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ABSTRACT 

 

The Finite Difference Time Domain (FDTD) Method has been a powerful tool in 

numerical simulation of electromagnetic (EM) problems for decades. In recent years, 

it has also been applied to biomedical research to investigate the interaction between 

EM waves and biological tissues. In Wireless Body Area Networks (WBANs) studies, 

to better understand the localization problem within the body, an accurate 

source/receiver model must be investigated. However, the traditional source models 

in FDTD involve effective volume and may cause error in near field arbitrary 

direction.     

 

This thesis reviews the basic mathematical and numerical foundation of the Finite 

Difference Time Domain method and the material properties needed when modeling 

a human body in FDTD. Then Coincident Phase Centers (CPCs) point sources 

models have been introduced which provide nearly the same accuracy at the 

distances as small as 3 unit cells from the phase center. Simultaneously, this model 

outperforms the usual sources in the near field when an arbitrary direction of the 

electric or magnetic dipole moment is required. 

 

 

 

Keywords: Finite Difference Time Domain Method, Infinitesimal Electric Dipole, 

Infinitesimal Magnetic Dipole, Point Source, Source Modeling, Wireless Body Area 

Networks, Localization 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Research Background 

 

Since the introduction of the Finite-Difference Time-Domain (FDTD) method by K. S. 

Yee in 1966 [1], it has been widely applied in many critical areas such like simulating 

complicated physical phenomena and improving innovation in key electrical 

engineering areas ranging from radar system to consumer electronics and cellphones 

[2]. Given its nature simplicity — without having to derive Green’s Functions or to 

solve system of matrix equations — and its good scalability when handling complex 

inhomogeneous/dispersive media problems, FDTD has become very popular in recent 

emerging cross-discipline areas like Wireless Body Area Networks (WBANs) field [3]. 

In WBANs, a crucial problem is how to model electrically small antennas and sensors, 

both in free space and in the presence of electrically lossy media. WBANs may run 

around 400MHz which result in a wavelength of ~ 1 meter. To accurately model 

antennas and sensors around or inside human body which is characterized by 

wavelengths usually less than 10 centimeters, very fine meshes should be used. The 

treatment of the radiation source within the FDTD method is fundamental to this 

problem and the topic of this thesis. 

 

In the past decades continuous research has been pursued in an effort to expand the 

applications of the method while reducing errors and uncertainties inherent in 

digitally implemented simulations. While true continuous-time analogue operation 

from a digital computer is theoretically unattainable in practice, it is with the goal of 

ever improving performance in mind that enhancements in modeling and simulation 

techniques are proposed and tested. In this way, accurate and timely engineering tools 

can be created that address these complex electromagnetic applications in WBANs. 

 

In the limit, an infinitesimal radiator, whether electrical or magnetic in nature, 

approaches an electric or magnetic dipole moment. While infinitesimally small 

dipoles are usually of little practical value, they represent the building blocks for more 

intricate geometries and proper understanding of these components can facilitate more 

accurate antenna modeling. 

 

1.2 Thesis Overview 

 

Traditional modeling of small electric (magnetic) dipoles involves the creation of an 

asymmetric point source oriented along a cell edge (face center) consistent with the 

electric (magnetic) field node that serves as the field supply. As described below, this 

methodology allows for the smallest possible size of one cell (as constrained by the 

structured FDTD mesh) but distributes the source in such a way that the phases of the 
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three cartesian source components are slightly different from each other. While this 

inconsistency is acceptable for many modeling problems, phase inaccuracies can be 

extremely detrimental when simulating highly phase sensitive including signal Time 

of Arrival (ToA) and Direction of Arrival (DoA) estimation, which, among other 

things, use phase data for high precision ultrawideband (UWB) geo-location [3] and 

antenna array beamforming [4], respectively. 

 

This thesis introduces a new, arbitrarily oriented symmetric point source model with 

coincident phase centers (CPCs) for electric and magnetic dipoles, electric field 

sources and probe modeling. The analytical and numerical results will show that, 

despite the larger averaging volume, the point sources with CPCs provide accuracies 

that are very comparable to standard sources with observation distances as small as 3 

unit cells from the phase center. Simultaneously, these sources outperform standard 

sources in the near field when an arbitrary direction of the electric or magnetic dipole 

moment is required. 

 

Chapter II gives the basic mathematical foundation of Maxwell’s equations in 

electromagnetics problems and the fundamental idea of FDTD method, as well as the 

Yee discretization method of space grids. Since the original Yee grid is not convenient 

in practical implementation, an alternative integer-based scheme has been introduced 

to solve the issue. A unified materials property modeling method is described in this 

chapter as well. At the very end of this chapter, Absorbing Boundary Conditions 

(ABCs) are discussed. There are varieties of ABCs that have been investigated in the 

past decades including Mur’s ABCs and the so called Perfectly Matched Layer 

(PML),etc. Here, Mur’s first and second order ABCs with a superabsorption 

enhancement have been adopted because of its balance in simplicity and performance. 

 

Chapter III gives the theoretical model and implementation details of both standard 

and CPCs point source in different scenarios including electric dipole, magnetic 

dipole (coil) and impressed voltage source. By comparing with the analytical solution, 

a number of test cases have been conducted as benchmarks: 1) Transmit electric 

dipole, 2) Arbitrarily oriented electrical dipole, 3) Transmit magnetic dipole (coil), 4) 

Transmit and receive coils, 5) Arbitrarily oriented coil, 6) Impressed voltage source. 

Performance validation indicates that the CPCs model can well describe the arbitrarily 

oriented cases and remains a good approximation to grid-aligned cases. Finally, an 

analysis of the closest distance between the transmit and receive antennas has been 

performed. It is proved that at a spacing of three grid cells, a very good match can be 

achieved and even with a spacing of one cell, the magnetic dipole (coil) still gives a 

reasonable performance. 

 

Chapter IV concludes this thesis and lists some future possible research directions. 
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CHAPTER 2  

FINITE DIFFERENCE TIME DOMAIN METHOD 

 

2.1 Maxwell’s equations 

 

From a long view of the history of mankind - seen from, say, ten thousand years from 

now - there can be little doubt that the most significant event of the 19th century will 

be judged as Maxwell's discovery of the laws of electrodynamics — Richard P 

Feynman. 

 

In 1861, by introducing the displacement current term in Ampere’s law, Scottish 

mathematician and physicists James Clerk Maxwell concluded the achievements from 

previous scientists Charles-Augustin de Coulomb, André-Marie Ampère, and Michael 

Faraday, etc., and developed a series of equations to describe universal 

electromagnetic phenomena, and predict light propagating as electromagnetic waves. 

It has driven most technology progress in the past centuries and become the 

foundation of modern electrical engineering. 

 

2.1.1 Lossless space with no sources 

 

For simplicity, a propagation problem in lossless freespace is given as the beginning. 

 

Consider an arbitrary (inhomogeneous) medium with electric permittivity  having the 

units of F/m and with magnetic permeability  having the units of H/m. In free 

lossless space (space without sources), Maxwell’s equations for the electric field (or 

the electric field intensity) E


 [V/m] and for the magnetic field (or the magnetic 

field intensity) H


 [A/m] in time domain have the form 

 

Maxwell’s H


  equation     H
t

E 






                (2-1a) 

 

Faraday’s law        E
t

H 






          (2-1b) 

 

Gauss’ law for electric field (no electric charges)  0 E


       (2-1c) 

 

Gauss’ law for magnetic field (no magnetic charges)  0 H


       (2-1d) 
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2.1.2 Driving sources and lossy space 

 

By introducing the driving source and lossy in space, the complete Maxwell’s 

equations can be formulated. The driving sources for the electromagnetic fields are 

given by (generally volumetric) electric current density sJ


 of free charges with the 

units of A/m2, and by volumetric free charge density s  with the units of C/m3. The 

free charges are free electrons in a metal or free electrons and/or holes in a 

semiconductor. Instead of volumetric currents one may consider surface currents (for 

example, on the blade of a metal dipole) or line current (an infinitesimally thin 

cylindrical dipole/wire).  

 

The driving sources may be also given by a (volumetric) magnetic current density 

msJ


 with the units of V/m2 and by volumetric magnetic charge density ms . The 

magnetic current density may be associated with an external impressed voltage. 

However, no magnetic charge has been found to exist in nature. Still, in practice it is 

often convenient to use the concept of magnetic currents (and fictitious magnetic 

charges). 

 

The electric conduction current is always present in a lossy medium in the form 

EJ


  where   is the electric conductivity with the units of S/m. An analogous 

magnetic conduction current may be defined describing the magnetic loss mechanism, 

HJ m


  where   is the magnetic resistivity with the units of /m. 

 

In a lossy space with driving sources, Maxwell’s equations for the electric field (or the 

electric field intensity) E


 [V/m] and for the magnetic field (or the magnetic field 

intensity) H


 [A/m] in time domain have the form 

 

Ampere’s law modified by displacement currents SJJH
t

E 






   (2-2a) 

 

Faraday’s law                msm JJE
t

H 






   (2-2b) 

 

Gauss’ law for electric field             sE  


   (2-2c) 
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Gauss’ law for magnetic field (no magnetic charges)    msH  


   (2-2d) 

 

The continuity equation for the impressed electric current can be derived from these 

equations above:                                  0



s

s J
t


   (2-2e) 

 

The analytical solution of Maxwell’s equations has been studied for years, with much 

progress achieved. However, in many complex real engineering applications which 

include non-uniform boundary conditions and complicated geometric structures, the 

analytical solution is too complicated to be tractable. At this time numerical method 

becomes an alternative and powerful tool to handle these problems with arbitrary 

geometries and boundary conditions. FDTD is one such method and has been widely 

used in recent years. 

 

2.2 The Yee algorithm 

 

The basic idea of the FDTD method is based on the traditional finite difference 

method to solve partial differential equations numerically. The differential may be 

approximated as 

 

                 
x

xxfxxf

dx

xdf

xx 






)2/()2/()( 00

0

              (2-3) 

 

with second order accuracy, which can be derived from Taylor series: 

 

...)(
2!3

1
)(

2!2

1
)(

2
)()

2
( 0

'''

3

0
''

2

0
'

00 






 








 






 xf

x
xf

x
xf

x
xf

x
xf       (2-4a) 

 

...)(
2!3

1
)(

2!2

1
)(

2
)()

2
( 0

'''

3

0
''

2

0
'

00 






 








 






 xf

x
xf

x
xf

x
xf

x
xf        

(2-4b) 

 

By adding them together, 

 

...)(
2!3

2
)()

2
()

2
( 0

'''

3

0
'

00 






 






 xf

x
xxf

x
xf

x
xf                    (2-5) 

 

Divide by x We can get 
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...)(
2!3

1
)(

)
2

()
2

(

0
'''

2

2

0
'

00













xf
x

xf
x

x
xf

x
xf

                      

(2-6) 

 

This may be rewritten as  

 

)(
)

2
()

2
(

...)(
2!3

1)
2

()
2

()(
)(

2
00

0
'''

2

200

0
'

0

xO
x

x
xf

x
xf

xf
x

x

x
xf

x
xf

dx

xdf
xf

xx

























             (2-7) 

 

The )( 2xO   term indicates a second order accuracy here. 

