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Abstract

K-differenced vector random field, which belongs to the family of elliptically contoured

vector random fields, has been preliminarily investigated in the literature. As a non-

Gaussian vector random field, it has some good properties even better than the Guassian

vector random field. In this paper, we have introduced a more genernal form of the K-

differenced vector random field, whose density function is still constructed by the modified

Bessel functions. Some properities of the K-differenced vector random field have been

studied in this paper and some important stochastic orders have also been discussed.

Through studying the stochastic orderings of the generating variable, we have understood

how the parameters in density function of the generating variable influence the peakedness

order of the K-differenced vector random field.

Keywords: convex order, elliptically contoured random field, modified Bessel function,

peakedness order, usual stochastic order.

1 Introduction

Gaussian random fields are frequently used in modeling spatial dependence. In this paper,

we would go beyond this and introduce a new non-Gaussian random field in the realm of
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elliptically contoured vector random fields. Such an m-variate random field is defined by

Z(x) = UY(x) + µ(x), x ∈ D, (1)

where D represents a temporal, spatial, or spatio-temporal index domain and µ(x) is a

deterministic function with the range in Rm. Moreover, {Y(x), x ∈ D} is an m-variate

Gaussian random field with mean 0 and covariance matrix function C(x1, x2), and is

independent of a positive random variable U with density function

fU(u) =

 c0
u2λ`−1+1

∏̀
k=1

(
e−ν0u

2 − e−νku2
)
, u ≥ 0,

0, u < 0.

(2)

In (2), 0 ≤ λ < 1, c0 is a constant such that
∫∞

0
fU(u)du = 1, and νk (k = 0, . . . , `)

are positive constants. We also write the density function fU(u) as fU(u|λ, ν0, . . . , ν`) to

emphasize the dependence on the parameters. What is appealing about the proposed

random fields is that its finite-dimensional distributions have thin tails, even thinner than

those of a Gaussian random field, and it has more parameters that affect its peakedness,

besides the covariance matrix function.

The proposed vector random fields {Z(x), x ∈ D} encompass the K-differenced vector

random field established in Alsultan and Ma (2019) as a particular case, i.e., when ` = 1.

The density and characteristic functions of the K-differenced random variable have first

been derived, from which a natural extension to K-differenced vector random vector has

been conducted. As a result, the density function of the random vector is a form of the

difference of two modified Bessel functions and the characteristic function could become

the characteristic function of the double exponential random field as an extreme case. In

this paper, we have extended the density and characteristic functions of the K-differenced

random vector to the general case, i.e, ` ≥ 2, and we have found that the the density

function is still the form of sum or difference of some modified Bessel functions.

Closely related to the proposed random fields is the elliptical random vector defined

by Z(x) for a fixed x ∈ D. Some important definitions and facts about the stochastic

orderings of random vectors are summarized in Pan et al. (2016) and it also gives some

necessary and sufficient conditions for several important stochastic orders of elliptical

random vectors . In this paper, we have provided the same conclusions for the usual

stochastic ordering and the convex ordering with different ways of proof. Also, we have

studied the usual stochastic ordering for the generating variable and how the generating

variable influence the peakedness ordering of the elliptical random vector.
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Considering the st, the cx, the icx, the uo and the dcx orderings, some necessary and

sufficient conditions are discussed for the random vectors X and Y following the skew-

normal(SN) distribution in Jamali et al. (2020). Amiri et al. (2020) discussed the sufficient

and necessary conditions for the st, the cx and the icx ordering of random vectors X and

Y following the multivariate scale mixtures of the skew-normal(SMSN) distribution. Fur-

ther, linear stochastic orderings were discussed for the SMSN distributions in Amiri et al.

(2020) and some equivalent conditions between the linear stochastic orderings and the

integral stochastic orderings are also discussed. In sense of these results, we can charac-

terize some integral stochastic orderings of most of the well-known elliptical distributions

through their mean vectors and covariance matrices.

The rest of the paper is organized as follows. Section 2 provides background knowledge

of the density function (2) and the elliptical vector random fields. The convex ordering,

the usual stochastic ordering, and the peakedness ordering of the elliptical random vector

are investigated in Section 3, and those of the elliptically random fields are discussed in

Section 4. We conclude in Section 5. All the proofs are deferred to an Appendix.

Before closing this section, we introduce the notation and conventions that would be

adopted throughout this paper. Denote by Im an m×m identity matrix. We use |A| to

denote the determinant of a matrix A. The modified Bessel functions of the second type

is defined by Kν(x) = 2−1(x/2)ν
∫∞

0
exp(−u− u−1x2)u−1−νdx, for x > 0 (Watson, 1995).

2 Basic Distributional Properties

In this section, we will present some basic distributional properties of the newly introduced

density (2) and the multivariate distribution associated with the random field.

Lemma 1. Consider the density function defined in (2) with ` ≥ 1. A closed-form

expression for c0 is given by

c0 =
2λ/`

Γ(1− λ
`
)
(
−(`ν0)

λ
` +

∑`
S=1(−1)S+1GS(λ

`
, νk)

) , 0 < λ < 1,

with GS(λ
`
, νk) =

∑`
νk<νk+1

(
∑S

k=1 νk + (`− S)ν0)
λ
` , and

c0 =
2

− ln(`ν0) +
∑`

S=1(−1)S+1HS(νk)
, λ = 0,
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with HS(νk) =
∑`

νk<νk+1
ln(
∑S

k=1 νk + (`− S)ν0).

Boming: Is S a set? The expression S ⊂ {1, · · · , `} makes S appear to be a set. Please

double check the notation you adopted.

When ` = 1, an application of Lemma 1 yields that c0 = 2λ

Γ(1−λ)(−νλ0 +νλ1 )
for 0 < λ < 1,

and c0 = 2
− ln(ν0)+ln(ν1)

for λ = 0. Thus, the density function (2) becomes

fU(u) =
2λ

(νλ1 − νλ0 )Γ(1− λ)

e−ν0u
2 − e−ν1u2

u1+2λ
, u ≥ 0,

if 0 < λ < 1, and

fU(u) =
2

ln ν1 − ln ν0

e−ν0u
2 − e−ν1u2

u
, u ≥ 0,

if λ = 0. This is the density function studied in Alsultan and Ma (2019), so here we are

considering a more general case.

Moreover, it follows directly from Lemma 1 that when ` = 2,

c0 =


λ

Γ(1−λ/2)

(
−(2ν0)

λ
2 +(ν1+ν0)

λ
2 +(ν2+ν0)

λ
2 −(ν1+ν2)

λ
2

) , 0 < λ < 1,

2
− ln(2ν0)+ln(ν0+ν1)+ln(ν0+ν2)−ln(ν1+ν2)

, λ = 0.
(3)

An appealing and important feature of the random variable U is that it has finite

moments of any order, which is stated in the next lemma.

Lemma 2. Consider the random variable U with the density function in (2).

(1) If j > 2λ/`, we have

EU j =
λ
`
Γ( j

2
− λ

`
)

Γ(1− λ
`
)

(`ν0)
λ
`
− j

2 +
∑`

S=1(−1)SGS(λ
`
− j

2
, νk)

−(`ν0)
λ
` +

∑`
S=1(−1)S+1GS(λ

`
, νk)

,

for 0 < λ < 1, and

EU j = Γ(
j

2
)

(`ν0)−
j
2 +

∑`
S=1(−1)SGS( j

2
, νk, k ∈ S)

− ln(`ν0) +
∑`

S=1(−1)S+1HS(νk, k ∈ S)
,

for λ = 0.

4



(2) If j = 2λ/` and 0 < λ < 1, then

EU j =
− ln(`ν0) +

∑`
S=1(−1)S+1HS(νk)

−(`ν0)
λ
` +

∑`
S=1(−1)S+1GS(λ

`
, νk)

.

