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Abstract 

This report is for MA575: Market and Credit Risk Models and Management, given by 

Professor Marcel Blais.   

In this project, three different methods for estimating Value at Risk (VaR) and Expected 
Shortfall (ES) are used, examined, and compared to gain insightful information about the 

strength and weakness of each method. 

In the first part of this project, a portfolio of underlying assets and vanilla options were 
formed in an Interactive Broker paper trading account. Value at Risk was calculated and 

updated weekly to measure the risk of the entire portfolio. 

In the second part of this project, Value at Risk was calculated using semi-parametric 
model. Then the weekly losses of the stock portfolio and the daily losses of the entire 
portfolio were both fitted into ARMA(1,1)-GARCH(1,1), and the estimated parameters were 
used to find their conditional value at risks (CVaR) and the conditional expected shortfalls 

(CES). 

Key Words: Portfolio Optimization; Value at Risk; Expected Shortfall; 
ARMA-GARCH Mode l; Risk Reduction 
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1  Introduction 

The project is a summary of the work I have completed in my course MA575: Market 
and Credit Risk Models and Management. The course helps me to measure and manage 
financial risk using the most important quantitative models with special emphasis on market 

and credit risk.  

It starts with the introduction of metrics of risk such as volatility, value-at-risk and 
expected shortfall and with the fundamental quantitative techniques used in financial risk 

evaluation and management.  

The next section is devoted to market risk, including volatility modeling, time series, 
non-normal heavy tailed phenomena, and multivariate notions of codependence such as 

copulas, correlations and tail-dependence. [1] 

 This project is based on the course lecture and the data collected through Yahoo Finance 

[2] website and Interactive Brokers [3] software.  

Early attempts to measure risk, such as duration analysis, were somewhat primitive and 
of only limited applicability. Another traditional risk measure is volatility. The main problem 
with volatility, however, is that it does not care about the direction of an investment's 
movement. [4] “Since investors only want to reduce the risk of losing money and not gaining 
money, volatility is not a desirable risk measure. Value at Risk has been the most widely used 
risk measure because it focuses on the risk of losing money and can be applied to all kinds of 

risks.” [5] 

In the first part of this project, 15 stocks, ETNs or ETFs traded on the New York Stock 
Exchange were chosen. The weekly adjusted closing prices of stocks from 2011-01-03 to 
2012-03-09 were converted into weekly log returns and then utilized to obtain the optimal 
weights for the stock portfolio. Option strategies were chosen for 6 component stocks in an 
attempt to reduce risks in those stock positions. The entire portfolio was formed using an 

Interactive Brokers paper trading account.  

The loss distribution of the entire portfolio was estimated respectively under two 
assumptions, One is that risk-factor changes follow normal distribution, and the other one is 

that risk-factor changes follow t distribution with 4 degrees of freedom. The risk-factor  
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changes in this project are comprised of stocks’ log returns, change of risk-free rate and 
change of implied volatility. The weekly rate of return of the 1-year Treasury bill is used as 
the risk-free rate, and the weekly change of the VIX is used as change of volatility in this 
project. The historical weekly data for the risk-factor changes span from 2011-01-03 to 
2012-03-09. Value at Risk was then calculated and updated weekly to measure the risk of our 

entire portfolio. 

In the second part of this project, Value at Risk was calculated using semi-parametric 
model. “The characterization of semiparametric models as having a finite-dimensional 
parameter of interest (the “parametric component”) and an infinite-dimensional nuisance 
parameter (the “nonparametric component”) was given by Begun et al. (1983).” [6] Then the 
weekly stock portfolio losses were fitted into an ARMA(1,1)-GARCH(1,1) model, and the 
estimated parameters were used to find the conditional Value at Risk (CVaR) and conditional 
Expected Shortfall (CES). Finally, the daily losses of the entire portfolio were fitted into 

ARMA(1,1)-GARCH(1,1) and its CVaR and CES were estimated. 
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2  Background 

2.1 Basic Mathematical Finance Concepts 

Definition 1: The loss operator maps risk-factor changes into losses, [ ] : d
tL R R→   and is 

defined as [ ] ( ) [ ( 1, ) ( , )]t ttL X f t Z X f t Z= − + + −  for dX R∈ .[7] 

Definition 2: Given a confidence level (0,1)α ∈ , the value-at-risk, or VaR of our portfolio 

is given by the smallest number l  such that the probability that the loss L  exceeds l  is no 

larger than 1 α− . Formally, inf{ : ( ) 1 } inf{ : ( ) }LVa R l R P L l l R F lα α α= ∈ > ≤ − = ∈ ≥ . 

[8] 

2.2 Basic Mathematical Formulas 

1. Portfolio Loss 

The loss of stocks:  

log log log
1 1 1 2 2 2 15 15 15[ ]S X S X S Xλ λ λ− + + +  

The loss of options: 

1 1 log 1 1 2 2 log 2 2
1 1 16 17 2 2 16 17[ ]BS BS BS BS BS BS BS BS

t s r t s rC C S X C X C X C C S X C X C X
σ σ− ∆ + + + + ∆ + + +  

Combine the two equations: 

1 2 1 2 1 2
16 17

1 log 2 log log log
1 1 1 2 2 2 3 3 3 15 15 15

[( ) ( ) ( )

( ) ( ) ]

BS BS BS BS BS BS
t t r r

BS BS
s s

C C C C X C C X

C S X C S X S X S X
σ σ

λ λ λ λ

− + ∆ + + + +

+ + + + + + +

 

Then show it in matrix form: 
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1 2
1 1 2 2 3 3 15 15[( ) , ( ) , , , , , , ]BS BS BS BS BS

s s r tC S C S S S C C Cσλ λ λ λ+ + ∑ ∑ ∑ *

log
1
log
2

log
15

16

17

X
X

X
X
X

 
 
 
 
 
 
 
 
 
 
∆ 



 

2. Value at Risk 

Value at Risk is determined as follows:  

Suppose 
2~ ( , )LF N µ σ , fix (0,1)α ∈  

Then 
1( )VaR Nα µ σ α−= +  

LF  is the cumulative loss distribution function and 
1( )N α−

 is the α -quantile of the 

standard normal distribution. 

Also suppose our loss L  is such that 
L µ
σ
−

 has a standard t-distribution with 
ν  degree 

freedom, denoted as 
2~ ( , , )L t ν µ σ . 

( )E L µ=  and 

2

( )
2

Var L νσ
ν

=
−  for 

2ν >  

1( )VaR tα νµ σ α−= + .where tν  is the cumulative distribution function of the standard 

t-distribution. 

