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Abstract

The congruence tactic built into the Coq proof management system allows for

solving entailment of closed equalities with uninterpreted function symbols. In this

project we build a congruence tactic that works with multiple relations. My the-

oretical contribution is to describe a translation from entailments in a generalized

form of congruence into the traditional form that existing algorithms can solve. The

tactic makes use of this transformation, as well as an implementation of congruence

closure, to solve Coq goals involving multiple relations.
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Chapter 1

Introduction

1.1 Domain

Congruence relations are important in mathematics. Congruence closure is an im-

portant algorithm for working with congruence relations, it allows us to surprisingly

e�ciently answer the question: �does one �nite set of equations imply a speci�c

equation?� While this problem is answerable without considering congruence re-

lations directly, as in the approach described by Ackermann [Ack54], considering

congruence relations allow for e�cient algorithms, such as the one described by

Nelson and Oppen, [NO80] for the question as well as more broad applications.

One such application lives is within Coq the interactive theorem prover Coq. In

Coq proofs are built up out of tactics. One such tactic is the congruence tactic which

is powered by an extended version of the congruence closure algorithm devised by

Corbineau [Cor01] in 2001 that allows for the generation of proofs. This tactic allows

the user to automatically solve goals using properties of equality.
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1.2 Objective

My objective was to generalize this tactic to be able to work with relations beyond

equality, such as equivalence in modular arithmetic. Furthermore we want our tactic

to be able to able work with several such congruence relations simultaneously.

1.3 Contribution

My theoretical contribution is a translation from a more general form of the en-

tailment problem that allows for multiple relations into the traditional entailment

problem solved by congruence closure.

My implementation contribution is a tactic implementing this translation. It is

of note that the built-in congruence tactic is implemented as a Coq Plugin, whereas

our tactic is implemented in the new Ltac2 meta-programing language.

1.4 Related Work

The �rst work cited as showing the decidability of entailment of �nite uninterpreted

equalities is [Ack54]. Kozen [Koz77] used a graph based approach to show that the

problem is P -complete. Nelson and Oppen [NO80] show a quadratic procedure based

o� congruence closure used . They then apply this to the the more speci�c case of

the theory of lists built with cons and nil. Downey, Ravi and Tarjan [DST80] show a

faster method for the same question, viewed though the lens of the common sub ex-

pression problem. Shostak [Sho78] [Sho82] [CLS96] describes yet another approach

and gives a clear proof of the correspondence between congruences and uninter-

preted equalities. Nieuwenhuis [NO05] describes modi�ed congruence algorithms to

produce proofs. Corbineau [Cor01] [Cor06] describes the tagging system used to
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produce proofs by the congruence tactic, and describes the theoretical extensions

behind the congruence tactic's extended support for constructor theory.
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Chapter 2

Background

In this chapter I will discuss the start of entailment of ground equalities. I will

then discuss how this problem can be re-framed in terms of congruence relations,

and how this enables the creation of practical algorithms. Lastly I will explain

how congruence closure powers congruence tactic and how the limitations of the

congruence tactic motivates my tactic and the necessary generalizations.

2.1 Entailment Of Equalities

An entailment of equalities question is structured as follows: �for any interpretation

of the constant symbols and functions such that some �nite set of ground equalities

hold, must another hold?�

This entailment features many properties we are used to working with. Namely

for any terms a, b, and c:

1. any set of equations entails a = a, by the re�exive property of equality

2. a = b entails b = a by the symmetric property of equality

3. a = b and b = c together entail a = c by the transitive property of equality
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4. a = b entails T [a] = T [b] by the substitution property of equality

Example 1. The two equations f(f(f(f(f(x))))) = x and f(f(f(x))) = x together

entail f(x) = x.

We can see this because for any interpretations of f and x, say fM and xM such

that fM(fM(fM(fM(fM(xM))))) = xM and fM(fM(fM(xM))) = xM. By substituting

the �rst equality into the second we conclude that fM(fM(xM)) = xM. By substitut-

ing that new equality into the last we can conclude that fM(xM) = xM, completing

the entailment.

Example 2. The equation f(x, y) = f(y, x) does not entail f(x, f(x, y)) = f(f(y, x), x).

We see this by constructing an interpretation such that the hypotheses holds but

the conclusion does not. An example of an interpretation that works is xM 7→ 2 yM 7→

4 where we interpret fM(a, b) 7→ ab with your interpretation's domain being the

natural numbers. It should be clear that fM(xM, yM) = 24 = 16 = 42 = fM(yM, xM),

while fM(xM, fM(xM, yM)) = 224 6= (42)
2

= fM(fM(yM, xM), xM).

In 1954 Ackermann [Ack54], showed that you can limit the size of any counterex-

ample. Speci�cally given a counterexample, if you restrict the domain to only values

that arise from terms (including subterms) that occur in either the hypothesis or

conclusion, you still have a counterexample.

By limiting the size of a counterexample, it is possible to enumerate all possible

counter examples. This gives a decision procedure for entailment, but not a practical

one. Alone, the small example has 6 unique subterms giving rise to 6 ∗ 6 ∗ 66∗6 ≈

3.71 ∗ 1029 possible counter examples if we take the naive approach.
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2.2 Congruence Relations

It is possible to view entailment of uninterpreted equalities as quantifying over the

interpretation of the equality symbol rather than quantifying over the interpretation

of the term. In this case we ask �if for every congruence relation such that one

�nite set of equations holds, must another hold?� where a congruence relation is

any equivalence relation where each function symbol acts properly on the equivalence

classes.

