
MIT LINCOLN LABORATORY

Evaluating the Robustness and

Feasibility of Integer Programming and

Dynamic Programming in Aircraft

Sequencing Optimization
A Major Qualifying Project Report:

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Julia Baum

William Hawkins

Date: October 13, 2011

Professor Jon P. Abraham, WPI Project Advisor

Professor George T. Heineman, WPI Project Advisor

Richard Jordan, MIT Lincoln Laboratory Liaison

Mariya Ishutkina, MIT Lincoln Laboratory Liaison

This work is sponsored by the Department of the Air

Force under Air Force Contract #FA8721-05-C-

0002. Opinions, interpretations, conclusions, and

recommendations are those of the author and not

necessarily endorsed by the United States Government.

Abstract

This project uses Mixed Integer Linear Programming and Dynamic Programming to optimize the

takeoff sequence of aircraft at Dallas/Fort Worth (DFW) by minimizing departure delay while

also obeying separation requirements and position shifting constraints. We modeled taxi time

uncertainties based on real data from DFW and analyzed the robustness of the optimization

solution and the feasibility of using these methods in real-life. The runtimes of these methods

proved to be feasible in real-time, however the solutions failed to be robust, creating a future

need for a stochastic optimization.

Acknowledgements

We would like to acknowledge several people who helped us complete this project and made us

feel welcomed at their workplace. First, we thank our liaisons, Richard Jordan and Mariya

Ishutkina from MIT Lincoln Laboratory, for providing us with the opportunity to work on this

project. They helped to shape the project and suggested papers for us that helped us better

understand the problem. MIT Lincoln Laboratory provided our office space and computers we

used to complete this project. Members from Group 43 included us in their office-wide activities

and also offered to help us with our project in any way possible.

Next we would like to thank our project advisors, Professor Jon Abraham and Professor George

T. Heineman, for providing feedback on our report drafts and for their guidance throughout the

term. This thank you is extended to Professor Ted Clancy for coordinating the project site at MIT

Lincoln Laboratory. Finally, we thank Emily Anesta and Seth Hunter for their oversight of our

project at MIT Lincoln Laboratory.

Executive Summary

Due to growing demand for air travel, surface traffic congestion at many of our nation’s busiest

airports causes significant delays. These delays add up over time, enough to raise costs for

airlines in terms of fuel, maintenance, and staffing, and to cause passengers to miss connecting

flights. These associated costs cause airlines and airports to adopt practices that minimize the

effects of delay, though such practices have their own costs. These problems will only worsen as

demand increases with time, as the Federal Aviation Administration (FAA) predicts it to on a

large scale over the next 20 years. Several possible solutions exist for dealing with the problem

of congestion and delays, including but not limited to expanding physical capacity, charging

airlines more for using runways during peak hours, and limiting the number of Air Traffic

Controller (ATC) operations per hour at some of the busiest airports.

This project, however, considers optimizing the sequence in which aircraft take off by

minimizing departure delay while balancing safety, equity and efficiency. Much research has

been done over the years to optimize aircraft departure sequences, though it has mainly focused

on re-sequencing aircraft at the runway and has only considered the deterministic case, in which

uncertainty is not taken into account. Before any optimization techniques can be deployed to the

real world, however, they must first be able to satisfy two requirements in addition to those

specified above: they must run to completion in a reasonable amount of time, and they must

produce adequate results when real-world stochastic variables replace their deterministic

counterparts in models that take the predictability of such variables for granted.

Our goal was to first develop solutions that optimize the sequence and time that aircraft are

released from a designated area on the surface of the airport, called the “spot”, from which they

taxi to the runway. This effectively relocates delay from the runway to the spot, saving fuel

because aircraft can shut off one or more of their engines while waiting at the spot, which they

cannot do at the runway. Secondly, we model uncertainty by perturbing the amount of time it

takes for aircraft to taxi from the spot to the runway based on real data from Dallas/ Fort Worth

Airport (DFW), and then compare the resulting departure delay to that of the deterministic case

where the taxi times are known and unchanging.

We utilize two methods for the deterministic optimization, which have both been used

extensively in re-sequencing research: Mixed Integer Linear Programming (MILP) and Dynamic

Programming (DP). The MILP formulation focused on the runway activities as they are

predicted to be based on spot releases, whereas the DP formulation looked at the spot activities

in the present while indirectly obeying future separation constraints at the runway. The

sequences are optimized by finding the minimum departure delay based on separation

requirements at the runway specified by the FAA, while being sure to respect operational

constraints imposed on the spot release sequence. The separation requirements at the runway

ensure safety while the operational constraints at the spot ensure equity by not allowing aircraft

to be shifted too far from their original spot release position, which is called Constrained Position

Shifting (CPS).

The biggest challenge in the implementation of the Mixed Integer Linear Programming

optimization was efficiency; to make the problem solvable, we grouped into bins those flights

within smaller windows of time. The main difficulty in optimizing with Dynamic Programming

was that the problem did not appear to have an optimal substructure. That is, we were unable to

define a relationship between steps n and n+1 such that the optimal solution for step n would be

guaranteed to lead to the optimal solution for step n+1. Such a recursive relationship between

adjacent steps is crucial for a DP algorithm to produce an exact, optimal solution. Ideally, if both

methods were capable of computing a globally optimal solution, the spot release schedules

produced by them would be identical, except possibly in cases where there exists more than one

solution that gives the same minimal departure delay.

The DP and MILP were both suboptimal due to differences between spot sequences and runway

sequences caused by differences in taxi times. We used DP heuristics instead of an exact solution

and MILP used a relaxed CPS constraint that alters the results slightly in a positive direction.

Therefore they do not give the same exact optimization delays, but the results are fairly close

between the two and the optimizations can still be compared. The timing results proved that the

optimizations are feasible in real-time situations. We ran the optimizations on Dell desktops that

had four dual-core processors with 4GB of RAM. The MILP optimization took about 45 seconds

in total to run on a full day of data split into 15-minute bins, independent of CPS. The DP

optimization took under a second to build the graph and solve it using a CPS of one and about 30

seconds for a CPS of two. These timing results prove that the optimizations would be feasible in

real-time situations. For a full day of flights, the DP heuristics cannot finish in a reasonable

amount of time when CPS is set to three positions or higher. Similarly, MILP cannot finish in a

reasonable amount of time if the day is not broken down into bins since its approach to the

problem is computationally intractable.

We set our deterministic baseline to be First Come First Serve (FCFS) at the runway with

enforced minimum separation requirements, because this would be the easiest improvement in

practice. DFW already uses FCFS at the runway, but they do not enforce that flights take off as

soon as they safely can. We expected any of our optimizations to be able to do better than FCFS

and so we were surprised when they did not. We quickly realized that this was because FCFS is a

CPS of zero at the runway, but we were imposing CPS at the spot. The optimization delays under

uncertainties were larger than the non-optimized delays, proving that the optimization is not

robust under stochastic conditions. The reason for this was that the aircraft were waiting at the

spot until their optimal spot leave time, however the uncertainties in taxi times changed the times

and sometimes sequence in which they arrived at the runway. This created delay at the runway

which was added to the delay at the spot, which was often more than the non-optimized

stochastic delay at the runway. This result shows that a deterministic optimization is not

beneficial in a stochastic world.

The change in runway sequence adds another dimension to the measure of the robustness of the

optimization solutions. We measured sequence change three different ways. First, we looked at

the sum of spaces that each flight shifted from the optimal takeoff sequence due to taxi time

perturbations. Next we looked at relative sequence change and weighted relative sequence

change. The relative sequence change was measured by the number of aircraft pairs where

aircraft i was supposed to come before aircraft j in the optimal sequence, but instead j came

before i in the final sequence. The weighted relative sequence change added in weights for how

many positions these pairs were separated by. For some days the sequence did not change at all

and for others a mere two flights switch positions with each other. More common was that

separation times were violated, causing extra delay at the runway.

The next addition to our project would be to add in arrival crossing to the optimization and again

test the effects of uncertainty. Once arrivals are added into the optimization, effects of

uncertainty could be measured in the same way as the departures only optimization. Departure

delay would be computed as the sum of the differences between when flights were ready at the

runway and when they were assigned to either take off or cross. After a deterministic

optimization of both departures and arrivals has been studied under stochastic conditions, the

next step to further this project would be to create a stochastic optimization. This type of

optimization would take into account uncertainties as it optimizes, creating a more robust

solution.

Table of Contents

Abstract ... 2

Acknowledgements ... 3

Executive Summary .. 4

Table of Figures .. 10

Table of Tables ... 10

1.0 Introduction ... 11

2.0 Background ... 13

2.1 National Airspace System (NAS) ... 13

2.1.1 Air Traffic Control (ATC) .. 13

2.1.2 The Bottleneck of an Airport .. 14

2.1.3 Issues of Congestion ... 15

2.2 Methods of Reducing Congestion ... 16

2.2.1 Increasing Physical Capacity .. 16

2.2.2 Shifting Congestion from Peak Hours .. 17

2.2.3 Decision Support Tools for ATC .. 18

2.2.4 Dallas/Fort Worth International Airport (DFW) .. 20

2.3 Methods of Solving the Departure Sequencing Problem (DSP) ... 21

2.3.1 Mixed Integer Linear Programming (MILP) .. 22

2.3.2 Dynamic Programming (DP) .. 23

2.4 Uncertainty of Taxi Times .. 24

2.4.1 Effects of Taxiing Uncertainty on Spot Release Re-sequencing 25

2.4.2 Modeling Taxi Time Uncertainty ... 25

2.4.3 Measuring Robustness .. 26

3.0 Methodology .. 28

3.1 Problem Approach... 28

3.2 Deterministic Optimization using Integer Linear Programming and Dynamic Programming

 ... 29

3.2.1 Dallas/Fort Worth International Airport Data and its Limitations 30

3.2.2 Mixed Integer Linear Programming Formulation .. 32

3.2.3 Dynamic Programming Formulation .. 34

3.3 Stochastic Model with Mixed Integer Linear Programming and Dynamic Programming . 48

3.4Analyze Effects of Uncertainties in Taxi Times .. 49

4.0 Results ... 51

4.1 Difficulties in Implementation for Mixed Integer Linear Programming 51

4.2 Difficulties in Implementation for Dynamic Programming .. 52

4.3 Robustness and Feasibility of Integer Programming and Dynamic Programming

Optimizations .. 55

5.0 Discussions ... 59

5.1 Measures of Success.. 59

5.2 Strengths and Limitations of Methods .. 60

5.3 Interpretation of Results .. 61

5.4 Strengths and Limitations of Results .. 65

5.5 Future Work .. 65

References ... 68

Appendix A- Acronyms .. 71

Appendix B - Glossary.. 72

Appendix C- Charts for Data Analysis ... 74

Appendix D – Departure Delay Data for Individual Days ... 84

Appendix E – Sequence Change and Separation Time Violation Results.................................... 86

Table of Figures
Figure 1: Generic Airport Configuration (NASA Aviation Systems Division, 2011) 14

Figure 2: DFW Airport throughput saturation (Jordan, 2011, Personal Communication) 15

Figure 3: Arial view of DFW, provided by Google Satellite .. 21

Figure 4: From left to right: Uniform, Gaussian and Triangular Distributions... 26

Figure 5: The directed acyclic graph on which the problem of optimally sequencing four takeoffs is

solved .. 38

Figure 6: Summary of relationships between the different DP algorithms ... 46

Figure 7: Triangular distribution modeled from Dallas/Fort Worth Airport data 49

 Table of Tables
Table 1: Example data from DFW .. 31

Table 2: Timing and departure delay results for four days of data with different bin sizes (in seconds) ... 51

Table 3: Running time for generating CPS networks for given n and k (in seconds) 53

Table 4: Running time and departure delay at the spot for various DP algorithms for 1-CPS (in seconds)

 .. 54

Table 5: Running time and departure delay at the spot for various DP algorithms for 2-CPS (in seconds)

 .. 54

Table 6: Delay per aircraft results averaged over the four days of data (in seconds) 55

Table 7: Initial data for the problem ... 62

Table 8: Comparison of the results given by FCFS at the runway and FCFS at the spot (CPS=0) 62

Table 9: Spot and runway ready times overlap for flights in two bins ... 63

Table 10: Changes to the taxi times due to uncertainties for the four days of data (in seconds) 64

1.0 Introduction

The National Airspace System (NAS) is responsible for all aircraft activity on the surface and in

the air above the United States. They are in charge of 14,500 air traffic controllers (ATC), 19,000

airports, and on average 50,000 flights per day (FAA, 2008). The ATC communicates with

aircraft pilots to manage the effects of weather and traffic conditions on the safety of the aircraft.

The Federal Aviation Administration (FAA) predicts that aircraft congestion will become worse

in the future as many major airports will come close to doubling their number of passengers by

2030 (“Terminal Area Forecast Summary, Fiscal Years 2010-2030”, 2010). This congestion

affects many people and businesses, including passengers, local and ground controllers, airlines,

and even the environment.

The capacity of an airport is primarily determined by its runways, but the ability of an airport to

achieve this capacity without becoming overly congested is determined by the efficiency of ATC

on the surface of the airport. Currently it is up to each individual controller to make decisions to

reduce traffic and maintain safe conditions for the aircraft. Although the controllers undergo the

same training, different controllers can handle situations in different ways. Research has recently

begun to look into decision support tools to ease controller workload while also reducing

congestion, delay, and improving the efficiency of airports. A few examples of what decisions

must be made include assigning gates, taxiways, and runways; scheduling takeoff, landing, and

runway crossing sequences and times; and the overall airport configuration.

Strategies to increase existing capacity include metering, re-sequencing aircraft at a spot on the

surface of the airport, and re-sequencing at the runway. The benefit of metering, which entails

holding aircraft until they can taxi unimpeded to the runway, is the reduction of congestion and

fuel burn. Re-sequencing aircraft at the runway minimizes the delay that is experienced by

ordering aircraft based on their weight classes. Re-sequencing at the spot accomplishes the same

goal by planning ahead, attempting to avoid long queues at the runway in the first place. These

techniques have been looked at to optimize aircraft traffic on the ground (Malik, 2010 and

Balakrishnan, 2007), but there has not been a large enough focus on optimizing surface

conditions while also looking at the effects of uncertainties, which is the focus of our project.

The goal of this project was to measure the effects of uncertain taxi times on optimal departure

and arrival crossing sequences that are constructed by optimizing spot release times. We did this

by implementing scheduling algorithms using Mixed Integer Linear Programming and Dynamic

Programming that can operate in real-time, which were tested with real data from Dallas/Fort

Worth International Airport (DFW). We compared the departure delay incurred by optimal

sequences with deterministic taxi times against those with stochastic taxi times to quantify the

effects of uncertainty. This helped us conclude whether deterministic scheduling algorithms are

appropriate for sequencing aircraft at the spot or if more robust solutions that take uncertainty

into account are required.

2.0 Background

The goal of this project is to test the effect of uncertainty on optimal recommended schedules for

aircraft taking off and crossing a single runway. This chapter examines previous work in this

area. First we address the responsibilities of the National Airspace System in controlling all

aircraft and airports to avoid accidents and congestion. We then introduce several ways of

reducing congestion on the surface of airports and detail the advantages and disadvantages of

each. From there we describe two methods for finding an optimal departure takeoff and arrival

crossing sequence. We use Mixed Integer Linear Programming and Dynamic Programming to

set up and solve the problem. Finally the chapter concludes with the effects of uncertain taxi

times on the optimal sequence and how to model and measure those effects.

2.1 National Airspace System (NAS)

The National Airspace System (NAS) deals with everything related to airspace above the United

States. Airspace is a block of air at any given place or time. There are several classes of airspace,

which dictate whether NAS has control over them or not and how well known the area is. NAS is

in charge of 14,500 air traffic controllers (ATC), 19,000 airports, and on average 50,000 flights

per day (FAA, 2008). Air Traffic Control is an important aspect of NAS. For example, on

September 11, 2001, all aircraft were forced to land or turn around and return to their place of

origin. Air Traffic Control was in charge of dealing with the large amount of planes that needed

to land (Paramount Business Jets, 2011).

2.1.1 Air Traffic Control (ATC)

In the United States, Air Traffic Control (ATC) helps to avoid accidents between aircraft. In

addition to regulating traffic in the air, ATC must also control traffic on the ground to ensure that

the aircraft take off safely and in a timely manner. The responsibility of controlling traffic on the

ground is shared among the Ramp, Ground, and Local Controllers. The generic layout of an

airport is shown in Error! Reference source not found.. First, the Ramp Controller (RC) decides

when aircraft should push back from the gate and begin taxiing towards a predetermined spot on

the airport surface, labeled “Spots” in the figure. This happens in the upper section of the picture,

labeled “Ramp”. The Ramp Controller is often an airline employee and so the focus of this

project will be on the decision making of the Ground and Local Controllers from the spots to

takeoff. The Ground Controller (GC) tells the aircraft when to leave the spots and directs traffic

so that all aircraft arrive safely and timely at the appropriate runway. The GC is in charge of the

“Taxiway” area in the figure. Finally, the Local Controller (LC) manages the runway to avoid

conflict by telling the aircraft when to take off. The LC is also in charge of arriving aircraft

which need to cross the runway to reach the terminal. An arriving aircraft can be seen at the

bottom of the figure and just below the word “Runway” as it waits to cross (Malik, 2010).

