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Abstract 
 

Deep Reinforcement Learning (DRL) has shown remarkable success in the control of 

single-robot applications. The approach has seen impressive results when applied to multi-robot 

coordination, but it has some notable shortcomings to overcome. Even though it is becoming 

increasingly popular for real-world multi-robot autonomy, DRL struggles as the complexity of 

the control system being developed increases. In systems with a high number of agents and 

consequently Degrees-of-Freedom (DOF), the training process can be prohibitively time-

consuming or fraught with issues that make it difficult to learn optimal behaviors. One of the 

primary issues that DRL is faced with in multi-robot systems is managing the simultaneous 

learning process where the inter-agent interactions provide inconsistent information to the model. 

We investigated Attention-based Global State Prediction (AGSP) which uses information from 

neighbors to form a belief over the outcome of all the agents in order to overcome this instability 

in the training process. AGSP is able to predict future states accurately even over a large number 

of agents using information communicated about the collective actions. We used AGSP in a 

decentralized modular locomotion task and empirically evaluated the emergent properties. We 

found that AGSP produces policies that exhibit superior stability and adaptability. This makes 

AGSP a useful tool for developing safe and consistent controllers with low rates of failure.  
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Chapter 1 

Introduction 

 

Modular robots (MR) are robotic systems that consist of individual modules where a 

module is generally an actuator that enables locomotion or shape-changing (Singh et al., 2022). 

These modules are interchangeable either autonomously or physical connection allowing for 

variable behavior, MR have experienced a remarkable expansion in its applications, leading to 

the development of increasingly diverse and complex systems (Alattas et al., 2019). This 

tremendous growth can be attributed to the flexible nature of these robotic systems, which 

permits the assembly and reconfiguration of individual modules to create various robot 

configurations tailored to different tasks. This modularity provides significant advantages, such 

as adaptability and scalability, allowing MR to excel in a wide range of applications from 

manufacturing to exploration and even medical interventions. (Grabowski et al., 2000) (Ding et 

al., 2022)  

However, as the complexity of MR systems grows, traditional control methods encounter 

significant challenges, particularly concerning the number of parallel degrees-of-freedom (DoFs) 

(Varshavskaya et al., 2008). In MR, each module typically possesses its own degrees of freedom, 

granting it the capability to move or execute actions independently. As more and more modules 

are integrated into the system, the number of parallel DoFs increases exponentially, leading to a 

higher level of intricacy in the control structure. The surge in parallel DoFs introduces issues of 

coordination, synchronization, and overall system stability. The complexity of managing 

multiple modules operating simultaneously demands advanced control algorithms and 

computational power. (OpenAI et al., 2019). Traditional control methods, designed for more 

conventional robotic systems with limited DoFs, struggle to cope with the dynamic and non-

linear behaviors exhibited by these highly interconnected MR systems (Whitman et al., 2021).  
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While MR are highly editable, even if you can develop a methodology to control one 

configuration, once you change the setup you have to devise and tune a new policy. This adds to 

the complexity and burden of controlling MR systems effectively. To simplify the development 

of control policies for MR systems, reinforcement learning has emerged as a successful approach 

that is capable of handling a large number of modules (Ahmadzadeh & Masehian, 2015). With 

reinforcement learning, control policies for MR systems can be rapidly developed, as the agent 

can learn through trial and error and optimize its actions based on the received feedback. This 

approach can help in mitigating the challenges associated with the complexity and editability of 

MR systems. However, single-agent approaches are hampered by non-stationarity caused from 

several modules learning simultaneously (Busoniu et al., 2008). 

To address these challenges, researchers and engineers have been exploring novel control 

strategies, such as bio-inspired algorithms, swarm intelligence, and distributed control systems 

(Schilling et al., 2021). By treating each module as an individually controllable agent, it is 

possible to study the collective emergent behavior that arises from the interaction of these 

components. These approaches have seen success by dividing up the computation to allow for 

control methodologies to scale to larger numbers of modules working together. These innovative 

approaches leverage the self-organization and emergent behaviors observed in natural systems, 

which can be highly advantageous in managing large-scale MR configurations (Thor & 

Manoonpong, 2022). By incorporating these cutting-edge techniques, we aim to enhance the 

adaptability and autonomy of modular robotic systems, unlocking their full potential for complex 

tasks and environments. 

 

1.1 Problem Statement 

 

The primary objective of this research is to train a single decentralized model capable of 

achieving successful locomotion when applied to a distributed modular robotic platform with 

incomplete information. The focus of our investigation is on MR in the lattice configurations 

where the modules are not attached sequentially but rather affixed to another mechanical link. As 

a result, their control becomes inherently interconnected, as they exert forces on each other, 
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impacting the overall motion. However, not every motion necessarily has an impact on the others 

leading to inconsistent feedback from the system. This complicates the learning process as the 

connection between modules introduces non-stationarity into the system where the optimal 

policy moves as a result of the inter-module interactions being different each iteration. Since the 

system is learning and updating its policies each episode the correlation between actions and 

outcomes is difficult for the model to track.  

  

Figure 1: MuJoCo Ant Environment 

To investigate this problem, we focused on a specific modular locomotion task called the 

ant (Figure 1), which is part of the OpenAI Gym Multi-Joint Dynamics with Contact (MuJoCo) 

library (Todorov et al., 2012). In this task a set of legs are attached to a central body and tasked 

with travelling in the positive X direction as quickly as possible. The reward policy promotes 

positive motion while penalizing excessive energy expenditure. This task structure aims to 

develop a policy that not only encompasses an effective gait but also optimizes it for maximum 

efficiency. Each leg consists of a “hip” where it attaches to the body and a “knee” joint in the 

middle of the leg. We divide the ant up into several independent elements where each leg is a 

single module with control over its own hip and knee joint, and the module has observability 

over information from other legs in the system from a simulated sensor array including positional 

and joint information. To see success all the legs must work together in a coordinated approach 

that not only moves the body but does it in such a way that it can maintain momentum 

consistently.  