This is captured by the congruence axiom:1

s1 ∼ t1 . . . sn ∼ tn
CONG

f(s1... sn) ∼ f(t1... tn)

Nelson and Oppen [NO80] show that these two perspectives are equivalent, and

provide an e�cient algorithm for computing inference in congruence relations.

We can work though this for the same examples as above:

Example 3. The two equations f(f(f(f(f(x))))) = x and f(f(f(x))) = x together

entail f(x) = x.

Given some ∼ such that f(f(f(f(f(x))))) ∼ x and f(f(f(x))) ∼ x we can

construct the following inference tree:

f 5(x) ∼ x
SYM

x ∼ f 5(x)

f 3(x) ∼ x
CONG

f 4(x) ∼ f(x)
CONG

f 5(x) ∼ f(f(x))
TRANS

x ∼ f(f(x))
CONG

f(x) ∼ f(f(f(x))) f(f(f(x))) ∼ x
TRANS

f(x) ∼ x

Example 4. The equation f(x, y) = f(y, x) does not entail f(x, f(x, y)) = f(f(y, x), x).

We construct a congruence relation that forms a counterexample:

One such congruence relation that works is t1 ∼ t2 i� the depth of the left-most

constant symbol is identical in both.
1For a rigorous description of this notation, see Chapter 3
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2.3 Coq

To quote the Coq landing page:

Coq is a formal proof management system. It provides a formal lan-

guage to write mathematical de�nitions, executable algorithms and the-

orems together with an environment for semi-interactive development of

machine-checked proofs. [coq]

Well-known applications of Coq includes the veri�ed C compiler and veri�cation

of the four color theorem.

It's important to note that Coq is not a push-button theorem prover, rather

proofs in Coq are built by invoking a series of tactics. These can be push-buttons

for speci�c problems.

2.3.1 The congruence tactic

The congruence tactic was designed by Corbineau in 2001, a few years later he

extended it to include additional support for constructor theory, which he gave

theoretical backing to in a 2006 paper [Cor06].

The tactic takes advantage of the fact that each of the axioms that de�ne a

congruence relations, namely re�exivity, symmetry, transitivity, and congruence are

all provable in Coq. This means that in any Coq proof context, terms being probably

equal is a congruence relation. As such, any inferences derived by congruence closure

can be proven in any Coq context.

Example 5. Following the structure from earlier, the congruence tactic can in-

stantly complete the proof from the following state:

x: nat
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f: nat => nat

H1: f (f (f (f (f x)))) = x

H2: f (f (f x)) = x

===========================

(1/1)

f x = x

For comparison here is the same proof accomplished using the rewrite tactic.

rewrite ← H1 at 1.

rewrite => H2.

exact H2.

Proofs of this sort can quickly become awkward as terms grow large.

2.4 Limitations Of Congruence

The congruence tactic works exclusively on the Logic.eq relations built into Coq.

Logic.eq is de�ned as follows:

Inductive eq (A:Type) (x:A) : A => Prop :=

eq_re� : eq x x

The important thing about this de�nition is that in the case of closed terms it

only holds for terms that can be reduced to identical terms using Coq's computation

method.

This is often stronger than you want. Take for example the rational numbers.

Coq represents these as simply a pair of a signed integer and a positive integer,

representing the numerator and denominator respectively. The e�ect of this is that

you can have two representations of the same rational number that are not Logic.eq,
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for example (2, 4) and (1, 2) both encode 1
2
but are distinct fully reduced terms.

Instead to talk about rational equality you need to use the QEq relation, which is

de�ned to capture rational equivalence. It's important to note that this equivalence

relation of pairs is by no means unique to Coq, the di�erence is that in most contexts

you would immediately quotient

Notice that for some function symbols, QEq provably still obeys the congruence

axiom, for example

a ≈Qeq b c ≈Qeq d
CONG

plus(a, c) ≈Qeq plus(b, d)

With this in mind my goal is to build a congruence tactic that can work with

relations beyond Logic.eq.

2.5 Complications

Unfortunately there are complications that prevent us from directly applying exist-

ing congruence closure algorithms to this scenario.

2.5.1 Partial congruences

There are some function symbols where the congruence axiom is false for some

relations. For example, the Qnum function that extracts the numerator of a rational,

can easily map two rationals that are Qeq onto distinct integers.

2.5.2 Multiple relations

Often times in Coq states you can be considering multiple relations at once, this

becomes an issue when they are for the same sort.
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For example you might want to consider Qeq and Logic.eq at the same time when

using the QRed function which maps rationals into simplest form, for example QRed

(2 / 4)= 1 / 2. This function takes any two rationals that are Qeq and returns

rations that are Logic.eq, we can capture this using a congruence-like axiom.

a ∼Qeq b

Qred(a) ∼eq Qred(b)

In geneal form these congruence axiom take the form

s1 ∼r1 t1 . . . sn ∼rn tn
CONG

f(s1... sn) ∼r′ f(t1... tn)

But this extension isn't compatible with existing congruence closure algorithms.

To see why, it is important to note that most congruence closure algorithms reply on

the fact that you only need to consider terms that are subterms of your hypotheses

or conclusion, but this is not true in the general multi-relation context.