Figure 1: Generic Airport Configuration (NASA Aviation Systems Division, 2011)

2.1.2 The Bottleneck of an Airport

The capacity of an airport is determined by its runways, which are considered to be the

bottleneck of the airport during peak hours (Malik, 2010). Throughput is the number of aircraft

that take off during a certain time period. This rate is often used as a measure for the capacity of

an airport. As the number of aircraft on the ground increases, the throughput of departing aircraft

also increases. Once the number of aircraft becomes too large, throughput begins to saturate

which causes delays. Throughput eventually becomes saturated because separation requirements

imposed by the Federal Aviation Administration (FAA) dictate how long an aircraft must wait

after another has just taken off. The saturation of throughput for Dallas/Fort Worth Airport is

shown in Figure 2, parameterized by the number of arrival crossings. Currently the controllers

tell aircraft to leave the gate and spots as soon as they safely can which can cause congestion at

the taxiway and runway. This could be avoided with better surface decision tools to aid the

controllers, which would allow more aircraft to take off. Other measures of how well an airport

is operating include its efficiency, which is measured by departure delay, and equity, which is

measured by maximum delay.

Figure 2: DFW Airport throughput saturation (Jordan, 2011, Personal Communication)

2.1.3 Issues of Congestion

The congestion of an airport affects many people and businesses, including passengers, local and

ground controllers, airlines, and even the environment. Passengers are interested in getting to

where they are going without any delay. The workload of controllers increases when there is

traffic. They must make immediate decisions to attempt to reduce the congestion or at least avoid

any dangerous situations. Stop and go traffic results in high fuel burn due to the high thrust

needed to achieve taxi speeds (Malik, 2010). This raises fuel costs and affects the environment

negatively. Additionally, missing appointed schedules increases costs for airlines in terms of pay

for crews, maintenance, and the potential for cancelled flights.

The National Center of Excellence for Aviation Operations Research (NEXTOR) conducted a

study to measure the overall cost of flight delay in 2007 (Ball et al, 2010). They measured direct

costs similar to those listed above, but also considered the cost of lost demand, the costs to

passengers when their flight is canceled or they miss a connection on a multi-leg trip, the indirect

cost to the U.S. economy, and many other subtle and indirect costs. As a result of their analysis,

NEXTOR determined that in 2007, delay cost airlines $8.3 billion, passengers $16.7 billion, $2.2

billion in lost demand, and lowered the U.S. gross domestic product (GDP) by an estimated $4

billion, for a total overall cost of $31.2 billion. The authors note that other studies computed

similarly high figures. They also note that though not all delay can be removed from the system

due to untimely events such as adverse weather conditions or mechanical problems, they predict

that at least 50-60% of the cost from delay in 2007 could have been eliminated had the system

had a higher capacity and had more efficient procedures and policies been in place (Ball et al,

2010).

The Federal Aviation Administration (FAA) predicts that congestion will become significantly

worse in the future. Air travel demand is expected to increase at a constant rate through at least

the year 2030. In a report entitled “Terminal Area Forecast Summary, Fiscal Years 2010-2030”

by the FAA, they predict that many major airports will come close to doubling their number of

passengers by 2030. The top airports in terms of growth will be Washington Dulles, John F.

Kennedy and Charlotte, which are forecast to grow by 4.2, 3.6 and 3.6 percent each year,

respectively. Overall, the report forecast that the number of passengers at the airports that were

studied would increase from 515,474,000 in 2009 to 927,498,000 in 2030 (“Terminal Area

Forecast Summary, Fiscal Years 2010-2030”, 2010).

2.2 Methods of Reducing Congestion

Because air travel demand in 2030 is expected to be almost double what it is currently, it is

important to address the issue of airport capacity, which is widely considered to be the limiting

factor in the expansion of the NAS. Lee discussed different categories of solutions to alleviate

arrival congestion that also apply to departures: physically increasing capacity, shifting

congestion from peak hours, and using existing airport capacity more efficiently (Lee, 2008).

2.2.1 Increasing Physical Capacity

One solution that would certainly increase the overall capacity of the NAS would be to extend

existing airports by adding more runways, or by building new airports altogether. With more

airports and runways, each individual runway in the system would have less demand, reducing

congestion and delay and their associated problems.

However, building new airports or just adding more runways is not the ideal solution for two

major reasons. The first reason is that doing either is very expensive and requires significant

planning. The last major airport built in the U.S. was Denver International Airport (DIA)

(Ishutkina, 2009), which cost $4.8 billion and took six years to construct, from when it began in

1989 to when it opened for business in April 1995. DIA’s impact on the capacity of the NAS was

limited in that it was built as a replacement for nearby Stapleton International Airport.

Additionally, the final cost of the construction of the airport was nearly $1 billion more than its

initial predicted cost, and the opening of the airport was delayed 16 months due to complications

with its automated baggage system, which was added after the original planning of the airport

(US General Accounting Office, 1995). The DIA case hardly inspires future airport construction

in the United States without better planning in place.

The second reason is that the surrounding area may not lend itself to physical expansion. While

DIA, among other airports such as Dallas/Fort Worth (DFW), were designed to be extendable to

cater to future demand, not all airports have the luxury of having enough land to expand their

physical capacity. Airports such as London’s Heathrow and New York’s JFK airports are in

densely populated areas that provide either no physical room for expansion or whose plans for

expansion are met with public opposition (Ishutkina, 2009). In Boston, it took 30 years for a new

runway to be approved at Logan International Airport, and only on the condition that flights

would not make overland takeoffs or arrivals, limiting the noise pollution experienced by the

surrounding community (Marchi, 2005). Additionally, in anticipation of the new runway, the

location of the Hyatt Harborside Hotel was carefully chosen by state legislators to be built

directly in line with where the runway would be to limit its length and the resulting effect on the

community (Howe, 2006).

2.2.2 Shifting Congestion from Peak Hours

Given the costs and other factors involved with building new airports and runways, another

option to control congestion at existing airports is to shift flights away from peak hours through

either rationing or changing the schedule. Rationing the runways would be done by either

increasing fees to use them or by limiting the number of flights that can take off and land during

peak hours. Boston’s Logan Airport tried to do something like this in 1988 with their Program

for Airfield Capacity Efficiency (PACE), but it was unsuccessful since it was determined to be

unreasonable and discriminatory to owners of small aircraft by the Department of

Transportation. This was later upheld by the First Circuit Court of Appeals (Hardaway, 1991).

Under this scheme, flat fees for landing were roughly quadrupled, while weight-based rates were

significantly reduced. This caused significant reductions in fees for large aircraft, but the

opposite for small aircraft, and was applied over the entire day rather than just for peak hours.

This reduced congestion throughout the entire day. The unfairness of the plan led to the decision

by the Department of Transportation to order Logan to abandon PACE (LA Times, 1988). A

similar plan does not seem to have been attempted since then, though the FAA recently gave

airport operators more flexibility in pricing landing slots (USDOT, 2008). Even if runways were

rationed by the number of aircraft allowed to use them during a given time period, it would not

increase the overall capacity of airports since the congestion of peak periods would just be

reallocated to less-congested periods. Such periods may not exist for airports already running at

nearly full capacity, such as Heathrow and JFK (Ishutkina, 2009).

Another idea that has been considered is to encourage customers to fly during non-peak periods,

such as late at night, by offering reduced ticket prices. This however would be difficult to

implement across the board since individual airlines determine their own ticket prices and they

would not change their schedules unless there was a market for late night travel or some other

incentive (Venkatakrishnan, 1991).

2.2.3 Decision Support Tools for ATC

Given the drawbacks to the first two approaches, more emphasis has been placed on increasing

existing airport capacity through decision support tools for air traffic controllers. There are many

decisions that must be made on the surface of an airport to ensure that it is operating safely and

efficiently. Griffin et al. looked at the optimizations of most of these surface decisions. They

developed five optimizations which they named the “Taxiway Planner”, “Runway Planner”,

“Configuration Planner”, “Runway Assigner”, and “Gate Assigner” and optimized them in the

order that they were presented (2010). The goal of the Taxiway Planner was to minimize taxi

time, fuel burn, and emissions by controlling the gate pushback and achieving unimpeded taxi

times. The Runway Planner maximized throughput by sequencing takeoffs and landings based

on weight classes. These two decision support tools are named metering and re-sequencing and

are discussed in greater detail below, as they are the tools that will be used in this project. The

Configuration Planner decides upon the best airport configuration to maximize airport capacity.

An airport’s configuration is a set of runways that are being used and depends on factors such as

weather and traffic. The Runway Assigner assigns aircraft to a runway in order to minimize

emission costs and balance runway usage. Finally the Gate Assigner assigns gates for aircraft so

that ramp congestion is minimized. They tested these optimizations on data from Detroit

Metropolitan Wayne County (DTW) and determined that the Taxiway Planner had the greatest

effect on reducing taxi times and taxi time delay (Griffin, 2010).

Our project will look at parts of the “Taxiway Planner” and the “Runway Planner” optimizations.

In “Managing departure aircraft release for efficient airport surface operations”, researchers at

the NASA Ames Research Center also considered the benefits of metering and re-sequencing as

decision support tools for ATC (Malik, 2010). They used Dallas/Fort Worth International Airport

as their model and focused on metering departure aircraft at the spot. Metering is the act of

holding aircraft at a spot on the surface of the airport (see Error! Reference source not found.) until

they are able to taxi unimpeded to the runway. The benefit of metering is the reduction of

congestion and fuel burn. Metering reduces stop and go traffic between the spot and the runway.

Aircraft may also be able to turn off one of their engines while at a spot for a further reduction of

fuel burn. Simaiakis also looked at the effects of metering, but at Boston Logan. The aircraft

were held at the gate instead of at a spot. This resulted in an average fuel savings of 16-20

gallons per aircraft that experienced a hold at the gate (Simaiakis, 2011).

Another method to reduce congestion is minimizing delay by re-sequencing the original takeoff

order. When an aircraft takes off it leaves behind it a wake of turbulence. The next aircraft must

then wait a certain amount of time before taking off in order to avoid this turbulence. The

amount of time between the two takeoffs, called the separation time, depends on the aircraft

types of both of the aircraft, the predominant factor being their size. Separation times are derived

from the Federal Aviation Administration (FAA) separation distances based on average takeoff

speeds for each aircraft type. Re-sequencing aircraft minimizes the delay that is experienced at

the runway, by ordering aircraft based on separation times. This is known as the Departure

Sequencing Problem (DSP). There are two places that DSP has been explored: the spot and the

runway. The optimal sequence is the sequence with the least amount of delay that also obeys

constraints such as separation times, position shifting, ready times, and priority departures. A

constraint on position shifting restricts the maximum number of positions that any given aircraft

can shift from the original sequence to the optimized sequence, and is known as Constrained

Position Shifting (CPS).

The algorithms for re-sequencing at the spot and at the runway are the same. The difference

between them is whether the algorithm is looking into the future or solving the problem in the

present. In the spot algorithm, once the optimal takeoff times have been solved for, it is

determined at what time each aircraft should be released from the spot to begin taxiing towards

the runway. In the runway algorithm, the aircraft are already at the runway ready to take off and

the algorithm determines when they should take off and in what order. In other words, the spot

optimization tells aircraft when to leave the spot by looking into the future at when they should

take off. The runway optimization just tells the aircraft when to take off and operates in the

present. For the runway optimization it is necessary to have multiple queues so that the aircraft

can change the sequence that they are currently in. For example if there are three queues, the

aircraft can line up in the outer two queues, leaving the inner queue clear for anyone to use it to

approach the runway, independent of their queuing order. If such queues are not available then

the optimization can instead look at departure-arrival re-sequencing, but not departure-departure

re-sequencing.

2.2.4 Dallas/Fort Worth International Airport (DFW)

At some airports, such as Dallas/Fort Worth International Airport (DFW) shown in Figure 3,

arrivals must cross the departure runway to reach the terminal. Such crossings therefore must be

considered when re-sequencing aircraft. Additionally, the gain in throughput at any given airport

depends on many factors, including the level of demand and the distribution of aircraft that take

off. At DFW, the level of demand is not high enough to cause much congestion, so metering is of

little benefit. Most of the aircraft that depart from DFW fall into the “large” weight class,

meaning that not much time is gained by optimizing the sequence at the last spot. The aircraft

distribution at DFW is 2% small, 88% large, 5% heavy, and 5% B-757 (Gupta, 2009). In fact,

most of the gain in throughput at DFW would come from simply enforcing that aircraft take off

as soon as they can while still respecting minimum separation times between takeoffs. Currently,

aircraft wait longer to take off than necessary, for unknown reasons. While DFW is the focus of

the simulations in this project, our results will be applicable to airports with similar runway

layouts but with higher demand.

Figure 3: Arial view of DFW, provided by Google Satellite

2.3 Methods of Solving the Departure Sequencing Problem (DSP)

Several methods have been used to optimize the surface activities of aircraft. The surface

activities that we focus on are metering at the spot, taxiing from the spot to the runway, and the

sequence of departures taking off and arrivals crossing. There is a single runway in our problem

that is based off of DFW and multiple queuing areas at the runway so that any aircraft can take

off at any time regardless of its current position in the runway sequence. This project will

investigate two methods to optimize the aircraft traffic on the ground: Mixed Integer Linear

Programming (MILP) and Dynamic Programming (DP). Both of these methods have been used

to optimize aircraft traffic on the ground (Gupta, 2010 and Balakrishnan, 2007), but neither has

done so while also taking into account realistic uncertainties.

2.3.1 Mixed Integer Linear Programming (MILP)

Mixed Integer Linear Programming is an NP-hard mathematical method used for planning

activities. Linear Programs solve for a set of variables to minimize or maximize an objective

function while also obeying certain constraints. A MILP is a Linear Program that has at least one

integer constraint. This is the case for the traffic optimization in order to determine the sequence

of the aircraft. Examples of objective functions that have been used include minimizing system

delay, minimizing the maximum delay, or maximizing makespan (Gupta, 2009). The term

maximum delay refers to the greatest amount of delay that a single flight incurs on a single

takeoff or crossing. This is measured by subtracting when the flight was scheduled to takeoff or

cross from when it actually did. Maximizing throughput is difficult to implement so often

minimizing makespan is used instead (Gupta, 2009). Makespan is the time at which the last

aircraft takes off. A small makespan means that all of the aircraft took off and crossed quickly.

Linear programs (LP) are often solved by an algorithm called the simplex method invented by

George Dantzig (Dantzig, 1955). The constraints of the LP create a polytope, a multidimensional

shape with many sides, which is known as the feasibility region. Any point in the polytope is a

feasible solution to the LP. The vertices of the polytope are known as basic feasible solutions.

The simplex method iteratively travels along the edge of the feasible region, visiting a path of

vertices which are the basic feasible solutions, until an optimal solution is found. Each iterative

step results in an improved basic feasible solution from the previous and so the problem can be

solved in polynomial time for the average-case complexity. We will use the branch and cut

(B&C) algorithm to solve the MILP for this project. B&C is a combination of the branch and

bound (B&B) and the cutting planes algorithm (Chen, 2010). The first step of B&C is to convert

the MILP into an LP by ignoring the integer constraints. This constructed LP is solved using the

simplex method. If the optimal solution of the LP also obeys the integer constraints then the

algorithm is done. Otherwise, the cutting plane algorithm is used iteratively to make the solution

closer to an integer solution. Again if an integer optimal solution is found then the algorithm is

done. If it has not been found and there are no more cutting planes, then the B&B algorithm is

used (Chen, 2010).

The B&B algorithm can also be used alone to solve a MILP. B&B creates multiple sets whose

union equals the feasible region of the MILP. In the case of the B&C algorithm, the MILP is

divided into two versions of itself. The first version includes a new constraint variable that is

greater than or equal to the next integer that is larger than the current solution. The second

version does the same but the variable is less than or equal to the next smaller integer. The

simplex method is used again to find the optimal solutions for both problems. This is repeated

until an optimal solution has been found that satisfies all of the constraints of the original

problem (Chen, 2010).

There are many current applications to Mixed Integer Linear Programming. It is frequently used

in Operations Research (OR) (Chen, 2010). Almost a quarter of reports that were published from

1979-2006 in Interfaces used MILP. Interfaces is a journal of real-life applications for operations

research and management science. Some applications of these reports include transportation and

distribution, work staff scheduling, government services, and financial services to name a few.

Transportation and distribution was the most common application of MILP in the reports that

were investigated (Chen, 2010).

