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Abstract

Cognitive radios (CRs) have been proposed as a promising solution for improving spec-

trum utilization via opportunistic spectrum sharing. In a CR network environment, pri-

mary (licensed) users have priority over secondary (unlicensed) users when accessing the

wireless channel. Thus, if a malicious secondary user exploits this spectrum access etiquette

by mimicking the spectral characteristics of a primary user, it can gain priority access to

a wireless channel over other secondary users. This scenario is referred to in the literature

as primary user emulation (PUE).

This dissertation first covers three approaches for detecting primary user emulation

attacks in cognitive radio networks, which can be classified in two categories. The first

category is based on cyclostationary features, which employs a cyclostationary calculation

to represent the modulation features of the user signals. The calculation results are then

fed into an artificial neural network for classification. The second category is based on

video processing method of action recognition in frequency domain, which includes two

approaches. Both of them analyze the FFT sequences of wireless transmissions operat-

ing across a cognitive radio network environment, as well as classify their actions in the

frequency domain. The first approach employs a covariance descriptor of motion-related

features in the frequency domain, which is then fed into an artificial neural network for

classification. The second approach is built upon the first approach, but employs a rela-

tional database system to record the motion-related feature vectors of primary users on

this frequency band. When a certain transmission does not have a match record in the

database, a covariance descriptor will be calculated and fed into an artificial neural network

for classification.

This dissertation is completed by a novel PUE detection approach which employs a

distributed sensor network, where each sensor node works as an independent PUE detector.

The emphasis of this work is how these nodes collaborate to obtain the final detection results

for the whole network.

All these proposed approaches have been validated via computer simulations as well as

by experimental hardware implementations using the Universal Software Radio Peripheral

(USRP) software-defined radio (SDR) platform.
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Chapter 1

Introduction

1.1 Wireless is Important

Modern society depends on wireless spectrum in order to properly function. Finan-

cial transactions, health services, national defense, security surveillance, and entertainment

activities are just several of the numerous applications where reliable access to wireless

spectrum is essential. Fig. 1.1 displays worldwide wireless modules revenues since 2007,

and a forecast for the coming years in millions of dollars, which shows that wireless com-

munication keeps growing fast nowadays.

However, given the rapid growth of the wireless sector, there has been an increasing

strain on the availability of wireless spectrum to continue enabling these applications and

services. This is partially due to the static, inflexible nature of wireless spectrum as-

signments defined by legacy regulatory guidelines and processes. Given that most of the

wireless spectrum ranging between 0 Hz and 3 GHz already allocated via static assign-

ments to a range of governmental, corporate, and academic entities [10], and that there

exists numerous instances where multiple spectrum assignments have been made for several

frequency bands, this assignment situation has resulted in fierce competition for the use of

wireless spectrum. This is especially true in frequency bands located below 3 GHz, which

is considered to be “prime” spectral real estate.

Conversely, a large portion of the assigned spectrum has been observed during several

spectrum measurement campaigns [11, 12] to be sparsely and sporadically utilized. In par-

ticular, spectrum occupancy by licensed transmissions are often concentrated across specific

frequency ranges while a significant amount of the spectrum remains either underutilized
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Fig. 1.1 Worldwide wireless modules revenues in millions of dollars [1].

or completely unoccupied. Consequently, it appears that the spectrum scarcity issue de-

scribed above can be considered to be artificially generated due to the legacy regulatory

and licensing processes as well as the inefficient utilization of assigned spectrum by the

licensed transmissions.

To remedy this spectrum scarcity issue, a new approach for spectrum licensing is needed.

This approach should be capable of providing wireless access to unlicensed applications and

users (i.e., secondary users) by allowing them to temporarily borrow unoccupied licensed

spectrum, while simultaneously guaranteeing the rights of incumbent licensed users (i.e.,

primary users), who possess a substantially higher priority or legacy rights across their as-

signed portion of wireless spectrum such that more efficient utilization of spectral resources

can be achieved [13]. This new approach is called dynamic spectrum access [14].

1.2 Recent Legislative Developments

Dynamic spectrum access (DSA) is an approach for increasing spectrum efficiency via

the real-time adjustment of radio resources via a combination of local spectrum sensing,

probing, and autonomous establishment of local wireless connectivity among cognitive radio

(CR) nodes and networks. During this process, spectrum sensing is employed for the

purpose of identifying unoccupied licensed spectrum, i.e., spectral “white spaces”. Once
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these white spaces have been identified, CR nodes opportunistically utilize these white

spaces by wirelessly operating across them while simultaneously not causing interference

to the primary users.

The US Federal Communications Commission (FCC) encouraged the application of the

DSA technology to the secondary use of underutilized television spectrum, such as in ad

hoc, short range wireless local area network (WLAN) in spectrum that is allocated to

another primary purpose such as broadcast television. Owing to the increasing evidence of

the under-utilization of wireless spectrum as demonstrated by [15, 16] and several others,

an important policy step taken by the FCC is the enabling of cognitive access by secondary

devices in TV broadcast spectrum [17]. White spaces are those unused TV band frequencies

that were freed up by the switchover to digital television in the US. The FCC made these

frequencies available on an unlicensed basis under its Part 15 rules in 2008 [18].

FCC endorsement of cognitive radio in secondary markets in the USA offered opportu-

nities for improved spectrum utilization. In addition, the National Institute of Information

and Communications Technology (NICT) Yokosuka, Japan have for characterized SDR

and cognitive radio from technical [19, 20] and regulatory [21] perspectives. Ofcom, the

regulatory body of the UK remains appropriately skeptical of the economics of dynamic

spectrum [22]. On the other hand, the Commission for Communications Regulation (COM-

REG), Ireland, imposes constraints [23] but also encourages innovation such as by allocating

over 100 MHz of spectrum for experiments and demonstrations during IEEE DySPAN 2007

in Dublin. Guatemala [24] employs Titulos de Usurfrucato de Frecuencias (TUF), speci-

fying spectrum use parameters in great detail, which establishes a strong reference point

for the liberalization of spectrum allocation towards dynamics [25]. In Europe, countries

including Austria, Sweden, and the UK apparently have sanctioned de facto transfers of

spectrum rights among spectrum licensees, while a recent EU Framework Directive em-

powers all EC countries to introduce secondary trading of spectrum usage rights [26].

Besides the policy and rule development discussed above, there exist several companies

providing services and products to facilitate DSA. For example, a US company called Shared

Spectrum Company (SSC) [27] was founded in 2000 to develop technology that increases

the efficient use of RF spectrum resources. During that same year, SSC became the first

company to file comments at the FCC proposing the shared use of “white spaces” in the

television band for broadband Internet access. SSC focuses on the research and development

of dynamic spectrum access technology for the U.S. Department of Defense. Another US
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company called Spectrum Bridge, Inc. (SBI) [28] was founded in 2007, which features

in developing TV White Space (TVWS) ecosystem and was certified as the first TVWS

Database Administrator [29] in the United States. The platform ensures that there is no

interference caused to protected users or devices by unlicensed secondary users. This marks

the first time the U.S. has initiated a solution to allocate and manage wireless frequencies.

In addition, a UK company called Neul [3] launches a custom designed, FCC certifiable

TV white space radio system called NeulNET [2], which is the world’s first dedicated TV

white space ‘network in a box’, as shown in Fig. 1.2. With NeulNET, it is now possible to

operate your own white space network that delivers up to 16Mb/s over 10Km range with

excellent in building penetration.

Fig. 1.2 A custom designed, FCC certifiable TV white space radio system
called NeulNET [2], developed by Neul [3] (from [2]).

1.3 Motivation

One of the major technical challenges regarding spectrum sensing is the problem of

accurately distinguishing primary user signals from secondary user signals. In cognitive

radio networks, primary users possess the priority to access the channel, while secondary

users must always relinquish access to the channel over to the primary user and ensure

that no interference is generated. Consequently, if a primary user begins to transmit across

a frequency band occupied by a secondary user, the secondary user is required to leave

that specific spectral band immediately. Conversely, when there is no primary user activity

present within a frequency range, all the secondary users possess equal opportunity to

the unoccupied frequency channel. Based on this principle, there exists the potential for

malicious secondary users to mimic the spectral characteristics of the primary users in order

to gain priority access to the wireless channels occupied by other secondary users. This
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scenario is referred to in the literature as primary user emulation (PUE) [30–32].

In order to overcome the problem of PUE, the FCC currently employs a centralized

control approach, as shown in Fig. 1.3. For a certain area, there is a fixed master device

or base station, which connects to the Internet and communicates with Spectrum Bridge’s

white-space database [29]. It then connects with personal and portable devices or fixed

device clients in homes and businesses. In order to utilize the unlicensed spectrum band,

a TV band device (TVBD) must make a request to the database via the base station.

The database provides available channel data in accordance with a set of rules, such as

those defined by the FCC. After a device receives a channel map, final channel selections

are made by the device. This decision is based on rules, radio technology and the offered

channel map. In all cases, each device negotiates for an available channel.

White Space Database
Base Station

Device 1

Device 2

Device 3

Internet

Radio Location

Available Channels

Request

Request

Request

Ack

Ack

Ack

Fig. 1.3 A centralized control approach currently employed by FCC to avoid
the problem of PUE, where a TV band device (TVBD) must go through a re-
quest and acknowledgement process in order to utilize the unlicensed spectrum
band.

However, there are two major problems related to this approach. First of all, in some

cases, this type of centralized control is not feasible, such as an emergency/disaster relief

situation [33–35], or a military application [36–38], where there is no Internet or base
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station infrastructure available. Secondly, this type of centralized control is not efficient

enough. The request and acknowledgement process incurs much overhead to the network,

and the TVBD may have to wait a long time before it receives an acknowledgement from

the basestation. Therefore, it is necessary to propose techniques for the detection of PUE

attacks that do not rely on the white-space database. Using these techniques, a contention-

based cognitive radio ad hoc network [39, 40] can be constructed, where every network

device is free to access the network any time it needs to send the data, without the request

and acknowledgement step, as shown in Fig. 1.4. In this network, each device is capable

of spectrum sensing, which is enabled by cognitive radio techniques. For a secondary user

device, as long as it detects a “white space” in the spectrum, it can access the network and

begin transmission. In this process, if it detects a primary user showing up on its spectral

band, it needs to leave that spectral band immediately. This network does not have any

base station or centralized control. Instead, there is a PUE detector which monitors each

user’s behavior. If it detects a primary user emulator in this network, some actions will be

taken.

Device 3

Device 2
Device 1

PUE Detector

Fig. 1.4 A contention based dynamic spectrum access network that consists
of devices with spectrum sensing capability. There is a PUE detector moni-
toring each user’s behavior. No centralized control is needed for this network.
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1.4 Current State-of-the-Art

Currently, there are several proposed techniques for the detection of PUE attacks that do

not rely on the white-space database, which can be classified into the following categories.

• Energy Detection: To differentiate between the two kinds of signals, existing spectrum

sensing techniques based on energy detectors implicitly assume a “naive” transmitter

verification scheme [41, 42]. When energy detection is employed, a secondary user

will be able to recognize the signal characteristics of the other secondary users but

it will not be able to recognize the primary user signals. Thus, when a secondary

user detects a signal that it can readily identify, it assumes that the signal is that of

another secondary user. Otherwise, if the secondary user cannot identify the detected

signal, it assumes that the incepted signal belongs to a primary user.

• Feature Detection: In feature detection methods, such as [43–46], secondary users

attempt to find a specific feature of a captured signal, for example, a pilot, a syn-

chronization word, or correlation. Devices capable of performing these detection

techniques are able to recognize the intrinsic characteristics of the primary user sig-

nals, thus enabling them to distinguish these signals from those belonging to the

secondary users.

• Analytical Model-based Detection: This type of detection methods are based on the

analytical models of the cognitive radio networks proposed by the authors. In [47–54],

the authors present a Neyman-Pearson composite hypothesis test (NPCHT) and a

Wald’s sequential probability ratio test (WSPRT) to detect primary user emulation

attacks (PUEA) in fading wireless channels in the presence of multiple randomly lo-

cated malicious users. In [55, 56], a passive anti-PUE approach, similar to the random

frequency hopping in traditional anti-jamming schemes, is proposed and called dog-

fight in spectrum. In this scheme, the defenders randomly choose channels to sense

and avoid the PUE attack.

• Localization-based Detection: One proposed transmitter verification scheme, called

LocDef (localization-based defense [57]), is designed to verify whether an incepted

signal belongs to an incumbent licensed transmitter by estimating its location and
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observing its signal characteristics. In order to estimate the location of the signal

transmitter, LocDef employs a non-interactive localization scheme.

• Signature-based Detection: [58] proposes an approach that integrates cryptographic

signatures with wireless link signatures to distinguish a primary users signal from an

attacker’s signal. Besides, it employs a helper node to authenticate signals from its

associated primary user.

1.5 Research Contributions

Given the published solutions currently available in the open literature, there still exists

several technical challenges associated with enabling primary user emulation detection in

cognitive radio networks, namely:

• Simple energy detector-base schemes possess a significant probability of missed de-

tection.

• Signature-based detection and most of the feature detection methods require special

hardware and software.

• Analytical model-based detection approach works well for a specific network model,

but it may not work well for the other models.

• Localization-based detection can only be employed for stationary primary transmit-

ters with known coordinates.

To resolve these issues, in this dissertation, I propose three PUE detection approaches

as shown in Fig. 1.5, which possess the following novel contributions to the research com-

munity:

Cyclostationary has been widely used in signal classification, since different modulation

schemes correspond to different cyclostationary features. Considering that in most situa-

tions, PU and SU use different modulation schemes, I suggest that cyclostationary is also

a viable component for PUE detection and prove it.

Action recognition is a problem in the context of video processing, which is used to

recognize different types of human actions. However, in this dissertation, I propose to

use the framework of action recognition on FFT sequences, in order to recognize different
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Energy Detection

Cyclostationary Feature

Artificial Neural

Network

Relational Database

Action Feature

Voting

Nearest Node

Classification

Single Node Detector
Distributed Network

Detector

PU or PUE

Energy detection

result from single

node

Potential PUE

location

Potential PUE

location

SOF function

Feature vector

Log-covariance

vector

Potential PUE

location

Fig. 1.5 Three novel PUE detection approaches proposed in this disserta-
tion.

types of frequency “actions”. In most of the literature, people pay more attention to

the detection accuracy, i.e., probability of detection. However, in this dissertation, I also

consider the efficiency of detection, so I propose to use a database to assist the action

recognition method. In this way, it is more likely that the approach can be applied in

real-time applications.

Most of the PUE detection approaches proposed so far employs single node detector, but

the third approach I propose is based on a distributed sensor network. A voting algorithm

is used to improve the performance of energy detection, and the classification is conducted

by the nearest node to improve the efficiency of the detector.

In addition, this dissertation features a real hardware implementation due to my ex-

pertise and experience in SDR technology and SDR education. I implement the proposed

approaches on the USRP platform, so that the approaches can be tested in real-world

wireless environment.

Considering these three approaches, they share several common benefits as following:

• No special hardware or software required in order to operate (the proposed approach
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can be employed without significant structural and functional modifications).

• Can be used to verify mobile transmitters possessing unknown coordinates.

• Robustness in the presence of noise.

1.5.1 Resulting Peer-reviewed Publications

The list of publications both resulting from the work submitted in this dissertation and

other related results not submitted in this dissertation are as follows:

Doctoral Publications

1. D. Pu, and A. M. Wyglinski, Digital Communication Systems Engineering with

Software-Defined Radio Artech House, January 2013.

2. D. Pu, Y. Shi, A. Ilyashenko, and A. M. Wyglinski, “Detecting Primary User Emu-

lation Attack in Cognitive Radio Networks,” in IEEE Global Communications Con-

ference (GLOBECOM) 2011.

3. D. Pu, and A. M. Wyglinski, “Primary User Emulation Detection Using Frequency

Domain Action Recognition,” in IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing (PacRim) 2011.

4. A. M. Wyglinski, D. Pu, and D. Cullen, “Digital Communication Systems Education

via Software-Defined Radio Experimentation,” in American Society for Engineering

Education (ASEE) 2011.

5. D. Pu, and A. M. Wyglinski, “Primary User Emulation Detection Using Database

Assisted Frequency Domain Action Recognition,” submitted to IEEE Transactions

on Vehicular Technology, April 2013.

6. D. Pu, and A. M. Wyglinski, “Primary User Emulation Detection Using Distributed

Sensor Network,” submitted to IET Communications, April 2013.

7. D. Pu, and A. M. Wyglinski, “Overview of Primary User Emulation Detection in

Cognitive Radio Network,” journal in preparation.
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Pre-Doctoral Publications

1. D. Pu, A. M. Wyglinski, and M. McLernon, “An Analysis of Frequency Rendezvous

for Decentralized Dynamic Spectrum Access,” IEEE Transactions on Vehicular Tech-

nology - Special Issue on “Achievements and the Road Ahead: The First Decade of

Cognitive Radio”, vol. 59, no. 4, pp. 1652–1658, May 2010.

2. M. J. Leferman, D. Pu, and A. M. Wyglinski, Cognitive Radio Communications and

Networks: Principles and Practice (A. M. Wyglinski, M. Nekovee, and Y. T. Hou,

Eds.), Ch. 17. GNU Radio for Cognitive Radio Experimentation. Academic Press,

2009.

3. D. Pu, A. M. Wyglinski, and M. McLernon, “A Frequency Rendezvous Approach

for Decentralized Dynamic Spectrum Access Networks,” in 4th International Confer-

ence on Cognitive Radio Oriented Wireless Networks and Communications (CROWN-

COM) 2009.

4. Z. Li, D. Pu, W. Wang, and A. M. Wyglinski, “Forced Collision: Detecting Wormhole

Attacks with Physical Layer Network Coding,” Elsevier Tsinghua Science and Tech-

nology, special issue on Wireless Mobile Computing and Networking, vol. 16, no. 5,

pp. 505–519, October 2011.

5. W. Wang, D. Pu, and A. M. Wyglinski, “Detecting Sybil Nodes in Wireless Networks

with Physical Layer Network Coding,” in 40th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks (DSN) 2010.

6. Z. Li, D. Pu, W. Wang, and A. M. Wyglinski, “Node Localization in Wireless Net-

works Through Physical Layer Network Coding,” in IEEE Global Communications

Conference (GLOBECOM) 2010.

1.6 Dissertation Organization

As shown in Fig. 1.6, the remainder of the dissertation is organized as follows: In Chap-

ter 2, the background of cognitive radios and how it relates to the dynamic spectum access

and spectrum sensing will be discussed. Then, in Section 2.3, the concept of primary user

emulation attack will be introduced. Also to be reviewed are all the techniques employed in
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primary user emulation detection approaches. In Section 2.4, we introduce the basic idea

of the signal detection and classification using artificial neural networks. In Section 2.5, an

overview of the covariance descriptor for action representation is given. In Section 2.6, a

relational database model and its design are introduced. This chapter ends with a review

of the well-known SDR hardware platforms, with a focus on USRP2 platform, and some of

the available SDR software architectures.

