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Abstract 

High strength aluminum alloys are recently widely used in aircraft, automobile and 

construction industry fields. Typical T6 heat treatment process can be applied to 

improve the heat treatable aluminum alloy in order to facilitate the formation of prime 

strengthening precipitate phases. Critical steps in T6 heat treatment process include 

solution treatment, quenching and aging. Due to high thermal gradients in quenching 

process and aging process, large thermal stress will remain in the matrix and may 

bring unexpected deformation or distortion in further machining. Therefore, in order 

to predict the thermal stress effects, constitutive model and precipitate hardening 

model are needed to simulate the mechanical properties of alloy. 

 

In this dissertation, an optimized constitutive model, which is used to describe the 

mechanical behavior during quenching and intermediate period of quenching and 

aging process, was given based on constitutive models with Zenor-Holloman 

parameter. Modification for constitutive model is based on the microstructure model, 

which is developed for the quenching and aging processes. Quench factor analysis 

method was applied to describe the microstructure evolution and volume fraction of 

primary precipitate phases during quenching process. Some experimental phenomena 

are discussed and explained by precipitate distributions. Classical precipitate 

hardening models were reviewed and two models were selected for Al-Cu-Mn alloy 

aging treatment. Thermal growth model and Euler algorithm were used to improve the 

accuracy and the selected precipitate hardening models were validated by yield stress 

and microstructure observations of Al-Cu-Mn aging response experiments. 
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Introduction 

With the development of aerospace and aircraft technology, widely applications of 

high-strength aluminum alloy can satisfy the demand of high strength, high corrosion 

resistance and high toughness. [1] Since most of the applied aluminum alloys are 

heat-treatable, appropriate heat treatment processes can dramatically improve their 

strength, ductility and other mechanical properties. Al-Cu-based alloys have good 

mechanical properties at both low and high temperature ranges and are thus widely 

used in manufacturing industries. Several high-tech components, particularly in 

aerospace and aircraft industries with high standards of structural stability and 

mechanical properties under severe conditions, are composed of Al-Cu-based alloy. 

Heat-treatable Al-5%Cu-0.4%Mn alloys, denoted as ZL205A, not only improve the 

ductility, but also increase the yield strength by refining the primary strengthening ’ 

phase (Al2Cu) size and by homogenizing the distribution of precipitate particles in the 

T6 heat treatment process. Nowadays, ZL205A are widely used to make structural 

components in aerospace, aircraft and automobile industries. The common failure of 

work piece made by ZL205A is crack propagation in quenching process, where local 

deformation expands beyond maximum ductility. Microstructure variation in heat 

treatment process including recovery, recrystallization and rearranged dislocations 

can increase the ductility, which is usually accompanied with reduction of strength. 

[2-6] Quenching process can also affect the microstructure of ZL205A, and the 

morphology and distribution of precipitates formed in this process also have 

significant effects on ductility. The primary phases in ZL205A include Al2Cu, 

Al20Cu2Mn3 and Al3Ti phases, where Al2Cu are generally considered to be primary 

strengthening phases in most Al-Cu based alloys. In order to obtain fine and uniform 

distribution Al2Cu precipitates particles; Mn additions introduced into system are 

used for refining small Al2Cu particles by increasing nucleation sites for nucleus. 

Besides, it can also accelerate the formation of Al3Ti by improving recrystallization 

resistance, which in turn leads to good strength at elevated temperatures. [7,8] 

Moreover, different intermetallic phases have different impact on the ductility of 

materials. [9-11] 

 

Since ductility has closed relationship with precipitates under different temperatures, 

the outcome of microstructure characteristics of heat treatment process should be 



quantified in order to better predict and monitor mechanical behaviors. Several 

researchers have studied the effects of the T6 heat treatment on the yield strength of 

aluminum alloys with similar chemical concentration and their mechanical behavior 

at both high and low temperatures. [12,13] More works should have discussed 

mechanical properties such as strain and flow stress variation during the quenching 

process, where the factor of large temperature gradients should be considered. The 

cooling rate varies a lot among different locations due to the large and complex 

structure of the components, creating additional thermal stresses in the matrix. 

Although maintaining materials at low temperature would eliminate the effects of the 

natural aging process on the precipitates, the reheating process to the artificial aging 

temperature may allow some precipitate particles to nucleate and grow ahead of the 

aging process. Previous studies of flow stress in quenching ignored the phase effects 

on aluminum alloy, while assuming microstructure was identical and homogeneous. 

[14, 15] However, the precipitation process can be initiated during quenching process 

for aluminum alloy, [16] which cannot be avoided in all alternative methods. [17] 

Al2Cu precipitates nucleation occurred from super-solid solution due to different 

solubility of solute elements and aluminum, which was accelerated by inherited 

vacancies from casting process. The vacancies aggravated the reduction of elongation 

and ductility of materials. [18] It is also reported that Al2Cu phase formed in interface 

layer severely affected bond strength of clad composite and a number of micro-cracks 

caused by hard and brittle Al2Cu phase, which made a contribution to low elongation. 

[19] Besides, T dispersoids have great thermal stability and easily nucleate during 

casting and solutionizing periods, which hardly dissolve into the matrix during 

consequent reheating and aging process. Due to complexity of structure and actual 

quenching methods, formation of T dispersoids before and during quenching process 

can hardly be avoided. [20] Therefore, there is an attempt to clarify the microstructure 

evolution of ZL205A during the reheating process and reveal the comprehensive 

effects of microstructure on deformation and fracture behaviors in this thesis.  

 

The first component of this thesis is concerned of the mechanical properties of 

ZL205A (Al-Cu-Mn alloy) such as flow stress over a wide temperature range. A 

modified constitutive model has been developed in terms of temperature effects on 

phase transformation. Microstructure observations of dislocations and precipitate 

phases at different periods of heat treatment process are used to determine the effects 



on flow stress and ductility. Isothermal tensile tests have been accomplished over a 

wide range of applicable temperatures and strain rates. Arrhenius-type constitutive 

model has been developed and calibrated with experimental data. Therefore, a better 

constitutive model can be used to simulate ZL205A mechanical behaviors under wide 

temperature ranges and to monitor quenching deformations. Besides, the 

corresponding microstructure observation and analysis helps explain the strain 

sensitivity and strain hardening trends varied at low or high temperature, and 

unexpected variation of the ductility of the alloy. 

  

Another component of this thesis is focused on the precipitate hardening models of 

A356. Since A 300 series, aluminum–silicon series alloys have good fluidity, high 

strength and maintaining reasonable ductility, this kind of alloys are widely used in 

automobile manufacturing fields such as engine block, cylinder head and suspension 

components. Typically, silicon gives good fluidity and magnesium provides high 

strength by forming precipitates through proper heat treatment. T6 heat treatment is 

generally used in A356 production in order to obtain higher yield strength, while with 

the scarification of ductility. Besides, after aging process, the sizes of components 

made by A356 could expand, which leads to serious distortion. One possible reason is 

the growth of precipitate particles and the phase transformation of precipitate phase 

from coherent phases to incoherent stable phases. Therefore, a microstructure model 

of precipitate particles should be established. Many well-known precipitate-hardening 

models followed similar strengthening mechanism that the interactive motion 

behaviors of mobile dislocations and precipitate particles determine the contribution 

to final strengthening effects. [21-27]The particles could be sheared or surrounded by 

motive dislocations, which leads to the increase of dislocation density. The increasing 

dislocation density provides more inhibitions to plastic deformation. Since the criteria 

of separating these two strengthening modes are the precipitate particle size, accurate 

microstructure models of the precipitate particles should be studied through aging 

process. 

 

During the aging process, the aging temperature and time are two critical values to 

simulate precipitate particles evolution under thermal dynamic principles and volume 

diffusion of solute element. For the microstructure part of these precipitate hardening 

models, there are two major methods to deal with precipitate particles evolution. 



When assuming all particles as spherical shape, the radius of precipitate particles can 

either obtained as representative of mean value of all particles, which is called mean 

value approach method; [21, 23, 25, 26] or categorized particles into small groups 

with similar radius, which is called discrete value approach method. [28] Besides, 

when actual morphology of precipitate particles was considered, there would be 

different strengthening effects on different orientations, and different growth kinetics 

on different orientations which makes calculation of single particle more complicated 

than spherical particle assumption. The volume fraction of primary precipitate phase 

is usually increased exponentially and remains constant when reaching peak aging 

state. However, the prolonging aging process can activate the phase transformation of 

precipitate particles from semi-coherent phase to incoherent stable phase, which 

reduces the strengthening effects. Therefore, there is a need to review classical 

precipitate hardening models and find appropriate models to model the distortion of 

component made of  A356 during aging. In this thesis, a microstructure model of 

precipitate phase of A356 is discussed when applying thermal growth model to the 

primary strengthening phases. The results of modified volume fraction of precipitate 

phases are used in the selected precipitate hardening models and a thorough 

comparison with experimental data of A356 aging data is given. 
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Literature reviews 

1 Additional elements effects on microstructure and mechanical properties 

of Al-Cu system alloy 

Since precipitate phases are critical factors related with final yield strength and other 

properties, optimizing morphology and distribution of precipitate phase facilitate well 

strengthening effects on Al-Cu alloy. Additional elements such as Mg, Mn, Si and Sn 

are introduced into Al-Cu system can adjust Al2Cu nucleation and growth by 

affecting nucleation kinetics, volumetric misfit strain, shear strain and interfacial 

energy of θ’ precipitate phases. For example, {1 0 0}α plate of metastable Al2Cu in 

2XXX series aluminum alloy play the dominate role in strengthening, and {1 1 1}α 

plates of metastable Al2Cu are founded in Al-Cu alloys microalloyed with Mg and Ag. 

Li-modified Al-Cu alloys has {1 1 1}α plates of T1 (Al2CuLi) to strength and AA2195 

is considered to be strengthened by uniform distribution of T1 plates of large aspect 

ratio. [1, 2, 3] Sn (roughly 0.01~0.02at%) is introduced into Al-Cu system to increase 

the transaction from θ’’ to θ’ and perform rational orientation and uniform θ’ 

precipitate phases. It was reported that for Al-1.7at%Cu, 0.01at% Sn dramatically 

shorten the time to reach peak hardness and increase peak hardness, and solute Sn is 

more effective to involve into θ’ nucleation than Sn phases. [4] Sc is also an important 

solute element that is used to improve Al-Cu mechanical properties. Al3Sc dispersoids 

are specially referred to the Al3Sc particles formed in high temperature processing of 

the alloy, such as homogenization, hot-rolling or extrusion, which are considered to 

stabilize the grain boundary of Al and hence inhibit the recrystallization. Al3Sc 

precipitates referred to those formed during aging process after solution treatment, 

however, due to the limited decomposition of Al3Sc from super solid solution, the 

strengthening contribution from Al3Sc usually be restricted, and Al3Sc hardly 

coexisted with other strengthening precipitates due to its temperature regime. [5] 

 

Among the additional elements, manganese is introduced into Al-Cu system to obtain 

fine-grain polycrystalline and improve its strength especially at high temperature. Mn 

addition had already been proved to refine θ’-Al2Cu and retard Orowan coarsening. 

Related DSC analysis of compare between Al-Cu alloy with and without Mn addition 

is accomplished by previous researchers, which proved the formation of θ’-Al2Cu is 

largely postponed but dominantly enhance the strength just before peak aged. 



Diffusivity of Mn is closed to Cu that leads to easily attracting Cu atoms toward Mn 

atoms. Thus, quenched vacancy or clusters formed after quenching or beginning of 

aging does not efficiently work to form GP zones. [6] T dispersoids have great 

thermal stability and provide preferred nucleation sites for other possible precipitate 

phases. Even though addition of Mn can efficiently reduce the coarsening stage of θ’-

Al2Cu, consideration of phase transformation from θ’-Al2Cu to stable phase losing its 

coherency and strengthening should be included. However, the introduction of Mn 

into system also brings undesirable effects on mechanical properties, especially on the 

resistance to crack growth. [7, 8] T dispersoids formed as grain boundaries also 

decrease the binding capacity of neighbor grains, which leads to micro voids or cracks 

easily occurred. Thus, for solution treatment, quenching and aging periods, the 

evolution of T dispersoids or precipitates should be taken into consideration in order 

to predict deformation behaviors of ZL205 alloy.  

 

2 Heat treatment processes effects on microstructure and strengthening 

mechanism of aluminum alloy 

1) Casting 

Typical heat treatment process concludes casting, solutionizing, quenching and aging 

steps for most of heat treatable aluminum alloy. Casting process is critical to the 

whole heat treatment process since most of microstructure characteristics of matrix 

are set in this period. Secondary dendrite arm spacing, SDAS, is often applied to 

evaluate the coarseness of the microstructure after casting. [9] Dendrite structure has 

lower copper content in central part. Moving toward the outside of the arms, which 

corresponds to metal freezing later, the copper content increases and combines with 

Al to form the Al-α + Al2Cu eutectic mixture. [10] DAS can also affect micro-

segregation of alloy element and distribution of second precipitate phase or micro-

porosity. Cooling rate of solidification process is the critical parameter that 

determines length of DAS. Proper selection of pouring temperature, cooling 

conditions and chemical distribution should be considered in order to guarantee 

satisfied casting quality. Besides, due to long freezing range of Al-Cu based casting 

alloys, micro-porosities are easily formed during solidification. The different cooling 

rates of raw casting component lead to different thermal shrinkages. Micro-pores 



cannot be filled with liquid alloy immediately and be left in the as-cast structure. With 

the help of proper squeeze casting method, pressure are applied during casting process 

to accelerate liquid alloy flow into micro-pores and fill them, which can dramatically 

reduces such defects. [11] 

For Al-Cu based alloy, homogeneous Cu distribution is important for Al-Cu based 

alloy. Due to gravity casting and solubility of copper element, copper segregation 

serious, while Mn or Mg segregation hardly occurs because of fully dissolved in α-Al 

matrix. Inverse segregation is usually found in cast Al-Cu alloys owing to long 

freezing range, which leads to large dendrite arm spacing with slow cooling rate. Low 

temperature gradients also lead to coarsening dendrite skeleton and shrinkage induced 

fluid transports the solute rich liquid away from the center of the casting back to the 

surface. Such casting microstructures as dendrite arm and additional element 

segregations will further affect following up mechanical properties in quenching and 

aging such as precipitate phase morphology and distribution. For as-cast aluminum 

alloys, yield strength is believed to be affected by copper content in α-Al grains and 

increased amounts of intermetallic compounds, especially the fine intermetallic 

presented at the α-Al grain boundaries. Since present project focus on quenching and 

aging effects on mechanical properties, fine α-Al grains and short DAS are needed to 

eliminate casting defects and negative effects on following heat treatment process. 

Casting process parameters such as temperature gradient and cooling rate should be 

well controlled. 

2) Solutionizing  

Method that introducing additional elements into the aluminum matrix in order to 

produce second precipitate phases is termed as solutionizing. Particles formed at 

casting and homogenization process will dissolve and additional solute elements will 

diffuse into the matrix in solution treatment. These additional elements can affect the 

pre-quenching process microstructure and also play as nucleation sites for further 

precipitation in aging to strengthen the aluminum alloys leading to the significant 

increase of ductility and decrease of yield strength because of less pining of the fine 

intermetallic presented at the α-Al phase boundaries. It is worth to note that the solute 

content in the primary α-Al phase is increased after solutionizing, which means 

solution strengthening is enhanced. However, the alternations in microstructure from 



other phases and at grain boundaries are more significant and effective, resulting in a 

reduction of the yield strength and an increase of elongation. [12] In order to obtain 

the fine super solid solution for quenching and homogenization nucleation sites for 

aging, the effects of solutionizing on microstructure and mechanical properties should 

be discussed and the process parameters of solution treatment should be optimized. 