Example 6. Say we have the two congruence inferences:

a ∼2 b

f(a) ∼1 f(b)

a ∼3 b

f(a) ∼1 f(b)

The two equations x ∼2 y and y ∼3 z together entail f(x) ∼1 f(z), but any proof

of this fact must involve the term f(y) which is not a subterm of the conclusion or

the goal.

An common case where this sort of parody can come up is with subrelations. If

∼2 is a subrelation of ∼3, than the second axiom in the example naturally entails

the �rst. As such it will prove helpful to include subrelation inferences in our theory

to help resolve these patterns.
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2.6 Problem

My theoretical contribution is to describe a procedure for removing such patterns,

and once those patterns are removed describe a procedure for mapping entailment

questions in the multi-relation theory into traditional single relation congruence.

From an implementation perspective, the information I need is surfaced by Coq's

typeclasses. Speci�cally of interest are the `Proper' and the `subrelation' typeclasses.

These typeclasses are already used by Coq's support for setoid rewriting, so it is not

unreasonable to expect users to have the information already registered. [Soz]
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Chapter 3

Theory

3.1 Preliminaries

De�nition 7 (Horn Sentence). A Horn sentence is a sentence of the form

∀x1... xm,
∧
i

Pi(ti,1, ... , ti,k)→ Q(u1... uk)

Where each ti,j and each uj is a term over x1... xm.

De�nition 8 (Sorted Set). An S-sorted set is a set X with an associated function

from X to S. We treat X as referring to the set and sortX(t) for any t ∈ X as

referring to the label of t.

We say that two sorted sets are subsets of each other if they are subsets considered

as sets and all of their common elements have the same label.

An equivalent way of viewing sorted sets is to view a S sorted set X = {Xi|i ∈ R}

as a collection of disjoint sets indexed by R. In this notation we say that x ∈ X if

∃i, x ∈ Xi.

These two notions are equivalent by the constructionXi = {x | x ∈ X, sortX(x) =
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s} and sortX(x) = i i� x ∈ Xi.

De�nition 9 (Sorted Set Product). Using the de�nitions sortA×B((a, b)) = (sortA(a), sortB(b))

we can lift the Cartesian product to sorted sets.

Likewise for sortA∗((a1, ... , an)) = (sortA(a1), ... , sortA(an))

De�nition 10 (Term Signature). A term signature is a pair (S,Σ) where Σ is a

S∗ × S-sorted set.

For any f ∈ Σ with sortΣ(f) = ((s1... sn), s) we say that s is the return sort of

f and that n is the arity of f .

The S-sorted set of well-sorted terms T(S,Σ) constructed by �nite applications

of each function symbol.

De�nition 11 (Well-Sorted Relation). We say that a relation ∼ on an S-sorted set

T is well-sortedif and only if for any x, y ∈ T such that x ∼ y, sortT (x) = sortT (y)

Going forward all named relations will be assumed to be well-sorted.

De�nition 12 (Equivalence Relation). An equivalence relation is a relation ∼ that

is transitive, re�exive and symmetric.

De�nition 13 (Uniform Congruence Relation). Let (S,Σ) be a term signature. A

uniform congruence relation is a well-sorted equivalence relation ∼ on T(S,Σ)

such that for all f ∈ Σ, s1... sn, t1... tn ∈ T(S,Σ) such that f(s1... sn) and f(t1... tn)

are well-sorted terms, if for all i, si ∼ ti then f(s1... sn) ∼ f(t1... tn).

This gives rise to inference notation for congruence that we introduced in 2.5.2.

s1 ∼ t1 . . . sn ∼ tn
CONG

f(s1... sn) ∼ f(t1... tn)
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3.2 Formalizing multi-relation congruence

First we need to de�ne what our models are, speci�cally we are going to looking at

families of relations, where each relation operates on a single sort. This is di�erent

from uniform congruence, which considers a single well-sorted relation.

De�nition 14 (Relation Family). Let be (S,Σ) a term signature and R be a S-

sorted set of relation symbols where the sort of of a relation symbol is the sort of

terms related. A relation family is a set of triples of the form (i, x, y) where i is

some member of the index set, and x, y are closed terms such that i, x and y all

have the same sort.

We interpret a relation family ∼ as a family of relations ∼i over the term model

where x ∼i y if and only if (i, x, y) ∈∼.

We say it is an equivalence relation family for each i ∈ R, ∼i forms an

equivalence relation on T(S,Σ)sortR(i).

For the remainder of this section unless otherwise noted we will consider a �xed

S, Σ and R.

De�nition 15 (T -Relation Family). Given T , some class of well-sorted sentences

with relation symbols in R and terms in U , we can say that a relation family is a

T -relation family if it satis�es the assertions of T .

Example 16. Over the term signature ({s0}, {true, false}) with index set R = {1, 2}

where each symbol has arity 0, if we select T to be comprised of the singe sentence

∀xy, (x ∼1 y ∧ y ∼1 x)→ x ∼2 y.

{(1, false, true), (1, true, true)} is not a T -relation family since it doesn't satisfy

the assertions of the second sentence in T .

{(1, false, true), (1, true, true), (2, true, true), (2, false, false)} is a T -relation fam-

ily.
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Lemma 17. When T is a set of Horn sentences, the intersection of T -relation

families is itself a T -relation family.

De�nition 18. Therefore we can conclude that the for some relation family � the

intersection of all T -relation families that include � is a T -relation family, we call

this the T -relation family generated by �.