(3) If 0 < j < 2λ/` and 0 < λ < 1, then

EU j =
Γ(1− λ

2
+ j

2
)

λ
2
− j

2

−(`ν0)
λ
`
− j

2 +
∑`

S=1(−1)S+1GS(λ
`
− j

2
, νk)

−(`ν0)
λ
` +

∑`
S=1(−1)S+1GS(λ

`
, νk)

.

Because 0 ≤ λ < 1, Lemma 2 (1) provides the moments EU j, j = 1, 2, . . . , for ` ≥ 2.

The case ` = 1 has been discussed in Alsultan and Ma (2019). When ` = 2, it follows

from Lemma 2 that

EU j = −λ
2

Γ( j−λ
2

)

Γ(1− λ
2
)

(2ν0)
λ−j
2 − (ν1 + ν0)

λ−j
2 − (ν2 + ν0)

λ−j
2 + (ν1 + ν2)

λ−j
2

(2ν0)
λ
2 − (ν1 + ν0)

λ
2 − (ν2 + ν0)

λ
2 + (ν1 + ν2)

λ
2

, j = 1, 2, . . . ,

for 0 < λ < 1, and

EU j = −Γ(
j

2
)
(2ν0)−

j
2 − (ν1 + ν0)−

j
2 − (ν2 + ν0)−

j
2 + (ν1 + ν2)−

j
2

ln(2ν0)− ln (ν1 + ν0)− ln (ν2 + ν0) + ln (ν1 + ν2)
, j = 1, 2, . . . ,

for λ = 0.

In parallel with the proposed random field, we define the following elliptical random

vector

Z = UY + µ, (4)

where µ ∈ Rm is a constant, and Y is an m-variate Gaussian random vector with mean

0 and covariance matrix Σ (i.e., Y ∼ Nm(0,Σ)) and is independent of U . The moments

of Z, its density function, as well as its characteristic function are explored in the next

three lemmas, which also characterizes the distributional features of Z(x) for x ∈ D.

Lemma 3. Suppose that m = 1. Write the distribution of Y as N(0, σ2). We have

EZ = µ and

EZj =
∑

1≤k≤j/2

(
j

2k

)
µj−2k(2k − 1)!!σ2kE(U2k), j ≥ 2,
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where E(U2k) is given by Lemma 2. Moreover,

E(Z− µ)j =

{
0, if j is odd,

σj(j − 1)!!E(U j), if j is even.

As an application of Lemma 3, we obtain VarZ = σ2EU2, E(Z − µ)3 = 0, and
E(Z−µ)4

VarZ2 = 3 EU4

(EU2)2
≥ 3 due to Jensen’s inequality. Therefore, the density curve of Z

is symmetric and has heavier tails than a Gaussian distribution. ????? Boming: this,

however, is not consistent with Figure 1 which indicates the tails to be thinner. In

addition, Alsultan and Ma (2019) also comments that the random fields have thinner

tails than the Gaussian ones.

Lemma 4. The density function of Z in (4) is given by

fZ(z) =c|Σ|−1/2


(

(z− µ)′Σ−1(z− µ)

`ν0

)− 2λ/`+m
4

K 2λ/`+m
2

(√
2(z− µ)′Σ−1(z− µ)`ν0

)

−
∑̀
k=1

(
(z− µ)′Σ−1(z− µ)

νk + (`− 1)ν0

)− 2λ/`+m
4

K 2λ/`+m
2

(√
2(z− µ)′Σ−1(z− µ)(νk + (`− 1)ν0)

)

+
∑̀
k1<k2

(
(z− µ)′Σ−1(z− µ)

νk1 + νk2 + (`− 2)ν0

)− 2λ/`+m
4

K 2λ/`+m
2

(√
2(z− µ)′Σ−1(z− µ)(νk1 + νk2 + (`− 2)ν0)

)

+ · · ·+ (−1)`

(
(z− µ)′Σ−1(z− µ)∑`

k=1 νk

)− 2λ/`+m
4

K 2λ/`+m
2


√√√√2(z− µ)′Σ−1(z− µ)

∑̀
k=1

νk


where c = 2

2λ/`−m
4 π−m/2c0 and c0 is defined in Lemma 1.

The density function of Z is essentially a linear combination of the modified Bessel

functions of the second type. In particular, when ` = 1, it becomes the difference of

two Bessel functions and thus, Alsultan and Ma (2019) refers it as K-differenced density

function.
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Lemma 5. The characteristic function of Z in (4) is given by, for ω ∈ Rm,

E exp(iZ′ω) =
c0Γ(1− λ

`
)

2λ/`
exp(iµ′ω)

{
−
(
ω′Σω

2
+ `ν0

)λ
`

+
∑̀
k=1

(
ω′Σω

2
+ νk + (`− 1)ν0

)λ
`

−
∑̀
k1<k2

(
ω′Σω

2
+ vk1 + vk2 + (`− 2)ν0

)λ
`

+ · · ·+ (−1)`+1

(
ω′Σω

2
+
∑̀
k=1

vk

)λ
`

 ,

for 0 < λ < 1, and

E exp(iZ′ω) =
c0

2
exp(iµ′ω)

(
− ln(

ω′Σω

2
+ `ν0) +

∑̀
k=1

ln(
ω′Σω

2
+ νk + (`− 1)ν0)

−
∑̀
k1<k2

ln(
ω′Σω

2
+ vk1 + vk2 + (`− 2)ν0) + · · ·+ (−1)`+1 ln(

ω′Σω

2
+
∑̀
k=1

vk)

)
,

for λ = 0, where c0 is given in Lemma 1.

To have a better idea of the density curve (or density surface), we next present some

special cases in which Σm = Im and µ = 0. Given these configurations, Z = UY with

Y ∼ Nm(0, Im). When m = 1, Z is univariate, simply denoted by Z, and its density

function for ` = 2 becomes

fZ(z) =2
λ−1
4 π−1/2c0|z|−

λ+1
2

{
(2ν0)

λ+1
4 Kλ+1

2

(√
4ν0|z|

)
− (ν1 + ν0)

λ+1
4 Kλ+1

2

(√
2(ν1 + ν0)|z|

)
− (ν2 + ν0)

λ+1
4 Kλ+1

2

(√
2(ν2 + ν0)|z|

)
+(v1 + v2)

λ+1
4 Kλ+1

2

(√
2(v1 + v2)|z|

)}
, (5)

where c0 is given in (3). We depict in Figure 1(a) the density function (5) with λ = 0, ν1 =

ν2 = 15, and ν0 ∈ {20, 50, 100}. When ν0 increases, the density function becomes more

peaked and the tails get thinner. Boming: please check tails of the distributions...since

with positive excess kurtosis, the tails should be heavier than the normal...it appears to

be thinner. In addition, Alsultan and Ma (2019) also comments that the random fields

have thinner tails than Gaussian ones. Note that the variance of Z with λ = 0 is given

by

Var(Z) = −(2ν0)−1 − (ν1 + ν0)−1 − (ν2 + ν0)−1 + (ν1 + ν2)−1

ln(2ν0)− ln (ν1 + ν0)− ln (ν2 + ν0) + ln (ν1 + ν2)
,
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due to Lemmas 2 and 3. The dotted line in both Figure 1(a) and (b) is the density curve

of a Normal distribution with mean 0 and variance Var(Z) evaluated at ν1 = ν2 = 15 and

ν0 = 20. We also examine the scenario that increases λ and keeps the other parameters

fixed, which is shown in Figure 1(b). It exhibits similar patterns to Figure 2.1 of Alsultan

and Ma (2019) for ` = 1, i.e., a bigger λ yields a more peaked density curve. However,

the speed of decreasing of the Normal distribution is faster than Z at the beginning, but

in the end it will be exceeded by Z, which is showed in Figure 1(c). And we also can see

that Z has heavier tail than the Normal distribution.