Chapter 4 and Chapter 5 dive into two specific categories for PUE detection. Chapter 4

proposes the first category based on cyclostationary features. It employs a cyclostationary

calculation to represent the modulation features of the user signals, which are then fed

into an artificial neural network for classification. In Chapter 5, we study the second

category based on video processing method of action recognition in frequency domain, which

includes two approaches. Both of them analyze the FFT sequences of wireless transmissions

operating across a cognitive radio network environment, as well as classify their actions in

the frequency domain. Built upon these two chapters, Chapter 6 proposes a third PUE

detection approach which employs the distributed sensor network.

Finally, Chapter 7 concludes the dissertation. It contains concluding remarks and a list

of anticipated future tasks in relation to the progress of the PUE detection described in

this dissertation.
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Ch 1: Introduction

Ch 6: PUE Detector Based

on Sensor Network

Ch 2: Background Overview

YCh 3: Research Plan

Ch 7:Future Steps

Ch4: PUE Detector Based

on Cyclostationarity

Ch5: PUE Detector Based

on Action Recognition

Fig. 1.6 Dissertation Organization.
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Chapter 2

An Overview of Wireless Access

This chapter provides an overview on several subjects that are relevant to this disser-

tation, namely the background of cognitive radios, dynamic spectum access and spectrum

sensing. It also reviews all the techniques that will be employed in the primary user em-

ulation detection approaches. The goal of this chapter is to bridge the problem of PUE

detection introduced in Chapter 1 and the approaches proposed in next chapter.

2.1 Cognitive Radio and Dynamic Spectrum Access

In Chapter 1, cognitive radio and dynamic spectrum access have already been intro-

duced in the context of primary user emulation. Since these two subjects are very important

for all the discussions in the dissertation, I will elaborate on them in this section.

2.1.1 Cognitive Radio

Cognitive Radio (CR) was formally introduced to the radio community in 1999 by

Joseph Mitola and Gerald Q. Maguire, Jr. in [59] as an extension of an SDR, which served to

improve the overall performance of the radio in relation to its interaction with the spectrum

using a cognition cycle, as shown in Fig. 2.1. In [60], Mitola describes that a CR “is a goal-

driven framework in which the radio autonomously observes the radio environment, infers

context, assesses alternatives, generates plans, supervises multimedia services, and learns

from its mistakes.” While other definitions have been developed from research groups across

the SDR community, the two components that are most often considered core features of the



2 An Overview of Wireless Access 15

CR involve awareness of the RF environment and adaptation and/or learning algorithms

to improve the performance of the radio.

Radio Environment

Spectrum

Decision
Spectrum

Sensing

Spectrum

Analysis

Transmitted

Signal

Spectrum Holes

Information

Channel

Capacity Spectrum Holes

Information

RF

Stimuli

RF

Stimuli

Fig. 2.1 Cognitive cycle (from [4]).

A Cognitive Radio (CR) is an Software Defined Radio that additionally senses its en-

vironment, tracks changes, and reacts upon its findings. A CR is an autonomous unit in

a communications environment that frequently exchanges information with the networks

it is able to access as well as with other CRs. From our point of view, a CR is a refined

SDR [61].

2.1.2 Why Dynamic Spectrum Access?

Today’s wireless networks are regulated by a fixed spectrum assignment policy, i.e.

the spectrum is regulated by governmental agencies and is assigned to license holders or

services on a long term basis for large geographical regions. Although the fixed spectrum

assignment policy has generally worked well in the past, there is a dramatic increase in

the access to the limited spectrum for mobile services in recent years. Consequently, this

increase is straining the effectiveness of the traditional spectrum policies [62].
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Fig. 2.2 A power spectral density snapshot of wireless spectrum ranging
from 88 MHz to 2686 MHz measured on July 11, 2008, in Worcester, MA,
USA at coordinates 42 ◦16′8′′N, 71 ◦48′14′′W (from [5]).

It is commonly believed that there is a crisis of spectrum availability at frequencies that

can be economically used for wireless communications. This misconception is strengthened

by a look at the FCC frequency chart [10], which shows multiple allocations over all of the

frequency bands; which is a situation essentially also true worldwide. This has resulted

in fierce competition for use of spectra, especially in the bands below 3 GHz. On the

other hand, a large portion of the assigned spectrum is used sporadically as illustrated in

Fig. 2.2, where the signal strength distribution over a large portion of the wireless spectrum

is shown. The spectrum usage is concentrated on certain portions of the spectrum while a

significant amount of the spectrum remains unutilized. This appears to be a contradiction

to the concern of spectrum shortage since in fact we have an abundant amount of spectrum,

and the spectrum shortage is partially an artifact of the regulatory and licensing process.

It is this discrepancy between FCC allocations and actual usage, which indicates that a

new approach to spectrum licensing is needed. This approach should provide the incentives

and efficiency of unlicensed usage to other spectral bands, while accommodating the present

users who have higher priority or legacy rights (primary users) and enabling future systems

a more flexible spectrum access [13]. This new approach is called dynamic spectrum access.

Dynamic spectrum access is the process of increasing spectrum efficiency via the real-

time adjustment of radio resources, i.e. via a process of local spectrum sensing, probing,

and the autonomous establishment of local wireless connections among cognitive nodes and

networks. As originally proposed in [60], cognitive radio envisioned real time spectrum auc-
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tions among diverse constituencies, using for one purpose, such as cellular radio, spectrum

allocated and in use for another purpose such as public safety, and conversely, in order to

multiply both the number of radio access points for public safety and to more efficiency

use public safety spectrum commercially during peak periods.

2.1.3 Dynamic Spectrum Access Models

Standing for the opposite of the current static spectrum management policy, the term

dynamic spectrum access has broad connotations that encompass various approaches to

spectrum reform. The diverse ideas presented at the first IEEE Symposium on New Fron-

tiers in Dynamic Spectrum Access Networks (DySPAN) suggest the extent of this term.

As illustrated in Fig. 2.3, dynamic spectrum access strategies can be broadly categorized

under three models [6].

Dynamic Spectrum Access

Open Sharing Model

(Spectrum Commons Model)
Dynamic Exclusive Use Model Hierarchical Access Model

Dynamic Spectrum AllocationSpectrum Property Rights
Spectrum Underlay

(Ultra Wide Band)

Spectrum Overlay

(Opportunistic Spectrum Access)

Fig. 2.3 Three models of dynamic spectrum access strategies (from [6]).

Dynamic Exclusive Use Model

This model maintains the basic structure of the current spectrum regulation policy:

Spectrum bands are licensed to services for exclusive use. The main idea is to introduce

flexibility to improve spectrum efficiency. Two approaches have been proposed under this

model: Spectrum property rights and dynamic spectrum allocation. The former approach

allows licensees to sell and trade spectrum and to freely choose technology. Economy and

market will thus play a more important role in driving toward the most profitable use of
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this limited resource. Note that even though licensees have the right to lease or share the

spectrum for profit, such sharing is not mandated by the regulation policy.

The second approach, dynamic spectrum allocation, was brought forth by the European

DRiVE project. It aims to improve spectrum efficiency through dynamic specturm assign-

ment by exploiting the spatial and temporal traffic statistics of different services. In other

words, in a given region and at a given time, spectrum is allocated to services for exclusive

use. This allocation, however, varies at a much faster scale than the current policy.

Based on an exclusive use model, these approaches cannot eliminate white space in

spectrum resulting from the bursty nature of wireless traffic.

Open Sharing Model

Also referred to as spectrum commons, this model employs open sharing among peer

users as the basis for managing a spectral region. Advocates of this model draw support

from the phenomenal success of wireless services operating in the unlicensed industrial,

scientific, and medical (ISM) radio band (e.g., WiFi). Centralized and distributed spectrum

sharing strategies have been initially investigated to address technological challenges under

this spectrum management model.

Hierarchical Access Model

This model adopts a hierarchical access structure with primary and secondary users.

The basic idea is to open licensed spectrum to secondary users while limiting the interfer-

ence perceived by primary users (licensees). Two approaches to spectrum sharing between

primary and secondary users have been considered: Spectrum underlay and spectrum over-

lay.

The underlay approach imposes severe constraints on the transmission power of sec-

ondary users so that they operate below the noise floor of primary users. By spreading

transmitted signals over a wide frequency band (UWB), secondary users can potentially

achieve short-range high data rate with extremely low transmission power. Based on a

worst-case assumption that primary users transmit all the time, this approach does not

rely on detection and exploitation of spectrum white space.

Spectrum overlay was first envisioned by Mitola under the term spectrum pooling and

then investigated by the DARPA Next Generation (XG) program under the term oppor-
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tunistic spectrum access. Differing from spectrum underlay, this approach does not neces-

sarily impose severe restrictions on the transmission power of secondary users, but rather on

when and where they may transmit. It directly targets at spatial and temporal spectrum

white space by allowing secondary users to identify and exploit local and instantaneous

spectrum availability in a nonintrusive manner.

Compared to the dynamic exclusive use and open sharing models, this hierarchical

model is perhaps the most compatible with the current spectrum management policies

and legacy wireless systems. Furthermore, the underlay and overlay approaches can be

employed simultaneously to further improve spectrum efficiency.

2.2 Spectrum Sensing

With advanced digital communication systems such as cognitive radio [59, 63] being used

in a growing number of wireless applications, the topic of spectrum sensing has become

increasingly important. This section will introduce the concept, the fundamental principles,

and the practical applications of spectrum sensing.

In recent years, a large portion of the assigned spectrum has been observed to be sparsely

and sporadically utilized during several spectrum measurement campaigns [11, 12], as il-

lustrated in Fig. 2.2. In particular, spectrum occupancy by licensed transmissions are

often concentrated across specific frequency ranges while a significant amount of the spec-

trum remains either underutilized or completely unoccupied. Therefore, dynamic spectrum

access [6, 64] has been proposed for increasing spectrum efficiency via the real-time ad-

justment of radio resources using a combination of local spectrum sensing, probing, and

autonomous establishment of local wireless connectivity among cognitive radio (CR) nodes

and networks. During this process, spectrum sensing is employed for the purpose of identi-

fying unoccupied licensed spectrum, i.e., spectral “white spaces”. Once these white spaces

have been identified, secondary users (SU) opportunistically utilize these spectral white

spaces by wirelessly operating across them while simultaneously not causing harmful inter-

ference to the primary users (PU) 1. Currently, there exists several techniques for spectrum

sensing. This chapter will emphasize on two of them, namely, the energy detection and

1Primary users are licensed users who are assigned with certain channels, and secondary users are
unlicensed users who are allowed to use the channels assigned to a primary user only when they do not
cause any harmful interference to the primary user [58].
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cyclostationary feature detection.

2.2.1 Power Spectral Density

Power spectral density is a crucial concept in spectrum sensing. To analyze a signal in

the frequency domain, the power spectral density (PSD), SXX(f), is often used to charac-

terize the signal, which is obtained by taking the Fourier transform of the autocorrelation

RXX(τ) of the WSS random process X(t). The PSD and the autocorrelation of a func-

tion are mathematically related by the Einstein-Wiener-Khinchin (EWK) relations [65],

namely:

SXX(f) =

∫ ∞

−∞

RXX(τ)e
−j2πfτ dτ, (2.1)

RXX(f) =

∫ ∞

−∞

SXX(τ)e
+j2πfτ df. (2.2)

A very powerful consequence of the EWK relations is its usefulness when attempting to

determine the autocorrelation function or PSD of a WSS random process that is the out-

put of a linear time-invariant (LTI) system whose input is also a WSS random process.

Specifically, suppose we denote H(f) as the frequency response of an LTI system h(t). We

can then relate the power spectral density of input and output random processes by the

following equation:

SY Y (f) = |H(f)|2SXX(f), (2.3)

where SXX(f) is the PSD of input random process and SY Y (f) is the PSD of output random

process, as illustrated in Fig. 2.4.
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Fig. 2.4 An example of how the an LTI system h(t) can transform the PSD
between the WSS random process input X(t) and the WSS random process
output Y (t).
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2.2.2 Practical Issues of Collecting Spectral Data

Although spectrum sensing is a rather intuitive process, its implementation possesses

several engineering trade-offs that can potentially impact the performance of the overall

operation the results obtained. One of the key considerations when designing a spectrum

sensing system is how to collect and store spectrum measurement data via a spectrum

sweep. A spectrum analyzer can be employed to provide a nearly instantaneous snapshot

of radio frequency bandwidth via the sampling of intercepted signals at a specified rate. For

example, Fig. 2.5(a) shows that Agilent CSA-N1996A spectrum analyzer is used to take

spectrum measurements and Fig. 2.5(b) shows the PSD of a pulse shaped QPSK signal

collected by the spectrum analyzer.

(a) Using Agilent CSA-N1996A spectrum analyzer
to take spectrum measurements (from [66]).

(b) Power spectral density of a pulse shaped QPSK
signal, collected by an Agilent Technologies spec-
trum analyzer [67].

Fig. 2.5 A spectrum analyzer is employed to provide a snapshot of radio
frequency bandwidth.

There are several practical issues when parameterizing a spectrum sweep, such as the

sweep time and sweep resolution, i.e., the speed and detail at which the spectrum sweeps

are obtained. Higher resolution sweeps result in longer sweep time, but provide a more

accurate measurement of the spectrum. The sweeps used later in this chapter are the

average of thousands of spectrum sweeps across a single bandwidth. Note that for the

same measurement equipment, the speed at which spectrum measurements can be obtained
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varies from seconds to hours and days depending on the choice of several sweep parameters.

However, the selection of these sweep parameters is heavily dependent on what signals

are being observed, what sort of characteristics are being sought after in the spectrum

measurements, and how the spectrum measurement information will be post-processed

afterwards. As a result, Table 2.1 summarizes several parameters used to define spectrum

measurement processes, and the aspects of measurement they mainly effect. Then in the

following subsection, we will understand how the choice of these parameters can directly

impact the outcome of the measurements obtained.

Table 2.1 Five parameters used to define spectrum measurement processes.
Parameter Related Equation Main Impacted Aspect

Sweep Resolution (δ) δ = B1

NFFT

accuracy

Window Size (W ) Nstep = B

W
time

Dwell Time (tdwell) tdwell =
tsweep

Nsweep
time

Averaging Sweeps limN→∞{E[n(t)]} → 0 accuracy
Sweep Time (tsweep) tsweep = tdwell ×Nsweep time

Sweep Resolution

In order to provide a snapshot of the radio frequency bandwidth, a spectrum analyzer

samples the intercepted signals at a specified rate. Considering a unit time frame, each

sample in this frame displays a degree of freedom. Given a larger number of samples in this

frame, more information of the intercepted signals can be represented. Thus, for an FFT-

based spectrum analyzer, given the bandwidth of one single sweep, the sweep resolution is

decided by the number of FFT points, which can be expressed as:

δ =
B1

NFFT
, (2.4)

where B1 is the bandwidth of one single sweep, and NFFT is the number of FFT points.

Based on (2.4), we observe that a larger number of FFT points will result in a higher

sweep resolution. For example, in Fig. 2.6, there are two FFT plots of the same sine wave.

Fig. 2.6(a) is generated using a 32-point FFT and Fig. 2.6(b) is a 512-point FFT. Compar-

ing these two plots, we find that 512-point FFT provides a higher resolution, as well as a

more accurate description of the spectrum than the 32-point FFT.
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(a) A 32-point FFT plot.
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(b) A 512-point FFT plot.

Fig. 2.6 Two FFT plots of the same sine wave.

However, in order to handle the additional FFT samples, a spectrum analyzer that possesses

a stronger computational processing ability is required, as well as a longer sensing time.

Thus, there is an upper bound on the sweep resolution due to the limits of computational

processing ability. On the other hand, a smaller FFT size may incur time-domain aliasing

due to the undersampling in the frequency domain. Therefore, the input spectrum data is

usually zero-padded to be consistent with the larger FFT size that provides the required

resolution.

Window Size

The bandwidth of the spectrum we would like to analyze is usually larger than the

bandwidth that one single sweep can support, so the concept of “window” needs to be

introduced here. For each single sweep, the spectrum analyzer sweeps the size of a window,

and then some post-processing approaches are employed to integrate these FFT results

from the windows.

The bandwidth of the spectrum we would like to analyze can be calculated by:

B = fstop − fstart, (2.5)
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where fstop and fstart are two input parameters to the spectrum analyzer, which specify the

stop frequency and the start frequency. The total number of the sweeps to cover the whole

bandwidth is referred to as frequency steps, Nstep, defined as:

Nstep =
B

W
, (2.6)

where B is the total bandwidth, and W is the window size. For example, in Fig. 2.7, the

whole bandwidth is four times the window size, so the number of frequency steps is four.

W WWW

B

Fig. 2.7 A simple example showing the relation between the total bandwidth
B and the window size W .

Equation (2.6) implies that the larger the window size, the fewer frequency steps are re-

quired. However, according to (2.4), for a fixed FFT size the sweep resolution would become

lower. In addition, the larger window size implies a higher sampling frequency that the

processing computer must be able to keep up with. Thus, although a larger window size

can effectively reduce the number of sweeps, it may also incur some other issues that need

to be taken into account.

Dwell Time

Given the window size, the dwell time is the amount of time that the spectrum analyzer

spends in each “window” or sub-band. This is one of the specifications provided by most

commercial spectrum analyzers, since it is more likely to generate an accurate spectrum

sensing result if enough time is spent in each sub-band. The dwell time can be adjusted by

changing the number of samples per FFT point input parameter to the spectrum. If this

input value is set as N , then N samples will be collected in order to calculate the FFT for

each frequency point. It usually holds that the larger the dwell time, the larger the overall
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sweep time will be. These two factors can approximately be related by:

tdwell =
tsweep
Nsweep

, (2.7)

where tdwell is the dwell time, tsweep is the overall sweep time, and Nsweep is the total number

of the sweeps.

Effect of Averaging Sweeps

When analyzing electro-magnetic spectrum, we usually sweep the spectrum several

times and then take the average of these values. This is due to the fact that the averaging

process can smooth out the spectrum. Since we usualy assume the noise n(t) to be an

additive white Gaussian process with zero mean, as the number of samples approaches

infinity, we will have:

lim
N→∞

{E[n(t)]} → 0, (2.8)

where E[·] is the expectation operator, and N is the number of sweeps. For example,

Fig. 2.8(a) shows a single sine wave whose amplitude is 1 with the added white Gaussian

noise. Fig. 2.8(b) shows the result by accumulating 1000 sine waves in Fig. 2.8(a) and

taking their average. Comparing these two plots, we find that the effect of additive white

Gaussian noise can be greatly eliminated by the averaging process.