 

While it is simple in the one-dimension case, to develop a stable 3-D framework for 

general electromagnetics problem discretization was not accomplished until 1966, 

when K. S. Yee published a paper proposing an elegant discretization scheme to solve 

this problem. 

 

A cubic Yee unit cell (uniform cell size  in all directions) is shown in Fig. 2-1. It has 

the following features [1]: 

 

1. The electric field is defined at the edge centers of a cube; 

2. The magnetic field is defined at the face centers of a cube; 

3. The electric permittivity/conductivity is defined at the cube center(s); 

4. The magnetic permeability/magnetic loss is defined at the cube nodes 

(corners). 
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Figure 2-1 Yee unit cell 

 

Therefore, four interleaving indexing systems (i,j,k) in space may be introduced and 

used simultaneously: 

 

1. the system based on cube edge centers (for the electric field); 

2. the system based on cube face centers (for the magnetic field); 

3. the system based on cube centers (for electric permittivity/conductivity 

values); 

4. the system based on cube nodes (for magnetic permeability/magnetic loss 

values); 

 

The interleaving feature of those systems is mathematically described by half-integer 

indexes. For example, when the indexing system for the magnetic field is used, the 

nodal magnetic field 
kjiyH

,,
 is located exactly halfway between electric field nodes 

kjizE
,,2/1

 and 
kjizE

,,2/1
 in Fig. 2-1. Similarly, when the indexing system for the 

electric field is used, the nodal electric field 
kjizE

,,
 is located exactly halfway 

between magnetic field nodes 
kjiyH

,,2/1
 and 

kjiyH
,,2/1

 in Fig. 2-1, except for the 

boundary nodes.  

 

2.2.1 Half-grid formulation 

 

Applying the central differences to all derivatives in Eqs. (2-1) and denoting the 

temporal grid by a superscript n, one arrives at the following finite-difference update 
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equations [2]: 

 

Determine magnetic field at half temporal grid using the past values of the magnetic 

and electric fields: 

 

 n

kjiz

n

kjiz

n

kjiy

n

kjiykjix

n

kjixkjix

n

kjix EEEEHHHH
,2/1,,2/1,2/1,,2/1,,,,2

2/1

,,,,1

2/1

,, 


  

                        (2-8a) 

 

 n

kjix

n

kjix

n

kjiz

n

kjizkjiy

n

kjiykjiy

n

kjiy EEEEHHHH
2/1,,2/1,,,,2/1,,2/1,,2

2/1

,,,,1

2/1

,, 




                   (2-8b) 

 

 n

kjiy

n

kjiy

n

kjix

n

kjixkjiz

n

kjizkjiz

n

kjiz EEEEHHHH
,,2/1,,2/1,2/1,,2/1,,,2

2/1

,,,,1

2/1

,, 


  

    (2-8c) 

 

Determine electric field at integer temporal grid using the past values of the magnetic 

and electric fields: 

 

 2/1

2/1,,

2/1

2/1,,

2/1

,2/1,

2/1

,2/1,,,2,,,,1

1

,,




















n

kjiy

n

kjiy

n

kjiz

n

kjizkjix

n

kjixkjix

n

kjix HHHHEEEE  

                   (2-8d) 

 

 2/1

,,2/1

2/1

,,2/1

2/1

2/1,,

2/1

2/1,,,,2,,,,1

1

,,




















n

kjiz

n

kjiz

n

kjix

n

kjixkjiy

n

kjiykjiy

n

kjiy HHHHEEEE  

                   (2-8e) 

 

 2/1

,2/1,

2/1

,2/1,

2/1

,,2/1

2/1

,,2/1,,2,,,,1

1

,,




















n

kjix

n

kjix

n

kjiy

n

kjiykjiz

n

kjizkjiz

n

kjiz HHHHEEEE  

                                                                (2-8f) 

 

The sources may then be added as described by Eqs. (2-2). The electric-field updating 

coefficients are defined by material properties in the form 
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The same equation applies to 21, yy EE  and to 21, zz EE , respectively, but the material 

properties at the observation node i,j,k may be different. 

 

The magnetic-field updating coefficients are defined by material properties in the 



9 
 

similar form 
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The same equation applies to 21, yy HH  and to 1 2,z zH H , but the material properties 

at the observation node i,j,k may be different. 

 

2.2.2 Numerical (integer spatial indexes) formulation 

 

Given that the half-grid representation is quite difficult to program, it will be much 

more convenient to transfer half integer indices to a global integer index. The 

corresponding numbering scheme is shown in Fig. 2-2. Here, kjiG ,,  denotes the 

reference cube node. 

 

 
Figure 2-2 A numbering scheme suitable for programming 

 

Eqs. (2-8) may be rewritten in terms of integer indexes. In short, ±½ is replaced by 1 

or 0 in the magnetic field update equations, and ±½ is replaced by 0 or -1 in the 

electric field update equations, respectively. With reference to Fig. 2-2 one has 

 

 n

kjiz

n

kjiz

n

kjiy

n

kjiykjix

n

kjixkjix

n

kjix EEEEHHHH
,1,,,,,1,,,,2

2/1

,,,,1

2/1

,, 


   (2-9a) 

 



10 
 

 n

kjix

n

kjix

n

kjiz

n

kjizkjiy

n

kjiykjiy

n

kjiy EEEEHHHH
1,,,,,,,,1,,2

2/1

,,,,1

2/1

,, 


   (2-9b) 

 

 n

kjiy

n

kjiy

n

kjix

n

kjixkjiz

n

kjizkjiz

n

kjiz EEEEHHHH
,,1,,,,,1,,,2

2/1

,,,,1

2/1

,, 


   (2-9c) 

 

Determine electric field at integer temporal grid using the past values of the magnetic 

and electric fields: 
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To Improve the efficiency when implemented in MATLAB, a vector form is applied 

as follow. 
 

%%  H-field update 

HxN =  Hx1.*HxP + Hx2.*(diff(EyN,1,3)- diff(EzN,1,2)); 

HyN =  Hy1.*HyP + Hy2.*(diff(EzN,1,1)- diff(ExN,1,3)); 

HzN =  Hz1.*HzP + Hz2.*(diff(ExN,1,2)- diff(EyN,1,1)); 

 

%%  E-field update 

ExN(:,2:Ny,2:Nz) = 

Ex1.*ExP(:,2:Ny,2:Nz)+Ex2.*(diff(HzP(:,:,2:Nz),1,2)-diff(HyP(:,2:Ny,:),1,3); 

 

EyN(2:Nx,:,2:Nz) =  

Ey1.*EyP(2:Nx,:,2:Nz)+Ey2.*(diff(HxP(2:Nx,:,:),1,3)-diff(HzP(:,:,2:Nz),1,1); 

 

EzN(2:Nx,2:Ny,:) = 

Ez1.*EzP(2:Nx,2:Ny,:)+Ez2.*(diff(HyP(:,2:Ny,:),1,1)-diff(HxP(2:Nx,:,:),1,2); 

 

The electric-field updating coefficients are defined by material properties in the same 

form as before 
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The same equation applies to 21, yy EE  and to 21, zz EE , respectively, but the 
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material properties at the observation node i,j,k may be different. 

 

The magnetic-field updating coefficients are defined by material properties in the 

same form as before 

 

)2/(1

)/(
,

)2/(1

)2/(1

,,,,

,,

,,2

,,,,

,,,,

,,1

kjikji

kji

kjix

kjikji

kjikji

kjix
t

t
H

t

t
H

















          (2-9h) 

 

The same equation applies to 21, yy HH  and to 21 , zz HH , but the material 

properties at the observation node i,j,k may be different. 

 

2.2.3 Exponential time stepping 

 

For a medium with high loss the update coefficients in Eqs. (2-9g), (2-9h) may 

become negative. This leads to a numerical instability. A solution to this problem is to 

“pre-solve” Maxwell’s curl equations, by first finding the solution of homogeneous 

equations, say 
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             (2-10a) 

 

and then obtain the solution of the full equations in the form of a convolution integral. 

This results in the following formulas for the update coefficients, valid for both 

homogeneous and inhomogeneous materials [5]. 
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        (2-10b) 

 

The same equation applies to 21, yy EE  and to 21, zz EE , respectively, but the 

material properties at the observation node i,j,k may be different. Eqs. (2-10b) are 

equivalent to Taylor series with the first or second order of accuracy. 

 

The magnetic-field updating coefficients are modified accordingly 
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        (2-10c) 

 

The same equation applies to 21, yy HH  and to 21 , zz HH , but the material 

properties at the observation node i,j,k may be different. Eqs. (2-10c) are again 

equivalent to Taylor series with the first or second order of accuracy. 

 

The implementation of the exponential time stepping requires care, due to the 

singularity of the second Eq. (2-10b) when 0 . A vanishingly small conductivity 

value for air, that is S/m10 6 , was assumed to make the second Eq. (2-10b) 

uniformly valid. 

 

The exponential time stepping method may be applied to problems involving 

highly-conductive dielectrics – human body, salt water, Earth ground – at low and 

intermediate frequencies. It can be also applied to the direct modeling of metal objects 

by imposing a very high conductivity in the object volume. 

 

2.3 Materials properties in FDTD 

 

In the standard FDTD formulation, every elementary Yee cell (electric-field 

components along a cube edges) is filled by a homogeneous medium. Dielectric 

boundaries can be only located between adjacent cells, therefore, they are tangential 

to the electric field components – see Fig. 2-3. Simultaneously, magnetic boundaries 

can be only located halfway between adjacent cells, therefore they are also tangential 

to the magnetic field components. Fig. 2-3 shows the corresponding concept. 
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Figure 2-3 Standard field nodes and material parameter nodes. The permittivity/conductivity is 

defined at cell centers. The permeability/magnetic loss is defined at cell corners 

 

Effective constitutive parameters are derived by enforcing the continuity of the 

tangential electric and magnetic field components in the integral formulation of the 

Ampere’s law and Faraday’s law [6]. These parameters are obtained by averaging the 

parameters of the neighboring cells with respect to the discontinuity. Such formulation 

is first-order accurate in cell size and leads to the definition of an effective 

permittivity and permeability. The result has the form [6], [7] : 

 

- kjikji ,,,, ,  in Eqs. (2-9a) are obtained by averaging four adjacent center-cell values 

– see Fig. 2-3c;  

- kjikji ,,,, ,  in Eqs. (2-9b) are obtained by averaging four adjacent node values. 