Next we build a notion of subrelations from an ordering on the index set.

De�nition 19. Given some partial ordering on R set ≤, we say that a relation

family ∼ obeys ≤ if and only if for every r ≤ r′ it satis�es:

s ∼r t SUBRr≤r′s ∼r′ t

Next we need to formalize our list of axioms, to do this we de�ne a congruence

signature which is basically a set form of congruence axioms.

De�nition 20 (Congruence Signature). Given some term signature (S,Σ) and a S-

sorted set R. A congruence signature C is a set of tuples of the form (f, (s1... sn), s)

where f ∈ Σ, s1... sn, s ∈ R such that sortΣ(f) = ((sortR(s1)... sortR(sn)), sortR(s)).

An equivalence relation family with relation symbols R over T(S,Σ), ∼ is a C-

congruence if and only if for each (f, (r1, ... , rn), r) ∈ C, for each s1, ... , sn, t1, ... tn

such that f(s1... sn), f(t1... tn) ∈ T(S,Σ) if for each i, si ∼ri ti then f(s1... sn) ∼r

f(t1... tn)

As this is a Horn sentence we can notate it:

s1 ∼r1 t1 . . . sn ∼rn tn
C

f(s1... sn) ∼r f(t1... tn)

Example 21. In our example the used C is:
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CQ = {(plus, (Qeq,Qeq),Qeq),

(plus, (eq, eq), eq)

(Qred, (Qeq), eq)}

We notice however that this notion of a congruence has implied inferences that

are not included in the set.

Example 22. Consider the signature (S,Σ) = ({k}, {f}) where sortΣ(f) = ((k, k), k)

with R = {a, b, c}, and congruence signature C = {(f, (a, a), c), (f, (b, b), c)}.

Notice that any C-congruence ∼ will also obey the inference associated with

(f, (a, b), c):

s1 ∼a t1 s2 ∼b t2
f(s1, s2) ∼c f(t1, t2)

This is because given any s1, t1, s2, t2 ∈ T(S,Σ)k such that s1 ∼a t1 and s2 ∼b t2,

we know the following:

1. f(s1, s2) ∼c f(t1, s2) because s2 ∼a s2 by re�exivity and (f, (a, a), c) ∈ C

2. f(t1, s2) ∼c f(t1, t2) because t1 ∼b t1 by re�exivity and (f, (b, b), c) ∈ C

We combine these with transitivity to conclude that f(s1, s2) ∼c f(t1, t2).

This proof can be viewed as a tree:

s1 ∼a t1 REFLs2 ∼a s2
C

f(s1, s2) ∼c f(t1, s2)

REFLt1 ∼b t1 s2 ∼b t2
C

f(t1, s2) ∼c f(t1, t2)
TRANS

f(s1, s2) ∼c f(t1, t2)

16



This works because it su�ces to apply the congruence axioms by only changing

one argument at a time, recombining using transitivity. To address this we introduce

a simpli�ed notion of a congruence signature that considers only one argument per

entry.

We follow a similar construction as normal congruence congruence signature, in

essence these capture axioms like those captured by congruence signatures, except

that all but one of the pairs of corresponding arguments are instantiated at the same

terms.

De�nition 23 (Linear congruence signature). A linear congruence signature M is

a set of tuples of the form (f, k, r, r′) ∈ Σ×Z+×R×R where the sort of r matches

the sort of the kth argument of f and the sort of r′ matches the return sort of f .

An equivalence relation family ∼ is a M-congruence linear congruence signature

M if for each (f, k, r, r′) ∈M it satis�es the following axiom:

x ∼r y CONGRM
f(s1, ... sk−1, x, sk+1, ... sn) ∼r′ f(s1, ... sk−1, y, sk+1, ... sn)

De�nition 24 (Induced Linear congruence signature). Given some congruence sig-

nature C we can de�ne an induced linear congruence signature as follows

M(C) = {(f, k, rk, r) | (f, (r1, ... rk, ... , rn), r) ∈ C}

Example 25. In our example the induced M(CQ) is:
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M(C) = {(plus, 1,Qeq,Qeq),

(plus, 2,Qeq,Qeq),

(plus, 1, eq, eq),

(plus, 2, eq, eq),

(Qred, 1,Qeq, eq)}

Example 26. Continuing from Example 22 the induced M(C) is:

M(C) = {(f, 1, a, a),

(f, 2, a, a),

(f, 1, b, a),

(f, 2, b, a), }

Notice here that all induced single argument congruences are now covered.

Next we show formal equivalence between these two perspectives

Lemma 27. An equivalence relation family ∼ with relation symbols R over T(S,Σ)

is a C-congruence if and only if it is a M(C)-congruence.

Proof. Given that ∼ is a C-congruence we need to show that it is also a M(C)-

congruence. To do this we must show that for all (f, k, r, r′) ∈ M(C) if x ∼r y

then f(s1, ... sk−1, x, sk+1, ... sn) ∼r′ f(s1, ... sk−1, y, sk+1, ... sn). By de�nition since

(f, k, r, r′) ∈M(C) we know that for some r1... rn, (f, (r1, ... rk−1, r, rk+1, ... rn), r′) ∈

C. Since ∼ is a C-congruence by re�exivity we know that for each i, si ∼ri si, so so by
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congruence we know that f(s1, ... sk−1, x, sk+1, ... sn) ∼r′ f(s1, ... sk−1, y, sk+1, ... sn).