 

The objective of choosing proper solution process parameters is to maximum solute 

element in aluminum alloys in the aluminum matrix. Solution temperature, which is 

determined by solute element content, should be in the range that avoids overheating 

or local melting and accelerates the dissolution of particles formed in pre-heating and 

casting process as much as possible. Upper limit of the solution temperature is usually 

closed to the eutectic temperature when considering the effects of grain growth, 

surface effects and economy of operation. Solution time required in solutionizing 

should guarantee sufficient dissolution and make the maximum solute elements solve 

into matrix. It is dependent on the types of products, alloy systems, casting or 

fabricating procedures used and thickness insofar as it influences pre-existing 

microstructure. From the microstructure aspect, the coarseness of as-cast 

microstructure determines the time needed for solution treatment. The finer as-cast 

microstructure, the shorter solution time is needed. From the macrostructure aspect, 

the larger the section thickness is, the longer holding time required, while thin 

products just need several minutes to finish the solution treatment. Excessive 

diffusion should be avoided when prolonging the solution time and particular 

mechanical properties decreased with increasing solution time should be also 

controlled. Since current project aims at studying thin wall components made by 

ZL205, the solution process will be finished very soon to avoid unexpected 

coarsening and mechanical properties reduction. 

 

3) Quenching 

Quenching process is used to obtain super saturated solid solution in order to facilitate 

the further precipitation in aging. Different quenchants such as oil, water or polymer 

solution are used to cooling materials to room temperature when providing suitable 

cooling rate. Microstructure formation and distribution occurred in varied quenching 

conditions have great effects on aluminum quenching behaviors and further effects on 

aging process. Fink and Willey pioneered attempts to describe the effect of quenching 



on properties of aluminum alloys. [13] They applied isothermal quenching techniques 

to develop C-Curve for particular aluminum alloys. Even though their method worked 

well when the cooling rates are uniform, it is failed to predict the effect of quenching 

on aluminum alloys properties when the cooling rate varied considerably during the 

quench. Since the properties are highly dependent on the microstructure evolution, 

and such microstructure evolution determined by the material, quenching temperature 

and time needs to be predicted by quenching process parameters. [14, 15, 16] Quench 

factor analysis method is put forward to predict the volume fraction of precipitate 

phase in quenching process instead of average cooling rate method. Time elapsed 

during non-isothermal quenching process are divided into several short time steps, 

which can be considered as isothermal quenching process. [17-21] Since quenching 

process typically lasts very short, the growth or coarsening of these intermetallic 

dispersoids or precipitate particles can be ignored. However, lack of considering 

dispersoids formed in quenching process brings overestimation of primary precipitate 

hardening phase’s volume fraction in simulation and negative effects on mechanical 

properties. 

 

4) Aging 

Result of strengthening is dislocation motion is blocked by the formed precipitate 

particles during the aging process due to change of solubility of alloy element. Since 

the mechanical properties are concerned and highly dependent on the precipitate 

phase distribution, the size and volume fraction of precipitate phases should know at 

the peak-aged state. T6 heat treatment is widely used in heat treatable aluminum alloy 

production to obtain peak yield strength. Binary Al–Cu alloy has following aging 

sequence: α → α + GP zones → α + θ″ → α + θ′ → α + θ [22, 23, and 24]. The 

aluminum solid solution is indicated by α, the metastable phases are indicated by θ′, θ″ 

and the stable precipitates by θ. 



 

Figure 2.1 The aluminum rich end of Al-Cu phase diagram 

The super saturation of vacancies allows solute elements diffusion and lead to the 

formation of GP zones. GP zone is firstly nucleated from the super solid solution; the 

dislocation among the matrix can offer proper nucleation sites for GP zone, also the 

grain boundary and other defects in the matrix can be available nucleation sites. 

Typically the thickness of the GP zone is one or two atom layers and GP zone is fully 

coherent with the matrix. After the formation of the GP zone, the next step is the 

formation of transit phase. Some reports show that there exist GP II zone between GP 

zone and the transit phase based on different material. GP II zone will generally 

follow GP zones by forming a second layer parallel to the GP zone on the plane. [25] 

Other authors consider GP II zones as an ordered phase with two Cu layers separated 

by three Al layers. Mentioning about transit phase, there will be not only one phase 

formation at this period, and the previous transit phase can transform to another type 

of transit phase, with the change of composition and morphology. Meanwhile, the 

orientation and morphology of the transit phase also alter their contribution to 

precipitate strengthen. [26, 27] To simulate precipitate hardening the assumption of 

the particle size should not be spherical shape, size and volume fraction of these 

transit phases should be modeled precisely. They may alter the shape of precipitates 

phase, magnitude and anisotropy of the interfacial energy, the different elastic 

constants of matrix and precipitate and crystal structure. Detailed simulation models 

will be given in the next section and compared. 

 



Transit phase is considered to generate from GP zone and consume the original GP 

zone space at the same time. The coherency relationship with the matrix now turns to 

semi-coherent, which will produce large lattice deformation and strengthen the 

material. The final phenomena in the aging process is the stable second phase 

nucleation, growth and coarsening. Transit phase cannot maintain stable at room 

temperature or in-service condition and spontaneously transform to the stable phase. 

The non-coherent boundary and complicate semi-coherent boundary with the matrix 

decrease the strength of the material. The formation of the stable phase will consume 

the precipitate phase and the strength effect is reduced.  

 

3 Strengthening mechanism of deformation and constitutive models 

Deformation of ZL205A is one of the concerns in my proposal especially in heat 

treatment process. Dislocation motions in matrix allow for deformation of material. 

When the dislocation motion is inhibited and dislocation density is increased, the 

movement of dislocation will be restricted due to the pile up of dislocation. Any 

strengthening method is aiming at either improving the dislocation density or 

hindering moving dislocations. [28] Work hardening mechanism, solid solution 

mechanism, precipitate hardening mechanism and grain boundary mechanism are 

general strengthening mechanisms, which will be discussed with actual heat treatment 

periods to tailor their effects on yield strength and flow stress. 

 

Work hardening method is usually used to improve strength and hardness in cold 

deformation by introducing more dislocation that increasing dislocation density. The 

interactive action with encountered dislocations will impede dislocation motion by 

stress field generated by dislocations. Besides, cross dislocation lines may play as pin 

point that also increase the barrier to the motion of dislocations. Cold working in the 

interval between quenching and aging is considered to accelerate the aging response, 

providing numerous sites for heterogeneous nucleation of precipitates. [29] In current 

proposal, a cold working is avoided in order not to introduce work hardening effects 

into heat treatment process from solutionizing to reheating process. Therefore, the 

variation of aluminum grain size and precipitation formed in natural aging or 

reheating process will be only related with temperature variations. 

 



Solid solution strengthening is important for aluminum alloy since lots of additional 

elements can be introduced into aluminum matrix to form substitution or interstitial 

solid solution. The solute atoms can cause lattice distortion to increase yield strength 

by impeding dislocation motion. Meanwhile, the stress fields caused by solute atoms 

can interact with dislocations. Depends on actual size of solute elements, they can 

interfere with neighbor dislocations by playing as potential obstacles. During solution 

treatment process of current proposal, the major solute elements are Cu and Mn atoms. 

T dispersoids, which has chemical compositions of Al20Cu2Mn3, are easily formed 

with great thermal stability making them hardly dissolve in further reheating process. 

Cu atoms can be observed to fully dissolve into matrix to obtain fine and 

homogeneous solid solution。 Segregation of Cu and some vacancies can be expected 

to be eliminated during solution treatment. Therefore, solution-strengthening effects 

on yield strength and flow stress may be highly related with T dispersoids size and 

volume fraction. 

 

Precipitate hardening methods are widely used to strengthening heat treatable 

aluminum alloy by precipitating second phases from super solid solution, when 

solubility of solute element reduce during aging process. Precipitate particles play the 

similar functions as solutes that pinning the motion of dislocations. With the 

continuous of aging process, the precipitate phases will lose their coherency 

relationship with the matrix so that the strengthening effects are weakened. Besides, 

there are two interactive motions between precipitate particles and dislocations. When 

the size of particles are small, the dislocation line will be cut when passing by the 

particles; and when the size of particles are relative large, dislocation lines will be 

looped or bowed leaving a closed dislocation ring. Both methods increase the 

dislocation density that also increases the barrier of dislocation motion. In this project, 

working hardening mechanism can be neglected because there is no significant cold 

working occurred before or after the experiments. Grain boundaries effects on 

strengthening are also remain the same based on the observation of stabilized 

aluminum grain size during heat treatment process and isothermal tensile tests. Thus, 

solid solution strengthening especially in quenching and reheating process and 

precipitate hardening strengthening in aging process are major strengthening 

mechanism that governing yield strength and flow stress. 



 

In this study, constitutive models are studied to provide accurate deformation at wide 

range of strain rates and temperatures when considering solid solution and precipitate 

strengthening, and dynamic recrystallization and recovery softening mechanism. 

Therefore, a proper constitutive model that combines the effects of process 

parameters and thermal dynamic would be useful. Strain, strain rate and temperature 

are three critical parameters determine softening and hardening effects on 

deformation behaviors of aluminum alloy. Thermal softening and strain hardening are 

considered separately so that the production of both factors and strain factor gives the 

variation of flow stress. In this situation, the work of plastic deformation all converses 

to heat. However, high strain rate leads to insufficient time for inner heat to disperse, 

which leads to the competence between the thermal softening and strain hardening at 

particular temperature and strain rate. Johnson-Cook empirical constitutive models 

are selected to predict flow stress of ZL205 at high strain rate with wide temperature 

range, which is proved to be successful in predicting such deformation behaviors, 

while some of parts are not fully discussed. [30, 31] Related researches pointed out 

that at higher strain rate, the flow stress would monotonously increase as temperature 

rises, which is opposite to the variation at lower strain rate. [32] Dynamic strain aging 

mechanism is used to explain this unusual phenomenon considering the new-formed 

solute atoms that affect dislocation motion. This similar phenomenon founded in 

ZL205 proved sensitivities of ZL205 to deformation time since the deformation 

period is much longer than high strain rate situations, which does not have plenty time 

for aging. Solute atoms transportation at some particular states may also be controlled 

by forest dislocation, which is usually observed at low temperature deformation 

circumstance. Therefore, the microstructure state of ZL205 alloy in selected strain 

rate and temperature range should be examined firstly, and temperature terms in 

constitutive models may be more complicate than the ones descripted in Johnson-

Cook model. 

 

At low temperature range, the flow stress of materials usually has proportional 

relationship with dislocation density, and mobile dislocation are easily tangled or 

seized with forest dislocation thus reduce ductility and improve strength. The 

microstructure at low temperature range is usually considered to be stable and no 

phase transformation or precipitation is considered in this circumstance. While at high 



temperature range, the factors that affect flow stress can be divided into two 

subclasses, one is related with temperature and another is independent on temperature. 

The maximum threshold stress is presented as maximum glide resistance force. When 

the stress is larger than maximum threshold stress, continuous glide will occur. Strain 

rate at this condition can be obtained from the product of Burgers vector, dislocation 

density and velocity. However, the stress could be smaller than maximum threshold 

stress and jerky glide, which is considered to be discrete glide compared with 

continuous glide, will dominate the mechanical behaviors. Under this circumstance, 

the total mobile dislocation density is composed of mobile dislocation and potential 

dislocation, which will be activated by thermal fluctuation. The increment of strain 

contributed by thermal fluctuation can be given as [33]: 

𝛿𝛾 = 𝛾0𝛿𝑃𝑡                                                                    (2.1) 

where 𝛾0 is average strain together with dislocations taking part in process and  𝛿𝑃𝑡 

represents the possibility of released contributed by thermal fluctuation. Then the 

product of frequency factor and Boltzmann factor presented as Arrhenius term can be 

obtained as: 

𝑃𝑡 = 𝑣𝐺 exp (−
∆𝐺

𝑘𝑇
)                                                     (2.2) 

Equation 2.2 follows the assumption that thermal fluctuation exceeding in magnitude 

is only described by Boltzmann distribution and 
∆𝐺

𝑘𝑇
 should be small in order to neglect 

the possibility of backward jumps. At last, thermal activation process is a statistical 

process, which means the average value when counting dislocation density is 

meaningful. Other factors like stress released by recovery and inhibited by 

mechanical stress are also make a contribution to the increment of strain. When the 

value of thermal fluctuation term is larger than other factors, the stress-strain curve 

can directly give information about ∆𝐺 effects. In addition, ∆𝐺 used in this section is 

not as the same as the common symbol G in thermodynamics. ∆𝐺 is called activation 

free enthalpy and defined by: 

∆𝐺 = ∆𝐹 − ∆𝑊                                                   (2.1) 

where ∆𝐹  is the Helmholtz free energy necessary for activation and ∆𝑊  is the 

additional work that brought dislocation from stable position to unstable position.  



 

Figure 2.2 A glide diagram explanation of ∆𝐺, ∆𝐹, and ∆𝑊quantities. 

 

Phenomenological description of activation energy when consider all obstacles are 

box-shaped can be given as: 

∆𝐺 = 𝐹0 (1 −
𝜎

�̂�
)                                                (2.2) 

where 𝐹0 represents total energy to activate glide without external energy. Short-range 

obstacles are especially sensitive to thermal activation, therefore above equation can 

be replace by a useful form: 

∆𝐺 = 𝐹0{(1 − (
𝜎

�̂�
)𝑝)}𝑞                                     (2.3) 

where two adjust parameters p and q are used to describe the profile of stress. 

Empirically, 1/2 is chosen for p and 2/3 is chosen for q. In discrete glide system, the 

glide resistance may be assumed to be proportional to the shear modulus and 

activation area proportional to the square of the Burgers vector, thus the value of 

activation energy ∆𝐺 can be calculated as: 

∆𝐺 = 𝜇𝑏3𝑔 (
𝜎

𝜇
)                                                  (2.4) 

where 𝜇 is the shear modulus, which can be taken as a function of temperature and b 

is Burgers vector. Above all, the strain rate is highly depended on activation energy 

for hot deformation when thermal activation mechanism is the primary cause during 

high temperature deformation of materials: 



�̇� = 𝛾0𝑣𝐺 exp (−
∆𝐺

𝑘𝑇
)                                        (2.5) 

Then, when activation energy of hot deformation can be assumed to be constant 

above half of the melting point temperature, and pre-exponential term of dislocation 

participated into process is considered at various flow stress state, the above equation 

can be written as: 

휀̇ = 𝐴𝐹(𝜎)exp (−
𝑄

𝑅𝑇
)                                           (2.6) 

𝐹(𝜎) = {
𝜎𝑛

𝑒𝑥𝑝(𝛽𝜎)

[sinh(𝛼𝜎)]𝑛
       

𝛼𝜎 < 0.8
𝛼𝜎 > 1,2

𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼𝜎
                  (2.7) 

And Zener-Holloman parameter is used to represent the relationship of strain rate and 

temperature: 

𝑍 = 휀̇ exp (−
𝑄

𝑅𝑇
)                                                 (2.8) 

Since constitutive equations used Zener-Holloman parameters well describe the 

mechanical behaviors at different stress level by empirical relationship and apply 

thermal activation mechanism to quantify the mechanical behaviors at high 

temperature, it will be a good choice to apply in Al-Cu aluminum alloy system since 

there will be precipitation and recovery occurred at high temperature deformation that 

brings extra obstacle to dislocation motion, which is needed thermal activation 

mechanism to predict the effects of precipitates and Al grain size. Arrhenius-type 

equations have been applied to describe the compression deformation behaviors of 

aluminum alloys especially at high temperature deformation or forming process. [34-

38] Hyperbolic law in Arrhenius-type equations gives both excellent descriptions at 

high or low flow stress. Zener-Hollmon parameter gave the temperature compensate 

strain rate in an exponent-type that helps give a comprehensive description of all 

stresses level. [39] The model has been widely used to predict aluminum alloy such as 

2124-T851, A356, Al-Cu-Mg alloy and Sn modified Al-Cu-Mg alloy. However, 

tensile properties of aluminum alloy are lack of discussion. Previous study have 

already pointed that the hot tensile deformation is the competence of work hardening, 

dynamic softening and develops of microvoids or cracks. Microvoids or intermetallic 

compounds may form before quenching which play as possible crack source and large 

thermal gradient in quenching process can produce residual stress that destroying the 

thermal stability of aluminum components. At low deformation temperature, dynamic 



recrystallization softening hardly occurs and non-uniform microstructure combined 

with large dislocation clusters caused by strain hardening will bring serious stress 

concentration. While at high deformation temperature, dynamic recrystallization 

softening will be enhanced by thermal activated mechanism. 