 

2.4 Absorbing Boundary Conditions 

 

An infinite large computation domain is generated when dealing with open space 

problem. Due to finite computational capacity and memory size in computer, it is 

however impossible to handle these problems directly. To simulate the infinite space, 

Absorbing Boundary Conditions (ABCs) are needed.  

 

A wide variety of ABCs exist. In this thesis the first- and second-order ABCs due to 

Mur [8] augmented with Mei’s superabsorption [9] will be used. 

 

A simple yet reasonably accurate combination is that of the first-order Mur’s ABCs 
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and superabsorption. This combination does not need a special treatment for edges 

and corners. It is trivially extended to the case of an inhomogeneous medium and still 

has a sufficient numerical accuracy (second-order) as confirmed by a number of 

computational examples. 

  

2.4.1 Mur’s ABCs 

 

Mur’s ABC is inspired by the idea of the boundary conditions in acoustic wave 

problems. Let's take a look at Fig. 2-4 that follows. First, if a source of excitation is 

located approximately in the center of the FDTD domain, and the size of this domain 

is large enough, the signal that hits the boundary can be considered as a combination 

of plane propagating waves. 
  

 

Figure 2-4 An "almost" plane wave that is coming toward the boundaries needs to be absorbed 

 

Such a field is conventionally described in terms of the so-called parabolic 

approximation, which initially was developed for well-collimated weakly-diffracted 

optical beams - almost plane waves. Let us start with the wave equation for an 

arbitrary field quantity, W, 
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One can obtain another form of this equation, to underscore the dominant propagation 

along the x-axis 
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either in the positive or in the negative direction. We are interested in the boundary at 

x=0, i.e. in the negative direction of propagation. When the direction of propagation is 

exactly the negative x-axis and the wave is exactly plane, from Eq. (2-12) one obtains 
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While this observation is only approximately true, we could still replace one spatial 

derivative in the first term on the right-hand side of Eq. (2-12) by    
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This yields 
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or, which may be rewritten as,  
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Eq. (2-16) is the well-known parabolic approximation to the wave equation. It says 

that the electromagnetic signal propagates predominantly along the negative x-axis; it 

is also subject to diffraction in the transversal plane (in the yz-plane). The parabolic 

equation is easier to solve than the wave equation itself, and it is straightforward to 

formulate the boundary conditions in terms of it. The first-order Mur’s ABCs utilize 

Eq. (2-13); the second-order Mur’s ABCs utilize Eq. (2-16). 

 

First-order Mur's ABCs are given by Eq. (2-13) applied at all boundaries. In 

particular, 
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for the left and right boundary in Fig. 2-4, respectively. The results for the lower and 

upper boundaries are obtained by permutation (xy). Despite this very simple nature, 

even those equations will do a decent job when implemented correctly. 

 

2.4.2 Implementation of the first-order Mur’s ABCs 

 

Proceed with the first-order Mur's ABCs Eqs. (2-17). The central point is how to 

implement them properly at the boundaries. We will use the central differences in both 

the space and the time domains, so that our result will have a local truncation error of 

the second order in all increments. One has 
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(2-18a) 

 

for the left boundary. Eq. (2-18a) is valid for any node on the boundary, including the 

edges and the corners. When the inhomogeneous material properties are involved, the 

local speed of light /1c  is assumed to be constant close to the boundary in 

the direction perpendicular to the boundary, on both its sides. The tangential changes 

are allowed at any node of the boundary; they are included into consideration exactly 

as in the main FDTD grid. For the right boundary in Fig. 2-4, one similarly has 
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                                                               (2-18b) 

 

The extensions to the lower and upper boundaries and to the 3D case are 

straightforward and the implementation MATLAB code list below as reference. 
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%   Left 

EyN(1, :,:)   =  EyP(2,:,:)  + m1*(EyN(2,:,:) - EyP(1,:,:));        %  left - Ey; 

EzN(1, :,:)   =  EzP(2,:,:)  + m1*(EzN(2,:,:) - EzP(1,:,:));        %  left - Ez; 

%   Right 

EyN(Nx+1, :,:)=  EyP(Nx,:,:) + m1*(EyN(Nx, :,:) - EyP(Nx+1,:,:));   %   right - Ey; 

EzN(Nx+1, :,:)=  EzP(Nx,:,:) + m1*(EzN(Nx, :,:) - EzP(Nx+1,:,:));   %   right - Ez; 

%   Front 

ExN(:, 1,:)   =  ExP(:,2,:)  + m1*(ExN(:,2,:) - ExP(:,1,:));        %   front - Ex; 

EzN(:, 1,:)   =  EzP(:,2,:)  + m1*(EzN(:,2,:) - EzP(:,1,:));        %   front - Ez; 

%   Rear 

ExN(:, Ny+1,:)=  ExP(:,Ny,:) + m1*(ExN(:,Ny,:) - ExP(:,Ny+1,:));    %   rear - Ex; 

EzN(:, Ny+1,:)=  EzP(:,Ny,:) + m1*(EzN(:,Ny,:) - EzP(:,Ny+1,:));    %   rear - Ey; 

%   Bottom 

ExN(:, :,1)   =  ExP(:, :,2)  + m1*(ExN(:,:,2) - ExP(:,:,1));       %   bottom - Ex; 

EyN(:, :,1)   =  EyP(:, :,2)  + m1*(EyN(:,:,2) - EyP(:,:,1));       %   bottom - Ey; 

%   Top 

ExN(:, :, Nz+1)=  ExP(:,:,Nz) + m1*(ExN(:,:,Nz) - ExP(:,:,Nz+1)); %    top - Ex; 

EyN(:, :, Nz+1)=  EyP(:,:,Nz) + m1*(EyN(:,:,Nz) - EyP(:,:,Nz+1)); %    top - Ex; 

 

2.4.3. “Superabsorption” ABCs  

 

The Mei-Fang “superabsorption” method [9] is not an ABC by itself, but rather a 

numerical procedure for the improvement of the local ABC's applied to the FDTD 

technique [10]. It embodies an error-canceling formulation according to which the 

same ABC is applied to both E and H field components on and near the outer 

boundaries, depending on the polarization examined. 

 

Namely, the calculation of the 2-D TM (TE) magnetic (electric) components, from 

their respective boundary ABC-derived electric (magnetic) ones, yields reflection 

errors which are strongly related to the errors in magnetic (electric) field components 

directly computed from the ABC. The opposite sign that these errors have in both of 

the above separate calculations is a point of crucial importance in the superabsorption 

procedure. Taking this fact into consideration and by properly combining the two 

different computations of the magnetic (electric) fields near the boundary, it is 

possible to cancel the reflection errors mutually while maintaining the correct values 

of the fields on the boundary [10]. 

 

Fig. 2-5 illustrates schematically the implementation of the method for the right 

boundary ( Lx  ) of the computational domain in Fig. 2-5. For this boundary, we 

apply the first-order Mur’s ABC given by Eq. (2-18b) not only to the Ez-field but also 

to the Hy-field in the vicinity to that boundary, i.e. 
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Next, we compute the Hy-field by the regular finite-difference scheme to obtain  
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Figure 2-5 Superabsorption ABCs on the right boundary 

 

After that, we form a weighted average of those two values and obtain the final 

updated magnetic field value at the last point by 
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Here, 
 






tc0                  (2-20) 

 

The MATLAB code show below: 

 
coeff1  = (c0*dt - d)/(c0*dt + d); 

rho     = c0*dt/d; RHO = 1 + rho; 

%   Left 
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HyN(1,:,:) = (HyN(1,:,:) + rho*(HyP(2,:,:) + coeff1*(HyN(2,:,:) - HyP(1,:,:))))/RHO; %  

left - Hy; 

HzN(1,:,:) = (HzN(1,:,:) + rho*(HzP(2,:,:) + coeff1*(HzN(2,:,:) - HzP(1,:,:))))/RHO; %  

left - Hz;    

%  Right 

HyN(Nx,:,:) = (HyN(Nx,:,:) + rho*(HyP(Nx-1,:,:) + coeff1*(HyN(Nx-1,:,:) - 

HyP(Nx,:,:))))/RHO; %  right - Hy; 

HzN(Nx,:,:) = (HzN(Nx,:,:) + rho*(HzP(Nx-1,:,:) + coeff1*(HzN(Nx-1,:,:) - 

HzP(Nx,:,:))))/RHO; %  right - Hz;    

%   Front 

HxN(:,1,:) = (HxN(:,1,:) + rho*(HxP(:,2,:) + coeff1*(HxN(:,2,:) - HxP(:,1,:))))/RHO; %  

front - Hx; 

HzN(:,1,:) = (HzN(:,1,:) + rho*(HzP(:,2,:) + coeff1*(HzN(:,2,:) - HzP(:,1,:))))/RHO; %  

right - Hz;    

%   Rear 

HxN(:,Ny,:) = (HxN(:,Ny,:) + rho*(HxP(:,Ny-1,:) + coeff1*(HxN(:,Ny-1,:) - 

HxP(:,Ny,:))))/RHO; %  rear - Hx; 

HzN(:,Ny,:) = (HzN(:,Ny,:) + rho*(HzP(:,Ny-1,:) + coeff1*(HzN(:,Ny-1,:) - 

HzP(:,Ny,:))))/RHO; %  rear - Hz;    

%   Bottom 

HxN(:,:,1) = (HxN(:,:,1) + rho*(HxP(:,:,2) + coeff1*(HxN(:,:,2) - HxP(:,:,1))))/RHO; %  

bottom - Hx; 

HyN(:,:,1) = (HyN(:,:,1) + rho*(HyP(:,:,2) + coeff1*(HyN(:,:,2) - HyP(:,:,1))))/RHO; %  

bottom - Hy;    

%   Top 

HxN(:,:,Nz) = (HxN(:,:,Nz) + rho*(HxP(:,:,Nz-1) + coeff1*(HxN(:,:,Nz-1) - 

HxP(:,:,Nz))))/RHO; %  top - Hx; 

HyN(:,:,Nz) = (HyN(:,:,Nz) + rho*(HyP(:,:,Nz-1) + coeff1*(HyN(:,:,Nz-1) - 

HyP(:,:,Nz))))/RHO; %  top - Hy; 

 

It can be shown that this procedure significantly decreases the error of a local ABC, in 

particular, the first-order Mur’s ABC. It is also very simply implemented and does not 

require any extra variables. When the inhomogeneous material properties are involved, 

the same scheme is followed as for the first-order Mur’s ABCs. 

 

2.5 Perfectly Matched Layer (PML) 

 

In an actual engineering environment, when testing the performance of microwave 

and RF devices, the interference from reflection and refraction should be avoided. 

