision support tools for ATC (Malik, 2010). They used Dallas/Fort Worth International Airport 

as their model and focused on metering departure aircraft at the spot. Metering is the act of 

holding aircraft at a spot on the surface of the airport (see Error! Reference source not found.) until 

they are able to taxi unimpeded to the runway. The benefit of metering is the reduction of 

congestion and fuel burn. Metering reduces stop and go traffic between the spot and the runway. 

Aircraft may also be able to turn off one of their engines while at a spot for a further reduction of 

fuel burn. Simaiakis also looked at the effects of metering, but at Boston Logan. The aircraft 

were held at the gate instead of at a spot. This resulted in an average fuel savings of 16-20 

gallons per aircraft that experienced a hold at the gate (Simaiakis, 2011).  

Another method to reduce congestion is minimizing delay by re-sequencing the original takeoff 

order. When an aircraft takes off it leaves behind it a wake of turbulence. The next aircraft must 

then wait a certain amount of time before taking off in order to avoid this turbulence. The 

amount of time between the two takeoffs, called the separation time, depends on the aircraft 

types of both of the aircraft, the predominant factor being their size. Separation times are derived 

from the Federal Aviation Administration (FAA) separation distances based on average takeoff 

speeds for each aircraft type.  Re-sequencing aircraft minimizes the delay that is experienced at 

the runway, by ordering aircraft based on separation times. This is known as the Departure 

Sequencing Problem (DSP). There are two places that DSP has been explored: the spot and the 

runway. The optimal sequence is the sequence with the least amount of delay that also obeys 

constraints such as separation times, position shifting, ready times, and priority departures. A 



constraint on position shifting restricts the maximum number of positions that any given aircraft 

can shift from the original sequence to the optimized sequence, and is known as Constrained 

Position Shifting (CPS). 

The algorithms for re-sequencing at the spot and at the runway are the same. The difference 

between them is whether the algorithm is looking into the future or solving the problem in the 

present. In the spot algorithm, once the optimal takeoff times have been solved for, it is 

determined at what time each aircraft should be released from the spot to begin taxiing towards 

the runway. In the runway algorithm, the aircraft are already at the runway ready to take off and 

the algorithm determines when they should take off and in what order. In other words, the spot 

optimization tells aircraft when to leave the spot by looking into the future at when they should 

take off. The runway optimization just tells the aircraft when to take off and operates in the 

present. For the runway optimization it is necessary to have multiple queues so that the aircraft 

can change the sequence that they are currently in. For example if there are three queues, the 

aircraft can line up in the outer two queues, leaving the inner queue clear for anyone to use it to 

approach the runway, independent of their queuing order. If such queues are not available then 

the optimization can instead look at departure-arrival re-sequencing, but not departure-departure 

re-sequencing.  

2.2.4 Dallas/Fort Worth International Airport (DFW) 

At some airports, such as Dallas/Fort Worth International Airport (DFW) shown in Figure 3, 

arrivals must cross the departure runway to reach the terminal. Such crossings therefore must be 

considered when re-sequencing aircraft. Additionally, the gain in throughput at any given airport 

depends on many factors, including the level of demand and the distribution of aircraft that take 

off. At DFW, the level of demand is not high enough to cause much congestion, so metering is of 

little benefit. Most of the aircraft that depart from DFW fall into the “large” weight class, 

meaning that not much time is gained by optimizing the sequence at the last spot. The aircraft 

distribution at DFW is 2% small, 88% large, 5% heavy, and 5% B-757 (Gupta, 2009). In fact, 

most of the gain in throughput at DFW would come from simply enforcing that aircraft take off 

as soon as they can while still respecting minimum separation times between takeoffs. Currently, 

aircraft wait longer to take off than necessary, for unknown reasons. While DFW is the focus of 



the simulations in this project, our results will be applicable to airports with similar runway 

layouts but with higher demand.  

 

Figure 3: Arial view of DFW, provided by Google Satellite 

2.3 Methods of Solving the Departure Sequencing Problem (DSP) 

Several methods have been used to optimize the surface activities of aircraft. The surface 

activities that we focus on are metering at the spot, taxiing from the spot to the runway, and the 

sequence of departures taking off and arrivals crossing. There is a single runway in our problem 

that is based off of DFW and multiple queuing areas at the runway so that any aircraft can take 

off at any time regardless of its current position in the runway sequence. This project will 

investigate two methods to optimize the aircraft traffic on the ground: Mixed Integer Linear 

Programming (MILP) and Dynamic Programming (DP). Both of these methods have been used 



to optimize aircraft traffic on the ground (Gupta, 2010 and Balakrishnan, 2007), but neither has 

done so while also taking into account realistic uncertainties.  

2.3.1 Mixed Integer Linear Programming (MILP) 

Mixed Integer Linear Programming is an NP-hard mathematical method used for planning 

activities. Linear Programs solve for a set of variables to minimize or maximize an objective 

function while also obeying certain constraints. A MILP is a Linear Program that has at least one 

integer constraint. This is the case for the traffic optimization in order to determine the sequence 

of the aircraft. Examples of objective functions that have been used include minimizing system 

delay, minimizing the maximum delay, or maximizing makespan (Gupta, 2009). The term 

maximum delay refers to the greatest amount of delay that a single flight incurs on a single 

takeoff or crossing. This is measured by subtracting when the flight was scheduled to takeoff or 

cross from when it actually did. Maximizing throughput is difficult to implement so often 

minimizing makespan is used instead (Gupta, 2009).  Makespan is the time at which the last 

aircraft takes off. A small makespan means that all of the aircraft took off and crossed quickly.  

Linear programs (LP) are often solved by an algorithm called the simplex method invented by 

George Dantzig (Dantzig, 1955). The constraints of the LP create a polytope, a multidimensional 

shape with many sides, which is known as the feasibility region. Any point in the polytope is a 

feasible solution to the LP. The vertices of the polytope are known as basic feasible solutions. 

The simplex method iteratively travels along the edge of the feasible region, visiting a path of 

vertices which are the basic feasible solutions, until an optimal solution is found. Each iterative 

step results in an improved basic feasible solution from the previous and so the problem can be 

solved in polynomial time for the average-case complexity. We will use the branch and cut 

(B&C) algorithm to solve the MILP for this project. B&C is a combination of the branch and 

bound (B&B) and the cutting planes algorithm (Chen, 2010). The first step of B&C is to convert 

the MILP into an LP by ignoring the integer constraints. This constructed LP is solved using the 

simplex method. If the optimal solution of the LP also obeys the integer constraints then the 

algorithm is done. Otherwise, the cutting plane algorithm is used iteratively to make the solution 

closer to an integer solution.  Again if an integer optimal solution is found then the algorithm is 

done. If it has not been found and there are no more cutting planes, then the B&B algorithm is 

used (Chen, 2010).  



The B&B algorithm can also be used alone to solve a MILP. B&B creates multiple sets whose 

union equals the feasible region of the MILP. In the case of the B&C algorithm, the MILP is 

divided into two versions of itself. The first version includes a new constraint variable that is 

greater than or equal to the next integer that is larger than the current solution. The second 

version does the same but the variable is less than or equal to the next smaller integer. The 

simplex method is used again to find the optimal solutions for both problems. This is repeated 

until an optimal solution has been found that satisfies all of the constraints of the original 

problem (Chen, 2010). 

There are many current applications to Mixed Integer Linear Programming. It is frequently used 

in Operations Research (OR) (Chen, 2010). Almost a quarter of reports that were published from 

1979-2006 in Interfaces used MILP. Interfaces is a journal of real-life applications for operations 

research and management science. Some applications of these reports include transportation and 

distribution, work staff scheduling, government services, and financial services to name a few. 

Transportation and distribution was the most common application of MILP in the reports that 

were investigated (Chen, 2010). 

2.3.2 Dynamic Programming (DP) 

Dynamic programming algorithms solve problems by decomposing them into simpler sub-

problems that the eventual final solution depends upon. The first step to solving a dynamic 

programming problem is to represent it as a directed acyclic graph between defined starting and 

ending nodes. Once this graph has been developed, the shortest path from the start to end node is 

found using an iterative process. The basic sub-problem is the shortest path to the starting node, 

which is zero. This represents the base case. Once the base case is solved then subsequent sub-

problems are solved using the solution from the base case. Once these subsequent sub-problems 

have been solved the algorithm continues to solve larger sub-problems and find shortest paths 

that use previous solutions until it reaches the end node. When it reaches the end node, there are 

no more sub-problems left to be solved and the shortest path through the whole graph has been 

found (Dasgupta, 2006). 

Some common real-world applications of Dynamic Programming include finding the shortest 

path through a graph, which is used in routing protocols such as Open Shortest Path First (OSPF) 



and Intermediate System to Intermediate System (IS-IS), sequence alignment, which has 

applications in bioinformatics, and interval scheduling, whose solutions can be applied to 

resource allocation. For the application of airport surface operations optimization, the optimal 

sequence is obtained by finding the shortest path through a directed acyclic graph where the 

nodes represent subsequences of the final sequence and the edges represent possible leader-

follower relationships between subsequences. These edges are weighted according to the 

additional delay incurred by scheduling the aircraft in the target node after that of the source 

node. The shortest path through this graph with respect to the weighted edges is computed using 

dynamic programming, giving the optimal spot release sequence. 

Although recursive in nature, similar to divide-and-conquer algorithms, dynamic programming 

does not break a problem into fractions of itself, but rather slightly smaller versions of itself that 

build upon each other. In fact, for many problems, the dynamic programming approach is much 

more efficient than its recursive counterpart, since it only needs to solve each sub-problem once, 

whereas the recursive algorithm solves each multiple times (Dasgupta, 2006). However, many 

dynamic programming problems are NP-hard. One example is the Travelling Salesman Problem 

(TSP), which involves a salesman who is attempting to travel to n cities in the shortest route 

possible, while only visiting each city once. An asymmetric problem instance of the TSP allows 

for different distances between the cities depending upon which direction the salesman is 

traveling, and is also intractable. Without constrained position shifting, the takeoff sequence 

optimization problem would also be intractable since it can be modeled as an asymmetric version 

of the Travelling Salesman Problem (TSP). This can be done by having the aircraft be the 

“cities”, and having the separation times between aircraft based on their respective weight 

classes be the asymmetric “distances” between the cities. However, having constrained position 

shifting makes the problem tractable and solvable in nearly linear time (Balakrishnan, 2007). 

This efficiency makes such an algorithm a good candidate for real-time use, if it can also 

produce robust results when uncertainties are present. 

2.4 Uncertainty of Taxi Times 

Most papers on the subject of optimizing airport surface operations assume a deterministic 

optimization where everything is known. However, the real world is never deterministic. In order 

to make these optimization algorithms more appropriate in real circumstances, it is necessary to 



consider stochastic, or changing, conditions. Several causes of uncertainties listed by Malik et al. 

include “weather, the airline schedule, ramp operations, aircraft turn-around time and other 

factors” (Malik, 2010). There are several places on the airport surface where uncertainties can be 

investigated. Some examples are when the aircraft were ready to leave the gate, spot or runway, 

when the aircraft did leave these areas, and their taxi times between them. This project will focus 

on the uncertainties of taxi times, determining their effect on the optimal takeoff schedule.  

2.4.1 Effects of Taxiing Uncertainty on Spot Release Re-sequencing 

Due to the uncertainty in taxi times from the spot to the runway, the original planned optimal 

takeoff schedule becomes sub-optimal in one of three ways: a leading aircraft taxies for a longer 

amount of time than expected, a following aircraft taxies for a shorter amount of time than 

expected, or two aircraft switch places in the predicted takeoff sequence due to perturbations in 

their predicted unimpeded taxi times. If a leading aircraft taxies longer than expected, it backs up 

the rest of the sequence due to separation requirements, assuming that the rest of the aircraft 

were spaced no further apart than those separation times. Similarly a following aircraft that 

taxies shorter than expected will incur delay at the runway in order to obey separation times. 

Matters become worse when a pair of leading and trailing aircraft taxi slower and faster than 

expected, respectively, which can lead to a change in the takeoff sequence. Since separation 

times are based on the weight classes of both the leading and trailing aircraft, such changes in the 

takeoff sequence can make the resulting sequence considerably sub-optimal, depending on the 

weight classes of the aircraft that were switched and of the aircraft immediately before and 

following them. 