In real-world applications, as the number of sweeps used in the averaging process increases,

the noise level will be better captured. This can be used to estimate the noise statistics and

would be very useful when determining the energy threshold for the SDR implementation

of an energy detector.

Sweep Time

Given that the dwell time is the time spent in each sub-band, we define the sweep

time as the time spent in the entire bandwidth of interest. It is determined by several

factors, including the dwell time, window size, and the number of sweeps. For the first

factor, increasing the dwell time usually increases the sweep time. For the second factor,

increasing the window size decreases the number of frequency steps according to (2.6), and

hence decreases the sweep time. For a fixed window size, although increasing the FFT size
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(a) A sine wave whose amplitude is 1 with the
added white Gaussian noise.
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(b) Accumulating 1000 sine waves and taking their
average.

Fig. 2.8 The sine wave with and without the averaging process.

will result in a finer frequency resolution, the number of the frequency steps remains the

same. Therefore, without accounting for the computational processing ability, the sweep

time would be the same. However, in a real-world situation, with a larger FFT size, the re-

sulting higher frequency resolution increases the computational processing time and hence

the total sweep time. For the last factor, it is obvious that a larger number of the sweeps

will result in a longer sweep time.

In conclusion, when collecting spectral data, we should consider all of the issues introduced

above, in order to generate an accurate result, while at the same time be time-efficient.

2.2.3 Hypothesis Testing

As mentioned at the beginning of Section 2.2, in dynamic spectrum access networks,

spectrum sensing is employed for the purpose of identifying unoccupied licensed spectrum,

which is equivalent to detecting the frequency locations of the primary signals. Therefore,

spectrum sensing can be interpreted as a signal detection problem. Since most signal

detection problems can be formulated in the framework of anM-ary hypothesis test, where

we have an observation (possibly a vector or function) upon which we wish to decide

among M possible statistical situations describing the observations [68]. According to this

criterion, the spectrum sensing performs a binary hypothesis testing in order to decide
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whether or not there are primary signals in a particular channel. The two hypotheses are

denoted as follows:

H0 : no primary signals,

H1 : primary signals exist, (2.9)

where H0 is usually referred to as null hypothesis, and H1 is usually called alternative

hypothesis.

For a null hypothesis, since there are no primary signals present, the received signal is just

the noise in the RF environment. On the other hand, for the alternative hypothesis, the

received signal would be the superposition of the noise and the primary signals. Thus, the

two hypotheses in (2.9) can be represented as:

H0 : x[k] = n[k],

H1 : x[k] = s[k] + n[k], (2.10)

for k = 1, .., N , where N is the number of received signals, x[k] is the received signal,

n[k] is the noise in the RF environment, and s[k] is the primary signal. Consequently,

the spectrum sensing can be considered as such a detection problem, that based on the

observation x, we need to decide among two possible statistical situations describing the

observation, which can be expressed as:

δ(x) =

{

1 x ∈ Γ1,

0 x ∈ Γc
1.

(2.11)

When the observation x falls inside the region Γ1, we will choose H1. However, if the

observation falls outside the region Γ1, we will choose H0. Therefore, (2.11) is known as

decision rule, which is a function that maps an observation to an appropriate hypothe-

sis [68]. In the context of spectrum sensing, different spectral detectors and classifiers are

actualy the implementations of different decision rules. In Section 2.2.4, two decision rules

will be introduced.

Regardless of the precise signal model or detector used, sensing errors are inevitable due to
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additive noise, limited observations, and the inherent randomness of the observed data [69].

In testing H0 versus H1 in (2.9), there are two types of errors that can be made, namely

H0 can be falsely rejected or H1 can be falsely rejected [68]. In the first hypothesis, there

are actually no primary signals in the channel, but the testing detects an occupied channel,

so this type of error is called a false alarm or Type I error. In the second hypothesis, there

actually exist primary signals in the channel, but the testing detects only a vacant channel.

Thus, we refer to this type of error as a missed detection or Type II error. Consequently,

a false alarm may lead to a potentially wasted opportunity for the SU to transmit while a

missed detection could potentially lead to a collision with the PU [69].

Given these two types of errors, the performance of a detector can be characterized by

two parameters, namely, the probability of false alarm (PF ), and the probability of missed

detection (PM) [70], which correspond to Type I and Type II errors respectively, and thus

can be defined as:

PF = P{Decide H1|H0}, (2.12)

and

PM = P{Decide H0|H1}. (2.13)

Note that based on PM , another frequently used parameter is the probability of detection,

which can be derived as follows:

PD = 1− PM = P{Decide H1|H1}, (2.14)

which characterizes the detector’s ability to identify the primary signals in the channel, so

PD is usually referred to as the power of the detector.

As for detectors, we would like their probability of false alarm as low as possible, and at

the same time, their probability of detection as high as possible. However, in real-world

situation, this is not achievable, because these two parameters are constraining each other.

To show their relationship, a plot called receiver operating characteristic (ROC) is usually

employed [71], as shown in Fig. 2.9, where its x-axis is the probability of false alarm, and its

y-axis is the probability of detection. From this plot, we observe that as PD increases, the

PF is also increasing. There does not exist such an optimal point that reaches the highest
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PD and the lowest PF . Therefore, the detection problem is also a trade off, which depends

on how the Type I and Type II errors should be balanced.
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Fig. 2.9 A typical receiver operating characteristic (ROC), where the x-axis
is the probability of false alarm (PF ), and the y-axis is the probability of
detection (PD).

2.2.4 Spectral Detectors and Classifiers

The spectral detectors and classifiers are implementations of the different decision rules.

For example, the energy detector in Section 2.2.4 assumes that the received signal will have

more energy when the channel is occupied than when it is vacant, thus the two decision

regions in (2.11) are divided by an energy threshold. The cyclostationary feature detector

in Section 2.2.4 is not only a detector, but also a classifier that recognizes the cyclic features

of different modulation schemes in advance, so the decision regions are divided according

to the cyclic features of the modulation schemes.

Energy Detector

Energy detection uses the energy spectra of the received signal in order to identify the

frequency locations of the transmitted signal. This detection approach relies only on the
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energy present in the channel, and no phase information is required. Since the energy of a

signal x(t) is defined as:

E =

∫ ∞

−∞

|x(t)|2dt, (2.15)

a decision statistic for energy detector can be:

D =

N
∑

k=1

(x[k])2, (2.16)

where x[k] is the received signal, and N is the total number of the received signals. The

underlying assumption is that with the presence of a signal in the channel, there would be

significantly more energy than if there was no signal present. Therefore, energy detection

involves the application of a threshold T in the frequency domain, which is used to decide

whether a transmission is present at a specific frequency, as shown in Fig. 2.10. Any portion

of the frequency band where the energy exceeds the threshold is considered to be occupied

by a transmission, namely, the decision rule is as follows:

δ(D) =

{

1 D > T ,

0 D < T .
(2.17)

where D is the decision statistic calculated by (2.16) and T is the pre-defined energy

threshold. Therefore, in Fig. 2.10, any portion of the frequency band where the energy

exceeds -100 dBm is considered to be an occupied channel.

Since different transmitters employ different signal power levels and transmission ranges,

one of the major concerns of energy detection is the selection of an appropriate threshold.

A threshold that works for one transmission may not be appropriate for another. Fig. 2.11

shows two typical detection errors caused by inappropriate energy detection threshold.

In Fig. 2.11(a), the threshold is too low, so some noise is considered as primary signals,

resulting in Type I error, false alarm. While in Fig. 2.11(b), the threshold is too high, so

some primary signals are ignored, incurring the Type II error, missed detection.
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Fig. 2.10 Energy detection threshold level, denoted as T . Any portion of
the frequency band where the energy exceeds the threshold is considered to
be occupied by a transmission.

(a) Low energy detection threshold level yields
Type I error, false alarm.

(b) High energy detection threshold level yields
Type II error, missed detection.

Fig. 2.11 Inappropriate energy detection threshold levels.

Cyclostationary Feature Detector

Modulation recognition and signal classification has been a subject of considerable re-

search for over two decades. Classification schemes can generally be separated into one

of two broad categories: likelihood-based (LB) approaches and feature-based (FB) ap-

proaches [72]. Cyclostationary feature detection is an FB technique based on the fact that

communications signals are not accurately described as a stationary process, but rather

more appropriately modeled as a cyclostationary process [73].

A cyclostationary signal possesses statistics that vary periodically with time. By definition,
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a signal x(t) is wide-sense cyclostationary if its mean and autocorrelation are periodic [74],

namely:

Mx(t) = Mx(t+ T0), (2.18)

and

Rx(t, τ) = Rx(t+ T0, τ), (2.19)

whereMx(t) is the mean value of the signal x(t), and Rx(t, τ) is the autocorrelation function

of the signal x(t). These periodicities occur for signals possessing well-defined character-

istics due to several processes such as sampling, scanning, modulating, multiplexing, and

coding, which can be exploited to determine the modulation scheme of the unknown sig-

nal [73].

The periodic nature of the signal allows it to be expressed as a Fourier series [74, 75]:

Rx(t, τ) = E{x(t+
τ

2
)x∗(t−

τ

2
)} =

∑

{α}

Rα
x(τ)e

j2παt, (2.20)

where E{.} is the expectation operator, {α} is the set of Fourier components, and Rα
x(τ)

is the cyclic autocorrelation function (CAF) given by:

Rα
x(τ) = lim

T→∞

1

T

∫ T/2

−T/2

Rx(t, τ)e
−j2παt. (2.21)

Alternatively, in the case when Rx(t, τ) is periodic in t with period T0, (2.21) can be

expressed as:

Rα
x(τ) =

1

T0

∫ T0/2

−T0/2

Rx(t, τ)e
−j2παt. (2.22)

Consequently, the Fourier transform of the CAF, which is referred to as the spectral cor-

relation function (SCF), is given by:

Sα
x (f) =

∫ ∞

−∞

Rα
x(τ)e

−j2πfτdτ, (2.23)

which can be shown to be equivalent, assuming cycloergodicity, to the following expres-
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sion [74]:

Sα
X(f) = lim

T→∞
lim

∆t→∞

1

∆t

∫ ∆t/2

−∆t/2

1

T
XT (t, f +

α

2
)X∗

T (t, f −
α

2
)dt, (2.24)

where XT (t, f) is the time varying Fourier transform defined as:

XT (t, f) =

∫ t+T/2

t−T/2

x(u)ej2πfudu. (2.25)

A significant advantage of the SCF is its lack of sensitivity to additive white noise, since

modulated information is a cyclostationary process, while noise is not. In other words,

the spectral components of white noise are uncorrelated, so it does not contribute to the

resulting SCF for any value of α 6= 0. This property is especially useful when the noise

power exceeds the signal power, which would make the signal undetectable when using a

simple energy detector. As a result, cyclic detectors can successfully operate even in low

SNR environments.

To derive a normalized version of the SCF, the spectral coherence function (SOF) is given

by:

Cα
X(f) =

Sα
X(f)

[S0
X(f + α/2)× S0

X(f − α/2)]1/2
. (2.26)

Therefore, the three important functions derived in cyclostationary feature detector can be

summarized as in Table 2.2.

Table 2.2 Three important functions derived in cyclostationary feature de-
tector.

Function Name Characteristic

Cyclic Autocorrelation Function (CAF) Rα
x (τ) Fourier series of autocorrelation

Spectral Correlation Function (SCF) Sα
x
(f) Fourier transform of the CAF

Spectral Coherence Function (SOF) Cα

X
(f) normalized version of the SCF

The magnitude of the SOF varies from 0 to 1 and represents strength of second order

periodicity within the signal. The SOF contains the spectral features of interest. These

features are non-zero frequency components of the signal at various cyclic frequencies. All

modulation schemes contain a range of spectral components at different cyclic frequencies,
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(a) SOF of QPSK signal in an AWGN channel at
10 dB SNR.

(b) SOF of 4PAM signal in an AWGN channel at
10 dB SNR.

Fig. 2.12 Distinctive cyclic features of different modulation schemes.

thus distinguishing them from other modulation schemes, i.e., the spectral components

form a spectral fingerprint for the specific modulation scheme. The SOFs of two typical

modulation schemes, QPSK and 4PAM, are shown in Fig. 2.12(a) and Fig. 2.12(b). Notice

how the SOF for each modulation scheme generates a highly distinct spectral image. These

distinctions allow signals to be classified from cyclic analysis. In general, the plot of SOF

is a three-dimensional figure, where the x-axis represents the cyclic frequency α, the y-axis

represents the spectral frequency f , and the z-axis represents the corresponding magnitude

of the SOF for each (α, f) pair. Note that when α does not equal zero, the SOF values are

approximately zero.

Cyclostationary feature detector can be implemented via FFTs. Knowledge of the noise

variance is not required to set the detection threshold. Hence, the detector does not suffer

from the “SNR wall” problem of the energy detector. However, the performance of the

detector degrades in the presence of timing and frequency jitters (which smear out the

spectral lines), and RF non-linearities (which induce spurious peaks). Representative pa-

pers that consider the approach are [43, 76, 77].
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2.3 Primary User Emulation

One of the major technical challenges regarding spectrum sensing is the problem of

accurately distinguishing primary user signals from secondary user signals. In cognitive

radio networks, primary users possess the priority to access the channel, while secondary

users must always relinquish access to the channel over to the primary user and ensure

that no interference is generated. Consequently, if a primary user begins to transmit across

a frequency band occupied by a secondary user, the secondary user is required to leave

that specific spectral band immediately. Conversely, when there is no primary user activity

present within a frequency range, all the secondary users possess equal opportunity to

the unoccupied frequency channel. Based on this principle, there exists the potential for

malicious secondary users to mimic the spectral characteristics of the primary users in order

to gain priority access to the wireless channels occupied by other secondary users. This

scenario is referred to in the literature as primary user emulation (PUE) [30–32].

2.3.1 An PUE Example

Fig. 2.13 shows a simple but classic example of primary user emulation attack in a

dynamic spectrum access network. In this network, there are three normal secondary

users, named D1, D2 and D3. They are communicating with each other using the “white

space” channels. D1 and D2 are using Channel 1, D2 and D3 are using Channel 2,

and D1 and D3 are using Channel 3. At this time, a malicious secondary user, i.e., a

primary user emulator appears on Channel 3. Since this malicious secondary user mimics

the spectral characteristics of the primary users, D1 and D3 think that there is a primary

user transmitting on this channel. According to the criteria of dynamic spectrum access

network, D1 and D3 have to leave Channel 3 immediately. However, the other two channels

are both occupied by the other users right now, so they cannot find any other available

channels to continue their communication, making the connection terminated.

2.3.2 Impact of PUE on DSA Networks

Based on the discussion above, there are several outcomes that can be incurred by PUE

attacks in a dynamic spectrum access network:

• Unstable Connections: Based on the example presented in Section 2.3.1, one of the
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Fig. 2.13 A simple example of primary user emulation attack in a dynamic
spectrum access network, where normal secondary users D1 and D3 relinquish
their access to Channel 3 over to the primary user emulator.

most direct outcomes is unstable connections between secondary users. If a network

is frequently attacked by a primary user emulator, the secondary users in this network

always have to leave their current channels and seek new channels. However, it is

very likely that other channels are also occupied, so their connections have to be

terminated.

• Spectrum Under-utilization: The original purpose of dynamic spectrum access is to

address the problem of spectrum scarcity caused by FCC’s fixed spectrum allocation.

In DSA, the secondary users can temporarily borrow unoccupied licensed spectrum.

However, if there are severl primary user emulators in the network, it is possible that

all the available licensed channels are occupied by them, so the normal SU cannot

find any channels to borrow. If it is the case, then the problem of spectrum scarcity

is not solved at all.

• Denial of Service: In the current setting of FCC’s DSA approach presented in Sec-

tion 1.3, when a secondary user wants to transmit some data, it has to go through

a request and acknowledgement process. However, if all the channels are occupied
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by the primary user emulators, the normal SU cannot even find a channel to send a

request, so their service will be denied.

• Interferance with Primary Users: Although the PUE attacks are solely aimed at sec-

ondary users, and the primary user emulators are supposed to obey the rule that

they will not cause any interferences with the primary users. However, in a dynamic

spectrum access network, the PU and SU exit in the same network, so any user’s acti-

vates would have some impact on the others. Especially since primary user emulators

mimic the spectral characteristics of the primary users, their transmission power is

usually higher than that of the normal secondary users, so it can cause an interference

with the primary users.

It is noted that PUE is different from traditional jamming in wireless networks. The

malicious users do not aim to cause significant interference to the secondary users. The

objective of the malicious users is to cause the secondary users to vacate the spectrum

by having them believe that primary transmission is in progress. Thus, when PUE is

successfully detected, the secondary users do not suffer degradation in the quality of their

communication due to the transmission from the malicious users. [54]

2.4 Artificial Neural Network

Artificial neural networks (ANNs) can generally be thought of as an approximation or

fitting function [78]. The robustness and generalization capabilities of ANN models make

them good candidates for signal detection and classification.

2.4.1 Artificial Neural Networks

Artificial neural networks attempt to simulate the way that neurons in a brain work. A

neural network consists of a set of elements called neurons or nodes, that are connected to

each other. Each connection has a weight or strength value associated with it, and these

values determine the state of the neural network [79]. An artificial neural network can be

set up by three steps [78]:

1. Input-Output Definition Define a set of inputs x and a set of outputs y. This

definition is critical in the overall model accuracy as the output y may not be sensitive

to some input parameters defined in the vector x.
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2. Training ANN Models Accurate data samples (xp, dp), where p is the pth sam-

ple in a data set, are employed for training the ANN. To this end, several training

algorithms are available, including quasi-Newton (QN), quasi-Newton MLP (QNM),

conjugate gradient algorithm, conjugate gradient quasi-Newton algorithm (CQN) and

the conjugate gradient quasi-Newton MLP algorithm (CQNM).

3. Validation and Testing ANN Models To verify the accuracy of the trained ANN,

the model is tested against a set of new data samples.

After these three steps, we can proceed to classify the signals using this artificial neural

network.

In this dissertation, a multi-layer perceptron (MLP) neural network is employed. This

type of network consists of a series of nodes arranged into layers as shown in Fig. 2.14.

Each node is connected to all the nodes in the layer before it, and all the nodes in the layer

after it. Each connection has a weight value associated with it. The nodes in the first layer

are called input nodes, while the nodes in the last layer are referred to as the output nodes.