There are however no large enough space available in most cases. An anechoic 

chamber may be built to simulate an infinitely large space by using wave-absorbing 

materials. The PML in numerical method is an analogy of the chamber. The idea of 

the PML is different from ABCs – rather than analytically cancelling the field, the 

PML absorbs the energy as it passes through additional material layers. 
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The PML was first discovered by J.-P. Bérenger [11] and extensively tested by Allen 

Taflove and co-workers - see Refs. [2], [12], [13]. Only one year after the initial series 

of fundamental papers [11] [12] [13], Sacks et al [14] published an independent model 

of the PML, the so-called anisotropic or unsplit PML, which quickly became the de 

facto standard not only for FDTD simulations but also in the finite-element method 

[15] [14] [16]. Here, we will discuss the original Bérenger’s PML only. 

 

For simplicity, we start with the 2D field case, with the TE to z field shown in Fig. 2-6 

that follows. The magnetic field in this case is always directed along the z-axis, but 

the propagation direction (wave vector) is always in the xy-plane. 

 

 

Figure 2-6 The PML concept for the TE to z field 

 

The PML in Fig. 2-6 should satisfy two conditions: 

 

1. Absorb a plane wave at any incidence angle, without reflection at the PML 

boundary. Absorption and reflectionless behavior incidence angle initiated the word 

"perfectly" in the PML abbreviation. The incidence must not be exactly oblique. 

 

2. Do not absorb and do not perturb any plane wave at exactly oblique incidence -see 

Fig. 2-6. 

 

The latter condition is conventionally satisfied if we terminate the PML into a PEC 

boundary, that is a perfect electric conductor shown in Fig. 2-6. 

 

The TM to z case is very similar, as shown in Fig. 2-7, The electric field in this case is 

always directed along the z-axis, but the propagation direction (wave vector) is again 

always in the xy-plane. 
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Figure 2-7 The PML concept for the TM to z field 

 

If we require both conditions 1 and 2 to be satisfied, then it is seen from the geometry 

of Fig. 2-7 that a PEC boundary of the PML will disturb the solution at oblique 

incidence. The Perfect Magnetic Conductor (PMC) boundary or the radiation 

boundary should be actually more adequate for this case. If the wave signal at oblique 

incidences is not present or is not important, the difference between the boundaries is 

not significant. Both boundaries can be equally simply implemented in the FDTD 

method. 

 

In all distinct PML regions shown in Fig. 2-6 and Fig. 2-7 the loss parameters of an 

artificial lossy media will be different, irrespective of the particular PML model used, 

see Fig 2-8. In fact, the PML was first carefully formulated for the TE case in Fig. 2-6, 

by assigning those distinct parameters. 
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Figure 2-8 different conductivity in different PML regions 

 

The PML boundary condition is a lossy material boundary layer that is perfectly 

matched to the physical solution space. In the original Bérenger's model [11], [17], 

[18] this is achieved through a “field splitting” of the electric and magnetic field 

intensities, leading to a modified set of Maxwell’s equations. It has been shown that 

an arbitrarily polarized wave incident on this PML medium is perfectly transmitted 

and has the same phase velocity and characteristic wave impedance as the incident 

wave while attenuating rapidly along the normal axis. Bérenger’s PML method has 

been successfully implemented within the FDTD algorithm [16]. 

 

For example, the Maxwell’s equations for TM to z field can be split into four 

equations in PML region [11]: 
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                                                                (2-21) 

 

by splitting the electric field into two independent subcomponents, zyzxz EEE   
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in the PML region. The Maxwell's equations themselves give no reflection at the 

boundary at normal incidence if [2], 

 







 *

                                                         (2-22) 

 

However, the reflection at other incidence angles will still be present. On the other 

hand, their counterpart from Eqs. (2-21), which matches to the original Maxwell's 

equations at the boundary where 

 

zyzxz EEE                              (2-23) 

  

gives no reflections and satisfies conditions 1 and 2 for the PML by a proper choice of 

artificial conductivities *
,, , yxyx  . In particular, in both domains I and II in Fig. 2-6 

and 2-7, only two losses are present [11]  
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Similarly, in both domains III and IV in Figs. 2-6, 2-7  
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At the four corners of the PML, where there is overlap of two subdomains [11], all 

four losses are present, i.e. 
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This is done to match the PML subdomains to each other. A similar scheme is used in 

the general 3D case [17]. 

 

"Standard" quadratic Bérenger's conductivity profile is defined as [11] [15]: 
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Where PMLR is PML thickness. If a constant conductivity over the layer is employed, 

the FDTD reflection coefficient cannot be smaller than 3% [11]. This value decreases 

to 0.1% for a linear profile, and to 0.01% for a quadratic profile. 

 

Finally, the reflection coefficient is given by 
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Interestingly enough, the reflection coefficient only depends on PML thickness, not 

the number of cells within the PML. This means that the PML should theoretically 

work for any number of cells; a practical value is, however, about 10-15. The 

optimum values for the reflection coefficient are 10-5 to 10-6 [11]. 

 

Despite some initial complexity, the practical FDTD implementation is 

straightforward and it is described in detail in Refs. [11], [17]. For the 2D case, three 

fields are updated marching on in time in the internal region, and four fields in the 

PML region, respectively; see Fig 2-9. However, In 3D case, the complexity increase 

expotentially with 26 regions to deal with, see Fig 2-10. 

 

 

Figure 2-9 A sketch of one 2D PML grid with sides and corners 
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Figure 2-10 3D PML regions – 6 Sides, 12 Edges and 8 Corners  
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CHAPTER 3  

COINCIDENT PHASE CENTER ANTENNA 

 

3.1 Electric dipole model 

 

3.1.1 Standard small dipole model 

 

A small dipole antenna is represented by a uniform line current, )(tis , which flows 

over a length l. The length l is usually much smaller than the cell size. The current is 

centered at the corresponding electric field node as shown in Fig. 3-1 [19].  

 

 

Figure 3-1 Dipole antenna with the impressed line current )(tis
 

 

The line current is transformed to an equivalent volumetric current density averaged 

over one unit cell: 
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                                            (3-1) 

 

which produces the same electric dipole moment. This current density is substituted in 

one of the FDTD update equations for the electric field (see Eqs. (2-9d) to (2-9f)). For 

the dipole shown in Fig. 3-1, the result has the form 
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where 
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An important observation is that it is very straightforward to implement Eqs. (3-2) in 

practice. Namely, only current excitation terms have to be added after the standard 

update equations for the electric field. 

 

3.1.2 Coincident Phase Centers dipole model for arbitrary orientation   

 

For an arbitrarily oriented dipole, with the unit direction vector n

, one could consider 

a superposition solution in the form of three orthogonal elementary dipoles oriented 

along the x-, y-, and z-axes. However, their phase centers will not be coincident – see 

Fig. 3-1 for an illustration. A modification of the model can be made that is shown in 

Fig. 3-2. Here, the dipole source is effectively placed at the corner node of the Yee 

cell. Two adjacent electric field nodes acquire the half of the dipole current. 

 

 

Figure 3-2 Dipole antenna model with the dipole placed at the center node of the Yee cell 

 

The dipole of arbitrary orientation with the unit direction vector n


  is then 

considered as a superposition of three dipoles directed along the x-, y-, and z-axes.  

All those dipoles have the same (phase) center. The corresponding current densities 

are given by 
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The above model may be treated as a symmetric point source model. 
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The port update given Eq. (3-2) is straightforwardly modified to the present case: it 

remains the same for the node kji ,,  (except that the current is divided by two), and 

uses index substitution 1 jj  for the second node in Fig. 3-2. 

 

Complete update equations for a dipole of arbitrary orientation have the form 
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Here, only current excitation terms have to be added after the standard update 

equations for the electric field. The MATLAB implementation is really 

straightforward as: 

 
%   setting up parameters 

Js   = PortM(m)/d^3*(IG(m, kt)+IG(m, kt+1))/2;  %   volumetric current density at 

n+1/2 - tested     

i_e = PortIndX(m);   %   port location grid nodes 

j_e = PortIndY(m);   %   port location grid nodes 

k_e = PortIndZ(m);   %   port location grid nodes 

Jx = d*Js/2*PortNX(m); 

Jy = d*Js/2*PortNY(m); 

Jz = d*Js/2*PortNZ(m); 

  

ExN(i_e, j_e, k_e)   = ExN(i_e, j_e, k_e)   - Ex2(i_e, j_e-1, k_e-1)*Jx; 

ExN(i_e-1, j_e, k_e) = ExN(i_e-1, j_e, k_e) - Ex2(i_e-1, j_e-1, k_e-1)*Jx; 

  

EyN(i_e, j_e, k_e)   = EyN(i_e, j_e, k_e)   - Ey2(i_e-1, j_e, k_e-1)*Jy; 

EyN(i_e, j_e-1, k_e) = EyN(i_e, j_e-1, k_e) - Ey2(i_e-1, j_e-1, k_e-1)*Jy; 

  

EzN(i_e, j_e, k_e)   = EzN(i_e, j_e, k_e)   - Ez2(i_e-1, j_e-1, k_e)*Jz; 

EzN(i_e, j_e, k_e-1) = EzN(i_e, j_e, k_e-1) - Ez2(i_e-1, j_e-1, k_e-1)*Jz; 

  

AntI(m, kt) = IG(m, kt);  

  

AntE(m, kt) = PortNX(m)*(ExP(i_e, j_e, k_e) + ExP(i_e-1, j_e, k_e)) + ... 

              PortNY(m)*(EyP(i_e, j_e, k_e) + EyP(i_e, j_e-1, k_e)) + ... 
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              PortNZ(m)*(EzP(i_e, j_e, k_e) + EzP(i_e, j_e, k_e-1)); 

AntE(m, kt) = AntE(m, kt)/2; 

                                                                                                                                              

AntH(m, kt) = PortNX(m)*(HxN(i_e, j_e, k_e) + HxN(i_e, j_e-1, k_e) + HxN(i_e, 

j_e, k_e-1) + HxN(i_e, j_e-1, k_e-1)) + ... 

              PortNY(m)*(HyN(i_e, j_e, k_e) + HyN(i_e-1, j_e, k_e) + HyN(i_e, j_e, 

k_e-1) + HyN(i_e-1, j_e, k_e-1)) + ... 

              PortNZ(m)*(HzN(i_e, j_e, k_e) + HzN(i_e-1, j_e, k_e) + HzN(i_e, j_e-1, 

k_e) + HzN(i_e-1, j_e-1, k_e)) + ... 

              PortNX(m)*(HxP(i_e, j_e, k_e) + HxP(i_e, j_e-1, k_e) + HxP(i_e, j_e, 

k_e-1) + HxP(i_e, j_e-1, k_e-1)) + ... 

              PortNY(m)*(HyP(i_e, j_e, k_e) + HyP(i_e-1, j_e, k_e) + HyP(i_e, j_e, 

k_e-1) + HyP(i_e-1, j_e, k_e-1)) + ... 