2.4.2 Modeling Taxi Time Uncertainty 

Stochastic taxi times can be modeled in several different ways. The first and least accurate would 

be to randomly choose them from a uniform distribution. This is inaccurate because there is an 

equal chance of choosing a taxi time on the outer boundary of the distribution as choosing one 

closer to the mean, which is not seen frequently in real-life. A more accurate prediction would 

come from a Gaussian distribution, as more taxi times that are closer to the mean would be 

chosen. An even more accurate method for modeling real data from DFW is to use a triangular 

distribution that is dependent on several characteristics of the aircraft. This triangular distribution 



was taken from the 10
th

 percentile of taxi times from 13 different days of data from DFW. The 

10
th

 percentile was taken in order to model unimpeded taxi times. The characteristics that are 

used to model the taxi times can include how far the aircraft is taxiing, where in the airport it is 

coming from, and the aircraft type. These characteristics determine the interval of the triangular 

distribution that is to be used. Examples of these distributions are shown in Figure 4. The 

randomness of choosing from a distribution allows for a fairly accurate model of the possible 

uncertainties of taxi times (Jordan, 2011, Personal Communication).  

Figure 4: From left to right: Uniform, Gaussian and Triangular Distributions 

2.4.3 Measuring Robustness 

In his Master’s thesis “Tradeoff evaluation of scheduling algorithms for terminal-area air traffic 

control,” Lee describes two methods to measure the robustness of a predetermined arrival 

schedule when considering the uncertainty of predictions of when aircraft will be ready to land. 

The first was termed reliability by Balakrishnan, and measured the probability that separation 

requirements would be violated in a given landing schedule. According to Lee, only measuring 

the overall probability for the entire schedule could sacrifice the separation time between a pair 

of aircraft for the overall reliability of the sequence, and therefore proposes an alternative (Lee, 

2008). 

Lee proposes a second method that minimizes the probability of pairs of aircraft violating 

separation requirements rather than looking at the sequence as a whole. In his approach, he 

considers the situation where a trailing aircraft is ready to land before it is allowed to under 

separation requirements. What he terms the weakness of a sequence is the maximum of the 

probabilities of a pair of aircraft being ready to land too close to each other, for all pairs of 

adjacent aircraft in the landing schedule (Lee, 2008). 



Though these two approaches were applied to arrival sequencing, they can be applied to both 

departure and arrival sequencing and minimizing system delay by considering the probabilities 

of delay being incurred by uncertain taxi times, possibly weighted by the amount of delay that 

could occur. With an appropriate measure of robustness, existing algorithms can be modified and 

new algorithms can be developed that balance the tradeoffs between minimizing delay and 

maximizing robustness, much like what Lee did with arrivals. 

  



3.0 Methodology 

In this project, we optimized the takeoffs on a single runway by minimizing departure delay. We 

had also planned to consider runway crossings of arriving aircraft, but were unable to due to 

difficulties with the simpler problem of just departures. Optimizations require an objective 

function, in our case minimizing departure delay, which was the goal of the optimization. In 

addition there were certain constraints that restrict the variables which were being solved. We 

were solving for optimal takeoff times and an optimal sequence, optimal meaning those which 

gave the minimal departure delay. The primary constraints that we imposed by the Mixed Integer 

Linear Programming (MILP) and Dynamic Programming (DP) methods included separation 

times and Constrained Position Shifting (CPS).  Both MILP and DP have been used by other 

researchers to optimize aircraft surface operations (Malik, 2010 and Balakrishnan, 2010). 

However, they have only been investigated under deterministic, or unchanging, circumstances. 

Our overall project goal was to compare the operational feasibility of the MILP and DP methods 

and the robustness of the solutions when stochastic variables were added into the optimization 

problem. Our objectives to complete this project were as follows: 

1. Use Mixed Integer Linear Programming and Dynamic Programming with deterministic 

variables to find the optimal sequence of departing and arrival aircraft. 

2. Model uncertainties in taxi times based on real aircraft departure data from Dallas/Fort 

Worth International Airport (DFW). 

3. Analyze robustness of the optimization solution and the feasibility of Mixed Integer 

Linear Programming and Dynamic Programming methods under stochastic conditions. 

3.1 Problem Approach 

In order to present our progress to our advisors and liaisons, we set up weekly meetings. During 

these meetings we discussed issues that we were working through, issues that had been resolved, 

and results that we found. This allowed us to get valuable feedback and also ideas to try out 

during the coming week that would help us discover deeper results or understandings. We wrote 

up and sent out a meeting agenda before each meeting to prepare the attendees for what topics 

would be discussed. We also took turns mediating and scribing the meeting. The scribe of each 

meeting then had the task of sending out meeting minutes to summarize what was talked about 

and actions that we planned to take.  



During the fourth meeting, we came to a decision that altered the project goal. We discovered 

that the departure-only problem with stochastic taxi times was a great enough feat for a nine 

week project and that adding in arrivals would not be possible. We were especially unsure 

whether we would be able to develop a Dynamic Programming algorithm good enough to 

improve on our baseline. Since our goal was to compare Mixed Integer Linear Programming and 

Dynamic Programming approaches to the problem, it would not have been helpful to have a 

departure and arrival solution for just the MILP. Once we completed our departure algorithms, 

we came up with ideas of how arrivals might be added into the optimizations. 

3.2 Deterministic Optimization using Mixed Integer Linear Programming and 

Dynamic Programming  

We investigated how Mixed Integer Linear Programming and Dynamic Programming approach 

the sequence optimization problem. Julia Baum implemented a MILP algorithm using MATLAB 

while William Hawkins implemented DP algorithms in Java. For each approach, a version of the 

problem that only considers departures was implemented and tested. Smaller data sets were 

tested initially, which was determined by a limited time window or a small number of flights. 

Once testing proved that our implementations of these algorithms provided the correct solutions 

for the smaller sets, we moved on to testing 24-hour departure schedules. The outcomes of these 

methods are optimized takeoff times, an optimized takeoff sequence and corresponding spot 

release schedule, and the departure delay associated with the optimization. We compared the 

departure delays of the optimization, simulated First Come First Serve (FCFS), and real-world 

takeoff times against one another. Simulated FCFS showed the benefits of waiting no longer than 

the minimum separation times to take off when compared to the real-world data from DFW. 

Currently, aircraft wait longer than necessary at the runway before taking off, for unknown 

reasons. The optimization was expected to have even more benefits due to the re-sequencing of 

aircraft.  

In coding our respective algorithms, we strove to follow best coding practices in terms of the 

readability of the text itself as well as the maintainability and flexibility of the design. We tested 

our code on a regular basis and used the appropriate tools to do so, such as testing suites and 

code coverage tools. We saved several incremental versions of our code in case we needed to 

refer back to previous versions. We also designed our algorithms to be extendable to minimize 



our reliance on older versions of the code. We appropriately documented our code to facilitate 

future use by other developers at MIT Lincoln Laboratory. 

While we both worked on our own algorithms, Julia Baum served the role of expert in terms of 

the mathematics and background information involved in the problem, as she spent a great 

amount of time researching and understanding the problem during an internship prior to the start 

of this project. William Hawkins was the expert on matters relating to coding, such as what tools 

to use to accomplish our project goals and what design concepts and coding practices to adopt to 

maximize the flexibility and maintainability of our code for future use by other developers. 

3.2.1 Dallas/Fort Worth International Airport Data and its Limitations 

The test data that was used for the Mixed Integer Linear Programming and Dynamic 

Programming optimizations were real-life departure data from Dallas/Fort Worth (DFW) 

International Airport, since the layout of its runways contains the essential elements we intended 

to investigate. The data from DFW for departures consists of the time at which each aircraft was 

ready at the last spot, when it took off, and the aircraft type. The times that the aircraft were 

ready at the spot and their time of takeoff are actual times that radar detected for each flight that 

day. The unimpeded taxi times are defined as the 10
th

 percentile of taxi times based on a data 

sample consisting of 13 fair weather days. The ready to take off time is then estimated by adding 

the spot ready time and the unimpeded taxi time together. This assumes that each aircraft left the 

spot as soon as it was ready and taxied unimpeded to the runway.  

Table 1 contains a sample fragment of the available data. The ready times are seconds after time 

zero in Zulu time, commonly known as Greenwich Mean Time (GMT). The unimpeded times 

are also in seconds, representing the amount of time it takes for the aircraft to taxi from the spot 

to the runway without stopping in between or encountering any traffic. The aircraft types are 

represented by the numbers 1-4 where 1 is a small aircraft, 2 is a large aircraft, 3 is a heavy 

aircraft, and 4 is a B757. The times at which departing aircraft were ready at the runway were 

used to generate the First Come First Serve (FCFS) sequences for MILP, and their spot ready 

times were used to generate the FCFS sequences for the DP algorithms. Aircraft were then 

assigned a number based on their position in the FCFS sequence in order to keep track of them 

during the optimization. The departure delays of the real world and FCFS sequence, which were 



used as a baseline for those of the optimized MILP and DP solutions, was calculated by 

summing the differences between the takeoff times and the ready to take off times for each 

aircraft of the test data. The real-world system delay is shown in the table. FCFS is not shown in 

the table as it is simulated and does not come directly from the DFW data. 

Ready to 

leave spot (  ) 

Unimpeded taxi 

time (  ) 

At runway and 

ready to take off 

(  ) 

Aircraft type 

(weight class 1-4) 

Actual take 

off time  

Delay 

43219 529 43748 4 43783 35 

60986 420 61406 2 61406 0 

85961 490 86451 2 86537 86 

… … … … …  

Table 1: Example data from DFW 

We have four days’ worth of data from DFW in 2010: June 14
th

, 15
th

, 16
th

, and 18
th

.  All four 

days have similar congestion and aircraft type distribution, as DFW is fairly consistent day to 

day. The number of aircraft for these days are 485, 382, 393, and 404, respectively. There is a 

76-minute gap in the data from June 15
th

 where no flight information was recorded; other gaps in 

the data also appear. These gaps occur due to poor radar signals. Spot group number nine, for 

example, is known for being a blind spot to the radar, and so there are less spot leave times for 

aircraft leaving from that spot (Ishutkina, 2011, Personal Communication). In addition to poor 

radar, some pilots do not turn on their transponder when they begin taxiing and so their spot 

position is lost. For the four days for which we have data, an average of 469 flights departed each 

day, but we only have data for an average of 416 flights a day. This means that we are missing 

data for about 10% of the aircraft that are departing. The radar coverage is better at the runway 

compared to at the spot, and so there is more data on runway times and departure times than on 

spot times. Appendix C contains graphs and charts that analyze the four days of data. This 

analysis further shows the similarity between the days of data. 

Since Dallas/Fort Worth International Airport has such a homogenous aircraft mix, we decided 

to uniformly assign aircraft types to the spot ready times that we had from DFW for each day. 

This created an even distribution of aircraft types, which would get more benefits from re-

sequencing. We assigned these aircraft new taxi times taken from the triangular distribution, 

based on their aircraft types. We did not assign them new spot groups, however. We then 



repeated the deterministic optimization on this data set with both optimization methods and 

different values of CPS.  

3.2.2 Mixed Integer Linear Programming Formulation 

We chose to use YALMIP to formulate the MILP in MATLAB. YALMIP is a toolbox for 

MATLAB and is used for modeling and solving optimization problems (“YALMIP Wiki”, 

2011). It allows a user who is familiar with MATLAB to more easily implement an optimization 

formulation. YALMIP has several commands that are useful for the MILP formulation. The first 

is spdvar which defines a decision variable, in our case the takeoff times. Similarly, binvar sets 

up a decision variable that is binary, which is used for the integer sequence variable. Finally 

solvesdp is the command to solve for the linear program. The inputs of solvesdp include the 

objective function, constraints, chosen solver, and other setting options. YALMIP includes an 

internal algorithm to solve for MILP problems, but also allows for external solvers to be used 

(“YALMIP Wiki”, 2011).  We used Gurobi as our external solver. Gurobi is one of the best 

commercial solvers available (“Gurobi Optimization”, 2011). There are other solvers that could 

be used to solve the problem at hand. For example, Gupta et al. used ILOG CPLEX as their 

solver (2009). The algorithm that we used in Gurobi is Branch and Cut, which was described in 

the Background Chapter. 