Note that all the other nodes are called hidden nodes. The activation of the hidden nodes

(Hj) is calculated as follows:

Hj = f(
ni
∑

i=1

w1ijIi), (2.27)

where Ii is the activation of the ith input node, ni is the total number of input nodes, w1ij

is the weight number associated with the connection between hidden node i and input node

j, and f is a function that smooths the resultant activation and bounds it between -1 and

1. In this dissertation, we assume that f(x) = tanh(x).

Once the activation of the hidden nodes have been calculated, the activation of the

output nodes are calculated by:

Oj = f(

nh
∑

i=1

w2ijHi), (2.28)

where nh is the number of hidden nodes, and w2ij is the weight factor associated with the

connection between the ith hidden node and the jth output node.

The process of training a neural network refers to choosing the appropriate weight

factors in such a way that a specific input gives rise to the desired output. Consequently,
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Fig. 2.14 The structure of the nodes in a Multi Layer Perceptron (MLP)
neural network. There are 5 input nodes, one layer of 3 hidden nodes, and 1
output node in this network.

given several sets of data and the desired output for each set, the training of the neural

network can be rephrased as the minimizing of the error, which is given by:

E(I1, I2, . . . , Ini) =

no
∑

i=1

(Oi − di), (2.29)

where no is the number of output nodes, and di is the desired value of the ith output. In

this dissertation, the training algorithm employed to minimize the error is the back propa-

gation (BP) algorithm [80]. For this algorithm, the learning rate η controls how quickly the

algorithm converges. A higher learning rate corresponds to a quicker convergence. How-

ever, if the learning rate is too high, then the algorithm will oscillate and not converge

at all. To prevent oscillations, the momentum ζ forces the algorithm to take into account

its movement from the previous iteration. By doing so, the system will tend to avoid lo-

cal minima or saddle points, and approach the global minimum. The learning rate and

momentum are used in the following equation to determine the change of weight value:

∆i = η × δi + ζ ×∆i−1, (2.30)
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where δi is the amount that the weight has to change to approach the minimum of the

error, and ∆i is the amount that the weight value was actually changed during the ith

iteration.

2.4.2 Artificial Neural Networks in Signal Classification

Creating a linear algorithm to classify signals in real time is a difficult problem due to

the unique features of each signal that need to be programmed in, and the ambient noise

level that needs to be considered. However, this problem can be solved by using an artificial

neural network approach due to the following reasons: First, an artificial neural network

can simply be trained to recognize the unique features of the signal by giving it sample

signal data, and telling it what signal type to associate with each set of data [79]. Second,

artificial neural networks have been shown to have a high noise tolerance if the data to be

classified is not very similar [81]. Third, artificial neural networks are typically able to run

fast enough for real time applications, since the output activation defined in [82] is a very

simple expression.

To actually use an artificial neural network to classify a signal, the following steps need

to be taken: First, the signal must be clearly intercepted. Then, signal statistics need to

be computed. For example, in the first approach of this dissertation, the cycle frequency

profile of the SOF is used, which is defined as:

profile(α) = max
f
[Cα

X(f)] , (2.31)

where Cα
X is the SOF of the signal, as defined in (2.26). This profile reduces the two

dimensional SOF data to one dimension, thus can be processed in real time. Next, this

data is fed into a system of artificial neural networks, each of which is trained to identify a

given signal. In the end, the network with the largest output activation is found, and the

identity of the signal is known.

Additionally, a reliability parameter, similar to the one discussed in [82], can be used

to detect whether the artificial neural network has failed. This parameter is defined as half

of the difference between the largest and second largest output activations:

χ =
OLargest − O2ndLargest

2
, (2.32)
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where OLargest is the value of the largest output activation, and O2ndLargest is the value of

the second largest output activation. Therefore, if one artificial neural network had an

activation of 1, which implies a perfect match, and all the others had an activation of -1,

which implies that there is no match, then the reliability is 1. On the other hand, if two of

the artificial neural networks had an activation of 1, then the reliability would be 0. If the

reliability is close to 0, then there is a good chance that the artificial neural network has

incorrectly classified the signal, and the classification should be disregarded. By discarding

suspect classifications, the percentage of correct classifications can be improved.

2.5 Action Recognition in Video

Action recognition in video stands for the problem of recognizing different types of

human actions, such as walking, running, jumping, waving, etc., from video footage. For

example, given a human action sequence shown in Fig. 2.15, how can the computer tell

which action it belongs to?

Fig. 2.15 Example of a human action sequence: Three frames from a
“jumping-jack” action sequence (top row) and corresponding silhouettes (bot-
tom row) from the Weizmann Human Action Database (from [7]).

A variety of methods have been explored to obtain different features to represent actions.

The goal of these features is to extract significant and discriminative information for action

classification. Although action characteristics are implicitly embedded within raw image

sequences, it is difficult to classify actions by using raw images that may have very different
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chromatic, photometric and textural properties even if they consist of the same type of

action. It is therefore natural to utilize features that more explicitly describe actions, e.g.,

motion-related features that are usually chromatic, photometric and textural invariant [83,

84]. In this section, we present the three-step action representation framework adopted

from [83] and [84]. We follow the mathematical expressions and notations from [84].

2.5.1 Descriptor for Action Representation

Given an action segment, [83] and [84] first extract a rich collection of 12-dimensional

feature vectors that describe the property of motion. Components of the feature vector

consist of different motion characteristics. Therefore, action is embedded within the feature

space. The second step is a dimension reduction step: [83] and [84] obtain a simplified action

representation by fusing the collection of feature vectors into a 12×12 empirical covariance

matrix, which can be viewed as a compact feature descriptor in a much lower dimensional

space. Covariance matrices lie in a Riemannian manifold, not a vector space; thus, they

are not directly amenable to the artifical neural network. In order to use the covariance

matrices with the artifical neural network, a third step of the matrix logarithm is necessary.

The resulting log-covariance matrix lies in the vector space of symmetric matrices. These

three steps are elaborated as following:

Feature Vector Construction

Let I(x, y, t) denote the raw image sequence and let u(x, y, t) represent the correspond-

ing flow vector (u, v) at each pixel position (x, y, t). Let A denote the set of coordinates

of all pixels which belong to an action segment which is W pixels wide, H pixels tall, and

N frames long, i.e., A := {(x, y, t)T : x ∈ [1,W ], y ∈ [1, H ], t ∈ [1, N ]}. Based on I(x, y, t)

and u(x, y, t), the feature vector f(x, y, t) is defined in [84] as:

f(x, y, t) := [x, y, t, It, u, v, ut, vt, Div, V or, Gten, Sten]T , (2.33)

where (x, y, t) ∈ A. It is the first order partial derivative of I(x, y, t) with respect to t,

i.e., It =
∂I(x,y,t)

∂t
. u and v are optical flow components, and ut and vt are respectively the

first order partial derivative of u(x, y, t) and v(x, y, t) with respect to t. Div is the spatial
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divergence of a flow field and is defined at each pixel position as:

Div(x, y, t) =
∂u(x, y, t)

∂x
+

∂v(x, y, t)

∂y
. (2.34)

Divergence can capture the amount of local expansion in the fluid, which can indicate

action differences. V or is the vorticity of a flow field and is defined as:

V or(x, y, t) =
∂v(x, y, t)

∂x
−

∂u(x, y, t)

∂y
. (2.35)

In fluid dynamics, vorticity is used to measure local spin around the axis perpendicular

to the plane of the flow field; thus, it is useful to highlight local circular motion of the

moving object. Before explaining Gten and Sten, two matrices need to be defined, called

gradient tensor of optical flow ▽u(x, y, t) and rate of strain tensor S(x, y, t):

▽u(x, y, t) =

(

∂u(x,y,t)
∂x

∂u(x,y,t)
∂y

∂v(x,y,t)
∂x

∂v(x,y,t)
∂y

)

, (2.36)

S(x, y, t) =
1

2
(▽u(x, y, t) + ▽u(x, y, t)T ). (2.37)

Gten and Sten are tensor invariants that remain constant no matter what coordinate

system they are referenced in. They can be written as follows:

Gten(x, y, t) =
1

2
(tr(▽u(x, y, t))2 − tr(▽u(x, y, t)2)), (2.38)

Sten(x, y, t) =
1

2
(tr(S(x, y, t))2 − tr(S(x, y, t)2)), (2.39)

where tr stands for the trace operation.

So far, a feature vector at each pixel is represented by (2.33). However, only some of

these feature vectors are related to the action of a moving object while the remaining feature

vectors just indicate background characteristics (that have no contribution or negative

impact on action classification). Therefore, we want to include only those feature vectors

whose corresponding pixels lie within the moving object. In this dissertation, following [84],

we determine the approximate locations of moving pixels by thresholding the smoothed

temporal gradients It. Only pixels with It greater than some threshold are claimed as
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moving pixels. As for the database, only the feature vectors of primary users’ moving

pixels will be included.

Covariance Descriptor of Feature Vectors

The collection of feature vectors from each moving pixel position provides a dense

representation of the action in a segment. Although these dense feature vectors consist

of a great amount of motion characteristics, they are inconvenient in action classification

because they lie in a very high dimensional space. Recently, [85] and [86] proposed to

compare two sets of feature samples by computing and comparing their empirical covariance

matrices. The covariance matrix of feature vectors enables efficient fusion of different types

of features and its dimensionality is small. Moreover, since feature properties are captured

in a single covariance matrix, feature sets of different sizes can be easily and efficiently

compared. Therefore, the action properties of an action segment are captured by a 12×12

covariance matrix CS.

Let S denote the set of coordinates that are related to a moving object, and |S| denote

the number of elements in S. Then CS is defined in [84] as:

CS =
1

|S|

∑

(x,y,t)∈S

(f(x, y, t)− µS)(f(x, y, t)− µS)
T , (2.40)

where

µS =
1

|S|

∑

(x,y,t)∈S

f(x, y, t) (2.41)

is the mean feature vector. Since CS is a 12×12 symmetric matrix, only its (122+12)/2 =

78 entries are independent thus affording a low-dimensional representation of all feature

samples, independently of their number.

Log-covariance Descriptor of Feature Vectors

The covariance matrix CS computed in (2.40) does not lie in a vector space because

-CS is not a covariance matrix. [87] proposed the use of the matrix logarithm to map the

manifold of covariance matrices into the vector space of symmetric matrices. This property

is important since only features in the vector space are amenable to the artificial neural

network. The log-covariance matrix LS of a covariance matrix CS is computed in [84] as
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follows:

Suppose that the eigen-decomposition of CS is given by CS = V DV T , where the columns

of V are orthonormal eigenvectors and D is the diagonal matrix of eigenvalues. Then the

log-covariance matrix is

LS = log(CS) = V D̃V T , (2.42)

where D̃ is a diagonal matrix obtained from D by replacing D’s diagonal entries by their

natural logarithms.

Since matrix LS has only 78 independent entries, we scan its upper triangular part and

form a vector lS to be used as an action descriptor in the following artificial neural network.

2.6 Relational Database

Database systems are important data management tools, which store, organize and

let users to query stored data in a structural manner. Databases can store information

about people, products, orders, or anything else. In the last few decades, they have been

widely used in people’s daily life to serve various data management goals. Most of the

database systems use relational model, and thus being called relational databases [88]. In

this section, we will first discuss the general database, and then focus on the relational

database and its design.

2.6.1 Database

Database is a very large, integrated collection of data, which models real-world ap-

plications. Usually data is too large to fit into main memory, and often used by many

users.

Many databases start as a list in a word-processing program or spreadsheet. As the

list grows bigger, redundancies and inconsistencies begin to appear in the data. The data

becomes hard to understand in list form, and there are limited ways of searching or pulling

subsets of data out for review. Once these problems start to appear, it’s a good idea to

transfer the data to a database created by a database management system (DBMS), such

as MySQL.

Nowadays, the most frequent applications of DBMS include the following: E-commerce

like Amazon.com, airlines and travel services, scientific data such as biology, oceanography,
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etc., spatial data such as maps, travel networks, and digital libraries.

2.6.2 Relational Database

Relational database was proposed by Edgar Codd (of IBM Research) around 1969 [89].

It has since become the dominant database model for commercial applications (in compar-

ison with other database models such as hierarchical, network and object models). Today,

there are many commercial Relational Database Management System (RDBMS), such as

Oracle, IBM DB2 and Microsoft SQL Server. There are also many free and open-source

RDBMS, such as MySQL, mSQL (mini-SQL) and the embedded JavaDB (Apache Derby).

A relational database organizes data in tables (or relations). A table refers to a two

dimensional representation of your data using columns and rows. A row is also called

a record (or tuple). A column is also called a field (or attribute). In other words, in

relational databases, data are structured as individual records, each representing a multi-

dimensional data item. Individual records with same attributes are collected together

to form tables, which are the basic accessable units in the databases. Each database

table is given a unique name. Without a unique name, the DBMS would get very con-

fused. Each column in the table is also given a unique name. For example, in our ap-

proach, a record regarding a feature vector should have 12 columns (attributes), namely,

x, y, t, It, u, v, ut, vt, Div, V or, Gten, Sten, as shown in Fig. 2.16. However, it doesn’t mean

that each column you name has to be unique within the entire database. It only has to be

unique within the table you have created. Also notice that the names should not include

any spaces. When naming tables and columns, it is recommended to keep it simple with

only letters and numbers, since spaces and symbols can be illegal characters.

x y t  u v   Div Vor Gten Sten

 

Fig. 2.16 A record regarding a feature vector has 12 columns.

As shown in Fig. 2.16, a database table is similar to a spreadsheet. However, the

relationships that can be created among the tables enable a relational database to efficiently

store huge amount of data, and effectively retrieve selected data. A language called SQL

(Structured Query Language) [90] was developed to work with relational databases in a
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way that relational databases usually use standarded SQL language to access the data in

the databases by submitting queries. The SQL langauge is a very powerful language, which

can express complicated logics [91].

Organizing data into tables brings many benefits for data management. Here are several

most important ones: First of all, each table is a good encapsulation for information in one

aspect, such that users can easily locate the information in a certain aspect by querying

the corresponding table. For our database, if we want the feature vectors of a certain

primary user, we only need to look into one corresponding table. Second, it breaks the

potentially large piece of information into relatively smaller and independent pieces, and

thus effectively reduce the amount of redundant informaiton stored and the disk I/O cost

in most of the cases. Therefore, in our approach, as long as we have located a record in a

table, we do not need to read the remaining tables, which lowers the disk I/O cost. Third,

one can easily add new tuples to a database without disturbing the existing parts of it. For

example, if our system needs to incorporate a new primary user, it can easily create a new

table including the feature vectors of this new user, without changing anything else in the

database.

2.6.3 Relational Database Design

There are many requirements for a well-designed database. Among them, the most im-

portant ones are eliminating data redundancy and ensuring data integrity and accuracy. To

meet this end, there are several important constraints to take into account when designing

a relational database.

Primary Key

To better coordinate the relationships among tuples in a single table, relational model

introduces the constraints on the table. The most important and widely used constraint

is key. In the relational model, a table cannot contain duplicate rows, because that would

create ambiguities in retrieval. To ensure uniqueness, each table should have a column (or

a set of columns), called primary key, that uniquely identifies every records of the table.

In our approach, given a pixel location and a time instant, we can find a unique feature

vector in the table, so (x, y, t) is a key for the table. In other words, if a (x, y, t) value is

provided, we can uniquely identify a record in this table. The key constraint in the table



2 An Overview of Wireless Access 48

mainly helps to prevent the tuple duplication in the table, so that we will not waste any

time on scanning the duplicate informaiton.

Foreign Key

A database consisting of independent and unrelated tables serves little purpose. The

power of relational database lies in the relationship that can be defined between tables.

The most crucial aspect in designing a relational database is to identify the relationships

among tables, where the concept of the foreign key serves an important role in the cross-

table reference. It works together with the concept of primary key, which is a selected key

from all candidate keys in a table. The idea is that the foreign key for a (referencing) table

A is a set of attributes that match with the primary key in the another (referenced) table

B. Then, the values of the foreign key attributes for any tuple in the referencing table A

must match the values of one tuple in referenced table B on these same attributes. For

example, if we have a table A recording ECE students’ scores for ECE 4305 and a table

B recording all ECE students’ basic profile, and we put a foreign key constraint on the ID

numnber attribute of A referencing the ID numnber attribute of B, then table A can only

store tuple with a ID number that exist in table B. If one tries to insert a new tuple to A

which has a ID number that does not exist in B, the insertion will be rejectd because of

foreign key violation. Or, if one tried to delete a tuple in B with its ID number referenced

by tuple(s) in A, the deletion will be rejected as well due to foreign key violation. By

imposing the foreign key constraints, one can better coordinate the data in different tables,

and avoid cross-table inconsistency.

Index

Besides storing data in tables, organizing data using index is another very important

aspect of database design. This is because the purposes of database systems are not only

storing data but also letting users to retrieve their data in an efficient way. Therefore, you

can create index on selected column(s) to facilitate data searching and retrieval.

An index is a structured file that speeds up data access for SELECT, but may slow down

INSERT, UPDATE, and DELETE. Without an index structure, to process a SELECT

query with a matching criterion, the database engine needs to compare every record in the

table. On the contrary, a specialized index (e.g., in B+ tree structure) could reach the
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record without comparing every record. For example, one can leave the records in a table

recording ECE students’ scores in ECE 4305 unorganized, or use a index structure to index

the scores in a ranked order. Then if we need to find the student with the highest score, for

the first case, we have to scan the whole table to figure it out, while in the second case, we

can simply grab the first tuple in the score index. However, the index needs to be rebuilt

whenever a record is changed, which results in overhead associated with using indexes.

There are many different index structures available in relational database. Among them

the tree-based structures, such as B+ tree and R-tree, are the most widely used ones [92].

Index can be defined on a single column, a set of columns (called concatenated index),

or part of a column (called partial index). You can even build more than one index on a

table.

2.7 SDR Technology

Given the brief overview of the background of cognitive radio and spectrum sensing,

as well as a tutorial of various techniques that will be employed in the PUE detection

approaches, we will now focus our attention on implementing an SDR simulation system,

which enables us to test our approaches in real-world environment. Note that when de-

signing a complete SDR system from scratch, it is very important to have both a hardware

platform that is both sufficiently programmable and computationally powerful, as well as

a software architecture that can allow a communication system designer to implement a

wide range of different transceiver realizations. In this section, we will first study some of

the well-known SDR hardware platforms before talking about some of the available SDR

software architectures.

2.7.1 Hardware Platforms

Exploration into advanced wireless communication and networking techniques require

highly flexible hardware platforms. As a result, SDR is very well suited due to its rapidly

reconfigurable attributes, which allows for controlled yet realistic experimentation. Thus,

the use of real-time test bed operations enables a large set of experiments for various

receiver settings, transmission scenarios, and network configurations. Furthermore, SDR

hardware provides an excellent alternative for comprehensive evaluation of communication

systems operating within a networked environment, whereas Monte Carlo simulations can
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be computationally exhaustive and are only as accurate as the devised computer model. In

this section, we will study several well-known SDR hardware platforms used by the wireless

community for research and experimentation.