2.3.2 Dynamic Programming (DP)

Dynamic programming algorithms solve problems by decomposing them into simpler sub-

problems that the eventual final solution depends upon. The first step to solving a dynamic

programming problem is to represent it as a directed acyclic graph between defined starting and

ending nodes. Once this graph has been developed, the shortest path from the start to end node is

found using an iterative process. The basic sub-problem is the shortest path to the starting node,

which is zero. This represents the base case. Once the base case is solved then subsequent sub-

problems are solved using the solution from the base case. Once these subsequent sub-problems

have been solved the algorithm continues to solve larger sub-problems and find shortest paths

that use previous solutions until it reaches the end node. When it reaches the end node, there are

no more sub-problems left to be solved and the shortest path through the whole graph has been

found (Dasgupta, 2006).

Some common real-world applications of Dynamic Programming include finding the shortest

path through a graph, which is used in routing protocols such as Open Shortest Path First (OSPF)

and Intermediate System to Intermediate System (IS-IS), sequence alignment, which has

applications in bioinformatics, and interval scheduling, whose solutions can be applied to

resource allocation. For the application of airport surface operations optimization, the optimal

sequence is obtained by finding the shortest path through a directed acyclic graph where the

nodes represent subsequences of the final sequence and the edges represent possible leader-

follower relationships between subsequences. These edges are weighted according to the

additional delay incurred by scheduling the aircraft in the target node after that of the source

node. The shortest path through this graph with respect to the weighted edges is computed using

dynamic programming, giving the optimal spot release sequence.

Although recursive in nature, similar to divide-and-conquer algorithms, dynamic programming

does not break a problem into fractions of itself, but rather slightly smaller versions of itself that

build upon each other. In fact, for many problems, the dynamic programming approach is much

more efficient than its recursive counterpart, since it only needs to solve each sub-problem once,

whereas the recursive algorithm solves each multiple times (Dasgupta, 2006). However, many

dynamic programming problems are NP-hard. One example is the Travelling Salesman Problem

(TSP), which involves a salesman who is attempting to travel to n cities in the shortest route

possible, while only visiting each city once. An asymmetric problem instance of the TSP allows

for different distances between the cities depending upon which direction the salesman is

traveling, and is also intractable. Without constrained position shifting, the takeoff sequence

optimization problem would also be intractable since it can be modeled as an asymmetric version

of the Travelling Salesman Problem (TSP). This can be done by having the aircraft be the

“cities”, and having the separation times between aircraft based on their respective weight

classes be the asymmetric “distances” between the cities. However, having constrained position

shifting makes the problem tractable and solvable in nearly linear time (Balakrishnan, 2007).

This efficiency makes such an algorithm a good candidate for real-time use, if it can also

produce robust results when uncertainties are present.

2.4 Uncertainty of Taxi Times

Most papers on the subject of optimizing airport surface operations assume a deterministic

optimization where everything is known. However, the real world is never deterministic. In order

to make these optimization algorithms more appropriate in real circumstances, it is necessary to

consider stochastic, or changing, conditions. Several causes of uncertainties listed by Malik et al.

include “weather, the airline schedule, ramp operations, aircraft turn-around time and other

factors” (Malik, 2010). There are several places on the airport surface where uncertainties can be

investigated. Some examples are when the aircraft were ready to leave the gate, spot or runway,

when the aircraft did leave these areas, and their taxi times between them. This project will focus

on the uncertainties of taxi times, determining their effect on the optimal takeoff schedule.

2.4.1 Effects of Taxiing Uncertainty on Spot Release Re-sequencing

Due to the uncertainty in taxi times from the spot to the runway, the original planned optimal

takeoff schedule becomes sub-optimal in one of three ways: a leading aircraft taxies for a longer

amount of time than expected, a following aircraft taxies for a shorter amount of time than

expected, or two aircraft switch places in the predicted takeoff sequence due to perturbations in

their predicted unimpeded taxi times. If a leading aircraft taxies longer than expected, it backs up

the rest of the sequence due to separation requirements, assuming that the rest of the aircraft

were spaced no further apart than those separation times. Similarly a following aircraft that

taxies shorter than expected will incur delay at the runway in order to obey separation times.

Matters become worse when a pair of leading and trailing aircraft taxi slower and faster than

expected, respectively, which can lead to a change in the takeoff sequence. Since separation

times are based on the weight classes of both the leading and trailing aircraft, such changes in the

takeoff sequence can make the resulting sequence considerably sub-optimal, depending on the

weight classes of the aircraft that were switched and of the aircraft immediately before and

following them.

2.4.2 Modeling Taxi Time Uncertainty

Stochastic taxi times can be modeled in several different ways. The first and least accurate would

be to randomly choose them from a uniform distribution. This is inaccurate because there is an

equal chance of choosing a taxi time on the outer boundary of the distribution as choosing one

closer to the mean, which is not seen frequently in real-life. A more accurate prediction would

come from a Gaussian distribution, as more taxi times that are closer to the mean would be

chosen. An even more accurate method for modeling real data from DFW is to use a triangular

distribution that is dependent on several characteristics of the aircraft. This triangular distribution

was taken from the 10
th

 percentile of taxi times from 13 different days of data from DFW. The

10
th

 percentile was taken in order to model unimpeded taxi times. The characteristics that are

used to model the taxi times can include how far the aircraft is taxiing, where in the airport it is

coming from, and the aircraft type. These characteristics determine the interval of the triangular

distribution that is to be used. Examples of these distributions are shown in Figure 4. The

randomness of choosing from a distribution allows for a fairly accurate model of the possible

uncertainties of taxi times (Jordan, 2011, Personal Communication).

Figure 4: From left to right: Uniform, Gaussian and Triangular Distributions

2.4.3 Measuring Robustness

In his Master’s thesis “Tradeoff evaluation of scheduling algorithms for terminal-area air traffic

control,” Lee describes two methods to measure the robustness of a predetermined arrival

schedule when considering the uncertainty of predictions of when aircraft will be ready to land.

The first was termed reliability by Balakrishnan, and measured the probability that separation

requirements would be violated in a given landing schedule. According to Lee, only measuring

the overall probability for the entire schedule could sacrifice the separation time between a pair

of aircraft for the overall reliability of the sequence, and therefore proposes an alternative (Lee,

2008).

Lee proposes a second method that minimizes the probability of pairs of aircraft violating

separation requirements rather than looking at the sequence as a whole. In his approach, he

considers the situation where a trailing aircraft is ready to land before it is allowed to under

separation requirements. What he terms the weakness of a sequence is the maximum of the

probabilities of a pair of aircraft being ready to land too close to each other, for all pairs of

adjacent aircraft in the landing schedule (Lee, 2008).

Though these two approaches were applied to arrival sequencing, they can be applied to both

departure and arrival sequencing and minimizing system delay by considering the probabilities

of delay being incurred by uncertain taxi times, possibly weighted by the amount of delay that

could occur. With an appropriate measure of robustness, existing algorithms can be modified and

new algorithms can be developed that balance the tradeoffs between minimizing delay and

maximizing robustness, much like what Lee did with arrivals.

3.0 Methodology

In this project, we optimized the takeoffs on a single runway by minimizing departure delay. We

had also planned to consider runway crossings of arriving aircraft, but were unable to due to

difficulties with the simpler problem of just departures. Optimizations require an objective

function, in our case minimizing departure delay, which was the goal of the optimization. In

addition there were certain constraints that restrict the variables which were being solved. We

were solving for optimal takeoff times and an optimal sequence, optimal meaning those which

gave the minimal departure delay. The primary constraints that we imposed by the Mixed Integer

Linear Programming (MILP) and Dynamic Programming (DP) methods included separation

times and Constrained Position Shifting (CPS). Both MILP and DP have been used by other

researchers to optimize aircraft surface operations (Malik, 2010 and Balakrishnan, 2010).

However, they have only been investigated under deterministic, or unchanging, circumstances.

Our overall project goal was to compare the operational feasibility of the MILP and DP methods

and the robustness of the solutions when stochastic variables were added into the optimization

problem. Our objectives to complete this project were as follows:

1. Use Mixed Integer Linear Programming and Dynamic Programming with deterministic

variables to find the optimal sequence of departing and arrival aircraft.

2. Model uncertainties in taxi times based on real aircraft departure data from Dallas/Fort

Worth International Airport (DFW).

3. Analyze robustness of the optimization solution and the feasibility of Mixed Integer

Linear Programming and Dynamic Programming methods under stochastic conditions.

3.1 Problem Approach

In order to present our progress to our advisors and liaisons, we set up weekly meetings. During

these meetings we discussed issues that we were working through, issues that had been resolved,

and results that we found. This allowed us to get valuable feedback and also ideas to try out

during the coming week that would help us discover deeper results or understandings. We wrote

up and sent out a meeting agenda before each meeting to prepare the attendees for what topics

would be discussed. We also took turns mediating and scribing the meeting. The scribe of each

meeting then had the task of sending out meeting minutes to summarize what was talked about

and actions that we planned to take.

During the fourth meeting, we came to a decision that altered the project goal. We discovered

that the departure-only problem with stochastic taxi times was a great enough feat for a nine

week project and that adding in arrivals would not be possible. We were especially unsure

whether we would be able to develop a Dynamic Programming algorithm good enough to

improve on our baseline. Since our goal was to compare Mixed Integer Linear Programming and

Dynamic Programming approaches to the problem, it would not have been helpful to have a

departure and arrival solution for just the MILP. Once we completed our departure algorithms,

we came up with ideas of how arrivals might be added into the optimizations.

3.2 Deterministic Optimization using Mixed Integer Linear Programming and

Dynamic Programming

We investigated how Mixed Integer Linear Programming and Dynamic Programming approach

the sequence optimization problem. Julia Baum implemented a MILP algorithm using MATLAB

while William Hawkins implemented DP algorithms in Java. For each approach, a version of the

problem that only considers departures was implemented and tested. Smaller data sets were

tested initially, which was determined by a limited time window or a small number of flights.

Once testing proved that our implementations of these algorithms provided the correct solutions

for the smaller sets, we moved on to testing 24-hour departure schedules. The outcomes of these

methods are optimized takeoff times, an optimized takeoff sequence and corresponding spot

release schedule, and the departure delay associated with the optimization. We compared the

departure delays of the optimization, simulated First Come First Serve (FCFS), and real-world

takeoff times against one another. Simulated FCFS showed the benefits of waiting no longer than

the minimum separation times to take off when compared to the real-world data from DFW.

Currently, aircraft wait longer than necessary at the runway before taking off, for unknown

reasons. The optimization was expected to have even more benefits due to the re-sequencing of

aircraft.

In coding our respective algorithms, we strove to follow best coding practices in terms of the

readability of the text itself as well as the maintainability and flexibility of the design. We tested

our code on a regular basis and used the appropriate tools to do so, such as testing suites and

code coverage tools. We saved several incremental versions of our code in case we needed to

refer back to previous versions. We also designed our algorithms to be extendable to minimize

our reliance on older versions of the code. We appropriately documented our code to facilitate

future use by other developers at MIT Lincoln Laboratory.

While we both worked on our own algorithms, Julia Baum served the role of expert in terms of

the mathematics and background information involved in the problem, as she spent a great

amount of time researching and understanding the problem during an internship prior to the start

of this project. William Hawkins was the expert on matters relating to coding, such as what tools

to use to accomplish our project goals and what design concepts and coding practices to adopt to

maximize the flexibility and maintainability of our code for future use by other developers.

3.2.1 Dallas/Fort Worth International Airport Data and its Limitations

The test data that was used for the Mixed Integer Linear Programming and Dynamic

Programming optimizations were real-life departure data from Dallas/Fort Worth (DFW)

International Airport, since the layout of its runways contains the essential elements we intended

to investigate. The data from DFW for departures consists of the time at which each aircraft was

ready at the last spot, when it took off, and the aircraft type. The times that the aircraft were

ready at the spot and their time of takeoff are actual times that radar detected for each flight that

day. The unimpeded taxi times are defined as the 10
th

 percentile of taxi times based on a data

sample consisting of 13 fair weather days. The ready to take off time is then estimated by adding

the spot ready time and the unimpeded taxi time together. This assumes that each aircraft left the

spot as soon as it was ready and taxied unimpeded to the runway.

Table 1 contains a sample fragment of the available data. The ready times are seconds after time

zero in Zulu time, commonly known as Greenwich Mean Time (GMT). The unimpeded times

are also in seconds, representing the amount of time it takes for the aircraft to taxi from the spot

to the runway without stopping in between or encountering any traffic. The aircraft types are

represented by the numbers 1-4 where 1 is a small aircraft, 2 is a large aircraft, 3 is a heavy

aircraft, and 4 is a B757. The times at which departing aircraft were ready at the runway were

used to generate the First Come First Serve (FCFS) sequences for MILP, and their spot ready

times were used to generate the FCFS sequences for the DP algorithms. Aircraft were then

assigned a number based on their position in the FCFS sequence in order to keep track of them

during the optimization. The departure delays of the real world and FCFS sequence, which were

used as a baseline for those of the optimized MILP and DP solutions, was calculated by

summing the differences between the takeoff times and the ready to take off times for each

aircraft of the test data. The real-world system delay is shown in the table. FCFS is not shown in

the table as it is simulated and does not come directly from the DFW data.

Ready to

leave spot ()

Unimpeded taxi

time ()

At runway and

ready to take off

()

Aircraft type

(weight class 1-4)

Actual take

off time

Delay

43219 529 43748 4 43783 35

60986 420 61406 2 61406 0

85961 490 86451 2 86537 86

… … … … …

Table 1: Example data from DFW

We have four days’ worth of data from DFW in 2010: June 14
th

, 15
th

, 16
th

, and 18
th

. All four

days have similar congestion and aircraft type distribution, as DFW is fairly consistent day to

day. The number of aircraft for these days are 485, 382, 393, and 404, respectively. There is a

76-minute gap in the data from June 15
th

 where no flight information was recorded; other gaps in

the data also appear. These gaps occur due to poor radar signals. Spot group number nine, for

example, is known for being a blind spot to the radar, and so there are less spot leave times for

aircraft leaving from that spot (Ishutkina, 2011, Personal Communication). In addition to poor

radar, some pilots do not turn on their transponder when they begin taxiing and so their spot

position is lost. For the four days for which we have data, an average of 469 flights departed each

day, but we only have data for an average of 416 flights a day. This means that we are missing

data for about 10% of the aircraft that are departing. The radar coverage is better at the runway

compared to at the spot, and so there is more data on runway times and departure times than on

spot times. Appendix C contains graphs and charts that analyze the four days of data. This

analysis further shows the similarity between the days of data.

Since Dallas/Fort Worth International Airport has such a homogenous aircraft mix, we decided

to uniformly assign aircraft types to the spot ready times that we had from DFW for each day.

This created an even distribution of aircraft types, which would get more benefits from re-

sequencing. We assigned these aircraft new taxi times taken from the triangular distribution,

based on their aircraft types. We did not assign them new spot groups, however. We then

repeated the deterministic optimization on this data set with both optimization methods and

different values of CPS.

3.2.2 Mixed Integer Linear Programming Formulation

We chose to use YALMIP to formulate the MILP in MATLAB. YALMIP is a toolbox for

MATLAB and is used for modeling and solving optimization problems (“YALMIP Wiki”,

2011). It allows a user who is familiar with MATLAB to more easily implement an optimization

formulation. YALMIP has several commands that are useful for the MILP formulation. The first

is spdvar which defines a decision variable, in our case the takeoff times. Similarly, binvar sets

up a decision variable that is binary, which is used for the integer sequence variable. Finally

solvesdp is the command to solve for the linear program. The inputs of solvesdp include the

objective function, constraints, chosen solver, and other setting options. YALMIP includes an

internal algorithm to solve for MILP problems, but also allows for external solvers to be used

(“YALMIP Wiki”, 2011). We used Gurobi as our external solver. Gurobi is one of the best

commercial solvers available (“Gurobi Optimization”, 2011). There are other solvers that could

be used to solve the problem at hand. For example, Gupta et al. used ILOG CPLEX as their

solver (2009). The algorithm that we used in Gurobi is Branch and Cut, which was described in

the Background Chapter.

Optimizing a full day’s worth of flights is operationally infeasible using MILP. To solve for a

day of flights in less than five minutes, we split the day into 15-minute windows or bins. The

optimization of June 14
th

 took over five minutes for 30-minute bins, otherwise larger bins would

have been chosen as they result in lower departure delays. The 15-minute bins are determined by

runway ready times starting at the minimum ready time for each day. Each 15-minute bin is

locally optimized one after the other. Subsequent bins are dependent on the optimization of the

last flight of the previous bin. The MILP algorithm stores the optimal takeoff time and the

aircraft type of the last flight in the previous bin to maintain separation time requirements

between bins. The MILP was set up as shown in the formulation below, where variables were

inputs and parameters were solved for:

Variables for MILP

 = number of aircraft, and

 = number of positions CPS allows an aircraft to shift

 = time at which aircraft is at the runway and ready to take off

 = the separation times between the and aircraft in the final sequence, based on

 sequence, weight classes, 1 = small, 2 = large, 3 = heavy, and 4 = B757

 = very large number, e.g.