              PortNZ(m)*(HzP(i_e, j_e, k_e) + HzP(i_e-1, j_e, k_e) + HzP(i_e, j_e-1, 

k_e) + HzP(i_e-1, j_e-1, k_e)); 

 

AntH(m, kt) = AntH(m, kt)/8; 

 

The advantage of this model described by the code above is the ability to characteruze 

the dipole of arbitrary orientation, while keeping the same phase center. Its 

disadvantage is a relatively “large” volume occupied by the dipole model that extends 

to two unit cells in every direction. 

 

3.2 Magnetic dipole (coil antenna) model 

 

3.2.1 General facts about coil antennas 

 

A magnetic dipole is equivalent to a small coil antenna. Consider a coil antenna with 

the dimensions shown in Fig. 3-3. The antenna has N turns; the coil cross-section area 

is A; the length is l. The antenna is oriented along the z-axis. The coil may have a 

finite magnetic core. 
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Figure 3-3 A coil antenna (with or without) the magnetic core 

 

The antenna is excited by a current pulse )(ti . If necessary, the voltage across the 

coil antenna may be calculated as [20], 

  

radstaticstatic ,,)( RRRLLRi
dt

di
LtL                  (3-6) 

 

where two indexes relate to static values and their radiation corrections, respectively. 

One has for the static inductance of an air-core solenoid with radius r , cross-section 

area A, and length l, 
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The radiation resistance is given below [20] 
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The radiation resistance is negligibly small for very small coils. 

 

The calculation of inductance for the coil with a straight magnetic core becomes a 

nontrivial theoretical exercise. The graphical data is given in [20]. We also present 

here a useful theoretical result. It is only valid for a high-permeability magnetic core, 

with approximately 0100   . The resulting inductance for the inductor in Fig. 
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3-3 has the form [21] 
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where *l  is the core length and r is the coil radius. Interestingly, the resulting 

inductance does not explicitly depend on the specific value of   as long as this 

value is sufficiently large. More precisely, Eq. (3-9) holds only for situations where 

the core length-to-diameter ratio is considerably smaller than the relative magnetic 

permeability, 0/  r . Eq. (3-9) was compared with experimental results and 

indicated about 40% accuracy in predicting the inductance. 

 

3.2.2 Receive Coil 

 

3.2.2.1 Coil without magnetic core 

 

In the receiving mode, the open-circuited air-core RX coil shown in Fig. 3-3 generates 

the induced emf voltage,  
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where the emf polarity “+” corresponds to the dotted terminal of the coil shown in Fig. 

3-3. Thus, the receive coil in the open-circuit mode does not significantly disturb the 

incident field and acts similar to a field probe. It is an important concept when 

implementing the FDTD code, which means the small receive coil doesn’t need a 

dedicated model and reduces the complexity. 

 

In terms of finite differences, one has  
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An alternative is to use Eq. (2-1b) which is the Faraday’s law with zero sources; this 

yields 
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The Yee-grid discretization gives 
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3.2.2.2 Coil with arbitrary orientation 

 

In this case, Eq. (3-10) is modified to 
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where n

 is the unit vector in the direction of the coil axis, directed toward the dotted 

terminal of the coil in Fig. 3-3. Eqs. (3-10b) through (3-10c) may be modified 

accordingly. 

 

3.2.2.3. Coil with a magnetic core 

 

For the coil with the core, the situation complicates. Comparing Eq. (3-7) (with 

0w  ) and Eq. (3-9) one could in principle define the “effective” permeability 

within the coil, i.e. the permeability, which gives the same inductance, in the form, 
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Herewith, the induced emf voltage might be defined in the form 
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Eq. (3-13) was not tested by comparison with experiment and should be used with 

care. 

 

3.2.3 Transmit coil - a magnetic dipole 

 

3.2.3.1 Magnetic dipole 

 

A small transmit coil antenna which carries the current )(ti  in Fig. 3-3 is modeled 
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as an infinitesimally small magnetic dipole with a magnetic moment )(tM z . For the 

coil without the magnetic core, 

 

)()( tiANtM z                                  (3-14) 

 

where A is the coil cross-section, N is the number of turns, and )(ti  is the 

instantaneous coil current. The meaning of the magnetic moment originates from the 

torque exerted on a loop of current in an external magnetic field. On the other hand, 

the magnetic moment is the only characteristic of a very small coil antenna that 

defines both its near- and far field [19] [22]. Generally, the magnetic moment is a 

vector quantity, with the unit direction vector n

. The magnetic moment is directed 

along the coil axis according to the right-hand rule for the electric current. For 

example, it is directed up in Fig. 3-3. 

 

3.2.3.2 Magnetic dipole model with a magnetic current source  

 

The simplest way to model the coil antenna is to introduce the magnetic current 

source density into Faraday’s law Eq. (2-1b) 
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Averaging over the volume of the FDTD unit cell yields  
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The Yee-grid discretization yields 
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This method has a number of disadvantages. One of them is that the magnetic current 

source given by Eqs. (3-17) and (3-18) does not work well on the boundary between 
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vacuum and a magnetic material. Therefore, it is not implemented in the code.  

 

3.2.3.3 Magnetic dipole model with a loop of electric current 

 

The small coil antenna may be modeled with a loop of electric current – see Fig. 3-4. 

The coil antenna is placed at the node of the co-polar magnetic field as shown in Fig. 

2-1. This is not the sub-cell model of the coil, but rather the cell model. 

 

Such a location is convenient, but it does not allow us to consider an arbitrary coil 

antenna orientation in general. An arbitrarily-oriented radiating coil may be 

considered as a superposition of three coils oriented along the axes; however, these 

coils will not have the same phase center. 

 

 

Figure 3-4 Coil antenna modeled with a loop of an equivalent electric current 

 

By following the approach from Ref. [19],Error! Reference source not found. the 

coil in Fig. 3-4 is replaced by a square loop of the grid-aligned current )(tis  which 

possesses the same magnetic moment: 
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where   is the cell size of the cubic grid. Further, the current )(tis  is replaced by 

its current density uniformly distributed over every involved cell’s cross-section, 
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Let’s assume the coil is located at the Hz-field node i,j,k – see Fig. 3-4. Maxwell’s 

equations in a lossy inhomogeneous medium for four surrounding E-field nodes 
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on the Yee grid are modified to 
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(3-22b) 
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(3-22c) 
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at the locations of the E-field nodes. Here,   is the electric conductivity.  

 

An important observation is that it is very straightforward to implement Eqs. (3-22) in 

practice. Namely, only current excitation terms have to be added after the standard 

update equations for the electric field. 
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3.2.3.4 Magnetic dipole model with Coincident Phase Centers for arbitrary coil 

orientation 

 

The current-loop model of Fig. 3-4 is straightforwardly modified for the case of 

arbitrary coil orientation. The concept is shown in Fig. 3-5 that follows. The coil 

antenna is now placed at the center of the Yee cell. The coil in Fig. 3-5 is replaced by 

two square loops of the grid-aligned electric current, which in sum possess the same 

magnetic moment. Instead of Eq. (3-20), the current density for each loop becomes  

 

)(
2

1
)(

4
ti

AN
tJ s


                                    (3-24) 

 

i.e. the half of the original current density. Update Eqs. (3-22) are straightforwardly 

modified to the present case: they remain the same for the lower face in Fig. 3-5 and 

use index substitution 1 kk  for the upper face.  

 

The coil of arbitrary orientation with the unit direction vector n

 is considered as a 

superposition of three coils directed along the x-, y-, and z-axes. The corresponding 

current densities are given by 

 

 

Figure 3-5 Coil antenna model with the coil placed at the center node of the Yee cell 
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All the current densities should follow the right-hand rule with regard to all three 

Cartesian axes as shown in Fig. 3-5 for the z-axis. 
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%   setting up parameters 

Js   = PortM(m)/d^4*(IG(m, kt)+IG(m, kt+1))/2;  %   volumetric current density at 

n+1/2 - tested     

i_e = PortIndX(m);   %   port location grid nodes 

j_e = PortIndY(m);   %   port location grid nodes 

k_e = PortIndZ(m);   %   port location grid nodes 

Jx = d*Js/2*PortNX(m); 

Jy = d*Js/2*PortNY(m); 

Jz = d*Js/2*PortNZ(m); 

  

%   coil/loop along the x-axis 

%   Update equations (simple addition - right-hand rule exactly) 

EzN(i_e, j_e, k_e)   = EzN(i_e, j_e, k_e)   + Ez2(i_e-1, j_e-1, k_e)*Jx; 

EzN(i_e, j_e+1, k_e) = EzN(i_e, j_e+1, k_e) - Ez2(i_e-1, j_e, k_e)*Jx; 

EyN(i_e, j_e, k_e)   = EyN(i_e, j_e, k_e)   - Ey2(i_e-1, j_e, k_e-1)*Jx; 

EyN(i_e, j_e, k_e+1) = EyN(i_e, j_e, k_e+1) + Ey2(i_e-1, j_e, k_e)*Jx; 

  

EzN(i_e+1, j_e, k_e)   = EzN(i_e+1, j_e, k_e)   + Ez2(i_e, j_e-1, k_e)*Jx; 

EzN(i_e+1, j_e+1, k_e) = EzN(i_e+1, j_e+1, k_e) - Ez2(i_e, j_e, k_e)*Jx; 

EyN(i_e+1, j_e, k_e)   = EyN(i_e+1, j_e, k_e)   - Ey2(i_e, j_e, k_e-1)*Jx; 

EyN(i_e+1, j_e, k_e+1) = EyN(i_e+1, j_e, k_e+1) + Ey2(i_e, j_e, k_e)*Jx; 

%   step n 

Curl1 = -1/d*(EyP(i_e, j_e, k_e+1)    - EyP(i_e, j_e, k_e)   + EzP(i_e, j_e, k_e)   

- EzP(i_e, j_e+1, k_e)); 

Curl2 = -1/d*(EyP(i_e+1, j_e, k_e+1)  - EyP(i_e+1, j_e, k_e) + EzP(i_e+1, j_e, 

k_e) - EzP(i_e+1, j_e+1, k_e)); 

Curlx = 0.5*(Curl1 + Curl2); 

AntEx        = 1/4*(ExP(i_e, j_e, k_e)+... 

                     ExP(i_e, j_e+1, k_e)+... 

                     ExP(i_e, j_e, k_e+1)+... 