Our primary goal was to develop a robust and efficient locomotion policy that enables 

modules to cooperate effectively and exploit their physical connection to expand their set of 
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observations. Our approach aimed to go beyond relying solely on communication between 

modules and instead leverage their interconnectivity to enhance coordination and adaptability. 

By addressing these challenges, we aimed to contribute to the advancement of decentralized 

control methods for modular robotic systems, empowering them with greater adaptability and 

autonomy in navigating complex scenarios. Our research aimed to shed light on novel solutions 

that harness the intrinsic relationships and physical connections within the MR system, 

ultimately paving the way for more efficient and capable robots. 

 

1.2 Contributions 

 

We demonstrate that the individual components of an MR can learn adaptable policies 

using Reinforcement Learning (RL) without learning distinct models for each module. This 

accelerates the development of MR systems, making them potentially more versatile and 

applicable across a wide range of tasks and environments. We investigate Attention-based 

Global State Prediction (AGSP) which not only fosters the creation of successful control policies 

but also ensures consistent and reliable performance. AGSP, an extension from Global State 

Prediction (Bloom et al., 2023), leverages attention mechanisms to predict and maintain a 

comprehensive global state representation, facilitating effective inter-module coordination even 

amidst non-stationarity and intricate interactions. By introducing AGSP to the learning process, 

we mitigate the limitations of traditional RL methods, enhancing adaptability and improving 

policy performance. 

To evaluate the effectiveness of AGSP, we conducted a comprehensive comparative 

analysis of the various training approaches. This includes policies trained under centralized and 

distributed control settings, as well as the integration of AGSP. The results demonstrate the 

advantages of AGSP in achieving improved control performance and consistency within MR 

systems particularly as complexity increases, showcasing its potential as a powerful tool for 

overcoming challenges associated with coordination and non-stationarity.  

By addressing pressing challenges in MR, specifically control complexity and 

generalization, through the introduction of innovative techniques such as AGSP, our research 
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contributes valuable insights towards enhancing the robustness and adaptability of MR systems. 

This advancement holds the potential to drive more efficient and capable robotic solutions in 

real-world applications. Through empirical evaluation, comparisons, and innovative 

contributions, this research fosters a deeper understanding of how MR systems can achieve 

enhanced adaptability, coordination, and performance, ultimately paving the way for more 

resilient and versatile robotic solutions. 
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Chapter 2 

Background and Related Work 

2.1 Reinforcement Learning (RL) 

 

Reinforcement Learning (RL) is a branch of machine learning concerned with training 

intelligent agents to make decisions and take actions in an environment to achieve specific goals. 

Unlike supervised learning, where the model is provided with labeled data, or unsupervised 

learning, where the model tries to identify patterns without explicit guidance, reinforcement 

learning relies on the concept of an agent interacting with an environment, learning from 

feedback signals, and optimizing its behavior over time. 

At the core of RL lies the Markov Decision Process (MDP), a mathematical framework 

used to model sequential decision-making problems under uncertainty. The MDP provides a 

formal way to represent the essential elements of an RL problem and is defined by a tuple ⟨S, A, 

R, P⟩. At each time step the agent is in state s ∈ S where S is the set of all possible states and 

chooses an action a ∈ A where A is the set of all possible actions. The Transition Model 

represented by P(s'| s, a) describes the probability of moving to state s' from state s when the 

agent takes action a. The decision is evaluated based on the reward, a feedback signal that 

indicates how well the agent is performing with respect to its goal defined as 

R(s,a,s′):S×A×S→ℝ. The objective of the agent is to maximize the cumulative reward over time. 

The typical approach to solving an MDP is to use the Bellman equation that introduces a value to 

each state-action pair of Q(s,a). This is a valuation on the expected future rewards that is 

modified by γ the discount factor, and the agent chooses to maximize the value gained with each 

action. If there are a relatively small number of possible state action pairs Q can take the form of 

a table or array or in more complex environments, it is approximated by a neural network.  

𝑄(𝑠, 𝑎) = Σ𝑠′𝑃(𝑠′|𝑠, 𝑎)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 max 𝑄 (𝑠′, 𝑎′)) 
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The MDP has an assumption that the state is a complete picture of task relevant 

information which is not always true particularly when considering a robotics application that 

will be limited to the information available from a conventional sensor array. Because there is an 

incomplete perception of the environment these applications become a Partially Observable 

Markov Decision Process (POMDP) that is defined by the tuple ⟨S, A, R, P, Ω, O⟩. This change 

introduces the observation o∈Ω(s) that is a partial observation of the true state s according to the 

function O(o |s’, a).  

If a S and A are small enough, then the value of every state-action pair can be mapped to 

a table to simplify decision making. However, as RL applications have expanded to more 

complex and high-dimensional state spaces, traditional tabular methods became infeasible. As 

the number of possible state-action pairs increases it becomes increasingly inefficient to try to 

visit and test every combination. Instead, approximate Reinforcement Learning techniques 

emerged to address this challenge. One of the most significant breakthroughs in RL came with 

the advent of Deep Reinforcement Learning (DRL). The introduction of Deep Q-Networks 

(DQN) (Mnih et al., 2015) combined Q-learning with deep neural networks to handle high-

dimensional state spaces and achieved human-level performance on Atari 2600 games. This 

approach was limited and unable to handle large state and action spaces or continuous 

environments. Another approach that designed to handle these limitations came in the form of 

Deterministic Policy Gradient (DPG) (Silver et al., 2014) that worked by directly optimizing the 

policy parameters utilizing an actor-critic method to maximize the expected cumulative reward. 

Both DPG and DQN were further developed with the introduction Deep Deterministic Policy 

Gradient (DDPG) (Lillicrap et al., 2019) which learned both Q-function and policy. This 

approach was highly successful in continuous action spaces, making it applicable to tasks in 

robotics and control.  