 = the takeoff time for the last aircraft in the previous 15-minute bin

 = the aircraft type of the last aircraft to take off in the previous 15-minute bin

 = the position of the aircraft in the original spot sequence

 = the position of the aircraft in the optimal spot sequence determined by

 = the optimal spot leave time for the aircraft

Parameters for MILP

 = time at which aircraft should take off, determined by optimization

Objective for MILP

Minimize departure delay

where

Constraints for MILP

1. An aircraft cannot take off before it is ready to.

2. If aircraft is before aircraft then aircraft is not before aircraft .

3. Separation times between aircraft are obeyed.

4. No aircraft leaves at the same time in the optimal spot leave schedule.

5. Separation times between bins are obeyed.

6. Constrained Position Shifting (CPS): aircraft can only shift k places from their position in the

original spot leave sequence.

Constraints three and four are the integer constraints that make this problem a Mixed Integer

Linear Program problem. and are both binary variables and they determine whether two

aircraft are next to each other in the sequence. Both of these constraints should only be enforced

for aircraft that are next to each other, or the problem will run very slowly. In order to make a

constraint only be enforced some of the time we used an either-or constraint. This is why the

 part of the constraint is added. If or is equal to 1, meaning that i and j are

adjacent in the sequence, then this part of the constraint equals zero and the separation times are

enforced. On the other hand if or is equal to 0 then the second half of the constraint

dominates the constraint but leaves the separation time to be greater than a large negative

number, which in practice negates the constraint.

Delta represents the separation time requirements between two aircraft. This time depends on the

weight classes of both of the aircraft and on which aircraft is before the other in the sequence.

The departure separation time matrix has rows and columns of weight classes from 1-4. An

example of how to interpret this ∆ matrix is if a B757 aircraft (weight class 4) takes off before a

small aircraft (weight class 1) then the small aircraft will have to wait for 120 seconds. Once the

whole day has been solved for, the code returns the optimal takeoff times, the optimal sequence,

and the departure delay of both FCFS and the optimal takeoff and crossing times for comparison.

From the optimal takeoff times and the optimal takeoff sequence, optimal spot leave times and

spot leave sequence for departures were found by subtracting the unimpeded taxi times. This

allows the departing aircraft to be held at the spot until their optimal spot leave time. They then

taxi unimpeded and take off as soon as they arrive at the runway.

3.2.3 Dynamic Programming Formulation

The Dynamic Programming formulation appears to be quite different from the MILP, although it

obeys the same constraints. The MILP formulation focused on the runway activities as they

would be in the future, whereas the DP formulation looks at the spot activities in the present

while indirectly obeying future separation constraints at the runway. Due to this indirect

constraint, the DP algorithm proved to be more difficult than was expected. This was due to the

fact that in order for a DP algorithm to guarantee optimal solutions to a problem, the problem

must have a property called “optimal substructure.” This means that when the DP algorithm

breaks down the problem recursively into smaller steps, the optimal solution from a given step

must be reachable from the decisions made to reach the optimal solution of the step before it.

Due to the indirect CPS constraint on the runway sequence and that the spot release and runway

sequences differ due to differences in unimpeded taxi times, we were unable to reach such a

recursive relationship between the optimal solutions of successive steps for this problem.

Therefore, instead of pursuing an exact solution, we implemented a series of heuristic DP

algorithms instead. The DP heuristics can solve for the whole day at once, as long as the

maximum allowable number of position shifts experienced by any aircraft, k, is kept at low

values such as 1 or 2, which are considered typical for both arrival and departure scheduling

(Balakrishnan, 2010).

CPS Network

The optimization problem was modeled as finding the path of least cost through a directed

acyclic graph, which is a graph of nodes and unidirectional edges with no cycles. The dynamic

programming algorithms depend on the valid construction of this graph, or the “CPS network”,

as defined by Balakrishnan and Chandran (2010). The construction of such a network satisfies

the CPS constraint in that every path from the start node s to the end node t represents a sequence

that obeys CPS and contains no repeated aircraft. Additionally, every possible sequence that

meets these criteria is represented as an s-t path through the network.

To start, the CPS network generation algorithm we implemented creates a table that lists all the

possible aircraft (represented by their index in the FCFS spot ready sequence) that could be

placed at each position in the optimal spot release schedule. For the example below, n=4 and

k=1:

Position 1 2 3 4

Possible aircraft

assignments

1 1 2 3

2 2 3 4

 3 4

Using this table, the algorithm generates subsequences of aircraft that obey CPS constraints,

which are represented as nodes in the CPS network. These nodes are placed into “stages,” which

represent the positions of the final optimal spot release sequence that the aircraft can be assigned

to. These stages consist of groups of nodes whose last aircraft could possibly be assigned to the

position that stage represents. For example, all nodes in stage 3 must have aircraft 2, 3 or 4 as

their last aircraft. All previous aircraft in a node are used only to correctly draw edges between

nodes in neighboring stages, as described later.

To create these nodes and place them in the correct stages, the algorithm begins with stage 1. For

this stage and all subsequent stages, the number of aircraft that are represented by nodes in stage

p is . For stage 1, this means all of its nodes have subsequences of length 1.

Since the last aircraft of all nodes in stage p must be assignable to position p in the optimal spot

release sequence with respect to CPS, stage 1 has just two nodes: one that represents just aircraft

1, and one that represents aircraft 2.

Next it builds stage 2, in which nodes represent subsequences of length two, according to the

process described above. The algorithm constructs nodes for all possible subsequences of length

two that follow the CPS constraint, and produces the following: 1-2, 1-3, 2-1, and 2-3, obviously

omitting 1-1 and 2-2 since aircraft cannot repeat in a sequence. This process continues until

nodes are generated for stage 4, or more generally, stage n, which in this case has nodes with

subsequences of length three since . Finally, dummy nodes s and t are

added, which are the start and end nodes, respectively. The completed CPS network is shown in

Figure 5.

Once the nodes are determined, they are connected with edges. Beginning with stage 1, the

algorithm draws a directed edge from every node in stage 1 to every node in stage 2 that could

follow it. In this example, these relationships are (1)→(1-2), (1)→(1-3), (2)→(2-1), and (2)→(2-

3). Then, it moves on to stage 2 and does the same for nodes in stages 2 and 3. More formally,

edges are drawn from all nodes i in stage p to all nodes j in stage p+1 where the last

aircraft of i match the first aircraft of node j. See Figure 5 for all such valid

relationships between nodes in adjacent stages.

Finally, there are some nodes that cannot be part of an s-t path because they are not reachable

from both s and t. We used a graph search algorithm that first marks all nodes reachable from s,

then reverses the edges in the network and does the same but starting from t. Any nodes not

marked twice can safely be removed from the network, along with all their associated edges. The

nodes that are removed from the network in Figure 5 are shaded gray. This pruned version of the

original CPS network is the network on which we perform the dynamic programming recursion.

The properties of the network that allow us to use it to solve the problem are proven by

Balakrishnan and Chandran, who have used networks like this to solve other aircraft sequencing

problems with CPS and dynamic programming (Balakrishnan, 2010).

Although our solution relies on Balakrishnan and Chandran’s CPS network, they solved the

problem of re-sequencing at the runway while our problem involved re-sequencing at the spot.

Therefore, our initial solution made the adaptation of changing what the edge costs in the

network represent and how they were set. Balakrishnan and Chandran set the costs of the edges

to the required separation times between the last aircraft of the nodes they connected, and did so

when they constructed the network. In our problem, edge costs correspond to the additional delay

incurred by scheduling the last aircraft of the target node next in the spot release sequence. Our

network starts with all edge costs set to zero, which are then implicitly calculated on the fly as

the problem is solved since they rely on the solutions to the nodes from which they originate.

Figure 5: The directed acyclic graph on which the problem of optimally sequencing four takeoffs is solved

Variables for DP

n the number of aircraft in the sequence

k the value of the CPS parameter

last(i) the last aircraft in the subsequence of node i of the CPS network

si the spot ready time for last(i)

ui the unimpeded taxi time for last(i)

Soi the actual release time of last(i)

∆i,j the required separation time between last(i) and last(j) at the runway

P(i) the set of nodes that are predecessors of node i

Parameters for DP

Soj(i) the spot release time for last(j) that minimizes delay if last(i) is its predecessor

D(i) the minimum possible departure delay incurred by a sequence ending in last(i)

Change of variables between formulations of MILP and DP:

Objective for DP

Dynamic Programming Recursion

Once we implemented the CPS network generation algorithm, we moved on to developing

heuristics that used the network to solve the problem. These algorithms had to respect the

following constraints:

 An aircraft cannot leave the spot before it is ready to.

 Separation times are obeyed.

 Constrained Position Shifting (CPS): aircraft can only shift zero, one, or two places from

their original spot leave sequence (for departures only).

The last of these three constraints was taken care of by the construction of the network, leaving

the other two to be enforced while applying the dynamic programming recursive equation.

The most basic situation to consider was that the spot release and takeoff sequences were the

same, so it can be assumed that last(j) comes immediately after last(i) in the takeoff sequence if

that is the order in which they appear in the spot release sequence. Therefore, the following must

be true:

In practice, the goal is to have Soj be as early as possible, and the earliest aircraft last(j) can

possibly leave the spot is sj. Additionally, the order of the current CPS subsequence being looked

at must be preserved, meaning that last(j) could leave no earlier than Soi. We called this the

“predecessor bound.” Therefore, the time that last(j) should leave is a maximum of these three

times, if preceded by node i:

These additional constraints resulted in the following recursive function D(∙), which gives the

lowest possible departure delay for a sequence ending in node j, minimized over all possible

predecessor nodes i:

However, the definition of D(j) assumes that the goal is to have last(j) not get to the runway until

last(i) has already taken off and that the required separation time between the two has already

passed. As mentioned above, this enforces that the spot release and takeoff sequences are the

same. For the simplicity of this initial heuristic, we named it Simple Spot. Where it falls short is

where there exists the possibility that the two sequences could differ due to large differences in

unimpeded taxi times, which could give a better solution.

Consider the following scenario:

si ui

Aircraft

Type

A 0 100 2

B 400 200 2

C 405 50 2

Applying the D(∙) function to each node in the generated CPS network resulted in a minimum

departure delay of five seconds, and with the spot sequence being A-C-B. In reality, the best spot

sequence would have been A-B-C, with no departure delay. The reason why this occurs is

because C is able to leave early enough so that it can fit between A and B in the takeoff sequence

without incurring any delay at the runway.

Any time there is sufficient space between the spot ready times of two consecutive aircraft,

where the third aircraft in the spot ready sequence is ready very soon after the second one is and

has a shorter unimpeded taxi time to the runway, the Simple Spot heuristic computes an incorrect

result if the third aircraft can fit between the first two in the takeoff sequence without

consequences.

The fundamental problem with Simple Spot was that it did not take into account that the takeoff

sequence could be different from the spot release sequence due to large differences in unimpeded

taxi times between different aircraft. To recognize this possibility, two improvements to this

algorithm were implemented: One Gap and All Gaps. One Gap works exactly like Simple Spot,

except that it considers the current predicted takeoff sequence first. If it is determined that the

aircraft currently being scheduled can fit between the last two aircraft projected to take off

without incurring any runway delay and respecting all other constraints, it is allowed to do so.

Otherwise, it is scheduled to take off last. All Gaps is a modification of One Gap that looks at

gaps between all aircraft in the projected takeoff sequence rather than just between the last two.

While One Gap expanded on the original heuristic and All Gaps even more so, the resulting

departure delays given by these algorithms were only a slight improvement over Simple Spot and

were much higher than the runway departure delay incurred by just sending all aircraft from the

spot to the runway immediately after they are ready to do so.

Although One Gap and All Gaps were developed to recognize that the spot release and takeoff

sequences may differ substantially from each other due to differences in unimpeded taxi times,

they only consider gaps in the takeoff sequence that are already large enough to fit subsequent

aircraft into. That is, a gap between the takeoffs of previously scheduled aircraft a and b is only

considered suitable if the aircraft currently being scheduled, c, can take off as soon as it gets to

the runway without following a too closely with respect to the required separation time between

the two of them, and if this can be done without b following c too closely. This approach fails to

consider gaps in the projected takeoff sequence that are only slightly smaller than necessary to fit

c. With a small adjustment to b’s takeoff time (i.e. an adjustment to its spot release time), the gap

can be made wide enough to fit c between a and b, incurring far less delay than scheduling c to

take off after b.

The first algorithm we developed to address this issue is One Gap Force, which extends One

Gap to consider “forcing” the gap between the last two aircraft in the current projected takeoff

sequence to be large enough to fit the aircraft currently being scheduled. As it schedules each

aircraft, One Gap Force computes the additional delay incurred by “forcing” b to leave the spot

later to accommodate c, and then does the same for just scheduling c to take off after b. The spot

release time for c that corresponds to the lesser of the two delays is then assigned to c as its

optimal spot release time. If the two incur equal delays, then the one that places c between a and

b in the takeoff sequence is preferred since it minimizes the time at which the next aircraft to be

scheduled after c can take off. The one exception to this is if rescheduling b’s takeoff (and

therefore spot release) time changes the spot release sequence enough to make it violate the CPS

constraint, in which case the other spot release time is taken instead.

In implementing this algorithm and all subsequent algorithms that relied on “forcing,” three other

important changes had to be made:

1. Each node must keep its own optimal spot release sequence that is set once that node is

solved for and not changed afterwards

2. The “predecessor bound” must be calculated from the stored spot release sequence of the

predecessor node i currently being considered rather than just Soi

3. The optimal spot release sequence for the entire day is that which is stored in the node in

stage n with the lowest departure delay

The first change was necessary because “forcing gaps” changes values that have already been

solved for, and also has the potential to change the sequence in which aircraft are released from

the spot, which is dependent upon the spot ready time, unimpeded taxi time, and aircraft type of

the next aircraft being scheduled. Since nodes in the CPS network often have more than one next

node, and since by construction of the network the last aircraft of those nodes must be different,

they had the potential to have very different effects on the spot release sequence that had already

been scheduled. Therefore, given node i with next nodes x and y, where x is solved for first, x

cannot just adjust Soi as it sees fit because it would bias the results of y, which also relies on the

value of Soi. Therefore, each node i must maintain its own optimal release sequence, which it

creates by copying from what is determined to be its optimal predecessor node and then modifies

when it schedules last(i).

The second change arose from the fact that the previously scheduled sequence can change due to

“forcing” gaps and may not follow the sequence that would normally result from tracing back

through the nodes in the CPS network. For example, a node i in stage 3 could have been

originally constructed to represent the subsequence 1-2-3, but whose optimal sequence could

actually represent 1-3-2 due to forcing. This could happen if 3 is fit into the takeoff gap between

1 and 2, but in order to do so, 2’s spot release time is adjusted enough to release it after 3 even

though 3 is the aircraft currently being scheduled. This is perfectly acceptable since the new

subsequence of 1-3-2 is valid according to CPS. However, if a node j in stage 4 that is connected

to i then uses 3’s optimal release time in its calculation of how early it is allowed to schedule

aircraft 4, it is possible that it could schedule 4 before 2, creating the sequence 1-3-4-2, which

violates 1-CPS since 2 would have moved twice from its original position. This is not a problem

if the forcing part of the algorithm does this since it is always validated against CPS before being

accepted. However, scheduling the next aircraft to be the last takeoff can also create an invalid

sequence in this way, and that, rightly so, is not validated against CPS because it would then

leave the algorithm no alternative for assigning an optimal spot release time to the aircraft

currently under consideration.

The solution we came up with to avoid invalid sequences is to consider the entire sequence of the

predecessor node currently being looked at to compute the predecessor bound rather than just

looking at the aircraft that was scheduled last. This can be done by starting at the last aircraft in

the spot release sequence and moving backward, stopping once an aircraft is reached that must

precede the aircraft currently being scheduled in order to preserve the validity of the sequence

with respect to CPS. There are two conditions to validate that determine whether such an aircraft

has been found. The first is that you have gone too far back in the sequence for the current

aircraft. For example, if k=1 and you are currently scheduling aircraft 6, this condition would tell

you to stop once you look at the aircraft in the fourth position of the optimal spot release

sequence. This means aircraft 6 must follow that aircraft, i.e. appear at least fifth in the sequence.

The second condition is that you have reached an aircraft that has already been moved k places

later than its original position, and therefore you cannot schedule the current aircraft before it.