                     ExP(i_e, j_e+1, k_e+1));                         %   E-fields for 

all ports -step n     

AntHx  =    0.5*(HxN(i_e, j_e, k_e) + HxN(i_e+1, j_e, k_e));          %   H-fields 

for all ports -step n+1/2  

  

%   coil/loop along the y-axis 

%   Update equations (simple addition - right-hand rule exactly) 

EzN(i_e, j_e, k_e)      = EzN(i_e, j_e, k_e)   - Ez2(i_e-1, j_e-1, k_e)*Jy; 

EzN(i_e+1, j_e, k_e)    = EzN(i_e+1, j_e, k_e) + Ez2(i_e, j_e-1, k_e)*Jy; 

ExN(i_e, j_e, k_e)      = ExN(i_e, j_e, k_e)   + Ex2(i_e, j_e-1, k_e-1)*Jy; 

ExN(i_e, j_e, k_e+1)    = ExN(i_e, j_e, k_e+1) - Ex2(i_e, j_e-1, k_e)*Jy;   

EzN(i_e, j_e+1, k_e)    = EzN(i_e, j_e+1, k_e)   - Ez2(i_e-1, j_e, k_e)*Jy; 

EzN(i_e+1, j_e+1, k_e)  = EzN(i_e+1, j_e+1, k_e) + Ez2(i_e, j_e, k_e)*Jy; 

ExN(i_e, j_e+1, k_e)    = ExN(i_e, j_e+1, k_e)   + Ex2(i_e, j_e, k_e-1)*Jy; 
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ExN(i_e, j_e+1, k_e+1)  = ExN(i_e, j_e+1, k_e+1) - Ex2(i_e, j_e, k_e)*Jy; 

%   step n 

Curl1 = -1/d*(EzP(i_e+1, j_e, k_e)  - EzP(i_e, j_e, k_e) + ExP(i_e, j_e, k_e) - 

ExP(i_e, j_e, k_e+1)); 

Curl2 = -1/d*(EzP(i_e+1, j_e+1, k_e)  - EzP(i_e, j_e+1, k_e) + ExP(i_e, j_e+1, 

k_e) - ExP(i_e, j_e+1, k_e+1)); 

Curly = 0.5*(Curl1 + Curl2); 

AntEy         = 1/4*(EyP(i_e, j_e, k_e)+... 

                     EyP(i_e+1, j_e, k_e)+... 

                     EyP(i_e, j_e, k_e+1)+... 

                     EyP(i_e+1, j_e, k_e+1));                        %   E-fields for 

all ports -step n      

AntHy   =     0.5*(HyN(i_e, j_e, k_e) + HyN(i_e, j_e+1, k_e));       %   H-fields 

for all ports -step n+1/2 

  

%   coil/loop along the z-axis 

%   Update equations (simple addition - right-hand rule exactly) 

ExN(i_e, j_e, k_e)      = ExN(i_e, j_e, k_e)   - Ex2(i_e, j_e-1, k_e-1)*Jz; 

ExN(i_e, j_e+1, k_e)    = ExN(i_e, j_e+1, k_e) + Ex2(i_e, j_e, k_e-1)*Jz; 

EyN(i_e, j_e, k_e)      = EyN(i_e, j_e, k_e)   + Ey2(i_e-1, j_e, k_e-1)*Jz; 

EyN(i_e+1, j_e, k_e)    = EyN(i_e+1, j_e, k_e) - Ey2(i_e, j_e, k_e-1)*Jz; 

ExN(i_e, j_e, k_e+1)    = ExN(i_e, j_e, k_e+1)   - Ex2(i_e, j_e-1, k_e)*Jz; 

ExN(i_e, j_e+1, k_e+1)  = ExN(i_e, j_e+1, k_e+1) + Ex2(i_e, j_e, k_e)*Jz; 

EyN(i_e, j_e, k_e+1)    = EyN(i_e, j_e, k_e+1)   + Ey2(i_e-1, j_e, k_e)*Jz; 

EyN(i_e+1, j_e, k_e+1)  = EyN(i_e+1, j_e, k_e+1) - Ey2(i_e, j_e, k_e)*Jz; 

  

%   step n 

Curl1 = -1/d*(ExP(i_e, j_e+1, k_e)  - ExP(i_e, j_e, k_e) + EyP(i_e, j_e, k_e) - 

EyP(i_e+1, j_e, k_e)); 

Curl2 = -1/d*(ExP(i_e, j_e+1, k_e+1)  - ExP(i_e, j_e, k_e+1) + EyP(i_e, j_e, k_e+1) 

- EyP(i_e+1, j_e, k_e+1)); 

Curlz = 0.5*(Curl1 + Curl2); 

 

AntEz         = 1/4*(EzP(i_e, j_e, k_e)+... 

                     EzP(i_e+1, j_e, k_e)+... 

                     EzP(i_e, j_e+1, k_e)+... 

                     EzP(i_e+1, j_e+1, k_e));                           %   E-fields 

for all ports -step n 

AntHz   =     0.5*(HzN(i_e, j_e, k_e)+HzN(i_e, j_e, k_e+1));        %   H-fields 

for all ports -step n+1/2  

  

%   co-polar components 

AntE(m, kt) = PortNX(m)*AntEx + PortNY(m)*AntEy + PortNZ(m)*AntEz;      %   at step 

n - tested 
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TmpH(m, kt) = PortNX(m)*AntHx + PortNY(m)*AntHy + PortNZ(m)*AntHz;      %   at step 

n+1/2 - tested 

AntH(m, kt) = (TmpH(m, kt) + TmpH(m, kt-1))/2;                          %   at step 

n - tested 

AntI(m, kt) = IG(m, kt);  

Curl        = PortNX(m)*Curlx + PortNY(m)*Curly + PortNZ(m)*Curlz; 

AntV(m, kt) = PortM(m)*Curl;                   %   antenna voltages for all ports 

at step n 

AntV(m, kt) = -mu0*PortM(m)*(TmpH(m, kt) - TmpH(m, kt-1))/dt; 

 

Same as the electrical dipole case, the advantage here is the ability to describe the coil 

of arbitrary orientation as well, whilst keeping the same phase center. Its disadvantage 

is also a “large” volume occupied by the coil model that extends to two unit cells in 

every direction. The above coil model may be treated as a symmetric point source 

model. 

 

3.2.4. Mutual inductance between transmit and receive coils  

 

Although not directly implemented in the code, the mutual inductance between 

transmit and receive coils as a function of frequency can be calculated after the FDTD 

run is finished. The result has the form 

 

))((

))((

))((

))((
)(

1

,,

011
tifft

tHfft
AN

tifftj

tEfft
L

m
zyx

m
emf

m 


                  (3-26) 

 

Note that the current is to be given on the half temporal grid – see Eqs. (3-22) –

whereas the emf voltage is found on the integer temporal grid – see Eq. (3-10b). 

Therefore, for example, one could interpolate the current for the integer temporal grid. 

 

3.3 Model of an impressed electric field or voltage source (loop of magnetic 

current) 

 

3.3.1. Concept of an impressed voltage (electric field) source  

 

Considered two metal plates of area A separated by distance l in Fig. 3-6 with an 

applied voltage )(t  between the plates. Assume that the corresponding electric field 

(directed down in Fig. 3-6), 
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Figure 3-6 Impressed voltage (electric field source) 

 

is uniform between the plates, which is true for small separation distances. Also 

assume that the electric field is zero otherwise (medium#2). The boundary condition 

for the electric field on the side boundary of the cylinder states that 
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where M


 is the resulting surface magnetic current density (V/m)  on the side 

boundary, m


 is the outer normal. With reference to Fig. 2-1, M


 has only an 

angular component, i.e. 
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Thus, the impressed electric field source (or the voltage source) is equivalent to the 

loop of a surface magnetic current. The total magnetic current in the loop is lM , the 

loop area is A. Therefore, the product )(tAAlM    has the sense of a loop moment 

where A is the moment per one volt. 

 

3.3.2. Modeling an impressed voltage source 

 

The initial FDTD implementation is shown in Fig. 3-7. The field source from Fig. 2-1 

is placed at the node of the co-polar electric field as shown in Fig. 3-7. Such a 

location is convenient, but it does not allow us to consider an arbitrary source 

orientation in general. We model the source with the closed loop of a magnetic 
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current )(tims  passing through the nodes for the magnetic field shown in the figure. 

This model is dual to the magnetic dipole. Since the loop moment should be 

preserved, it follows from Eq. (3-29a) that 
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Figure 3-7 TX voltage source and the surrounding FDTD grid 

 

Thus, the volumetric magnetic current density, 2/)()(  titJ msms , in Fig. 3-7 is 

specified. The update equations corresponding to Fig. 3-7 have the form 
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An important observation is that it is very straightforward to implement Eqs. (3-30) in 

practice. Namely, only current excitation terms have to be added after the standard 

update equations for the magnetic field. 

 

3.3.3. Modeling an impressed voltage source with Coincident Phase Centers 

 

The magnetic current-loop model of Fig. 3-7 is straightforwardly modified for the 

case of arbitrary source orientation. The concept is shown in Fig. 3-8 that follows. The 

source antenna is now placed at the corner of the Yee cell. The source in Fig. 3-8 is 

replaced by two square loops of the grid-aligned magnetic current, which in sum 

possess the same moment. This means that the current density for each loop becomes 

the half of the original magnetic current density. 

 

Update Eqs. (3-30) are straightforwardly modified to the present case: they remain the 

same for the upper face in Fig. 3-8 and employ the index substitution 1 jj  for 

the lower face. 

 

The source of arbitrary orientation with the unit direction vector n

  is considered as 

a superposition of three elementary sources directed along the x-, y-, and z-axes.  

The corresponding current densities are given by 

 

)(
2

1
)(),(

2

1
)(),(

2

1
)( tJntJtJntJtJntJ msZmsZmsYmsYmsXmsX           (3-31) 

 

All the magnetic current densities should follow the right-hand rule with regard to all 

three Cartesian axes as shown in Fig. 3-8 for the y-axis. 

 

This case has the same properties as the two cases before. A “large” volume 

impressed voltage occupied by the dipole model that extends to two unit cells in every 

direction, while able to describe the source of arbitrary orientation with same phase 

center. 
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Figure 3-8 Impressed source model with the dipole placed at the corner node of the Yee cell 

 

3.3.4. Relation between the magnetic current loop source and the electric dipole 

source  

 

The displacement current (current in the capacitor) in Fig. 3-6 is directed down. 

Therefore, the counterpart of the magnetic current loop in Fig. 3-6, with the magnetic 

current running following the right-hand rule with regard to the positive z-direction, 

should be an infinitesimally small electric dipole oriented toward the negative 

z-direction. If this dipole has a length l and driven by current tIti ss cos)( 0 , its 

radiation in the far field is described below [22] 
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On the other hand, the small magnetic current loop, whose right-hand rule axis is the 

z-axis, and which has a uniform magnetic current tIti msms cos)( 0  and an 

area S, radiates in the far field in the following way: 
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Comparing Eqs.(3-32) and (3-33) one has  
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Eq. (3-34) can be transformed to the time-domain solution for an arbitrary pulse by 

operator substitution tcjk  1
0 . This gives 

 

 





t

sms
ms

s tdti
S

l
ti

t

ti

l

S
ti

0

)()(
)(

)(


                          (3-35) 

 

Further, the magnetic current )(tims  is replaced by its current density uniformly 

distributed over every involved cell’s cross-section: 
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Finally, since the loop area is the cell face, one has 
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The above expression has the units of V/m2, indeed. The last step is to substitute into 

Eq. (3-37) the expression for )(tJ ms  that follows from Eq. (3-29b), that is 
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The result becomes  
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which is the familiar capacitor model introduced yet in the first figure to this section.  