Building upon the success of DDPG, the seminal work (Fujimoto et al., 2018) proposed 

TD3 as a variant of DDPG with three key innovations that sought to address the issues of 

overestimation bias and exploration noise. First, TD3 employs a pair of critics to reduce value 

function overestimation, leading to more stable and accurate value estimates. Second, it 

introduces target policy smoothing to address the problem of policy overoptimism. By adding 

random noise to target policy actions, TD3 encourages conservative policy updates, improving 



   

 

8 

 

the policy's robustness. Lastly, TD3 incorporates a delayed policy update mechanism, reducing 

the variance of the value estimates and further stabilizing the learning process. TD3 has 

demonstrated superior sample efficiency and learning stability on a wide range of continuous 

control tasks, making it a popular choice for researchers in RL. 

The vanishing gradient problem is a challenge in deep learning where the gradients of the 

loss function become extremely small as they are backpropagated through multiple layers of a 

neural network during training. This phenomenon can lead to slow or stalled learning, as the 

updates to the network's weights become too tiny to effectively adjust the model's parameters, 

resulting in slower convergence and degraded performance. To overcome the vanishing gradient 

problem and support the learning of sequenced data recent RL works have utilized the 

transformer model (Liu et al., 2020). While originally designed for natural language processing 

tasks (Vaswani et al., 2023), transformers have been successfully adapted to various domains. 

Transformers use self-attention which computes weighted representations of input elements by 

considering their relationships with other elements in the same sequence. This model captures 

dependencies between different elements, usually time series, within the state or observation 

space. The self-attention mechanism in Transformers allows the model to attend to different parts 

of the input sequence and capture dependencies between elements, making it highly effective for 

handling long-range dependencies in sequential data. By modeling these dependencies this 

approach offers improved performance and interpretability in Reinforcement Learning settings. 

(Vaswani et al., 2023)  

 

2.2 Multi-Agent Reinforcement Learning (MARL) 

 

Multi-Agent Reinforcement Learning (MARL) has emerged as an area of research 

focusing on scenarios where multiple agents interact within a shared environment, aiming to 

optimize their individual objectives while influencing the overall system behavior. This can be 

further extended from the POMDP to the Decentralized Partially Observable Markov Decision 

Process (Dec-POMDP). Instead of a single agent, there are a set of agents I in the environment, 
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A=×iAi is the set of joint actions, and Ω=×iΩi is the set of joint observations. The representation 

is denoted by the updated tuple ⟨I, S, {Ai}, R, P, {Ωi}, O⟩.  

The introduction of other agents who are learning and interacting with each other 

simultaneously introduces the issue of non-stationarity, also called the moving target problem, 

which causes issues in policy convergence. The difficulty in training arises from the optimal 

policy for the agents moving as they learn and update their policies. Due to the simultaneous 

updates the inter-agent interactions are different depending on their current policy leading to 

inconsistent experience. Due to the prevalence of the issue, there is a body of work dedicated to 

attempting to mitigate non-stationarity by improving coordination, or observation. (Nayak et al., 

2023) (Zhou et al., 2022) (Chalkiadakis & Boutilier, 2003). 

One such way to combat non-stationarity is to allow for communication between agents. 

Communication takes a variety of different forms in RL from direct communication to shared 

gradient values. (Foerster et al., 2016) proposed a differentiable communication channel to 

enable agents to learn to communicate. Building upon the actor-critic framework, (Lowe et al., 

2020) introduced the multi-agent deep deterministic policy gradient (MADDPG) algorithm that 

enabled agents to learn individual policies and value functions while considering the actions of 

other agents with a centralized critic. (Sukhbaatar et al., 2018) introduced role-based dialogues 

where agents are assigned specific roles, and they learn to communicate effectively to achieve 

their joint objectives. The dialogue-based communication enables agents to exchange 

information and coordinate their actions efficiently, leading to improved coordination and task 

performance in cooperative multi-agent scenarios. 

Another approach to tackling non-stationarity involves the use of a belief state or 

prediction of other agent’s behavior. (Rodríguez et al., 1999) proposed maintaining 

approximating belief propagation in POMDPs.  (Zhang et al., 2022) showed that belief can 

benefit the performance of multiagent systems. By maintaining beliefs about the hidden states of 

the environment, agents can reason about the potential changes in their surroundings, leading to 

more informed decision-making and improved coordination in complex and uncertain 

environments. (Wu et al., 2021) introduced a spatial intention map that added a predicted 

trajectory of other agent’s movements that improved spatial coordination between agents. This 

prediction can be used to plan tasks or designate roles (Stulp et al., 2006). Global State 
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Prediction (GSP) makes use of the inherent properties of physically connected systems to learn a 

predictive methodology for collective transport (Bloom et al., 2023). 

Despite notable progress, challenges persist in MARL, including the scalability of 

algorithms to handle large agent populations, stability in learning, and avoiding undesirable 

emergent behaviors. 

 

2.3 Modular locomotion 

 

Modular robotic systems (MRS) are a class of robotic systems characterized by their 

ability to dynamically change their shape in response to the task and environmental conditions, 

achieved through adopting various morphologies. These versatile robots are composed of 

multiple modules, each equipped with a limited number of degrees of freedom (DOFs). The 

modules are designed with connection mechanisms that allow them to cooperatively connect or 

detach from one another, enabling the formation of aggregate structures and shapes sometimes 

autonomously. MRS offer the benefit of flexibility in application due to this customizability. 

However, developing control structures for MRS presents a difficult challenge due to the number 

of possible configurations that can be tedious and time consuming to produce via traditional 

methods (Whitman et al., 2021). 