 

For ZL205 aluminum alloy used in my project, Al grains, Al2Cu precipitate phase, 

Mn and Zr additions formed as dispersoids may have effects on mechanical properties 

such as fracture, hardness and strength. The variation change in microstructure will 

dramatically affect the deformation mechanism and activation energy of hot 

deformation should be related with temperature and strain rate. [40-43] In as-cast Al-

Cu aluminum alloy, larger grains usually bring coarser boundary, which leads to 

significant deduction of ultimate tensile strength. Eutectic phase will produce fracture 

soon because of fragility and thickness. Deformation can increase as the grain size 

increase when the particles are small because not enough coarsening, however, larger 

particles under other casting processes such as rheocast leads to excessively 

coarseness of grain boundaries and therefore fracture occurs before large deformation. 

Elongation properties also share the similar behaviors as deformation induced by 

variation of grain boundaries or sizes. [44] Different distribution of Al2Cu precipitate 

phase caused by different casting methods or additional elements also has an effect on 

mechanical properties. Discontinuous but better distribution of the eutectic phase 

caused by dendritic material microstructure presents better mechanical properties due 

to finer control of this hard and fragile phase than smaller size but continuous and 

thick eutectic boundaries. T dispersoids formed in casting and solutionizing also play 

important role on mechanical properties in Al-Cu alloy with Mn additions by 

stabilizing grain size at elevated temperatures and retarding recovery. [45] Formation 

of T dispersoids at grain boundaries decreases the binding capacity of neighbor grains, 

which leads to micro voids or cracks easily occurred. Such micro voids or cracks may 

play as deformation source during following tension test and easily get fracture. It had 

been reported that addition of Mn is used to form Al20Cu2Mn3 dispersion to increase 

the resistance to recrystallization and improve damage tolerance by help homogenize 

slip. [46] T dispersoids phases also entangled with dislocations and could be potential 

dislocation source. Zr additions can form Al3Zr that also inhibit recrystallization. 

Previous studies have already proved the T phase formed in Al-Cn-Mn system at 

grain boundaries dramatically reduce the binding capacity, which leads to easily crack 



formation and propagation, and mathematical model of T phase distribution and 

morphology should be investigated and obtained by hot deformation process 

parameters. Therefore, combined effects of above microstructure on mechanical 

behaviors of ZL205 in whole temperature range should be studied.  

4 Precipitate hardening models of aluminum alloys modified by thermal 

growth model 

Many experiment data have been studied to discover the relationship between the 

precipitate and the component of alloy, aging time and temperature. In order to get a 

comprehensive law of precipitate hardening mechanism of aging, some previous 

models developed to describe the thermodynamic of precipitate particles’ size, 

morphology and characteristics, for the size and volume fraction of precipitate phases 

directly impede the dislocation motions. Shercliff H.R and Ashby.M.F firstly made an 

attempt to combine the process parameters of aging process, such as composition of 

alloy, time and temperature, to predict the yield strength, and this method is 

successfully applied on 6000 series aluminum alloy. In the model, strengthening 

contribution is mainly composed of solute atoms, shearable precipitates and non-

shearable precipitates. [47] A.Deschamps and his partners introduced microstructure 

evolution into the precipitate hardening model, described in detail the nucleation, 

growth and coarsening of the precipitate particles. [48] Because dislocations are 

preferred sites for transit phase nucleation and growth; the precipitates at dislocation 

were also discussed to modify the microstructure evolution model. Basic strength 

mechanisms are classified as precipitation shearing and bypassing based on the 

different size of the particles. And the morphology of the particles is assumed to be 

spheroid for convenient calculation. Following fundamental equation are mostly used 

in many precipitate hardening models for yield strength calculation: 

𝜎𝑝 =
𝑀�̅�

𝑏𝑙
                                                           (2.9) 

Where M is the Taylor factor, b is the magnitude of Burgers vector and l is the mean 

effective particle spacing in the slip plane along the bending dislocation. [49] Based 

on dislocation strength mechanics and morphology, the main two parameters to 

determine the final yield strength after aging come to the radius and the volume 

fraction of the precipitates. And from these two parameters we can calculate the 𝑙 and 

F then get the value of yield strength. 



 

B. Raeisinia and W.J. Poole and etc. used the volume fraction of the different 

dominated precipitate strength particles to calculate yield strength. [50] However, 

they ignored the size of these particles and assume the homogeneous size of the 

precipitates phase. S. Esmaeili and D.J. Lloyd calculated the relative volume fraction 

of precipitates with aging time, and then dedicated the value of radius of particles. 

This paper considered the actual morphology of precipitates so that the simulation 

will be more accurate. [51] On the other hand, since the actual morphology of 

precipitates are not usually spheroid, G.Liu gave a more accurate and realistic 

description of the precipitates morphology, separating into plate/dis and rod/needle 

shape, then applied the peak-aged state to derive the volume fraction of these 

practices. And this method was proved to work well when applying to Al-Cu-Mg 

alloy and Al-Mg-Si alloy. [52] In M. Song paper, he put forward that at the first of the 

aging process, the dislocation cutting mechanism might play a prime role on 

dominating the strength. [53] Therefore, he made a modification of G. Liu model and 

considers the increment of yield strength is composed of cutting and bypassing 

mechanism. 

 

However, in the precipitate hardening model, the microstructure evolution is assumed 

to be no contact with other growing atoms and therefore the growth will not affect the 

neighbor particles growth. In reality, at the beginning of the aging process, the solute 

atom has the maximum super solution and the diffusion rate of solute atom is large. 

With prolonging the aging time, the concentration of solute atoms and the precipitate 

phase growth rate will decrease, and this will bring the deviation of the model and 

experiment. Therefore, we need the accurate prediction of the growth rate of the 

precipitates in the aging process. In Deschamps and Brechet, they separated the whole 

microstructure evolution into nucleation, growth and coarsening three steps. They 

calculated different nucleation rates and growth rates for each step and use them to 

get the density and the radius of the precipitate particles. Although they gave a criteria 

to identify the critical radius to separate nucleation, pure growth and coarsening, it is 

difficulty in determining when the growth and coarsening happening. In my project, I 

firstly made attempt to follow the method described in Ford’s patent studying Al-Cu 

system. In the patent, the growth rate can be obtained from the volume change and the 

phase fraction. The transformation among precipitate phases can produce the volume 



change because of the diffusion of precipitate element from the different transit 

phases. When applied T6 heat treatment, thermal growth of the prime strengthen 

phase Al2Cu (termed with θ’ in the patent) is not completely growth to its maximum 

size when it turns to stable phase (termed with θ). And with the time prolonging, the θ 

will coarse and consume θ’, which lead to reduce the thermal growth effect. This 

model can also predict the non-isothermal aging process. In the end, the dimension 

change vs. Cu fraction can be determined from the model. The relative parameters can 

get from TTT diagram and equilibrium state phase fraction. [54] In this project, S. 

Esmaeili’s model and Myhr’s model have been chosen to be the reference models and 

try to modify them with thermal growth model. As mentioned before, the data needed 

of both models are the volume fraction of the precipitates, which we can realize by 

TEM or SEM data.  
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Abstract 
The ductility of an Al-Cu-Mn alloy is typically characterized by fracture strain, and is 

influenced by experimental temperature and its microstructure. Previous researches 

show that the ductility increases with the temperature and decreases with the strain 

rate. However, based on the results of isothermal tensile tests of as-quenched Al-Cu-

Mn alloy in this paper, it was found that the ductility decreased apparently 

(approximately 90% under strain rate of 0.001/s) at a medium temperature range 

(573K – 673K), and gradually reincreased to its original level at higher temperature. 

A competitive relationship between temperature softening and grain boundary T 

precipitation was proposed to account for the unusual variation of ductility. In 

addition, a ductility model based on the competitive relationship was deduced to 

quantify the evolution of the fracture strain for the as-quenched Al-Cu-Mn alloy, and 

validated by the experimental results. 
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Introduction 
The Al-Cu-Mn aluminum alloy exhibits satisfactory mechanical properties at different 

temperatures, which makes it widely used as a structural component in the automobile 

and aero-astronautic industries (Belov et al., 2014; Li et al., 2011; Toleuova et al., 

2012; Wang et al., 2016). In the production process, workpieces of Al-Cu-Mn cast 

alloy often fail due to the propagation of quenching cracks, where local deformation 

expands beyond fracture strain (Chen et al., 2012; Ye et al., 2014).  

 

Ductility is generally affected by the experimental temperature, which is defined as 

the fracture strain. Deformed grains at an elevated temperature can be recovered and 

recrystallized with rearranging dislocations, thus generating a new set of un-deformed 

grains, which are normally accompanied by a reduction in the strength of the material 

and a simultaneous increase in the ductility(Besson, 2009; Lin and Chen, 2011; Liu et 

al., 2003; Westermann et al., 2016; Zhou et al., 2012). In addition, the microstructures 

of alloys, especially the pattern and precipitation position of intermetallic phases, 

have a significant influence on the ductility(Chen et al., 2015; Cvijović et al., 2011; 

Horstemeyer et al., 2000; Poole et al., 2005; Westermann et al., 2014). In general, the 

fracture strain increases with increasing temperature and decreases with increasing 

strain rate (Liu and Fu, 2014; Raj and Ashby, 1975; Rakin et al., 2004; Wang et al., 

2010). 

 

The main phases of Al-Cu-Mn alloy include Al2Cu, Al20Cu2Mn3, and Al3Ti phases. 

Al2Cu phases are the primary strengthening precipitate phases with fine and uniform 

distribution (Gao et al., 2016; Samuel, 1998; Samuel et al., 1995). Mn additions in the 

alloy can dramatically refine phases, retard Orowan coarsening, and improve 

recrystallization resistance by forming T dispersoids (Al20Cn2Mn3)(Li et al., 1992; 

Zupanič et al., 2015). The trialuminide intermetallic Al3Ti, which has a tetragonal 

structure and low symmetry, is one of the reasons for the poor ductility of the material, 

although it may improve the strength of Al alloys at elevated temperatures(Birol, 

2007; Chang and Muddle, 1997). Generally, as a price to pay for strengthening the 

alloy by inhibiting the movement of dislocations, precipitate phases usually lead to a 

slight decline in the fracture strain. Moreover, different intermetallic phases have 

different impacts on the ductility of materials (Simmons et al., 1978; Vasudevan and 

Doherty, 1987; Zehnder and Rosakis, 1990). 



 

In this paper, the stress-strain curves of the as-quenched Al-Cu-Mn cast alloy at 

different temperatures and strain rates were studied. An interesting experimental 

phenomenon was observed. The ductility of the alloy, beyond all expectation, did not 

increase as the temperature increased but showed some regularity. Therefore, this 

study attempted to explain the unexpected variation of the ductility of the alloy. The 

variation was explained through an experimental study and theoretical analysis on the 

different effects of temperature and intermetallic phases. 

 

Materials and Methods 
Al-5%Cu-0.4%Mn (called ZL205A via the Chinese national norm) is a typical cast 

Al-Cu-Mn aluminum alloy with high strength and ductility (tensile strength

512mR MPa ; elongation at fracture 
5 7.0%A  ) after heat treatment. The detailed 

chemical compositions are given in Table 1. Inevitably, there are some impurities, 

including Fe, Si, Mg, and Zn.  

Table 1. Main chemical composition of ZL205A alloy (in wt.%) 

Element Cu Mn Ti Zr Cd B V Al 

wt.% 4.6-

5.3 

0.3-

0.5 

0.15-

0.35 

0.05-

0.20 

0.15-

0.25 

0.005-

0.006 

0.05-

0.3 

Bal. 

The material used for the tensile tests was produced by low-pressure die casting, 

which was then examined by non-destructive X-ray detection to guarantee that no 

serious casting defects would occur. Qualified samples were heat-treated, as shown in 

Figure 1. The samples were machined into rod shapes with two screw thread ends. 

The detailed dimensions are given in Figure 2. The samples were firstly solid 

solutionized at 813K for 10 hours in a Muffle furnace and then quenched at 298K 

(room temperature) in 11% UCON™ Quenchant A to obtain a supersaturated α-Al 

solid solution. Secondly, the samples were heated to test temperatures and held for 

five minutes to make the temperature uniform. Afterward, the samples were stretched 

in a tensile machine. The tensile tests were conducted at six different temperatures 

from room temperature to 773K (298K, 373K, 473K, 573K, 673K, 773K) and under 

three different strain rates (0.001/s, 0.01/s, 0.1/s). The parameter scopes were 

basically in accordance with the practical situation of heat treatment process. Three 

samples were used to guarantee good repeatability under every experimental 

condition. 



 

After drawn to fracture, the samples were cooled down quickly at cold water to retain 

the microstructure during the tests. Then, the tensile samples were cut into proper 

dimensions and washed using an ultrasonic wave cleaning machine. Subsequently, the 

tensile fracture surfaces and inner microstructures were observed by a scanning 

electron microscope (SEM). The surfaces for inner microstructure observations over a 

distance of 5 millimeters from the fracture surfaces were polished without any 

chemical etching. 

  

Figure 1. Thermal history used in the tensile tests  Figure 2. Dimensions of the tensile samples 

 

An INSTRON
TM

 5985 equipment was used for the tensile tests, and a FEI Quanta
TM

 

200 FEG machine equipped with Energy Disperse Spectroscopy (EDS) was employed 

for the inner microstructure observation and fractographic examination. 

 

Results 
3.1 Stress-strain curves and fracture strain variations 
The true strain εt during the tensile deformation can be calculated as 

e
t
= ln

A
0

A
 (1) 

where A0 is the initial cross-sectional area and A is the instantaneous cross-sectional 

area. The uniform strain εu describes global deformation before necking of samples 

under uniaxial tension.  

e
u

= ln
A

0

A
u

  (2) 



where, Au is the cross-section area before necking. When fracture occurs, Af is the 

cross-section area at fracture. Therefore, the fracture strain εf is defined as 

e
f

= ln
A

0

A
f

  (3) 

The local deformation that occurs post necking is much larger than the global 

response. Therefore, the true stress-strain curves were obtained in consideration of 

necking modification(Siebel and Schwaigerer, 1948; Majzoobi et al., 2015).  