 

3.4 Performance validation 

 

A couple test benchmarks will be shown below to verify the performance of the CPCs 

model and traditional point source model. 

 

An electrical dipole, a magnetic dipole and an impressed voltage source described in 

previous sections will be investigated as different cases — see Table 3-1. 

 

Table 3-1 CARTESIAN CURRENT DENSITY COMPONENTS 

Source  

Type 

Current Density  

(i = x,y,z) 
Relevant Parameters 

Electric 

Dipole 
)(

2

1
)( tJntJ sisi   )( tJ s :  current density of original dipole 

Magnetic 

Dipole 
)(

2

1
)(

4
ti

AN
ntJ isi


  

i(t)  :  coil current 

A   :  coil area 

N   :  number of turns 

Impressed 

Voltage 

Source 

)(
2

1
)( tJntJ msimsi   

)(tJms :  magnetic current density of 

arbitrarily-oriented loop of magnetic current 

 

3.4.1 Pulse form to be used 

 

To start the simulation, a specific source should be assigned. In general, the pulse 

form may be chosen arbitrarily. A bipolar Gaussian (Rayleigh) current pulse used in 

the following test benchmarks has the form. 
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Its center frequency and a 3dB-power bandwidth are given by 
 



16.0
cf ,  cf15.1BW                             (3-41) 

 

Here,  0 .2 ns; 800 M H zcf                                      (3-42) 
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3.4.2 Transmit (TX) Electrical dipole case 

 

In this case, a transmit (TX) electrical dipole is considered, the parameters can be 

found in Table 3-2 

 

Table 3-2 Test parameters 

 

Domain 

size 

 

Cell  

size 

 

Pulse center 

frequency/wavelength 

Cells per 

wavelength at 

center 

frequency 

1.2×1.2×1.2m 20mm or 

10mm 

800MHz 

375mm  

18.75 or  

37.5 

Excitation port Receiver/probe ports  

One dipole centered at origin and 

oriented along the z-axis with the 

electric moment m10 3  per one 

ampere 

Three field probes at the distances 60, 200, and 340mm 

oriented along the z-axis to sample the radiated vertical 

electric field in the E-plane (the xz-plane) 

 

The results are shown below in Fig 3-9. Port #1 indicates the transmit dipole, Ports #2 

~ #4 indicate the field probes at distances 60, 200, and 340mm respectively.  

 

 
Figure 3-9 a) Test geometry and b) Test output 

 

For harmonic excitation, the vertical E-field component of an infinitesimally-small 

electric dipole of length l in the xz-plane at 0z  is given in the phasor form [22] by 
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where 
00 lIM z   is the corresponding dipole moment. Eq. (3-43) can be transformed 
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to the time-domain solution for an arbitrary pulse by operator substitution 

tcjk  1
0 . This yields, in time domain  
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where now  
 

)()( tlitM z                                 (3-45) 

 

is the instantaneous dipole moment of the small dipole with )(ti  being the 

instantaneous dipole current in amperes given by Eq. (1) of the introduction. One can 

see that the transmitted electric field is a combination of the dipole current, of its first 

derivative, and of its integral. The first derivative dominates in the far field. 

 

Fig. 3-10a shows the comparison results between two pulse forms (red-FDTD, 

blue-analytical) for three probes. The agreement is good for the closest probe, but it 

becomes slightly worse when the probe is moved from the near field into the Fresnel 

region. Note that the closest probe is located at the distance of three unit cells (0.16) 

from the antenna. 

 

Fig. 3-10b shows the same results, but when the cell size in this example is reduced to 

10mm. 
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Figure 3-10 Comparison results for a)20mm and b)10mm cell size.  Blue – exact analytical 

solution; red – FDTD. 

 

3.4.3 Arbitrarily oriented Electric TX dipole(s) 

 

In this case, a 45 degree rotated TX electrical dipole and a non-grid aligned receive 

probe are considered. The detail parameters can be found in Table 3-3 

 

0 0.5 1 1.5 2 2.5 3 3.5
-20

-10

0

10

time, ns

Port#2: Probe port: Copolar E in V/m

0 0.5 1 1.5 2 2.5 3 3.5
-2

0

2

4

time, ns

Port#3: Probe port: Copolar E in V/m

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

2

time, ns

Port#4: Probe port: Copolar E in V/m

0 0.5 1 1.5 2 2.5 3 3.5
-20

-10

0

10

time, ns

Port#2: Probe port: Copolar E in V/m

0 0.5 1 1.5 2 2.5 3 3.5
-2

0

2

4

time, ns

Port#3: Probe port: Copolar E in V/m

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

2

time, ns

Port#4: Probe port: Copolar E in V/m



49 
 

Table 3-3 Test parameters 

 

Domain  

Size 

 

Cell size 

 

Pulse center 

frequency/wavelength 

Cells per 

wavelength at 

center 

frequency 

1.2×1.2×1.2m 20mm or 

10mm 

800MHz 

375mm  

18.75 or 

37.5 

Excitation port Receiver/probe ports  

One dipole centered at origin and located 

in the xz-plane at  45 elevation angle 

with the electric moment m10 3  per 

one ampere 

Two field probes located at (60,0,0)mm and  

(200,0,200)mm, respectively. The first probe is along the 

z-axis, the second probe is located in the xz-plane at  

45 elevation angle 

 

The results are shown below in Fig 3-11. Port #1 indicates the transmit dipole, Port #2 

indicates the field probes at distances 60mm, and Port #3 indicates the non-grid 

aligned probe at (200,0,200)mm. 

 

 

Figure 3-11 a) Test geometry and b) Test output 

 

For this problem both E-field components of an infinitesimally-small dipole of length 

l will be needed. For the small dipole oriented along the z-axis [22] 
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                                                                (3-46) 
 

where 00 lIM z   is the corresponding dipole moment. Eq. (3-46) can be 

transformed to the time-domain solution for an arbitrary pulse by operator substitution

tcjk  1
0 . This yields, in time domain  
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where now 

 

)()( tlitM z                                 (3-48) 

 

is the instantaneous dipole moment of the small dipole with )(ti  being the 

instantaneous dipole current in amperes given by Eq. (3-46) of the introduction. 

 

The first probe (port#2) acquires the field )mm60,,45(),(1  rtErtE  . 

The second probe (port#3) acquires the field )mm2002,,0(),(2  rtErtE r .  

These fields are to be compared with the numerical solution. 

 

Fig. 3-12a shows the comparison results between two pulse forms (red-FDTD, 

blue-analytical) for three probes. The agreement is good for both probes, but not 

nearly perfect. Note that the closest probe is located at the distance of three unit cells 

(0.16) from the antenna center. 

 

Fig. 3-12b shows the same results, but when the cell size in this example is reduced to 

10mm. All other parameters remain the same. The agreement is now excellent. For 

example, the difference between analytical and numerical solutions in the bottom plot 

of Fig. 3-12b can hardly be recognized visually. 
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Figure 3-12 Comparison results for a) 20mm and b) 10mm cell size.  Blue – exact analytical 

solution; red – FDTD. 

 

3.4.4 TX coil in free space 

 

In this case, a TX magnetic dipole (coil) is investigated. The detail parameters can be 

found in Table 3-4. 
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Table 3-4 Test parameters 

 

Domain 

Size 

 

Cell  

size 

 

Pulse center 

frequency/wavelength 

Cells per 

wavelength at 

center 

frequency 

1.2×1.2×1.2m 20mm or 

10mm 

800MHz 

375mm  

18.75 or 

37.5 

Excitation port Receiver/probe ports  

One coil centered at origin and oriented 

along the z-axis with the magnetic 

moment 23 m10   per one ampere 

Three field probes at the distances 100, 200, and 300mm 

oriented along the y-axis to sample the radiated azimuthal 

electric field in the E-plane (the xy-plane) 

 

The results are shown below in Fig 3-13. Port #1 indicates the transmit coil, Ports 

#2~#4 indicate the field probes at the distances 100, 200, and 300mm oriented along 

the y-axis. 

 

 

Figure 3-13 a)Test geometry and b) Test output 

 

For harmonic excitation, the radiating E-field component in the xy-plane at 0x  is 

given in the phasor form by [22] 
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where 00 ANIM z   is the corresponding magnetic moment. Eq. (3-49) can be 

transformed to the time-domain solution for an arbitrary pulse by operator substitution 

tcjk  1
0 . This yields, in time domain  
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                                                                (3-50) 

 

where now  

 

)()( tANitM z                             (3-51) 

is the instantaneous magnetic moment of the coil with )(ti  being the instantaneous 

coil current in amperes given by Eq. (3-49) of the introduction. One can see that the 

transmitted electric field is a combination of the first and second derivatives of the 

coil current; the second derivative dominates in the far field.  

 

Fig. 3-14a shows the comparison results between two pulse forms (red-FDTD, 

blue-analytical) for three probes. The agreement is good, but it becomes slightly 

worse when the probe is moved from the near field into the Fresnel region. Fig. 3-14b 

shows the same results, but when the cell size in this example is reduced to 10mm. All 

other parameters remain the same. The agreement is now excellent. 
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Figure 3-14 Comparison results for a) 20mm and b) 10mm cell size.  Blue – exact analytical 

solution; red – FDTD. 

 

3.4.5 TX and RX coils in free space 

 

Compared to previous case, the receive probes have been replaced by coils located at 

the distances 60 and 320mm, respectively oriented along the z-axis to generate the 

open-circuit voltage. The detail parameters can be found in Table 3-5 

 

Table 3-5 Test parameters 

 

Domain 

Size 

 

Cell  

size 

 

Pulse center 

frequency/wavelength 

Cells per 

wavelength at 

center 

frequency 

1.2×1.2×1.2m 20mm or 

10mm 

800MHz 

375mm  

18.75 or  

37.5 

Excitation port Receiver/probe ports  

One TX coil centered at origin and 

oriented along the z-axis with the 

magnetic moment 23 m10   per one 

ampere 

Two receiver (RX) coils at the distances 60 and 320mm, 

respectively oriented along the z-axis to generate the 

open-circuit voltage, with the same magnetic moment 

 

Graphic results can be found below in Fig 3-15. Port #1 indicates the transmit coil, 
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Ports #2~#3 indicate the receive coils. 