These methods for legged locomotion largely make use of central pattern generators 

(CPG) (Fukuoka et al., 2015) in order to develop a gait cycle for a specific robot. These CPGs 

are based on biological processes that generate rhythmic functions such as breathing or walking 

(Marder & Bucher, 2001). They form a loop that takes in sensory information and ties it to 

output mechanisms, such as motors in the case of robotics. CPGs can adapt to changes in the 

environment or the organism's needs. For instance, when walking on uneven terrain, sensory 

feedback can modify the CPG's output to adjust the walking pattern for stability (McKenna & 

Zeltzer, 1990). Classic gait generation methods have been used from small bipedal systems 

(Khan & Mandava, 2023) to large scale systems including eight-legged robotic platforms 

(Grzelczyk & Awrejcewicz, 2019). The use of more advanced body mechanisms including 
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passive spines have allowed for the development of gaits in systems of even larger sizes such as 

(Tang et al., 2022) that developed an undulating gait for a robot with any even number of legs.  

However, a notable shortcoming of these methods is their limited scalability and 

adaptability when faced with dynamic systems such as modular robots. While CPGs offer a 

foundation for gait generation and adaptation, they are limiting when designing modular systems 

due to the large number of possible configurations that can arise from even a small set of 

modules (Whitman et al., 2021). Reinforcement learning has been used to streamline the process 

of developing controllers for modular locomotion due to the ease of development (Schaff et al., 

2018), and as such is much more time effective when designing multiple controllers for the 

variety of configurations of a modular system. The task of training a locomotion controller is not 

trivial, particularly for legged locomotion, and there are a variety of approaches for training. 

Hierarchical control is a biologically inspired approach where different models are trained on 

different elements of the locomotion process including foot placement, path planning, and leg 

movement as examples (Amri et al., 2023). This approach often uses a central planning brain that 

designates operations and switches between different behaviors. Hwangbo et al. (2019) 

demonstrate that, in a matter of hours, this approach develops a policy that outperforms existing 

controllers. 

While hierarchical control has proven effective in achieving specialized control for 

specific morphologies, it lacks generalizability and transferability to other systems, necessitating 

significant restructuring to be applied elsewhere. Furthermore, hierarchical control approaches 

struggle to adapt behavioral primitives learned in one context to new and varying situations 

(Schilling et al., 2020). In response to these limitations, recent advances in developing more 

generalized learning processes have led to a shift towards decentralized control methods, where 

each individual module within the robotic system is equipped with its own controller. By 

adopting this decentralized approach, training offers notable advantages, such as increased 

robustness to noise and faster convergence speeds, thanks to the utilization of smaller, more 

manageable models (Schilling et al., 2021). These benefits make decentralized control a highly 

reliable and efficient means to rapidly learn locomotion models for robots. This decentralized 

paradigm not only enhances adaptability across different contexts but also lays the foundation for 
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more scalable and adaptable robotic systems capable of handling diverse and challenging tasks 

effectively.  
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Chapter 3 

Methodology 

3.1 Task Formulation 

 

This study aimed to evaluate the effectiveness of RL training methodologies on a 

modular, legged locomotion task from the OpenAI Gym MuJoCo library (Schulman et al., 

2018). The task could be completed without the use of RL, but our goal was to develop an end-

to-end RL methodology to improve the development of RL controllers. The primary objective 

was to assess the capacity of various methods to promote cooperation and facilitate proficient 

multi-agent policy learning. The legged locomotion system was designed with a modular 

arrangement, wherein each leg was symmetrically positioned around a central hub. These legs, 

while essentially identical, differed only in their spatial placement and the four-legged 

configuration is shown in Figure 2. 

Each leg consisted of two distinct segments connected by two joints. The initial joint, 

termed the "hip," functioned as a revolute joint linking the leg to the central hub of the system. 

This joint enabled rotational movement around the z-axis, with a range of up to +30 degrees. The 

second joint, referred to as the "knee," is a revolute joint responsible for connecting the lower leg 

to the upper leg. The knee joint facilitated rotation perpendicular to the upper leg from in a range 

from 30 - 70 degrees.  

In the original, unmodified environment, the entire system is treated as a unified entity, 

sharing observations and actions. The action space is comprised of eight actions all pertaining to 

the control of the leg joints. Positive or negative torque on a continuous range of (-1,1) can be 

applied to all four hip joints and all four knee joints at each time step. The observation space by 

default is an array with 111 components. The observations include the Z coordinate of the body, 

the 4 quaternion components of the body orientation, the hip and then knee angle for each leg, 

the three-dimensional cartesian and rotational velocities of the body, the angular velocity for the 
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hip and knee joints of each leg, and finally the contact forces on each individual body part which 

comprise the final 84 observations.  

  

Figure 2:Four-legged Ant robot in MuJoCo environment 

For the specific objectives of this research, a modular approach was adopted. Control was 

partitioned into discrete modules, each comprised of a single leg containing one hip and one knee 

joint.  This modularization aimed to facilitate a more detailed analysis of system interactions and 

learning strategies. Figure 3 shows the division for a four-legged configuration. However, the 

experimentation encompassed a broader scope, including an eight- legged configuration. In the 

eight- legged setup, additional legs were positioned within the gaps between the original four 

legs (Fig 4), aligned along the cardinal directions. The division followed the same pattern with 

each leg serving as one module. Other works have looked at having one agent control multiple 

modules (Peng et al., 2021), but we elected to have each agent only control one module to 

simplify the transition from between the four and eight leg configurations. 
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Figure 3:  Diagram showing the arrangement of agents in four-legged configuration 

Since the control of the system is distributed into separate modules, they all required their 

own set of observations. To make each module interchangeable but without having identical 

actions, the observation space was based on the position of the module (Table 1). The 

observations were structured starting with the cartesian position and velocity as well as the 

orientation of the central hub or “body” of the ant at the current time step. This information is 

identical for each module and in the same position at the start of the observation array. Following 

the global reference frame data, the observation sequence transitioned to the details of each leg 

including relative joint angles to the body, the angles between the upper and lower leg, and the 

instantaneous joint velocities. The information available to each module is the same, but the 

policy across the modules is asymmetrical depending on the placement of the leg. To ensure that 

each module could intuitively identify its relative placement, the leg observations were 

communicated in a clockwise rotation. This design choice endowed each module with the innate 

ability to implicitly perceive its position in relation to the other modules and their respective 

limbs. Without this each module would receive the same observations and therefore choose the 

same actions. This systematic rotation enhances the module’s spatial awareness and contributed 

to their capacity for effective coordination and cooperative behavior that would not have been 

possible otherwise.  