One of the most well-known of all SDR hardware platforms is the Universal Software

Radio Peripheral (USRP) concept that was introduced by Matt Ettus, founder and pres-

ident of Ettus Research LLC, which is considered to be a relatively inexpensive hardware

for enabling SDR design and development [93]. All the baseband digital communication

algorithms and digital signal processing are conducted on a computer workstation “host”,

where the USRP platform acts as a radio peripheral allowing for over-the-air transmissions

and the libusrp library file defines the interface between the USRP platform and the host

computer workstation. Note that the USRP design is open source, which allows for user

customization and fabrication. Furthermore, USRP platform design is modular in terms

of the supported RF front-ends, referred to as daughtercards. We will now talk about two

types of USRP platforms: the USRP1 and USRP2.

The Universal Software Radio Peripheral – Version 1 (USRP1) was designed and man-

ufactured by Ettus Research LLC for a variety of different communities interested in an

inexpensive SDR platform. The USRP1 consists of a USB interface between host computer

workstation and USRP1 platform, which resulted in a data bottleneck due to the low data

rates supported by the USB connection. The USRP1 supports up to two RF transceiver

daughtercards, possesses an Altera Cyclone EP1C12Q240C8 FPGA for performing sam-

pling and filtering, contains four high-speed analog-to-digital converters, each capable of

64 MS/s at a resolution of 12 bits, with an 85 dB SFDR (AD9862), and contains four high-

speed digital-to-analog converters, each capable of 128 MS/s at a resolution of 14 bita, with

83 dB SFDR (AD9862).

Following the success of the USRP1, Ettus Research LLC officially released the Universal

Software Radio Peripheral – Version 2 (USRP2) platform in September 2008, as shown

in Fig. 2.17(a). The USRP2 platform provides a more capable SDR device for enabling

digital communication system design and implementation. The USRP2 features include

a Gigabit ethernet interface between host computer workstation and USRP2 platform,

supports only one RF transceiver daughtercard, possesses a Xilinx Spartan 3-2000 FPGA

for performing sampling and filtering, contains two 100 MS/s, 14 bits, analog-to-digital

converters (LTC2284), with a 72.4 dB SNR and 85 dB SFDR for signals at the Nyquist

frequency, contains two 400 MS/s, 16 bits, digital-to-analog converters (AD9777), with a



2 An Overview of Wireless Access 51

160 MS/s without interpolation, and up to 400 MS/s with 8x interpolation, and is MIMO-

capable for supporting the processing of digital communication system designs employing

multiple antennas

(a) Front view of a Universal Software
Radio Peripheral – Version 2 (USRP2)
software-defined radio platform by Ettus
Research LLC.

(b) Front view of a Kansas
University Agile Radio
(KUAR) software-defined
radio platform.

Fig. 2.17 Examples of software-defined radio platforms.

The radio frequency (RF) front-ends are usually very difficult to design and are often

limited to a narrow range of transmission carrier frequencies. This is due to the fact that

the properties of the RF circuit and its components change across different frequencies, and

that the RF filters are constrained in the sweep frequency range. Consequently, in order

to support a wide range of transmission carrier frequencies, both the USRP1 and USRP2

platforms can use an assortment of modular RF daughtercards, such as:

• BasicTX : A transmitter that supports carrier frequencies within 1-250 MHz.

• BasicRX : A receiver that supports carrier frequencies within 1-250 MHz.

• RFX900 : A transceiver that supports carrier frequencies within 800-1000 MHz with

a 200+mW output.

• RFX2400 : A transceiver that supports carrier frequencies within 2.3-2.9 GHz with a

20+mW output.
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• XCVR2450 : A transceiver that supports carrier frequencies within two bands, namely,

2.4-2.5 GHz with an output of 100+mW and 4.9-5.85 GHz with an output of 50+mW.

This is the daughtercard that will be used in the SDR experiments in Chapter 4 and 5,

as shown in Fig. 2.18.

Fig. 2.18 A photograph of XCVR2450 RF transceiver daughterboard
(from [8]), where a common local oscillator is used for both receive and trans-
mit.

Another well-known SDR hardware platform was the Kansas University Agile Ra-

dio (KUAR), which is a small form factor SDR platform containing a Xilinx Virtex-II

Pro FPGA board and a PCI Express 1.4 GHz Pentium-M microprocessor, as shown in

Fig. 2.17(b) [94, 95]. For its size and capability, the KUAR was one of the leading SDR

implementations in its day, incorporating substantial computational resources as well as

wideband frequency operations. Around the same time period, the Berkeley BEE2 was de-

signed as a powerful reconfigurable computing engine with five Xilinx Virtex-II Pro FPGAs

on a custom-built emulation board [96]. The Berkeley Wireless Research Center (BWRC)

cognitive radio test-bed hardware architecture consists of the BEE2, several reconfigurable

2.4 GHz radio modems, and fiber link interfaces for connections between the BEE2 and

the radios modems. The software architecture consists of Simulink-based design flow and

BEE2 specific operating system, which provides an integrated environment for implemen-
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tation and simple data acquisition during experiments.

With respect to compact SDR platforms, Motorola developed and built a 10 MHz-4 GHz

CMOS-based small form factor cognitive radio platform prototype [97]. Fundamentally flex-

ible, with a low-power transceiver radio frequency integrated circuit (RFIC) at the core of

this experimental platform, this prototype can receive and transmit signals of many wireless

protocols, both standard and experimental. Carrier frequencies from 10 MHz to 4 GHz with

channel bandwidths from 8 kHz to 20 MHz were supported. Similarly, theMaynooth Adapt-

able Radio System (MARS) is a custom-built small form factor SDR platform [98]. The

MARS platform had the original objectives of being a personal computer connected radio

front-end where all the signal processing is implemented on the computers general purpose

processor. The MARS platform was designed to deliver performance equivalent to that of

a future base station and the wireless communication standards in 1700 MHz to 2450 MHz

frequency range. Furthermore, the communication standards GSM1800, PCS1900, IEEE

802.11b/g, UMTS (TDD and FDD) are also supported.

Rice University Wireless Open Access Research Platform (WARP) radios include a

Xilinx Virtex-II Pro FPGA board as well as a MAX2829 transceiver [99], while the Lyrtech

Small Form Factor SDR is developed by a company from the Canadian Province of Québec

that leverages industrial collaborations between Texas Instruments and Xilinx in order

to produce these high performance SDR platforms that consist of an array of different

microprocessor technology [100]. Finally, Epiq Solutions recently released the MatchStiq

SDR platform, which is a powerful yet very compact form factor SDR platform capable

of being deployed in the field to perform a variety of wireless experiments, including their

inclusion onboard vehicles such as automobiles and unmanned aerial vehicles [101].

2.7.2 Software Architecture

Given the programmable attributes of an SDR platform, it is vitally important to also

develop an efficient and reliable software architecture that would operate on these platforms

in order to perform various data transmission functions we expect from a wireless commu-

nications system. In this section, we will review some of the SDR software architectures

currently available for use with a wide variety of SDR hardware platforms.

One of the first Simulink interfaces to the USRP2 platform was implemented as part

of an MS thesis at WPI and generously sponsored by the MathWorks [9]. In this research
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project, the focus was on creating a Simulink blockset capable of communicating with

the USRP2 libraries, which can then allow for communications with the USRP2 platform

itself. The resulting blocksets from this thesis research is shown in Fig. 2.19. By creating a

Simulink interface to this SDR hardware, it is expected that the existing signal processing

libraries provided by the MathWorks can be extensively leveraged in order to create actual

digital communications systems capable of performing over-the-air data transmission with

other USRP2 platforms. The architecture of the Simulink transmit and receiver blocks are

Fig. 2.19 The initial prototype Simulink transmitter and receiver interfaces
for the USRP2 platform [9].

shown in Fig. 2.20. In Fig. 2.20(b), we observe how the Simulink transmitter block calls the

functions implemented by the S-Function at different parts of the simulation. While the

simulation is initializing, it calls on mdlStart such that a data handler object and first-in

first-out (FIFO) register are created and a USRP2 object is instantiated. Once the USRP2

object has been created, the operating parameters set in the mask are passed down to the

USRP2 hardware while the model is in the process of initializing. Furthermore, the data

handler object loads data into the FIFO and while the simulation is running, Simulink is

repeatedly calling mdlOutputs such that a frame of data is read from the FIFO, converted

to a Simulink data type, and sent to the output port to be received in the simulation. Note

that when the simulation has finished, the FIFO and data handler are deallocated. The

transmitter shown in Fig. 2.20(a) possesses a similar mode of operation.

From the MS thesis and the development of the first Simulink prototype blockset inter-

face with the USRP2 SDR platform, the MathWorks built upon the lessons learned from

this experience and ultimately created the SDRu blockset, which can be downloaded from

the MathWorks website and installed with MATLAB R2011a or later along with the Com-
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(a) Initial prototype Simulink transmit-
ter interface.

(b) Initial prototype Simulink receiver
interface.

Fig. 2.20 Architecture of the initial prototype interfaces to the USRP2 plat-
form [9].

munications Toolbox installed [102]. After several years of development, the SDRu blocks

are at the core of numerous SDR implementations using Simulink and the USRP2, as well

as educational activities such as those to be discussed later in this book.

Other SDR software architectures include the popular open-source GNU Radio soft-

ware [103], which is a community based effort for devising an SDR software architecture

capable of interfacing with any SDR hardware platform, especially the USRP family of

products, and enable them to reliably and seamlessly communicate with other SDR plat-

forms as well as conventional wireless systems. Given the large open-source community

supporting the GNU Radio software architecture, several community members have posted

their customized solutions that were not incorporated into GNU Radio directly on the

Comprehensive GNU Radio Archive Network (CGRAN) website for download by the rest

of the community [104]. Finally, another SDR software interface is the Implementing Radio

in Software (IRIS) project [105], which is led by the researchers at the Centre for Telecom-

munications Value-Chain Research (CTVR) at Trinity College Dublin and used by many

researchers across Europe and around the world.

2.8 Chapter Summary

This chapter summarizes the background knowledge related to this dissertation. The

topics covered are cognitive radios, dynamic spectrum access, spectrum sensing, artificial

neural network, action representation, relational database and SDR simulation tools. While
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they are separated topics by themselves, primary user emulation detection possesses the po-

tential to combine them, and it is the cross-discipline efforts that revolutionize the security

of cognitive radio networks.
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Chapter 3

Proposed Research Plan

For my PhD research, I will focus on the topic of PUE detection techniques that do

not rely on the centralized control and the white-space database. The motivation of this

topic has been introduced in Section 1.3. The goal of this topic is that by employing my

proposed techniques, a contention based dynamic spectrum access network can be set up,

as shown in Fig. 1.4.

Based on the discussion of current state of the art in Section 1.4, I decide to focus on the

feature detection. As a starting point, I look at something simple, which is cyclostationary

feature detection. As introduced in Section 2.2.4, different modulation schemes have differ-

ent spectral features, which can be represented by the spectral coherence function (SOF).

Assume the modulation scheme of the authentic primary user is known. If we calculate the

SOF of the unknown user, and compare it with the SOF of the authentic primary user, we

can find whether they are the same or not. If they are different, we can safely come to the

conclusion that the unknown user is a primary user emulator.

However, it is possible that the authentic primary user and the primary user emulator

use the same modulation type, where the first approach is not applicable. Therefore,

we need to consider other features of users in the network. So for the next step, I will

study the approach based on action recognition in video, as introduced in Section 2.5.

But for the context of PUE detection, I will apply this approach to the frequency-domain

FFT. Although the malicious secondary users can mimic the spectral characteristics of the

primary users during the competition of gaining priority access to the wireless channels,

they will not follow the spectral characteristics forever. As long as they successfully gain
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the access, they will switch back to their normal behavior. This change can be considered

as an “action” in frequency domain. If the action of a suspicious user is different from

that of an authentic primary user, we can tell this suspicious user is a malicious secondary

user. This method analyzes the FFT sequences of wireless transmissions operating across a

cognitive radio network environment, and classifies their actions in the frequency domain.

For the previous two approaches, I assume that there is only one primary user in the

system, so all the detection operations can be done in relatively short time. However,

when there are several primary users in the system, it requires more computations when

constructing the covariance descriptor of feature vectors, as well as testing with the ar-

tifical neural network, so it may not satisfy those scenarios that real-time processing is a

priority. To resolve this new issue, I propose a PUE detection approach that builds upon

the previous approach, and at the same time, introduces a relational database system in

order to overcome the problem of intensive computation. This new approach records the

feature vectors of primary users in the database system, then it monitors each users FFT

sequence and compares the unknown users feature vectors with those in the database. In

most applications, primary users possess routine wireless transmissions, so they have a lim-

ited number of feature vectors, which means the resulting database is stable and limited

in size. In case that an unknown users feature vector does not have a match entity in

the database, this approach will continue to recognize its action in the frequency domain

using artifical neural network. This approach operates on intercepted signals and analyzes

it in the frequency domain over a time interval. Besides the benefits of the previous two

approaches, this new approach takes the stability of primary users into account and creates

a database system, so it is can save some computations compared to the previous approach.

All the approaches proposed so far assume there is a single-node PUE detector in the

system. However, in order to improve the efficiency and accuracy of the detection, we can

actually employ a distributed sensor network as our detector. Each node of this sensor

network employs one of the proposed approaches, and the final conclusion is based on the

detection results from all the sensor nodes.

For my PhD study, in addition to the research discussed above, I have also been devot-

ing a lot of time to SDR experiment and SDR education. Therefore, given all the proposed

apporaches, initial design, implementation, and evaluation will first be conducted via com-

puter simulation in MATLAB and Simulink. However, it is expected that the proposed

apporaches will also be prototyped and evaluated in hardware. Specifically, I will be em-
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ploying the Universal Software-Defined Radio Peripheral 2 (USRP2) by Ettus Research

LLC as the development platform of choice for the SDR experiments, as introduced in

Section 2.7.1. In this way, I can figure out how the proposed apporaches work in real-life

wireless environment and multi-fading channel.

3.1 Chapter Summary

This chapter summarizes the proposed research plan for my PhD study. The research

topic I will focus on is proposing PUE detection techniques that do not rely on the central-

ized control and the white-space database. More specifically, I will propose four different

approaches based on feature detection. For each approach, I will evaluate it via both

computer simulations and SDR hardware experiments.
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Chapter 4

Proposed PUE Detector Based on

Cyclostationarity1

The following two chapters propose three approaches for PUE detection, which can be

divided into two categories. This chapter discusses the first category based on cyclostation-

ary features. It employs a cyclostationary calculation to represent the modulation features

of the user signals, which are then fed into an artificial neural network for classification.

4.1 Physical Layer Primary User Emulator

Before proposing a solution to the PUE detection, let us first study how a primary user

emulator is formed from the physical layer perspective. In digital communication theory, it

is sometimes more convenient to study a data transmission system in the frequency domain

rather than in the time domain for several reasons, including the ability to obtain tractable

mathematical analyses. To enable the translation between the time domain signal x(t) and

the frequency domain signal X(f), the Fourier transform can be employed, which is defined

as:

X(f) =

+∞
∫

−∞

x(t)e−j2πftdt, (4.1)

1This work has been published in parts in IEEE Global Telecommunications Conference [31].
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and an inverse Fourier transform, defined as:

x(t) =
1

2π

+∞
∫

−∞

X(f)ej2πftdf. (4.2)

With respect to random processes, which often describes most data transmissions and other

signal sources, the Fourier transform and its inverse can be used in order to determine the

power spectrum density. This is achieved by taking the Fourier transform of the correlation

function of the random process X(t), namely RXX(τ), such that it yields the power spectral

density SXX(f):

SXX(f) =

+∞
∫

−∞

RXX(τ)e
−j2πfτdτ. (4.3)

Note that the power spectral density describes the frequency content of a signal and helps

to identify periodicities. The power spectral density can be used to find the expectation of

the positive frequency component of a random signal and then use it in order to estimate

the signal’s spectrum density.

From the aspect of power spectrum density, a physical layer approach to primary user

emulation can be realized via the manipulation of the power spectral density character-

istics of the signal, which can be achieved using the Einstein-Wiener-Khintchine (EWK)

Theorem [106]:

Starget(f) = |H(f)|2Semulator(f), (4.4)

where Semulator(f) is the power spectrum density (PSD) of the malicious secondary user,

and Starget(f) is the PSD of an authentic primary user.

In theory, if an appropriate pulse shaping filter h(t) is designed and applied to the

malicious secondary user, its PSD characteristics can be made to appear similar to that of

an authentic primary user. Consequently, (4.4) can be rewritten as:

H(f) =

√

Starget(f)

Semulator(f)
. (4.5)

Using the resulting transfer function from (4.5), we can obtain the PUE pulse shaping
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Sxx(f)

x(t) y(t)

Syy(f)

PSD of malicious

secondary user
Pulse Shaping Filter

PSD of emulated

primary user

Fig. 4.1 Block diagram for the usage of pulse shaping filter in primary user
emulation.

impulse response via the inverse Fourier transform using the expression:

h(t) =
1

2π

∫ ∞

−∞

H(f)ej2πftdf. (4.6)

Fig. 4.1 shows how a transfer function H(f) based on the impulse response h(t) can be

designed such that by the EWK Theorem the input PSD SXX(f) of the malicious secondary

user can be “shaped” into a new PSD, namely SY Y (f), such that the latter ressembles the

PSD of a known existing primary user transmission. Consequently, all the malicious user

needs to know in order to preform a PUE attack is the power spectral density characteristics

of the native primary user to a specific frequency range, as well as the necessary filtering

operations to perform the power spectral density transformation using the EWK Theorem.

4.2 System Model

In this chapter, we consider a cognitive radio network as shown in Fig. 4.2. All the users,

including the primary users, primary user emulators and secondary users are distributed

in a circular grid with a PUE detector in the center. In order to avoid interference, we

assume at each time, there is only one user transmitting in this network.

Let x(t) denote the transmitted signal. If it is the authentic PU signal, x(t)=s(t). If it

is the PUE signal, x(t)=s′(t). Considering the energy of the signal, since the PUE signal

is very similar to the PU signal, we assume both s(t) and s′(t) are independently and

identically distributed (iid) random processes with mean zero and variance σ2
s , namely:

s(t), s′(t) ∼ N (0, σ2
s), (4.7)
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PUE Detector

Primary User

Primary User Emulator

Secondary User

Fig. 4.2 A cognitive radio network in a circular grid.

where N (·) denotes the normal distribution. Since the secondary users have a significant

lower transmitted power than the primary users, we assume x(t) = 0 when the SU is

transmitting.