Optimizing a full day’s worth of flights is operationally infeasible using MILP. To solve for a 

day of flights in less than five minutes, we split the day into 15-minute windows or bins. The 

optimization of June 14
th

 took over five minutes for 30-minute bins, otherwise larger bins would 

have been chosen as they result in lower departure delays. The 15-minute bins are determined by 

runway ready times starting at the minimum ready time for each day. Each 15-minute bin is 

locally optimized one after the other. Subsequent bins are dependent on the optimization of the 

last flight of the previous bin. The MILP algorithm stores the optimal takeoff time and the 

aircraft type of the last flight in the previous bin to maintain separation time requirements 

between bins. The MILP was set up as shown in the formulation below, where variables were 

inputs and parameters were solved for: 

Variables for MILP 

     = number of aircraft,       and       



    = number of positions CPS allows an aircraft to shift 

      = time at which aircraft   is at the runway and ready to take off 

      = the separation times between the      and      aircraft in the final sequence, based on 

 sequence, weight classes, 1 = small, 2 = large, 3 = heavy, and 4 = B757 

     = very large number, e.g.    
 
    

         = the takeoff time for the last aircraft in the previous 15-minute bin 

         = the aircraft type of the last aircraft to take off in the previous 15-minute bin 

      = the position of the      aircraft in the original spot sequence 

     = the position of the      aircraft in the optimal spot sequence determined by      

      = the optimal spot leave time for the      aircraft 

Parameters for MILP 

    = time at which aircraft   should take off, determined by optimization 

            
                                                             
                                                         

  

            
                                                                                   
                                                                           

  

Objective for MILP 

Minimize departure delay 

         

where              
 
    

Constraints for MILP 

1. An aircraft cannot take off before it is ready to. 

            

2. If aircraft   is before aircraft   then aircraft   is not before aircraft .  

                         

                         

 

3. Separation times between aircraft are obeyed. 

                                  

   

        
        
           
         

                                   

     

4. No aircraft leaves at the same time in the optimal spot leave schedule. 

                                 



 

5. Separation times between bins are obeyed. 

                          

 

6. Constrained Position Shifting (CPS): aircraft can only shift k places from their position in the 

original spot leave sequence. 

          

Constraints three and four are the integer constraints that make this problem a Mixed Integer 

Linear Program problem.      and     are both binary variables and they determine whether two 

aircraft are next to each other in the sequence. Both of these constraints should only be enforced 

for aircraft that are next to each other, or the problem will run very slowly. In order to make a 

constraint only be enforced some of the time we used an either-or constraint. This is why the 

            part of the constraint is added. If      or      is equal to 1, meaning that i and j are 

adjacent in the sequence, then this part of the constraint equals zero and the separation times are 

enforced. On the other hand if      or      is equal to 0 then the second half of the constraint 

dominates the constraint but leaves the separation time to be greater than a large negative 

number, which in practice negates the constraint. 

Delta represents the separation time requirements between two aircraft. This time depends on the 

weight classes of both of the aircraft and on which aircraft is before the other in the sequence. 

The departure separation time matrix has rows and columns of weight classes from 1-4. An 

example of how to interpret this ∆ matrix is if a B757 aircraft (weight class 4) takes off before a 

small aircraft (weight class 1) then the small aircraft will have to wait for 120 seconds. Once the 

whole day has been solved for, the code returns the optimal takeoff times, the optimal sequence, 

and the departure delay of both FCFS and the optimal takeoff and crossing times for comparison.  

From the optimal takeoff times and the optimal takeoff sequence, optimal spot leave times and 

spot leave sequence for departures were found by subtracting the unimpeded taxi times. This 

allows the departing aircraft to be held at the spot until their optimal spot leave time. They then 

taxi unimpeded and take off as soon as they arrive at the runway. 

3.2.3 Dynamic Programming Formulation 

The Dynamic Programming formulation appears to be quite different from the MILP, although it 

obeys the same constraints. The MILP formulation focused on the runway activities as they 



would be in the future, whereas the DP formulation looks at the spot activities in the present 

while indirectly obeying future separation constraints at the runway. Due to this indirect 

constraint, the DP algorithm proved to be more difficult than was expected. This was due to the 

fact that in order for a DP algorithm to guarantee optimal solutions to a problem, the problem 

must have a property called “optimal substructure.” This means that when the DP algorithm 

breaks down the problem recursively into smaller steps, the optimal solution from a given step 

must be reachable from the decisions made to reach the optimal solution of the step before it. 

Due to the indirect CPS constraint on the runway sequence and that the spot release and runway 

sequences differ due to differences in unimpeded taxi times, we were unable to reach such a 

recursive relationship between the optimal solutions of successive steps for this problem. 

Therefore, instead of pursuing an exact solution, we implemented a series of heuristic DP 

algorithms instead. The DP heuristics can solve for the whole day at once, as long as the 

maximum allowable number of position shifts experienced by any aircraft, k, is kept at low 

values such as 1 or 2, which are considered typical for both arrival and departure scheduling 

(Balakrishnan, 2010). 

CPS Network 

The optimization problem was modeled as finding the path of least cost through a directed 

acyclic graph, which is a graph of nodes and unidirectional edges with no cycles. The dynamic 

programming algorithms depend on the valid construction of this graph, or the “CPS network”, 

as defined by Balakrishnan and Chandran (2010). The construction of such a network satisfies 

the CPS constraint in that every path from the start node s to the end node t represents a sequence 

that obeys CPS and contains no repeated aircraft. Additionally, every possible sequence that 

meets these criteria is represented as an s-t path through the network. 

To start, the CPS network generation algorithm we implemented creates a table that lists all the 

possible aircraft (represented by their index in the FCFS spot ready sequence) that could be 

placed at each position in the optimal spot release schedule. For the example below, n=4 and 

k=1: 

 



Position 1 2 3 4 

Possible aircraft 

assignments 

1 1 2 3 

2 2 3 4 

 3 4  

 

Using this table, the algorithm generates subsequences of aircraft that obey CPS constraints, 

which are represented as nodes in the CPS network. These nodes are placed into “stages,” which 

represent the positions of the final optimal spot release sequence that the aircraft can be assigned 

to. These stages consist of groups of nodes whose last aircraft could possibly be assigned to the 

position that stage represents. For example, all nodes in stage 3 must have aircraft 2, 3 or 4 as 

their last aircraft. All previous aircraft in a node are used only to correctly draw edges between 

nodes in neighboring stages, as described later. 

To create these nodes and place them in the correct stages, the algorithm begins with stage 1. For 

this stage and all subsequent stages, the number of aircraft that are represented by nodes in stage 

p is           . For stage 1, this means all of its nodes have subsequences of length 1. 

Since the last aircraft of all nodes in stage p must be assignable to position p in the optimal spot 

release sequence with respect to CPS, stage 1 has just two nodes: one that represents just aircraft 

1, and one that represents aircraft 2. 

Next it builds stage 2, in which nodes represent subsequences of length two, according to the 

process described above. The algorithm constructs nodes for all possible subsequences of length 

two that follow the CPS constraint, and produces the following: 1-2, 1-3, 2-1, and 2-3, obviously 

omitting 1-1 and 2-2 since aircraft cannot repeat in a sequence. This process continues until 

nodes are generated for stage 4, or more generally, stage n, which in this case has nodes with 

subsequences of length three since            . Finally, dummy nodes s and t are 

added, which are the start and end nodes, respectively. The completed CPS network is shown in 

Figure 5. 

Once the nodes are determined, they are connected with edges. Beginning with stage 1, the 

algorithm draws a directed edge from every node in stage 1 to every node in stage 2 that could 

follow it. In this example, these relationships are (1)→(1-2), (1)→(1-3), (2)→(2-1), and (2)→(2-



3). Then, it moves on to stage 2 and does the same for nodes in stages 2 and 3. More formally, 

edges are drawn from all nodes i in stage p to all nodes j in stage p+1 where the last           

aircraft of i match the first           aircraft of node j. See Figure 5 for all such valid 

relationships between nodes in adjacent stages. 

Finally, there are some nodes that cannot be part of an s-t path because they are not reachable 

from both s and t. We used a graph search algorithm that first marks all nodes reachable from s, 

then reverses the edges in the network and does the same but starting from t. Any nodes not 

marked twice can safely be removed from the network, along with all their associated edges. The 

nodes that are removed from the network in Figure 5 are shaded gray. This pruned version of the 

original CPS network is the network on which we perform the dynamic programming recursion. 

The properties of the network that allow us to use it to solve the problem are proven by 

Balakrishnan and Chandran, who have used networks like this to solve other aircraft sequencing 

problems with CPS and dynamic programming (Balakrishnan, 2010). 

Although our solution relies on Balakrishnan and Chandran’s CPS network, they solved the 

problem of re-sequencing at the runway while our problem involved re-sequencing at the spot. 

Therefore, our initial solution made the adaptation of changing what the edge costs in the 

network represent and how they were set. Balakrishnan and Chandran set the costs of the edges 

to the required separation times between the last aircraft of the nodes they connected, and did so 

when they constructed the network. In our problem, edge costs correspond to the additional delay 

incurred by scheduling the last aircraft of the target node next in the spot release sequence. Our 

network starts with all edge costs set to zero, which are then implicitly calculated on the fly as 

the problem is solved since they rely on the solutions to the nodes from which they originate. 



Figure 5: The directed acyclic graph on which the problem of optimally sequencing four takeoffs is solved 

 

Variables for DP  

n  the number of aircraft in the sequence 

k  the value of the CPS parameter 

last(i) the last aircraft in the subsequence of node i of the CPS network 

si  the spot ready time for last(i) 

ui  the unimpeded taxi time for last(i) 

Soi  the actual release time of last(i) 

∆i,j  the required separation time between last(i) and last(j) at the runway 

P(i) the set of nodes that are predecessors of node i 

Parameters for DP 

Soj(i) the spot release time for last(j) that minimizes delay if last(i) is its predecessor 

D(i) the minimum possible departure delay incurred by a sequence ending in last(i) 

 

Change of variables between formulations of MILP and DP: 

          

         

 

Objective for DP 

            
 

   



Dynamic Programming Recursion 

Once we implemented the CPS network generation algorithm, we moved on to developing 

heuristics that used the network to solve the problem. These algorithms had to respect the 

following constraints: 

 An aircraft cannot leave the spot before it is ready to. 

            

 Separation times are obeyed. 

 

                                                     

 

 Constrained Position Shifting (CPS): aircraft can only shift zero, one, or two places from 

their original spot leave sequence (for departures only). 

The last of these three constraints was taken care of by the construction of the network, leaving 

the other two to be enforced while applying the dynamic programming recursive equation. 

The most basic situation to consider was that the spot release and takeoff sequences were the 

same, so it can be assumed that last(j) comes immediately after last(i) in the takeoff sequence if 

that is the order in which they appear in the spot release sequence. Therefore, the following must 

be true: 

                     

In practice, the goal is to have Soj be as early as possible, and the earliest aircraft last(j) can 

possibly leave the spot is sj. Additionally, the order of the current CPS subsequence being looked 

at must be preserved, meaning that last(j) could leave no earlier than Soi. We called this the 

“predecessor bound.” Therefore, the time that last(j) should leave is a maximum of these three 

times, if preceded by node i: 

                                             

These additional constraints resulted in the following recursive function D(∙), which gives the 

lowest possible departure delay for a sequence ending in node j, minimized over all possible 

predecessor nodes i: 



                                 

However, the definition of D(j) assumes that the goal is to have last(j) not get to the runway until 

last(i) has already taken off and that the required separation time between the two has already 

passed. As mentioned above, this enforces that the spot release and takeoff sequences are the 

same. For the simplicity of this initial heuristic, we named it Simple Spot. Where it falls short is 

where there exists the possibility that the two sequences could differ due to large differences in 

unimpeded taxi times, which could give a better solution. 