3. Expected Shortfall 

ES for a Normal Loss Distribution 

Suppose 2~ ( , )LF N µ σ , LF  is the loss cdf.  
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Let ~ (0,1)LZ Nµ
σ
−

=
, then 

[ / ] [ / ] [ / ( )] ( )ES E L L VaR E Z L VaR E Z Z q Z ES Zα α α α αµ σ µ σ µ σ= ≥ = + ≥ = + ≥ = +

1 ( )

1( ) [ / ( )] ( )
1 N

ES Z E Z Z q Z l l dlα α
α

ϕ
α −

∞

= ≥ =
− ∫  

2 2

2 21 1 1 1( ) ( )
2 2 2 2

l l
u ul l dl le dl du e e C e Cϕ

π π π π
− −

= = − = − + = − +∫ ∫ ∫
 

2

2
lu = −

 and 
du ldl= −  

So 

1[ ( )]
1
NESα

ϕ αµ σ
α

−

= +
−  where 

ϕ  is the pdf of the standard normal distribution.
 

ES for t-Distribution 

Suppose loss L is such that 
~ LL µ

σ
−

=
 

 has a standard t distribution with ν  degrees of 

freedom. 

As in the prior calculation, ( )ES ES Lα αµ σ= + 

 

Then 
1 1 2[ ( )] [ ( )]( )

1 1
ES g t tES L α ν ν ν

α
µ α ν α

σ α ν

− − − +
= = ⋅ − − 



, where 
tν  is the cdf and gν  is 

the pdf of the standard t-distribution. [9]  
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3  Securities Information 

Stock: 

1. JP Morgan Chase & Co. Common St (JPM) 

2. International Business Machines (IBM) 

3. Goldman Sachs Group, Inc. (The) (GS) 

4. Mastercard Incorporated Common (MA) 

5. Visa Inc. (V) 

6. Alliance Data Systems Corporati (ADS) 

7. Walt Disney Company (The) Commo (DIS) 

8. Exxon Mobil Corporation Common (XOM) 

9. United Parcel Service, Inc. Com (UPS) 

10. Home Depot, Inc. (The) Common S (HD) 

ETF: 

11. Vanguard MSCI Emerging Markets ETF (VWO)       

12. iPath S&P 500 VIX Short-Term Futures ETN (VXX)  

13. SPDR S&P Oil & Gas Explor & Pro (XOP) 

14. Materials Select Sector SPDR (XLB) 

15. iShares Russell 2000 (IWM) 

  

 

 

 

 

 

http://finance.yahoo.com/q?s=VWO�
http://finance.yahoo.com/q?s=VWO�
http://finance.yahoo.com/q?s=VXX�
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4  Computation 

4.1 Computational Process 

First, we collect one year of historical price data for each security, from January 3, 2011 
to March 9, 2012 from Yahoo Finance. [8] Then we calculate the expected daily return of 

each security using daily adjusted closing price.  

The expected daily return of each security is illustrated below in Table 1: 

Security Expected Daily Return Security Expected Daily Return 

JPM 0.000187776775545 XOM 0.000621438729831 

IBM 0.001193004816320 UPS 0.000393152543798 

GS -0.000977257837232 HD 0.001277847300046 

MA 0.002427719813423 VWO -0.000068006827124 

V 0.001917113620534 VXX -0.000520637382104 

ADS 0.001923727717883 XLB 0.000054368562369 

DIS 0.000592716813379 IWM 0.000309975564376 

XOP 0.000743118243926   

Table 1 

From table 1 we can see that the expected daily returns of GS, VWO and VXX are 
negative, which means that we would lose money in the future if we bought these three 

securities.  

The summation of each stock’s weight value is 1： 

1 2 15... 1ω ω ω+ + + =  

Then we use the portfolio optimization MATLAB code to calculate each security’s 

weight, shares and the money we require to invest as follows: 

Security Weight Money Shares Security Weight Money Shares 

JPM 0.1732 69280 1640 UPS 0.1571 62840 803 
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IBM 0.3901 156040 768 HD 0.2656 106240 2169 

GS -0.2394 -95760 -775 VWO -0.1752 -70080 -1568 

MA 0.1631 65240 155 VXX 0.1393 55720 2620 

V 0.1281 51240 440 XOP 0.1366 54640 916 

ADS 0.3323 132920 1075 XLB -0.3128 -125120 -3383 

DIS 0.0699 27960 639 IWM -0.2896 -115840 -1400 

XOM 0.0618 24720 285     

Table 2 

Based the results we calculated, the weights for GS, VWO, XLB and IWM are all 
negative, which means the expecting trend for these three securities price is downward. So we 

possibly will lose money on these securities.  

Using all the securities’ historical price data, we construct a chart of their price 

movements as follows:  

 

Chart 1 

The weights we calculated are consistent with the tendency of securities’ historical price 
data based on Chart 1 and Table 2. For example, GS’s price continuously decreased in general 

JPM

IBM

GS

MA

V

ADS

DIS

XOM

UPS

HD

VWO

VXX

XOP
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in the last year, so we expect that it will continue to decrease in 2012, and the weight of GS 
we calculate is negative, which is consistent with our expectation. For IBM, its stock price 
increased consistently in general in the last year, and the weight of IBM we calculate is also 

positive.  

4.2 Option Strategies 

 

Chart 2 

Strategy 1 on ADS: Bear Put Spread. 

We buy 10 options with strike price K=125, expiration date June 15, 2012. We sell 10 

options with strike price K=115, and the same expiration date of June 15. 

From the chart 2 above, we can see that over the course of the year, the general trend for 

this stock’s price is rising. 

 

Chart 3 

From Chart 3 above, we can see that in 2012, from January to March, the general trend 
of ADS stock’s price is rising. The ADS’s weight is 1075, which means we will lose money if 
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the ADS’s price decreases. To reduce the risk of losing money, we plan a bear put spread 
strategy on ADS stock. We buy 10 put options with K=125 and sell 10 put options with 
K=115, both with an expiry of June 15, 2012. So if the stock’s price drops below $125 but 

maintains above $115, we can make a positive profit.  

 

Chart 4 

For IBM stock, we use a covered call strategy. We sell 7 options with strike price K=180, 
and expiration date July 12, 2012. From chart 4 above, we can see that in a year the general 

trend of IBM stock’s price is rising.  

 

Chart 5 

From Chart 5 above, we can also see that from January to March, IBM stock’s price is 
still rising. The weight of IBM is 768, which means we will lose money if the stock’s price 
decreases. We sell 7 call options with strike price K=180 and expiry date June 15, 2012. If the 
stock’s price drops below $180, we will make a profit using these options. Thus this helps to 

reduce the risk. 
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Chart 6 

For GS stock, we use a bull call spread strategy. We buy 7 call options with strike price 
K=80 and expiration date July 12, 2012, and we sell 7 call options with strike price K=140 
and expiration date July 12, 2012. From chart 6 above, we can see the general trend of GS 
stock price is decreasing. From the right part of chart 6, we can see this stock’s price rises, so 

we can expect that in 2012, GS stock’s price will continue to increase. 