Let h(t) and n(t) denote the impulse response and the noise of the channel between

the transmitted signal and the PUE detector. We assume the channel is a slow flat fading

channel during the observation process, so h(t) becomes a constant gain h. n(t) is the

additive white Gaussian noise (AWGN) with mean zero and variance σ2
n, namely:

n(t) ∼ N (0, σ2
n). (4.8)

Therefore, there are three possible received signals at the PUE detector:

y(t) =











n(t) SU,

h× s(t) + n(t) PU,

h× s′(t) + n(t) PUE,

(4.9)

where y(t) is the received signal at the PUE detector. The PUE detection algorithm

presented in Section 4.3 will differentiate these three cases.

4.3 Proposed PUE Detection Algorithm

According to the system model, our proposed approach makes the following assump-

tions: (i) All the users, including the malicious users and primary users, are located within

the same frequency band; (ii) For each period of time, there is only one user transmitting;

(iii) The modulation scheme of primary users is known, and it is different from the other
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users.

Fig. 4.3 provides a flow diagram of the proposed PUE detection algorithm, which is a

two-step process.

Start

Energy detection

Any potential

PUE?

Received data collection

Y

N

Reliability > c?

Y

N

SOF and profile calculation

Same type as

PU?

Y

MLP neural network

Classify as PUE

N

Classify as

Real Primary User

Fig. 4.3 Proposed PUE detection algorithm employing energy detection,
cyclostationary calculation and artificial neural networks.

First, the algorithm is initialized using energy detection in order to determine the fre-

quency location of the potential primary user, as introduced in Section 2.2.4. Based on the

assumption that the transmission power of the PU and PUE is much higher than that of

the SU, this step can record the frequency location of these two types of users. In other
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words, this step is trying to differentiate the following two cases of the received signal:

y(t) =

{

n(t) SU,

h× x(t) + n(t) PU & PUE,
(4.10)

where x(t) = s(t) or s′(t). If y(t) belongs to the second case, it will be recorded along

the time on the receiver side. After a certain period of time T , this observation process is

terminated and the saved signals are passed on to the cyclostationary classifier.

In the second step, the classifier calculates the SOF data and cycle frequency profile of

the received signal, as introduced in Section 2.2.4, and uses an artificial neural network to

classify the signal based on the profile, as introduced in Section 2.4.2. If the reliability χ

of the testing result is less than a constant number c specified at the beginning, we need

to collect some new received data and run the procedures above again. Otherwise, the

artificial neural network will output the modulation scheme. Since the modulation scheme

of primary users is known, we can readily identify whether the observed signal is from a

real primary user or a malicious user.

4.3.1 Mathematical Analysis

In the first step, an energy detector is employed to record the frequency location of the

potential primary users, which is essentially a hypothesis testing. The two hypotheses are

denoted as follows:

H0 : no potential primary signals,

H1 : potential primary signals exist, (4.11)

where H0 is the null hypothesis. In our algorithm, these two hypotheses can be further

represented as:

H0 : y[k] = n[k],

H1 : y[k] = h× x[k] + n[k], (4.12)
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for k = 1, .., N , where N is the number of received samples. Since both n[k] and x[k] are

iid normal random variables, y[k] has the following distribution:

y[k] ∼

{

N (0, σ2
0) H0,

N (0, σ2
1) H1,

(4.13)

where σ2
0 = σ2

n and σ2
1 = h2σ2

s + σ2
n.

Consequently, a decision statistic for energy detector can be defined as:

Y =
N
∑

k=1

|y[k]|2, (4.14)

where y[k] and N follow the definitions in (4.12). Under both hypotheses, the decision

statistic Y is the sum of the squares of N mutually independent normal random vari-

ables. According to [107, 108], Y has the central chi-square distribution with 2N degrees

of freedom, namely:

Y ∼

{

χ2
2N(σ

2
0) H0,

χ2
2N(σ

2
1) H1,

(4.15)

where χ2 denotes the chi-square distribution.

Given the decision statistic Y and a threshold T , the performance of this energy detector

can be characterized by two parameters, namely, the probability of false alarm (PF ), and

the probability of detection (PD), which can be defined as:

PF = P{Decide H1|H0} = P (Y > T |H0) = P (Y > T |Y ∼ χ2
2N(σ

2
0)), (4.16)

and

PD = P{Decide H1|H1} = P (Y > T |H1) = P (Y > T |Y ∼ χ2
2N (σ

2
1)). (4.17)

We have already known that the cumulative distribution function (CDF) of a standard

central chi-square distribution is

F (x; k) =
γ(k/2, x/2)

Γ(k/2)
, (4.18)
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where k is the degree of freedom, γ(·, ·) is the lower incomplete gamma functions, and Γ(·)

is the ordinary gamma function [108]. Since (4.16) and (4.17) are complement of the CDF

defined in (4.18), they can be obtained by:

PF = 1− F (
T

σ2
0

; 2N) = 1−
γ(N, T

2σ2

0

)

Γ(N)
=
Γ(N, T

2σ2

0

)

Γ(N)
, (4.19)

and

PD = 1− F (
T

σ2
1

; 2N) = 1−
γ(N, T

2σ2

1

)

Γ(N)
=
Γ(N, T

2σ2

1

)

Γ(N)
. (4.20)

where Γ(·, ·) is the upper incomplete gamma function and Γ(·) is the ordinary gamma

function.

Therefore, given a required probability of false alarm PF , we can calculate the appro-

priate threshold T using (4.19):

T = 2Γ−1(N,PFΓ(N))σ
2
0, (4.21)

where Γ−1(·, ·) is the inverse incomplete Gamma function [109]. And then, plug this value

into (4.20) to get the corresponding probability of detection:

PD =
Γ
(

N,Γ−1(N,PFΓ(N))
σ2

0

σ2

1

)

Γ(N)
. (4.22)

It is obvious that given a probability of false alarm PF , the probability of detection PD is

determined by two factors, namely the number of samples N , and the ratio of σ2
0 to σ2

1.

According to the definition of signal-to-noise ratio, the SNR at the receiver is [110]:

SNR =
h2σ2

s

σ2
n

=
σ2
1 − σ2

0

σ2
0

=
σ2
1

σ2
0

− 1. (4.23)

Therefore, the second factor can be represented in SNR.

4.3.2 Numerical Results

This section provides the numerical results of the energy detector introduced in Sec-

tion 4.3.1. The results are based on (4.22), presented in terms of the ROC curves (i.e., PD
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versus PF ) for an AWGN fading channel.

Since the probability of detection PD is determined by two factors, the ROC curves in

Fig. 4.4 are plotted by varying these two factors. Specifically, the ROC curves in Fig. 4.4(a)

are plotted by varying the number of samples N from 1 to 10 given SNR =3, and the ROC

curves in Fig. 4.4(b) are plotted by varying the SNR value from 0 to 5 given N=5. Based

on Fig. 4.4, we can come to the following conclusions:

• Probability of false alarm (PF ) and probability of detection (PD) are tradeoff. We

cannot optimize both of them at the same time.

• Given an AWGN channel or a fixed SNR value, the more we can tolerate the PF , the

higher PD we can achieve.

• Given a PF , we can improve the PD by increasing the SNR value or increasing the

number of collected samples.
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(a) ROC curves by varying the number of samples
N from 1 to 10 given SNR =3.
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Fig. 4.4 Numerical results of the energy detector in terms of the ROC curves.

4.4 Experimental Setup & Results

Since the algorithm proposed in Section 4.3 is a two-step procedure, the performance

of the PUE detector depends not only on the energy detector, but also on the cyclosta-

tionary classifier. Assume the performance of the energy detector is PD given PF , and the
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probability of correct classification is PC of the classifier. Since the energy detector and the

classifier are two independent events, the final performance of the PUE detector will be:

Pdetection = PD × PC , (4.24)

given PF .

In this section, two different experiments are conducted in order to validate the per-

formance of the proposed cyclostationary classifier. The first experiment uses a computer

simulation based on Simulink, while the second experiment is based on a hardware imple-

mentation using the Universal Software Radio Peripheral (USRP) software-defined radio

(SDR) platform. This section assumes that the energy detector has successfully identify

a potential PUE given a probability of false alarm, so all the experiments will start from

received data collection in Fig. 4.3. For simplicity, we assume that each user is constrained

to one modulation scheme throughout the observation time window and the primary user

uses a modulation scheme that possesses a significantly different characteristic relative to

the other user signals present in the area.

4.4.1 Computer Simulation

Simulation Setup

In this part, a Simulink model is constructed in order to collect the received signals

based on different modulation schemes. If there are N different modulation schemes, then

this model needs to contain N branches, which share an identical structure. Fig. 4.5 shows

the structure of one of the branches.

Random Number

Generator

Baseband

Modulator

Raised-Cosine

Filter

AWGN

Channel

Data

Storage

Transmitter Channel Receiver

Fig. 4.5 The structure of one branch in the Simulink model. All the other
branches have the identical structure.

In this model, there are three blocks on the transmitter side: random data is generated

and modulated by one of several possible modulation schemes; a raised cosine filter is used
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for pulse-shaping in order to minimize intersymbol interference (ISI). Then, an AWGN

channel block is applied to emulate the transmission environment. For this block, the

signal-to-noise ratio (SNR) can be specified to represent channels of different noise level.

In the end, a sink block is used on the receiver side to save the received signals. These

signals are stored away in a workspace for post processing, including the SOF and cycle

frequency profile calculations, as introduced in Section 2.2.4.

In this dissertation, an multi-layer perceptron (MLP) neural network with 514 input

nodes, one layer of 6 hidden nodes, and one output node is employed. f(x) = tanh(x)

is selected as the activation function. For training, the back propagation algorithm is

used with a fixed training constant of η = 0.5, and momentum constant ζ = 0.7. The cycle

frequency profile of the second order statistics is then fed into the system of artificial neural

networks, and the system outputs a classification result along with a reliability parameter.

If the reliability parameter is larger than 0.7, the classification result is accepted.

Simulation Results

As discussed in Section 2.2.4, different modulation schemes yield different SOF dia-

grams, which can be used as a criterion for signal classification. In our proposed algorithm,

cycle frequency profile of the SOF is used to improve the efficiency by reducing the amount

of data to be processed. As shown in Fig. 4.6, different modulation schemes also feature

distinctive cycle frequency profiles, defined in (2.31).

Fig. 4.7 shows the percentage of correct classification with different SNR values ranging

from -8 dB to 8 dB. For a specific SNR value, the “Initial Seed” parameter of the “Random

Number Generator” block is changed to get different input data so that we can repeat the

experiment many times and average the resulting percentages. Overall, higher SNR values

yield better algorithm performance in terms of successfully classifying primary signals and

PUE signals. This figure also compares the percentage of correct classification with and

without a reliability check. Even when the channel possesses a substantial amount of noise,

such as when SNR = -8 dB, the percentage of correct classification can still reach 72% with

a reliability check. Also, for an SNR above -4 dB, we are able to get at least 95% of the

signals to be classified correctly.

With respect to the time required to successfully classify a signal, although it takes some

time for the artificial neural network to be trained with the back propagation algorithm,
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Fig. 4.6 The cycle frequency profile of the received signals. The x-axis
represents the index of the input node, and the y-axis represents the node’s
cycle frequency profile value. It’s obvious that different modulation schemes
feature distinctive cycle frequency profiles.

this process can be conducted offline with some previously known training signals. Once

the artificial neural network has been trained, it only needs to be evaluated rather than

both trained and evaluated with any newly intercepted signals. Our simulations show that

it takes 0.593 seconds to classify 60 signals during the testing stage on a 1.6 GHz processor,

which make this proposed algorithm a viable candidate for operation in real-time situations.

4.4.2 Software-Defined Radio Experiment

The Simulink model in Section 4.4.1 was then used as a starting point for the design of

a hardware implementation. This was achieved by initially changing the AWGN channel

block with a real-life fading channel, and by using the Simulink USRP2 blocks available

in the Communications System Toolbox. Consequently, our resulting Simulink design that

operates on the USRP2 SDR platform is shown in Fig. 4.8.

The universal software radio peripheral - version 2 (USRP2) is a high-speed gigabit

Ethernet-based SDR platform designed to allow general purpose computers to function as

high bandwidth software radios. Consequently, it serves as a digital baseband and IF section
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Fig. 4.7 The classification performance with and without a reliability check
in computer simulations. The x-axis represents SNR value, and the y-axis
represents the percentage of correct classification. For the reliability check, all
classifications with a reliability parameter less than 0.7 are ignored.
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Fig. 4.8 The Simulink design that operates on the USRP2 SDR platform.

of a radio communication system [111]. In this dissertation, two USRP2 hardware equipped

with the XCVR2450 daughterboard are employed [112]. One serves as a transmitter and

the other as a receiver, as shown in Fig. 4.9 and Fig. 4.10. Both of them work across 2.4

GHz frequency band.

In order to incorporate the USRP2 hardware into the existing Simulink model, two
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Fig. 4.9 The Simulink model for transmitter, which includes a USRP2 trans-
mitter block and a USRP2 transmitter hardware.
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Fig. 4.10 The Simulink model for receiver, which includes a USRP2 receiver
block and a USRP2 receiver hardware.

Simulink blocks called USRP2 Transmitter and USRP2 Receiver are used here as inter-

faces2. These two blocks were developed by The MathWorks and have been available since

the R2010a release of MATLAB. With these two blocks, the USRP2 SDR platforms can

be used in conjunction with the previous Simulink design environment.

The rest of the Simulink model remains the same, including the random number gen-

erator, baseband modulator, raised cosine filter as shown in Fig. 4.9, and data storage

as shown in Fig. 4.10. The next steps, including cycle frequency profile calculation and

artificial neural network, are operated as introduced in Section 4.4.1.

The percentage of correct classification with the hardware implementation is shown in

Table 4.1. Note that even without the reliability check, the percentage of correct classi-

fication can be as high as 91.5%, which means that the proposed algorithm possesses the

potential to be a viable PUE detector operating under real world conditions.

Table 4.1 Software-Defined Radio Experimental Results
With Reliability Check 98.3%
Without Reliability Check 91.5%

In terms of execution and convergence times, once the neural network has been trained,

2These two blocks were replaced by SDRu Transmitter and SDRu Receiver in the latter release, as
shown in Section 6.3.1.
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it only takes 0.698 seconds to classify 60 signals in the testing stage on a 1.6 GHz processor.

Consequently, the proposed algorithm is a viable option for performing PUE detection in

real time.

4.5 Chapter Summary

A novel algorithm for detecting non-intelligent primary user emulation attack has been

presented in this chapter. This approach does not require any special hardware or software,

and can be applied to mobile transmitters with unknown coordinates. Using USRP2 hard-

ware experimentation, our work features an analysis in real-life channel with the effect of

multipath fading and interferences. Both computer simulations and hardware implemen-

tations have shown that the proposed approach is feasible in real world conditions. The

future work of this approach will be focus on other features of the users in the cognitive

radio network.
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Chapter 5

Proposed PUE Detector Based on

Action Recognition1

In the previous chapter, the first category of PUE detection approach based on cyclosta-

tionary features has been discussed. However, it is possible that the authentic primary user

and the primary user emulator use the same modulation type, where the first approach is

not applicable. Therefore, we need to consider other features of users in the network. This

chapter proposes the second category of approaches based on video processing method of

action recognition in frequency domain, which explores the motion related features of the

users.

Although the malicious secondary users can mimic the spectral characteristics of the

primary users during the competition of gaining priority access to the wireless channels,

they will not follow the spectral characteristics forever. As long as they successfully gain

the access, they will switch back to their normal behavior. This change can be considered as

an action in frequency domain. If the action of a suspicious user is different from that of an

authentic primary user, we can tell this suspicious user is a malicious secondary user. This

category analyzes the FFT sequences of wireless transmissions operating across a cognitive

radio network environment, and classifies their actions in the frequency domain.

1This work has been published in parts in IEEE Pacific Rim Conference on Communications, Computers,
and Signal Processing [32].
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5.1 Non-Database Approach

Since an FFT sequence can be considered as a video sequence, we adopt the action

representation method proposed in [83] and [84], namely, we first extract optical flow fea-

tures, such as velocity, velocity gradient, divergence, and vorticity, and we subsequently

reduce the dimensionality of this feature set by computing an empirical covariance matrix.

Since the resulting covariance descriptor belongs to a Riemannian manifold, we map it to

a vector space by taking the matrix logarithm. However, unlike [83] and [84], we directly

use the resulting log-covariance descriptor as the input to the artificial neural networks,

because we only need to know whether a specific action belongs to the authentic primary

user or not.

5.1.1 Proposed PUE Detection Algorithm

Without loss of generality, our proposed algorithm makes the following assumptions: (i)

All the users, including the malicious users and primary users, are located within the same

frequency band; (ii) Each user’s transmission power is much higher than the ambient noise

in the channel; (iii) The behavior of primary user is known, and it is different from the

other users. Note that all the assumptions concerning modulation have been eliminated.

Fig. 5.1 provides a flow diagram of the proposed PUE detection algorithm. The struc-

ture of this algorithm is quite similar to the one proposed in Section 4.3, but now we

feed the log-covariance descriptor into the artificial neural network, instead of the cycle

frequency profile. First, the algorithm is initialized using energy detection in order to de-

termine the frequency location of the potential PUE. Based on the assumption that the

transmission power of all the PU and PUE is much higher than that of the SU, this step

can record frequency location of the potential PUE. The energy detector employed in this

step is the same as the one used in Section 4.3.1, so the numerical results can be adopted

from Section 4.3.2. On the receiver side, the received signal of the potential PUE and its

FFT plots are recorded along the time. After a certain period of time T , this observation

process is terminated and the saved FFT plots are passed on to the classifier.

Consequently, the classifier calculates the log-covariance descriptor lS of the FFT se-

quence, as introduced in Section 2.5.1, and uses an artificial neural network to classify the

signal based on the action. If the reliability χ of the testing result is less than a constant

number c specified at the beginning, we need to collect some new received data and run
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Fig. 5.1 Proposed PUE detection algorithm employing energy detection,
action recognition and artificial neural networks.

the procedures above again. Otherwise, the neural network will output the classification

result. Since the action type of primary users is known, we can readily identify whether

the observed signal is from a real primary user or a malicious user.

5.1.2 Experimental Setup & Results

In this section, two different experiments are conducted in order to validate the perfor-

mance of the proposed action recognition based classifier. The first experiment uses a com-

puter simulation based on Simulink, while the second experiment is based on a hardware
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implementation using the Universal Software Radio Peripheral (USRP) software-defined

radio (SDR) platform. This section assumes that the energy detector has successfully iden-

tify a potential PUE given a probability of false alarm, so all the experiments will start

from received data collection in Fig. 5.1. For simplicity, we assume that there is only one

primary user in the system and the primary user’s behavior is known in advance.