Consider the following scenario: 

 
si ui 

Aircraft 

Type 

A 0 100 2 

B 400 200 2 

C 405 50 2 

 

Applying the D(∙) function to each node in the generated CPS network resulted in a minimum 

departure delay of five seconds, and with the spot sequence being A-C-B. In reality, the best spot 

sequence would have been A-B-C, with no departure delay. The reason why this occurs is 

because C is able to leave early enough so that it can fit between A and B in the takeoff sequence 

without incurring any delay at the runway. 

Any time there is sufficient space between the spot ready times of two consecutive aircraft, 

where the third aircraft in the spot ready sequence is ready very soon after the second one is and 

has a shorter unimpeded taxi time to the runway, the Simple Spot heuristic computes an incorrect 

result if the third aircraft can fit between the first two in the takeoff sequence without 

consequences. 

The fundamental problem with Simple Spot was that it did not take into account that the takeoff 

sequence could be different from the spot release sequence due to large differences in unimpeded 

taxi times between different aircraft. To recognize this possibility, two improvements to this 

algorithm were implemented: One Gap and All Gaps. One Gap works exactly like Simple Spot, 

except that it considers the current predicted takeoff sequence first. If it is determined that the 



aircraft currently being scheduled can fit between the last two aircraft projected to take off 

without incurring any runway delay and respecting all other constraints, it is allowed to do so. 

Otherwise, it is scheduled to take off last. All Gaps is a modification of One Gap that looks at 

gaps between all aircraft in the projected takeoff sequence rather than just between the last two. 

While One Gap expanded on the original heuristic and All Gaps even more so, the resulting 

departure delays given by these algorithms were only a slight improvement over Simple Spot and 

were much higher than the runway departure delay incurred by just sending all aircraft from the 

spot to the runway immediately after they are ready to do so. 

Although One Gap and All Gaps were developed to recognize that the spot release and takeoff 

sequences may differ substantially from each other due to differences in unimpeded taxi times, 

they only consider gaps in the takeoff sequence that are already large enough to fit subsequent 

aircraft into. That is, a gap between the takeoffs of previously scheduled aircraft a and b is only 

considered suitable if the aircraft currently being scheduled, c, can take off as soon as it gets to 

the runway without following a too closely with respect to the required separation time between 

the two of them, and if this can be done without b following c too closely. This approach fails to 

consider gaps in the projected takeoff sequence that are only slightly smaller than necessary to fit 

c. With a small adjustment to b’s takeoff time (i.e. an adjustment to its spot release time), the gap 

can be made wide enough to fit c between a and b, incurring far less delay than scheduling c to 

take off after b. 

The first algorithm we developed to address this issue is One Gap Force, which extends One 

Gap to consider “forcing” the gap between the last two aircraft in the current projected takeoff 

sequence to be large enough to fit the aircraft currently being scheduled. As it schedules each 

aircraft, One Gap Force computes the additional delay incurred by “forcing” b to leave the spot 

later to accommodate c, and then does the same for just scheduling c to take off after b. The spot 

release time for c that corresponds to the lesser of the two delays is then assigned to c as its 

optimal spot release time. If the two incur equal delays, then the one that places c between a and 

b in the takeoff sequence is preferred since it minimizes the time at which the next aircraft to be 

scheduled after c can take off. The one exception to this is if rescheduling b’s takeoff (and 

therefore spot release) time changes the spot release sequence enough to make it violate the CPS 

constraint, in which case the other spot release time is taken instead. 



In implementing this algorithm and all subsequent algorithms that relied on “forcing,” three other 

important changes had to be made: 

1. Each node must keep its own optimal spot release sequence that is set once that node is 

solved for and not changed afterwards 

2. The “predecessor bound” must be calculated from the stored spot release sequence of the 

predecessor node i currently being considered rather than just Soi 

3. The optimal spot release sequence for the entire day is that which is stored in the node in 

stage n with the lowest departure delay 

The first change was necessary because “forcing gaps” changes values that have already been 

solved for, and also has the potential to change the sequence in which aircraft are released from 

the spot, which is dependent upon the spot ready time, unimpeded taxi time, and aircraft type of 

the next aircraft being scheduled. Since nodes in the CPS network often have more than one next 

node, and since by construction of the network the last aircraft of those nodes must be different, 

they had the potential to have very different effects on the spot release sequence that had already 

been scheduled. Therefore, given node i with next nodes x and y, where x is solved for first, x 

cannot just adjust Soi as it sees fit because it would bias the results of y, which also relies on the 

value of Soi. Therefore, each node i must maintain its own optimal release sequence, which it 

creates by copying from what is determined to be its optimal predecessor node and then modifies 

when it schedules last(i). 

The second change arose from the fact that the previously scheduled sequence can change due to 

“forcing” gaps and may not follow the sequence that would normally result from tracing back 

through the nodes in the CPS network. For example, a node i in stage 3 could have been 

originally constructed to represent the subsequence 1-2-3, but whose optimal sequence could 

actually represent 1-3-2 due to forcing. This could happen if 3 is fit into the takeoff gap between 

1 and 2, but in order to do so, 2’s spot release time is adjusted enough to release it after 3 even 

though 3 is the aircraft currently being scheduled. This is perfectly acceptable since the new 

subsequence of 1-3-2 is valid according to CPS. However, if a node j in stage 4 that is connected 

to i then uses 3’s optimal release time in its calculation of how early it is allowed to schedule 

aircraft 4, it is possible that it could schedule 4 before 2, creating the sequence 1-3-4-2, which 

violates 1-CPS since 2 would have moved twice from its original position. This is not a problem 



if the forcing part of the algorithm does this since it is always validated against CPS before being 

accepted. However, scheduling the next aircraft to be the last takeoff can also create an invalid 

sequence in this way, and that, rightly so, is not validated against CPS because it would then 

leave the algorithm no alternative for assigning an optimal spot release time to the aircraft 

currently under consideration. 

The solution we came up with to avoid invalid sequences is to consider the entire sequence of the 

predecessor node currently being looked at to compute the predecessor bound rather than just 

looking at the aircraft that was scheduled last. This can be done by starting at the last aircraft in 

the spot release sequence and moving backward, stopping once an aircraft is reached that must 

precede the aircraft currently being scheduled in order to preserve the validity of the sequence 

with respect to CPS. There are two conditions to validate that determine whether such an aircraft 

has been found. The first is that you have gone too far back in the sequence for the current 

aircraft. For example, if k=1 and you are currently scheduling aircraft 6, this condition would tell 

you to stop once you look at the aircraft in the fourth position of the optimal spot release 

sequence. This means aircraft 6 must follow that aircraft, i.e. appear at least fifth in the sequence. 

The second condition is that you have reached an aircraft that has already been moved k places 

later than its original position, and therefore you cannot schedule the current aircraft before it. 

Once such an aircraft is found, the predecessor bound on the earliest time the aircraft currently 

being scheduled can be released can be calculated. An important note is that this implementation 

considers the possibility of releasing two aircraft at the same time, and considers whichever 

aircraft that has the lowest First Come First Serve index to be first in the optimal sequence, even 

though in practice this does not matter. Therefore, if the aircraft currently being scheduled has a 

higher FCFS index than the one it must follow, it is safe to set the predecessor bound to the 

optimal release time of the aircraft it must follow. Otherwise, the bound is set to one second later 

than the found aircraft’s optimal spot release time. In the case that there are no aircraft in the 

sequence that must precede the aircraft currently being scheduled, any suitably low value such as 

the current aircraft’s spot ready time or even zero can be set as the bound since the maximum of 

this value and the aircraft’s spot ready time will be taken as the earliest it can be scheduled 

anyway. It may make more sense operationally in the future to consider spot release schedules 



that do not schedule multiple aircraft to be released at the same time. The MILP implementation 

already enforces this restriction. 

The third change is needed because the spot release sequence created by following the path of 

least cost through the network will probably differ from the actual best sequence found, again 

due to “forcing gaps,” which changes the sequences. Therefore, instead of tracing backwards 

through the network to recover the optimal spot release sequence, it instead is simply the 

sequence stored in the node in stage n that is the shortest distance from s, i.e. the lowest 

departure delay. 

With all this in mind, the next “forcing” algorithm we implemented was All Gaps / One Gap 

Force (AG/OGF). This algorithm simply improves One Gap Force by also considering the spot 

release time suggested by All Gaps for each aircraft and takes the release time that results in the 

least amount of additional delay. Note that the All Gaps component of this algorithm must also 

use the new strategy of computing the predecessor bound rather than using Soi as it normally 

does. 

Our next improvement to One Gap Force was All Gaps Force (AGF), which is to OGF as All 

Gaps is to One Gap. It takes the logic of forcing gaps from OGF and extends it to considering all 

possible gaps in the takeoff sequence that could be forced to be wide enough to fit the aircraft 

currently being scheduled. An important difference, though, is that it is not enough to only adjust 

the spot release time of the following aircraft of the gap, b, because b is no longer guaranteed to 

always refer to the very last aircraft in the takeoff sequence since all gaps are now being 

considered. In addition to b being rescheduled, the algorithm must then determine if any runway 

delay is incurred by moving b’s takeoff time too close to the aircraft following it. If this is the 

case, then that aircraft must also be moved until there is no longer any conflict. This process 

must continue until there is no runway delay. The added delay is now the sum of all the 

additional delays incurred by rescheduling however many aircraft needed to be to avoid runway 

delay, added to whatever delay the aircraft currently being scheduled may also experience. To 

calculate the best sequence under AGF, the best resulting CPS-valid sequence should be 

maintained while trying each and every possible gap, which should then be compared to just 

scheduling the aircraft currently under consideration after the last takeoff. 



Finally, one last improvement to this family of Dynamic Programming heuristic algorithms that 

we considered and implemented was Lenient All Gaps Force. This algorithm operates the same 

way as All Gaps Force, but keeps track of two sequences that violate CPS in addition to keeping 

track of a valid sequence. The first of these two invalid sequences is the one that is closest to 

being valid of all the invalid sequences that are tied for having the lowest departure delay, and 

the second is the sequence with the lowest departure delay of all the invalid sequences that are 

closest to being valid. How close an invalid sequence is to being valid is calculated simply by 

summing how far away each aircraft in the sequence is from being in a valid position according 

to CPS. For example, if aircraft 6 is in position 3 with k=1, then 2 is added to the sum since it is 

two positions away from position 5, the closest valid position it can occupy. Nothing is added to 

the sum for aircraft that are already within k positions of their original position. The motivation 

for such an algorithm was the possibility that intermediate invalid sequences could correct 

themselves due to forcing and end up having better departure delays than those that are 

constantly ensured to be valid throughout the scheduling process. A summary of the various DP 

algorithms and their relationships to one another is shown in Figure 6. 



Figure 6: Summary of relationships between the different DP algorithms 



Implementation 

The above heuristic algorithms were all implemented using the Java programming language, 

whose object-oriented properties allowed for quick and easy extensions of earlier algorithms to 

develop the more complicated algorithms. The language features that were mainly responsible 

for this were interfaces/abstract classes, composition and polymorphism. 

Coding to interfaces and abstract classes allowed for classes that needed to perform similar tasks 

but in different ways to easily be integrated into the program. Different algorithms were 

implemented by changing which classes the main class, DPSequencer, used to carry out these 

tasks needed to solve the problem. This often involved just changing which subclass of the 

CostStrategy class was used, whose role was to determine the optimal previous node for a given 

node and that node’s optimal distance from the start node s. 

CostStrategy, along with other helper classes, were used by the DPSequencer class according to 

the Strategy pattern. This allowed DPSequencer to handle the tasks that were common to all the 

DP heuristics, only calling on the strategy classes it was composed of for tasks that differed from 

algorithm to algorithm. As more types of strategy classes were added, we decided to also use the 

Abstract Factory pattern. This pattern involves passing just one object to the DPSequencer class 

that retrieves its helper objects from the factory object passed in. What this did was ensure that 

there would only ever need to be one argument to DPSequencer’s constructor, and that each 

algorithm would have a factory object associated with it. This meant that strategy objects would 

only be packaged in factories together in ways that made coherent and correct algorithms, rather 

than allowing any combination of strategy objects to be passed in to a DPSequencer constructor 

that accepts a strategy object of each type that it requires. 