Once such an aircraft is found, the predecessor bound on the earliest time the aircraft currently

being scheduled can be released can be calculated. An important note is that this implementation

considers the possibility of releasing two aircraft at the same time, and considers whichever

aircraft that has the lowest First Come First Serve index to be first in the optimal sequence, even

though in practice this does not matter. Therefore, if the aircraft currently being scheduled has a

higher FCFS index than the one it must follow, it is safe to set the predecessor bound to the

optimal release time of the aircraft it must follow. Otherwise, the bound is set to one second later

than the found aircraft’s optimal spot release time. In the case that there are no aircraft in the

sequence that must precede the aircraft currently being scheduled, any suitably low value such as

the current aircraft’s spot ready time or even zero can be set as the bound since the maximum of

this value and the aircraft’s spot ready time will be taken as the earliest it can be scheduled

anyway. It may make more sense operationally in the future to consider spot release schedules

that do not schedule multiple aircraft to be released at the same time. The MILP implementation

already enforces this restriction.

The third change is needed because the spot release sequence created by following the path of

least cost through the network will probably differ from the actual best sequence found, again

due to “forcing gaps,” which changes the sequences. Therefore, instead of tracing backwards

through the network to recover the optimal spot release sequence, it instead is simply the

sequence stored in the node in stage n that is the shortest distance from s, i.e. the lowest

departure delay.

With all this in mind, the next “forcing” algorithm we implemented was All Gaps / One Gap

Force (AG/OGF). This algorithm simply improves One Gap Force by also considering the spot

release time suggested by All Gaps for each aircraft and takes the release time that results in the

least amount of additional delay. Note that the All Gaps component of this algorithm must also

use the new strategy of computing the predecessor bound rather than using Soi as it normally

does.

Our next improvement to One Gap Force was All Gaps Force (AGF), which is to OGF as All

Gaps is to One Gap. It takes the logic of forcing gaps from OGF and extends it to considering all

possible gaps in the takeoff sequence that could be forced to be wide enough to fit the aircraft

currently being scheduled. An important difference, though, is that it is not enough to only adjust

the spot release time of the following aircraft of the gap, b, because b is no longer guaranteed to

always refer to the very last aircraft in the takeoff sequence since all gaps are now being

considered. In addition to b being rescheduled, the algorithm must then determine if any runway

delay is incurred by moving b’s takeoff time too close to the aircraft following it. If this is the

case, then that aircraft must also be moved until there is no longer any conflict. This process

must continue until there is no runway delay. The added delay is now the sum of all the

additional delays incurred by rescheduling however many aircraft needed to be to avoid runway

delay, added to whatever delay the aircraft currently being scheduled may also experience. To

calculate the best sequence under AGF, the best resulting CPS-valid sequence should be

maintained while trying each and every possible gap, which should then be compared to just

scheduling the aircraft currently under consideration after the last takeoff.

Finally, one last improvement to this family of Dynamic Programming heuristic algorithms that

we considered and implemented was Lenient All Gaps Force. This algorithm operates the same

way as All Gaps Force, but keeps track of two sequences that violate CPS in addition to keeping

track of a valid sequence. The first of these two invalid sequences is the one that is closest to

being valid of all the invalid sequences that are tied for having the lowest departure delay, and

the second is the sequence with the lowest departure delay of all the invalid sequences that are

closest to being valid. How close an invalid sequence is to being valid is calculated simply by

summing how far away each aircraft in the sequence is from being in a valid position according

to CPS. For example, if aircraft 6 is in position 3 with k=1, then 2 is added to the sum since it is

two positions away from position 5, the closest valid position it can occupy. Nothing is added to

the sum for aircraft that are already within k positions of their original position. The motivation

for such an algorithm was the possibility that intermediate invalid sequences could correct

themselves due to forcing and end up having better departure delays than those that are

constantly ensured to be valid throughout the scheduling process. A summary of the various DP

algorithms and their relationships to one another is shown in Figure 6.

Figure 6: Summary of relationships between the different DP algorithms

Implementation

The above heuristic algorithms were all implemented using the Java programming language,

whose object-oriented properties allowed for quick and easy extensions of earlier algorithms to

develop the more complicated algorithms. The language features that were mainly responsible

for this were interfaces/abstract classes, composition and polymorphism.

Coding to interfaces and abstract classes allowed for classes that needed to perform similar tasks

but in different ways to easily be integrated into the program. Different algorithms were

implemented by changing which classes the main class, DPSequencer, used to carry out these

tasks needed to solve the problem. This often involved just changing which subclass of the

CostStrategy class was used, whose role was to determine the optimal previous node for a given

node and that node’s optimal distance from the start node s.

CostStrategy, along with other helper classes, were used by the DPSequencer class according to

the Strategy pattern. This allowed DPSequencer to handle the tasks that were common to all the

DP heuristics, only calling on the strategy classes it was composed of for tasks that differed from

algorithm to algorithm. As more types of strategy classes were added, we decided to also use the

Abstract Factory pattern. This pattern involves passing just one object to the DPSequencer class

that retrieves its helper objects from the factory object passed in. What this did was ensure that

there would only ever need to be one argument to DPSequencer’s constructor, and that each

algorithm would have a factory object associated with it. This meant that strategy objects would

only be packaged in factories together in ways that made coherent and correct algorithms, rather

than allowing any combination of strategy objects to be passed in to a DPSequencer constructor

that accepts a strategy object of each type that it requires.

By taking advantage of the object-oriented properties of Java as well as the Strategy and Abstract

Factory design patterns, we were able to quickly implement and test new DP heuristics without

writing much additional code. Testing was done with the JUnit framework, which allowed us to

verify that changes made in the new algorithms did not cause them to behave differently than we

expected. We also wrote code that validated the new spot release schedules produced by our

algorithms against each of the constraints and made this part of the optimization process so that

we were guaranteed to know whether each and every result was valid. This allowed us to

eventually develop DP heuristics that did better than our baseline. Also, because each algorithm

has its own factory object and because we chose subclassing instead of modifying the code

whenever we implemented a new algorithm, we were able to run any of our heuristics that we

had already developed, even the earliest ones, at any time. This allowed and continues to allow

for comparisons between all the algorithms we developed for other test data we did not have time

to run the algorithms on, and also allows for improvements to some of the earlier algorithms in

ways that take a different path than that taken by the later algorithms that we implemented.

3.3 Stochastic Model with Mixed Integer Linear Programming and Dynamic

Programming

To model uncertainty in the optimized models, once the optimal departure sequence was

determined, we perturbed the taxi times from the last spot to the runway for each aircraft. These

perturbations were chosen randomly from a triangular distribution modeled on the 10
th

 percentile

of taxi times from DFW data, an example of which is shown in the figure below. We ran 500

simulations, each with different taxi times created by the model, for both of the algorithms being

used to solve the problem (MILP and DP). We then took the average departure delay for each

algorithm, along with an average of how much the sequence changed from the optimal sequence

and an average of how many separation times were violated and by how many seconds. The

results were fairly close together and so we did not feel the need to delete any outliers. This was

carried out by using the stochastic unimpeded times along with the optimal spot leave times that

were found during the deterministic optimization to get stochastic runway ready times. The

stochastic runway ready times determined the FCFS sequence which the aircraft will take off in

with the appropriate amount of separation. Additionally the stochastic unimpeded taxi times

were added to the original spot ready times and again the flights were sent in FCFS. This

modeled a stochastic world without optimization. We repeated this whole process with the data

of even distribution of aircraft types.

Figure 7: Triangular distribution modeled from Dallas/Fort Worth Airport data

3.4Analyze Effects of Uncertainties in Taxi Times

Adding in stochastic taxi times sometimes resulted in different sequences than the optimized

sequence at the runway, and more frequently situations where aircraft incurred delay at the

runway due to arriving at the runway too soon after a previous aircraft took off. The stochastic

FCFS sequence at the runway was the sequence that was compared to the optimal runway

sequence that the deterministic optimization found. The departure delay for the stochastic

optimization was the sum of the stochastic takeoff times minus the original predicted runway

ready times without holding at the spot.

Once we completed and ran the implementations of our algorithms, we had five sets of

sequences and departure delays to compare for both of the aircraft distributions that we looked

at. The first two were deterministic models, with and without optimizing. The next two were

stochastic models, with and without optimizing. The fifth set was taken from the real takeoff

times captured at DFW. Comparing these results helped us determine if optimization with MILP

or DP still had significant benefits when uncertainties like taxi times were taken into account in

the model. This gave an idea of how the methods would perform as part of a decision support

tool. These results are shown averaged in Table 6 in the Results Chapter and for each day

individually in Appendix D.

We measured robustness in terms of the effects that uncertainties had on the departure delay and

the order of the optimal sequence compared to those of the deterministic model. In order to

examine the operational feasibility of the two methods, we measured their running times on

desktop computers. This ensured that any runtimes we achieved would be achievable on

hardware available to air traffic controllers in the control tower. Through the comparison of

robustness of the solution and feasibility of the MILP and DP methods, we determined whether

the benefits of optimizing the sequence are still significant when a stochastic variable, such as

taxi times, is taken into account.

4.0 Results

Optimizing the takeoff times and sequences proved to be quite challenging, and therefore due to

time restrictions we were unable to add in arrival crossings to the optimization. Therefore our

results focus solely on departure-only optimizations. This section describes the difficulties that

we encountered while implementing the Mixed Integer Linear Programming and Dynamic

Programming algorithms. We then present the results that we obtained from our taxi time

uncertainty analysis.

4.1 Difficulties in Implementation for Mixed Integer Linear Programming

The biggest challenge in the implementation of the Mixed Integer Linear Programming

optimization was the need to bin the flights into smaller windows of time in order to make the

problem solvable in less than five minutes. Table 2 shows timing results and departure delays for

all four days with different bin sizes using no Constrained Position Shifting (CPS) constraint. We

chose to display the timing results of no CPS because there are more sequence options that the

solver has to search through and so the runtime is longer than with a CPS constraint. As the bins

became larger, the departure delay improved, however the runtime became slower. The

optimization was able to finish for three of the days with larger bin sizes, but the 14
th

 of June

took five minutes to solve the optimization with 30-minute bins and crashed MATLAB when it

attempted to solve for hour-long bins. For this reason we decided to use 15-minute bins for the

MILP optimization in order to get better departure delay without going over our runtime goal. As

mentioned in the methodology, the bins are dependent on each other and so it was necessary to

save information from the previous bin to use while solving for the current bin.

 June 14
th

(485) June 15
th

(382) June 16
th

(393) June 18
th

 (404)

Bin Size Time Delay Time Delay Time Delay Time Delay

10 minutes 55.4 19726 36.31 11780 35.02 8835 35.7 10513

15 minutes 62.31 19190 39.12 11606 39.39 8617 40.17 9804

30 minutes 313.95 18894 60.73 11612 51.34 8465 58.32 9819

1 hour DNF N/A 104.76 11536 94.91 8441 101.46 9765

2 hour DNF N/A DNF N/A 194.65 8341 457.87 9743

4 hour DNF N/A DNF N/A 871.4 8401 DNF N/A

8 hour DNF N/A DNF N/A 5059.1 8312 DNF N/A

Full Day DNF N/A DNF N/A DNF N/A DNF N/A

Table 2: Timing and departure delay results for four days of data with different bin sizes (in seconds)

Unlike the Dynamic Programming algorithm, the Mixed Integer Linear Programming

optimization is able to run without a constraint on position shifting. Due to this the algorithm

was coded first with the other constraints and then Constrained Position Shifting (CPS) was

added in later. Due to binning, this proved to be quite difficult. We wanted to constrain position

shifting at the spot but not at the runway. The bins were divided by runway ready times; however

this caused a problem when determining the spot sequence of one bin. Differing unimpeded taxi

times created the possibility that a flight earlier in the spot leave sequence could appear in a later

bin because it had a very large taxi time and it would therefore be ignored during the present bin

optimization. One idea was to switch the optimization constraints and binning boundaries to be

based on spot leave times. This would create the same problem when determining separation

times at the runway as there could be an aircraft that takes off near a flight in the current bin, yet

it does not show up until the next bin. The only solution is to either have large enough bins or

sparse enough data so that this type of overlap does not happen. CPS sometimes failed in

between bins, but was obeyed inside of bins and so only as many as eight flights out of a whole

day disobeyed CPS and only by a position or two. This created an algorithm with a relaxed CPS

constraint that gave similar results to one with an actual CPS constraint.

4.2 Difficulties in Implementation for Dynamic Programming

The main difficulty in optimizing the takeoff sequences with Dynamic Programming was that the

problem did not appear to have an optimal substructure. That is, we were unable to define a

relationship between steps n and n+1 of solving the problem such that the optimal solution for

step n would be guaranteed to lead to the optimal solution for step n+1. Such a recursive

relationship between adjacent steps is crucial for a DP algorithm to produce an exact, optimal

solution.

Much research has been done using DP to solve the Departure Scheduling Problem, though all

solutions we could find for the problem dealt only with re-sequencing aircraft that are already at

the runway rather than re-sequencing at the spot instead to indirectly create favorable runway

sequences. Because of this important difference, past research has looked at applying CPS

directly to the takeoff sequence since that is the only sequence considered, but in our problem,

the CPS applies instead to the spot release sequence, creating an indirect CPS constraint on the

runway sequence.

In order to avoid the complexity of an indirect CPS constraint, we applied Balakrishnan’s and

Chandran’s CPS network to the spot release sequence, which ensures that every valid spot

release sequence with respect to CPS is tested, and no others. However, due to the nature of our

problem, it created a scenario where the decisions made in scheduling the optimal sequence for n

aircraft were not the decisions that would have been made for an optimal schedule of n+1

aircraft, meaning there was no guarantee that there would be a reliable recursive relationship

between the optimal solutions of adjacent steps in the problem. After spending much time trying

to devise a DP algorithm that could create such a relationship, we decided to develop a series of

heuristics instead due to time constraints. These heuristics were built to use the CPS network of

Balakrishnan and Chandran, which we recognized as the best representation of a network that

could be used by a DP algorithm that takes all the operational constraints of departure scheduling

into account.

There was no ready-made solution for building the CPS network prescribed by Balakrishnan and

Chandran, so we used our own method that used a network of its own to generate the CPS

network. We later implemented a slightly more efficient algorithm that was iterative in nature,

using the generated nodes of the previously constructed stage to build the nodes in the next stage.

Table 3 shows the running times for how long it took to generate CPS networks for different n

and k, since the particular DP algorithm being used has no bearing on the generation of the

network. The first four n are the number of flights for each of the days we looked at. The time to

generate networks for 50 aircraft was also considered since it is closer to the typical number of

aircraft that would be scheduled at once in practice.

N=485 N=382 N=393 N=404 N=50

K=1 .016 .013 .013 .014 .004

K=2 13.953 10.792 11.082 11.792 1.391

Table 3: Running time for generating CPS networks for given n and k (in seconds)

As Balakrishnan and Chandran state, such networks need not even be created on the fly, but

could be stored in files that are read in based on the given n and k (Balakrishnan, 2010). This

could be especially useful if there are cases where 3-CPS would be possible, since it would

eliminate the large running time required to generate such a network. This assumes a DP

algorithm that could solve such a network in a reasonable amount of time.

Due to the lack of optimal substructure, the original heuristic, called Simple Spot, performed

much worse than simulated FCFS. However, through various improvements as explained in the

Methodology, we arrived at solutions that produced results that were slightly better than our

baseline, simulated FCFS. The running time and departure delay results of each of these

algorithms are shown in Tables 4 (1-CPS) and 5 (2-CPS). The best departure delays for each day

are in bold.

 June 14
th

 (485) June 15
th

 (382) June 16
th

 (393) June 18
th

 (404)

Time Delay Time Delay Time Delay Time Delay

SS .022 42388 .020 21987 .026 21884 .026 19301

OG .292 29644 .226 16583 .253 12435 .252 13620

AG .363 27324 .276 15882 .297 11412 .304 12525

OGF .459 21638 .375 12695 .398 9267 .397 10792

AG/OGF .638 20427 .731 12695 .532 9017 .543 10205

AGF .751 19797 .717 12416 .506 9037 .510 10374

LAGF 1.624 19797 1.226 12416 .992 9037 1.016 10374

Table 4: Running time and departure delay at the spot for various DP algorithms for 1-CPS (in seconds)

 June 14
th

 (485) June 15
th

 (382) June 16
th

 (393) June 18
th

 (404)

Time Delay Time Delay Time Delay Time Delay

SS .110 33172 .099 19370 .093 19408 .094 16287

OG 8.823 24683 4.347 15446 5.268 11111 5.705 11693

AG 13.816 23670 7.861 14746 8.715 10234 9.311 11349

OGF 12.341 19056 7.030 12006 8.414 8414 8.275 10037

AG/OGF 22.489 19056 14.081 12006 14.048 8414 14.140 9776

AGF 36.261 19541 19.933
12162

20.580 8615 19.149 9883

LAGF 107.227 19147 58.922
12162

58.212 8615 57.729 9887

Table 5: Running time and departure delay at the spot for various DP algorithms for 2-CPS (in seconds)

Interestingly, All Gaps Force (AGF) and Lenient All Gaps Force (LAGF) come up with the

same exact results in all but a few instances, though AGF does so considerably faster. While

these two algorithms are the best in general for 1-CPS, All Gaps / One Gap Force (AG/OGF)

performs better than them both for all four days for 2-CPS. Even One Gap Force performs better

than the last two for three out of the four days, for which it is tied with AG/OGF. This could be

due to the benefit of using increasingly complex algorithms is reduced when more shifting is

allowed, or that the algorithms that allow more forcing allow for more opportunities to make an

intermediate decision that hurts the rest of the sequence more than it helps the aircraft currently

being scheduled.