 

As shown in Figure 3(a), the true stress-strain curves of ZL205A under a strain rate 

of 0.001/s are significantly different in the temperature range from 298K to 773K. 

The flow stresses of the material obviously decrease as the experimental temperature 

increases. Furthermore, the fracture strains and uniform strains of the samples also 

vary hugely with the experimental temperature. Figure 3(b) demonstrates the change 

of the fracture strains and the uniform strains with error estimation. The error bars are 

obtained based on at least three credible repeated experimental tests under certain 

conditions. The overall shape of the fracture strain resembles a “spoon” shape. More 

precisely, the curve falls to a minimum value of only 2.55% at approximately 573K, 

while it is above 30.94% at the lower temperatures of 289K-373K and approximately 

18% at a higher temperature of 737K.  

 

Generally, three typical stages are observed in the curve, which are the low 

temperature stage (LTS) at 298K-373K, the middle temperature stage (MTS) at 

573K-673K, and the high temperature stage (HTS) at 737K, as well as two 

transitional periods, i.e., one from LTS to MTS and the other from MTS to HTS. For 

test samples under the strain-rate of 0.001/s, the fracture strains are reduced by 28% 

from LTS to MTS and then rise sharply by approximately 15% from MTS to HTS. 

Therefore, the temperature played a significant role on the variation of ductility



 

(a) True stress-strain curves               (b) Uniform strain and fracture strain 

Figure 3. Stress-strain curves of ZL205A at different temperatures with a strain rate of 0.001/s 

 

The true stress-strain curves of ZL205A at different temperatures under strain-rates of 

0.01/s and 0.1/s are given in Figure 4(a) and Figure 5(a), and their fracture strain and 

uniform strain curves are provided, respectively in Figure 4(b) and Figure 5(b). The 

flow stress, similar to that under the 0.001/s strain rate, becomes smaller with 

increasing temperature, except for at 573K. At that temperature, yield strengths and 

elastic moduli of the material are remarkably higher than at other temperatures. 

Additionally, the fracture strain patterns under 0.01/s and 0.1/s strain rates are also of 

spoon-shapes and reach a minimal value at 573K. Certainly, there are several thought-

provoking differences among the fracture strain curves. The major difference among 

them is the variation of the depth of the “spoon” shape. The fracture strain minimum 

increases from 2.55% to 7.05% and to 12.2% with the strain rate increasing from 

0.001/s to 0.01/s and to 0.1/s. Moreover, the fracture strain declines from LTS to MTS 

at the strain rate of 0.001/s, 0.01/s and 0.1/s is 28.39%, 20.04% and 10.36%, 

respectively. The fracture strain recovery from MTS to HTS basically declines 

slightly, i.e., 15.45%, 13.85%, and 11.3%. A higher strain rate increases the minimum 

of the fracture strains; meanwhile, the pattern of the fracture strains remains the same. 

Therefore, it is highly likely that temperature has a dominating effect on the variation 

of fracture strain; in addition, the influence of strain rate should not be ignored. 



 

(a) True stress-strain curves               (b) Uniform strain and fracture strain 

Figure 4. Stress-strain curves of ZL205A at different temperatures with a strain rate of 0.01/s 

 

(a) True stress-strain curves               (b) Uniform strain and fracture strain 

Figure 5. Stress-strain curves of ZL205A at different temperatures with a strain rate of 0.1/s 

 

Previous researchers(Estey et al., 2004; Shi et al., 2014; Yang et al., 2013) usually 

studied flow stresses of aluminum alloys through stress-strain curves under uniaxial 

compression because compressive tests can be easily conducted under precisely 

controlled heating and cooling rates. As a result, the variation in the fracture strains of 

alloys was rarely observed. Newman et al.(Newman et al., 2003) also studied the 

tensile behavior of the as-quenched W319 aluminum alloy. However, as their samples 

were not stretched to fracture, they also did not observe the unusual ductility variation 



phenomenon. In this study, the variation of the ductility of the ZL205A cast 

aluminum alloy with the temperature and strain rate was observed, analyzed, and 

explained through fractography analysis and microstructure observations in the 

following sections. 

 

3.2 Fractography analysis 
Figure 6 and Figure 7 show fracture surfaces of test samples after fracture at LTS, 

MTS, and HTS. At LTS, the tensile sample exhibited “necking” before fracture and 

showed a smooth fracture feature at 45 degrees to the loading direction, as shown in 

Figure 6(a). Accordingly, the fracture surface at LTS shown in Figure 7(a) is mainly 

composed of dense small dimples, with some obvious and large dimples. These 

features are all typical characteristics of ductile fracture. The fracture feature plays an 

important role in the ductility (fracture strains) of a material, so that as-quenched 

ZL205A exhibits great ductility (fracture strain > 30.9%) and good strength at LTS. 

 

(a)  

(b)  

(c)  

Figure 6. The samples after fracture under various tensile test conditions 

(a) LTS; (b) MTS; (c) HTS 



The fracture features of samples at MTS and HTS exhibit some similar characteristics 

but also have differences. The samples at both MTS and HTS show irregular serrated 

fracture edges, with no obvious “necking”, as shown in Figure 6(b) and 6(c). 

Moreover, the fracture surfaces, as shown in Figure 7(b) and 7(c), are clearly 

composed of rock candy patterns and cleavage patterns at both stages, which indicate 

intergranular fracture. However, the fracture strains at both stages vary greatly; i.e., 

the fracture strain is only 2.55% at MTS, but nearly 18% at HTS. The grain surfaces 

are flat and smooth; and fracture cleavage and grain boundaries are greatly evident 

and can be clearly recognized on the fracture surfaces at MTS. These are typical 

features of grain boundary brittle fracture (GBBF). On the contrary, at HTS, the grain 

surfaces are somewhat rough, and the boundaries are less clear than at MTS. Figure 8 

shows a grain surface of the fracture surface under high magnification at HTS. There 

are many tiny dimples on the surface, indicating ductile fracture. Therefore, as-

quenched ZL205A exhibits grain boundary ductile fracture (GBDF), which is 

different from the other temperature stages. 

 

 

(a) At LTS (1000x, 200x, 32x) 

 

(b) At MTS (1000x, 200x, 32x) 



 

(c) At HTS (1000x, 200x, 32x) 

Figure 7. Fracture surfaces of test samples by SEM 

 

Figure 8. Fracture surfaces of test samples at HTS under high magnification SEM 

3.3 Precipitation analysis and microstructure comparison 
Various fracture modes in the test samples at different temperature stages, as 

described in Section 3.2, lead to significantly different fracture strains at the different 

temperature stages. As a typical high strength heat-treatable Al-Cu-Mn alloy, as-

quenched ZL205A is likely to exhibit different precipitation behaviors at different 

temperatures, resulting in different microstructures and mechanical properties. Al, Cu, 

Mn, and Ti are the four most common alloying elements. The main intermetallic 

phases of ZL205A can be categorized into precipitation strengthening phases, e.g., 

Al2Cu and Al20Cu2Mn3 (T phase), and stable phases, e.g., Al3Ti, which form upon 

solidification. The fracture surfaces and inner microstructures were observed using 

SEM by applying SE (second electron) and BSE (back-scatter electron) methods at 

the LTS, MTS and HTS stages to compare the microstructure and precipitation and 

clarify reasons for the variations in the fracture strain and ductility. 错误!未找到引用

源。  shows the high magnification fracture surface of ZL205A at LTS. White 

particles are found inside small dimples, where the matrix is homogeneous, without 

significant Cu or Mn aggregation. These white particles are determined to be Al3Ti by 



EDS analysis. Apart from large vacancies caused by casting defects, Al3Ti particles 

can reduce the bonding capacity of neighboring grains and, in turn, provide 

preferential positions of microvoids and crack nucleation(Birol, 2007; Milman et al., 

2001).  

 

The inner structure of the samples near the fracture surface at LTS is shown in Figure 

9. The general matrix (Zone I) is homogeneous, while a few precipitate phases, such 

as tiny Al2Cu particles, are randomly distributed in the matrix. The loose structure 

(Zone II) observed at the grain boundary encompasses several white particles, which 

are also Al3Ti particles. The inner microstructure observation is in good agreement 

with the fracture microstructure. The matrix at LTS is homogeneous and uniform with 

little precipitation, except for several white Al3Ti particles accompanied by a loose 

structure. The “loose structure” is distributed around grain boundaries, without 

obvious directionality. Therefore, the “loose structure” around Al3Ti particles is 

positively shrinkage micro-holes. As a result, in terms of the ductility, ZL205A at 

LTS performs well. 

 

 



 

Figure 9. The inner microstructure of test samples at LTS 

The inner structure of the samples near the fracture surface at LTS is shown in Figure 

9. The general matrix (Zone I) is homogeneous, while a few precipitate phases, such 

as tiny Al2Cu particles, are randomly distributed in the matrix. The loose structure 

(Zone II) observed at the grain boundary encompasses several white particles, which 

are also Al3Ti particles. The inner microstructure observation is in good agreement 

with the fracture microstructure. The matrix at LTS is homogeneous and uniform with 

little precipitation, except for several white Al3Ti particles accompanied by a loose 

structure. The “loose structure” is distributed around grain boundaries, without 

obvious directionality. Therefore, the “loose structure” around Al3Ti particles is 

positively shrinkage micro-holes. As a result, in terms of the ductility, ZL205A at 

LTS performs well. 

 

Figure 10. Microstructure observations of the fracture surface at MTS 

 

The microstructure of the samples at MTS, as shown in Figure 11, shows the 

distribution of Al2Cu dispersoids, T phases, and Al3Ti particles. Al2Cu dispersoids 



homogeneously precipitate from the supersaturated solid solution, while T phases 

dominantly form at grain boundaries. Large T phase particles gather at the intercept 

point of grain boundaries, and the rest of the T phases still align with the grain 

boundaries. Al3Ti particles are still associated with loose structures and vacancies. 

Moreover, the fracture strain dramatically decreases to 2~3% at MTS under the strain 

rate of 0.001/s. Al3Ti, as mentioned before, will not change during heat treatment and 

therefore could not be the reason for the variation in the fracture strain and ductility. 

Al2Cu, the main strengthening precipitation phase, can increase the strength of the 

alloy, while slightly decreasing its ductility. However, this reduction cannot possibly 

be the cause of the sharp drop in the fracture strain observed in the experiments. After 

the exclusion of other possibilities, T phases, gathering along the grain boundaries, 

are most likely to be the cause of the variation in the fracture strain. The grain 

boundary with T precipitates is an initial source of cracks and easily gives rise to 

microvoids, which is thus detrimental to the toughness and ductility of the alloy. 

 

Figure 11. The inner microstructure of the test samples at MTS 

The ductility of the alloy increases again to 18% under the 0.001/s strain rate at HTS. 

Accordingly, the microstructure of the samples at HTS is observed and shown in 

Figure 12. The fracture surface and metallographic microstructure are basically in 

agreement with the observations at MTS and include a rock-pattern fracture surface, 

Al3Ti particles along with loose structures, homogeneously precipitated Al2Cu 

dispersoids in the matrix, and obvious T phases in the grain boundaries. The Al2Cu 

dispersoids and grain boundaries with T phases both become more obvious and coarse. 

Based on the analysis of the fracture strains at MTS, more grain boundary precipitates 

lead to worse ductility of the alloy. However, the fracture strains of samples at HTS 



actually increase by more than 15%. Moreover, the brittle facture at the grain 

boundary at MTS transforms to a ductile fracture at HTS. The different fracture 

modes indicate that the mechanism of ductility is not the same.  

 

Figure 12. The inner microstructure of test samples at HTS 

Discussion 
4.1 Competitive effect of temperature and precipitation on ductility 
The Al-Cu-Mn phase diagram in the Al-rich region is shown in Figure 13. The 

aluminum corner contains Al2Cu, Al6Mn and a ternary compound usually designated 

as the T phase (Al20Cu2Mn3). According to previous data on casting alloys containing 

approximately 5% Cu, the concentration of manganese in the solid supersaturated 

solution during solidification can reach 2%(Belov et al., 2005), which is much higher 

than 0.5% Mn in ZL205A. The major deviation from equilibrium during solidification 

is due to the formation of non-equilibrium (Al) + Al2Cu eutectics and a supersaturated 

solid solution of Mn in (Al). The decomposition of the latter during the reheating 

process to over 573-773K leads to the formation of Mn-containing precipitates, 

represented mainly by Al20Cu2Mn3 (T phase).  



 

Figure 13. Phase diagram of Al-Cu-Mn at the aluminum rich corner of solidus(Belov et al., 

2005) 

Based on the Al-Ti phase diagram(Witusiewicz et al., 2008), Al3Ti particles can 

easily sink and aggregate during solidification, leading to the segregation of white 

Al3Ti. Al3Ti segregation is difficult to avoid and is generally accompanied by 

microvoids and micro-porosity(Wang et al., 2014).  Al3Ti particles can almost not be 

solid solutionized and will not change during the heat treatment process. Therefore, it 

could not be the reason for spoon-shaped variation of ductility. Al2Cu phases are 

homogeneously precipitated and uniformly distributed in the matrix. The amount of 

Al2Cu precipitates increases gradually with experimental temperature. Hence, the 

existence of Al2Cu also cannot cause the phenomenon of ductility variation. 

Al20Cu2Mn3 phases do not exist at LTS, and precipitate considerably on grain 

boundaries at MTS and HTS, weakening the bonding of grain boundaries. 

Consequently, it is almost certain that the grain boundary T phases dominate the huge 

decline of ductility of as-quenched ZL205A alloy. 

 

Without the influence of grain boundary precipitates, the ductility of alloys gradually 

increases with the increase of temperature and decreases with the increase of strain 

rate(Li and Ghosh, 2003). Because of dynamic recovery and dynamic recrystallization, 

the strength of 2
1
/4Cr-1Mo steel(Booker et al., 1977) declines greatly at elevated 

temperatures, and the ductility obviously increases, as shown in Figure 15. The 

ZL205A alloy is softened with the increase of temperature, thus improving the 

ductility of the alloy. Dynamic recovery and dynamic recrystallization play an 



increasingly important role on the deformation behavior of the alloy when the 

samples are stretched at elevated temperatures. Especially when the temperature 

increases to near the solid-solution temperature, the ductility greatly improves. The 

grain boundary is traditionally considered to be a strengthening factor, in other words, 

the bonding force in grain boundaries is higher than in the matrix. Therefore, 

intergranular fracture could occur if only grain boundaries are weakened. Generally, 

there are two basic reasons for weakened grain boundaries(Vasudevan and Doherty, 

1987): 1) the presence of microstructures of the alloy and 2) the influence of high 

temperature and conditions.  

 

Figure 14. Effect of test temperature on ductility and tensile strength of steel 

 

The obvious grain boundary T phases at MTS, i.e., the discrete rod-like particles, are 

the main reason for the weakened bonding force of the grain boundary, leading to 

huge decline of fracture strain and the grain boundary brittle fracture (GBBF). On the 

other hand, although the grain boundary precipitates at HTS are coarse and reduce the 

fracture strains of samples considerably, temperature has a more important impact on 

softening the alloy and increasing its fracture strain and ductility. Besides, the high 

temperature close to solution temperature at HTS hugely weakens the bonding of 

grain boundaries, leading to the grain boundary ductile fracture (GBDF). Therefore, 



the variation of ductility of as-quenched ZL205A alloy results from the combined 

effects of both temperature and grain boundary precipitates. 