Computer Simulation

In this part, a Simulink model is constructed in order to collect the received signals and

their FFT plots from different users. If there are N different users, then this model needs

to contain N branches, which share an identical structure. Fig. 5.2 shows the structure of

one of the branches.

Random Number

Generator

Baseband

Modulator

Raised Cosine

Filter

AWGN

Channel

FFT Plot

Storage

Transmitter Channel Receiver

Fig. 5.2 The structure of one branch in the Simulink model. All the other
branches have the identical structure.

In this model, there are three blocks on the transmitter side: random data is generated

and modulated by same or different modulation schemes; a raised cosine filter is used for

pulse-shaping in order to minimize intersymbol interference (ISI). Then, an AWGN channel

block is applied to emulate the transmission environment. For this block, the signal-to-

noise ratio (SNR) can be specified to represent channels of different noise level. In the end,

a sink block is used on the receiver side to save the received signals and their FFT plots.

These plots are stored away in a workspace for post processing, including the three steps

introduced in Section 2.5.1.

In this dissertation, an multi-layer perceptron (MLP) neural network with 256 input

nodes, one layer of 6 hidden nodes, and one output node is employed. f(x) = tanh(x)

is selected as the activation function. For training, the back propagation algorithm is

used with a fixed training constant of η = 0.5, and momentum constant ζ = 0.75. The

log-covariance descriptor vector is then fed into the system of artificial neural networks,

and the system outputs a classification result along with a reliability parameter. If the
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reliability parameter is larger than 0.75, the classification result is accepted.

With different SNR values ranging from -8 dB to 2 dB, Fig. 5.3 compares the percentage

of correct classification using action recogniton-based method proposed in this chapter

and the cyclostationary-based method proposed in the previous chapter. For a specific

SNR value, the “Initial Seed” parameter of the “Random Number Generator” block is

changed to get different input data so that we can repeat the experiment many times

and average the resulting percentages. In both approaches, higher SNR values yield better

algorithm performance in terms of successfully classifying primary signals and PUE signals.

However, at each point, the action recogniton method yields a better performance than

the cyclostationary method. As for the action recogniton-based method, even when the

channel possesses a substantial amount of noise, such as when SNR = -8 dB, the percentage

of correct classification can still reach 78% with a reliability check. Also, for an SNR above

-5 dB, we are able to get at least 95% of the signals to be classified correctly.
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Fig. 5.3 The classification performance using action recogniton-based
method and cyclostationary-based method in computer simulations. The x-
axis represents SNR value, and the y-axis represents the percentage of correct
classification. For the reliability check, all classifications with a reliability
parameter less than 0.75 are ignored.

As mentioned in [72, 73], one of the limitations of cyclostationary-based classification

is that it does not work well in the case when two users employing the modulation types

that belong to the same modulation family, for example, QPSK and 8PSK. However, the
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approach proposed in this chapter can solve this problem. As shown in Fig. 5.4, when one

user employs QPSK and the other uses 8PSK, cyclostationary-based classification can only

achieve approximately 50% percentage of correct classification, while action recogniton-

based method is not affected at all.
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Fig. 5.4 The classification performance using action recogniton-based
method and cyclostationary-based method in the case when one user em-
ploys QPSK and the other uses 8PSK. The x-axis represents SNR value, and
the y-axis represents the percentage of correct classification. For the reliability
check, all classifications with a reliability parameter less than 0.75 are ignored.

With respect to the time required to successfully classify a signal, although it takes some

time for the artificial neural network to be trained with the back propagation algorithm,

this process can be conducted offline with some previously known training signals. Once

the artificial neural network has been trained, it only needs to be evaluated rather than

both trained and evaluated with any newly intercepted signals. Our simulations show that

it takes 0.632 seconds to classify 100 signals during the testing stage on a 1.6 GHz processor.

However, it is also noticed that action descriptor vector calculation takes about the same

time.

Software-Defined Radio Experiment

The Simulink model in Section 5.1.2 was then used as a starting point for the design of

a hardware implementation. This was achieved by initially changing the AWGN channel
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block with a real-life fading channel, and by using the Simulink USRP2 blocks available

in the Communications System Toolbox. Consequently, our resulting Simulink design that

operates on the USRP2 SDR platform can be found in Section 4.4.2. The transmitter

design is shown in Fig. 4.9 and the receiver design is shown in Fig. 4.10. The next steps,

including action descriptor vector calculation and artificial neural network, are operated as

introduced in Section 5.1.2.

The percentage of correct classification with the hardware implementation is shown

and compared in Table 5.1. Note that for the new approach proposed in this chapter,

even without the reliability check, the percentage of correct classification can be as high

as 93.8%, which means that the proposed algorithm possesses the potential to be a viable

PUE detector operating under real world conditions.

Table 5.1 Software-Defined Radio Experimental Results

Approach in Chapter 4 Proposed Approach
With Check 98.3% 99.2%

Without Check 91.5% 93.8%

In terms of execution times, once the neural network has been trained, it only takes

0.695 seconds to classify 100 signals in the testing stage on a 1.6 GHz processor. Considering

this, the proposed algorithm is a viable option for performing PUE detection in real time.

5.2 Database Assisted Approach

In Section 5.1.2, when conducting the experiments, we assume that there is only one

primary user in the system, so all the operations can be done in very short time. However,

when there are several primary users in the system, it requires more computations when

constructing the covariance descriptor of feature vectors, as well as testing with the artifical

neural network, so it may not satisfy those scenarios that real-time processing is a priority.

To resolve this new issue, in this section, we propose a PUE detection approach that builds

upon the previous approach, and at the same time, introduces a relational database system

in order to overcome the problem of intensive computation.

This new approach records the feature vectors of primary users in the database system,

then it monitors each user’s FFT sequence and compares the unknown users’ feature vectors

with those in the database. In most applications, primary users possess routine wireless
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transmissions, so they have a limited number of feature vectors, which means the resulting

database is stable and limited in size. In case that an unknwon user’s feature vecotr has

a match entity in the database, this approach will continue to double check its action in

the frequency domain using artifical neural network. Otherwise, this unknown user will

be classified as a PUE. Our approach operates on intercepted signals and analyzes it in

the frequency domain over a time interval. Besides the benefits of our previous approach,

our new approach takes the stability of primary users into account and creates a database

system, so it is can save some computations compared to the previous approach.

5.2.1 Proposed PUE Detection Algorithm

Without loss of generality, our proposed algorithm makes the following assumptions:

(i) All the users, including the malicious users and primary users, are located within the

same frequency band; (ii) Each user’s transmission power is much higher than the ambient

noise in the channel; (iii) The actions and the corresponding feature vectors of primary

users are known, and they are different from the other users.

Fig. 5.5 provides a flow diagram of the proposed PUE detection algorithm, which is

built upon the one proposed in Section 5.1.1, but now we add a step of database search

before feeding the log-covariance descriptor into the artificial neural network.

First, the algorithm is initialized using energy detection in order to determine the fre-

quency location of the potential PUE. Based on the assumption that the transmission power

of all the PU and PUE is much higher than that of the SU, this step can record frequency

location of the potential PUE. The energy detector employed in this step is the same as the

one used in Section 4.3.1, so the numerical results can be adopted from Section 4.3.2. On

the receiver side, the received signal of the potential PUE and its FFT plots are recorded

along the time. After a certain period of time T , this observation process is terminated

and the saved FFT plots are passed on to the classifier.

Consequently, the classifier calculates the feature vectors of the moving pixels, as intro-

duced in Section 2.5.1, and searches the database to see whether it can find a match record.

If it does not, then this user is considered as a PUE. Otherwise, the classifier proceeds to

calculate the log-covariance descriptor lS of the FFT sequence, as introduced in Section

2.5.1, and uses an artifical neural network to classify the signal based on the action. If the

reliability χ of the testing result is less than a constant number c specified at the beginning,
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Fig. 5.5 Proposed PUE detection algorithm employing action recognition,
relational database and artifical neural network.

we need to collect some new received data and run the procedures above again. Otherwise,

the neural network will output the classification result. Since the action type of primary

users is known, we can readily identify whether the observed signal is from a real primary

user or a malicious user.

5.2.2 Experimental Setup & Results

In this section, two different experiments are conducted in order to validate the perfor-

mance of the proposed database assisted classifier. The first experiment uses a computer

simulation based on Simulink, while the second experiment is based on a hardware imple-

mentation using the Universal Software Radio Peripheral (USRP) software-defined radio
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(SDR) platform. This section assumes that the energy detector has successfully identify

a potential PUE given a probability of false alarm, so all the experiments will start from

received data collection in Fig. 5.5. The database is created and updated using MAT-

LAB. For simplicity, we assume that each user has one and only one action throughout the

observation time window and the primary users’ behavior is known in advance.

Computer Simulation

In this part, a Simulink model is constructed in order to collect the FFT plot of a user.

If there are N different users, then we need to have N different parameter settings for this

model. Fig. 5.6 shows the structure of this model.

Random

Number

Generator

Baseband

Modulator

Pulse

Shaping

Filter

AWGN

Channel

FFT Plot

Storage

Transmitter Channel Receiver

Fig. 5.6 The structure of the Simulink model used to collect the FFT plot
of a user.

In this model, there are three blocks on the transmitter side: a random data number

generator, a modulator, and a pulse-shaping filter. By picking up the different modulation

type and filter type, or by setting the different parameters for these three blocks, we can

express different users and get different FFT plots. Then, an AWGN channel block is

applied to emulate the transmission environment. For this block, the signal-to-noise ratio

(SNR) can be specified to represent channels of different noise level. In the end, a sink

block is used on the receiver side to save the FFT plots. These plots are stored away in

the workspace for post processing, including the three steps introduced in Section 2.5.1.

According to Section 2.6, a relational database is created to store the feature vectors

of the primary users. Although there are several widely used database management tools,

such as MySQL, Oracle and Access, in order to facilitate the connection with the Simulink

model, we build this database using MATLAB. We can use the read function to search the

database and the write function to update the database, if there exists new primary user.

In this section, an multi-layer perceptron (MLP) neural network with 256 input nodes,

one layer of 6 hidden nodes, and one output node is employed. f(x) = tanh(x) is selected
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as the activation function. For training, the back propagation algorithm is used with a

fixed training constant of η = 0.5, and momentum constant ζ = 0.75. The log-covariance

descriptor vector is fed into the system of artificial neural networks, and the system outputs

a classification result along with a reliability parameter. If the reliability parameter is larger

than 0.75, the classification result is accepted.

As mentioned at the beginning of Section 5.2, one of the drawbacks of the frequency

domain action recognition approach proposed in Section 5.1 is that it requires intensive

computations when calculating the log-covariance descriptor vector and testing using the

artificial neural network, becuase this approach solely relies on the artificial neural network.

With the help of the database system, in many cases, we can get the result by just searching

the database, and thus avoiding the calculation of the covariance matrix and the remaining

steps. In Fig. 5.7, we compare the time to classify an unknown signal using the database-

assisted approach proposed in this section and the non-database approach proposed in

Section 5.1. This time does not include the training time of the artificial neural network,

becuase this process can be conducted offline with some previously known training signals.

Once the artificial neural network has been trained, it only needs to be evaluated rather

than both trained and evaluated with any newly intercepted signals.

It’s very obvious that for both approaches, the classification time is highly related to the

number of primary users. When there are more primary users in the system, it costs more

time to get the conclusion. However, it is noted that with a larger number of primary users,

the classification time increases more dramatically for the non-database approach, which

is approximately an exponential growth. While for the database-assisted approach, it is

approximately a linear growth. It is because in the new approach, the classification time is

dominated by the database searching time. According to the cost model introduced in [88],

the database searching time is proportional to the number of tables to scan. Since each

primary user has one corresponding table, when there are N primary users, there are N

tables to scan. Based on this figure, we can pick up the appropriate approach depending on

the number of primary users. If this number is small, the classification time is comparable

for both approaches. However, if this number is large, the database-assisted approach is

much more efficient than the non-database approach.

Besides efficiency, one other important performance metric is the percentage of correct

classifications, because it shows whether an approach is reliable or not. With different SNR

values ranging from -6 dB to 2 dB, assume there are 5 primary users in the system (equal
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Fig. 5.7 Time to classify an unknown signal using the database-assisted
approach and the non-database approach. The x-axis represents the number
of primary users, and the y-axis represents the time to classify an unknown
signal. For the reliability check, all classifications with a reliability parameter
less than 0.75 are ignored.

classification time), Fig. 5.8 compares the percentage of correct classification using two

different approaches. For a specific SNR value, we can change the parameter settings on

the transmitter side to generate different FFT plots so that we can repeat the experiment

many times and average the resulting percentages. In both approaches, higher SNR values

yield better algorithm performance in terms of successfully classifying primary signals and

PUE signals. Besides, both approaches have an identical performance for each SNR value.

Even when the channel possesses a substantial amount of noise, such as when SNR = -6 dB,

the percentage of correct classification can still reach 75% with a reliability check. Also, for

an SNR above -2 dB, we are able to get at least 95% of the signals to be classified correctly.

These results show that the two approaches are very reliable and robust.

Software-Defined Radio Experiment

The Simulink model in Fig. 5.6 was then used as a starting point for the design of

a hardware implementation. This was achieved by initially changing the AWGN channel

block with a real-life fading channel, and by using the Simulink SDRu blocks available in
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Fig. 5.8 The classification performance using the database-assisted ap-
proach and the non-database approach in computer simulations, assuming
there are 5 primary users in the system. The x-axis represents SNR value,
and the y-axis represents the percentage of correct classification. For the reli-
ability check, all classifications with a reliability parameter less than 0.75 are
ignored.

the Communications System Toolbox. Consequently, our resulting Simulink design that

operates on the USRP SDR platform is shown in Fig. 5.9.

In order to incorporate the USRP2 hardware into the existing Simulink model, two

Simulink blocks called SDRu Transmitter and SDRu Receiver are used here as interfaces.

These two blocks are developed by The MathWorks and have been available since the

R2011a release of MATLAB. With these two blocks, the USRP SDR platforms can be used

in conjunction with the previous Simulink design environment.

The rest of the Simulink model remains the same, including the random number gen-

erator, baseband modulator, pulse shaping filter as shown in Fig. 5.9(a), and FFT storage

as shown in Fig. 5.9(b). The next steps, including the database search, action descriptor

vector calculation and artificial neural network, are the same as in Section 4.4.1.

Assume there are 5 primary users in the system, the percentage of correct classification

with the hardware implementation is shown and compared in Table 5.2. Similar to the

results derived from computer simulations, the two approaches have very close performance,

and the new approach is slightly better than the previous approach. Note that for the
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(a) The Simulink model for transmitter, which includes an SDRu Transmitter
block.

(b) The Simulink model for receiver, which includes an SDRu Receiver block.

Fig. 5.9 The structure of hardware implementation framework.

new approach proposed in this section, even without the reliability check, the percentage

of correct classification can be as high as 87.8%, which means that the majority of the

classification results are correct, so the proposed algorithm possesses the potential to be a

viable PUE detector operating under real world conditions.

Table 5.2 Software-Defined Radio Experimental Results
Non-databse Approach Databse-assisted Approach

With Check 91.5% 92.3%
Without Check 86.6% 87.8%

In terms of execution and convergence times, we do not take the training time for the

artifical neural network into account. When the FFT plot of an unknown user is collected,

it takes 0.35 s for the new approach and 0.45 s for the previous approach to output the

result. Considering both the efficiency and the performance, the new approach proposed

in this section is a good candidate for the real world implementation.
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5.3 Chapter Summary

Two novel algorithms for detecting primary user emulation attack have been presented

in this chapter. These two approaches are based on video processing method of action

recognition in frequency domain, which explores the motion related features of the users.

By introducing a relational database system, we can improve the time efficiency of the

algorithm, especially in the case when there are multiple primary users. Both computer

simulations and hardware implementations have shown that the proposed approaches are

feasible in real world conditions. The future work of this chapter is to design a detection

approach employing a distributed sensor network.
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Chapter 6

Proposed PUE Detector Based on

Distributed Sensor Network

All the PUE detection approaches proposed so far assume there is a single-node PUE

detector in the network. However, in order to improve the efficiency and accuracy of the

detection, we can actually employ a distributed sensor network as our detector, as shown in

Fig. 6.1, where each sensor node works as an independent PUE detector. For an unknown

user in this network, each sensor node makes its own decision as an energy detector and a

classifier. Based upon this, a final detection result will be made.

When working as a classifier, each node of this sensor network can employ one of the

three approaches proposed in Chapter 4 and 5. However, the real emphasis of this work is

how these nodes collaborate to obtain the final detection results for the whole network.

6.1 System Model

In this chapter, we consider a cognitive radio network as shown in Fig. 6.2. All the

users, including the primary users, primary user emulators and secondary users, as well

as the PUE detectors are distributed in a circular grid. In order to avoid interference, we

assume at each time, there is only one user transmitting in this network.

Similar to the model in Section 4.2, let x(t) denote the transmitted signal. If it is the

authentic PU signal, x(t)=s(t). If it is the PUE signal, x(t)=s′(t). Since the PUE signal

is very similar to the PU signal, we assume both s(t) and s′(t) are independently and
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Fig. 6.1 A contention based dynamic spectrum access network that employs
a three-node distributed sensor network as the PUE detector, where each
sensor node works as an independent PUE detector. For an unknown user in
this network, each sensor node makes its own decision and a final detection
result will be made based upon this.
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Fig. 6.2 A cognitive radio network in a circular grid.

identically distributed (iid) random processes with mean zero and variance σ2
s , namely:

s(t), s′(t) ∼ N (0, σ2
s), (6.1)

where N (·) denotes the normal distribution. Since the secondary users have a significant

lower transmitted power than the primary users, we assume x(t) = 0 when the SU is

transmitting.

Let hi(t) and ni(t) denote the impulse response and the noise of the channel between

the transmitted signal and the ith PUE detector. We assume the channel is a slow flat

fading channel during the observation process, so hi(t) becomes a constant gain hi. ni(t)

is the additive white Gaussian noise (AWGN) with mean zero and variance σ2
n, namely:

ni(t) ∼ N (0, σ2
n). (6.2)

Therefore, for the ith (1 ≤ i ≤ M) PUE detector, there are three possible received

signals:

yi(t) =











ni(t) SU,

hi × s(t) + ni(t) PU,

hi × s′(t) + ni(t) PUE,

(6.3)

where yi(t) is the received signal at the ith PUE detector. The PUE detection algorithm

presented in Section 6.2 will differentiate these three cases at each detector, and then

combine their results into a final decision.
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6.2 Proposed PUE Detection Algorithm

Fig. 6.3 provides a flow diagram of the proposed PUE detection algorithm, which looks

similar to the previous two algorithms. However, in order to incorporate the sensor network,

there is a round of voting in the whole process. Please note when working as a classifier

in the second step, the nearest node can employ one of the three approaches proposed in

Chapter 4 and 5. In Fig. 6.3, we show the database approach.