When m = 2, then Z is bivariate and the density function with ` = 2, deduced from

Lemma 4, has the following form

fZ(z) =2
λ−2
4 π−1c0(z′z)−

λ+2
4

{
(2ν0)

λ+2
4 Kλ+2

2

(√
4ν0z′z

)
−
(

(ν0 + ν1)
λ+2
4 Kλ+2

2

(√
2(ν0 + ν1)z′z

)
+ (ν0 + ν2)

λ+2
4 Kλ+2

2

(√
2(ν0 + ν2)z′z

))
+(ν1 + ν2)

λ+2
4 Kλ+2

2

(√
2(ν1 + ν2)z′z

)}
, 0 ≤ λ < 1, ν1, ν2 > 0,

which is visualized in Figure 1 (b) for λ = 0, ν1 = ν2 = 15, and ν0 ∈ {20, 100}. We also

draw in Figure 1 (d) the density surface of a bivariate Gaussian distribution with mean

0 and covariance matrix given by

Var(Z) = −(2ν0)−1 − (ν1 + ν0)−1 − (ν2 + ν0)−1 + (ν1 + ν2)−1

ln(2ν0)− ln (ν1 + ν0)− ln (ν2 + ν0) + ln (ν1 + ν2)
I2.

As shown in Figure 1, the random vector Z is less dispersed than the (multivariate)

normal distribution, and the structural parameters of Z also affect its tail behaviors.

This feature will be formally stated in Section 3 in terms of peakedness, which offers a

more comprehensive measure of dispersion.

3 Stochastic Orders

In this section, we are interested in comparing the multivariate distributions in terms of

peakedness order and convex order, which would help us to understand how the parame-

ters pertaining to U would affect the peakedness of the distribution of Z and the random

field {Z(x), x ∈ D} in (1).

To start with, we would like to recall the definitions of peakedness and some relevant

stochastic orders. The peakedness of a random variable Z about a point a is defined by

8



Pa(z) = P (|Z − a| ≤ z) for z ≥ 0 if Z is symmetric about a (see Birnbaum (1948)).

Birnbaum defined in Birnbaum (1948) a random variable Z1 as more peaked about a1

than another random variable Z2 about another point a2 if

P (|Z1 − a1| ≤ z) ≥ P (|Z2 − a2| ≤ z), (6)

for every z > 0. When a1 = a2 = 0, we say Z1 is more peaked than Z2, and denoted

by Z1

p

� Z2. This notion was generalized to random vectors by Sherman et al. (1955),

which states that an m-variate random vector Z1 is more peaked than another m-variate

random vector Z2, or Z1

p

� Z2, if both have densities and

P (Z1 ∈ A) ≥ P (Z2 ∈ A),

holds for any A ∈ Am, where Am denotes the class of compact, convex, and symmetric

(about the origin) sets in Rm. Olkin and Tong (1998) points out that Z1

p

� Z2 holds if

and only if CZ1

p

� CZ2 holds for all k ×m matrices C, k ≤ m.

The concept of peakedness ordering is closely related to the usual stochastic ordering

and the convex ordering. Let Z1 and Z2 be the two m-variate random vectors such

that P (Z1 ∈ U) ≤ P (Z2 ∈ U) for all upper sets U ⊂ Rm. Then Z1 is said to be

smaller than Z2 in the usual stochastic order, denoted by Z1 �st Z2. Note that (6)

indicates that P (|Z1 − a1| > z) ≤ P (|Z2 − a2| > z) for any z > 0, from which we have

|Z1 − a1| �st |Z2 − a2|. A necessary and sufficient condition for Z1 �st Z2 is that

Eg(Z1) ≤ Eg(Z2) (7)

holds for all increasing functions g for which the expectations exist (see Shaked and

Shanthikumar (2007)). If (7) holds for any convex function g for which the expectations

exist, Z1 is said to be smaller than Z2 in the convex order, denoted by Z1 �cx Z2.

Moreover, if (7) holds for any increasing convex function g for which the expectations

exist, we would say Z1 is smaller than Z2 in the increasing convex order, denoted by

Z1 �icx Z2. Apparently, Z1 �cx Z2 implies Z1 �icx Z2. In fact, Z1 �cx Z2 if and only if

Z1 �icx Z2 and E(Z1) = E(Z2), see Mosler and Scarsini (1991).

The (increasing) convex ordering of multivariate normal distributions has been studied

by Scarsini (1998) and Müller (2001). To be precise, let Y1 ∼ Nm(µ1,Σ1) and Y2 ∼
Nm(µ2,Σ2). Then

1. Y1 �st Y2 if and only if µ1 ≤ µ2 and Σ1 = Σ2.
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2. Y1 �cx Y2 if and only if µ1 = µ2 and Σ2 − Σ1 is non-negative definite.

In Lemma 6, we present the peakedness ordering of multivariate normal distributions,

which is similar in spirit to Theorem 1 and Corollary 2.1 of Wang and Ma (2018).

Lemma 6. Let Y1 ∼ Nm(µ1,Σ1) and Y2 ∼ Nm(µ2,Σ2). Then Y1 − µ1

p

� Y2 − µ2 if

and only if Σ2 − Σ1 is non-negative definite.

Now, we turn our attention to the random vector Z = UY + µ.

Boming: could you please prove the following result... it is relevant to Figure 1.

Theorem 1. Suppose that Y ∼ Nm(0,Σ), and U has density function (2) and is inde-

pendent of Y. Then UY
p

�
√

E(U2)Y.

The theorem below establishes the sufficient conditions for the peakedness order of Z

in general.

Theorem 2. Suppose that Y1 ∼ Nm(0,Σ1) and Y2 ∼ Nm(0,Σ2), and Zk = UkYk +

µk, k = 1, 2, where Uk has density function taking the form of (2) with parameters

λk, ν0,k, ν1,k, . . . , ν`,k, and Uk is independent of Yk′ for k, k′ ∈ {1, 2}. Then Z1 − µ1

p

�
Z2 − µ2, if U1 �st U2 and Σ2 − Σ1 is non-negative definite.

Two special scenarios are explored in the next two theorems. The former establishes

a necessary condition that mirrors Theorem 4 of Wang and Ma (2018), while the latter

provides necessary and sufficient conditions for the convex ordering and the stochastic

ordering in addition to the peakedness ordering as a result of the Gaussian random field.

Theorem 3. Consider the same conditions as in Theorem 2 and suppose Y1 =st Y2.

Then Z1 − µ1

p

� Z2 − µ2 only if EU1
n ≤ EU2

n for n > 0.

Theorem 4. Consider the same conditions as in Theorem 2 and suppose U1 =st U2.

Then

1. Z1 �cx Z2 if and only if µ1 = µ2 and Σ2 − Σ1 is non-negative definite.

2. Z1 − µ1

p

� Z2 − µ2 if and only if Σ2 − Σ1 is non-negative definite.

3. Z1 �st Z2 if and only if µ1 ≤ µ2 and Σ2 = Σ1.
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Theorem 4 essentially complements the results of Scarsini (1998) and Müller (2001)

for a more general family of multivariate elliptical distributions.

In order to have a sense of how the structural parameters in U would impact the

peakedness order of Z and the random field {Z(x), x ∈ D} by and large, we present in

the next lemma the sufficient and/or necessary conditions for the stochastic ordering of

U under different configurations of its parameters.

Lemma 7. Suppose that Uk, k = 1, 2, are random variables having density function of

the form (2) with parameters λk, ν0,k, ν1,k, . . . , ν`,k.