 

Figure 15 shows that the fracture strains change not only with the test temperature 

but also with the strain rate. The fracture strain decreases as the strain rate increases at 

LTS, while the fracture strain increases with the increase in the strain rate at MTS and 

HTS. This observation can be explained by considering grain boundary precipitates. 

At LTS, grain boundary precipitates are truly little and negligible; as a result, a higher 

strain rate allows dislocations to generate and glide more easily and quickly, so 

ductility becomes worse in agreement with previous studies(Chen et al., 2013; Zhang 

et al., 2007). In addition, the fracture strain of samples slightly increases with the 

temperature at LTS, as a result of dynamic recovery. At MTS and HTS, a higher 

strain rate means a shorter experiment time, resulting in less precipitates being 

nucleated, especially grain boundary T phases. Therefore, the fracture strains are 

higher when the strain rate is larger. This phenomenon verifies the hypothesis that the 

combined effect of thermal softening and grain boundary precipitates is the primary 

reason for the variation in the fracture strain and ductility of as-quenched ZL205A. 

 

Figure 15. Fracture strain curves under different strain rates 

4.2 A mathematical model of ductility on temperature and strain rate 



Under the experimental conditions, it is believed that the competitive effect between 

thermal softening and grain boundary precipitates leads to the variation in the fracture 

strain. With the increase of temperature, on one hand, dynamic recovery and dynamic 

recrystallization reduce the strength of the matrix and increase the ductility of the 

matrix; on the other hand, an increasing amount of T phases nucleate and grow on the 

grain boundaries, resulting in a great decline of ductility and strength of the grain 

boundary. Typically, a large fracture strain of over 18% at HTS is due to the increase 

of ductility of the matrix, while the rock-pattern fracture surface is due to the decline 

of ductility of the grain boundary.  

 

The ductility of as-quenched ZL205A is expressed by the fracture strain, denoted as εf 

(T,  휀̇ ). In the experiments, temperature and strain rate are independent variables. 

According to the competitive hypothesis of thermal effects and grain boundary 

precipitation, the ductility εf (T,휀̇) can be expressed as Equation 3: 

  (4) 

where f(T) characterizes the positive influence of temperature on the ductility of the 

matrix, and g(T,  휀̇ ) expresses the negative correlation between grain boundary 

precipitations with the ductility of grain boundary. Under higher temperatures, grain 

boundary precipitates nucleate more easily, and at a higher strain rate, the amount of 

grain boundary precipitates decrease due to a shorter time in the tensile process. The 

three strain rates adopted in the experiments (0.001/s, 0.01/s, 0.1/s) are represented 

as 휀1̇, 휀2̇, and 휀̇3. The ratio function w is proposed as shown in Equation 4, which is 

only dependent on temperature T. 

  (5) 

The w(T) curve is given in Figure 16, and the error bars are computed by using the 

error transfer formula. The values of w at all temperature levels basically remain 

constant at 1.0. When w is constant, indicating its independence of temperature, the 

influence of grain boundary precipitation on ductility could be decomposed into two 

parts. Therefore, the function g(T,  휀̇ ) could be expressed as the product of a 

temperature function k(T) and a strain rate function h(휀̇). Then, the ductility εf (T, 휀̇) 

can be redefined as shown in Equation 5. 



  (6) 

 

Figure 16. The relationship between w and elevated temperatures 

It is worth noting that the constant relationship, w = 1.0, means a linear relationship 

between h( 휀̇ ) and  ln (휀̇) . Therefore, it is reasonable to assume the correlation

. Then,  

  (7) 

where f
*
(T)=f(T)+B

.
k(T) and k

*
(T)=A

.
k(T).  

As a result, the temperature function k
*
(T) can be derived as shown in Equation (5). 

.                 (8) 

k
*
(T) and f

*
(T) can be plotted as shown in Figure 17. The function k

*
(T) characterizes 

the ability of precipitation to nucleate at a certain temperature. Thus, the trend of k
*
(T) 

increasing with the temperature conforms to expectations. Effect of grain boundary 

precipitation on ductility at 0.001/s is given as , shown in Figure 

17(a). *

1 ( )g T  gradually declines with the temperature, and tends to steady after 600K. 

Accordingly, the function f
*
(T) could be represented by 

, as shown in Figure 17(b). The function f
*
(T) 



characterizes the thermal effects for improving the ductility of as-quenched ZL205A, 

and overall, its value increases with the temperature. However, there are some 

fluctuations in the values of f*
(T). The values of f

*
(T) gradually increase at LTS, which 

are in accordance with the dynamic recovery at LTS. Then, f
*
(T) slightly declines at 

MTS, which indicates that the grain boundary precipitates inhibit recovery and 

recrystallization in the material. After that, f
*
(T) increases sharply at HTS because 

dynamic recrystallization and creep behavior are dominant in the material behavior. 

Through comparative analysis of the plots of *

1 ( )g T  and f
*
(T), it is confirmed that the 

dramatic drop of fracture strain at MTS mainly results from the effect of grain 

boundary precipitation, and the recovery of fracture strain at HTS is mostly on 

account of the high experimental temperature. 

 

(a) k*(T) and g*(T)            (b) f*(T) 

Figure 17. The relationship between the variables in the ductility model and 

temperature 

Further experiments and relevant theoretic analysis are required to specifically 

determine f*
(T) and k

*
(T). Additionally, the amount of T phases and Al2Cu dispersoids 

during the experiments can be characterized using the TTT diagram of ZL205A, 

which can be used to define k
*
(T). Further research on this topic not only contributes 

to the explanation of the variation in the fracture strain and ductility of as-quenched 

ZL205A, but is also of great importance to comprehensively understand the 

relationship between the ductility of materials and process conditions. 

 

Conclusions 



In this paper, the ductility of as-quenched ZL205A was investigated in a temperature 

range of 298-773K and a strain rate range of 0.001-0.1/s. The fracture strain, which 

characterizes the ductility of as-quenched ZL205A, varied with temperature in “spoon” 

shape. The phenomena were quite unusual compared with traditional observations. 

Through analyzing the corresponding microstructure observations of fracture surfaces 

and inner microstructures, the ductility behavior at each temperature stage was 

determined by the combined effect of temperature and grain boundary precipitation. 

 

At LTS, ZL205A exhibited good strength and ductility mainly due to a homogeneous 

solid-solution matrix and few precipitates. The samples at LTS showed typical ductile 

fracture with an orientation of 45 degrees to the loading direction, with a fracture 

strain of over 30%. At MTS, ZL205A lost its ductility and presented characteristics of 

brittleness. The formation of T phases (Al20Cu2Mn3) at the grain boundaries played a 

primary role in intergranular fracture. The fracture strains still reached a minimal 

value of approximately 2%. At HTS, because it was close to the solid-solution 

temperature, dynamic recrystallization and creep behavior played a dominant role on 

the material behavior. The fracture strains increased noticeably to about 18%, even 

though the grain boundary T phases grew larger, which was detrimental to the 

ductility.  The competitive relationship between the temperature and grain boundary 

precipitates was validated by the fracture strains under different strain rates. A higher 

strain rate meant that there was less time for the grain boundary T phases to nucleate 

and grow; thus, the smaller the amount of grain boundary T phases, the higher the 

fracture strains.  The ductility model was proposed based on the analysis of 

experimental data and the linear relationship assumption between h(휀̇) and . The 

ductility, εf (T, 휀̇), was deduced as follows: 

 

The curves of f*
(T) and k

*
(T) were plotted with the temperature. 
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Abstract 

It is difficult to predict the deformation behavior of Al-Cu-Mn alloy during a 

quenching process due to the complex hardening mechanisms. In this paper, 

isothermal tensile tests were conducted under controlled experimental conditions (298 

- 773 K and 0.001 - 0.1 /s strain rate). Observations on the microstructure of the alloy 

and tensile test analyses on stress-strain curves both verified that the deformation 

mechanisms differed drastically at 298 - 473 K and 573 - 773 K. Therefore, a 

temperature-dependent constitutive model was established to characterize the 

divergent flow behaviors of as-quenched Al-Cu-Mn alloy. In addition, the activation 

energy, Q, in the model is determined by the combined effect of dislocation forests 

and precipitate phases, various with different experimental conditions. 
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Introduction 
Al-Cu-Mn cast alloy is widely used to produce large, thin-wall structures in the 

automobile and aerospace industries because of its light weight and high strength 

[1]. Before using the alloy in practical industry, proper heat treatment processes are 

usually applied to improve the mechanical properties of the Al-Cu-Mn alloy. 

Because of structural complexity and inevitable numerous casting micro-defects, 

e.g., micro-porosity and micro-segregation [2], workpieces of the alloy are very 

prone to heavy distortion during heat treatment, especially in the quenching process. 

Therefore, a step-quenching method is generally employed to decrease the 

quenching distortion of large workpieces [3]. Previous studies tried to predict 

quenching deformation via building a constitutive model of as-quenched Al-Cu-Mn 

alloy in a high temperature range [4-6]. Owing to the rapid cooling rate and wide 

temperature range of the quenching process, existing constitutive models are hardly 

sufficient to characterize the constitutive behavior of the as-quenched alloy in all 

temperature ranges [7, 8]. 

 

The Arrhenius model is a semi-physical constitutive model commonly used in the hot 

working field. The model was proposed by Sellars and Mctegart [9, 10] and 

developed from the empirical Zener-Hollomon model [11], which combines 

temperature and stress influences on dislocation motion. The thermal activation 

mechanism, a fundamental of the Arrhenius model, interprets the statistic process of 

dislocation thermal release over glide resistance. Recent studies have demonstrated 

that the hyperbolic-sine Arrhenius model is appropriate for Al alloys in a temperature 

range from 0.5Tm to Tm during quenching [12, 13], but the model fails to agree with 

experimental results in the low temperature range. In the Arrhenius model, the Zener-

Hollomon parameter is proposed to characterize the activated effects of temperature 

and stress with the assumption of constant activation energy. Therefore, other glide 

mechanisms of dislocations, such as strain and precipitation hardening, are not taken 

into account in this model. Liu et al. revised the model by compensating for strain and 



strain rate and fitting the activation energy, Q, as a polynomial function of strain to 

describe the strain hardening influence on the activation energy in engineering[14].  

 

The activation energy reflects the energy required for dislocations to glide across 

obstacles, e.g., intermetallic particles or grain boundaries. The classical Arrhenius 

model only considers the effect of dynamic recrystallization and recovery, and the 

changing grain boundary was supposed to act as the primary obstacle to dislocations. 

As a result, the classical model is mostly effective for the aluminum alloys which 

satisfy the assumption of supersaturated homogeneous solid-solution state. For 

workpieces of Al-Cu-Mn alloy, precipitation during the quenching process is difficult 

to avoid, if the temperature is not cooled quickly enough. The difference of 

mechanical behaviors of the alloy at the high temperatures and low temperatures is 

also observed in Yang’s research [15]. However, the relationship between 

microstructures and mechanical property variation with temperature is lacking in 

further investigation. More importantly, how microstructures affect the model 

parameters is particularly conducive to predicting quenching deformation of the alloy 

better and improving applicability of the constitutive model. 

 

Estey et.al. [16]proposed that the diversity of mechanical behaviors of as-quenched 

alloys is probably relevant to the slight precipitation during experiments. The pinning 

effect of small precipitated particles on dislocations increases the energy of 

dislocation gliding, which results in variations in the activation energy [17, 18]. In 

addition, the different deformation mechanisms of aluminum alloys over different 

temperature ranges have an important impact on the activation energy, such as 

dynamic recovery at low temperatures and dynamic recrystallization at high 

temperatures. Sellars stated that the complexity of an aluminum alloy or the formation 

of a precipitate phase among the matrix may affect the activation energy of hot 

deformation [19]. Chemical concentration effects [20] and initial structure [21] have 

also been proven to have an effect on the activation energy. Therefore, the activation 

energy cannot be considered to be constant if the applicable scope of the constitutive 

model needs to be extended.  

 

 



In this paper, a modified Arrhenius model has been used to predict the flow stress of 

the Al-Cu-Mn alloy over a wide temperature range (298 - 773 K). Additionally, the 

initial structures at different quenching temperatures and interactive motions of 

dislocation and precipitate phases at different temperatures were observed to 

determine microstructure effects on flow stress. The activation energy of hot 

deformation is given as a function of temperature and strain.  

Experiments 
Al-5%Cu-0.4%Mn is used in this experiment, and the detailed composition is given 

in table 1. The experimental samples were machined into a rod shape with two 

screw thread ends. At first, all samples were heated in a Muffle furnace at 813 K 

for 10 hours in order to obtain full solution treatment. After solution treatment, 

samples were taken out of the furnace and quenched in 11% UCON
TM

 quenchant. 

Next, tensile samples were stretched on an Instron 5985 at experimental 

temperatures (298 K, 373 K, 473 K, 573 K, 673 K, 773 K). Because the heat-up 

rate was great enough, the material state at experimental temperatures was able to 

simulate the conditions of step-quenching. The strain rates were 0.001 /s, 0.01 /s 

and 0.1 /s, which covered the possible values of strain rate during a quenching 

process[22].  

Table 2 Main element composition of Al-5%Cu-0.4%Mn 

Element Cu Mn Ti Zr Cd B V Al 

wt% 
4.6 - 

5.3 

0.3 - 

0.5 

0.15 - 

0.35 

0.05 - 

0.20 

0.15 - 

0.25 

0.005 - 

0.006 

0.05 - 

0.3 
Bal. 

After tensile testing, specimens for TEM were prepared by mechanical and ion 

thinning methods. Their microstructure was examined on a high-resolution 

transmission electron microscope, TECNAI G2 20.  

 

Results 
 

Stress-strain curves 
Figure 1 gives the stress-strain curves for as-quenched Al-Cu-Mn alloy in a 

temperature range of 298 to 773 K and strain rate range of 0.001 to 0.1 /s. The stress-

strain curves show great differences at 298 - 473 K and 573 - 773 K. At low 

experimental temperatures (298 - 473 K), the flow stress is less sensitive to 

temperature and strain rate, but strain hardening behavior can be observed. However, 

at high experimental temperatures (573 - 773 K), the flow stress greatly declines with 



an increase in temperature and rises with an increase in strain rate. In addition, at high 

temperatures, the alloy behaves as a steady flow beyond yield strength during the 

tensile tests without a typical strain hardening stage. 

 

Figure 1. Stress-strain curves of as-quenched Al-Cu-Mn alloy 

Figure 2(a) shows a plot of the strain hardening rate (SHR), θ(=dσ/dε), vs. true strain, 

ε, at different temperatures. The SHR θ drops dramatically with strain and remains 

roughly stable with large strain (> 0.01). It is interesting that the SHR at 298 - 473 K 

is much higher than the value at 573 - 773 K. The SHR at 298 - 473 K finally stays in 

a constant state around zero, which indicates the alloy reaches a steady flow. However, 

the SHR at 573 - 773 K reaches a constant level at approximately 2500 MPa, which 

indicates strain hardening behavior in the strain range of 0 - 0.02. 

 

To quantify the strain hardening response, the strain hardening exponent (SHE), n, 

was used to fit the tensile curves based on the Ludwik equation [5, 23]: 



𝜎 = 𝜎𝑦 + 𝐾(휀 − 휀𝑦)
𝑛

                             (1) 

where, σy and εy are yield strength and strain of the material, and K is the strength 

coefficient. The n plot is shown in Figure 2(b) for all experimental conditions. A 

linear correlation between SHE and temperature was found for both 298 - 473 K and 

573 - 773 K with reasonable approximation. However, the fitted lines were distinctly 

separate from each other in the temperature ranges. The SHE n at 298 - 473 K is 

about twice as large as that for 573 - 773 K. The results for SHR θ and SHE n 

highlight that there is a drastic difference in the strain hardening mechanism of as-

quenched Al-Cu-Mn alloy at 298 - 473 K and 573 - 773 K. 