We wanted our observation space to be closely aligned with the types of sensors that 

might be practically available in a real-world scenario, therefore a conscious decision was made 

to exclude the consideration of contact forces within the observation space. This approach not 
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only facilitated more realistic sensor modeling but also expedited the training process by 

reducing the overall size of the observational input. 

 

Figure 4: Eight-legged Ant robot in MuJoCo environment 

 

3.2 Training 

 

To optimize both the training process and the ultimate model scalability, we employed 

the approach of Aggregate Centralized Training with Decentralized Execution (A-CTDE) 

(Bloom et al., 2023).  Each module’s experiences were pooled together to make a single 

comprehensive replay buffer. This collective buffer not only reached saturation more swiftly but 

also encompassed a diverse array of experiences, enriching the training dataset (Egorov & 

Shpilman, 2022). The modules all independently interact with the environment, but their 

experiences are collected and used to train a single shared model. Consolidating experiences 

from every module and then training a shared model with each of their perspectives ensures that 

the model has a broader range of experiences than if it was trained on only a single module. 

During the experimental phase, the trained model was distributed to each module, allowing them 

to operate independently. The policy is applied to individual legs without any centralized control 

allowing the approach to be conducive for training large modular systems because the scalability 

issues of other training methodologies are dampened. The uniformity of observation and action 

spaces across modules streamlined the training process while still retaining the capacity for 

successful runtime operations through implicit differentiation. 

Table 1: Individual Module Observation Array 
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Number of Observations Observations Included 

11 Body observations (Ob) 

4 Module n observations (Oli) 

4 Module n+1 observations (Oli+1) 

4 Module n+2 observations (Oli+2) 

4 Module n+3 observations (Oli+(N-1)) 

3 Predicted ΔV 

 

Given that the overarching objective of the task was to learn a dynamic gait cycle, the 

desired policy is dynamic and asymmetrical because different actions must be taken across the 

modules at any given time step. The imperative challenge for the model was to master an 

asymmetrical but cyclic approach to locomotion to both achieve balance and propel forward 

movement (Kelly & Murray, 1995). To facilitate this nuanced learning process, the observation 

space had to be structured in a specific manner. This configuration enabled each module to 

discern its unique identity within the swarm. Each module receives first the observations 

associated with the body of the ant (Ob) and then the leg observations (Oli) going clockwise 

around the body starting with itself. [Ob, Oli, Oli+1, … Oli+N-1]. This format allows each leg to 

develop a policy based on its position which allows for each leg to specialize in a different aspect 

of the gait cycle.  

The reward structure is designed to complement the ant environment and is provided by 

the gym library. There are four elements that make up the reward equation, two positive factors 

and two negative factors. The primary reward is related to the motion of the body that rewards 

the system for completing the task of moving in the positive X direction and is defined as 

Rf=ΔX/dt where dt is the frame skip parameter multiplied by frame time which as a default is 

equal to .05. The second positive reward is for keeping the robot healthy. Each time step the 

episode is not terminated the agent receives a reward of Rh=1.0 to learn a policy that avoids 

flipping or other unsafe actions. To promote efficient policies, the agent suffers a negative 

reward for its actions equal to the control cost (C1) multiplied by the sum of the actions squared 

or Rc= C1*sum(A2). The last element of the reward is a penalty for large contact forces that has a 
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similar format as the action penalty but instead with the summation of contact forces (Fc) that 

takes the form of 𝑅𝐹𝑐 = 𝐶2 ∗ 𝑠𝑢𝑚(𝑐𝑙𝑖𝑝(𝐹𝑐{𝐹𝑐𝑚𝑖𝑛, 𝐹𝑐𝑚𝑎𝑥})2) . The cumulative reward equation 

is R= Rf+Rh+Rc+Rcf. When training the system with more legs, we normalized the value of Rc 

since the increased number of legs causes the summation to out scale the other components of 

the reward equation. For such cases the control cost takes the form 𝑅𝑐 = 𝐶1 ∗
𝑠𝑢𝑚(𝐴2)

𝑁
 

The AGSP model addresses a significant challenge posed by the limited information 

available to each module within the environment. Specifically, in the absence of the AGSP 

model, the inherent lack of access to other modules’ actions or the upcoming joint changes and 

acceleration in the system hampers a module’s ability to effectively correlate its actions with the 

ensuing outcomes. This predicament stems from the absence of regular correlations between 

actions and results, making it arduous for modules to discern causal relationships.  

AGSP by appending an array (P) which includes the changes in velocity along the three 

Cartesian components (ΔX, ΔY, ΔZ). The AGSP model, equipped with the same positional and 

joint data as the action model, but supplemented with access to the collective actions, undertakes 

the task of learning a comprehensive kinematic model of the system. The underlying objective is 

to predict how the entire body will react based on the actions of the system. This predictive 

capability serves as a bridge that empowers modules to understand the broader consequences of 

their actions, thereby enhancing their ability to make informed decisions in the dynamic 

environment.  