For the other direction given that ∼ is a M(C)-congruence we need to show that

it is also a C-congruence. To do this we must show that for all (f, (r1... rn), r′) ∈

C, if for all k, sk ∼rk tk then f(s1... sn) ∼r′ f(t1... sn). To do this we let xi =

f(t1... ti, si+1... sn) where x0 = f(s1... sn) and xn+1 = f(t1... tn). For a given i we

observe that by de�nition (f, i, ri) ∈ M(C) since si ∼ri ti this tells us by linear

congruence that xi−1 = f(t1... ti−1, si, si+1... sn) ∼r′ f(t1... ti−1, ti, si+1... sn) = xi.

We conclude that by transitivity f(s1... sn) = x0 ∼r′ x1... xn ∼r′ xn+1 = f(t1... tn).

Corollary 28. For any relation family �.

The C,≤-congruence generated by � is identical to the M(C),≤-congruence gen-

erated by �.

3.3 Reducing to single relation congruence

Now we need to set about reducing multi-relation congruence to a problem in single

relation congruence. The general approach we are going to take is to model multi-

relation congruence in single relation congruence by introducing new terms that

represent an original term paired with a relation. In order to be able to do this, we

need to have a unique choice of relations to consider subterms under, so we de�ne

conditions on a linear congruence signaturethat make this the case:

If a linear congruence signature is total and unique in the second-to-last argument

we say it is a congruence signature function. Formally:

De�nition 29 (Congruence Signature Function). A linear congruence signature M

is a congruence signature function if for each f ∈ Σ, k ∈ Z+ and r ∈ R such that f
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has no more than k arguments and the return sort of r matches the return sort of with

snd(sortARG(Σ)((f, k))) = sortR(r) there exists exactly one rk with (f, k, rk, r) ∈M.

We denote this rk as Θ(f, k, r).

It is of note that a congruence signature function is just a special case of a linear

congruence signature.

We observe that we can easily construct a congruence signature from a con-

gruence signature as follows, if Θ is a congruence signature function than we can

construct a congruence signature

C = {(f, (Θ(f, 1, r)...Θ(f, n, r)), r)}

such that M(C) = Θ.

Example 30. For our running example, we can read the following values for CQ

directly out of of our M(CQ)

CQ(plus, 1,Qeq) = Qeq

CQ(plus, 2,Qeq) = Qeq

CQ(plus, 1, eq) = eq

CQ(plus, 2, eq) = eq

CQ(Qred, 1, eq) = Qeq

Note that this is incomplete, it is missing a value at Θ(Qred, 1,Qeq).

If we consider the subrelation structure however it would be perfectly acceptable
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to add:

Θ(Qred, 1,Qeq) = Qeq

Lets look at what a case where you can't build a morphism function looks like a

simple example is M = {(f, 1, a, c), (f, 1, b, c)} leaves us with an ambiguous value for

Θ(f, 1, c) How could we get this unstuck? Noted in Section 2.5.2, this sort of pattern

often comes up with subrelation structures so say that we had a ≤ b. In this case

the sentence associated with (f, 1, a, c) is redundant, because we can accomplish the

same inference like so:

x ≈a y
a ≤ bx ≈a y

M
f(x) ≈c f(y)

This motivates the de�nition of resolvable, which requires that you have a largest

relation symbol in all con�icts.

De�nition 31 (Resolvable). A linear congruence signature M with ≤ is resolvable

i� for every f ∈ Σ, k ∈ Z+, r′ ∈ R where f has at least k arguments, and the sort of

r′ matches the return sort of f , the set {r|∃a, (f, k, r, a) ∧ a ≤ r′} has a maximum.

In such a case we say that ΘM,≤(f, k, r′) is a function that computes such such a the

maximum of each.

Note that this always holds if ≤ is totally ordered on the relations of each sort.

In our Coq context this will always happen when considering at most one relation

per sort in addition to eq.

Lemma 32. If a linear congruence signature M with an ordering ≤ is resolvable,

than any relation family ∼ is a M,≤-congruence i� it is a ΘM,≤,≤-congruence.

21



Proof. Given that ∼ is a M,≤-congruence we need to show that it is a ΘM,≤,≤-

congruence. To do that we need to show that given some f, k, r′ that satisfy the

bounds given in De�nition 31, we need to satisfy the following Horn sentence:

x ∼ΘM,≤(f,k,r′) y

f(s1, ... sk−1, x, sk+1, ... sn) ∼r′ f(s1, ... sk−1, y, sk+1, ... sn)

By de�nition there must exist some a ∈ R such that a ≤ r′ and (f, k,ΘM,≤(f, k, r′), a) ∈

M. Therefore given some instantiation of the Horn sentence we know that f(... , x, ... ) ∼a

f(... , y, ... ) which since a ≤ r′ tells us that f(... , x, ... ) ∼r′ f(... , y, ... ).