By taking advantage of the object-oriented properties of Java as well as the Strategy and Abstract 

Factory design patterns, we were able to quickly implement and test new DP heuristics without 

writing much additional code. Testing was done with the JUnit framework, which allowed us to 

verify that changes made in the new algorithms did not cause them to behave differently than we 

expected. We also wrote code that validated the new spot release schedules produced by our 

algorithms against each of the constraints and made this part of the optimization process so that 

we were guaranteed to know whether each and every result was valid. This allowed us to 



eventually develop DP heuristics that did better than our baseline. Also, because each algorithm 

has its own factory object and because we chose subclassing instead of modifying the code 

whenever we implemented a new algorithm, we were able to run any of our heuristics that we 

had already developed, even the earliest ones, at any time. This allowed and continues to allow 

for comparisons between all the algorithms we developed for other test data we did not have time 

to run the algorithms on, and also allows for improvements to some of the earlier algorithms in 

ways that take a different path than that taken by the later algorithms that we implemented. 

3.3 Stochastic Model with Mixed Integer Linear Programming and Dynamic 

Programming 

To model uncertainty in the optimized models, once the optimal departure sequence was 

determined, we perturbed the taxi times from the last spot to the runway for each aircraft. These 

perturbations were chosen randomly from a triangular distribution modeled on the 10
th

 percentile 

of taxi times from DFW data, an example of which is shown in the figure below. We ran 500 

simulations, each with different taxi times created by the model, for both of the algorithms being 

used to solve the problem (MILP and DP).  We then took the average departure delay for each 

algorithm, along with an average of how much the sequence changed from the optimal sequence 

and an average of how many separation times were violated and by how many seconds. The 

results were fairly close together and so we did not feel the need to delete any outliers. This was 

carried out by using the stochastic unimpeded times along with the optimal spot leave times that 

were found during the deterministic optimization to get stochastic runway ready times. The 

stochastic runway ready times determined the FCFS sequence which the aircraft will take off in 

with the appropriate amount of separation.  Additionally the stochastic unimpeded taxi times 

were added to the original spot ready times and again the flights were sent in FCFS. This 

modeled a stochastic world without optimization. We repeated this whole process with the data 



of even distribution of aircraft types. 

 

Figure 7: Triangular distribution modeled from Dallas/Fort Worth Airport data 

3.4Analyze Effects of Uncertainties in Taxi Times 

Adding in stochastic taxi times sometimes resulted in different sequences than the optimized 

sequence at the runway, and more frequently situations where aircraft incurred delay at the 

runway due to arriving at the runway too soon after a previous aircraft took off. The stochastic 

FCFS sequence at the runway was the sequence that was compared to the optimal runway 

sequence that the deterministic optimization found. The departure delay for the stochastic 

optimization was the sum of the stochastic takeoff times minus the original predicted runway 

ready times without holding at the spot. 

Once we completed and ran the implementations of our algorithms, we had five sets of 

sequences and departure delays to compare for both of the aircraft distributions that we looked 

at. The first two were deterministic models, with and without optimizing. The next two were 

stochastic models, with and without optimizing. The fifth set was taken from the real takeoff 



times captured at DFW. Comparing these results helped us determine if optimization with MILP 

or DP still had significant benefits when uncertainties like taxi times were taken into account in 

the model. This gave an idea of how the methods would perform as part of a decision support 

tool. These results are shown averaged in Table 6 in the Results Chapter and for each day 

individually in Appendix D. 

 

We measured robustness in terms of the effects that uncertainties had on the departure delay and 

the order of the optimal sequence compared to those of the deterministic model. In order to 

examine the operational feasibility of the two methods, we measured their running times on 

desktop computers. This ensured that any runtimes we achieved would be achievable on 

hardware available to air traffic controllers in the control tower. Through the comparison of 

robustness of the solution and feasibility of the MILP and DP methods, we determined whether 

the benefits of optimizing the sequence are still significant when a stochastic variable, such as 

taxi times, is taken into account. 

 

 

  



4.0 Results 

Optimizing the takeoff times and sequences proved to be quite challenging, and therefore due to 

time restrictions we were unable to add in arrival crossings to the optimization. Therefore our 

results focus solely on departure-only optimizations. This section describes the difficulties that 

we encountered while implementing the Mixed Integer Linear Programming and Dynamic 

Programming algorithms.  We then present the results that we obtained from our taxi time 

uncertainty analysis. 

4.1 Difficulties in Implementation for Mixed Integer Linear Programming 

The biggest challenge in the implementation of the Mixed Integer Linear Programming 

optimization was the need to bin the flights into smaller windows of time in order to make the 

problem solvable in less than five minutes. Table 2 shows timing results and departure delays for 

all four days with different bin sizes using no Constrained Position Shifting (CPS) constraint. We 

chose to display the timing results of no CPS because there are more sequence options that the 

solver has to search through and so the runtime is longer than with a CPS constraint. As the bins 

became larger, the departure delay improved, however the runtime became slower. The 

optimization was able to finish for three of the days with larger bin sizes, but the 14
th

 of June 

took five minutes to solve the optimization with 30-minute bins and crashed MATLAB when it 

attempted to solve for hour-long bins. For this reason we decided to use 15-minute bins for the 

MILP optimization in order to get better departure delay without going over our runtime goal. As 

mentioned in the methodology, the bins are dependent on each other and so it was necessary to 

save information from the previous bin to use while solving for the current bin.  

 June 14
th  

(485) June 15
th 

(382) June 16
th 

(393) June 18
th

 (404) 

Bin Size Time Delay Time Delay Time Delay Time Delay 

10 minutes 55.4 19726 36.31 11780 35.02 8835 35.7 10513 

15 minutes 62.31 19190 39.12 11606 39.39 8617 40.17 9804 

30 minutes 313.95 18894 60.73 11612 51.34 8465 58.32 9819 

1 hour DNF N/A 104.76 11536 94.91 8441 101.46 9765 

2 hour DNF N/A DNF N/A 194.65 8341 457.87 9743 

4 hour DNF N/A DNF N/A 871.4 8401 DNF N/A 

8 hour DNF N/A DNF N/A 5059.1 8312 DNF N/A 

Full Day DNF N/A DNF N/A DNF N/A DNF N/A 

Table 2: Timing and departure delay results for four days of data with different bin sizes (in seconds) 



Unlike the Dynamic Programming algorithm, the Mixed Integer Linear Programming 

optimization is able to run without a constraint on position shifting. Due to this the algorithm 

was coded first with the other constraints and then Constrained Position Shifting (CPS) was 

added in later. Due to binning, this proved to be quite difficult. We wanted to constrain position 

shifting at the spot but not at the runway. The bins were divided by runway ready times; however 

this caused a problem when determining the spot sequence of one bin. Differing unimpeded taxi 

times created the possibility that a flight earlier in the spot leave sequence could appear in a later 

bin because it had a very large taxi time and it would therefore be ignored during the present bin 

optimization. One idea was to switch the optimization constraints and binning boundaries to be 

based on spot leave times. This would create the same problem when determining separation 

times at the runway as there could be an aircraft that takes off near a flight in the current bin, yet 

it does not show up until the next bin. The only solution is to either have large enough bins or 

sparse enough data so that this type of overlap does not happen. CPS sometimes failed in 

between bins, but was obeyed inside of bins and so only as many as eight flights out of a whole 

day disobeyed CPS and only by a position or two. This created an algorithm with a relaxed CPS 

constraint that gave similar results to one with an actual CPS constraint. 

4.2 Difficulties in Implementation for Dynamic Programming 

The main difficulty in optimizing the takeoff sequences with Dynamic Programming was that the 

problem did not appear to have an optimal substructure. That is, we were unable to define a 

relationship between steps n and n+1 of solving the problem such that the optimal solution for 

step n would be guaranteed to lead to the optimal solution for step n+1. Such a recursive 

relationship between adjacent steps is crucial for a DP algorithm to produce an exact, optimal 

solution. 

Much research has been done using DP to solve the Departure Scheduling Problem, though all 

solutions we could find for the problem dealt only with re-sequencing aircraft that are already at 

the runway rather than re-sequencing at the spot instead to indirectly create favorable runway 

sequences. Because of this important difference, past research has looked at applying CPS 

directly to the takeoff sequence since that is the only sequence considered, but in our problem, 

the CPS applies instead to the spot release sequence, creating an indirect CPS constraint on the 

runway sequence. 



In order to avoid the complexity of an indirect CPS constraint, we applied Balakrishnan’s and 

Chandran’s CPS network to the spot release sequence, which ensures that every valid spot 

release sequence with respect to CPS is tested, and no others. However, due to the nature of our 

problem, it created a scenario where the decisions made in scheduling the optimal sequence for n 

aircraft were not the decisions that would have been made for an optimal schedule of n+1 

aircraft, meaning there was no guarantee that there would be a reliable recursive relationship 

between the optimal solutions of adjacent steps in the problem. After spending much time trying 

to devise a DP algorithm that could create such a relationship, we decided to develop a series of 

heuristics instead due to time constraints. These heuristics were built to use the CPS network of 

Balakrishnan and Chandran, which we recognized as the best representation of a network that 

could be used by a DP algorithm that takes all the operational constraints of departure scheduling 

into account. 

There was no ready-made solution for building the CPS network prescribed by Balakrishnan and 

Chandran, so we used our own method that used a network of its own to generate the CPS 

network. We later implemented a slightly more efficient algorithm that was iterative in nature, 

using the generated nodes of the previously constructed stage to build the nodes in the next stage. 

Table 3 shows the running times for how long it took to generate CPS networks for different n 

and k, since the particular DP algorithm being used has no bearing on the generation of the 

network. The first four n are the number of flights for each of the days we looked at. The time to 

generate networks for 50 aircraft was also considered since it is closer to the typical number of 

aircraft that would be scheduled at once in practice. 

 
N=485 N=382 N=393 N=404 N=50 

K=1 .016 .013 .013 .014 .004 

K=2 13.953 10.792 11.082 11.792 1.391 

Table 3: Running time for generating CPS networks for given n and k (in seconds) 

As Balakrishnan and Chandran state, such networks need not even be created on the fly, but 

could be stored in files that are read in based on the given n and k (Balakrishnan, 2010). This 

could be especially useful if there are cases where 3-CPS would be possible, since it would 

eliminate the large running time required to generate such a network. This assumes a DP 

algorithm that could solve such a network in a reasonable amount of time. 



Due to the lack of optimal substructure, the original heuristic, called Simple Spot, performed 

much worse than simulated FCFS. However, through various improvements as explained in the 

Methodology, we arrived at solutions that produced results that were slightly better than our 

baseline, simulated FCFS. The running time and departure delay results of each of these 

algorithms are shown in Tables 4 (1-CPS) and 5 (2-CPS). The best departure delays for each day 

are in bold. 

 June 14
th

 (485) June 15
th

 (382) June 16
th

 (393) June 18
th

 (404) 

 
Time Delay Time Delay Time Delay Time Delay 

SS .022 42388 .020 21987 .026 21884 .026 19301 

OG .292 29644 .226 16583 .253 12435 .252 13620 

AG .363 27324 .276 15882 .297 11412 .304 12525 

OGF .459 21638 .375 12695 .398 9267 .397 10792 

AG/OGF .638 20427 .731 12695 .532 9017 .543 10205 

AGF .751 19797 .717 12416 .506 9037 .510 10374 

LAGF 1.624 19797 1.226 12416 .992 9037 1.016 10374 

Table 4: Running time and departure delay at the spot for various DP algorithms for 1-CPS (in seconds) 

 June 14
th

 (485) June 15
th

 (382) June 16
th

 (393) June 18
th

 (404) 

 
Time Delay Time Delay Time Delay Time Delay 

SS .110 33172 .099 19370 .093 19408 .094 16287 

OG 8.823 24683 4.347 15446 5.268 11111 5.705 11693 

AG 13.816 23670 7.861 14746 8.715 10234 9.311 11349 

OGF 12.341 19056 7.030 12006 8.414 8414 8.275 10037 

AG/OGF 22.489 19056 14.081 12006 14.048 8414 14.140 9776 

AGF 36.261 19541 19.933 
12162 

20.580 8615 19.149 9883 

LAGF 107.227 19147 58.922 
12162 

58.212 8615 57.729 9887 

Table 5: Running time and departure delay at the spot for various DP algorithms for 2-CPS (in seconds) 

Interestingly, All Gaps Force (AGF) and Lenient All Gaps Force (LAGF) come up with the 

same exact results in all but a few instances, though AGF does so considerably faster. While 

these two algorithms are the best in general for 1-CPS, All Gaps / One Gap Force (AG/OGF) 

performs better than them both for all four days for 2-CPS. Even One Gap Force performs better 

than the last two for three out of the four days, for which it is tied with AG/OGF. This could be 

due to the benefit of using increasingly complex algorithms is reduced when more shifting is 

allowed, or that the algorithms that allow more forcing allow for more opportunities to make an 



intermediate decision that hurts the rest of the sequence more than it helps the aircraft currently 

being scheduled. 