 

 

Chart 7 

From chart 7, the increasing trend of GS’s stock price is obvious. The weight we 
compute for GS is -775, which means we will earn money if GS’s price decreases. From what 
we have known about this company, we expect the stock price will rise. So in order to reduce 

the risk, we have a bull call spread strategy on this stock. 
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Chart 8 

 

Chart 9 

For VXX (iPath S&P 500 VIX Short Term Fu), we have a strangle strategy. We buy 25 
call options with strike price K=22 and expiration date June 12, 2012, and we buy 25 put 
options with strike price K=20 and the same expiration. From the weight we compute for 
VXX, 2620 is positive, so we will lose money if the stock price decreases. From the charts 
above we can see that VXX’s stock price fluctuates sharply. If the stock price drops below 
$20, we can make a profit since we buy 25 put options with strike price K=20; if the stock 

price rises above $22, we can also make a profit using the call options we buy. 
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Chart 10 

 

Chart 11 

From the charts above, we can see JPM’s stock price fluctuates sharply. In 2012 the 
stock price is generally increasing. We use a long straddle strategy on this stock. We buy 20 
put options with strike price K=44, expiration date June 15, 2012, and buy 20 call options 

with strike price K=44, and the same maturity date. 

 

Chart 12 
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Chart 13 

As for the UPS stock, we have a short straddle strategy on this stock. We sell 8 call 
options and 8 put options with a strike price of 77.5 and maturity date July 15, 2012. The 

purpose of this position is to hedge the risk in our long position in the UPS stock. 

So we get the results for option strategies as following: 

Security Strategy Details of Option 

JPM Long Straddle K=44, buy call, buy put, Ct=2.72,Pt=1.86 

IBM Covered Call K=180, sell call,  Ct=26.45, Pt=2.28 

GS Bull Call Spread K=80, buy call, Ct=48.15, Pt=0.5 K=140, sell call, Ct=3.3, 

Pt=17.25 

ADS Bear Put Spread K=125, buy put, Ct=5.7, Pt=5.3  K=115, sell put, Ct=11.6, 

Pt=1.9 

VXX Strangle K=22, buy call, Ct=1.9, Pt=5.85 K=20, buy put, Ct=2.45, 

Pt=4.25 

UPS Short Straddle K=77.5, sell put, sell call, Ct=4.35, Pt=1.89 

Table 3 

This completes the construction of our portfolio. 
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5  Risk Analysis 

5.1 Value at Risk in the Normal and t Distributions  

Each week we calculate the VaR and ES to update the data for analyzing the risk of our 
portfolio. We perform this analysis using two different distributions for our risk-factor 

changes: the normal distribution and the t-distribution.  

For weekly losses, we update data: 

Date Week 1 Week 2 Week 3 Week 4 Week 5 

Distribution Norm T Norm T Norm T Norm T Norm T 

Mean -1995.3 -328.6799 -1669.5 -1613.3 -1647.6 

Variance 1.6028e+008 8.2438e+008 1.2065e+008 1.5956e+008 6.1238e+008 

95%VaR 3.77 3.42 9.38 8.59 3.26 2.98 3.83 3.49 7.81 7.13 

95%ES 4.82 5.34 11.78 12.94 4.20 4.64 4.89 5.4 9.88 10.88 

99%VaR 5.49 6.31 13.29 15.15 4.78 5.49 5.55 6.37 11.18 12.78 

99%ES 6.35 8.95 15.24 21.13 5.52 7.78 6.41 9.00 12.86 17.94 

Table 4 

We can pick several weeks’ data to analyze the risk of our portfolio. 

For week 1 and week 2, comparing the two results based on the t distribution, we can see 
the expected value of our portfolio’s loss has changed significantly. It changes from -1995.3 
to -328.6799. Based on our observations on these days, each day our portfolio’s realized loss 

is about $2000. 

In the mean time, the variance of our portfolio’s loss ranges from 1.6028e+008 to 
8.2438e+008. From the information we can expect that our portfolio’s loss will fluctuate 
wildly. From our observation based on our IB paper trading account, we can see for some 
days the prices of some options rise quickly, and other options’ prices fall significantly. That 

explains why the variance rises.  

As for the 95% VAR under the t distribution, it rises from 1.6977e+004 to 4.2953e+004. 
Thus we can expect that since the prices of our options and stocks are likely to fluctuate 
wildly, the risk of our portfolio rises. The change between the two VAR values is significant, 
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which means our portfolio is very risky. 95% VAR under the t distribution in percentage rises 

from 0.0342 to 0.0859, which gives the same conclusion.  

Further, in the light of the 95% ES under the t distribution (it rises from 26531 to 64697) 
and ES under t distribution on a percentage basis (it rises from 0.0534 to 0.1294), we can also 
conclude that the risk of our portfolio rises. The portfolio is riskier, and the profit is thus 

larger when it makes money.  

We compare our 15 stocks’ prices over a five day period, and the charts are displayed 

below.  

 

Chart 14 

 

Chart 15 

From the two charts above, we can see the prices of our stocks fluctuate wildly, that is 
consistent with the VAR and variance we compute. VXX is very special; it drops quite 
significantly on March 27. All other stocks’ tendencies are very consistent, with a fluctuation 
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of about 5% over the course of the week. 

For week 2 and week 3, comparing the two weeks’ data based on the t distribution, we 
can see the expected value of our portfolio’s loss has been changed slightly. It changes from 
-328.6799 to -1669.5, which means we can expect our portfolio to lose money in the future. 
With more risk comes more potential profit. Based on our observation over this week, each 

day our portfolio’s profit is positive, like on April 4, the profit is $4000.  

In the mean time the variance of our portfolio’s loss is from 8.2438e+008 to 
1.2065e+008. From this change, we can expect that our portfolio’s loss will fluctuate more 
mildly than it did in the prior week. From our observation based on our IB paper trading 
account, we can see for some days, the prices of most stocks fluctuate mildly, only VXX’s 

price changes significantly. That explains why the variance falls.  

95% VAR under the t dist in percentage falls from 0.0859 to 0.0298. The prices of our 
options and stocks fluctuate wildly, and the risk of portfolio rises. The change between the 
two different 95% VAR values is not that significant, which means our portfolio is not that 

risky. 

Further, in the light of 95% ES under the t distribution in percentage, which falls from 
0.1294 to 0.0464, we can also expect that the risk of our portfolio falls. The portfolio is less 
risky, the profit is smaller when it makes money, and also the loss is smaller when it loses 

money.  

We compare our 15 stocks’ prices in a five day period, and the charts are displayed 

below: 

 

Chart 16 
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Chart 17 

From the two charts, we can see the prices of our stocks fluctuate wildly. VXX is very 
special; it changes at a significant rate between March 29 and April 4. All other stocks’ prices 

movements are consistent, with a fluctuation of about 3%. 

5.2 Goodness of Fit 

To check the goodness of fit for the normal and t-distributions, we use a Chi-squared 

hypothesis test. 