It appears there is a relationship between the number of aircraft to sequence and the average

delay for each aircraft in the optimized sequence, with the exception of 6/15, whose 382 flights

experience an average delay higher than that of the 393 flights on 6/16 and the 404 flights on

6/18. A more sophisticated metric that measures how clustered spot ready times are could

explain the observed differences in average delay between the four dates above better.

4.3 Robustness and Feasibility of Mixed Integer Linear Programming and Dynamic

Programming Optimizations

We use departure delay to show the optimality of each takeoff schedule since minimizing

departure delay was our objective function. Comparing the departure delays associated with

deterministic and stochastic unimpeded times allowed us to determine the effects of uncertainties

and whether our optimizations are robust enough to use in the real world. We also looked at the

change in sequences at the runway as another measure of the effects of uncertainties. Operational

feasibility of the optimizations was determined by runtimes.

 Departure Delays per Aircraft, in seconds

 Baseline Deterministic Stochastic

Distribution

of aircraft

type

Real

World

Simulated

FCFS

DP

Optimization

MILP

Optimization
Original

DP

Optimization

MILP

Optimization

DFW CPS = 0

155.67 30.05

37.07 36.02

29.90

39.94 38.96

 CPS = 1 31.02 30.96 34.20 34.13

 CPS = 2 29.60 29.75 32.73 32.77

 NO CPS N/A 29.39 N/A 32.39

Even (25%) CPS = 0

N/A 80.79

100.90 96.16

80.48

105.73 100.93

 CPS = 1 74.25 72.92 79.05 77.75

 CPS = 2 66.02 67.03 70.73 72.72

 NO CPS N/A 64.85 N/A 69.73

Table 6: Delay per aircraft results averaged over the four days of data (in seconds)

Table 6 shows the delays per flight averaged over the four days of data: June 14
th

, 15
th

, 16
th

, and

18
th

. The first column in the table is the real-world comparison. This was computed by using the

actual takeoff times that were detected at DFW on that day and subtracted our simulated runway

ready times. The reason for using simulated runway ready times was because we wanted to

compare our results with real-world results that involved unimpeded taxi times. Had we used the

real times that the aircraft arrived at the runway, there would be an amount of system delay that

was incurred during taxiing that would be lost. Some of the takeoff times were before our

simulated runway ready times. Although this is impossible in real life, it makes sense because

the unimpeded times were taken from the 10
th

 percentile of taxi times and so 9% of flights would

end up taxiing faster than we predicted. We included these negative delay times into the

departure delay as it would make up for runway ready time predictions that might be earlier in

real life. The real-world departure delay is so large because the controllers are not telling aircraft

to take off as soon as they can while obeying separation times, and there are arrival crossings

which we are not taking into account.

Columns 2-4 show the results for the deterministic world. This means that the unimpeded taxi

time predictions were assumed to be correct and unchanging. The departure delays were again

computed by subtracting the simulated runway ready times from the assigned or optimal takeoff

times. The “Original” column is the departure delay associated with aircraft taking off as they are

ready in a First Come First Serve sequence at the runway and enforcing minimum separation

times. The difference between this departure delay and the real-world departure delay is the

amount of extra time that the aircraft were waiting unnecessarily at DFW that day, some of

which is due to arrival crossings. The next two columns show the DP and MILP optimization

results for departure delay. The difference between these results and the original departure delay

shows the benefit of re-sequencing aircraft at the spot.

The last three columns in each table are the departure delays for the stochastic world. The

original column uses the original spot leave times and sequence along with the stochastic

unimpeded taxi times and averages the departure delay of sending them FCFS at the runway over

500 iterations. The optimization columns use the optimal spot leave times found by the DP and

MILP optimizations and calculates the departure delay again using FCFS at the runway. These

are the columns that show the effects of taxi time uncertainties and whether it is beneficial to use

these optimizations in real-world scenarios. If the optimization departure delays are significantly

less than the original stochastic delays then it is still beneficial to use our optimizations in

uncertain circumstances.

The departure delay is calculated for real, deterministic, and stochastic worlds while also

changing six different factors. The first change is the aircraft distribution. Since DFW is on

average about 88% large aircraft, there is less of a benefit of re-sequencing. To show how large

of a benefit re-sequencing can have, we uniformly assigned the DFW aircraft new aircraft types.

The even distribution of aircraft types includes close to 25% each of small, large, heavy, and B-

757. Using DFW’s distribution and an even distribution we also looked at the effect of CPS. No

CPS means that there was no restriction on position shifting anywhere on the surface of the

airport. This is expected to have better results as it is the most flexible. Though the departure

delay is better without CPS, the controllers’ workload is increased without it. Therefore, we

looked at CPS equal to zero, one and two and determined how much delay this added compared

to no CPS. A low CPS value is more realistic for real-world applications. Separate delay results

from the four days of data can be found in Appendix D. The major difference in delays between

each day comes from the difference in the amount of flights.

The change in runway sequence adds another dimension to the measure of the robustness of the

optimizations. We measured sequence change three different ways. First, we looked at the sum

of spaces that each flight shifted from the optimal takeoff sequence due to taxi time

perturbations. Next we looked at relative sequence change and weighted relative sequence

change. The relative sequence change was measured by the number of aircraft pairs where

aircraft i was supposed to come before aircraft j in the optimal sequence, but instead j came

before i in the final sequence. The weighted relative sequence change added in weights for how

many positions these pairs were separated by. We also looked at how many aircraft arrived too

soon after the aircraft before them which would violate separation requirements and how many

seconds early the aircraft arrived. These results are shown in Appendix E for each day of data.

We ran the optimizations on Dell desktops running Linux that had four dual-core processors with

4GB of RAM. The MILP optimization took on average 45 seconds in total to run on a full day of

data when the data was split into 15-minute bins. This time includes the time it takes to sort the

data, divide it into bins, and save the results from each bin. YALMIP took around 15 seconds to

set up the MILP formulation and around 1-8 seconds to solve it, depending on CPS. The DP

optimization took under a second to build the graph and solve it for CPS equal to zero and one

and about 30 seconds for CPS equal to two.

5.0 Discussions

This chapter will interpret our optimization results, focusing mainly on the effects of taxi time

uncertainties. We first begin with how we measured the success of our project. We also point out

strengths and limitations to both the methodology and the results. We interpret our results to

show whether the deterministic optimizations would be beneficial in real-world applications.

Finally, we conclude this section with suggestions for future work that can extend upon this

project.

5.1 Measures of Success

Our goals for the MILP optimization changed as we progressed through the project. Our original

goals were to be able to optimize departures and arrivals and look at the effects of uncertain taxi

times on these optimizations. We also wanted to impose a position shifting constraint at the spot

to maintain a sense of fairness among different airlines. This constraint posed more problems

than we expected, and so we were unable to attempt arrival crossings in addition to departure

takeoffs. In addition to this we realized that there is no clean way to impose Constrained Position

Shifting (CPS) for the MILP optimization while also splitting the day of data into smaller time

periods. Despite these setbacks we were still able to get departure results with MILP using a

relaxed CPS constraint and look at the effects of uncertainties, which was our most imperative

goal.

Our goals for the DP optimization were similar, and also changed due to the difficulty of

optimizing departure takeoffs only. The major problem encountered was the difficulty in

defining a recursive relationship for the optimal schedule for n aircraft and for that of n+1

aircraft. Such a relationship is vital for a DP algorithm to produce optimal results, and the lack of

such a relationship showed in the results of the first attempted algorithm, Simple Spot. We

decided that our time would be better spent developing heuristics that approximated the optimal

schedule rather than searching for an exact solution, so we developed several DP heuristics that

came increasingly close to simulated FCFS in terms of departure delay. While optimizing at 1-

CPS never produced results that improved on simulated FCFS, 2-CPS did for several of the

heuristics, showing that DP could be used to solve for an entire day without binning in a

reasonable amount of time. From there, we were able to look at the effects of uncertainties as we

did with the MILP.

5.2 Strengths and Limitations of Methods

Our weekly meetings with our advisors and supervisors provided us with a good structure to

show progress and receive feedback. We were able to discuss ideas of possible ways to attack the

problem and possible reasons for our optimizations not producing the results we expected. It was

also beneficial for each of us to work on one optimization tool while communicating issues with

the other partner. Testing on smaller data sets is always a wise idea, especially when they are

solvable by hand which is useful for checking that the optimization came to the correct answer.

These smaller data sets, however, were not always helpful for testing the MILP because most of

the bugs came from binning the data into smaller time periods, which is unnecessary for small

data sets. The smaller data sets occasionally revealed bugs in the DP heuristics, but most of the

bugs came up while working with larger data sets.

Using real data from DFW and taxi time distributions modeled on real data was useful in that it

showed how our methods would affect departure delay for an actual 24-hour schedule of

departures. However, June 15
th

 was missing a substantial amount of flights in the middle of the

day, and the other three days were missing roughly 10% of their flights each. Such factors

decrease the realism of our results. Additionally, DFW does not experience high demand, has a

very homogeneous mix of aircraft (an average of roughly 90% of “large” aircraft over the four

days of data), and space out their takeoffs for longer than seems necessary. These factors all

made it more difficult to see the actual effects of our optimizations. Higher demand and a more

heterogeneous mix of aircraft would have provided more opportunities for optimization, as

shown in our even distribution results. The fact that the real-life takeoffs were spaced out farther

than they needed to be means that just having them take off as soon as they safely can would

have made vast improvements in delay, overshadowing the further improvements made by our

optimizations.

We addressed the homogeneity of the aircraft types by randomly assigning aircraft types to the

aircraft in the schedule for each day to create an even distribution. While this helped us see what

extra opportunities heterogeneity gives, it was limited by the fact that we were unable to model

realistic taxi times because our taxi time model was based on DFW’s aircraft mix. This is

expanded upon in Section 5.4. We intended to address the lack of demand by simulating higher

demand, but did not have enough time to do so.

5.3 Interpretation of Results

The DP and MILP algorithms were both suboptimal due to discrepancies between spot

sequences and runway sequences, which will be explained in more depth later in this section. DP

heuristics were used to optimize the sequence and MILP finds local optimizations for each bin.

The MILP optimization also used a relaxed CPS constraint that alters the results slightly in a

positive direction. This explains why they do not give the same exact optimization delays, but

the results are fairly close between the two and the optimizations can still be compared. The

timing results proved that the optimizations are operationally feasible in real-time situations. For

a full day of flights, DP becomes operationally infeasible when CPS is set to three positions or

higher. MILP can run without CPS, but it gives better results when there are fewer bins, although

it becomes operationally infeasible with too large of bins. The size of bins that the optimization

can handle was determined to be largely dependent on the data. The data from the 14th has spot

leave times that are very close together, which creates more options for the optimal sequence.

We came across several unexpected results, and the cause of these was differing sequences at the

spot and at the runway. We set our baseline to be First Come First Serve at the runway with

enforced minimum separation requirements, because this would be the easiest improvement in

practice. DFW already uses FCFS at the runway, but they do not enforce that a flight takes off as

soon as it safely can. We expected any of our optimizations to be able to do better than simulated

FCFS and so we were surprised when they did not. We quickly realized that this was because

simulated FCFS is a CPS of zero at the runway, but we were imposing CPS at the spot. We

attempted to achieve simulated FCFS departure delay with our MILP optimization using CPS

equal to zero at the spot, thinking that these should give the same answers, but were unable to.

To investigate why a FCFS at the spot (CPS=0) was giving worse results than runway FCFS we

took the runway FCFS takeoff times and subtracted the unimpeded taxi times in order to get spot

leave times, as if simulated FCFS was a metering optimization result. What this showed us was

in order to achieve simulated FCFS at the runway, the spot sequence was changing up to three

positions. This would be illegal in the CPS=0 optimization, and so runway FCFS delay may not

be achieved or surpassed unless the CPS at the spot allows for as much flexibility as the runway

FCFS requires. An example of how FCFS at the runway can shift the spot sequence is shown in

Tables 7 and 8 below. In this example the optimization with CPS equal to zero at the spot gives

an additional delay of 16 seconds compared to FCFS at the runway in order to preserve the

sequence at the spot. This situation happens because flights 2 and 3 have very close spot leave

times but flights 1 and 2 have very close runway ready times. When FCFS at the runway puts the

minimum separation time between flights 1 and 2, flight 2 gets pushed back and its optimal spot

leave time ends up being behind that of flight 3 which shifts the spot sequence.

Given data

Aircraft # Aircraft type Spot ready

time(s)

Spot

sequence

Taxi

times(s)

Runway

ready

time(s)

Runway

sequence

1 2 4000 1 375 4375 1

2 2 4150 2 250 4400 2

3 2 4170 3 350 4520 3

Table 7: Initial data for the problem

 Results for FCFS at runway Results for FCFS at spot (CPS=0)

Aircraft # FCFS at

runway

takeoff

time(s)

Proposed spot

leave time (s)

Spot leave

sequence

CPS=0 at spot

takeoff time (s)

Proposed spot

leave time (s)

Spot leave

sequence

1 4375 4000 1 4375 4000 1

2 4435 4185 3 4435 4185 2

3 4520 4170 2 4536 4186 3

Table 8: Comparison of the results given by FCFS at the runway and FCFS at the spot (CPS=0)

Another unexpected result came from not being able to enforce CPS with MILP. The reason for

this, as stated before, was due to binning. The problem with binning is that the optimization is

unaware of any flights that are not in the bin that is currently being solved for. Due to different

taxi times between flights, the runway and spot sequences can vary greatly. In order to properly

enforce CPS at the spot and separation requirements at the runway it is necessary to have all

flights that are next to each other in the spot sequence along with all flights that are next to each

other in the runway sequence in the same bin. We began with separating the bins by runway

ready times. This ensured that the runway sequence was preserved but it did not guarantee that

the spot sequence was preserved. To compensate for this we attempted to add in flights whose

spot leave time was among the times that were currently in the bin. These flights however, would

have runway ready times that were later than the rest of the bin's runway ready times, possibly

later than those in the next bin, and therefore could cause the runway sequence to be lost. If we

continued this process of adding in runway ready times that were within the bin boundaries and

then adding in spot ready times that were within the bin boundaries we could eventually come

close to having the whole day of flights in the current bin and the solver would be unable to

optimize it. An example of this overlap in bins is shown in Table 9.

Bin 1 Bin 2

Spot ready
time(s)

Runway ready
time(s)

Spot ready
time(s)

Runway ready
time(s)

5000 5250 5200 5401

4900 5300 5125 5405

5155 5310

Table 9: Spot and runway ready times overlap for flights in two bins

In this example Bin 1 has an original runway ready time boundary of 5400 seconds. The runway

ready times of Bin 2 are all higher than the runway ready times of Bin 1, but the second spot

ready time in Bin 2 is less than one of the spot ready times in Bin 1. While the optimization is

solving for Bin 1, it would be unaware that the third flight is actually fifth in the spot sequence

out of all six flights. To fix this we can put the second flight of Bin 2 into the first bin and this

will correct the spot sequence. The other effect that moving this flight to the first bin will have is

that the runway sequence will now be lost because the first flight in the second bin is ready at the

runway before the second flight in this bin. Therefore both flights must be moved to the first bin

in order to fully maintain both the runway and spot sequence. With real data this could continue

until the bins were too large to handle. The data from DFW only ran into this problem a few

times during a day, and so we let the flights break CPS instead of making the bins larger. We

determined that this would have a smaller effect on the results and operational feasibility than

adjusting the bins.

The main goal of this project was not just to optimize using MILP and DP but to see what

happens to these optimizations when uncertainties are added into the model. The optimization

delays under uncertainties were worse than the delays associated with not optimizing under

uncertainties for both MILP and DP, using simulated FCFS as our baseline. The reason for this is

that the goal of the optimizations is to find optimal spot leave times based on optimal takeoff

times and to hold the aircraft at the spot until their optimal spot leave times. In a deterministic

world the aircraft would then taxi unimpeded and be able to take off immediately. With

stochastic unimpeded times, the aircraft no longer arrived at the runway when they were

supposed to or even in the order that they were supposed to. This created delay at the runway

which, when added to that at the spot, was more than that experienced at the runway by the

simulated FCFS sequence with stochastic taxi times. This result shows that a deterministic

optimization is not beneficial in a stochastic world. Contrary to these results, an even distribution

of aircraft types allows for more benefits to be gained from re-sequencing and was robust under

uncertainties.