 

Figure 2. Strain hardening behavior of as-quenched Al-Cu-Mn alloy 

The effects of strain rate and temperature on material flow behavior are illustrated in 

Figure 3. Strain rate sensitivity (SRS), m, is another important parameter that reflects 

the flow behavior of materials. The m values can be evaluated based on the following 

equation, which is quite similar to the Lindholm equation [24]: 

σ/σmin = 𝑚log휀̇                             (2) 

The flow stress is normalized by σmin, the minimum value of flow stresses at the 

corresponding temperatures. The SRS plot of σ0.01/σmin vs. log휀̇ is given in Figure 3(a), 

and the slope is the SRS m value. At 298 - 473 K, the SRS plots slowly shift, and the 

values of σ0.01/σmin are close to one. This finding indicates that flow stress is less 

sensitive to strain rate at low temperatures. It is worth noting that the flow stress shifts 

downward at 298 K. This unusual phenomenon is quite complex and will be 

discussed later. At 573 - 773 K, σ0.01/σmin increases dramatically at larger strain rates 



as the temperature increases. Therefore, flow stress at high temperatures is 

increasingly sensitive to the strain rate. The relationship between SRS, m, and 

temperature, T, is shown in Figure 3(b). Correspondingly, the trends at 298 - 473 K 

and 573 - 773 K completely differ from each other. At 298 - 473 K, the SRS is low 

and increases slowly, while at 573 - 773 K, the SRS climbs sharply with increasing 

temperature. 

 

Figure 3. Strain rate sensitivity of as-quenched Al-Cu-Mn alloy 

The strain hardening exponent, n, and the strain rate sensitivity, m, play very 

important roles in characterizing the deformation behavior, which is closely related to 

the microstructures. The distinct differences in the SHE and SRS plots imply 

dissimilarities in the low temperature range (298 - 473 K) and high temperature range 

(573 - 773 K). Therefore, to better represent the stress-strain behavior of as-quenched 

Al-Cu-Mn alloy, the constitutive model should be analyzed separately at 298 - 473 K 

and 573 - 773 K. The constitutive behavior in the transitive temperature range (473-

573 K) should be a linear combination of the behavior at 473 K and 573 K. 

 

Constitutive model 
The total constitutive model for the whole temperature range (298 - 773 K) is 

proposed to be the following: 

휀̇ = {

𝐹1(𝜎, 휀, 𝑇) 298𝐾 ≤ 𝑇 ≤ 473𝐾

𝑎 ⋅ 𝐹1(𝜎, 휀, 𝑇) + 𝑏 ⋅ 𝐹2(𝜎, 휀, 𝑇) 473𝐾 < 𝑇 < 573𝐾

𝐹2(σ, ε, T) 573𝐾 ≤ 𝑇 ≤ 773𝐾

                    (3) 



where, a and b can be determined by the corresponding proportion of the specific 

temperature in the 473 - 573 K range and F1(σ,ε,T) and F2(σ,ε,T) are the Arrhenius 

models at 298 - 473 K and 573 - 773 K, respectively. The Arrhenius model is useful 

for predicting the flow stress of aluminum alloy during a hot working process. The 

Zener-Hollomon parameter combines the effects of strain rate and temperature on 

deformation in an exponent-type equation. The hyperbolic law between the Zener-

Hollomon parameter is employed for better approximations at all stress levels. Thus, 

the flow stress can be written as a function of the Zener-Hollomon parameter. The 

basic Arrhenius model can be represented as  

휀̇ = 𝐴[sinh(𝛼𝜎)]𝜂 exp (−
𝑄

𝑅𝑇
)                              (4) 

Z = 휀̇ exp (
𝑄

𝑅𝑇
)                                                      (5) 

σ =
1

α
ln [(

𝑍

𝐴
)

1/𝜂

+ √(
𝑍

𝐴
)

2/𝜂

+ 1 ]                        (6) 

in which, 휀̇ is the strain rate (s
-1

), R is the universal gas constant (8.31 J⋅ mol
-1

K
-1

), T 

is the absolute temperature (K), Q is the activation energy of hot deformation 

(kJ⋅ mol
-1

), σ is the flow stress (MPa) for a given strain, and A, α and η are the 

material constants. 

 

To obtain exact parameter values for the Arrhenius model, the natural logarithm of 

Equation (4) is given as: 

ln 𝑍 = ln 𝐴 + 𝜂 ln[sinh(𝛼𝜎)]                           (7) 

Figure 4 shows the plots of lnZ vs. ln[sinh(ασ)] for 298 - 473 K and 573 - 773 K, 

respectively. The completely separate lines confirm the difference in the constitutive 

behaviors of as-quenched Al-Cu-Mn alloy in the two temperature ranges. 



 

Figure 4. Variations of the Zener-Hollomon parameter with flow stress 

Finally, at 298 - 473 K, the Arrhenius model, F1(σ,ε,T), of as-quenched Al-Cu-Mn 

alloy at 0.2% strain was obtained and is given as Equation (8). The parameters of the 

model at strain rates of 0.2 - 2.0% were obtained as polynomial functions of strain, 

using Lin’s method [14]. 

휀̇ = 8.54 × 10−5[sinh (0.0084𝜎0.2)]24.71 exp (−
1.360 × 103

8.314𝑇
)         (8) 

The values calculated at 298 K, 373 K and 473 K based on the model agreed with the 

experimental results with a mean relative error of 4.3%, shown in Figure 5. The 

calculated values cannot describe the negative strain rate sensitivity of stress-strain 

behavior at 298 K, as shown in Figure 5(a). The calculated values at 0.001 /s and 298 

K are in good agreement with the experimental results. However, as the strain rate 

increases, the calculated values increase based on an Arrhenius-type prediction, which 

is contrary to the experimental results. At other temperatures (373 K and 473 K), the 

model predicts the experimental results well. 



 

(a) 298 K 

 

(b) 373 K 



 

(c) 473 K 

Figure 18. Comparison of calculated values with experimental results at 298 - 473 K 

At 573 - 773 K, the Arrhenius model, F2(σ,ε,T), of as-quenched Al-Cu-Mn alloy at 

0.2% strain was obtained and is given as Equation (9). Accordingly, the model 

parameters at a strain rate of 0.2% to 2.0% were also obtained as polynomial 

functions of strain. 

휀̇ = 2.89 × 1028[sinh (0.0152𝜎0.2)]8.145 exp (−
3.98 × 105

𝑅𝑇
)            (9) 

The comparison of calculated values and experimental results at 573 - 773 K with a 

mean relative error of 2.1% is shown in Figure 6. 

 

(a) 573 K 



 

(b) 673 K 

 

(c) 773 K 

Figure 19. Comparison of calculated values with experimental results at 573 - 773 K 

Therefore, for the whole temperature range (298 - 773 K), a constitutive model was 

built and is shown as Equation (3). The model is comprised of two separated 

Arrhenius models, (F1(σ,ε,T) for 298 - 473 K and F2(σ,ε,T) for 573 - 773 K, and a 

transition model for 473 - 573 K. 

Discussion 

 
Microstructure evolution 
The change in the constitutive behaviors of as-quenched Al-Cu-Mn alloy over the 

temperature ranges is closely related to the variation in the microstructures of the 



alloy. Remarkably diverse microstructures of as-quenched Al-Cu-Mn alloy are 

shown in Figure 7 at different temperatures. At 373 K, the matrix exhibits a 

homogeneous state with rare second precipitation particles, and numerous 

entangled dislocation forests can be clearly observed. At 573 K, tiny precipitation 

particles are evident, and the dislocation forests are significantly reduced. The tiny, 

acicular particles were shown to be Al2Cu precipitation by EDS analysis, shown in 

Figure 8. The blocky particles were shown to be intermetallic Al3Ti, which could 

exist in the form of a twin, as shown in Figure 7(d). Al3Ti is a type of impurity 

generated during the casting process and does not change during heat treatment 

[25]. At 773 K, there is distinct rod-like precipitation in the matrix and almost no 

visible dislocation forests. Therefore, as the experimental temperature increases 

from low to high, the alloy microstructures gradually transform from a dislocation 

forest dominant state into a precipitation dominant state. 

 

(a) 373 K, 0.001/s 

 

(b) 573 K, 0.001/s 

  



(c) 773 K, 0.001/s (d) HRTEM of Al3Ti particles 

Figure 7. TEM observation of as-quenched Al-Cu-Mn alloy microstructures 

 

Figure 8. EDS analysis of the tiny acicular particles at 573 K 

Dislocation forests and precipitation hardening are the two major hardening 

mechanisms of as-quenched Al-Cu-Mn alloy. When a gliding dislocation encounters a 

forest or other dislocation, the dislocation junctions will give a temperature 

independent contribution to the flow stress. The components of the Burgers vector do 

not play a role in the flow stress for repulsive dislocation trees [26]. Precipitation 

strengthening is achieved by producing a particulate dispersion of obstacles to the 

dislocation movement. The flow stress increases beyond the resistance, and 

dislocations will bypass the particles either by Orowan looping or cross-slip [27]. The 

flow stress increment by dislocation bowing leads to the Orowan equation, ∆τ=Gb/L, 

which is linearly dependent on the Burgers vector. As a result of different hardening 

mechanisms, resulting from distinct microstructures, the deformation behavior of as-

quenched Al-Cu-Mn alloy exhibits various trends at different temperatures. 

 

Temperature-dependent thermal activation energy 
The dramatic difference between the thermal activation energy Q of the alloy at 298 - 

473 K and 573 - 773 K is displayed in Figure 9. Therefore, the assumption that the 

activation energy Q is independent of temperature is not applicable to as-quenched 

Al-Cu-Mn alloy. The activation energy Q is the energy required when a thermal 

release of dislocations occurs at obstacles (thermal activation). Under many 

circumstances, the activation energy is closely related to temperature [28].  

 



For as-quenched Al-Cu-Mn alloy, the activation energy Q reaches more than 3 × 10
5
 

J at 573 - 773 K and only approximately 1 × 10
4
 J at 298 - 473 K. Indeed, the 

simplified assumption for the activation energy Q in the Arrhenius model makes it 

easier to obtain approximate values from experimental data. However, the activation 

energy Q is affected by experimental conditions and is most sensitive to temperature. 

The activation energy Q is essentially determined by the microstructures of the 

material [13], such as dislocation forests and precipitation. 

 

Figure 9. Thermal activation energy in F1(σ,ε,T) and F2(σ,ε,T) 

The comparison between microstructures in Figure 7 and activation energy in Figure 

9 indicates that precipitation leads to an increase in the activation energy of the 

material, and dislocation forests decrease the activation energy. Upon accumulation of 

plastic strain, activation energies at 298 - 473 K and 573 - 773 K begin to drastically 

diverge. One possible explanation for this is that a larger plastic strain means longer 

experimental time, thus, the microstructure of the material gradually changes at the 

same time. At 298 - 473 K, because of high super-saturation in the matrix, some tiny 

precipitation may nucleate over a longer period of time, leading to a slow increase in 

the activation energy. At 573 - 773 K, the precipitation barely increases with low 

super-saturation in the matrix. However, massive dislocations are activated and 

entangled with new dislocation forests at higher plastic strains, resulting in a gradual 

decline in the activation energy. Presently, the competitive relationship between the 

effects of the dislocation forests and the precipitation on the activation energy is quite 

complex and still needs further study. 



 

For complex commercial aluminum alloy, e.g., the Al-Cu-Mn alloy in this paper, the 

analysis of the macroscopic and microscopic aspects of deformation is still 

challenging. The activation energy is a significant physical parameter of the material, 

but, in most cases, it is calculated based on idealized assumptions, such as in the 

Arrhenius model. Kocks[29] proposes the activation area, Δa, to describe thermal 

activated dependence on obstacle hardening mechanisms. The activation area is 

defined as 

∆𝑎 ≡ −
1

𝑏

𝜕Δ𝐺

𝜕𝜎
                                 (10) 

where ΔG is the activation free enthalpy, b is the Burgers vector, and σ is the applied 

stress. 

 

Use of the b
2
/Δa vs. σ plot to determine the dominant strengthening mechanism of a 

material is illustrated in Figure 10. The slope of the b
2
/Δa plot is proportional to the 

activation work for dislocations sliding across obstacles [30] and is sensitive to 

dislocation forests. The steep slope at low temperatures indicates that the dislocation-

dislocation interactions act pivotal parts in the hardening mechanism. At 298 - 473 K, 

the dislocations are relatively athermal with steep slopes, and, therefore, the flow 

stress is less sensitive to strain rate and temperature. Along with the experimental 

temperature, the effect of dislocation forest hardening gradually decreased. At 573 - 

773 K, the activation work for dislocation strengthening is likely to be much smaller, 

as a result of dominant precipitation hardening. 

 



Figure 10. Effect of temperature on the slope of a b
2
/Δa plot 

 

Strain rate sensitivity 
Figure 11 shows variations in the parameter η of F1(σ,ε,T) for 298 - 473 K and 

F2(σ,ε,T) for 573 - 773 K. The parameter exhibits completely opposite trends with 

strain in different models, which again verifies the huge difference between the 

deformation at 298 - 473 K and 573 - 773K. 1/η characterizes strain rate sensitivity in 

the Arrhenius model and is defined as follows: 

∂ln[sinh(𝛼𝜎)]

𝜕 ln �̇�
|

𝑇,𝜀
=

1

𝜂
                              (11) 

The value of η at 298 - 473 K is far higher than the value at 573 - 773 K, indicating 

the alloy is more sensitive to strain rate at higher temperatures. The result corresponds 

with the analysis in Figure 3. However, the SRS |m| of as-quenched Al-Cu-Mn alloy 

is not constant but increases with the experimental temperature. Although the 

parameter η in the Arrhenius model cannot change, variation of η with different 

temperature ranges is in agreement with the SRS |m|. The reason why the Arrhenius 

model cannot describe the finding is because the activation energy Q in the Arrhenius 

model is supposed to be a constant. If the activation energy Q were a function of 

strain rate, Q=Q(ln휀̇), then, 

∂ln[sinh(𝛼𝜎)]

𝜕 ln �̇�
|

𝑇,𝜀
=

1

𝜂
(1 +

1

𝑅𝑇

𝜕𝑄

𝜕 ln �̇�
)                          (12) 

Therefore, the activation energy Q should decline along with strain rate. A larger 

strain rate leads to denser dislocation forests, which bring about a decline in the 

activation energy. 

 



Figure 11. Comparison of parameters in F1(σ,ε,T) for 298 - 473 K and F2(σ,ε,T) for 573-773 K 

The negative strain rate sensitivity in Figure 1 and Figure 2 is also observed in other 

aluminum alloys [31, 32]. Such behavior may reduce the ductility of materials and 

affect its formability. The negative strain rate sensitivity is generally explained by 

dynamic strain aging (DSA). The microscopic mechanism of DSA has been proposed 

by Picu [33] based on the concept of strength variation in the dislocation junctions 

due to the presence of solute clusters on forest dislocations. At high strain rates, when 

the average time is short, the clusters are too small to produce an effective 

enhancement of the obstacle strength. Because it is related to solute diffusion, DSA is 

thermally activated. The transition temperature from negative to positive |m| is 

between 298 K and 373 K. This phenomenon corresponds with the observations of 

Picu et al. [34] and Ling et al. [35]. The negative strain rate sensitivity does not 

appear at high temperatures due to structural changes, such as precipitation, which 

could change the features of the dislocation motion rate controlling obstacles. 