  The Chi-squared formula is:
2

2 ( )O E
E

χ −
=∑  

     

Distribution 

Stock 

Normal T 

h p h p 

JPM 0 0.751386 0 0.768434 

IBM 0 0.284991 0 0.277864 

GS 0 0.415433 0 0.525641 

MA 0 0.466590 0 0.543321 

V 0 0.533544 0 0.460663 

ADS 0 0.352118 0 0.331542 
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DIS 0 0.429882 0 0.362211 

XOP 0 0.324518 0 0.266330 

XOM 0 0.506732 0 0.410455 

UPS 0 0.532294 0 0.432208 

HD 0 0.294355 0 0.344587 

IWM 0 0.387335 0 0.271233 

XLB 0 0.603421 0 0.568832 

VXX 1 0.015746 1 0.013247 

VWO 0 0.342153 0 0.286673 

Table 5 

We use the stocks’ weekly return to perform the Chi-square test. Under the confidence 
level α =0.05, if h=0 we fail to reject the null hypothesis (which means that the weekly 
returns of this stock are from the population of this distribution); and if h=1 we reject the hull 

hypothesis. With bigger p-value comes a better goodness of fit. 

For example, for JPM stock: under the normal distribution, h=0 and the p-value is 
0.751386, which means it is highly possible that the weekly return of the JPM stock price is 
from a normal distribution; under the t distribution, h=0 and p-value is 0.768434, which 
means the probability of the weekly return of JPM stock price comes from a t distribution is 

76.84%.     

For our portfolio:  

First, we test against normal distribution: 

h=0, p=0.3655 

chi2stat: 3.1744 

df: 3 

edges: [-0.1220 -0.0474 -0.0225 0.0023 0.0272 0.0521 0.1267] 

O: [6 9 15 9 7 8] 

E: [8.9797 8.3931 10.5560 10.3329 7.8720 7.8663] 
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Since h=0, at the 5% significance level, we fail to reject the null hypothesis that the log 
returns of our stock portfolio come from a normal distribution. Thus the assumption that the 

log returns of stocks follow normal distribution is appropriate. 

Second, we test against t distribution: 

h=0, p=0.2737 

chi2stat: 5.1352 

df: 4 

edges: [-2.4870 -0.9689 -0.4629 0.0431 0.5492 1.0552 2.5733] 

O: [6 9 15 9 7 8] 

E: [10.4612 7.5613 9.8505 9.5999 7.0539 9.4732] 

Since h=0, at the 5% significance level, we fail to reject the null hypothesis that the log 
returns of our stock portfolio come from a t distribution with a degree of freedom of 4. Thus, 
the assumption that the log returns of stocks follow t distribution with 4 degrees of freedom is 

appropriate. 

5.3 Value at Risk in Polynomial Tails 

Assume that the tails of the loss distribution for the portfolio has a density f  of the 

form
( 1)( ) af y A y − +=  for all y c≤  for some 0c <  and , 0A a > . 

We construct a historical times series of weekly returns for the portfolio to estimate the 

parameters a=1.820526458 and A=0.000348587. 

VaR with alpha between 0.9 and 1 is displayed below: 
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Chart 18 

The expected shortfall is displayed below: 

 

Chart 19 

The charts of our stocks’ performance in one week are given below in Charts 20 and 21:  
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Chart 20 

 

Chart 21 

From the charts above, we can see that VXX is still very different than other stocks. It 

fluctuates quite significantly and in an opposite direction.  

The data we calculated using the previous method for week 2 is as follows:  

99% VAR in percentage:   13.29%     

99% ES in percentage:  15.24%     

And for week 3we use the new method, the data is as follows:  

99% VAR in percentage:   12.98% 

99% ES in percentage:   28.79% 

We can see that 99% VAR in percentage changes by 0.31% between 13.29% and 
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12.98%, and 99% ES in percentage changes by 13.54% between 15.24% and 28.79%. The 99% 
VAR in percentage is almost the same using the different methods, but the 99% ES in 
percentage changes significantly. So with the new method, the loss distribution will have a 

bigger tail.  

5.4 Value at Risk in GARCH Modeling 

Assume that the weekly portfolio loss follows an ARMA(1,1)-GARCH(1,1) model of the 

form t t t tL Zµ σ= + . [8] 

Calculate VaRα  and ESα  for confidence levels of 0.9α ≥  for the conditional 

loss distribution in Matlab.  

1. Under t innovations: 

Mean: ARMAX(1,1,0); Variance: GARCH(1,1) 

Conditional Probability Distribution: T 

Parameter Value Standard Error T Statistic 

C 4343.9 2305.2 1.8844 

AR(1) -0.84929 0.11504 -7.3838 

MA(1) 0.74191 0.14797 5.0139 

K 8.9736e+007 0.00042775 209783741844.6989 

GARCH(1) 0.61441 0.13276 4.6279 

ARCH(1) 0.38559 0.2092 1.8431 

DoF 3.1487 0.97521 3.2288 

Table 6 

The following are the plots of conditional standard deviations and standardized residuals.  
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Chart 22 

The following is the chart of the conditional expected value over time t. 



 

                                           25  
 
 

 

 

Chart 23 

2. Under Gaussian innovations 

Mean: ARMAX(1,1,0); Variance: GARCH (1,1) 

Conditional Probability Distribution: Gaussian 

Parameter Value Standard Error T Statistic 

C 4343.9 3118.1 1.3931 

AR(1) -0.79564 0.41444 -1.9198 

MA(1) 0.76579 0.45805 1.6718 

K 8.9736e+007 0.018637 4814832840.8266 

GARCH(1) 0.46728 0.07623 6.1299 

ARCH(1) 0.49553 0.1298 3.8177 

Table 7 

The following are the plots of conditional standard deviations and standardized residuals. 
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Chart 24 

The following is the chart of conditional expected value over time. 

 

Chart 25 
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With both normal and student t innovations, the standardized residuals look like a white 
noise process with mean 0 and variance 1, which suggests that the estimated 
ARMA(1,1)-GARCH(1,1) is a good fit. Also, the graphs of expected value show that a high 

conditional mean value persists for a while and so does a low conditional mean value.  

With t-student innovations the standard errors of the estimated parameters are clearly far 
less that those under Gaussian innovations. Thus GARCH model with t-student innovations is 

better than the GARCH model with Gaussian innovations. 

In the plots we show that the VaR, ES and actual loss under the two different 

innovations: 

Under Gaussian innovations: 

 

Chart 26 
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Chart 27 

Under t-student innovations: 

 

Chart 28 
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Chart 29 

 Under both innovations and under 95% confidence, the three weeks’ actual losses are all 

below their corresponding VaR and ES. 

We use a start date of April 2, 2012 and compute , , ,t t VaR ESα ασ µ  for the conditional 

loss distribution of L  on a rolling daily basis.  