From the results of the sequence analysis, it appears that the order of the spot releases has little

bearing on how much the sequences are changed by, as measured by three different sequence

change metrics. Stochastic taxi times rarely ever caused the sequence to change, and only by

very little when it did. Additional delay incurred at the runway was mostly due to aircraft simply

arriving at the runway too early with respect to the takeoff before it, even while still staying in

the same position as in the originally projected takeoff sequence. The average change in

unimpeded times for each of the days was about 8 seconds, which explains why the sequences

were for the most part preserved. Also each aircraft that violated separation times did so by 10

seconds on average.

Date Minimum Average Maximum

June 14
th

 -40 8.16 50

June 15
th

 -103 8.52 102

June 16
th

 -45 8.32 46

June 18
th

 -38 7.88 46

Table 10: Changes to the taxi times due to uncertainties for the four days of data (in seconds)

5.4 Strengths and Limitations of Results

As described above, while our results are based on real data, there are limitations to that data that

make them a little less realistic and that give results that may not be as good as they could be.

Additionally, we were unable to also optimize arrival crossings. This would have allowed us to

better compare our delays to the delays that are actually seen at DFW. Although we discovered

that the deterministic optimization was robust for the even distribution of aircraft, we are not sure

whether or not this would be true in practice. The taxi time model that we used is heavily based

on the spot group of the aircraft and the aircraft type. Since DFW has so few aircraft that are

small, heavy, or are B757s there was not enough data to get an accurate prediction for their

unimpeded taxi times. In addition it is unknown how DFW would assign an even aircraft mix to

different spots, and so we kept the spot assignments as they were. In order to get a reliable result

from an even distribution, we would have to look into an airport that actually uses an even

distribution, for example Boston Logan, and do the same analysis that we did on DFW there.

We found another limitation to our results when we were analyzing the change in unimpeded

taxi times due to uncertainties. All four days had a consistent average change of 8 seconds per

aircraft; however the maximum and minimum changes were very different for one of the days.

The 15
th

 of June had maximum and minimum changes of 102 and -103 seconds respectively,

whereas the other days had maximums and minimums closer to plus and minus 45 seconds. We

looked into this and there did not seem to be any errors in the code or the data, but we also could

not come up with a reason for why this day would have larger amounts of taxi time changes.

These larger changes also caused the sequence to change for three or four flights, whereas the

other days did not experience any sequence changes due to uncertainties. These large changes

were consistently assigned to the same four flights on the 15
th

, but as stated before we were

unable to figure out why.

5.5 Future Work

The next step to our project would be to add in arrival crossings to the optimization and again see

the effects of uncertainties since this was our original plan. The first step to do this for the MILP

algorithm would be to make a function that can determine whether an aircraft is a departure or

arrival aircraft. An arriving aircraft's ready to cross time is analogous to a departure’s runway

ready time. Arrivals are also assigned a number from 1 to 6, which represents their crossing

queue, and is analogous to departure weight classes. These characteristics determine separation

time requirements at the runway. After an aircraft takes off, arrivals must wait based on how

close their crossing queue is to where the departure took off from, i.e. the end of the runway.

Crossing 6 is the closest to where departures take off and so aircraft crossing in queue 6 must

wait 60 seconds. Two arrivals can cross the runway in different queues almost simultaneously,

and so they are given a separation time of two seconds. If they cross in the same queue then the

second aircraft must wait 10 seconds for the one in front of it to finish crossing. Similarly a

departing aircraft must wait 12 seconds for an arriving aircraft to finish crossing. Since some of

these separation times are quite smaller than the departure separation times, it is necessary to

keep track of the last departure flight to make sure that separation times between departures are

obeyed even if there are arrival crossings in between. The CPS constraint would not constrain

arrivals in any way. For DP, all the above constraints would also apply. However, we were

unable to determine how to fit arrival crossings into our DP heuristics and leave that to future

researchers.

Once arrivals are added into the optimization, effects of uncertainty can be measured in the same

way as the departures only optimization. System delay would be computed as the sum of the

differences between when flights were ready at the runway and when they were assigned to

either takeoff or cross.

Another operational constraint to be considered is priority departures, or those that must leave by

a certain time. This could be the case if a certain aircraft needs to get to its destination airport by

a certain time to keep its airline’s schedule intact and prevent delay at other airports. This added

constraint would further limit the extent to which a given spot release sequence could be

optimized.

In addition to optimizing at the spot, a second optimization at the runway could be executed if

enough aircraft build up there due to delay at the runway caused by taxi time uncertainties. This

could be useful for our algorithms. Most likely, a tradeoff would have to be developed between

how much a second optimization would save in delay and how much extra work a second

optimization would make for air traffic controllers.

Next, stochastic variables other than unimpeded taxi times could be considered. For example,

how closely separation times are adhered to at the runway. As mentioned previously, DFW does

not tend to have its departures to take off as soon as they safely can, and it could be the case that

other airports allow them to take off sooner than they are supposed to. Additionally, the accuracy

of spot ready times would be another stochastic variable to consider, as that could have

substantial effects on deterministic optimizations.

Alternative runway layouts could also be considered, where arrivals cross the runway differently

than they do for the runway that we studied in this project. For example, a peripheral taxiway

from the arrival runway to the terminal would eliminate the need for some arrivals to cross the

departure runway at all. An optimal tradeoff between the delay saved and the increase in fuel

burn resulting from sending some aircraft along the longer peripheral taxiway rather than straight

across the departure runway could be beneficial.

Finally, if all of the stochastic variables make the use of deterministic optimizations in real-world

situations unreasonable, then stochastic optimizations would be the next logical extension. This

type of optimization would take into account uncertainties and perhaps give an optimal takeoff

time window, so that it held up better to taxi time and other uncertainties.

References

Balakrishnan, H. and Chandran, B., "Efficient and Equitable Departure Scheduling in Real-

Time: New Approaches to Old Problems," USA/Europe Air Traffic Management R&D

Seminar, Barcelona, Spain, June 2007.

Balakrishnan, H. and Chandran, B., "Algorithms for Scheduling Runway Operations under

Constrained Position Shifting," Operations Research, Vol. 58, No. 6, November-December

2010.

Ball, M., Barnhart, C., Dresner, M. et al. The National Center of Excellence for Aviation

Operations Research (NEXTOR), (2010). Total delay impact study: a comprehensive

assessment of the costs and impacts of flight delay in the united states Retrieved from

http://www.nextor.org/pubs/TDI_Report_Final_11_03_10.pdf

Chen, D., Batson, R. and Dang, Y., Applied Integer Programming, John Wiley & Sons, Inc.,

2010.

Dantzig, G. The generalized simplex method for minimizing a linear form under linear inequality

restraints. Pacific J. Math. Volume 5, Number 2, pp. 183-195. 1955.

Dasgupta, S., Papadimitriou, C. and Vazirani, U., Algorithms, McGraw-Hill, 2006.

Ishutkina, Mariya (2011, September 15
th

). Personal interview.

Jordan, Richard (2011, September 23
rd

). Personal interview.

Griffin, K. et. al. “Evaluating Surface Optimization Techniques Using a Fast-time Airport

Surface Simulation”, 2010.

Gupta, G., Malik, W. and Jung, Y.C., “A Mixed Integer Linear Program for Airport Departure

Scheduling,” 9
th

 AIAA Aviation Technology, Integration, and Operations Conference

(ATIO). AIAA, Hilton Head, South Carolina, pp. 1-13, 2009.

Gurobi: An optimizer for MILP, MIQP, LP and QP . Robert Bixby, 2011.

http://www.gurobi.com/.

FAA. “IFR Operations in the National Airspace System”, 2008.

http://www.docstoc.com/docs/837186/IFR-Operations-in-the-National-Airspace-System.

Accessed 4 Oct 2011.

Hardaway, R. M. (1991). Airport regulation, law, and public policy: the management and

growth of infrastructure. (pp. 52-55). Westport, CT: Quorum Books. Retrieved from

http://books.google.com/

http://www.nextor.org/pubs/TDI_Report_Final_11_03_10.pdf
http://www.gurobi.com/
http://www.docstoc.com/docs/837186/IFR-Operations-in-the-National-Airspace-System.%20Accessed%204%20Oct%202011
http://www.docstoc.com/docs/837186/IFR-Operations-in-the-National-Airspace-System.%20Accessed%204%20Oct%202011
http://books.google.com/

Howe, P. (2006, November 19). The 30-year saga of 14/32. The Boston Globe. Retrieved from

http://www.boston.com/business/globe/articles/2006/11/19/the_30_year_saga_of_1432/

Ishutkina, M.A. “Analysis of the interaction between air transportation and economic activity: a

worldwide perspective.” PhD thesis, Massachusetts Institute of Technology, 2009.

Accessed 19 Sep 2011. http://hdl.handle.net/1721.1/49882

Lee, H., Tradeoff evaluation of scheduling algorithms for terminal-area air traffic control.

Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, 2008. Accessed 30 Aug

2011. http://hdl.handle.net/1721.1/45254

Malik, W., Gupta, G. and Jung, Y.C., “Managing Departure Aircraft Release for Efficient

Airport Surface Operations,” American Institute of Aeronautics and Astronautics (AIAA)

Guidance, Navigation, and Control (GNC) Conference and Modeling and Simulation

Technologies (MST) Conference, Toronto, Canada, pp. 1-15, August 2010.

Marchi, R. “Reframing the Runway: A case study of the impact of community organizing on

news and politics,” JOURNALISM: THEORY, PRACTICE & CRITICISM, vol. 6(4):465-

485, Sage, November 2005.

McCall, E., “Performance results of the simplex algorithm for a set of real-world linear

programming models”, March 3, 1982. Communications of the ACM, 25, 207-212.

NASA Aviation Systems Division. “SARDA Spot and Runway Departure Advisor”, 2011.

http://www.aviationsystemsdivision.arc.nasa.gov/research/surface/sarda.shtml. Accessed 4

Oct 2011.

Paramount Business Jets. “National Airspace System”. 2005-2011. Accessed September 2, 2011.

http://www.paramountbusinessjets.com/charterterms/national_airspace_system.php.

Simaiakis, I., Khadilkar, H., Balakrishnan, H., Reynolds, T.G., Hansman, R.J, Reilly, B. and

Urlass, S., “Demonstration of Reduced Airport Congestion through Pushback Rate

Control,” Proceedings of the USA/Europe Air Traffic Management R&D Seminar, MIT

Technical Report, ICAT-2011-2, June 2011.

 “Terminal Area Forecast Summary, Fiscal Years 2010-2030.” Federal Aviation Administration.

2010. Accessed 31 Aug 2011.

http://www.faa.gov/about/office_org/headquarters_offices/apl/aviation_forecasts/taf_report

s/media/TAF%20Summary%20Report%20FY%202010%20-%202030.pdf

U.S. Department of Transportation, (2008). Notice of amendment to policy statement regarding

airport rates and charges (FAA-2008-0036-0100) Retrieved from

http://www.regulations.gov/

http://www.boston.com/business/globe/articles/2006/11/19/the_30_year_saga_of_1432/
http://hdl.handle.net/1721.1/49882
http://hdl.handle.net/1721.1/45254
http://www.aviationsystemsdivision.arc.nasa.gov/research/surface/sarda.shtml
http://www.paramountbusinessjets.com/charterterms/national_airspace_system.php
http://www.faa.gov/about/office_org/headquarters_offices/apl/aviation_forecasts/taf_reports/media/TAF%20Summary%20Report%20FY%202010%20-%202030.pdf
http://www.faa.gov/about/office_org/headquarters_offices/apl/aviation_forecasts/taf_reports/media/TAF%20Summary%20Report%20FY%202010%20-%202030.pdf
http://www.regulations.gov/

U.S. General Accounting Office, Accounting and Information Management Division. (1995).

Denver international airport: information on selected financial issues (AIMD-95-230)

Retrieved from http://www.gao.gov/products/AIMD-95-230

“U.S. rules against Boston airport fee plan favoring big planes.” (1988, December 23). Los

Angeles Times. Retrieved from http://articles.latimes.com/1988-12-23/news/mn-548_1_fee-

structure

Venkatakrishnan, C.S. “Analysis and Optimization of Terminal Area Air Traffic Control

Operations.” PhD thesis, Massachusetts Institute of Technology, 1991. Accessed 1 Sep

2011. http://hdl.handle.net/1721.1/13716

YALMIP : A Toolbox for Modeling and Optimization in MATLAB. J. Löfberg. In Proceedings

of the CACSD Conference, Taipei, Taiwan, 2004. http://users.isy.liu.se/johanl/yalmip/.

http://www.gao.gov/products/AIMD-95-230
http://articles.latimes.com/1988-12-23/news/mn-548_1_fee-structure
http://articles.latimes.com/1988-12-23/news/mn-548_1_fee-structure
http://hdl.handle.net/1721.1/13716
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.License?action=bibentry&bibfile=reference.bib&bibref=YALMIP
http://users.isy.liu.se/johanl/yalmip/

Appendix A- Acronyms

ATC- Air Traffic Control

B&B- Branch and Bound

B&C- Branch and Cut

CDT- Central Daylight Time

CPS- Constrained Position Shifting

DFW- Dallas/ Fort Worth International Airport

DP- Dynamic Programming

DSP- Departure Sequencing Problem

DST- Decision Support Tool

FAA- Federal Aviation Administration

FCFS- First Come First Serve

GC- Ground Controller

GDP- Gross Domestic Product

GMT- Greenwich Mean Time

IS-IS- Intermediate System to Intermediate System

LC- Local Controller

LP- Linear Programming

MILP- Mixed Integer Linear Programming

NAS- National Airspace System

NASA- National Aeronautics and Space Administration

NEXTOR- The National Center of Excellence for Aviation Operations

OR- Operations Research

OSPF- Open Shortest Path First

PACE- Program for Airfield Capacity Efficiency

RC- Ramp Controller

TSP- Traveling Salesman Problem

Appendix B- Glossary

Constrained Position Shifting Allowing an aircraft to shift by k or less spaces from its

original place in the sequence

Directed acyclic graph A graph whose nodes are connected by directed edges

and which does not contain a cycle

Dynamic Programming A method of solving problems by breaking them into

simpler sub-problems whose solutions depend on the

previous solutions

Efficiency Achieving the capacity of the airport by minimizing

system delay

Equity Maintain fairness between airlines by constraining how

many positions aircraft may shift from their original

positions

Ground Controller The ATC role responsible for managing aircraft on the

ground, mainly in the taxiway, to ensure safety

Local Controller The ATC role responsible for managing the runway,

directing aircraft when to take off and when to cross the

runway

Makespan The time at which the last aircraft took off

Maximum delay The most delay that any one aircraft incurred on a runway

within a fixed period of time

Metering A decision support tool that holds aircraft at the gate or

spot so that they do not experience congestion or delay

while taxiing or at the runway

Mixed Integer Linear Programming A method of planning activities or solving for variables,

at least one of which is an integer, by minimizing or

maximizing an objective function while obeying certain

constraints

National Airspace System Controls all matters related to airspace above the United