1. When νj,1 = νj,2, j = 0, 1, . . . , `, and 0 ≤ λk < 1, then U1 �st U2 if and only if

λ1 ≥ λ2.

2. When λ1 = λ2, νj,1 = νj,2 and ν0,k ≥ νj,k for j = 1, . . . , `, then U1 �st U2 only if

ν0,1 ≥ ν0,2.

3. For ` = 1, when λ1 = λ2,ν1,1 = ν1,2, then U1 �st U2 if ν0,1 ≥ ν0,2.

4. For ` = 2, when λ1 = λ2,νj,1 = νj,2 and ν0,k ≥ νj,k for j = 1, 2, then U1 �st U2 if

ν0,1 ≥ ν0,2.

By virtue of Theorems 2 - 3 and Lemma 7, we obtain the sufficient and necessary

conditions for the peakedness order of Z which offer a theoretical justification of the

observations in Figure 1. These results would also lay the foundation for the peakedness

order of the random field {Z(x), x ∈ D}, which would be addressed in Section 4.

Theorem 5. Consider the same conditions as in Theorem 2 and let Y1 =st Y2.

1. When νj,1 = νj,2, j = 0, 1, . . . , `, and 0 ≤ λk < 1, then Z1 − µ1

p

� Z2 − µ2 if and

only if λ1 ≥ λ2.

2. For ` = 1, 2, when νj,1 = νj,2 and ν0,k ≥ νj,k for j = 1, · · · , `, then Z1−µ1

p

� Z2−µ2

if and only if ν0,1 ≥ ν0,2.

4 A New Non-Gaussian Elliptically Contoured Ran-

dom Field

With all the preparations, we now turn to the proposed elliptically contoured random field

in this section. First of all, we present in Lemma 8 its finite-dimensional characteristic
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function for the mn-variate random vector (Z′(x1),Z′(x2), ...,Z′(xn))′ for any n ≥ 1 and

xk ∈ D (k = 1, . . . , n).

Lemma 8. The characteristic function of the mn-variate random vector (Z′(x1),Z′(x2), ...,Z′(xn))′

for n ≥ 1 and xk ∈ D (k = 1, . . . , n) is

E exp

(
i

n∑
k=1

Z′(x)ωk

)
=
c0Γ(1− λ

`
)

2λ/`
exp

(
i

n∑
k=1

µ′(xk)ωk

)−
(∑n

i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ `ν0

)λ
`

+
∑̀
k=1

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ νk + (`− 1)ν0

)λ
`

−
∑̀
k1<k2

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ νk1 + νk2 + (`− 2)ν0

)λ
`

+ · · ·+ (−1)`+1

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+
∑̀
k=1

νk

)λ
`


for 0 < λ < 1, and

E exp

(
i

n∑
k=1

Z′(x)ωk

)
=
c0

2
exp

(
i

n∑
k=1

µ′(xk)ωk

){
− ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ `ν0

)

+
∑̀
k=1

ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ νk + (`− 1)ν0

)

−
∑̀
k1<k2

ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ νk1 + νk2 + (`− 2)ν0

)

+ · · ·+ (−1)`+1 ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+
∑̀
k=1

νk

)}

for λ = 0, where ωk ∈ Rm for k = 1, . . . , n.

Letting ` = 1, Lemma 8 yields the finite-dimensional characteristic functions discussed

12



in Alsultan and Ma (2019). When ` = 2, we have

E exp

(
i

n∑
k=1

Z′(x)ωk

)

=
c0Γ(1− λ

2
)

λ
exp

(
i

n∑
k=1

µ′(xk)ωk

)−
(∑n

i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ 2ν0

)λ
2

+

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ ν1 + ν0

)λ
2

+

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ ν2 + ν0

)λ
2

−

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ ν1 + ν2

)λ
2


for 0 < λ < 1, and

E exp

(
i

n∑
k=1

Z′(x)ωk

)

=
c0

2
exp

(
i

n∑
k=1

µ′(xk)ωk

){
− ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ 2ν0

)

+ ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ ν1 + ν0

)
+ ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ ν2 + ν0

)

− ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ ν1 + ν2

)}

for λ = 0, where ωk ∈ Rm for k = 1, . . . , n.

Because the finite-dimensional distributions of {Z(x), x ∈ D} are symmetric about the

center (see also Huang and Cambanis (1979), Ma (2009), Ma (2011), Yao (2003), among

others), we next explore the peakedness ordering of {Z(x), x ∈ D} about µ(x).

We would first revisit the definition of peakedness for vector random fields. Suppose

that {Z1(x), x ∈ D} and {Z2(x), x ∈ D} are two m-variate random fields whose finite-

dimensional distributions are symmetric about µ1(x) and µ2(x), respectively. We say that

{Z1(x), x ∈ D} is more peaked about µ1(x) than {Z2(x), x ∈ D} about µ2(x), or simply

13



{Z1(x)− µ1(x), x ∈ D}
p

� {Z2(x)− µ2(x), x ∈ D}, if

P ((Z ′1(x1)− µ′1(x1), . . . , Z ′1(xn)− µ′1(xn))′ ∈ An)

≥ P ((Z ′2(x1)− µ′2(x1), . . . , Z ′2(xn)− µ′2(xn))′ ∈ An),
(8)

holds for every n ∈ N, any xk ∈ D (k = 1, . . . , n), and any An ∈ An, where N is the set

of positive integers, and An denotes the class of compact, convex, and symmetric (about

the origin) sets in Rnm. Consider the proposed elliptically contoured random fields. Let

Zk(x) = UkYk(x) + µk(x), k = 1, 2, (9)

where {Yk(x), x ∈ D} is an m-variate Gaussian random field with mean 0 and co-

variance matrix function Ck(x1, x2), and Uk has density function (2) with parameters

λk, ν0,k, ν1,k, . . . , ν`,k and is independent of Yk′(x) for k, k′ ∈ {1, 2}. By Theorem 3 of

Wang and Ma (2018), if U1 �st U2 and C2(x1, x2)−C1(x1, x2) is the covariance function

of a Gaussian random field on D, then {Z1(x)−µ1(x), x ∈ D}
p

� {Z2(x)−µ2(x), x ∈ D}.
It further follows from Theorem 3 that when C1(x1, x2) = C2(x1, x2) for all x1, x2 ∈ D,

{Z1(x)−µ1(x), x ∈ D}
p

� {Z2(x)−µ2(x), x ∈ D} only if EU1
n ≤ EU2

n for n > 0 (see also

Theorem 4 of Wang and Ma (2018)). In light of Lemma 7, Theorem 6 below highlights

how the parameters in U affect the peakedness order of {Z(x), x ∈ D}.

Theorem 6. Consider the two elliptically contoured random fields defined in (9) and

suppose that C1(x1, x2) = C2(x1, x2) for all x1, x2 ∈ D.

1. When νj,1 = νj,2, j = 0, 1, . . . , `, and 0 ≤ λk < 1, then {Z1(x) − µ1(x), x ∈ D}
p

�
{Z2(x)− µ2(x), x ∈ D} if and only if λ1 ≥ λ2.

2. For ` = 1, 2, when νj,1 = νj,2 and ν0,k ≥ νj,k for j = 1, · · · , `, then {Z1(x) −
µ1(x), x ∈ D}

p

� {Z2(x)− µ2(x), x ∈ D} if and only if ν0,1 ≥ ν0,2.

The results in Theorem 4 could also be extended to the random fields. Consider

the two elliptically contoured random fields defined in (9) and suppose that U1 =st U2.