Captured as a proof tree this can be formulated as:

x ∼ΘM,≤(f,k,r′) y
M

f(s1, ... sk−1, x, sk+1, ... sn) ∼a f(s1, ... sk−1, y, sk+1, ... sn)
a ≤ r'

f(s1, ... sk−1, x, sk+1, ... sn) ∼r′ f(s1, ... sk−1, y, sk+1, ... sn)

In the opposite direction, given that ∼ is a ΘM,≤,≤-congruence we want to show

that it is a M,≤-congruence given some (f, k, r, r′) ∈ M we need to satisfy the

following inference:

x ∼r y

f(s1, ... sk−1, x, sk+1, ... sn) ∼r′ f(s1, ... sk−1, y, sk+1, ... sn)

By picking a = r′ then a ≤ r′ so we know that r ∈ {r|∃a, (f, k, r, a)∧ a ≤ r′}. Since

ΘM,≤(f, k, r′) is the maximal element of that set by de�nition r ≤ ΘM,≤(f, k, r′)

therefore we can construct the inference as follows:

x ∼r y ≤x ∼ΘM,≤(f,k,r′) y
ΘM,≤

f(s1, ... sk−1, x, sk+1, ... sn) ∼r′ f(s1, ... sk−1, y, sk+1, ... sn)

Corollary 33. If a linear congruence signature, M with an ordering ≤ is resolvable,

for any relation family �, the M,≤-congruence generated by � is also the ΘM,≤,≤-

congruence generated by �
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Lemma 34. Let Θ be a congruence signature function such that for all a, b if a ≤ b

then Θ(f, k, a) ≤ Θ(f, k, b) and ./ be some relation family that respects ≤. The

Θ-congruence generated by ./ respects ≤.

Proof. Let ∼ be the Θ-congruence generated by ./. We de�ne a new relation family

� as follows: x �r y if and only if for all r′ ≥ r, x ∼r′ y. By de�nition, � respects

≤. Additionally, � is an equivalence relation family.

Lastly to see that � is a Θ-congruence we want to show that:

sk �Θ(f,k,r) tk
CONGRM

f(s1...k−1, sk, sk+1...n) �r f((s1...k−1, tk, sk+1...n)

Because we are given that for all r′ ≥ Θ(f, k, r), sk ∼Θ(f,k,r′) tk and that Θ is

non-decreasing we know that for all r′ ≥ r, sk ∼Θ(f,k,r′) tk. By congruence we can

conclude that for all r′ ≥ r, f(s1...k−1, sk, sk+1...n) ∼r′ f((s1...k−1, tk, sk+1...n).

Therefore � is a Θ-congruence that includes ./, so by de�nition it must include

∼. It should also be clear that ∼ includes �, so ∼= � so ∼ must respect ≤.

Corollary 35. Let Θ be a congruence signature function such that for all a, b if

a ≤ b then Θ(f, k, a) ≤ Θ(f, k, b) and ./ be some relation family that respects ≤.

Let � be some relation family that respects ≤. The Θ-congruence generated by � is

the Θ,≤-congruence generated by �

Once we have a Θ we can construct a our mapping into single relation terms.

We de�ne a new term signature that allows us to encode which relation symbol a

term is being considered under into the sorts.

De�nition 36 (Tagged Signature). Given some function congruence signature Θ

over some term signature (S,Σ) we de�ne a new term signature (R,ΣΘ).

ΣΘ consists of function symbols of the form fr where f ∈ Σ and r ∈ R where the

sort of r and the return sort of f match. These function symbols are sorted according

to θ, so if sortΣ(f) = ((s1... sn), s) then sortΣΘ(fr) = ((Θ(f, 1, r)...Θ(f, n, r)), r).
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We then de�ne a way to map between terms in our original signature and terms

in our new signature:

Lemma 37. For each i ∈ R we can describe a bijection between T(S,Σ)sortR(i) and

T(R,ΣΘ)i

tagΘ(i, f(t1... tn)) = fi(tagΘ(Θ(f, 1, i), t1)... tagΘ(Θ(f, n, i), tn))

untagΘ(fi(t1... tn)) = f(untagΘ(t1)... untagΘ(tn))

Example 38.

tagΘQ
(eq, plus(Qred(a), b))) = pluseq(Qredeq(aQeq), bQeq)

untagΘQ
(Qredeq(plusQeq(aQeq, bQeq))) = Qred(plus(a, b))

De�nition 39. Given a relation family ∼ with relation symbols R over T(S,Σ), we

de�ne a relation ∼tagΘ on T(R,ΣΘ) such that for all r ∈ R, x, y ∈ T(R,ΣΘ)r

x ∼tagΘ y i� untagΘ(x) ∼r untagΘ(y)

Let ./ be a well-sorted relation on T(R,ΣΘ), we de�ne a relation family ∼untagΘ

with relation symbols R over T(S,Σ) such that for all r ∈ R, x, y ∈ T(R,Σ)

x ./untagΘ
r y i� tagΘ(r, x) ./ tagΘ(r, y)

It should be clear that (∼tagΘ)untagΘ =∼ and that (./untagΘ)tagΘ =./.
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Lemma 40. Given a relation family ∼ with relation symbols R over T(S,Σ), ∼ is

a Θ-congruence i� ∼tagΘ is a single relation congruence in (R,ΣΘ).

Equivalently: Given a relation ./ on T(R,ΣΘ), ./ is a single relation congruence

in (R,ΣΘ) i� ./untagΘ is a Θ-congruence.