 

Conclusions 
A set of isothermal tensile tests on as-quenched Al-Cu-Mn alloy were conducted over 

a range of temperatures (298 - 773 K) and strain rates (0.001 - 0.1 /s), which cover the 

actual ranges in practice. Based on observations of the alloy microstructures and 

analysis on the stress-strain curves, different microstructures (dislocation forests are 

dominant at low temperatures, while precipitation is dominant at high temperatures) 

result in the divergence of hardening mechanisms and deformation behaviors over 

different temperature ranges. 

 

Finally, an Arrhenius-type constitutive model was proposed for the whole temperature 

range and was in good accordance with the experimental data. The model includes 

three parts, F1(σ,ε,T) for 298 - 473 K, F2(σ,ε,T) for 573 - 773 K and a transition model 

for 473 - 573 K.  

휀2̇98−473𝐾 = 8.54 × 10−5[sinh (0.0084𝜎0.2)]24.71 exp (−
1.360 × 103

8.314𝑇
) 

휀5̇73−773𝐾 = 2.89 × 1028[sinh (0.0152𝜎0.2)]8.145 exp (−
3.98 × 105

𝑅𝑇
) 

The strain hardening and strain rate sensitivity behaviors of the alloy at low and high 

temperatures were also reflected in variations of the parameter, η, in different models. 



In this paper, the activation energy Q was not constant and varied with temperature, 

strain rate and plastic strain. Experimental conditions influence the microstructures of 

the alloy and thus affect the activation energy value. It is reasonable to conclude that 

the activation energy has a positive correlation with precipitation and a negative 

correlation with dislocation forests. 
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Abstract 
 

This paper briefly reviews the precipitation hardening models in aluminum alloys. 

Several well-accepted precipitation and strengthening models are compared with 

experimental data of aluminum A356 alloy. The differences among various models 

are presented and further improvements of precipitation hardening models are 

discussed. 

 

1 Introduction 
 

Aluminum alloys are increasingly used in structural applications because of their 

lightweight, relatively low manufacturing cost, and high strength to weight ratio 

particularly after heat treatment. Most aluminum alloys, like A356 used for critical 

structures are usually subjected to aging precipitation hardening. The main reason for 

aluminum alloy strengthening is the formation of the precipitates, act as point obstacle 

to inhibit the motion of the dislocation. The early period of aging is governed by the 

dislocation mechanism of shearing while the dislocation mechanism of bypassing 

dominates the later period of aging. The type, size and volume fraction of precipitates 

depend upon the alloy compositions and heat treatment conditions. In Al-Mg-Si 



system, like A356 alloy, Mg/Si precipitates are the dominated strengthening phases 

after aging. 

 

Modeling of precipitation hardening has been extensively studied in past years [1-7].  

Several well-known strengthening models for aluminum alloys are reproduced in this 

paper. The model predictions are compared with experimental data of A356 

aluminum alloy. The differences among various precipitation and hardening models 

are presented and further improvement of hardening models are proposed. 

 

2 Microstructure Models 
 

Mean value approach and discrete value approach are two types of models in the 

literature to predict the size or volume fraction of the precipitate particles. The mean 

value method does not consider the particle size distribution, [1, 3, 5, 6], taking all the 

particles as the same. The discrete value approach considers the particle size 

distribution based on selected radius classes. [9]  

 

2.1 Mean Value Approach 

 

In the mean value approach, the modeling of precipitates follows the classical 

nucleation and growth theory. [4] The basic principle for the growth of precipitate 

particles is diffusion mechanism of solution element. In each period, volume fraction 

and the mean radius of particles follow different growth kinetics.  

Table 3 Input Data for Figure 1 

C0 Ce Cp D(Diffusion 

coefficient m
2
/s) 

γ(surface 

energy J/m
2
) 

V(volume 

per atom m
3
) 

a(lattice 

parameter nm) 

T(K) 

0.06 0.01 1 5.0*10-20 0.13 1.6*10-29 0.404 433 

Table 1 gives the experiment data for mean value approach method, where C0, Ce, Cp 

is the initial solute concentration, equilibrium solute concentration and solute 

concentration in precipitate. Figure 1 gives the result.  



  

Figure 1 The mean particle size and volume fraction predicted by A.Deschamps’s 

model 

The nuclei remain at the critical radius at the nucleation stage. And the nucleation rate 

drop to zero when no extra solute element remains in the solid solution. Growth 

period is corresponded with the dramatically increased mean radius of precipitates, 

meanwhile the volume fraction increases. In coarsening period, the radius slowly 

increases and the volume fraction almost remain the same at peak value. 

 

2.2 Discrete value approach 

 

New formed nuclei at each time step are grouped and the size evolution of each group 

is tracked. The following plots (Figure 2) showing the changes of mean radius, 

volume fraction and particle size distribution during aging are based on this 

approach.[10] 

(a) (b) 



Figure 2 The mean radius, critical radius, density distribution and volume fraction of 

aluminum alloy A356 at 443K, and different aging time, predicted by Myhr’s model 

 

With the density distribution at each radius group, the total density at each time and 

the mean radius can be calculated by summing up all groups. The volume fraction can 

be then derived based on the assumption of spherical precipitate particles. 

 

3 Yield Strength Model 
 

3.1 Either shearing or bypassing mechanism considered 
 

Considering the particle radius, there are two types of dislocation hardening 

mechanisms- shearing and bypassing. Both mechanisms follow the similar 

strengthening prediction, which is given below [10]: 

σ =
𝑀𝐹

𝑏𝐿
= 𝐶𝑟𝑚𝑓𝑛                                                                (1) 

where M is the Taylor factor, F represents the average obstacle force, b is the burgers 

vector and L is the average space of particles. C is the coefficient decided by material 

and aging conditions, r and f represent the mean radius and volume fraction of the 

precipitates, respectively. m and n are different for shearing and bypassing 

mechanism. In Liu’s model, particles are considered to strengthen the matrix via 

bypassing mechanism. 

 

3.2 Combined shearing and bypassing mechanism 

 

Ashby and Shercliff combined shearing and bypassing mechanism using the harmonic 

value of shearing and bypassing strength. [1] Deschamps’ model and Myhr’s model 

separate the shearing mechanism and bypassing mechanism with critical radius, 

applying corresponding equations in different periods. [4] At the beginning of the 

aging process, the particles are small and coherent with matrix; the dislocation can 

shear these particles. [14] At peak aging and over-aged conditions, particle size is 

large and incoherent with matrix and bypassing mechanism dominates deformation. 

[13] 

 

4 Results and Discussion 



 

4.1 Modeling of precipitate evolution during aging 

 

Difficulty in building good microstructure model is how to quantify the nucleation, 

growth and coarsening period. Critical radius, defined as the minimum radius for 

stable particle, is one way to separate growth and nucleation periods, which is widely 

used in many models. However, it is hard to identify when the coarsening period 

begins since the radius grows continuously with no obvious change in short period of 

time. Deschamps defines coarsening portion to calculate the growth and coarsening 

particles fraction: [4] 

𝑓𝑐𝑜𝑎𝑟𝑠𝑒 = 1 − erf (4 (
𝑅

𝑅0
log (

𝐶

𝐶𝑒
) − 1))                                 (2) 

Volume fraction can be another way to build the microstructure model without 

considering radius. Figure 3 gives the volume fraction evolution and yield strength 

change curve predicted by Ashby’s model. Lloyd also predicted volume fraction by 

JMAK model which was calibrated using TEM. 

 

4.2 Modeling of yield strength 

 

As mentioned above, the shearing and bypassing mechanisms are strongly related 

with the radius of particles. Lloyd made a comparison when considering only shearing 

mechanism or bypassing mechanism. [12] In Figure 4, the experimental data lie 

between the two prediction lines, which indicate that there should be a method to 

Figure 3 Yield strength and volume 

fraction for Al-Mg-Si at 443K 

Figure 4 Shearing and bypassing 

mechanism for A6111 aging at 453K 



combine two dislocation mechanisms in order to make the prediction more reliable. 

Ashby’s model takes the harmonic value of shearing strength and bypassing strength 

which matches well with experimental data before peak-aging, but not good in 

overaging period. 

 

The orientation and the shape of precipitates also affect the yield strength. [13] Liu 

considers this effect in his model when predicting Al-Mg-Si alloy aging behaviors, [7] 

following the method given by Zhu et al. to evaluate the yield strength based on 

bypassing mechanism. [8] 

(a) 
 

(b) 

Figure 5 (a) Ashby’s model;(b) Lloyd, Liu, Deschamps & Myhr’s model for A356 at aging 

temperature 443K, the green square dots are experiment data; 

 

Figure 5 compares the yield strength predictions from various models including 

Ashby, Loyld, Liu, Deschamps and Myhr’s model with experimental data of A356 

alloy aged at 443K. It can be seen that Liu’s model has the largest deviation from the 

experimental data and Ashby and Myhr’s models match well with the experimental 

data. 

 

5 Future works 
 

Microstructure model is critical to the precipitate hardening prediction. Mean or 

discrete value approaches are developed well for the spherical shape precipitates. 

However, the actual shape of the precipitate particles in aluminum alloys is not 

spherical. Following the principle of the discrete value approach, it seems that the 



length and the radius of the precipitate particles can be considered to be two-axis 

coordinate to classify the group of particles. A better method to distinguish the growth 

and coarsening periods in order to separate the shearing and bypassing mechanisms is 

needed. In discrete value approach, each group can be considered as a unity to 

analyze its contribution to the yield strength by comparing with the critical radius. 
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1 Introduction of the precipitate hardening models 
Aluminum alloys are widely used in automotive industry because of their high 

mechanical performance and lightweight. The precipitate hardening process is an 

important heat treatment technique to improve the yield strength of aluminum alloys. 

It is generally acknowledged that the precipitate phase formed during the aging 

process strengthens the matrix by blocking the dislocation motions. [1] Mobile 

dislocations can shear coherent or semi-coherent smaller precipitate particles or 

bypass the larger incoherent precipitate particles, which makes different strength 

contributions to the matrix. Thus, the dislocation density will be increased by the 

interactive motion of precipitate phase and dislocations. [2] Most aging hardening 

models have applied process parameters, such as aging conditions, to relate with the 

final mechanical properties, such as hardness or yield stress. In these simulations, the 

process parameters are first used to calculate the precipitate phase morphology and 

volume distribution, and then these microstructure data are used to calculate the yield 

stress. [3, 4]  

 

Precipitate phase formation is affected by aging conditions and aluminum alloy 

components. In general, one primary precipitate phase may make a dominant 

contribution to strengthen the matrix, which is usually fully coherent within the 



matrix and has the dominant volume fraction at the peak-aged state. [1] For a giving 

alloy composition, the aging sequence under different aging conditions can be 

characterized by TEM and DSC curves to determine the prime strengthening 

precipitate phase. Based on the experimental data, the crystallographic parameters, 

orientations, dimensions and particle space distributions of the precipitate phase are 

obtained, and the related thermodynamic parameters can be derived based on first 

principles theory. [5, 6]  

 

The chemical concentration, aging time and temperature are input data to evaluate the 

volume fraction of the precipitate phase. The variation of the solute element 

concentration can change the final yield stress under the same aging conditions. The 

activation energy and equilibrium volume fraction for the precipitate phase is a 

function of the temperature, which inhibits or stimulates the formation of the 

precipitate phase. TEM and isothermal calorimetric experiments can be used to obtain 

the volume fraction of the prime precipitate phase. While the TEM image only 

reflects the volume distribution at a selected section, the DSC curve for a specific 

material gives the exothermic and endothermic peaks and the heats released or 

absorbed, corresponding with the precipitation or dissolution, respectively. [11] After 

obtaining the activation energy for the prime precipitate phase, the classic JMAK 

equation could be adapted to calculate the volume fraction of the precipitate phase: 

 

𝑓 = 𝑓𝑒𝑞𝑒𝑥𝑝(−𝑘(𝑇)𝑡)𝑛                                                                                           1 

 

Where 𝑓𝑒𝑞  is equilibrium volume fraction, T is temperature, 𝑘(T) is transformation 

kinetic as a function of temperature and 𝑄𝑎 is active energy. 𝑡  is transformation time 

and 𝑛  is a materials relate parameter. The mathematical presentation of 𝑘(T) is given 

as followed: 

𝑘(𝑇) = 𝑘0𝑒𝑥𝑝 (−
𝑄𝑎

𝑅𝑇
)                                                                                             2 

When taking all the particles as spheroids for simplification, the volume of the 

precipitate particles can be easily calculated. The volume fraction increases very 

slightly at the beginning part of the aging process; meanwhile, the precipitate particles 

nucleate during this period. Then, the volume fraction rapidly rises to the peak value, 

which represents the pure growth period of the particles. After the peak-aged state, the 



volume fraction is assumed to maintain the peak value. The smaller particles dissolve 

into the matrix and larger particles continue to grow, which leads to the total volume 

fraction remaining the same during the overaged period. However, the volume of the 

prime precipitate phase will decrease during the transformation from the coherent and 

semi-coherent stage to the incoherent stable phase. The volume fraction calculations 

in previous models are all concentrated on the prime precipitate phase without 

considering the phase transformation from primary precipitate phase to other phases. 

In this paper, a new aging model of A356 alloy is proposed consider the volume 

fraction change of primary strengthening precipitate phases.  The new model will 

fulfill at least the following functions: 

a) To determine the volume fraction transformation from the metastable phase to the 

stable phase and obtain the volume fraction evolution of each phase; 

b) To modify the volume change due to the loss of the metastable precipitate phase. 

The volume fraction of the metastable precipitate phase during the aging process 

should be the original value minus the fraction transformed to the stable phase. 

 

2 Experiments 
In this project, A356 is chosen as test materials to accomplish aging experiments. The 

chemical content of A356 is given as followed: 

Table 1 A356 chemical composition 

Element Cu Mg Si Ti Mn Zn 

Wt% ~0.2(max) 0.2~0.4 6.5~7.5 0.25 0.1 0.1 

The heat treatment process of A356 is typical T6 heat treatment. Samples are heated 

to 540C solution temperature and keep for 10 hours, then take out the samples and 

quickly quench to room temperature. The as-quenched samples are kept in fridge for 

avoiding natural aging. Then samples are taken out to reheat various aging 

temperature: 150C, 160C and 170C for 10min, 20min, 30min, 1 hour, 2 hours, 5 

hours, 10 hours, 20 hours, 50 hours and 100 hours. The aged samples quench in air to 

room temperature after aging process and conduct quasi-tensile tests. The 0.2% offset 

yield strength of samples under different aging conditions are obtained for 

experimental fitting and validation.  

 

3 Precipitate hardening model of A356 alloy 



Before establishing precipitate hardening model of A356 alloy, the primary 

strengthening precipitate should be determined in order to obtain related materials 

parameters. In this section, the aging sequence and primary strengthening precipitate 

of A356 are discussed and confirmed. Then, applying JMAK equations, the volume 

fraction of primary strengthening precipitate is used to predict the yield strength of 

A356 under different aging conditions. After obtaining needed microstructure 

parameters, the calculation of yield strength is given as consequence. The 

strengthening mechanism is obeyed bypassing mechanism corresponded with strong 

obstacle particles during underaged and peak aged states.  