Similar to Theorem 5 of Wang and Ma (2018), {Z1(x), x ∈ D} �cx {Z2(x), x ∈ D} if and

only if µ1(x) = µ2(x), x ∈ D, and C2(x1, x2)−C1(x1, x2) is the covariance function of a

Gaussian random field on D; {Z1(x) − µ1(x), x ∈ D}
p

� {Z2(x) − µ2(x), x ∈ D} if and

only if C2(x1, x2) − C1(x1, x2) is the covariance function of a Gaussian random field on

D.
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5 Conclusion

Boming: could you please write a conclusion? I put the Introduction you wrote earlier

here. Please modify them and make it more concise. Conclusion should be stated in the

past tense. It summarizes what we did in this paper.

In this paper, a new class of elliptically contoured random fields are introduced. Its

density function is a form of the sum of a series of modified Bessel functions, so we call

it the K-differenced random field. Further, we prove that its any finite moment exists

and has a close form of expression. Comparing with the Guassian distribution, we find

that the K-differenced random field is more peaked and has heavier tail. Considering the

usual stochastic order, the convex order and the peakedness order, some necessary and

sufficient conditions are obtained. It is shown that the peakedness order and the usual

stochastic order are correspondent for the K-differenced random fields. In addition, we

find that the peakedness order of the K-differenced random field is decided by the usual

stochastic order of the given random vector U and we also provide the sufficient and/or

necessary conditions for the stochastic ordering of U under different configurations of its

parameters. Then by the results, we could have a sense of how the structural parameters

in U would impact the peakedness order of the K-differenced random vector Z.
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A Proof of Lemma 1

Note that
1

c0

=

∫ ∞
0

1

u2λ/`+1

{∏̀
k=1

(
e−ν0u

2 − e−νku2
)}

du.

Replacing u2 with v, we get

2

c0

=

∫ ∞
0

1

vλ/`+1

{
e−`ν0v −

∑̀
k=1

e−(νk+(`−1)ν0)v +
∑̀
k1<k2

e−(νk1+νk2+(`−2)ν0)v − · · ·+ (−1)`e−
∑`
k=1 νkv

}
dv.

By (2.1) in Alsultan and Ma (2019), for 0 < λ < 1,

2

c0
=

Γ(1− λ
` )
(
−(`ν0)

λ
` +

∑`
k=1(νk + (`− 1)ν0)

λ
` −

∑`
k1<k2

(νk1 + νk2 + (`− 2)ν0)
λ
` − · · ·+ (−1)`+1(

∑`
k=1 νk)

λ
`

)
λ/`

,

and for λ = 0,

2

c0

= − ln(`ν0) +
∑̀
k=1

ln (νk + (`− 1)ν0)−
∑̀
k1<k2

ln (νk1 + νk2 + (`− 2)ν0) + · · ·+ (−1)`+1 ln(
∑̀
k=1

νk).

Hence, the results follow.

B Proof of Lemma 2

Note that

EU j =

∫ ∞
0

c0u
j−1−2λ/`

∏̀
k=1

(
e−ν0u

2 − e−νku2
)
du,

where c0 is defined in Lemma 1.

(1) When j > 2λ/`, by formula (15) of Bateman (1954), page 313, i.e.,
∫∞

0
us−1e−au

h
du

= h−1a−s/hΓ(s/h) for s, a, h > 0, we get

EUj =
λ
`

Γ( j
2
− λ

`
)

Γ(1− λ
`

)

(`ν0)
λ
`
− j

2 −
∑`
k=1(νk + (`− 1)ν0)

λ
`
− j

2 +
∑`
k1<k2

(νk1 + νk2 + (`− 2)ν0)
λ
`
− j

2 − · · ·+ (−1)`(
∑`
k=1 νk)

λ
`
− j

2

−(`ν0)
λ
` +

∑`
k=1(νk + (`− 1)ν0)

λ
` −

∑`
k1<k2

(νk1 + νk2 + (`− 2)ν0)
λ
` + · · ·+ (−1)1+`(

∑`
k=1 νk)

λ
`

,
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for 0 < λ < 1, and

EU j = Γ(
j

2
)

(`ν0)−
j
2 −

∑`
k=1(νk + (`− 1)ν0)−

j
2 +

∑`
k1<k2

(νk1 + νk2 + (`− 2)ν0)−
j
2 − · · ·+ (−1)`(

∑`
k=1 νk)−

j
2

− ln(`ν0) +
∑`
k=1 ln (νk + (`− 1)ν0)−

∑`
k1<k2

ln (νk1 + νk2 + (`− 2)ν0) + · · ·+ (−1)`+1 ln(
∑`
k=1 νk)

,

for λ = 0.

(2) When j = 2λ/`, by (2.1) in Alsultan and Ma (2019), we get

EUj =
− ln(`ν0) +

∑`
k=1 ln(νk + (`− 1)ν0)−

∑`
k1<k2

ln(νk1 + νk2 + (`− 2)ν0) + · · ·+ (−1)`+1 ln(
∑`
k=1 νk)

−(`ν0)
λ
` +

∑`
k=1(νk + (`− 1)ν0)

λ
` −

∑`
k1<k2

(νk1 + νk2 + (`− 2)ν0)
λ
` + · · ·+ (−1)1+`(

∑`
k=1 νk)

λ
`

,

for 0 < λ < 1.

(3) When 0 < j < 2λ/`, by (2.1) in Alsultan and Ma (2019), we get

EUj =
Γ(1− λ

2
+ j

2
)

λ
2
− j

2

−(`ν0)
λ
`
− j

2 +
∑`
k=1(νk + (`− 1)ν0)

λ
`
− j

2 −
∑`
k1<k2

(νk1 + νk2 + (`− 2)ν0)
λ
`
− j

2 + · · ·+ (−1)`+1(
∑`
k=1 νk)

λ
`
− j

2

−(`ν0)
λ
` +

∑`
k=1(νk + (`− 1)ν0)

λ
` −

∑`
k1<k2

(νk1 + νk2 + (`− 2)ν0)
λ
` + · · ·+ (−1)1+`(

∑`
k=1 νk)

λ
`

,

for 0 < λ < 1.

C Proof of Lemma 3

Note that
EZj = E(UZ0 + µ)j

= E

(
j∑
i=1

(
j
i

)
(UZ0)iµj−i

)

=

j∑
i=1

(
j
i

)
E(U i)E(Z0

i)µj−i.

For EZi0, we have EZi0 = 0 if i is odd, and EZi0 = 2
i
2 σi√
π

Γ( i+1
2

) = σi(i − 1)!! if i is even.

Consequently, EZ = µ and

E(Zj) =
∑

1≤k≤j/2

(
j

2k

)
E(U2k)σ2k(2k − 1)!!µj−2k, j ≥ 2.
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Similarly, for j ≥ 1,

E(Z− µ)j = E(U j)E(Z0
j) =

{
0, if j is odd,

σj(j − 1)!!E(U j), if j is even.