Start

Energy detection by all nodes

Potential PU?

Data collection by nearest node

Y

N

Reliability > c?

Y

N

Action descriptor calculation

Same action

type as PU?

N

MLP neural network

Classify as authentic

primary user

Y

Match in

database?

N

Feature vector calculation

Classify as PUE

N

Voting

Fig. 6.3 Proposed PUE detection algorithm based on distributed sensor
network.
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According to the system model, our proposed approach makes the following assump-

tions: (i) All the users, including the malicious users and primary users, are located within

the same frequency band; (ii) For each period of time, there is only one user transmitting;

First, the algorithm is initialized using energy detection in order to determine the fre-

quency location of the potential primary user based on the assumption that the transmission

power of the PU and PUE is much higher than that of the SU. For each given interval, all

the detector nodes scan the same frequency bin and try to differentiate the following two

cases of the received signal:

yi(t) =

{

ni(t) SU,

hi × x(t) + ni(t) PU & PUE,
(6.4)

where yi(t) is the received signal at the ith detector, x(t) = s(t) or s′(t).

In this step, each sensor node will make a detection concerning whether the received

signal belongs to a potential PU or not. Suppose there are M sensor nodes in the network,

and the detection result is either 1 (potential PU) or 0 (SU). For an unknown received

signal, the result is:

r =











1
M
∑

i=1

r[i] ≥
M

2
,

0 otherwise,

(6.5)

where r[i] is the detection result from the ith sensor node.

In other words, if majority of the sensor nodes decide this is a potential primary user,

the algorithm will continue to the second step and this signal will be recorded along the

time by its nearest node. After a certain period of time T , this observation process is

terminated and the saved signals are passed on to the classifier.

This algorithm features the energy detection by all the nodes and data collection by

only the nearest not. Thus, it greatly eliminates the overhead of long sensing time caused

by energy detection and high computations due to feature calculations.

6.2.1 Mathematical Analysis

In this section, compared to the single-node case in Section 4.3.1, we will study how

the sensor network will impact the performance of energy detector in terms of probability

of false alarm and probability of detection.



6 Proposed PUE Detector Based on Distributed Sensor Network 95

For each detector node, the hypothesis testing still exists and is the same as the one in

Section 4.3.1, so we can directly employ the conclusion from there. For each detector node,

the probability of false alarm and probability of detection are as follows:

PFi
=
Γ(N, Ti

2σ2

0i

)

Γ(N)
, (6.6)

and

PDi
=
Γ(N, Ti

2σ2

1i

)

Γ(N)
, (6.7)

where σ2
0i = σ2

n and σ2
1i = h2

iσ
2
s + σ2

n. In order to simplify our analysis, we assume that hi

is the same for all the channels. Therefore, the PFi
and PDi

for each detector are identical,

and can be expressed as:

PF =
Γ(N, T

2σ2

0

)

Γ(N)
, (6.8)

and

PD =
Γ(N, T

2σ2

1

)

Γ(N)
, (6.9)

where σ2
0 = σ2

n and σ2
1 = h2σ2

s + σ2
n.

Since we use voting to determine the result of energy detection, the overall probability of

false alarm and probability of detection can be calculated using the law of total probability:

QF =

M
∑

i=M

2

(

M

i

)

P i
F (1− PF )

M−i, (6.10)

and

QD =

M
∑

i=M

2

(

M

i

)

P i
D(1− PD)

M−i, (6.11)

where PF is from (6.8) and PD is from (6.9).

6.2.2 Numerical Results

This section provides the numerical results of the energy detector introduced in Sec-

tion 6.2.1. The results are based on (6.10) and (6.11), presented in terms of the ROC curves



6 Proposed PUE Detector Based on Distributed Sensor Network 96

(i.e., QD versus QF ) for an AWGN fading channel.

For each sensor node, we can use the PF and PD data derived from Section 4.3.1.

Since (6.8) and (6.9) are complement of the binomial cumulative distribution function [113,

114], there is a useful MATLAB function binocdf that we can use 1.

In order to have a quick evaluation of the sensor network, we do the following calculation

based on one node in Fig 4.4(b), where PF = 0.1 and PD=0.8. Assume we use a sensor

network of 4 nodes, then

QD = 1− binocdf(2,4,0.8) = 0.82 > PD, (6.12)

and

QF = 1− binocdf(2,4,0.1) = 0.0037 < PF , (6.13)

which means that by employing the sensor network, we can not only improve the overall

probability of detection, but also decrease the overall probability of false alarm.

Based on the ROC curves of single node detector, the ROC curves of the distributed

sensor network can be obtained by changing the number of sensor nodes M . The ROC

curves in Fig. 6.4(a) are plotted by changing M from 4 to 10 when N=5, SNR=5, and the

ROC curves in Fig. 6.4(b) are plotted by changing M from 4 to 10 when N=5, SNR=3.

In these two figures, the ROC curves of the single node detector (M=1) are also provided

for reference.

Based on Fig. 6.4, we can come to the following conclusions:

• Employing the distributed sensor network is an effective way of improving the per-

formance of the energy detection if each sensor node of this network has a reliable

performance, as shown in Fig. 6.4(a).

• If the sensor node does not have a good PD, the overall performance of the sensor

network can be even worse. For example, in Fig. 6.4(b), when M=4, the distributed

sensor network has a lower PD than the single node detector in the area of QF <

0.3. Therefore, we need to make sure that each sensor node in this network has an

acceptable performance.

1Y = binocdf(X,N,P) computes a binomial CDF at each of the values in X using the corresponding
number of trials in N and probability of success for each trial in P [115].
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• Given a probability of false alarm, the larger number of sensor nodes M will yield

higher overall probability of detection.
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(a) ROC curves by varying the number of sensor
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Fig. 6.4 Numerical results of the energy detector in terms of the ROC curves.

6.3 Experimental Setup & Results

In this section, two different experiments are conducted in order to validate the perfor-

mance of the classifier conducted by the nearest node. The first experiment uses a computer

simulation based on Simulink, while the second experiment is based on a hardware imple-

mentation using the Universal Software Radio Peripheral (USRP) software-defined radio

(SDR) platform. The classifier is tested in two aspects, accuracy and efficiency, with an

emphasis on the impact of distance, i.e., nearest node.

6.3.1 Path-loss Modeling

In most environment, it is observed that the radio signal strength falls as some power α

of the distance, called the power-distance gradient or path-loss gradient [116]. Depending

on the radio frequency, there are additional losses, and in general the relationship between

the transmitted power Pt and the received power Pr in free space is given by:

Pr

Pt
= GtGr

(

λ

4πd

)2

, (6.14)
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where Gt and Gr are the transmitter and receiver antenna gains, λ is the wavelength of the

carrier, and d is the distance between the transmitter and receiver [117].

Since all the detector nodes are equipped with the same antenna, so Gr is the same.

According to our assumptions, for each period of time, there is only one user transmitting,

so Gt and λ are the same. Therefore, given the transmitted power, the only variable for

received power is d. We can rewrite (6.14) in decibels (dB) as:

10 log(Pr) = 10 log(P0)− 20 log(d), (6.15)

where P0 is the received power at the first meter (d=1), which applies to all the detector

nodes. Therefore, there is a 20 dB per decade loss in signal strength as a function of

distance in free space [118].

Based on the single node simulation results in Chapter 4 and 5, it is obvious that

the performance of the classifier is highly related to the signal-to-noise ratio (SNR) on

the receiver, namely, higher SNR value yields better classification performance. Broadly

speaking, SNR is the ratio of the average signal power to the average noise power:

SNR =
Pr

Pnoise
. (6.16)

Since the average noise power Pnoise is fixed for all the detector nodes, in order to get a

higher SNR value, a larger Pr is required. According to (6.15), a minimum distance d will

lead to a maximum Pr, thus the nearest node is picked up to perform the classification.

Computer Simulation

In this part, a Simulink model is constructed in order to collect the FFT plot of a user.

If there are N different users, then we need to have N different parameter settings for this

model. Fig. 6.5 shows the structure of this model.

In this model, there are three blocks on the transmitter side: a random number gener-

ator, a modulator, and a pulse-shaping filter. By picking up the different modulation type

and filter type, or by setting the different parameters for these three blocks, we can express

different users and get different FFT plots. Then, a free space path loss block 2 and an

AWGN channel block are applied to emulate the transmission environment. Specifically,

2The free space path loss block belongs to the RF Impairments Library.
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Fig. 6.5 The structure of the Simulink model used to collect the FFT plot
of a user.

the free space path loss block is employed to simulate the loss of signal power due to the

distance between transmitter and receiver [119] as expressed in (6.15). This block reduces

the amplitude of the transmitted signal by an amount related to d. Then, the AWGN

channel block represents the noise level by setting the variance of the white Gaussian noise.

In the end, a sink block is used on the receiver side to save the FFT plots. These plots are

stored away in the workspace for post processing, including the three steps introduced in

Section 2.5.1.

For each sensor node, a relational database is created to store the feature vectors of the

primary users that are close to this node. In most cases, the primary users are stationary

in the system, so the database is quite stable. Compared to the approach in Section 5.2,

there is a significant advantage brought by the distributed sensor network. With the single

node detection approach, all the feature vectors exist in one large database. However, with

the distributed sensor network, those feature vectors will be divided into smaller databases.

Therefore, it will greatly reduce the time to search the database. Although there are several

widely used database management tools, such as MySQL, Oracle and Access, in order to

facilitate the connection with the Simulink model, we build this database using MATLAB.

We can use the read function to search the database and the write function to update the

database, if there exists new primary user.

In this section, an multi-layer perceptron (MLP) neural network with 256 input nodes,

one layer of 6 hidden nodes, and one output node is employed. f(x) = tanh(x) is selected

as the activation function. For training, the back propagation algorithm is used with a

fixed training constant of η = 0.5, and momentum constant ζ = 0.75. The log-covariance

descriptor vector is fed into the system of artificial neural networks, and the system outputs

a classification result along with a reliability parameter. If the reliability parameter is larger

than 0.75, the classification result is accepted.

The most important performance metric of a classifier is the percentage of correct
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classifications, which shows whether an approach is accurate or not. In most cases, we

would like this percentage as high as possible. The first experiment will show how distance

affects this percentage. In order to incorporate the variable of distance, in free space path

loss block, we choose “Distance and Frequency” in the “Mode” field, and then specify the

distance between transmitter and receiver. For a specific distance value, we can change the

parameter settings on the transmitter side to generate different FFT plots so that we can

repeat the experiment many times and average the resulting percentages. Fig. 6.6 shows

the percentage of correct classifications given by different distances d. Based on the figure,

with distance values ranging from 1m to 10m, the percentage of correct classifications

drops dramatically from around 90% to 20%. More specifically, smaller distance value

yields better algorithm performance in terms of successfully classifying primary signals and

PUE signals. Therefore, in order to get the optimal classification performance, we need to

pick up the nearest node to be the classifier.
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Fig. 6.6 The classification performance using the database-assisted ap-
proach in computer simulations. The x-axis represents distance value d, and
the y-axis represents the percentage of correct classification. For the reliability
check, all classifications with a reliability parameter less than 0.75 are ignored.

The second most important performance metric of a classifier is the time spent to classify

the known signals, which shows whether an approach is efficient or not. In most cases, we

would like this time as short as possible. The second experiment will show how distributed

sensor network affects this time. As mentioned at the beginning of this section, one of the
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advantages of the nearest node classification is that all the feature vectors are divided into

smaller databases. In many cases, we can get the result by just searching one or several

small databases, and thus avoiding going through all the feature vectors. In Fig. 6.7, we

compare the time to classify an unknown signal using the distributed network detector

proposed in this chapter and the single node detector proposed in Section 5.2. Assume the

distributed network detector consists of two sensor nodes. This time does not include the

training time of the artificial neural network, becuase this process can be conducted offline

with some previously known training signals. Once the artificial neural network has been

trained, it only needs to be evaluated rather than both trained and evaluated with any

newly intercepted signals.
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Fig. 6.7 Time to classify an unknown signal using the distributed network
detector and the single node detector. The x-axis represents the number of
primary users, and the y-axis represents the time to classify an unknown signal.
For the reliability check, all classifications with a reliability parameter less than
0.75 are ignored.

It is very obvious that for both approaches, the classification time is highly related

to the number of primary users. When there are more primary users in the system, it

costs more time to get the conclusion. However, it is noted that given a fixed number of

primary users, it always takes less time for the nearest node approach to classify. According

to the cost model introduced in [88], the database searching time is proportional to the

number of tables to scan. Since each primary user has one corresponding table, when
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there are N primary users, there are N corresponding tables. Given an unknown user, the

single detector approach in Section 5.2 has to scan all the tables to make the classification.

However, the nearest node approach in this section only needs to scan the tables stored in

the unknown user’s nearest detector node to make the decision, thus saving a substantial

amount of time.

Software-Defined Radio Experiment

The Simulink model in Fig. 6.5 was then used as a starting point for the design of a

hardware implementation. For simplicity, a small scale distributed sensor network is con-

structed in this section, which includes one unknown user as a transmitter and two sensor

nodes as receviers. Based on Fig. 6.5, this was achieved by changing the AWGN channel

block with a real-life fading channel, setting up the radios in different locations to repre-

sent the impact of the free space path loss block, and by using the Simulink SDRu blocks

available in the Communications System Toolbox. Consequently, our resulting Simulink

design that operates on the USRP SDR platform is shown in Fig. 6.8.

In order to incorporate the USRP2 hardware into the existing Simulink model, two

Simulink blocks called SDRu Transmitter and SDRu Receiver are used here as interfaces.

These two blocks are developed by The MathWorks and have been available since the

R2011a release of MATLAB. With these two blocks, the USRP SDR platforms can be used

in conjunction with the previous Simulink design environment.

The rest of the Simulink model remains the same, including the random number gen-

erator, baseband modulator, pulse shaping filter as shown in Fig. 6.8(a), and FFT storage

as shown in Fig. 6.8(b). The next steps, including the database search, action descriptor

vector calculation and artificial neural network, are the same as in Section 4.4.1, except

that the feature vectors of the primary users are distributed in two databases.

Since there are two sensor nodes in the network, given an unknown user, there is one

closer node, and one further node. In Table 6.1, the percentage of correct classifications

of the two nodes is shown and compared with the hardware implementation. Similar to

the results derived from computer simulations in Fig. 6.6, the closer node has a much

better performance than the further node. Note that for the closer node, even without

the reliability check, the percentage of correct detection can be as high as 85%, which

means that the majority of the classification results are correct, so the proposed nearest
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(a) The Simulink model for unknown user, which includes an SDRu Transmitter
block.

(b) The Simulink model for sensor node, which includes an SDRu Receiver block.

Fig. 6.8 The structure of hardware implementation framework.

node classification possesses the potential to be a viable component of the PUE detector

operating under real world conditions.

Table 6.1 Software-Defined Radio Experimental Results
Closer Node Further Node

With Check 90% 47%
Without Check 85% 43%

In terms of execution and convergence times, we do not take the training time for the

artifical neural network into account. When the FFT plot of an unknown user is collected,

it takes 0.2 s for the nearest node to output the result, which is faster than that of the

single detector approach obtained in Section 5.2.2. Considering both the efficiency and the

performance, the nearest node classification approach proposed in this section is a good

candidate for the real world implementation.
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6.4 Chapter Summary

A novel algorithm for detecting non-intelligent primary user emulation attack based

on distributed sensor network has been presented in this chapter. This approach does

not require any special hardware or software, and can be applied to mobile transmitters

with unknown coordinates. Using USRP2 hardware experimentation, our work features an

analysis in real-life channel with the effect of multipath fading and interferences. Numerical

results, computer simulations and hardware implementations have shown that the proposed

approach has a better performance than the single detector in terms of the accuracy and

efficiency. The future work of this approach will be focus on the node selection of the

distributed sensor network.
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Chapter 7

Conclusions and Future Work

7.1 Completed Research Tasks

The following are the steps I have completed after the area exam. They are primar-

ily concentrated on designing a primary user emulation detector using distributed sensor

network. The others are based on the feedback from the committee in area exam.

• Design a primary user emulation detector using distributed sensor network. The

algorithm proposed in Section 6.2 regarding integrating the results from all the sensor

nodes is the focus of this work. In the phase of classification, the three PUE detection

approaches proposed in Chapter 4 and 5 have been applied and verified respectively.

• Test the distributed sensor network detector using computer simulation and hardware

implementation. The efficiency and accuracy of this detector have been compared

with the single node detector in Chapter 4 and 5.

• Set up the system model for each case in order to conduct the mathematical analysis.

• Analyze the performance of energy detector in single node case and distributed sensor

network case. It is completed by the mathematical analysis of hypothesis testing and

its numerical results.

• Several more publications related to the work of PUE detection in cognitive radio

network.
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7.2 Future Work

Based on the work presented in this dissertation, there are several directions in which

the results can be extended. The following is a short list.

• Node Selection The node selection for distributed sensor network plays a key role

in determining the performance of the network because it can be utilized to improve

accuracy and address the overhead issues [120]. The primary user emulation detector

proposed in Section 6.2 employs all the nodes for energy detection and the nearest

node for classification. It is possible that we can use a fixed set of nodes for both

operations along with one round of voting for each operation. For example, we can

assign the sensor nodes according to frequency bands. The number of sensor nodes

assigned to each band is determined by the number of primary users registered within

this band. If there are more primary users on a certain band, it is more likely that

a primary user emulator will exist on this band, so more sensor nodes will help to

make the correct decision. Given this type of node selection, the computations are

distributed according to the probability of PUE attacks and the result of each round

of voting will be:

r =











1
n
∑

i=m

r[i] ≥ (n−m+ 1)/2,

0 otherwise,

(7.1)

where r[i] is the result provided by the ith node (either 0 or 1), and the mth to the

nth (m ≤ n) sensor nodes are allocated to this spectrum band. The number of sensor

nodes from m to n is determined by:

n−m+ 1

M
= pmn, (7.2)

where pmn is the percentage of primary users registered within this band, and M is

the total number of sensor nodes.

• Index of Database Further improve the efficiency of database assisted PUE detec-

tion approach using index, as introduced in Section 2.6.3. A database index is a data

structure that improves the speed of data retrieval operations on a database table at

the cost of slower writes and increased storage space. Since the main operation on
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database is read, and storage space is not a problem, index possesses the potential of

further improving the efficiency.

• Indoor and Outdoor Comparative study of PUE detection in indoor environment

and outdoor environment. So far, all the hardware implementation tests are con-

ducted indoor. Since the communication channels outdoor are different from those

indoor, and many practical applications happen outdoor, it is attractive to see how

the approaches work outdoor.
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