The goal is to learn an approximate kinematic model of the system that can predict how 

the body will move based on the collective actions of the system. It is rewarded by the 

proportional accuracy of this prediction with the reward being defined by the error between the 

prediction P and the actual change in velocity ΔV normalized by the current velocity such that 

R=[|(Px-Vx)|+|(Py-ΔVy)|+|(Pz-ΔVz)|]/ΔV. This reward structure is designed to promote granular 

accuracy that can detect both large spikes in velocity while not overestimating when the system 

is stationary or moving slowly.  

AGSP is ingrained within the training process of the walking network. It operates in 

tandem with the walking policy learning, but it has a deliberate update delay. This approach 

prevents a detrimental reciprocal impact between the two policies. The AGSP model is updated 
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every 5000 learning steps of the walking policy, thus ensuring an offset timeline that allows the 

walking policy to stabilize and integrate the predicted values into its learning before the AGSP 

model receives its subsequent update. However, to ensure that the prediction model is not 

lagging behind it performs 500 updates per iteration. This orchestration maintains a synchronized 

and harmonious advancement of both policies, optimizing the overall training process and 

culminating in a more comprehensive and effective multi-agent learning framework. 

 

3.3 Models 

 

For training the walking model, we employed the TD3 algorithm as it offers several key 

changes that improve performance over other learning algorithms as well as having been proven 

to be highly effective on the baseline task (Fujimoto et al., 2018). The structure of the model 

used in this work is shown in Figure 3. The walking model hyper-parameters were based off of 

the anecdotal best results from the seminal paper on the task (Fujimoto et al., 2018). These 

parameters were fixed for all testing throughout this work and were found to still be largely the 

best configuration for our revised experimentation with some revision. Hyper-parameters for the 

prediction model were found to be largely inconsequential to change although the configuration 

used produced the most accurate and consistent results. 

 

Figure 5: Network diagram for TD3 
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The decision to set the learning rates α at 10-3  for the actor and β at 2* 10-3 for the critic 

was based on a goal of finding an equilibrium between learning efficiency and model stability 

during the training process. This specific learning rate provides a calibrated compromise that 

allowed the model to swiftly learn from experiences while avoiding the pitfalls of overly 

aggressive updates that could lead to oscillations or overshooting. The selection of a batch size of 

200 was chosen to strike an optimal balance between computational efficiency and gradient 

stability throughout the training regimen. This size enables the model to capture diverse 

experiences while mitigating the noise inherent in smaller batch sizes. The decision to adopt a 

discount factor (γ) of 0.99 prioritized total episode reward without excessively diminishing the 

significance of immediate gratification. This γ allowed for policy development that valued total 

acceleration balanced with the desire for continuous motion. 

 

Figure 6: Attention network model, Josh Bloom 2023 adapted with permission 

The AGSP network is a Transformer utilizing self-attention. The self-attention 

mechanism allows the model to attend to relevant information across different time steps and 
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agent states, capturing long-range dependencies and intricate patterns crucial for accurately 

predicting complex kinematics. Furthermore, the parallel nature of self-attention operations 

facilitates efficient computation, making Transformers particularly suitable for distributed and 

hardware-accelerated implementations such as decentralized modular applications. The format 

and input information for the transformer are shown in Figure 4.  

We chose to include eight layers in the transformer to allow the model to capture intricate 

hierarchical features and relationships within the data, thereby enhancing its capacity to learn the 

complex patterns and representations associated with kinematic data. With eight attention heads, 

the model exhibits a rich capacity to attend to diverse aspects of input data simultaneously. This 

promotes robust feature extraction and interaction modeling, enabling the network to 

comprehensively capture correlations among different elements of the input. Employing a 

forward expansion factor of four enhances the expressiveness of the model's transformations 

between its layers. This expansion contributes to the model's ability to learn intricate mappings, 

facilitating the capture of complex and nonlinear relationships present in the data. No neurons 

are excluded during training. This choice comes from a preference for model stability over 

regularization, allowing the model to fully exploit the available data without introducing the 

perturbations associated with dropout. The minimum-maximum action range binds the model's 

action outputs within a range of [-3, 3]. This normalization constrains the module’s actions to a 

manageable and meaningful scale inside the realm of possibility for this task, promoting better 

convergence and facilitating smoother learning dynamics for the action policy.  By setting a 

maximum sequence length at five, the model processes sequences of limited temporal extent. 

This choice reflects a focus on capturing short-term dependencies and aligns with the assumption 

that critical interactions and dynamics occur within this temporal window, optimizing the 

model's performance for tasks with a limited time horizon. 
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Chapter 4  

Evaluation 

4.1 Experimental Setup 

 

Experimentation was run on a computer equipped with an NVIDIA 960M graphics card 

using the Nvidia CUDA library as well as on a variety of computing nodes from the WPI 

Academic & Research Computing group that varied in strength but were limited to two Nvidia 

K20 GPUs. The OpenAI Gym API for reinforcement learning utilizing the integrated MuJoCo 

physics engine. The results for smaller swarm size are gathered using the default “Ant” baseline 

environment, and larger swarms utilize the baseline environment as a foundation with edited 

XML files to facilitate more advanced systems.  The episode can terminate before the time step 

cap if the body of the “Ant” leaves the “healthy” range of z values. In order to compare results 

with previous literature the v2 environment was used. 

We used the PyTorch machine learning framework to design and train our models. The 

testing period per episode is the default value of 1000 time steps, and the training is confined to 

epochs of 1000 episodes before it begins training from a fresh model. The models that performed 

the best were saved if their total episode reward surpassed a value of 1500 for both the four-

legged and eight-legged configurations. Any epoch that did not produce a value above the 

threshold was considered to not have converged to a successful policy and was classified as a 

failure.  

 

4.2 Analysis 

 

When undertaking result comparisons, our assessment framework encompassed five key 

characteristics, each integral in determining the success and efficacy of the various approaches. 
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The first is the task success directly considering the episode reward. If an approach was able to 

develop a policy capable of being highly rewarded that would be considered a positive outcome 

for a training episode. Along with this we monitored the training speed both relative to an epoch 

and in real time. If the model was able to converge to a successful policy in fewer experiences 

that would be considered superior, but we also considered if we were able to complete more 

training in a real time sense that would be beneficial as well.  