D Proof of Lemma 4

By definition,

fZ(z)

=
∂m

∂z1 · · · ∂zm
P (Z ≤ z)

=
∂m

∂z1 · · · ∂zm

∫ ∞
0

P (uZ0 + µ ≤ z)fU(u) du

=

∫ ∞
0

u−mfZ0(
z− µ
u

)fU(u) du

=(2π)−m|Σ|−1/2

∫ ∞
0

u−m exp

(
− 1

2u2
(z− µ)′Σ−1(z− µ)

)
fU(u) du (10)

=2−(m+2)/2π−m/2|Σ|−1/2

∫ ∞
0

v(−m+1)/2 exp

(
− 1

2v
(z− µ)′Σ−1(z− µ)

)
fU(
√
v) dv

=c|Σ|−1/2


(

(z− µ)′Σ−1(z− µ)

`ν0

)− 2λ/`+m
4

K 2λ/`+m
2

(√
2(z− µ)′Σ−1(z− µ)`ν0

)

−
∑̀
k=1

(
(z− µ)′Σ−1(z− µ)

νk + (`− 1)ν0

)− 2λ/`+m
4

K 2λ/`+m
2

(√
2(z− µ)′Σ−1(z− µ)(νk + (`− 1)ν0)

)
+
∑̀
k1<k2

(
(z− µ)′Σ−1(z− µ)

νk1 + νk2 + (`− 2)ν0

)− 2λ/`+m
4

K 2λ/`+m
2

(√
2(z− µ)′Σ−1(z− µ)(νk1 + νk2 + (`− 2)ν0)

)
+ · · ·

+(−1)`

(
(z− µ)′Σ−1(z− µ)∑`

k=1 νk

)− 2λ/`+m
4

K 2λ/`+m
2


√√√√2(z− µ)′Σ−1(z− µ)

∑̀
k=1

νk

 ,
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where c = 2
2λ/`−m

4 π−m/2c0, and the last equality follows from formula 3.471 of Jeffrey and

Zwillinger (2007), i.e., ∫ ∞
0

us−1e−
x
u
−vu du =2

(x
v

)s/2
Ks(2

√
xv),

and the property of Bessel function, which is Ks = K−s.

E Proof of Lemma 5

By definition,

E exp(iZ′ω) = exp(iµ′ω)E exp(iU(Z0))

= exp(iµ′ω)

∫ ∞
0

E exp(iuZ′0ω)fU(u) du

= exp(iµ′ω)

∫ ∞
0

exp(−u
2

2
ω′Σω)fU(u) du

=
c0

2
exp(iµ′ω)

∫ ∞
0

exp(−v
2
ω′Σω)

1

vλ/`+1

{∏̀
k=1

(
e−ν0v − e−νkv

)}
dv.

When 0 < λ < 1, by (2.1) in Alsultan and Ma (2019) we have

E exp(iZ′ω) =
c0Γ(1− λ

`
)

2λ/`
exp(iµ′ω)

{
−
(
ω′Σω

2
+ `ν0

)λ
`

+
∑̀
k=1

(
ω′Σω

2
+ νk + (`− 1)ν0

)λ
`

−
∑̀
k1<k2

(
ω′Σω

2
+ vk1 + vk2 + (`− 2)ν0

)λ
`

+ · · ·+ (−1)`+1

(
ω′Σω

2
+
∑̀
k=1

vk

)λ
`

 ,

and when λ = 0,

E exp(iZ′ω) =
c0

2
exp(iµ′ω)

(
− ln(

ω′Σω

2
+ `ν0) +

∑̀
k=1

ln(
ω′Σω

2
+ νk + (`− 1)ν0)

−
∑̀
k1<k2

ln(
ω′Σω

2
+ vk1 + vk2 + (`− 2)ν0) + · · ·+ (−1)`+1 ln(

ω′Σω

2
+
∑̀
k=1

vk)

)
,
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for ω ∈ Rm.

F Proof of Lemma 6

By Theorem 1 of Wang and Ma (2018) we get the result directly.

G Proof of Theorem1

We first consider the case when m = 1.

By the definition, we should prove that

P (|UY (x)| > y − y0) ≤ P (
√

E(U2)Y (x) > y − y0),

or ∫ ∞
0

P (|Y (x)| > y − y0

u
)fU(u) du ≤ P (|Y (x)| > y − y0√

E(U2)
), y ≥ y0.

The last inequality is the same as∫ ∞
0

(
1

2
− P (|Y (x)| > y − y0

u
)

)
fU(u) du ≤ 1

2
− P (|Y (x)| > y − y0√

E(U2)
)

for y ≥ y0, then we just need to show

∫ ∞
0

1
2
− P (|Y (x)| > y−y0

u
)

y − y0

fU(u) du ≥ P (|Y (x)| >
1
2
− P (|Y(x)| > y−y0√

E(U2)
)

y − y0

, y ≥ y0.

Note that

lim
y→y0+

1
2
− P (|Y (x)| > y−y0

u
)

y − y0

=
1

u
√

2πV ar(Y (x)

and

lim
y→y0+

1
2
− P (|Y (x)| > y−y0√

E(U2)
)

y − y0

=
1√

E(U2)
√

2πV ar(Y (x)
.

Hence we just need to show ∫ ∞
0

1

u
fU(u) du ≥ 1√

E(U2)
.
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Consider the case when U becomes Weibull random variable, i.e.λ = 0, ` = 1 and ν1 → ν0,

we have E(U2) = 1
ν0

and
∫∞

0
1
u
fU(u) du =

∫∞
0

du =
√
πν0 >

1√
E(U2)

, the proof is complete.

H Proof of Theorem 2

Denote by FUk(u) the cumulative distribution function of Uk. Since Uk and Yk are inde-

pendent, we have, for any A ∈ Am, where Am denotes the class of compact, convex, and

symmetric (about the origin) sets in Rm,

P (Zk − µk ∈ A) = P (UkYk ∈ A) =

∫ ∞
0

P (uYk ∈ A) dFUk(u), k = 1, 2.

Since Σ2−Σ1 is non-negative definite, it follows from Lemma 6 that uY1

p

� uY2 for any

u ≥ 0, so that

P (Z1 − µ1 ∈ A) ≥
∫ ∞

0

P (uY2 ∈ A) dFU1(u)

≥
∫ ∞

0

P (uY2 ∈ A) dFU2(u)

= P (Z2 − µ2 ∈ A),

where the second inequality is due to the fact that U1 �st U2. The proof is complete.

I Proof of Theorem 3

Since Z1 − µ1

p

� Z2 − µ2, we have e′jU1Y1

p

� e′jU2Y2 due to Proposition 2.5 of Olkin

and Tong (1998), where ej = (0, . . . , 1, . . . , 0)′ are standard basis of Rm, j = 1, . . . ,m.

Thus, U1|e′jY1| �st U2|e′jY2|. Hence E(U1|e′jY1|)n ≤ E(U2|e′jY2|)n for n > 0. Because

Uk is independent of Yk and Y1 =st Y2, we have EUn
1 ≤ EUn

2 .
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J Proof of Theorem 4

1. We first prove the sufficiency. For any convex function g,

Eg(Z1) =Eg(U1Y1 + µ1)

=

∫ ∞
0

Eg(uY1 + µ1) dFU1(u)

=

∫ ∞
0

Eg(uY1 + µ2) dFU2(u)

≤
∫ ∞

0

Eg(uY2 + µ2) dFU2(u)

=Eg(Z2),

where FUk(u) is the cumulative distribution function of Uk, and the inequality follows

from the fact that uY1 + µ2 �cx uY2 + µ2. Hence, Z1 �cx Z2.

Next we prove the necessity. Note that Z1 �cx Z2. The inequality Eg(Z1) ≤ Eg(Z2)

holds for any convex function g. First, taking g(Z) = Z yields µ1 ≤ µ2, and

then taking g(Z) = −Z yields µ1 ≥ µ2. Hence, we have µ1 = µ2. Let g(Z) =

(a′(Z − µ1))2 for any a 6= 0 ∈ Rm, which is a convex function. It follows that

E(U2
1 )E(a′Y1)2 ≤ E(U2

2 )E(a′Y2)2. Since U1 =st U2, we have E(a′Y1)2 ≤ E(a′Y2)2

and thus a′(Σ2 − Σ1)a ≥ 0, i.e., Σ2 − Σ1 ≥ 0.