Proof. Given that ∼ is a Θ-congruence we need to show that ∼tagΘ is a con-

gruence relation. It should be clear that ∼tagΘ is transitive, re�exive and sym-

metric, we need to show that for each fr ∈ ΣΘ the following inference is true

s1 ∼tagΘ t1 . . . sn ∼tagΘ tn
fr(s1... sn) ∼tagΘ fr(t1... tn)

Take some instantiation of the inference where

the hypotheses are true. We know by De�nition 36 that sortΣΘ(fr) = (Θ(f, 1, r)...Θ(f, n, r), r),

so we can conclude that for each i, sortT(R,ΣΘ)(si) = Θ(f, i, r). Therefore since

si ∼tagΘ ti we know that untagΘ(sn) ∼Θ(f,n,r) untagΘ(tn). Because ∼ is a Θ-

congruence, we can therefore conclude that:

f(untagΘ(s1)... untagΘ(sn)) ∼r f(untagΘ(t1)... untagΘ(tn))

But because untagΘ(fr(s1... sn)) = f(untagΘ(s1)... untagΘ(sn)) this also tells us

that untagΘ(fr(s1... sn)) ∼r untagΘ(fr(t1... tn)) and therefore that fr(s1... sn) ∼tagΘ

fr(t1... tn).

In the reverse direction, given that ∼ is a congruence relation, we need to show

that ./untagΘ is a Θ-congruence. It should be clear that ./untagΘ is an equivalence

relation family. Thus we only need to show that the following Horn sentence holds

for any f ∈ Σ r ∈ R.

s1 ./
untagΘ

Θ(f,1,r) t1 . . . sn ./
untagΘ

Θ(f,1,r) tn

f(s1... sn) ./
untagΘ
r f(t1... tn)

Take some instantiation of the sentence where the hypotheses are true. This tells

us that for every k, sk ./
untagΘ

Θ(f,k,r) tk so tagΘ(Θ(f, k, r), sk) ./ tagΘ(Θ(f, k, r), tk). By
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congruence this tells us that:

fr(tagΘ(Θ(f, k, r), sk)... tagΘ(Θ(f, k, r), sk))

./ fr(tagΘ(Θ(f, k, r), tk)... tagΘ(Θ(f, k, r), tk))

But this is equivalent to tagΘ(r, f(s1... sn)) ./ tagΘ(r, f(t1... tn)) which tells us

that f(s1... sn) ./
untagΘ
r f(t1... tn).

Corollary 41. Let � be a with relation symbols R over T(S,Σ).

If ∼ is the congruence in (R,ΣΘ) generated by �
tagΘ, than ∼untagΘ is the Θ-

congruence generated by �.

Theorem 42. Given some congruence signature C such that M(C) is resolvable, let

Θ be the induced congruence signature function as described in De�nition 31.

Let � be some relation family that respects ≤ some relation family representing

a set of ground equations.

If ∼ is the congruence generated by �
tagΘ, than the C,≤-congruence generated

by � is ∼untagΘ.

Proof. By Corollary 41, ∼untagΘ is the Θ-congruence generated by �, which by

Corollary 35 ∼untagΘ is the Θ,≤-congruence generated by �, which by Corollary 33 is

theM(C),≤-congruence generated by � which by Corollary 28 is the C,≤-congruence

generated by �.

Corollary 43. Under the same conditions as Theorem 42,

If � |=C,≤ x ≈r y if and only if �
tagΘ |= tagΘ(r, x) ≈ tagΘ(r, y)

Proof. let∼ be the congruence relation generated by �
tagΘ . By Theorem 42 the C,≤-

congruence generated by � is ∼untagΘ , so � |=C,≤ x ≈r y if and only if x ∼untagΘ
r y if
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and only if tagΘ(r, x) ∼ tagΘ(r, y) if and only if �
tagΘ |= tagΘ(r, x) ≈ tagΘ(r, y).
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Chapter 4

Implementation

The congruence tactic is implemented as a Coq plugin. This means that it is written

using separate OCaml code that coq is instructed to load. Our tactic is on the other

hand was implemented in Ltac2, which can be directly embedded in coq source �les.

Ltac2 is the the successor to Ltac1, the original tactic language for coq. While Ltac1

is a very powerful tool for proof authoring, it lacks features common to most general

purpose langues. This makes it very hard to implement algorithms in Ltac1. Ltac2

on the other hand is built on top of ML and allows many algorithms to be directly

implemented, to the point where building a full congruence closure implementation

becomes feasible. We opted to implement our tactic in Ltac2 rather than as a plugin

for two major reasons:

� Ltac2 is relatively new, having been added with Coq version 8.11.0 in January

of 2020. As such this is an interesting look into what the next generation of

Coq tactics will look like.

� As most of the primitives from Ltac1 are available in Ltac2, if one is already

familiar with Ltac1, Ltac2 will be much easier to learn than the Coq plugin

ecosystem. Particularly, Ltac1 can be called directly from Ltac2, which is
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a shortcut we use in a number of cases to delegate tasks to Coq's existing

systems for setoids.

With this in mind, beyond basic functionality there are two major goals we for

our tactic implementation:

� Create a system with re-usable components, as the Coq Ltac2 tool-set is still

developing, this may allow some components to be reused even if some compo-

nents need to be re-designed to take advantage of new developments. Specif-

ically in our case, while the congruence closure implementation is built to be

separate from the code concerned with coq proof states.

� As accurately as possible mirror algorithms as they would be done in a typical

programming language.

4.1 Components

4.1.1 UFProof.v

This �le provides type de�nitions to abstractly represent an equality proof with

a polymorphic parameter for the type of �axioms�. The type it provides doesn't

provide for congruence axioms, rather it only provides constructors for transitivity,

symmetry, re�exivity and axioms. Congruence is later accomplished by being added

as a axiom.