3.1 A356 aging sequence and the primary strengthening precipitate 

There is a generally accepted aging sequence for casting the A356 aluminum alloy:  

SSS(supersaturated solid solution )α →GP zones (spheres or needles) →β”(needles) 

→β’ (rods) →β (plates, Mg2Si or non-stoichiometric MgxSiy). At the peak aged stage, 

the primary strengthening precipitate in the cast A356 aluminum alloy is the Mg5Si6 

(β”) precipitate phase, which is different from the Mg2Si (β’) phase previously 

reported. Therefore, in order to apply the thermal growth model, the precipitate phase 

lattice parameter and related thermal constant should be calculated based on the β” 

precipitate phase. 

 

Mg2Si rods such as the β’ phase precipitate from β”; meanwhile, volume loss during 

the transformation because of the phase change will occur. Considering different 

precipitate phases may exist during the aging process, we should obtain knowledge of 

those possible precipitate phases. The following table gives the lattice parameters of 

possible precipitate phases in the Al-Mg-Si alloy system: 

Table 2 Possible precipitate phases of Al-Mg-Si alloy aging process 

Phase Lattice parameter (nm) 

GP-zones, Mg4AlSi6 a=1.48, b=0.405, c=0.648, β=105.3° 

β”, Mg5Si6, Monoclinic a=1.516, b=0.405, c=0.674, β=105.3° 

β’, Mg1.8Si, Hexagonal a=b=0.715, c=0.405, γ=120° 

β, Mg2Si, Cubic a=0.6354 

U1, MgAl2Si2 a=b=0.405, c=0.674, γ=120° 

U2, Al4Mg4Si4 a=0.675, b=0.405, c=0.794 



Based on the aging sequence, the β” phase precipitates from the GP-zones. Thus, the 

volume changes contributed by β” are calculated directly by the volume loss from the 

GP-zones to β”. However, there will be some β’ phase formulated from β”, which 

means the volume of β” should be subtracted from the transformed β’ phase to modify 

the value before calculating the growth contribution of the β” phase. Additionally, the 

volume of the β’ phase also needs to be subtracted from the volume of the β phase, 

since in the latter periods of the aging process, the β’ phase will turn into the β phase. 

In addition to the aging sequence, the Mg/Si content ratio and aging conditions also 

affect the precipitate phase distribution. The concentration of Mg is approximately 

0.31%~0.34%, while the Si concentration is 0.7%. Some works have also noted the 

phase fraction of these precipitate phases may be changed because of the chemical 

concentration and aging conditions. In the T6 heating condition, the β” phase is the 

prime precipitate phase with a high volume fraction when the aging time is less than 

half an hour, while the β’ phase only forms slightly. When the aging time prolongs 3 

hours, the prime precipitate phase is the β’ phase, and almost no β” phase exists. The 

following chart given by C.D. Marioara in 2006 shows the phase volume fractions at 

different aging times of these precipitate phases: 

Table 3 Si/Mg ratio and aging treatment effect on the prime precipitate phase volume fraction 

Si/Mg ratio Aging treatment Prime precipitate phase 

2 3 h 97% U1 phase(Al2MgSi2) 

1.25 10 min 76% β” 

3 h 26% β’, 65% U2(Al4Mg4Si4) 

0.8 10 min 100% β’ 

3 h 97% β’ 

In this paper, the volume loss of primary strengthening precipitates is the phase 

transformation from β” phase to β’ phase. Since T6 aging process is applied in this 

experiment, β phase which is usually formed in over aging process is not included in 

phase transformation. This phase transformation also explains the overestimation of 

yield strength at peak aging.  

 
3.2 Volume fraction of primary strengthening precipitates 



The primary strengthening precipitate is β” of A356 alloy in aging process. In this 

work, the volume fraction of the precipitate phase is used as an input to predict the 

final yield stress. The basic equation of the volume fraction applied JMAK equation: 

𝑓𝑟 = 1 − 𝑒𝑥𝑝(−𝑘(𝑇)𝑡)𝑛                                                                                   3 

This equation can be applied to the pre-aged aluminum alloys in isothermal or non-

isothermal aging processes. For the present work, with our A356 experiment, the 

isothermal aging process is mainly taken into consideration. Parameter n in equation 3 

is determined based on the shape and composition of the precipitates. Parameter k is a 

temperature dependent constant, which is calculated by a form of the Arrhenius-type 

relationship. The JMAK equation is adapted to predict the relative volume fraction 

change of the precipitates during the nucleation and growth process. 

 

Based on JMAK equation’s assumption, the volume fraction of primary strengthening 

precipitates remains constant at peak state and after. However, with prolonging the 

aging process, some of the meta-stable precipitates will form from primary 

strengthening precipitates, which reduces the volume fraction of primary 

strengthening precipitates. Ford’s patent proposed a method to optimize heat 

treatment via predicting thermal growth of the precipitate phases.  

 

The second term is the volume fraction of the precipitate phase, which is calculated 

based on the JMAK equation. This term is determined by the thermally dependent 

equilibrium phase fraction of the precipitate phase  𝑓𝑒𝑞(𝑇) , and the temperature-

dependent kinetic growth coefficient. The function 𝑓𝑒𝑞(𝑇) utilizes the computational 

thermodynamic method, considering the complexities of the precipitation-hardened 

alloys, and is only dependent on temperature. 

 

The temperature-dependent kinetic growth coefficient k(T) is used to predict the 

volume at different heating times. The following equations show k values of the 

primary precipitate phase 𝛽′′ and transformed phase 𝛽′of A356 alloy: 

𝑘𝛽′ = 8750 𝑒𝑥𝑝 (−
90000

𝑅𝑇
)                                                                                      4 

𝑘𝛽′′ = 19000 𝑒𝑥𝑝 (−
76000

𝑅𝑇
)                                                                                   5 



After obtaining the above terms, the volume fraction of the precipitate phase, after 

considering the transformation from the precipitate phase to the stable phase, can be 

modified as: 

 

𝑓𝑟
𝛽′′

= 1 − 𝑒𝑥𝑝[−𝑘𝛽′′(𝑇)𝑡]                                                                                           6 

𝑓𝑟
𝛽′

= 1 − 𝑒𝑥𝑝[−𝑘𝛽′(𝑇)𝑡]                                                                                            7 

𝑓𝑟 = 𝑓𝑟
𝛽′′

− 𝑓𝑟
𝛽′

                                                                                                               8 

Since the precipitate phases will tend to grow or transform before being stabilized and 

bring detritus deformation to the alloy system, the volume fraction for the primary 

precipitate phase is not constant as previous assumption claimed. The combination of 

the volume evolution and transformation among the precipitate phases during the 

aging process can reduce the volume fraction of primary strengthening precipitate. 

Therefore, the relative volume fraction of primary strengthening precipitate, which is 

used as input data, is obtained from the difference between the value calculated from 

equation 6 and 7. 

 

3.3 Modeling of yield strength of A356 in underaged process 

The yield strength model of A356 is composed of three terms: the intrinsic strength of 

aluminum (𝜎𝑖); the solid solution strength (𝜎𝑠𝑠) and precipitate strength (𝜎𝑝𝑝𝑡). They 

are summarized by following equation: 

𝜎 = 𝜎𝑖 + 𝜎𝑠𝑠 + 𝜎𝑝𝑝𝑡                                                                                                   9 

Generally, the intrinsic yield strength of aluminum matrix is treated as constant during 

aging process. The strength contribution of solid solution is affected by the 

transformed volume fraction of primary strengthening precipitates, which are 

nucleated from solid solution. Esmaeili gave the mathematical relationship between 

solid solution strengthening and volume fraction of primary strengthening phase: 

𝜎𝑠𝑠 = 𝜎0𝑠𝑠(1 − 𝑓𝑟)2/3                                                                                             10 

The strengthening mechanism of A356 in aging process is governed by the interactive 

motion of precipitate particles and dislocations. Based on different size of precipitate 

particles played as obstacles to mobile dislocation, the strengthening mechanism can 

be categorized as strong or weak strengthening depending on dislocation breaking 

angle. When the breaking angle is smaller than 120
°
, the mobile dislocation could by- 



passing this kind of precipitate particle (which is called strong obstacles) and leave a 

dislocation loop behind so that increasing dislocation density. When the breaking 

angle is larger than 120
°
, the mobile dislocation will be cut when encountering with 

precipitate particles, in this circumstance, such particles are called small obstacles. 

During underaged period, the precipitate strengthening mechanism is governed by 

strong obstacles strengthening. The contribution of precipitate strengthening is 

calculated by following equation: 

𝜎𝑝𝑝𝑡 =
𝑀𝐹

𝑏𝐿
                                                                                                            11 

where M is the Taylor factor, b is magnitude of the Burgers vector, F is the average 

force of a particle and L is the average space of the particles. The average obstacle 

strength F has a simple linear relationship with the average radius of the differently 

shaped or oriented precipitates, and the average spacing L is defined as the planar 

center-to-center distance between the strong particles or adapted to Freidel statistics 

for a triangular array of weak obstacles, which is related to the volume fraction of the 

precipitate phase. [7-9] At peak-aging, Equation 11 may be rewritten as: 

𝜎𝑝𝑝𝑡 = 𝐴𝑓𝑟

1
2                                                                                                                    12 

where A is a constant related to the material, and 𝑓𝑟 represents the relative volume 

fraction of the precipitate phase. [10] Under this condition, the yield stress is only 

dependent on the volume fraction, regardless of the morphology of the precipitate 

phases. Constant A will be calibrated by yield strength at peak aged state. The 

average obstacle strength is taken as a simple linear relationship with the average 

radius of the differently shaped or oriented precipitates, and the average spacing is 

defined as the planar center-to-center distance between the strong particles or adapted 

by Freidel statistics for a triangular array of weak obstacles. Therefore, the total yield 

strength is obtained as followed: 

𝜎 = 𝜎𝑖 + 𝜎0𝑠𝑠(1 − 𝑓𝑟)2/3 + 𝐴𝑓𝑟

1
2                                                                                  13 

The flow chart of modified precipitate hardening model for A356 is pictured as 

followed: 



 

Figure 1 Flow chart of modified precipitate hardening model for A356 

 

3.4 Simulation results compare between original precipitate hardening model and 

modified model  

Based on original precipitate hardening, the volume fraction of primary strengthening 

precipitates remains constant at and after peak aged state. The strengthening 

mechanisms at under aged and over aged period are different. In this project, the 

under aged aging process is concerned. Figure 2 gives the simulation results obtained 

from original model. It can tell from the figure that the simulation results predict large 

underestimation at 150C compared with experimental data while give overestimation 

at 170C. Since during under aged state, the strong strengthening mechanism is used to 

calculate the yield strength, the volume fraction of primary strengthening phase 

should be the only reason to cause this derivation. If the volume fraction of primary 

strengthening precipitate is the only concerned parameter, the deviation of 



experimental results and simulation results cannot be eliminated. 

 

Figure 2 Yield strength prediction results by original model at different aging conditions 

When applying the optimized model, the difference kinetic parameters of primary 

strengthening precipitate 𝛽′′and transformed precipitate 𝛽′ can help to improve the 

accuracy of volume fraction value at both lower temperature and high temperature. 

The needed parameters for optimized model are given in Table 2 and the simulation 

results for A356 are given in Figure 3: 

Table 2 The value of parameters used in optimized model 

Adjusted parameters used in optimized model Value 

𝜎𝑖 10MPa 

𝜎0𝑠𝑠 42MPa 

A 240MPa 

 



 

Figure 3 Yield strength predicted by optimized model for A356 at different aging temperatures  

It can be seen from the figure that the predicted results match well with the 

experimental data. While the previous precipitate hardening model is overestimated 

during the over-aging period, the modified model shows the drop of the yield stress 

since the difference volume fraction of primary precipitate and transformed 

precipitate reduce at 150C. At 170C, the overestimation of original simulation results 

also eliminate because of more primary precipitate occurred in under aged state than 

transformed precipitate compared with low temperature.   

 

4 Summary 
The precipitate hardening model based on JMAK equation is reviewed and applied to 

predict A356 aging response behaviors. The volume fraction is used as an input to 

study the microstructure evolution, according to the JMAK equation. It is concluded 

that applying the JMAK equations is much easier to do, and a satisfactory simulated 

result can be obtained from the original model. However, the simulated result is 

overestimated in the over aged period at high temperature while underestimated in 

under-aged period. The volume fraction of the prime strength precipitate for 

hardening is considered to remain the same since there is no newly formed precipitate 

particles in pure growth period in under-aged period and large precipitate particle will 

consume small particles in over-aged period. While in reality, the transformation 

among the prime precipitate phase and the other precipitate phases or stable phases 

can lead to extra volume losses during the whole aging process. Therefore, the 

modification of the volume fraction should be considered. In this project, the 



optimized method of volume fraction is learnt from thermal growth model based on 

Ford’s patent. By applying this model, the volume change due to the newly formed 

precipitates in the aging process and the volume fraction of each phase can be 

calculated. The differences in volume transformation kinetics of primary 

strengthening precipitate 𝛽′′ and transformed precipitate 𝛽′can adjust such derivation. 

The optimized precipitate hardening model is presented in this report.  
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Contribution 
In the paper of “Competitive relationship between thermal effect and grain boundary 

precipitates on the ductility of an as-quenched Al–Cu–Mn alloy”, the experiments 

including tensile tests and observations of fracture surface under SEM are conducted. 

The phenomena that ductility of Al-Cu-Mn alloy change a lot when at low 

temperature and high temperature ranges is observed in tensile tests during different 

temperatures. Then, a series of tensile tests under different strain rates and 

temperatures are conducted, which proves temperature has dominant impact on 

ductility behaviors. The observations of fracture surface via SEM show there are 

precipitates gathered at the grain boundary, and such precipitates, which are identified 

with EDS, are confirmed to reduce bonding energy of neighbor grains. Thus, the 

ductility reduction at high temperature range can be explained by precipitates 

formation. 

 

In the paper of “Temperature-dependent constitutive behavior with consideration of 

microstructure evolution for as-quenched Al-Cu-Mn alloy”, a modified constitutive 

model is proposed to describe mechanical behaviors of as-quenched Al-Cu-Mn alloy 

from room temperature to high temperature (up to 500C). Stress-strain curves 

obtained tensile tests behaves different pattern at the low temperature range and the 

high temperature range. Arrhenius type constitutive model with Zenor-Hollomon 

parameters is modified since the classical version of this model is only valid at high 

temperature range with the assumption that hot deformation energy remains constant. 

My contribution in this paper is release the assumption so that hot deformation energy 

is a function of temperature. At low temperature, the forest dislocations dominates the 

deformation properties and precipitates formed at high temperature interact with 

mobile dislocation and reduce bonding energy of grains affect deformation behaviors 

at high temperature range. At last, the final temperature-dependent constitutive 

models are established in three temperature ranges, low temperature range, transition 

temperature range and high temperature range.  

 



In the paper of “A brief review of precipitate hardening models for aluminum alloy”, 

my work is focus on previous classical precipitate hardening models for aluminum 

alloy and categorized them into mean value approach and discrete value approach 

based on the simulation method of morphology and volume fraction of precipitate 

phases. The regeneration of classical models is accomplished with experiment data of 

A356 offered by General Motors Company.  

 

At last, a modified precipitate hardening model is put forward to obtain more accurate 

simulation results of A356 aging response behaviors. The volume fraction of primary 

strengthening precipitate 𝛽′′ is adjusted by considering the volume loss caused by 

phase transformation. The 𝛽′  phase will nucleate from 𝛽′′  phase so that the total 

volume fraction of 𝛽′′ is reduced. The optimized mode gives perfect fitting results 

compared with experiment data. 