The results are as following: 

normal VaR ES t dist VaR  ES 

4/2/2012 1.54E+03 1.83E+03 4/2/2012 2.21E+03 3.00E+03 

4/3/2012 1.38E+03 1.66E+03 4/3/2012 1.75E+03 2.50E+03 

4/4/2012 2.46E+03 3.03E+03 4/4/2012 1.84E+03 3.79E+03 

4/5/2012 2.30E+03 2.83E+03 4/5/2012 3.69E+03 5.02E+03 

4/9/2012 6.26E+03 7.05E+03 4/9/2012 7.19E+03 9.23E+03 

4/10/2012 2.42E+03 3.42E+03 4/10/2012 3.86E+03 6.54E+03 

4/11/2012 3.82E+03 4.86E+03 4/11/2012 5.54E+03 8.90E+03 

Table 8 

Based on the results calculated, the data’s tendency is as follows: 
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Chart 30 

From the chart above we can see that under the two different distributions, ES and VaR 
do not change significantly, and the trend is the same. Under the normal distribution, the ES 
and VaR are smaller. The t distribution contains riskier factors, which lead to larger VaR and 

ES values. 
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6  Risk Reduction 

From what we have discussed above and the portfolio’s actual daily loss, we can see that 
our portfolio’s risk is very high. In order to reduce the risk of our portfolio, we need to add 

some new positions into our portfolio.  

We can reduce the portfolio risk by adding some new options. 

First, we should look the average actual daily loss for each stock. 

 

Chart 31 

From Chart 31 we can see that VXX’s daily loss is the biggest, and XOP’s daily loss is 
the second biggest. The weights of VXX and XOP stocks are 0.1393 and 0.1366, respectively, 
and their stocks’ prices decrease during the project period. Therefore we can buy put options 

or sell call options on these assets to reduce our portfolio’s risk.  

Then we should consider the daily loss movement of each stock. 
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Chart 32 

From Chart 32 we can see VXX stock price fluctuates most wildly. And in most days, 
we lose money on our VXX position. Considering the weight of VXX is positive, we consider 

buying a put option to reduce the risk and minimize the loss. 

From the two different charts-Chart 31 and Chart 32, we arrive at the same conclusion. 

For VXX we buy another 25 put options with strike $20 and expiration date June 12, 2012.  

For the ADS and JPM stocks, their daily profits are our 2 best during the project period. 
Considering the weights of the two stocks are both positive, we can buy some more call 

option to increase the profit.  

For ADS stock we can buy 10 call options with strike price K=$115 and expiration date 
June 15, 2012. For JPM stock we can buy 20 call options with strike price K=$44 and 

expiration date July 15, 2012.  

The table below is the new status of our options: 

Security  Details of Option 

JPM K=$44, buy 40 call; K=$44, buy 20 put 

IBM K=$180, sell 7 call 

GS K=$80, buy 7; K=$140, sell 7 
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ADS K=$125, buy 10 put; K=$115, sell 10 put; K=$115, buy 10 call 

VXX K=$22, buy 25 call; K=$20, buy 50 put 

UPS K=$75, sell 8 call; K=$82.5, sell 8 put 

Table 9 

After we add these new positions, we calculate the 95%VaR and 95%ES again to check 

whether the risk our portfolio is smaller than before. 

 Before Risk Reduction After Risk Reduction 

Distribution Norm T Norm T 

Mean -1647.6 -1044.7 

Variance 6.1238e+008 5.6045e+008 

95%VaR 7.81 7.13 7.46 7.05 

95%ES 9.88 10.88 9.33 10.07 

99%VaR 11.18 12.78 10.38 12.14 

99%ES 12.86 17.94 12.32 17.24 

Table 10 

From Table 10, we can see that the VaR and ES in percentage are both smaller than they 

are before risk reduction, which means our strategy is working. 

99% VaR under the normal distribution changes from 11.18% to 10.38%. It decreases by 
0.8%, which means our portfolio’s risk decreases under this risk measure. The mean of our 

portfolio’s loss increases and the variance decreases. So some risk reduction is achieved.  
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7  Conclusion 

Based on use of our Interactive Brokers paper trading account over the course period, 
our portfolio loses money almost every day. From what we have discussed above, the 
expected value of our portfolio’s loss is consistent with the actual loss. Upon examination of 
all our stocks and options, it is clear that VXX’s price movement is very different than that of 
other stocks. Our portfolio’s risk may be smaller if we replace VXX with another asset. We 
compute a negative weight for GS stock, but based on what we have known about this 

company, we actually expect that its stock price will increase in 2012.   

When VaR is estimated for a portfolio of assets rather than for a single asset, parametric 
estimation based on the assumption of multivariate normal or t-distributed returns is very 
convenient because the portfolio's return will have a univariate normal or t-distributed return. 
[10] From the results we have computed above we can see that VaR and ES values under a t 
distribution are larger than them under a normal distribution because the t distribution 
contains riskier factors because of its heavier tails. In our project results using the t 

distribution are closer to the actual data. 
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A  Appendix 

A.1 Matlab Code 

1. T distribution 

factors=xlsread('C:\data\JPM.xls','17factors','A2:R55'); 

s=xlsread('C:\data\JPM.xls','shares','D2:D16'); 

lamda=xlsread('C:\data\JPM.xls','shares','C2:C16'); 

cdelta=xlsread('C:\data\JPM.xls','greeks','B10:B15'); 

pdelta=xlsread('C:\data\JPM.xls','greeks','E10:E14'); 

crho=xlsread('C:\data\JPM.xls','greeks','C10:C15'); 

prho=xlsread('C:\data\JPM.xls','greeks','F10:F14'); 

cvega=xlsread('C:\data\JPM.xls','greeks','D10:D15'); 

pvega=xlsread('C:\data\JPM.xls','greeks','G10:G14'); 

ctheta=xlsread('C:\data\JPM.xls','greeks','J10:J15'); 

ptheta=xlsread('C:\data\JPM.xls','greeks','K10:K14'); 

callshares=[1700 -800 800 -800 2500 -800]; 

putshares=[1700 1100 -1100 2500 -800]; 

DF=4;%degrees of freedom 

V0=500000; 

W(1,1)=s(1)*(lamda(1)+1700*cdelta(1)+1700*pdelta(1)); 

W(2,1)=s(2)*(lamda(2)-800*cdelta(2)); 

W(3,1)=s(3)*(-lamda(3)+800*cdelta(3)-800*cdelta(4)); 

W(4,1)=s(4)*lamda(4); 

W(5,1)=s(5)*lamda(5); 

W(6,1)=s(6)*(lamda(6)+1100*pdelta(2)-1100*pdelta(3)); 
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W(7,1)=s(7)*lamda(7); 

W(8,1)=s(8)*lamda(8); 

W(9,1)=s(9)*(lamda(9)-800*cdelta(6)-800*pdelta(5)); 

W(10,1)=s(10)*lamda(10); 

W(11,1)=-s(11)*lamda(11); 

W(12,1)=s(12)*(lamda(12)+2500*cdelta(5)+2500*pdelta(4)); 

W(13,1)=s(13)*lamda(13); 

W(14,1)=-s(14)*lamda(14); 

W(15,1)=-s(15)*lamda(15); 