2. The “if” part follows directly from Theorem 2. To prove the “only if” part, define

two random variables Xk = a′(Zk −µk) for a 6= 0 ∈ Rm, k = 1, 2. Since Z1−µ1

p

�
Z2 − µ2, by Proposition 2.5 of Olkin and Tong (1998), X1

p

� X2, which implies

that |X1|n �st |X2|n. Hence, we have E(U2
1 )E|a′Y1|2 ≤ E(U2

2 )E|a′Y2|2 and thus

E|a′Y1|2 ≤ E|a′Y2|2 because of the fact U1 =st U2. As a consequence, Σ2−Σ1 ≥ 0.
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3. We first prove the sufficiency. For any increasing function g,

Eg(Z1) =Eg(U1Y1 + µ1)

=

∫ ∞
0

Eg(uY1 + µ1) dFU1(u)

=

∫ ∞
0

Eg(uY2 + µ1) dFU2(u)

≤
∫ ∞

0

Eg(uY2 + µ2) dFU2(u)

=Eg(Z2),

where FUk(u) is the cumulative distribution function of Uk, and the inequality follows

from the fact that uY2 + µ1 �st uY2 + µ2. Hence, Z1 �st Z2.

We next prove the necessity. Since Z1 �st Z2, Eg(Z1) ≤ Eg(Z2) for all increasing

function g. With g(Z) = Z, we have µ1 ≤ µ2.

By Theorem 6.B.16(c) of Shaked and Shanthikumar (2007), we also have e′jZ1 �st
e′jZ2 where ej = (0, . . . , 1, . . . , 0)′ are standard basis of Rm, j = 1, . . . ,m. Recall

that, as in (10),

fe′jZk(z) = (2π)−1|σ2
k,jj|−1/2

∫ ∞
0

u−1 exp

(
− 1

2u2σ2
k,jj

(z − µk,j)2

)
fU(u) du,

where σ2
k,jj = e′jΣkej, µk,j = e′jµk, and fU(u) is the density function of U defined

in (2). Because e′jZ1 �st e′jZ2,∫ z

−∞
(fe′jZ2

(z)− fe′jZ1
(z))dz ≤ 0, (11)∫ ∞

z

(fe′jZ2
(z)− fe′jZ1

(z))dz ≥ 0, (12)

for all z. We will show that σ2
1,jj = σ2

2,jj. If σ2
1,jj < σ2

2,jj, then

lim
z→−∞

(
z − µ1,j

σ1,jj

)2 − (
z − µ2,j

σ2,jj

)2

= lim
z→−∞

[
(

1

σ1,jj

+
1

σ2,jj

)(−z) + (
µ1,j

σ1,jj

+
µ2,j

σ2,jj

)

] [
(

1

σ1,jj

− 1

σ2,jj

)(−z) + (
µ1,j

σ1,jj

− µ2,j

σ2,jj

)

]
=∞.
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Thus, for any large M > 0, we can always find a z0 = −(aM + b), where a, b > 0,

such that (
z−µ1,jj
σ1,jj

)2 − (
z−µ2,jj
σ2,jj

)2 is greater than 2M2 for any z < z0. Then we have∣∣∣∣σ1,jj

σ2,jj

∣∣∣∣ exp

{
1

2u2
(
z − µ1,jj

σ1,jj

)2 − 1

2u2
(
z − µ2,jj

σ2,jj

)2

}
− 1 ≥

∣∣∣∣σ1,jj

σ2,jj

∣∣∣∣ exp

{
M2

u2

}
− 1.

Next, we want to show that

∫ z0

−∞

∫ ∞
0

(2πu)−1


∣∣∣σ1,jjσ2,jj

∣∣∣ exp
{
M2

u2

}
− 1

|σ2
1,jj|1/2 exp

(
1

2u2σ2
1,jj

(z − µ1,j)2
)
 fU(u) dudz

is positive, if σ2
1,jj < σ2

2,jj. To prove this, re-express the integral as T1− T2, where

T1 =

∫ z0

−∞

∫ uM

0

(2πu)−1


∣∣∣σ1,jjσ2,jj

∣∣∣ exp
{
M2

u2

}
− 1

|σ2
1,jj|1/2 exp

(
1

2u2σ2
1,jj

(z − µ1,j)2
)
 fU(u) dudz > 0

and

T2 =

∫ z0

−∞

∫ ∞
uM

(2πu)−1

 1−
∣∣∣σ1,jjσ2,jj

∣∣∣ exp
{
M2

u2

}
|σ2

1,jj|1/2 exp
(

1
2u2σ2

1,jj
(z − µ1,j)2

)
 fU(u) dudz > 0

with uM = M(log(σ2,jj/σ1,jj))
−1/2. By Fubini’s theorem we can rewrite T1 and T2

as

T1 =

∫ uM

0

∫ z0

−∞

1√
2π|σ1,jj |u

exp

(
− 1

2u2σ2
1,jj

(z − µ1,j)
2

)
dz

1√
2π

(∣∣∣∣σ1,jj

σ2,jj

∣∣∣∣ exp

{
M2

u2

}
− 1

)
fU (u) du

and

T2 =

∫ ∞
uM

∫ z0

−∞

1√
2π|σ1,jj |u

exp

(
− 1

2u2σ2
1,jj

(z − µ1,j)
2

)
dz

1√
2π

(
1−

∣∣∣∣σ1,jj

σ2,jj

∣∣∣∣ exp

{
M2

u2

})
fU (u) du.

Note that for W ∼ N(0, 1), its tail has a lower bound and an upper bound(
−1

x
+

1

x3

)
e−x

2/2

√
2π
≤ P {W ≤ x} ≤ −1

x

e−x
2/2

√
2π
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for all x < 0. Replace
z0−µ1,jj
σ1,jj

by z′, and choose proper a, b such that uM < −z′.
Then we have

T1 ≥
∫ uM

0

(2π)−1

(∣∣∣∣σ1,jj

σ2,jj

∣∣∣∣ exp

{
M2

u2

}
− 1

)(
− u
z′

+ (
u

z′
)3
)

exp

{
− z′2

2u2

}
fU(u) du

and

T2 ≤
∫ ∞
uM

(2π)−1

(
1−

∣∣∣∣σ1,jj

σ2,jj

∣∣∣∣ exp

{
M2

u2

})
u

−z′
exp

{
− z′2

2u2

}
fU(u) du

≤
∫ ∞
uM

(2π)−1 u

−z′
exp

{
− z′2

2u2

}
fU(u) du.

Choose 0 < M0 < uM such that(∣∣∣∣σ1,jj

σ2,jj

∣∣∣∣ exp

{
M2

M0
2

}
− 1

)(
1− (

M0

z′
)2

)
> 1.

Then we have

T1 >

∫ M0

0

(2π)−1 u

−z′
exp

{
− z′2

2u2

}
fU(u) du

+

∫ uM

M0

(2π)−1

(∣∣∣∣σ1,jj

σ2,jj

∣∣∣∣ exp

{
M2

u2

}
− 1

)(
− u
z′

+ (
u

z′
)3
)

exp

{
− z′2

2u2

}
fU(u) du.

Let

S =

∫ ∞
0

(2π)−1 u

−z′
exp

{
− z′2

2u2

}
fU(u) du.

Define a new random variable Ũ with density function h(u) = (2πS)−1 u
−z′ exp

{
− z′2

2u2

}
fU(u).

Note that the mean of Ũ is greater than the median. To see this, first consider a

simple case: ` = 1, λ = 0, and ν0 → ν1 = 2. Then fU(u) = 4u exp(−2u2). We

have E(Ũ) = z′
1
2
K2(−2z′)
K 3

2
(−2z′)

. Note that K2(−2z′) − K 3
2
(−2z′) → 0 as M → ∞. So

limM→∞
E(Ũ)√

aM+b+µ1,jj
|σ1,jj |

= 1, which indicates E(Ũ) < M0 as M → ∞. For general

cases, using a similar argument, one could show that E(Ũ) is smaller than M0 when
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M is sufficiently large. Hence, there exists a ε > 0 such that∫ M0

0

(2π)−1 u

−z′
exp

{
− z′2

2u2

}
fU(u) du ≥ S

2
+ ε

and ∫ ∞
uM

(2π)−1 u

−z′
exp

{
− z′2

2u2

}
fU(u) du

<

∫ ∞
M0

(2π)−1 u

−z′
exp

{
− z′2

2u2

}
fU(u) du

≤ S

2
− ε.