It appears there is a relationship between the number of aircraft to sequence and the average 

delay for each aircraft in the optimized sequence, with the exception of 6/15, whose 382 flights 

experience an average delay higher than that of the 393 flights on 6/16 and the 404 flights on 

6/18. A more sophisticated metric that measures how clustered spot ready times are could 

explain the observed differences in average delay between the four dates above better. 

4.3 Robustness and Feasibility of Mixed Integer Linear Programming and Dynamic 

Programming Optimizations 

We use departure delay to show the optimality of each takeoff schedule since minimizing 

departure delay was our objective function.  Comparing the departure delays associated with 

deterministic and stochastic unimpeded times allowed us to determine the effects of uncertainties 

and whether our optimizations are robust enough to use in the real world. We also looked at the 

change in sequences at the runway as another measure of the effects of uncertainties. Operational 

feasibility of the optimizations was determined by runtimes.  

   Departure Delays per Aircraft, in seconds    

  Baseline Deterministic  Stochastic  

Distribution 

of aircraft 

type 
 

Real 

World 

Simulated 

FCFS 

DP  

Optimization 

MILP 

Optimization 
Original 

DP  

Optimization 

MILP 

Optimization 

DFW CPS = 0 

155.67 30.05 

37.07 36.02 

29.90 

39.94 38.96 

 CPS = 1 31.02 30.96 34.20 34.13 

 CPS = 2 29.60 29.75 32.73 32.77 

 NO CPS N/A 29.39 N/A 32.39 

Even (25%) CPS = 0 

N/A 80.79 

100.90 96.16 

80.48 

105.73 100.93 

 CPS = 1 74.25 72.92 79.05 77.75 

 CPS = 2 66.02 67.03 70.73 72.72 

 NO CPS N/A 64.85 N/A 69.73 

Table 6:  Delay per aircraft results averaged over the four days of data (in seconds) 

Table 6 shows the delays per flight averaged over the four days of data: June 14
th

, 15
th

, 16
th

, and 

18
th

. The first column in the table is the real-world comparison. This was computed by using the 

actual takeoff times that were detected at DFW on that day and subtracted our simulated runway 

ready times. The reason for using simulated runway ready times was because we wanted to 



compare our results with real-world results that involved unimpeded taxi times. Had we used the 

real times that the aircraft arrived at the runway, there would be an amount of system delay that 

was incurred during taxiing that would be lost. Some of the takeoff times were before our 

simulated runway ready times. Although this is impossible in real life, it makes sense because 

the unimpeded times were taken from the 10
th

 percentile of taxi times and so 9% of flights would 

end up taxiing faster than we predicted. We included these negative delay times into the 

departure delay as it would make up for runway ready time predictions that might be earlier in 

real life. The real-world departure delay is so large because the controllers are not telling aircraft 

to take off as soon as they can while obeying separation times, and there are arrival crossings 

which we are not taking into account.  

Columns 2-4 show the results for the deterministic world. This means that the unimpeded taxi 

time predictions were assumed to be correct and unchanging. The departure delays were again 

computed by subtracting the simulated runway ready times from the assigned or optimal takeoff 

times. The “Original” column is the departure delay associated with aircraft taking off as they are 

ready in a First Come First Serve sequence at the runway and enforcing minimum separation 

times. The difference between this departure delay and the real-world departure delay is the 

amount of extra time that the aircraft were waiting unnecessarily at DFW that day, some of 

which is due to arrival crossings. The next two columns show the DP and MILP optimization 

results for departure delay. The difference between these results and the original departure delay 

shows the benefit of re-sequencing aircraft at the spot.   

The last three columns in each table are the departure delays for the stochastic world. The 

original column uses the original spot leave times and sequence along with the stochastic 

unimpeded taxi times and averages the departure delay of sending them FCFS at the runway over 

500 iterations. The optimization columns use the optimal spot leave times found by the DP and 

MILP optimizations and calculates the departure delay again using FCFS at the runway. These 

are the columns that show the effects of taxi time uncertainties and whether it is beneficial to use 

these optimizations in real-world scenarios. If the optimization departure delays are significantly 

less than the original stochastic delays then it is still beneficial to use our optimizations in 

uncertain circumstances.  



The departure delay is calculated for real, deterministic, and stochastic worlds while also 

changing six different factors. The first change is the aircraft distribution. Since DFW is on 

average about 88% large aircraft, there is less of a benefit of re-sequencing. To show how large 

of a benefit re-sequencing can have, we uniformly assigned the DFW aircraft new aircraft types. 

The even distribution of aircraft types includes close to 25% each of small, large, heavy, and B-

757. Using DFW’s distribution and an even distribution we also looked at the effect of CPS. No 

CPS means that there was no restriction on position shifting anywhere on the surface of the 

airport. This is expected to have better results as it is the most flexible. Though the departure 

delay is better without CPS, the controllers’ workload is increased without it. Therefore, we 

looked at CPS equal to zero, one and two and determined how much delay this added compared 

to no CPS. A low CPS value is more realistic for real-world applications. Separate delay results 

from the four days of data can be found in Appendix D. The major difference in delays between 

each day comes from the difference in the amount of flights. 

The change in runway sequence adds another dimension to the measure of the robustness of the 

optimizations. We measured sequence change three different ways. First, we looked at the sum 

of spaces that each flight shifted from the optimal takeoff sequence due to taxi time 

perturbations. Next we looked at relative sequence change and weighted relative sequence 

change. The relative sequence change was measured by the number of aircraft pairs where 

aircraft i was supposed to come before aircraft j in the optimal sequence, but instead j came 

before i in the final sequence. The weighted relative sequence change added in weights for how 

many positions these pairs were separated by. We also looked at how many aircraft arrived too 

soon after the aircraft before them which would violate separation requirements and how many 

seconds early the aircraft arrived. These results are shown in Appendix E for each day of data. 

We ran the optimizations on Dell desktops running Linux that had four dual-core processors with 

4GB of RAM. The MILP optimization took on average 45 seconds in total to run on a full day of 

data when the data was split into 15-minute bins. This time includes the time it takes to sort the 

data, divide it into bins, and save the results from each bin. YALMIP took around 15 seconds to 

set up the MILP formulation and around 1-8 seconds to solve it, depending on CPS. The DP 

optimization took under a second to build the graph and solve it for CPS equal to zero and one 

and about 30 seconds for CPS equal to two. 



  



5.0 Discussions 

This chapter will interpret our optimization results, focusing mainly on the effects of taxi time 

uncertainties. We first begin with how we measured the success of our project. We also point out 

strengths and limitations to both the methodology and the results. We interpret our results to 

show whether the deterministic optimizations would be beneficial in real-world applications. 

Finally, we conclude this section with suggestions for future work that can extend upon this 

project. 

5.1 Measures of Success 

Our goals for the MILP optimization changed as we progressed through the project. Our original 

goals were to be able to optimize departures and arrivals and look at the effects of uncertain taxi 

times on these optimizations. We also wanted to impose a position shifting constraint at the spot 

to maintain a sense of fairness among different airlines. This constraint posed more problems 

than we expected, and so we were unable to attempt arrival crossings in addition to departure 

takeoffs. In addition to this we realized that there is no clean way to impose Constrained Position 

Shifting (CPS) for the MILP optimization while also splitting the day of data into smaller time 

periods. Despite these setbacks we were still able to get departure results with MILP using a 

relaxed CPS constraint and look at the effects of uncertainties, which was our most imperative 

goal.  

Our goals for the DP optimization were similar, and also changed due to the difficulty of 

optimizing departure takeoffs only. The major problem encountered was the difficulty in 

defining a recursive relationship for the optimal schedule for n aircraft and for that of n+1 

aircraft. Such a relationship is vital for a DP algorithm to produce optimal results, and the lack of 

such a relationship showed in the results of the first attempted algorithm, Simple Spot. We 

decided that our time would be better spent developing heuristics that approximated the optimal 

schedule rather than searching for an exact solution, so we developed several DP heuristics that 

came increasingly close to simulated FCFS in terms of departure delay. While optimizing at 1-

CPS never produced results that improved on simulated FCFS, 2-CPS did for several of the 

heuristics, showing that DP could be used to solve for an entire day without binning in a 



reasonable amount of time. From there, we were able to look at the effects of uncertainties as we 

did with the MILP. 

5.2 Strengths and Limitations of Methods 

Our weekly meetings with our advisors and supervisors provided us with a good structure to 

show progress and receive feedback. We were able to discuss ideas of possible ways to attack the 

problem and possible reasons for our optimizations not producing the results we expected. It was 

also beneficial for each of us to work on one optimization tool while communicating issues with 

the other partner. Testing on smaller data sets is always a wise idea, especially when they are 

solvable by hand which is useful for checking that the optimization came to the correct answer. 

These smaller data sets, however, were not always helpful for testing the MILP because most of 

the bugs came from binning the data into smaller time periods, which is unnecessary for small 

data sets. The smaller data sets occasionally revealed bugs in the DP heuristics, but most of the 

bugs came up while working with larger data sets. 

Using real data from DFW and taxi time distributions modeled on real data was useful in that it 

showed how our methods would affect departure delay for an actual 24-hour schedule of 

departures. However, June 15
th

 was missing a substantial amount of flights in the middle of the 

day, and the other three days were missing roughly 10% of their flights each. Such factors 

decrease the realism of our results. Additionally, DFW does not experience high demand, has a 

very homogeneous mix of aircraft (an average of roughly 90% of “large” aircraft over the four 

days of data), and space out their takeoffs for longer than seems necessary. These factors all 

made it more difficult to see the actual effects of our optimizations. Higher demand and a more 

heterogeneous mix of aircraft would have provided more opportunities for optimization, as 

shown in our even distribution results. The fact that the real-life takeoffs were spaced out farther 

than they needed to be means that just having them take off as soon as they safely can would 

have made vast improvements in delay, overshadowing the further improvements made by our 

optimizations. 

We addressed the homogeneity of the aircraft types by randomly assigning aircraft types to the 

aircraft in the schedule for each day to create an even distribution. While this helped us see what 

extra opportunities heterogeneity gives, it was limited by the fact that we were unable to model 



realistic taxi times because our taxi time model was based on DFW’s aircraft mix. This is 

expanded upon in Section 5.4. We intended to address the lack of demand by simulating higher 

demand, but did not have enough time to do so. 

5.3 Interpretation of Results 

The DP and MILP algorithms were both suboptimal due to discrepancies between spot 

sequences and runway sequences, which will be explained in more depth later in this section. DP 

heuristics were used to optimize the sequence and MILP finds local optimizations for each bin. 

The MILP optimization also used a relaxed CPS constraint that alters the results slightly in a 

positive direction. This explains why they do not give the same exact optimization delays, but 

the results are fairly close between the two and the optimizations can still be compared. The 

timing results proved that the optimizations are operationally feasible in real-time situations. For 

a full day of flights, DP becomes operationally infeasible when CPS is set to three positions or 

higher. MILP can run without CPS, but it gives better results when there are fewer bins, although 

it becomes operationally infeasible with too large of bins. The size of bins that the optimization 

can handle was determined to be largely dependent on the data. The data from the 14th has spot 

leave times that are very close together, which creates more options for the optimal sequence.  