W(16,1)=callshares*crho+putshares*prho; 

W(17,1)=callshares*cvega+putshares*pvega; 

W(18,1)=callshares*ctheta+putshares*ptheta; 

MU=mean(factors);%row vector need transpose 

COVMATRIX=cov(factors); 

TLossmu=-W'*MU'; 

TLossvar=((DF-2)/DF)*W'*COVMATRIX*W;%parameter for the combined t dist, not the 

variance 

Tvariance=W'*COVMATRIX*W; 

disp('expected value for the combined t loss distribution of stocks and options is:'); 

disp(TLossmu); 

disp('variance for the combined t loss distribution of stocks and options is:'); 

disp(Tvariance); 

alpha1=0.95; 

VaRalpha1=TLossmu+sqrt(TLossvar)*tinv(alpha1,DF); 

ESalpha1=TLossmu+sqrt(TLossvar)*(1/(DF-1))*tpdf(tinv(alpha1,DF),DF)*(1/(1-alpha1))*(
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DF+(tinv(alpha1,DF))^2); 

disp('95% VAR under t dist is:'); 

disp(VaRalpha1); 

disp('95% VAR under t dist in percentage is:'); 

disp(VaRalpha1/V0); 

disp('95% ES under t dst is:'); 

disp(ESalpha1); 

disp('95% ES under t dist in percentage is:'); 

disp(ESalpha1/V0); 

alpha2=0.99; 

VaRalpha2=TLossmu+sqrt(TLossvar)*tinv(alpha2,DF); 

ESalpha2=TLossmu+sqrt(TLossvar)*(1/(DF-1))*tpdf(tinv(alpha2,DF),DF)*(1/(1-alpha2))*(

DF+(tinv(alpha2,DF))^2); 

disp('99% VAR under t dist is:'); 

disp(VaRalpha2); 

disp('99% VAR under t dist in percentage is:'); 

disp(VaRalpha2/V0); 

disp('99% ES under t dist is:'); 

disp(ESalpha2); 

disp('99% ES under t dist in percentage is:'); 

disp(ESalpha2/V0); 

2. VAR 

function [callLinLoss,putLinLoss]=projectoption(delta,callPrice,putPrice,S,K,r,tau) 

%logreturn=xlsread('C:\data\JPM.xls','St','A1:A54'); 

%logreturn=xlsread('C:\data\JPM.xls','St','B1:B54'); 
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%logreturn=xlsread('C:\data\JPM.xls','St','C1:C54'); 

%logreturn=xlsread('C:\data\JPM.xls','St','D1:D54'); 

%logreturn=xlsread('C:\data\JPM.xls','St','E1:E54'); 

logreturn=xlsread('C:\data\JPM.xls','St','F1:F54'); 

twofactors=xlsread('C:\data\JPM.xls','twofactors','A1:B54'); 

X(:,1)=logreturn; 

X(:,2)=twofactors(:,1); 

X(:,3)=twofactors(:,2); 

expect=mean(X); 

covmatrix=cov(X); 

Cvolatility=blsimpv(S,K,r,tau,callPrice,[],0,[],{'call'}); 

disp('call volatility is:'); 

disp(Cvolatility); 

[ctheta,x]=blstheta(S,K,r,tau,Cvolatility); 

[cdelta,x]=blsdelta(S,K,r,tau,Cvolatility); 

[crho,x]=blsrho(S,K,r,tau,Cvolatility); 

cvega=blsvega(S,K,r,tau,Cvolatility); 

Pvolatility=blsimpv(S,K,r,tau,putPrice,[],0,[],{'put'}); 

disp('put volatility is:'); 

disp(Pvolatility); 

[x,ptheta]=blstheta(S,K,r,tau,Pvolatility); 

[x,pdelta]=blsdelta(S,K,r,tau,Pvolatility); 

[x,prho]=blsrho(S,K,r,tau,Pvolatility); 

pvega=blsvega(S,K,r,tau,Pvolatility); 
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Callvector=[cdelta,crho,cvega]; 

Putvector=[pdelta,prho,pvega]; 

disp('call option vector is:'); 

disp(Callvector); 

disp('put option vector is:'); 

disp(Putvector); 

end 

factors=xlsread('C:\data\JPM.xls','17factors','A1:Q54'); 

s=xlsread('C:\data\JPM.xls','shares','B2:B16'); 

lamda=xlsread('C:\data\JPM.xls','shares','C2:C16'); 

cdelta=xlsread('C:\data\JPM.xls','greeks','B2:B7'); 

pdelta=xlsread('C:\data\JPM.xls','greeks','E2:E6'); 

crho=xlsread('C:\data\JPM.xls','greeks','C2:C7'); 

prho=xlsread('C:\data\JPM.xls','greeks','F2:F6'); 

cvega=xlsread('C:\data\JPM.xls','greeks','D2:D7'); 

pvega=xlsread('C:\data\JPM.xls','greeks','G2:G6'); 

V0=500000; 

W(1,1)=s(1)*(lamda(1)+1700*cdelta(1)+1700*pdelta(1)); 

W(2,1)=s(2)*(lamda(2)-800*cdelta(2)); 

W(3,1)=s(3)*(-lamda(3)+800*cdelta(3)-800*cdelta(4)); 

W(4,1)=s(4)*lamda(4); 

W(5,1)=s(5)*lamda(5); 

W(6,1)=s(6)*(lamda(6)+1100*pdelta(2)-1100*pdelta(3)); 

W(7,1)=s(7)*lamda(7); 
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W(8,1)=s(8)*lamda(8); 

W(9,1)=s(9)*(lamda(9)-800*cdelta(6)-800*pdelta(5)); 

W(10,1)=s(10)*lamda(10); 

W(11,1)=-s(11)*lamda(11); 

W(12,1)=s(12)*(lamda(12)+2500*cdelta(5)+2500*pdelta(4)); 

W(13,1)=s(13)*lamda(13); 

W(14,1)=-s(14)*lamda(14); 

W(15,1)=-s(15)*lamda(15); 

W(16,1)=sum(crho)+sum(prho); 

W(17,1)=sum(cvega)+sum(pvega); 

MU=mean(factors);%row vector need transpose 

COVMATRIX=cov(factors); 

Lossmu=-W'*MU'; 

Lossvariance=W'*COVMATRIX*W; 

disp('expected value for the combined loss distribution of stocks and options is:'); 

disp(Lossmu); 

disp('variance for the combined loss distribution of stocks and options is:'); 

disp(Lossvariance); 

alpha1=0.95; 

VaRalpha1=Lossmu+sqrt(Lossvariance)*norminv(alpha1,0,1); 

ESalpha1=Lossmu+sqrt(Lossvariance)*normpdf(norminv(alpha1,0,1),0,1)/(1-alpha1); 

disp('95% VAR is:'); 

disp(VaRalpha1); 

disp('95% VAR in percentage is:'); 
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disp(VaRalpha1/V0); 

disp('95% ES is:'); 

disp(ESalpha1); 

disp('95% ES in percentage is:'); 

disp(ESalpha1/V0); 

alpha2=0.99; 