We get T1 − T2 > (S
2

+ ε) − (S
2
− ε) = 2ε > 0, which contradicts (11). So we must

have σ2
1,jj ≥ σ2

2,jj. However, if σ2
1,jj > σ2

2,jj, using a similar argument, we have

σ2
1,jj ≤ σ2

2,jj. As a result, σ2
1,jj = σ2

2,jj holds for all j = 1, . . . ,m.

Next we consider the covariance. Note that the variance of e′iZk + e′jZk is σk,ii
2 +

σk,jj
2 + 2σk,ij, and by Theorem 6.B.16(c) of Shaked and Shanthikumar (2007), we

have e′iZ1 + e′jZ1 �st e′iZ2 + e′jZ2. Using a similar argument, we can show that

σ2
1,ii + σ2

1,jj + 2σ1,ij = σ2
2,ii + σ2

2,jj + 2σ2,ij, which implies σ1,ij = σ2,ij for all i and

j. Hence Σ1 = Σ2.

K Proof of Lemma 7

1. We first prove the ”only if” part. By (7) and Lemma 2, it is necessary that EU1
2 ≤

EU2
2 for all νj, j ≤ `. By Taylor’s theorem,

lim
νj→ν0,j=1,...,`

EU2
k =

∫∞
0
u−λk/`+`e−`ν0udu∫∞

0
u−1−λk/`+`e−`ν0udu

=
Γ(1 + `− λk/`)
`ν0Γ(`− λk/`)

=
`− λk/`
`ν0

,

for 0 ≤ λk < 1. We must have `−λ1/`
`ν0
≤ `−λ2/`

`ν0
and thus, λ1 ≥ λ2.

We next show the “if” part. As νj,1 = νj,2 for j = 0, 1, . . . , `, the ratio of two density

functions
fU2(u)

fU1(u)
=
c02

c01

u2(λ1−λ2) (13)

is increasing in u > 0, which implies that U1 is smaller than U2 in the likelihood

ratio order, and thus U1 �st U2 (see Theorems 1.C.1 and 1.B.1 of Shaked and
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Shanthikumar (2007)).

2. We just need to show that the ratio
∏̀
j=1

e−ν0,2u−e−νju

e−ν0,1u−e−νju
is increasing in u, which is

equivalent to the fact that
ν0,2−νj

1−exp((ν0,2−νj)u)
≤ ν0,1−νj

1−exp((ν0,1−νj)u)
holds for every j. Let

vk = ν0,k − νj ≥ 0. Then v1 ≥ v2 ≥ 0. So we need to show v
1−euv is increasing in

v ≥ 0. Since d
dv

v
1−euv = 1+uveuv−euv

(1−euv)2
≥ 0 always holds for v ≥ 0, the result follows.

3. By (7) and Lemma 2, it is necessary that EU1
2 ≤ EU2

2. Consider ν1,1 = ν1,2 = 1 and

λ = 0. Then EU2 = 1−ν0−1

ln ν0
. Since d

dν0
EU2 = ln ν0−(ν0−1)

(ν0 ln ν0)2
≤ 0, EU2 is a decreasing

function of ν0. Hence ν0,1 ≥ ν0,2.

4. By (7) and Lemma 2, it is necessary that EU1
2 ≤ EU2

2. For ` = 2, consider

νj,1 = νj,2 = 1 and λ = 0. Then we have EU2 =
1

2ν0
− 2
ν0+1

+ 1
2

ln(
(ν0+1)2

4ν0
)

. Since ln( (ν0+1)2

4ν0
) =

ln(1
4
(ν0 + 1

ν0
+ 2)) is increasing in ν0 ≥ 1 and d

dν0

(
1

2ν0
− 2

ν0+1

)
= (1−ν0)(1+3ν0)

2ν02(ν0+1)2
≤ 0,

EU2 is a decreasing function of ν0. So ν0,1 ≥ ν0,2.

L Proof of Lemma 8

By definition,

E exp

(
i

n∑
k=1

Z′(x)ωk

)

= exp

(
i

n∑
k=1

µ′(xk)ωk

)
E exp

(
i

n∑
k=1

UZ′0(xk)ωk

)

= exp

(
i

n∑
k=1

µ′(xk)ωk

)∫ ∞
0

E exp

(
i

n∑
k=1

uZ′0(xk)ωk

)
fU(u) du

= exp

(
i

n∑
k=1

µ′(xk)ωk

)∫ ∞
0

exp

(
−u

2

2

n∑
i=1

n∑
j=1

ω′
iC(xi, xj)ωj

)
fU(u) du,

=
c0

2
exp

(
i

n∑
k=1

µ′(xk)ωk

)

×
∫ ∞

0

exp

(
−v

2

n∑
i=1

n∑
j=1

ω′
iC(xi, xj)ωj

)
1

vλ/`+1

{∏̀
k=1

(
e−ν0v − e−νkv

)}
dv,
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for ωk ∈ R, xk ∈ D, k = 1, . . . , n, where the last equality follows by replacing u2 with v.

When 0 < λ < 1, by (2.1) of Alsultan and Ma (2019) we have

E exp

(
i

n∑
k=1

Z′(x)ωk

)
=
c0Γ(1− λ

`
)

2λ/`
exp

(
i

n∑
k=1

µ′(xk)ωk

)−
(∑n

i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ `ν0

)λ
`

+
∑̀
k=1

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ νk + (`− 1)ν0

)λ
`

−
∑̀
k1<k2

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ νk1 + νk2 + (`− 2)ν0

)λ
`

+ · · ·+ (−1)`+1

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+
∑̀
k=1

νk

)λ
`

 .

When λ = 0,

E exp

(
i

n∑
k=1

Z′(x)ωk

)
=
c0

2
exp

(
i

n∑
k=1

µ′(xk)ωk

){
− ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ `ν0

)

+
∑̀
k=1

ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ νk + (`− 1)ν0

)

−
∑̀
k1<k2

ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+ νk1 + νk2 + (`− 2)ν0

)

+ · · ·+ (−1)`+1 ln

(∑n
i=1

∑n
j=1ω

′
iC(xi, xj)ωj

2
+
∑̀
k=1

νk

)}

for ωk ∈ R, xk ∈ D, k = 1, . . . , n, where c0 is given in 1.

M Proof of Theorem 6

1. For the “only if” part, because {Z1(x)− µ1(x), x ∈ D}
p

� {Z2(x)− µ2(x), x ∈ D},
by Theorem 4 in Wang and Ma (2018) we have E(U1)j ≤ E(U2)j holds for any

positive j. Recall the proof of the first conclusion of 7 then we get λ1 ≥ λ2. For the

“if” part, because λ1 ≥ λ2, then by 7 we have U1 �st U2. Thus, by Corollary 3.2 in
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Wang and Ma (2018), the result follows.

2. Similarly, the result directly follows from Corollary 3.2 and Theorem 4 in Wang and

Ma (2018) and Lemma 7.
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(a) m = 1, λ = 0, and ν0 = 20, 50, 100 (b) m = 1, ν0 = 20, and λ = 0, 0.5, 0.9

(c) m = 1, ν0 = 20, and λ = 0, 0.5, 0.9

(d) m = 2, λ = 0, and ν0 = 20, 100 (e) m = 2, λ = 0, and ν0 = 20

Figure 1: Density function of Z, with Σm = Im µ = 0, ν1 = ν2 = 15, and ` = 2.
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