We came across several unexpected results, and the cause of these was differing sequences at the 

spot and at the runway. We set our baseline to be First Come First Serve at the runway with 

enforced minimum separation requirements, because this would be the easiest improvement in 

practice. DFW already uses FCFS at the runway, but they do not enforce that a flight takes off as 

soon as it safely can. We expected any of our optimizations to be able to do better than simulated 

FCFS and so we were surprised when they did not. We quickly realized that this was because 

simulated FCFS is a CPS of zero at the runway, but we were imposing CPS at the spot. We 

attempted to achieve simulated FCFS departure delay with our MILP optimization using CPS 

equal to zero at the spot, thinking that these should give the same answers, but were unable to. 

To investigate why a FCFS at the spot (CPS=0) was giving worse results than runway FCFS we 

took the runway FCFS takeoff times and subtracted the unimpeded taxi times in order to get spot 

leave times, as if simulated FCFS was a metering optimization result. What this showed us was 

in order to achieve simulated FCFS at the runway, the spot sequence was changing up to three 



positions. This would be illegal in the CPS=0 optimization, and so runway FCFS delay may not 

be achieved or surpassed unless the CPS at the spot allows for as much flexibility as the runway 

FCFS requires. An example of how FCFS at the runway can shift the spot sequence is shown in 

Tables 7 and 8 below. In this example the optimization with CPS equal to zero at the spot gives 

an additional delay of 16 seconds compared to FCFS at the runway in order to preserve the 

sequence at the spot. This situation happens because flights 2 and 3 have very close spot leave 

times but flights 1 and 2 have very close runway ready times. When FCFS at the runway puts the 

minimum separation time between flights 1 and 2, flight 2 gets pushed back and its optimal spot 

leave time ends up being behind that of flight 3 which shifts the spot sequence.  

Given data 

Aircraft # Aircraft type Spot ready 

time(s) 

Spot 

sequence 

Taxi 

times(s) 

Runway 

ready 

time(s) 

Runway 

sequence 

1 2 4000 1 375 4375 1 

2 2 4150 2 250 4400 2 

3 2 4170 3 350 4520 3 

Table 7: Initial data for the problem 

 Results for FCFS at runway Results for FCFS at spot (CPS=0) 

Aircraft # FCFS at 

runway 

takeoff 

time(s) 

Proposed spot 

leave time (s) 

Spot leave 

sequence 

CPS=0 at spot 

takeoff time (s) 

Proposed spot 

leave time (s) 

Spot leave 

sequence 

1 4375 4000 1 4375 4000 1 

2 4435 4185 3 4435 4185 2 

3 4520 4170 2 4536 4186 3 

Table 8: Comparison of the results given by FCFS at the runway and FCFS at the spot (CPS=0) 

Another unexpected result came from not being able to enforce CPS with MILP. The reason for 

this, as stated before, was due to binning. The problem with binning is that the optimization is 

unaware of any flights that are not in the bin that is currently being solved for. Due to different 

taxi times between flights, the runway and spot sequences can vary greatly. In order to properly 

enforce CPS at the spot and separation requirements at the runway it is necessary to have all 



flights that are next to each other in the spot sequence along with all flights that are next to each 

other in the runway sequence in the same bin. We began with separating the bins by runway 

ready times. This ensured that the runway sequence was preserved but it did not guarantee that 

the spot sequence was preserved. To compensate for this we attempted to add in flights whose 

spot leave time was among the times that were currently in the bin. These flights however, would 

have runway ready times that were later than the rest of the bin's runway ready times, possibly 

later than those in the next bin, and therefore could cause the runway sequence to be lost. If we 

continued this process of adding in runway ready times that were within the bin boundaries and 

then adding in spot ready times that were within the bin boundaries we could eventually come 

close to having the whole day of flights in the current bin and the solver would be unable to 

optimize it. An example of this overlap in bins is shown in Table 9. 

Bin 1 Bin 2 

Spot ready 
time(s) 

Runway ready 
time(s) 

Spot ready 
time(s) 

Runway ready 
time(s) 

5000 5250 5200 5401 

4900 5300 5125 5405 

5155 5310   

Table 9: Spot and runway ready times overlap for flights in two bins 

In this example Bin 1 has an original runway ready time boundary of 5400 seconds. The runway 

ready times of Bin 2 are all higher than the runway ready times of Bin 1, but the second spot 

ready time in Bin 2 is less than one of the spot ready times in Bin 1. While the optimization is 

solving for Bin 1, it would be unaware that the third flight is actually fifth in the spot sequence 

out of all six flights. To fix this we can put the second flight of Bin 2 into the first bin and this 

will correct the spot sequence. The other effect that moving this flight to the first bin will have is 

that the runway sequence will now be lost because the first flight in the second bin is ready at the 

runway before the second flight in this bin. Therefore both flights must be moved to the first bin 

in order to fully maintain both the runway and spot sequence. With real data this could continue 

until the bins were too large to handle. The data from DFW only ran into this problem a few 

times during a day, and so we let the flights break CPS instead of making the bins larger. We 

determined that this would have a smaller effect on the results and operational feasibility than 

adjusting the bins. 



The main goal of this project was not just to optimize using MILP and DP but to see what 

happens to these optimizations when uncertainties are added into the model. The optimization 

delays under uncertainties were worse than the delays associated with not optimizing under 

uncertainties for both MILP and DP, using simulated FCFS as our baseline. The reason for this is 

that the goal of the optimizations is to find optimal spot leave times based on optimal takeoff 

times and to hold the aircraft at the spot until their optimal spot leave times. In a deterministic 

world the aircraft would then taxi unimpeded and be able to take off immediately. With 

stochastic unimpeded times, the aircraft no longer arrived at the runway when they were 

supposed to or even in the order that they were supposed to. This created delay at the runway 

which, when added to that at the spot, was more than that experienced at the runway by the 

simulated FCFS sequence with stochastic taxi times. This result shows that a deterministic 

optimization is not beneficial in a stochastic world. Contrary to these results, an even distribution 

of aircraft types allows for more benefits to be gained from re-sequencing and was robust under 

uncertainties.  

From the results of the sequence analysis, it appears that the order of the spot releases has little 

bearing on how much the sequences are changed by, as measured by three different sequence 

change metrics. Stochastic taxi times rarely ever caused the sequence to change, and only by 

very little when it did. Additional delay incurred at the runway was mostly due to aircraft simply 

arriving at the runway too early with respect to the takeoff before it, even while still staying in 

the same position as in the originally projected takeoff sequence. The average change in 

unimpeded times for each of the days was about 8 seconds, which explains why the sequences 

were for the most part preserved. Also each aircraft that violated separation times did so by 10 

seconds on average. 

Date Minimum Average Maximum 

June 14
th

 -40 8.16 50 

June 15
th

 -103 8.52 102 

June 16
th

 -45 8.32 46 

June 18
th

 -38 7.88 46 

Table 10: Changes to the taxi times due to uncertainties for the four days of data (in seconds) 



5.4 Strengths and Limitations of Results 

As described above, while our results are based on real data, there are limitations to that data that 

make them a little less realistic and that give results that may not be as good as they could be. 

Additionally, we were unable to also optimize arrival crossings. This would have allowed us to 

better compare our delays to the delays that are actually seen at DFW. Although we discovered 

that the deterministic optimization was robust for the even distribution of aircraft, we are not sure 

whether or not this would be true in practice. The taxi time model that we used is heavily based 

on the spot group of the aircraft and the aircraft type. Since DFW has so few aircraft that are 

small, heavy, or are B757s there was not enough data to get an accurate prediction for their 

unimpeded taxi times. In addition it is unknown how DFW would assign an even aircraft mix to 

different spots, and so we kept the spot assignments as they were. In order to get a reliable result 

from an even distribution, we would have to look into an airport that actually uses an even 

distribution, for example Boston Logan, and do the same analysis that we did on DFW there.  

We found another limitation to our results when we were analyzing the change in unimpeded 

taxi times due to uncertainties. All four days had a consistent average change of 8 seconds per 

aircraft; however the maximum and minimum changes were very different for one of the days. 

The 15
th

 of June had maximum and minimum changes of 102 and -103 seconds respectively, 

whereas the other days had maximums and minimums closer to plus and minus 45 seconds. We 

looked into this and there did not seem to be any errors in the code or the data, but we also could 

not come up with a reason for why this day would have larger amounts of taxi time changes. 

These larger changes also caused the sequence to change for three or four flights, whereas the 

other days did not experience any sequence changes due to uncertainties. These large changes 

were consistently assigned to the same four flights on the 15
th

, but as stated before we were 

unable to figure out why.  

5.5 Future Work 

The next step to our project would be to add in arrival crossings to the optimization and again see 

the effects of uncertainties since this was our original plan. The first step to do this for the MILP 

algorithm would be to make a function that can determine whether an aircraft is a departure or 

arrival aircraft. An arriving aircraft's ready to cross time is analogous to a departure’s runway 



ready time. Arrivals are also assigned a number from 1 to 6, which represents their crossing 

queue, and is analogous to departure weight classes. These characteristics determine separation 

time requirements at the runway. After an aircraft takes off, arrivals must wait based on how 

close their crossing queue is to where the departure took off from, i.e. the end of the runway. 

Crossing 6 is the closest to where departures take off and so aircraft crossing in queue 6 must 

wait 60 seconds. Two arrivals can cross the runway in different queues almost simultaneously, 

and so they are given a separation time of two seconds. If they cross in the same queue then the 

second aircraft must wait 10 seconds for the one in front of it to finish crossing. Similarly a 

departing aircraft must wait 12 seconds for an arriving aircraft to finish crossing. Since some of 

these separation times are quite smaller than the departure separation times, it is necessary to 

keep track of the last departure flight to make sure that separation times between departures are 

obeyed even if there are arrival crossings in between. The CPS constraint would not constrain 

arrivals in any way. For DP, all the above constraints would also apply. However, we were 

unable to determine how to fit arrival crossings into our DP heuristics and leave that to future 

researchers. 

Once arrivals are added into the optimization, effects of uncertainty can be measured in the same 

way as the departures only optimization. System delay would be computed as the sum of the 

differences between when flights were ready at the runway and when they were assigned to 

either takeoff or cross.  

Another operational constraint to be considered is priority departures, or those that must leave by 

a certain time. This could be the case if a certain aircraft needs to get to its destination airport by 

a certain time to keep its airline’s schedule intact and prevent delay at other airports. This added 

constraint would further limit the extent to which a given spot release sequence could be 

optimized. 

In addition to optimizing at the spot, a second optimization at the runway could be executed if 

enough aircraft build up there due to delay at the runway caused by taxi time uncertainties. This 

could be useful for our algorithms. Most likely, a tradeoff would have to be developed between 

how much a second optimization would save in delay and how much extra work a second 

optimization would make for air traffic controllers. 



Next, stochastic variables other than unimpeded taxi times could be considered. For example, 

how closely separation times are adhered to at the runway. As mentioned previously, DFW does 

not tend to have its departures to take off as soon as they safely can, and it could be the case that 

other airports allow them to take off sooner than they are supposed to. Additionally, the accuracy 

of spot ready times would be another stochastic variable to consider, as that could have 

substantial effects on deterministic optimizations. 

Alternative runway layouts could also be considered, where arrivals cross the runway differently 

than they do for the runway that we studied in this project. For example, a peripheral taxiway 

from the arrival runway to the terminal would eliminate the need for some arrivals to cross the 

departure runway at all. An optimal tradeoff between the delay saved and the increase in fuel 

burn resulting from sending some aircraft along the longer peripheral taxiway rather than straight 

across the departure runway could be beneficial. 