 

 

Figure 3-15 a)Test geometry and b) Test output 

 

For harmonic excitation, the radiating H-field component in the xy-plane at 0x  is 

given in the phasor form [22] by 
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where 00 ANIM z   is the corresponding magnetic moment. Eq. (3-52) can be 

transformed to the time-domain solution for an arbitrary pulse by operator substitution 

tcjk  1
0 . This yields, in time domain  
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where now  
 

)()( tANitM z                             (3-54) 

 

is the instantaneous magnetic moment of the coil with )(ti  being the instantaneous 

coil current in amperes given by Eq. (3-52) of the introduction. One can see that the 

transmitted magnetic field is a combination of the coil current and the first and second 

derivatives of the coil current; the second derivative dominates in the far field. In the 

receiving mode, the open-circuited air-core RX coil generates the induced emf 

voltage,  
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Fig. 3-16a shows the comparison results between two pulse voltage forms (red-FDTD, 

blue-analytical) for three probes. The agreement is good in the near field, at the 

distance of 60 mm from the TX coil center, which corresponds to 0.16. However, it 

becomes slightly worse when the probe is moved from the near field into the Fresnel 

region, to the distance of 300mm. 

 

Fig. 3-16b shows the same results, but when the cell size in this example is reduced to 

10mm with all other parameters remain the same. The agreement is now very good. 

This result is remarkable since the third derivative of the initial current pulse is 

actually employed. 
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Figure 3-16 Comparison results for a) 20mm and b) 10mm cell size.  Blue – exact analytical 

solution; red – FDTD. 

 

3.4.6 Arbitrarily oriented TX and RX coils in free space 

 

A test case for arbitrary oriented coils is defined using two receiver (RX) coils at the 

distances x=60mm, z=60mm and x=260mm, z=260mm from the origin, respectively. 

The detail parameters can be found in Table 3-6 

 

Table 3-6 Test parameters 

 

Domain 

Size 

 

Cell size 

 

Pulse center 

frequency/wavelength 

Cells per 

wavelength at 

center frequency 

1.2×1.2×1.2m 20mm or 

10mm 

800MHz 

375mm  

18.75 or  

37.5 

Excitation port Receiver/probe ports  

One TX coil centered at origin and 

oriented along the z-axis with the 

magnetic moment 23 m10   per one 

ampere 

Two receiver (RX) coils at the distances x=60mm, z=60mm and 

x=260mm, z=260mm from the origin, respectively, both are in the 

xz-plane; both coils generate the open-circuit voltage. The magnetic 

moment is 23 m10   per one ampere for every coil 

 

The graphic results are shown below in Fig. 3-17 where Port #1 indicates the transmit 

coil, Ports #2~#3 indicate the receive coils at the distances x=60mm, z=60mm and 
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x=260mm, z=260mm from the origin, respectively. 

 

 

Figure 3-17 a)Test geometry and b) Test output 

 

For harmonic excitation, the radiating H-field component at arbitrary location in the 

xz-plane at 0x  is given in the phasor form [22] by 
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where 00 ANIM z   is the corresponding magnetic moment. Eq. (1) can be 

transformed to the time-domain solution for an arbitrary pulse by operator substitution 

tcjk  1
0 .  This yields, in time domain  
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where now  

 

)()( tANitM z                             (3-58) 

 

is the instantaneous magnetic moment of the coil with )(ti  being the instantaneous 

coil current in amperes given by Eq. (3-56) of the introduction. The non-radiating 

(radial) H-field component is given [22] by 
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The first (closest) receiving coil only picks up the radial component given by Eq. 

(3-59) at =45 deg; the second coil only picks up the elevation component given by 

Eq. (3-60), also at =45 deg. In the receiving mode, every open-circuited air-core RX 

coil generates the induced emf voltage,  

 

t

H
ANtE z

emf



 0)(                            (3-60) 

 

Fig. 3-18a shows the comparison results between two pulse voltage forms (red-FDTD, 

blue-analytical) for three probes. The agreement is generally good including the near 

field, at the radial distance of 85 mm from the TX coil center, which corresponds to 

0.22. However, a small temporal shift of the numerical waveform appears, which is 

almost exactly 2/t . It is believed that such shift appears due to the rounding 

procedure. 

 

To confirm this conclusion, Fig. 3-18b shows the same results, but when the cell size 

in this example is reduced to 10mm. All other parameters remain the same. The 

agreement is now excellent. It is actually even better than for the collinear coils in the 

previous example. 
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Figure 3-18 Comparison results for a) 20mm and b) 10mm cell size.  Blue – exact analytical 

solution; red – FDTD. 

 

3.4.7 Impressed voltage (electric-field) source in free space 

 

Here, a test case is described for the impressed voltage source, which demonstrates 

numerical equivalency of the small electric-dipole model (Example 1) and the 

impressed voltage source. The detail parameters are summarized in Table 3-7 

 
Table 3-7 Test parameters 

 

Domain 

Size 

 

Cell 

size 

 

Pulse center 

frequency/wavelength 

Cells per 

wavelength 

at center 

frequency 

1.2×1.2×1.2m 20mm 

or 

10mm 

800MHz 

375mm  

18.75 or 

37.5 

Excitation port Receiver/probe ports  

One voltage source centered at origin and 

oriented along the z-axis with the moment 
23 m10   per one volt 

Three field probes at the distances 60, 200, and 340mm 

oriented along the z-axis to sample the radiated vertical 

electric field in the E-plane (the xz-plane) 

 

Graphic results can be found below in Fig 3-19. Port #1 indicates the impressed 
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voltage source, Ports #2~#4 indicate the field probes at the distances 60, 200, and 

340mm oriented along the z-axis. 

 

 

Figure 3-19 a)Test geometry and b) Test output 

 

For harmonic excitation, the vertical E-field component of an infinitesimally-small 

electric dipole of length l in the xz-plane at 0z  is given in the phasor form [22] by 
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where 00 lIM z  is the corresponding dipole moment. Eq. (3-61) can be transformed 

to the time-domain solution for an arbitrary pulse by operator substitution 

tcjk  1
0 . This yields, in time domain  
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where now 

 

)()( tlitM z                                 (3-63) 

 

is the instantaneous dipole moment of the small dipole with )(ti  being the 

instantaneous dipole current in amperes.  The electric dipole current is to be 

expressed by dtCdti /)(   where )(t  is the voltage of the impressed voltage 
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source given by Eq. (3-61) of the introduction and lAC /0  is the equivalent 

capacitance. Here, A is the moment of the impressed voltage source (capacitor plate 

area) with the units of m2 per one volt. 

 

Fig. 3-20a shows the comparison results between two pulse forms (red-FDTD, 

blue-analytical) for three probes. The agreement is good for the closest probe, but it 

becomes slightly worse when the probe is moved from the near field into the Fresnel 

region. Note that the closest probe is located at the distance of three unit cells (0.16) 

from the antenna. 

 

Fig. 3-20b shows the same results, but when the cell size in this example is reduced to 

10mm. All other parameters remain the same. The agreement is now excellent. 
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Figure 3-20 Comparison results for a) 20mm and b) 10mm cell size.  Blue – exact analytical 

solution; red – FDTD. 

 

3.4.8 Error Analysis 

 

The relative error, E, is defined as 
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Here, the pulse is confined between two time moment: 21 , tt . 

 

A summary of the relative errors achieved is given in Table 3-8 
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Table 3-8 RELATIVE ERRORS COMPARISON BETWEEN STANDARD MODEL AND CPCs MODEL 

Test 

Configuration 

Receiver  

Distance (mm) 

20mm Cell  

Error (%) 

10mm Cell 

Error (5) 

Standard CPCs Standard CPCs 

Elec. Dipole / 3 

grid aligned Rx 

probes  

60 33.6 7.4 8.0 0.4 

200 5.7 6.4 1.4 1.6 

340 10.8 11.4 2.6 2.8 

Elec. dipole / 4 

non-grid aligned 

probes 

60 126.0 7.4 34.7 0.4 

200  4.9 3.8 1.1 0.8 

Mag. Dipole / 3 

grid aligned Rx 

probes 

100 2.5 2.5 0.6 0.6 

200 7.7 7.7 1.9 .20 

300 13.5 13.5 3.4 3.4 

Mag. Dipole / 2 

grid aligned Rx 

coils 

60 6.7 6.7 2.1 2.1 

320 22.8 22.8 5.6 5.6 

Mag. Dipole / 2 

non-grid aligned 

Rx probes 

60 16.3 5.4 7.5 1.8 

260 31.3 8.3 13.9 2.3 

Impressed 

voltage source 

and three grid 

aligned Rx 

probes 

60 24.8 6.0 5.9 1.4 

200 10.5 11.1 2.5 2.7 

340 17.5 18.1 4.1 4.3 

 

3.4.9 Analysis of the closest distance 

 

Given these results in previous sections, the question arises as to how close 

infinitesimal CPCs source and receiver elements can be placed to each other. The 

progression from one to three cells of separation distance is quantified in Table 3-9 and 

depicted from left to right in Fig. 3-21. 
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Figure 3-21 Copolar fields close to the dipole (top) and coil (bottom) as spacing moves from one 

cell (left) to three (right). 

 

Based on these results, a minimum separation distance of three cells is required in 

order to obtain reasonable (i.e., error < 10%) results. A magnetic dipole seems perform 

better than the electric dipole and can still achieve relative good (~20%) results even in 

the case of one cell separation case and the error reduce quickly when the distance 

increase to 2 cells. 

 

Table 3-9 EXAMINATION OF SOURCE SEPARATION 

Case 
Separation  

Distance (cells) 

Error (%) 

19 cells/λ 38 cells/λ 

Electric Dipole 

1 70.3 69.0 

2 27.4 26.2 

3 7.4 7.8 

Magnetic Dipole 

1 21.2 25.2 

2 2.2 1.8 

3 5.4 1.4 
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CHAPTER 4  

CONCLUSIONS 

 

We conclude that the CPCs model performs either equally well or better than the 

standard model for grid and non-grid aligned problems, respectively. For non-grid 

aligned problems, the error is reduced by the factor of four or more in the near field (at 

distances about 0.16 from the source). A minimum separation distance of three cells 

is required in order to obtain integral error less than 10% for the coincident 

phase-center electric dipole sources. Magnetic dipole sources can achieve a better 

result with the error remaining less than 10% in the two-cells distance. 

 

To take advantage of the property of the CPCs coil sources, two small orthogonal coils 

has been considered to create a highly-directional single-lobe beam [4]. 

 

 

Figure 4-1 Geometry and H-plane definition (left) and normalized patterns into the lower 

half-space (right) 

 

The highly-directional antenna can be applied to inside human body localization 

purpose and a variety other kinds of application in localization and WBAN. 
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