After training, on episodes that had achieved a minimally successful policy, we also 

wanted to test the robustness of the policy and measure how consistently it could succeed in 

testing from a randomized start. Stability in learned policies was deemed paramount, ensuring 

that the training methodologies fostered the acquisition of safe and reliable behaviors for 

practical implementation in real-world contexts. For AGSP we additionally examined the 

accuracy of the predictions. This entailed an exploration of how effectively AGSP estimated 

state values, with an emphasis on how prediction accuracy influenced overall task outcomes. 

Furthermore, a granular examination of each element comprising the reward structure was 

conducted to discern nuanced behavioral disparities among policies trained through different 

approaches. It is pertinent to note that the dynamic nature of reinforcement learning permits the 

generation of diverse policies through repeated training iterations. To ensure fairness and 

accuracy in our comparisons, all analyses were confined to the most successful policies for each 

of the aforementioned characteristics compiled over nine training periods.  

 

Figure 7: Fastest training curves (Left: Baseline, Right: AGSP) 

The comparison of results between AGSP and the baseline training methodologies 

revealed a remarkable similarity in their performance trends. The first test sought to discover if 
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the introduction of AGSP to training would require more experiences to see convergence occur. 

Initial observations highlight that the number of trials required to achieve convergence to a 

successful policy remained largely unaffected by AGSP’s size or the integration of an additional 

learning task. Both approaches were able to see successful policies develop after around 80 

episodes with the swiftest training epochs shown in Figure 5. The distribution of the most 

successful episodes was also similar with the baseline taking an average of 350 episodes to hit its 

peak while the AGSP training averaged 318 episodes to converge to optimal performance as well 

as having a tighter distribution suggesting that AGSP could potentially promote more consistent 

learning.  

  

Figure 8: Distribution of Optimal Policy Development 

However, a pronounced change was observed in the real-time costs incurred by the 

AGSP methodology. This shift can be attributed to the heightened computational overhead 

associated with training multiple models and the runtime tasks involved in supplying information 

to the prediction model. The real time cost increase is one of the most notable changes with 

AGSP taking longer to run due to the increased computational cost associated with training 

multiple models as well as the runtime tasks required to provide the information to the prediction 

model. The true time difference between the methodologies is difficult to measure due to the 

variety of factors that affected the runtime but the time difference between the methods ranged 

from negligible up to a 66% increase in time cost in the worst case. 
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Figure 9:  Training curves for successful policies in four-legged configuration (Left: Baseline, Right: AGSP) 

 

The subsequent pivotal characteristic under examination was the optimality of the policy 

achieved through the two methodologies. Focusing initially on the relatively simpler 4-legged 

locomotion task, it emerged that the unassisted training method consistently demonstrated 

outcomes with a 7% peak performance (Figure 6) increase compared to the AGSP-enhanced 

approach. A closer inspection of the nuanced behavioral aspects revealed that this distinction 

predominantly stemmed from variations in efficiency. While policies trained using both 

methodologies exhibited comparable walking velocities spanning the range of 1.2 m per timestep 

to 1.8 m per timestep, a notable divergence surfaced in the efficiency of the gaits produced. 

AGSP-influenced policies incurred a more pronounced penalty from the control cost component, 

leading to a diminished overall efficiency in traversing the same distance albeit very slight. 

 

 

Figure 10: GSP Output and Error 
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Navigating the intricate kinematics of the ant model posed considerable challenges, with 

its velocity undergoing rapid and unpredictable changes in both direction and magnitude, leading 

to frequent spikes and an overall noisy trajectory. Ensuring the viability of the Attention-Based 

Global State Prediction (AGSP) technique hinged upon its ability to accurately predict these 

abrupt spikes and complex motion patterns within a useful degree of accuracy otherwise it would 

not have an impact on the outcome of the experiment. In testing the AGSP network consistently 

demonstrated its aptitude in forecasting velocity changes resulting from the executed actions, 

maintaining a margin of accuracy within 30%. The shape of the predicted change tightly matches 

the widely varying shape of the true change in velocity (Figure 7) even with the erratic shape of 

the true velocity change. AGSP's capacity to effectively capture and predict these intricate 

dynamics underscores its potential in facilitating a more nuanced and informed policy learning 

process. It is worth highlighting the interplay between AGSP and the walking policy's 

performance. Typically, more successful episodes were characterized by higher rewards for both 

AGSP and the walking policy, reflecting a mutually reinforcing relationship where improved 

predictions positively influenced policy learning, and vice versa. Since the output of AGSP is not 

able to match exactly to the true change of velocity at each time step there is the potential for 

improvement. A hybridized approach that uses a more conventional predictive method while 

using RL to train the controller could see potentially similar or improved performance with less 

training required. Additionally, it would be clearer where the error is coming from that cannot be 

discerned from an RL policy that is opaque to analysis.  

To evaluate the consistency of the learned policy we ran trained models for 100 episodes 

and recorded the percentage of times that the episode failed or was unable to complete the task 

within reason. The goal of this test was to determine whether the trained model was able to adapt 

to a variable start in order to evaluate its flexibility and the robustness of the policy to a variety 

of starting configurations and performance noise. In the 4-legged configuration the performance 

is similar between the policies trained with and without the assistance of AGSP. The baseline 

performance saw a failure rate of 6% and the training with AGSP saw a failure rate of 3%. Both 

outcomes are largely successful highlighting the overall robustness of decentralized control to 

environmental uncertainty. Additionally, the baseline had several cases of catastrophic failure 

where the ant ran in the opposite direction leading to the episodes with large negative reward. 
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Figure 11: Trained policy performance for 4-legged configuration (Left: Baseline, Right: AGSP) 

One of the key parameters we wanted to evaluate was the ability of AGSP to provide 

insight into larger swarm sizes. While the 4-legged configuration provides insight into the 

general performance and limitations of AGSP the task is not exceedingly difficult or complex 

enough to necessarily warrant the added overhead of implementation. However, as the scale of 

the system grows the benefits of implementing AGSP become much more readily apparent. Once 

again, the training is quite similar across the board, however AGSP does see marginally higher 

performance on the task.  