Finally, if all of the stochastic variables make the use of deterministic optimizations in real-world 

situations unreasonable, then stochastic optimizations would be the next logical extension. This 

type of optimization would take into account uncertainties and perhaps give an optimal takeoff 

time window, so that it held up better to taxi time and other uncertainties. 
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Appendix A- Acronyms 

ATC- Air Traffic Control 

B&B- Branch and Bound 

B&C- Branch and Cut 

CDT- Central Daylight Time 

CPS- Constrained Position Shifting 

DFW- Dallas/ Fort Worth International Airport 

DP- Dynamic Programming 

DSP- Departure Sequencing Problem 

DST- Decision Support Tool 

FAA- Federal Aviation Administration 

FCFS- First Come First Serve 

GC- Ground Controller 

GDP- Gross Domestic Product 

GMT- Greenwich Mean Time 

IS-IS- Intermediate System to Intermediate System 

LC- Local Controller 

LP- Linear Programming 

MILP- Mixed Integer Linear Programming 

NAS- National Airspace System 

NASA- National Aeronautics and Space Administration 

NEXTOR- The National Center of Excellence for Aviation Operations 

OR- Operations Research 

OSPF- Open Shortest Path First 

PACE- Program for Airfield Capacity Efficiency 

RC- Ramp Controller 

TSP- Traveling Salesman Problem 
 

  



Appendix B- Glossary 

Constrained Position Shifting Allowing an aircraft to shift by k or less spaces from its 

original place in the sequence 

Directed acyclic graph A graph whose nodes are connected by directed edges 

and which does not contain a cycle 

Dynamic Programming A method of solving problems by breaking them into 

simpler sub-problems whose solutions depend on the 

previous solutions 

Efficiency Achieving the capacity of the airport by minimizing 

system delay 

Equity Maintain fairness between airlines by constraining how 

many positions aircraft may shift from their original 

positions  

Ground Controller The ATC role responsible for managing aircraft on the 

ground, mainly in the taxiway, to ensure safety  

Local Controller The ATC role responsible for managing the runway, 

directing aircraft when to take off and when to cross the 

runway 

Makespan The time at which the last aircraft took off 

Maximum delay The most delay that any one aircraft incurred on a runway 

within a fixed period of time 

Metering A decision support tool that holds aircraft at the gate or 

spot so that they do not experience congestion or delay 

while taxiing or at the runway 

Mixed Integer Linear Programming A method of planning activities or solving for variables, 

at least one of which is an integer, by minimizing or 

maximizing an objective function while obeying certain 

constraints 

National Airspace System Controls all matters related to airspace above the United 

States 

NP-hard Problems for which it is difficult to find polynomial-time 

solutions 

Objective function Function which a program seeks to minimize or 

maximize 

Operationally feasible Solvable in a reasonable amount of time 

Polytope N-dimension geometric object with flat sides, for 

example a soccer ball  

Queue Area where aircraft wait in a line before they can take off 

or cross the runway 

Ramp Controller The ATC role responsible for managing the ramp, telling 

aircraft when to push back from the gate and taxi to a 

spot 

Re-sequencing A decision support tool which changes the order of when 

aircraft leave the spot, take off, or cross the runway in 

order to minimize delay due to separation times 



Separation times Times between aircraft takeoffs that are mandated based 

on FAA’s separation distance requirements, which are 

dependent on aircraft type, to ensure safety  

Sequence Reliability The sum of the probabilities between all pairs of adjacent 

aircraft in a given sequence that the aircraft in such pairs 

will violate the minimum separation time required 

between the two of them 

Sequence Robustness How well a sequence of aircraft responds to uncertainty 

in terms of delay 

Sequence Weakness The probability that a given sequence of aircraft will 

result in a minimum separation time violation 

 

System/departure delay The sum of the delays that each aircraft experience while 

on the ground, calculated by when they took action minus 

when they were ready to take action 

Throughput The number of aircraft that takeoff during a certain time 

period, which is a measure of an airport’s capacity 

Tractable Solvable in polynomial time 
 

  



Appendix C- Charts for Data Analysis 
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Appendix D – Departure Delay Data for Individual Days 
 

June 14
th

 Departure Delays, in seconds 

  Baseline  Deterministic  w/Uncertainties 

Distribution 

of aircraft 

type 

 
Real 

World 

Simulated 

FCFS 

DP 

Optimization 

MILP 

Optimization 

Original DP 

Optimization 

MILP 

Optimization 

DFW CPS = 0 

89211 19237 

23887 23278 19300 25882 24950 

 CPS = 1 19797 20126 19306 21544 21964 

 CPS = 2 19056 19416 19200 20789 21210 

 NO CPS N/A 19190 19100 N/A 20846 

Even (25%) CPS = 0 N/A 

58288 

76668 72777 58316 79255 75256 

 CPS = 1 N/A 52437 51722 58312 55426 54765 

 CPS = 2 N/A 45495 46881 58230 48562 49686 

 NO CPS N/A N/A 45197 58292 N/A 47978 

 

June 15
th

 Departure Delays, in seconds 

    Deterministic  w/Uncertainties 

Distribution 

of aircraft 

type 

 Real 

World 

Simulated 

FCFS 

DP 

Optimization 

MILP 

Optimization 

Original DP 

Optimization 

MILP 

Optimization 

DFW CPS = 0 

48757 12096 

14304 13738 12039 15168 15338 

 CPS = 1 12416 12213 11901 13579 13493 

 CPS = 2 12006 11802 11882 13205 13117 

 NO CPS N/A 11606 12080 N/A 13078 

Even (25%) CPS = 0 N/A 

27640 

32561 31153 27507 34833 33235 

 CPS = 1 N/A 25829 25433 27554 27682 27381 

 CPS = 2 N/A 23723 23606 27542 25632 26578 

 NO CPS N/A N/A 22673 27632 N/A 24740 

 

 

 

 

 

 

 



June 16
th

 Departure Delays, in seconds 

    Deterministic  w/Uncertainties 

Distribution 

of aircraft 

type 

 Real 

World 

Simulated 

FCFS 

DP 

Optimization 

MILP 

Optimization 

Original DP 

Optimization 

MILP 

Optimization 

DFW CPS = 0 

67340 8617 

10909 10402 8405 11629 11231 

 CPS = 1 9037 8810 8670 10066 9812 

 CPS = 2 8414 8417 8452 9263 9198 

 NO CPS N/A 8312 8517 N/A 9257 

Even (25%) CPS = 0 N/A 

20704 

24700 23553 20888 26352 25227 

 CPS = 1 N/A 20016 19076 20808 21599 20691 

 CPS = 2 N/A 17699 17825 20766 19004 19472 

 NO CPS N/A N/A 17564 20784 N/A 19168 

 

June 18
th

 Departure Delays, in seconds 

    Deterministic  w/Uncertainties 

Distribution 

of aircraft 

type 

 Real 

World 

Simulated 

FCFS 

DP 

Optimization 

MILP 

Optimization 

Original DP 

Optimization 

MILP 

Optimization 

DFW CPS = 0 

56588 10063 

12579 12526 10018 13785 13308 

 CPS = 1 10374 10365 10167 11723 11525 

 CPS = 2 9776 9870 10070 11203 11008 

 NO CPS N/A 9804 9897 N/A 10708 

Even (25%) CPS = 0 N/A 

27805 

33971 32523 27269 35489 34223 

 CPS = 1 N/A 25269 25107 27222 26834 26542 

 CPS = 2 N/A 22932 23218 27473 24497 25265 

 NO CPS N/A N/A 22476 27392 N/A 24148 

 

  



Appendix E – Sequence Change and Separation Time Violation Results 
 

The tables shown here contain the results for sequence change and separation time violations 

when stochastic taxi times are applied to deterministically optimized spot release schedules. The 

columns in the tables, from left to right, represent the sum of spaces that each flight shifted 

(“Sum”), the relative and weighted sequence changes (“Relative”, “Weighted”) as defined in the 

Results Chapter, the number of aircraft that arrived too early at the runway (“Sep Violations”) 

and by how much on average (“Avg. Vio. Time”). These results were all averaged over 500 

iterations of applying stochastic taxi times to the optimized spot release sequences. 

We present the results for each day for both the Mixed Integer Linear Programming and 

Dynamic Programming methods, for both the aircraft mix at DFW for those days and the 

randomized even mix, and for different values of the Constrained Position Shifting variable. 

June 14th, MILP 

Distribution 

of Aircraft 

Type 

 Sum Relative Weighted Sep 

Violations 

Avg. Vio. 

Time 

DFW CPS = 0 0 0 0 118.45 1081.4 

CPS = 1 0 0 0 119.01 1070.8 

CPS = 2 0 0 0 118.13 1067.1 

NO CPS 0 0 0 120.94 1097.3 

Even (25%) CPS = 0 0 0 0 149.88 1437.4 

CPS = 1 0 0 0 149.13 1420.7 

CPS = 2 0 0 0 149.41 1375.2 

NO CPS 0 0 0 150.64 1412.1 

 

  



June 15th, MILP 

Distribution 

of Aircraft 

Type 

 Sum Relative Weighted Sep 

Violations 

Avg. Vio. 

Time 

DFW CPS = 0 5.5 3.67 4.67 80.6 866.8 

CPS = 1 5.34 3.61 4.61 81.41 859.26 

CPS = 2 5.4 3.65 4.65 81.55 868.5 

NO CPS 5.38 3.63 4.63 78.92 843.73 

Even (25%) CPS = 0 2 1 1 103.47 1111.8 

CPS = 1 2 1 1 106.16 1043.8 

CPS = 2 2 1 1 104.99 1154.6 

NO CPS 2 1 1 103.29 995.19 

 

June 16th, MILP 

Distribution 

of Aircraft 

Type 

 Sum Relative Weighted Sep 

Violations 

Avg. Vio. 

Time 

DFW CPS = 0 0 0 0 77.96 707.77 

CPS = 1 0 0 0 78.41 701.01 

CPS = 2 0 0 0 76.94 698.24 

NO CPS 0 0 0 79.02 735.95 

Even (25%) CPS = 0 0 0 0 100.91 935.71 

CPS = 1 0 0 0 100.37 928.49 

CPS = 2 0 0 0 99.27 898.83 

NO CPS 0 0 0 98.95 905.72 

 

June 18th, MILP 

Distribution 

of Aircraft 

Type 

 Sum Relative Weighted Sep 

Violations 

Avg. Vio. 

Time 

DFW CPS = 0 0 0 0 80.42 730.74 

CPS = 1 0 0 0 81.17 737.94 

CPS = 2 0 0 0 80.75 728.3 

NO CPS 0 0 0 79.46 707.03 

Even (25%) CPS = 0 0 0 0 105.74 964.98 

CPS = 1 0 0 0 103.85 950.27 

CPS = 2 0 0 0 101.84 926.99 

NO CPS 0 0 0 100.99 938.91 

 

  



 

June 14th, DP 

Distribution 

of Aircraft 

Type 

 Sum Relative Weighted Sep 

Violations 

Avg. Vio. 

Time 

DFW CPS = 0 0 0 0 118.05 1075.0 

CPS = 1 0 0 0 119.74 1085.9 

CPS = 2 0 0 0 120.35 1084.0 

Even (25%) CPS = 0 0 0 0 150.83 1395.5 

CPS = 1 0 0 0 150.64 1408.6 

CPS = 2 0 0 0 150.55 1390.0 

 

June 15th, DP 

Distribution 

of Aircraft 

Type 

 Sum Relative Weighted Sep 

Violations 

Avg. Vio. 

Time 

DFW CPS = 0 2 1 1 79.39 737.6 

CPS = 1 5.34 3.61 4.60 81.29 873.8 

CPS = 2 5.41 3.66 4.66 80.85 855.2 

Even (25%) CPS = 0 2 1 1 102.65 1096.1 

CPS = 1 0 0 0 105.27 1000.3 

CPS = 2 2 1 1 105.20 1028.5 

 

June 16th, DP 

Distribution 

of Aircraft 

Type 

 Sum Relative Weighted Sep 

Violations 

Avg. Vio. 

Time 

DFW CPS = 0 0 0 0 76.29 691.66 

CPS = 1 0 0 0 78.66 714.19 

CPS = 2 0 0 0 77.98 697.08 

Even (25%) CPS = 0 0 0 0 98.28 896.2 

CPS = 1 0 0 0 101.42 922.1 

CPS = 2 0 0 0 99.17 914.9 

 

  



 

June 18th, DP 

Distribution 

of Aircraft 

Type 

 Sum Relative Weighted Sep 

Violations 

Avg. Vio. 

Time 

DFW CPS = 0 0 0 0 81.36 745.87 

CPS = 1 0 0 0 80.28 719.42 

CPS = 2 0 0 0 79.85 713.60 

Even (25%) CPS = 0 0 0 0 105.41 965.70 

CPS = 1 0 0 0 103.75 967.70 

CPS = 2 0 0 0 102.36 950.00 

 