VaRalpha2=Lossmu+sqrt(Lossvariance)*norminv(alpha2,0,1); 

ESalpha2=Lossmu+sqrt(Lossvariance)*normpdf(norminv(alpha2,0,1),0,1)/(1-alpha2); 

disp('99% VAR is:'); 

disp(VaRalpha2); 

disp('99% VAR in percentage is:'); 

disp(VaRalpha2/V0); 

disp('99% ES is:'); 

disp(ESalpha2); 

disp('99% ES in percentage is:'); 

disp(ESalpha2/V0); 

3. Everyday T-Distribution Loss 

dailyloss=xlsread('C:\Users\Jing\Desktop\JPM.xls','dailyloss','J4:J15'); 

spec=garchset('R',1,'M',1,'P',1,'Q',1,'DoF',4,'Dist','t');%under t innovations 

spec=garchset(spec,'Display','off'); 

[coeff,error] = garchfit(spec,dailyloss); 

garchdisp(coeff,error) 

[res,sig,LogL] = garchinfer(coeff,dailyloss); 

%t dist 
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alpha=0.95; 

C=45.59; 

AR(1)=-0.70463; 

MA(1)=1; 

K=7.4323e+005; 

GARCH(1)=0.94799; 

ARCH(1)=0; 

l=length(dailyloss);  

U=C+AR(1)*(dailyloss(l)-C)+MA(1)*res(l); 

Sigma2=K+ARCH(1)*(res(l)^2)+GARCH(1)*(sig(l)^2); 

ValAtRisk=U+sqrt(Sigma2)*tinv(alpha,4); 

D=tinv(alpha,4); 

EStdist=tpdf(D,4).*(4+(tinv(alpha,4)).^2)./(3*(1-alpha)); 

ES=U+sqrt(Sigma2)*EStdist; 

disp('VAR'); 

disp(ValAtRisk); 

disp('ES'); 

disp(ES); 

4. Every Normal Distribution Loss 

%price=xlsread('C:\data\575project2\JPM.xls','sheet2','B2:P167'); 

%w=xlsread('C:\data\575project2\JPM.xls','sheet2','Q2:Q16'); 

%e=length(price); 

%Pvalue1=price*w; 

%Pvalue2=Pvalue1; 
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%Pvalue1(1)=[]; 

%Pvalue2(e)=[]; 

%Ploss=-(Pvalue1-Pvalue2); 

%disp('portfolio loss is:'); 

%disp(Ploss); 

dailyloss=xlsread('C:\Users\Jing\Desktop\JPM.xls','dailyloss','J4:J15'); 

spec=garchset('R',1,'M',1,'P',1,'Q',1);%under normal innovations 

spec=garchset(spec,'Display','off'); 

[coeff,error] = garchfit(spec,dailyloss); 

garchdisp(coeff,error) 

[res,sig,LogL] = garchinfer(coeff,dailyloss); 

5. Return 

function[V]= HW3stocks2011(V0) 

%read the friday adjusted close price from excel file 

S=xlsread('C:\Users\xiaolei\Desktop\MA575\HW3stocks2011.xls','friday','B2:P58'); 

c=length(S); 

V(1,1)=V0; 

lambda=zeros(c,15); 

lambda(1,:)=((V0/15)*ones(1,15))./S(c,:); 

logreturn=zeros(c-1,1); 

for i=1:(c-1) 

V(i+1,1)=lambda(i,:)*(S(c-i,:))'; 

lambda(i+1,:)=((V(i+1,1)/15)*ones(1,15))./S(c-i,:); 

logreturn(i,1)=log(V(i+1,1))-log(V(i,1)); 
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end 

V2011=zeros(c-4,1); 

LOG2011=zeros(c-4-1,1); 

for i=1:(c-4) 

V2011(i,1)=V(i,1); 

end 

for i=1:(c-4-1) 

LOG2011(i,1)=logreturn(i,1); 

end 

disp(' lambda for 13 months is:'); 

disp(lambda); 

disp(' log return for 2011 is:'); 

disp(LOG2011); 

figure(1); 

%draw figure 1 

title('graph 1'); 

plot(V2011,'r'); 

legend('portfolio value process for 2011'); 

figure(2); 

%draw figure 2 

title('graph 2'); 

plot(LOG2011,'g'); 

legend(' log-return process for 2011'); 

hold off; 
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end 

function[]=linearLossDistNormal(V0) 

Lreturn=xlsread('C:\Users\xiaolei\Desktop\MA575\HW3stocks2011.xls','weekly 
log-return','A2:O53'); 

U=(mean(Lreturn))'; 

Sigma=cov(Lreturn); 

W=(1/15)*ones(15,1); 

V=HW3stocks2011(V0); 

a=length(V); 

expectloss=-V(a-4,1)*W'*U; 

varianceloss=((V(a-4,1))^2)*W'*Sigma*W; 

disp('expect value of loss distribution for January 2012 is:'); 

disp(expectloss); 

disp('variance of loss distribution for January 2012 is:'); 

disp(varianceloss); 

a1=[expectloss-2*sqrt(varianceloss);expectloss+2*sqrt(varianceloss)]; 

a2=[expectloss-sqrt(varianceloss);expectloss+sqrt(varianceloss)]; 

aleft1=expectloss-5*sqrt(varianceloss); 

aright1=expectloss+5*sqrt(varianceloss); 

step1=(aright1-aleft1)/1000; 

aleft2=expectloss-100*sqrt(varianceloss); 

aright2=expectloss+100*sqrt(varianceloss); 

step2=(aright2-aleft2)/1000; 

PDF=normpdf(aleft1:step1:aright1,expectloss,varianceloss); 

CDF=normcdf(aleft2:step2:aright2,expectloss,varianceloss); 
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Loss=HW33Q(V0); 

PDFa1=normpdf(a1,expectloss,varianceloss); 

PDFa2=normpdf(a2,expectloss,varianceloss); 

figure(1); 

title('pdf plot'); 

plot(aleft1:step1:aright1,PDF,'g'); 

hold on; 

y=0.000628; 

plot(a1,PDFa1,'r*'); 

plot(a2,PDFa2,'ro'); 

plot(Loss,y,'b*'); 

legend('pdf' ,'2 times of std.','1 time of std.','actual loss'); 

figure(2); 

title('cdf plot'); 

plot(aleft2:step2:aright2,CDF,'r'); 

legend('cdf'); 

hold off; 

end 

function[Loss]=HW32012January(V0) 

V=HW3stocks2011(V0); 

V2012=zeros(5,1); 

LOG2012=zeros(4,1); 

Loss=zeros(4,1); 

for i=1:5 
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V2012(i,1)=V(57-4+i-1,1); 

end 

for j=1:4 

Loss(j,1)=-(V2012(j+1,1)-V2012(j,1)); 