 

Figure 12: Training curves for successful policies in eight-legged configuration (Left: Baseline, Right: AGSP) 

When comparing the trained models the performance disparity can be seen more 

drastically. The baseline performance saw a failure rate of 84% whereas the AGSP assisted 

training generated a policy that failed only 35% of the time. The task of 8-legged locomotion is 

not only more complicated in terms of action and observation space, but also due to the 
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possibility of leg collisions and the difficulty of coordinating a more advanced gait. Because of 

this seeing consistent performance let alone success is quite difficult, but the policy that uses 

AGSP saw a much greater likelihood of success.  

 

Figure 13:Trained policy performance for 8-legged configuration 



   

 

29 

 

Chapter 5  

Conclusion 

5.1 Summary 

 

This thesis presents a comprehensive exploration of AGSP and its impacts on multi-agent 

policy learning as swarm size scales. The investigation was driven by five distinct 

characteristics, each serving as a vital indicator of training success and efficacy. We showed that 

a single, decentralized model is capable of successfully supporting effective legged locomotion 

even on an agent with a complex action space.  

AGSP's predictive accuracy was a central point of inquiry, revealing its ability to 

consistently forecast velocity changes resulting from actions closely matching both shape and 

magnitude in its predictions, even in the face of complex and erratic motion patterns. 

Furthermore, the evaluation encompassed the consistency of learned policies through rigorous 

testing of adaptability and performance noise. Notably, policies trained both with and without 

AGSP demonstrated remarkable robustness in a decentralized control framework.  

Expanding the analysis to larger swarm sizes, AGSP's potential came to the fore. While 

both methodologies exhibited comparable training trends, AGSP demonstrated enhanced 

performance on tasks involving larger systems showing substantial improvement in consistency 

indicating a viability for use in training for real world system. This observation underscored the 

scalability benefits of AGSP, that as system complexities increase AGSP can aid in controlling 

the increased Degrees of Freedom. 

The results shed light on AGSP's potential as a valuable tool for enhancing policy 

learning in diverse scenarios, underscoring its ability to predict and adapt to complex motion 

patterns and intricate swarm behaviors. The insights gained contribute to a more nuanced 

understanding of training methodologies and will help to support future research in the realm of 

decentralized control and multi-agent systems. 
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5.2 Future Work 

 

The focus of this paper is centered on the development and application of AGSP to 

legged locomotion, shedding light on its effects on the training process. However, ample 

opportunities remain for delving deeper into the capabilities of this tool. A further study into the 

correlation between accurate predictions and the success of the walking policy would indicate 

the most important elements to predict and how AGSP directly affects the agent. This could also 

include pretraining AGSP and providing it during the training process of the agent to see if it has 

a prescriptive effect on the walking policy. The environment itself is subject to variation with 

similar works making changes to the ant and the system dynamics. A heavier ant would require 

greater coordination to manage the height of the body or introducing obstacles requires the 

ability to change direction that is not already present in the task.  

Beyond deeper scrutiny and evaluation into the behaviors seen in this work AGSP could 

be utilized as a communication replacement for agents with local or regional information. If a 

fixed size network was developed that could complete the task, it would allow for true 

modularity. When changing from the four-legged to the eight-legged environment the 

observation space of the agent had to grow to provide enough information to successfully 

complete the task, but the goal was to develop a model could be trained on a fixed number of 

observations. If a model that had a set observation size was able to successfully complete the 

task, then adding additional modules would not require an increase in training time, and models 

trained on smaller swarms could potentially be applied to more complex systems without any 

additional training at all.  

Lastly, while this study has provided valuable insights into the efficacy of Attention-

Based Global State Prediction (AGSP) in the context of multi-agent policy learning a compelling 

direction for future research lies in conducting a comprehensive comparative analysis of AGSP 

alongside other prominent model-free kinematic prediction methods. Such a study holds the 

potential to enrich our understanding of AGSP's unique attributes and its performance relative to 

established techniques such as the Kalman filter, particle filters, and Gaussian processes. 
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RL predictive methods and traditional methods such as the Kalman filter present distinct 

advantages and limitations in predictive modeling. RL methods excel in adapting to intricate and 

uncertain environments, leveraging trial-and-error learning to improve predictions and decision-

making. These approaches are particularly well-suited for scenarios where explicit knowledge of 

system dynamics is lacking or where non-linear relationships dominate. However, RL methods 

require substantial data for training and might struggle with exploration strategies and model 

interpretability. In contrast, traditional methods offer stability, analytical solutions, and 

efficiency when precise probabilistic models are available. Yet, their reliance on accurate 

assumptions, notably the presence of a gaussian distribution, can hinder performance in 

situations where uncertainty or non-linearity prevails. Ultimately, the choice between these 

approaches hinges on the trade-off between model assumptions, computational efficiency, 

interpretability, and the application's demand for adaptability to uncertain and complex 

environments. By comparing AGSP to not only these techniques but other RL predictive 

methods would indicate whether AGSP was not just a beneficial training tool but a competitive 

prediction method. 

While unveiling AGSP's contributions, this study serves as a steppingstone to a broader 

landscape of exploration. The proposed future works extend the horizons of AGSP's application, 

from refining its predictive capacities to enabling seamless modularity and enhancing scalability. 

As AGSP continues to evolve, it holds the promise of advancing the field of predictive modeling 

and multi-agent coordination, shaping the future of decentralized control and autonomous 

systems.  
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