Though this type does implement minor proof cleaning logic, speci�cally that

symmetry is involutive, and re�exivity is the identity element on transitivity, it does

not attempt to reduce proofs to any sort of a canonical form, and the tactic makes

no guarantees about the exact from of the proof. For the most part this type exists
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as an intermediate structure to defer Coq typechecking of proof terms until the end

and limit it to actually used proofs.

4.1.2 UnionFind.v

This implements a union �nd data structure, following the algorithm described by

Nelson and Oppen [NO80] with a few important modi�cations.

1. Each vertex that is not a representative holds a CCProof that is is equal to

its parent.

2. There is a polymorphic parameter for information stored with the representa-

tive of each class. For CongruenceClosure this is the left and right ancestors,

but this is again left �exible in the interest of keeping components re-usable.

4.1.3 CongruenceClosure.v

This �le implements binary congruence closure over an abstract graph. It follows

the Nelson and Oppen [NO80] algorithm as described in Term Rewriting and All

That [BN99] with the modi�cation that it replaces the recursive call to merge with

appending to a separate stack. The intent of this was simply to make debugging

easier.

The input to this �le is a term graph, represented as an array of optional pairs of

left and right sub-term indexes, and a list of equations with CCProofs. The output

is a union �nd data structure that is the smallest congruence over the term graph

containing the given equations.

30



4.1.4 CCBuilder.v

CCBuilder is a wrapper layer around congruence closure that helps with converting

terms into term graphs, and tracking equalities on those terms.

It provides a data type CCBuilder that supports the following operations:

1. Insert a new term with the given left and right subterms, returning its id

2. Insert a new term treated as a constant symbol

3. Query the existing terms and return the allocated id. If the query doesn't

match, call a callback function that can allocate an id.

4. Record a ground equation between two terms that have been given ids

5. Record a `Goal' pair / disequality, ie a pair of terms that if proven congruent,

would mean that the tactic has succeeded.

6. Run the cc builder, returning the goal pair that is implied by all registered

ground equations.

Unfortunately, this is where a steep price is payed for the environment this tactic

is built in. At the time of writing, Ltac2 lacks any way to hash terms, nor integer

modulo, both of which would be needed to implement this with a fast data structure.

As such our query operations are limited to O(n).

4.1.5 OverEq.v

This �le is not used in the �nal tactic, but serves as a testing ground for the con-

gruence closure logic. As the name implies, it implements congruence over Logic.eq,

using the helpers provided by CCBuilder.v. It consists of three parts:
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1. Logic to convert proofs of type CCProof to actual Coq proofs. Mapping the

di�erent constructors onto di�erent Coq lemmas.

2. A function `addTerm' that takes a Coq term and adds it (if necessary) to a

CCBuilder, returning the allocated id.

3. A function `addEquations' that records all ground equations in the proof state

in a cc builder

4. A function `addGoal' which adds the goal as a disequality to the CCBuilder.

From there some minimal boilerplate combines these together to produce a fully

Ltac2 congruence tactic.

4.1.6 OverSetoid.v

OverSetoid houses the actual tactic implementations. It contains all of the same

parts as OverEq.v, except that they now follow the construction described in our

theory. The most important part of this being the computation of Θ. The com-

putation of Θ is largely delegated to Coq's existing setoid systems. Speci�cally

the value chosen for Θ(f, k, r) is the �rst r′ in the array such that setoid_rewrite

followed by re�exivity can construct a proof of the simpli�ed congruence signature

entry's induced axiom. It is worth noting that we do not generalize over the �rst

k− 1 arguments to f , rather we re-use the values already present in the proof state.

This allows us to avoid the choice of what is considered function symbol and what is

considered arguments. Speci�cally if we can't compute a valid value for Θ we treat

the term we where trying to subdivide as a function symbol.
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4.2 A short manual

The setoid_congruence tactic works as an automatic setoid_rewrite �nisher tactic.

As its arguments it takes a list of relations in decreasing order of size (this condition

is not checked) to consider. The tactic will then �nd a chain of setoid_rewrites

followed by a re�exivity that can solve the current goal.

Limitations:

1. Unlike setoid_rewrite This tactic can not rewrite terms under binders.

2. This tactic is only guaranteed to �nd a solution if the relations provided over

each type are well ordered with respect to subrelation

Note you do not need to list every relation you are using, the tactic will use

subrelation instance to �nd the smallest relations in your list that contains each

hypothesis, and the largest relation in your list su�cient to prove the goal.
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Chapter 5

Conclusions

A natural area of future work would be to relax the condition on our theories that we

assume. While I didn't explore the topic, it seems that it would be possible to do this

by introducing additional relation symbols. Speci�cally I if you could extend the set

of relation symbols to be the power-set of the original relations, where each relation

is interpreted as be the equivalence relation generated by the union of it's members.

We believe that this would always result in a resolvable congruence signature, but an

algorithm that takes this approach would quickly become the victim of combinatorial

explosion.

The implementation also has a lot of possible improvements. A more mature

implementation would check its conditions. Additionally future extensions to the

Ltac2 standard library could result in massive speed improvements. For example,

at the time of writing Ltac2 doesn't include integer division or modulo, which would

be needed to implement the faster algorithm described by Downey, Sethi and Tarjan

[DST80]
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