LOG2012(j,1)=log(V2012(j+1,1))-log(V2012(j,1)); 

end 

disp('portfolio value in Jan 2012 is:'); 

disp(V2012); 

disp(' log return in Jan 2012 is:'); 

disp(LOG2012); 

disp('actual weekly loss in Jan 2012 is:'); 

disp(Loss); 

figure(1); 

title('Vt process in Jan2012'); 

plot(V2012); 

legend('Vt process in Jan2012'); 

figure(2); 

title('log return in Jan2012'); 

plot(LOG2012,'g'); 

legend(' log return in Jan2012'); 

hold off; 

end 

6. Option Loss 

function 

[callLinLoss,putLinLoss]=optionLinLoss(delta,callPrice,putPrice,S,K,r,tau,riskFacChg) 
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Cvolatility=blsimpv(S,K,r,tau,callPrice,[],0,[],{'call'}); 

[ctheta,x]=blstheta(S,K,r,tau,Cvolatility); 

[cdelta,x]=blsdelta(S,K,r,tau,Cvolatility); 

[crho,x]=blsrho(S,K,r,tau,Cvolatility); 

cvega=blsvega(S,K,r,tau,Cvolatility); 

Pvolatility=blsimpv(S,K,r,tau,putPrice,[],0,[],{'put'}); 

[x,ptheta]=blstheta(S,K,r,tau,Pvolatility); 

[x,pdelta]=blsdelta(S,K,r,tau,Pvolatility); 

[x,prho]=blsrho(S,K,r,tau,Pvolatility); 

pvega=blsvega(S,K,r,tau,Pvolatility); 

callLinLoss=-(ctheta*delta+S*cdelta*riskFacChg(1,1)+crho*riskFacChg(2,1)+cvega*riskFac
Chg(3,1)); 

putLinLoss=-(ptheta*delta+S*pdelta*riskFacChg(1,1)+prho*riskFacChg(2,1)+pvega*riskFac

Chg(3,1)); 

end 

7. Weight 

function[weightmatrix] = weight(expReturns,CovMatrix) 

E=size(expReturns); 

d=E(1,1); 

e=ones(d,1); 

ngrid=500; 

mup=linspace(min(expReturns),max(expReturns),ngrid); 

rf=0.077885827846; 

weightmatrix=zeros(d,ngrid); 

Omega=inv(CovMatrix); 
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B=expReturns'*Omega*expReturns; 

A=e'*Omega*expReturns; 

C=e'*Omega*e; 

D=B*C-A^2; 

for i=1:ngrid 

lamda1=(C*mup(i)-A)/D; 

lamda2=(B-A*mup(i))/D; 

weightmatrix(:,i)=Omega*(lamda1*expReturns+lamda2*e); 

end 

PortSigma=sqrt(diag(weightmatrix'*CovMatrix*weightmatrix));%standard deviation of the 

portfolio 

imin=find(PortSigma==min(PortSigma));%find the miminum variance portfolio 

C=mup(imin); 

disp('this is the return of the mimimum variance portfolio'); 

disp(C); 

Ieff=(mup>=mup(imin)); 

Sharperatio=(mup-rf)./PortSigma';%PortSigma is a vector,need transpose here 

Itangency=find(Sharperatio==max(Sharperatio)); 

utangency=mup(Itangency); 

lamda1=(C*utangency-A)/D; 

lamda2=(B-A*utangency)/D; 

weighttangency=Omega*(lamda1*expReturns+lamda2*e); 

disp('weight of the tangency portfolio'); 

disp(weighttangency); 

plot(PortSigma(Ieff),mup(Ieff),PortSigma(Itangency),mup(Itangency),'*',PortSigma(imin),mu
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p(imin),'o',0,rf,'x'); 

line([0 PortSigma(Itangency)],[rf,mup(Itangency)]); 

end 

A.2 Matlab Results 

1. JPM 

projectoption(1/50,2.65,1.95,45,44,0.0017,0.248) 

expect loss for call is: 0.8922 

variance for call is: 1.1906e+003 

expect loss for put is: 0.9063 

variance for put is: 1.3075e+003 

2. IBM 

projectoption(1/50,27.45,2.31,205.72,180,0.0017,0.336) 

call volatility is: 0.2112 

put volatility is: 0.2374 

expect loss for call is: 1.6348 

variance for call is: 9.0832e+003 

expect loss for put is: 2.9024 

variance for put is: 1.2890e+004 

3. GS 

projectoption(1/50,45.95,0.51,124.3,80,0.0017,0.336) 

call volatility is: 0.5936 

put volatility is: 0.4550 

expect loss for call is: 1.6530 

variance for call is: 1.4313e+003 
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expect loss for put is: 0.5809 

variance for put is: 537.0486 

projectoption(1/50,2.74,18.5,124.3,140,0.0017,0.336) 

call volatility is: 0.2729 

put volatility is: 0.2790 

expect loss for call is: 2.4827 

variance for call is: 8.6520e+003 

expect loss for put is: 1.9077 

variance for put is: 9.5725e+003 

4. ADS 

projectoption(1/50,5.4,5.8,124.61,125,0.0017,0.248) 

call volatility is: 0.2247 

put volatility is: 0.2272 

expect loss for call is: 2.0058 

variance for call is: 9.9124e+003 

expect loss for put is: 3.0345 

variance for put is: 1.0540e+004 

projectoption(1/50,11.6,2,124.61,115,0.0017,0.248) 

call volatility is: 0.2300 

put volatility is: 0.2331 

expect loss for call is: 1.0997 

variance for call is: 5.3812e+003 

expect loss for put is: 2.1466 

variance for put is: 5.9150e+003 
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5. VXX 

projectoption(1/50,2.75,4.75,20.25,22,0.0017,0.248) 

call volatility is: 0.8535 

put volatility is: 0.9180 

expect loss for call is: 0.6088 

variance for call is: 302.9464 

expect loss for put is: 0.4319 

variance for put is: 241.1509 

projectoption(1/50,3.25,3.4,20.25,20,0.0017,0.248) 

call volatility is: 0.7853 

put volatility is: 0.8897 

expect loss for call is: 0.6004 

variance for call is: 293.9302 

expect loss for put is: 0.4272 

variance for put is: 230.6454 

6. UPS 

projectoption(1/50,4.8,1.72,81.11,77.5,0.0017,0.336) 

call volatility is: 0.1402 

put volatility is: 0.1759 

expect loss for call is: 1.4077 

variance for call is: 3.8872e+003 

expect loss for put is: 1.6753 

variance for put is: 4.6431e+003 

7. Risk free: 1 year treasury bill 



 

                                           54  
 
 

 

Daily rate is 0.00043 

weight of the tangency portfolio 

    0.1732 

    0.3901 

   -0.2394 

    0.1631 

    0.1281 

    0.3323 

    0.0699 

    0.0618 

    0.1571 

    0.2656 

   -0.1752 

    0.1393 

    0.1366 

   -0.3128 

   -0.2896 