States

NP-hard Problems for which it is difficult to find polynomial-time

solutions

Objective function Function which a program seeks to minimize or

maximize

Operationally feasible Solvable in a reasonable amount of time

Polytope N-dimension geometric object with flat sides, for

example a soccer ball

Queue Area where aircraft wait in a line before they can take off

or cross the runway

Ramp Controller The ATC role responsible for managing the ramp, telling

aircraft when to push back from the gate and taxi to a

spot

Re-sequencing A decision support tool which changes the order of when

aircraft leave the spot, take off, or cross the runway in

order to minimize delay due to separation times

Separation times Times between aircraft takeoffs that are mandated based

on FAA’s separation distance requirements, which are

dependent on aircraft type, to ensure safety

Sequence Reliability The sum of the probabilities between all pairs of adjacent

aircraft in a given sequence that the aircraft in such pairs

will violate the minimum separation time required

between the two of them

Sequence Robustness How well a sequence of aircraft responds to uncertainty

in terms of delay

Sequence Weakness The probability that a given sequence of aircraft will

result in a minimum separation time violation

System/departure delay The sum of the delays that each aircraft experience while

on the ground, calculated by when they took action minus

when they were ready to take action

Throughput The number of aircraft that takeoff during a certain time

period, which is a measure of an airport’s capacity

Tractable Solvable in polynomial time

Appendix C- Charts for Data Analysis

92%

3%

5%

Aircraft Types, 6/14

Large

Heavy

B757

93%

2%

5%

Aircraft Types, 6/15

Large

Heavy

B757

92%

3%

5%

Aircraft Types, 6/16

Large

Heavy

B757

93%

2%

5%

Aircraft Types, 6/18

Large

Heavy

B757

Spot 1
4% Spot 2

5%

 Spot 3
7%

 Spot 4
8%

 Spot 5
13%

 Spot 6
8% Spot 7

11%

 Spot 8
1%

 Spot 9
2%

 Spot 10
25%

 Spot 11
9%

 Spot 12
4%

 Spot 13
3%

Percentage of Departures for Spot
Groups, 6/14

Spot 1
5%

Spot 2
5%

Spot 3
5%

Spot 4
7%

Spot 5
13%

Spot 6
11%

Spot 7
10%

Spot 8
1%

Spot 9
0%

Spot 10
26%

Spot 11
8%

Spot 12
7%

Spot 13
2%

Percentage of Departures for Spot
Groups, 6/15

Spot 1
7%

Spot 2
2%

Spot 3
7%

Spot 4
9%

Spot 5
13%

Spot 6
9% Spot 7

11%

Spot 8
0%

Spot 9
1%

Spot 10
24%

Spot 11
7%

Spot 12
7%

Spot 13
3%

Percentage of Departures for Spot
Groups, 6/16

Spot 1
5%

Spot 2
5%

Spot 3
6%

Spot 4
11%

Spot 5
15%

Spot 6
10%

Spot 7
11% Spot 8

0%

Spot 9
1%

Spot 10
25%

Spot 11
6%

Spot 12
4%

Spot 13
1%

Percentage of Departures for Spot
Groups, 6/18

19
23

34 36

59

39

50

5
10

120

37

7 9

0 0 0 0 0 0 0 0 1 0
5 6 3 0 2 1 1

5
0 3 0 0 0 0

8
2

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13

A
ir

cr
af

t

Spot Groups

Aircraft Types by Spot Group, 6/14

Large Heavy B757

19 18 17
25

43 41
35

5 2

101

28

14
6

0 0 0 0 0 0 0 0 0 0 3 4
0 0 1 3 1

5
0 3 0 0 0 0

7
1

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13

A
ir

cr
af

t

Spot Groups

Aircraft Types by Spot Group, 6/15

Large Heavy B757

29

8

25
32

50

35 38

1 4

95

25

15

5
0 0 0 0 0 0 0 0 0 0

4 4 3 0 0 2 1 2 1 4
0 0 0 0

7
3

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13

A
ir

cr
af

t

Spot Groups

Aircraft Types by Spot Group, 6/16

Large Heavy B757

19 17 18

42

58

39 41

1
5

102

24

7
3 0 0 1 0 0 0 0 0 0 0 2 3 1 0 1 3 2 3 1 3 0 0 0 0

7
1

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13

A
ir

cr
af

t

Spot Groups

Aircraft Types by Spot Group, 6/18

Large Heavy B757

0

5

10

15

20

25

30

35

40

45

1
2

A
-1

A

1
A

-2
A

2
A

-3
A

3
A

-4
A

4
A

-5
A

5
A

-6
A

6
A

-7
A

7
A

-8
A

8
A

-9
A

9
A

-1
0

A

1
0

A
-1

1
A

1
1

A
-1

2
P

1
2

P
-1

P

1
P

-2
P

2
P

-3
P

3
P

-4
P

4
P

-5
P

5
P

-6
P

6
P

-7
P

7
P

-8
P

8
P

-9
P

9
P

-1
0

P

1
0

P
-1

1
P

1
1

P
-1

2
A

N
u

m
b

e
r

o
f

A
ir

cr
af

t
R

e
ad

y
at

 S
p

o
t

Hour

Spot Ready Time by Hour for 6/14

0

5

10

15

20

25

30

35

40

45

1
2

A
-1

A

1
A

-2
A

2
A

-3
A

3
A

-4
A

4
A

-5
A

5
A

-6
A

6
A

-7
A

7
A

-8
A

8
A

-9
A

9
A

-1
0

A

1
0

A
-1

1
A

1
1

A
-1

2
P

1
2

P
-1

P

1
P

-2
P

2
P

-3
P

3
P

-4
P

4
P

-5
P

5
P

-6
P

6
P

-7
P

7
P

-8
P

8
P

-9
P

9
P

-1
0

P

1
0

P
-1

1
P

1
1

P
-1

2
A

N
u

m
b

e
r

o
f

A
ir

cr
af

t
R

e
ad

y
at

 S
p

o
t

Hour

Spot Ready Time by Hour for 6/15

0

5

10

15

20

25

30

35

40

1
2

A
-1

A

1
A

-2
A

2
A

-3
A

3
A

-4
A

4
A

-5
A

5
A

-6
A

6
A

-7
A

7
A

-8
A

8
A

-9
A

9
A

-1
0

A

1
0

A
-1

1
A

1
1

A
-1

2
P

1
2

P
-1

P

1
P

-2
P

2
P

-3
P

3
P

-4
P

4
P

-5
P

5
P

-6
P

6
P

-7
P

7
P

-8
P

8
P

-9
P

9
P

-1
0

P

1
0

P
-1

1
P

1
1

P
-1

2
A

N
u

m
b

e
r

o
f

A
ir

cr
af

t
R

e
ad

y
at

 S
p

o
t

Hour

Spot Ready Time by Hour for 6/16

0

5

10

15

20

25

30

35

40

1
2

A
-1

A

1
A

-2
A

2
A

-3
A

3
A

-4
A

4
A

-5
A

5
A

-6
A

6
A

-7
A

7
A

-8
A

8
A

-9
A

9
A

-1
0

A

1
0

A
-1

1
A

1
1

A
-1

2
P

1
2

P
-1

P

1
P

-2
P

2
P

-3
P

3
P

-4
P

4
P

-5
P

5
P

-6
P

6
P

-7
P

7
P

-8
P

8
P

-9
P

9
P

-1
0

P

1
0

P
-1

1
P

1
1

P
-1

2
A

N
u

m
b

e
r

o
f

A
ir

cr
af

t
R

e
ad

y
at

 S
p

o
t

Hour

Spot Ready Time by Hour for 6/18

0

5

10

15

20

25

30

35

40

1
2

A
-1

A

1
A

-2
A

2
A

-3
A

3
A

-4
A

4
A

-5
A

5
A

-6
A

6
A

-7
A

7
A

-8
A

8
A

-9
A

9
A

-1
0

A

1
0

A
-1

1
A

1
1

A
-1

2
P

1
2

P
-1

P

1
P

-2
P

2
P

-3
P

3
P

-4
P

4
P

-5
P

5
P

-6
P

6
P

-7
P

7
P

-8
P

8
P

-9
P

9
P

-1
0

P

1
0

P
-1

1
P

1
1

P
-1

2
A

N
u

m
b

e
r

o
f

A
ir

cr
af

t
A

rr
iv

in
g

at
 R

u
n

w
ay

Hour

Runway Ready Time by Hour for 6/14

0

5

10

15

20

25

30

35

40

1
2

A
-1

A

1
A

-2
A

2
A

-3
A

3
A

-4
A

4
A

-5
A

5
A

-6
A

6
A

-7
A

7
A

-8
A

8
A

-9
A

9
A

-1
0

A

1
0

A
-1

1
A

1
1

A
-1

2
P

1
2

P
-1

P

1
P

-2
P

2
P

-3
P

3
P

-4
P

4
P

-5
P

5
P

-6
P

6
P

-7
P

7
P

-8
P

8
P

-9
P

9
P

-1
0

P

1
0

P
-1

1
P

1
1

P
-1

2
A

 N
u

m
b

e
r

o
f

A
ir

cr
af

t
A

rr
iv

in
g

at
 R

u
n

w
ay

Hour

Runway Ready Time by Hour for 6/15

0

5

10

15

20

25

30

35

1
2

A
-1

A

1
A

-2
A

2
A

-3
A

3
A

-4
A

4
A

-5
A

5
A

-6
A

6
A

-7
A

7
A

-8
A

8
A

-9
A

9
A

-1
0

A

1
0

A
-1

1
A

1
1

A
-1

2
P

1
2

P
-1

P

1
P

-2
P

2
P

-3
P

3
P

-4
P

4
P

-5
P

5
P

-6
P

6
P

-7
P

7
P

-8
P

8
P

-9
P

9
P

-1
0

P

1
0

P
-1

1
P

1
1

P
-1

2
A

 N
u

m
b

e
r

o
f

A
ir

cr
af

t
A

rr
iv

in
g

at
 R

u
n

w
ay

Hour

Runway Ready Time by Hour for 6/16

0

5

10

15

20

25

30

35

40

1
2

A
-1

A

1
A

-2
A

2
A

-3
A

3
A

-4
A

4
A

-5
A

5
A

-6
A

6
A

-7
A

7
A

-8
A

8
A

-9
A

9
A

-1
0

A

1
0

A
-1

1
A

1
1

A
-1

2
P

1
2

P
-1

P

1
P

-2
P

2
P

-3
P

3
P

-4
P

4
P

-5
P

5
P

-6
P

6
P

-7
P

7
P

-8
P

8
P

-9
P

9
P

-1
0

P

1
0

P
-1

1
P

1
1

P
-1

2
A

 N
u

m
b

e
r

o
f

A
ir

cr
af

t
A

rr
iv

in
g

at
 R

u
n

w
ay

Hour

Runway Ready Time by Hour for 6/18

Appendix D – Departure Delay Data for Individual Days

June 14
th

 Departure Delays, in seconds

 Baseline Deterministic w/Uncertainties

Distribution

of aircraft

type

Real

World

Simulated

FCFS

DP

Optimization

MILP

Optimization

Original DP

Optimization

MILP

Optimization

DFW CPS = 0

89211 19237

23887 23278 19300 25882 24950

 CPS = 1 19797 20126 19306 21544 21964

 CPS = 2 19056 19416 19200 20789 21210

 NO CPS N/A 19190 19100 N/A 20846

Even (25%) CPS = 0 N/A

58288

76668 72777 58316 79255 75256

 CPS = 1 N/A 52437 51722 58312 55426 54765

 CPS = 2 N/A 45495 46881 58230 48562 49686

 NO CPS N/A N/A 45197 58292 N/A 47978

June 15
th

 Departure Delays, in seconds

 Deterministic w/Uncertainties

Distribution

of aircraft

type

 Real

World

Simulated

FCFS

DP

Optimization

MILP

Optimization

Original DP

Optimization

MILP

Optimization

DFW CPS = 0

48757 12096

14304 13738 12039 15168 15338

 CPS = 1 12416 12213 11901 13579 13493

 CPS = 2 12006 11802 11882 13205 13117

 NO CPS N/A 11606 12080 N/A 13078

Even (25%) CPS = 0 N/A

27640

32561 31153 27507 34833 33235

 CPS = 1 N/A 25829 25433 27554 27682 27381

 CPS = 2 N/A 23723 23606 27542 25632 26578

 NO CPS N/A N/A 22673 27632 N/A 24740

June 16
th

 Departure Delays, in seconds

 Deterministic w/Uncertainties

Distribution

of aircraft

type

 Real

World

Simulated

FCFS

DP

Optimization

MILP

Optimization

Original DP

Optimization

MILP

Optimization

DFW CPS = 0

67340 8617

10909 10402 8405 11629 11231

 CPS = 1 9037 8810 8670 10066 9812

 CPS = 2 8414 8417 8452 9263 9198

 NO CPS N/A 8312 8517 N/A 9257

Even (25%) CPS = 0 N/A

20704

24700 23553 20888 26352 25227

 CPS = 1 N/A 20016 19076 20808 21599 20691

 CPS = 2 N/A 17699 17825 20766 19004 19472

 NO CPS N/A N/A 17564 20784 N/A 19168

June 18
th

 Departure Delays, in seconds

 Deterministic w/Uncertainties

Distribution

of aircraft

type

 Real

World

Simulated

FCFS

DP

Optimization

MILP

Optimization

Original DP

Optimization

MILP

Optimization

DFW CPS = 0

56588 10063

12579 12526 10018 13785 13308

 CPS = 1 10374 10365 10167 11723 11525

 CPS = 2 9776 9870 10070 11203 11008

 NO CPS N/A 9804 9897 N/A 10708

Even (25%) CPS = 0 N/A

27805

33971 32523 27269 35489 34223

 CPS = 1 N/A 25269 25107 27222 26834 26542

 CPS = 2 N/A 22932 23218 27473 24497 25265

 NO CPS N/A N/A 22476 27392 N/A 24148

Appendix E – Sequence Change and Separation Time Violation Results

The tables shown here contain the results for sequence change and separation time violations

when stochastic taxi times are applied to deterministically optimized spot release schedules. The

columns in the tables, from left to right, represent the sum of spaces that each flight shifted

(“Sum”), the relative and weighted sequence changes (“Relative”, “Weighted”) as defined in the

Results Chapter, the number of aircraft that arrived too early at the runway (“Sep Violations”)

and by how much on average (“Avg. Vio. Time”). These results were all averaged over 500

iterations of applying stochastic taxi times to the optimized spot release sequences.

We present the results for each day for both the Mixed Integer Linear Programming and

Dynamic Programming methods, for both the aircraft mix at DFW for those days and the

randomized even mix, and for different values of the Constrained Position Shifting variable.

June 14th, MILP

Distribution

of Aircraft

Type

 Sum Relative Weighted Sep

Violations

Avg. Vio.

Time

DFW CPS = 0 0 0 0 118.45 1081.4

CPS = 1 0 0 0 119.01 1070.8

CPS = 2 0 0 0 118.13 1067.1

NO CPS 0 0 0 120.94 1097.3

Even (25%) CPS = 0 0 0 0 149.88 1437.4

CPS = 1 0 0 0 149.13 1420.7

CPS = 2 0 0 0 149.41 1375.2

NO CPS 0 0 0 150.64 1412.1

June 15th, MILP

Distribution

of Aircraft

Type

 Sum Relative Weighted Sep

Violations

Avg. Vio.

Time

DFW CPS = 0 5.5 3.67 4.67 80.6 866.8

CPS = 1 5.34 3.61 4.61 81.41 859.26

CPS = 2 5.4 3.65 4.65 81.55 868.5

NO CPS 5.38 3.63 4.63 78.92 843.73

Even (25%) CPS = 0 2 1 1 103.47 1111.8

CPS = 1 2 1 1 106.16 1043.8

CPS = 2 2 1 1 104.99 1154.6

NO CPS 2 1 1 103.29 995.19

June 16th, MILP

Distribution

of Aircraft

Type

 Sum Relative Weighted Sep

Violations

Avg. Vio.

Time

DFW CPS = 0 0 0 0 77.96 707.77

CPS = 1 0 0 0 78.41 701.01

CPS = 2 0 0 0 76.94 698.24

NO CPS 0 0 0 79.02 735.95

Even (25%) CPS = 0 0 0 0 100.91 935.71

CPS = 1 0 0 0 100.37 928.49

CPS = 2 0 0 0 99.27 898.83

NO CPS 0 0 0 98.95 905.72

June 18th, MILP

Distribution

of Aircraft

Type

 Sum Relative Weighted Sep

Violations

Avg. Vio.

Time

DFW CPS = 0 0 0 0 80.42 730.74

CPS = 1 0 0 0 81.17 737.94

CPS = 2 0 0 0 80.75 728.3

NO CPS 0 0 0 79.46 707.03

Even (25%) CPS = 0 0 0 0 105.74 964.98

CPS = 1 0 0 0 103.85 950.27

CPS = 2 0 0 0 101.84 926.99

NO CPS 0 0 0 100.99 938.91

June 14th, DP

Distribution

of Aircraft

Type

 Sum Relative Weighted Sep

Violations

Avg. Vio.

Time

DFW CPS = 0 0 0 0 118.05 1075.0

CPS = 1 0 0 0 119.74 1085.9

CPS = 2 0 0 0 120.35 1084.0

Even (25%) CPS = 0 0 0 0 150.83 1395.5

CPS = 1 0 0 0 150.64 1408.6

CPS = 2 0 0 0 150.55 1390.0

June 15th, DP

Distribution

of Aircraft

Type

 Sum Relative Weighted Sep

Violations

Avg. Vio.

Time

DFW CPS = 0 2 1 1 79.39 737.6

CPS = 1 5.34 3.61 4.60 81.29 873.8

CPS = 2 5.41 3.66 4.66 80.85 855.2

Even (25%) CPS = 0 2 1 1 102.65 1096.1

CPS = 1 0 0 0 105.27 1000.3

CPS = 2 2 1 1 105.20 1028.5

June 16th, DP

Distribution

of Aircraft

Type

 Sum Relative Weighted Sep

Violations

Avg. Vio.

Time

DFW CPS = 0 0 0 0 76.29 691.66

CPS = 1 0 0 0 78.66 714.19

CPS = 2 0 0 0 77.98 697.08

Even (25%) CPS = 0 0 0 0 98.28 896.2

CPS = 1 0 0 0 101.42 922.1

CPS = 2 0 0 0 99.17 914.9

June 18th, DP

Distribution

of Aircraft

Type

 Sum Relative Weighted Sep

Violations

Avg. Vio.

Time

DFW CPS = 0 0 0 0 81.36 745.87

CPS = 1 0 0 0 80.28 719.42

CPS = 2 0 0 0 79.85 713.60

Even (25%) CPS = 0 0 0 0 105.41 965.70

CPS = 1 0 0 0 103.75 967.70

CPS = 2 0 0 0 102.36 950.00

