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I. Abstract 
This project developed an alterable interactive simulation of the present WPI campus 

power grid. The simulation accurately represents the voltage, switch gear, breaker ratings, 

transformer locations, connectivity, and impedance of the actual campus electrical network. This 

electrical information is overlaid on a three-dimensional Geographical Information System (GIS) 

model of the campus showing building locations. Simulation results were verified against actual 

system data. This model will facilitate system studies of campus grid upgrades.  
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1 Introduction 
A stable power source is critical for an ever increasing amount of day-to-day operations for 

homes, businesses and institutions. Increases in severity and frequency of natural disasters have 

amplified the vulnerability of the power grid, in turn putting those who rely on it at risk. For 

critical facilities that provide shelter, medical services, food, etc. a continuous source of electricity 

is of even greater importance. Colleges and universities often house thousands of residents who 

rely on the institution for its services. An outage places these residents in unnecessary and often 

dangerous predicaments. In these types of cases residents may not be able to depart or receive aid 

for an extended period of time. With a high energy demand and a dependent population, “keeping 

the lights on” is an obligation of the institution.  

The solution to mitigating the effects of a vulnerable power grid is a concept known as Micro-

grids0F

1. Micro-grids involve electrical generation and storage of energy on-site at a facility. In the 

event of grid failure, the micro-grid can ensure that critical energy demands are met. These 

systems have the opportunity to be applied to numerous college campuses throughout the United 

States. In particular, at Worcester Polytechnic Institute (WPI) in Worcester, Massachusetts there 

is inadequate redundancy for the campus in the event of a power grid failure. WPI’’s solution for 

power grid failure is to provide standby fossil-fuel based generators which supply temporary 

energy to select loads across the campus; these select loads are deemed critical by WPI.  The 

increased potential of prolonged outages which deplete on-site fuel sources is a call for the 

implementation of a new solution.  

To properly assess the efficacy of further on-site generation and redundancy options, an 

efficient simulation of the WPI power grid is the critical and vital deliverable of this project. 

Through data collected from existing documentation of the campus and numerous campus 

walkdowns (see section 3.2.3) with members of the WPI Facilities department, the team designed 

an operational simulation of WPI’s campus in PowerWorld Simulator software. By creating an 

alterable simulation, the team established an animated model of power flow at WPI as well as a 

database (within PowerWorld) for specifications of components on the campus grid. Beyond this 

project, future IQPs, MQPs and institutional projects will now be able to accurately study the 

feasibility of power grid modifications in a simulated environment before attempting their project 

implementation.    

                                                        
1 A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical 
boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect 
from the grid to enable it to operate in both grid-connected or island-mode. - [1]  
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2 Background 
Increased natural disasters, rising fuel prices, an aging power grid and climate change 

mitigation efforts have created a growing need for cleaner, more efficient on-site energy 

generation. This section begins with a review of the fundamentals of a power system, then 

discusses generation and storage technologies available to implement micro-grids as well as three 

local Worcester colleges that have successfully implemented micro-grids on their campuses. 

Finally, the current energy distribution system and known issues of the power grid at Worcester 

Polytechnic Institute are discussed.   

 

2.1 Fundamentals of the Power Grid 

As seen in Figure 1, power in the traditional power grid is generated from a centralized 

power plant to the loads of the customers.  These sources of power typically are remote from the 

customers and range in the order of megawatts, equivalent to large coal-fired power plants and 

nuclear power plants. In order to minimize losses, generated power is transported to distribution 

stations over long distances at high-voltages (less amperage needed for the same loads) then 

transformed to a smaller voltage to be delivered to end-users by a local utility company. As also 

shown in Figure 1, certain customers, with greater electrical demands are supplied with higher 

voltages from the transmission or distribution level.  

 

 
 

Figure 1 - Electrical Generation, Transmission and Distribution [2] 

 

The fundamental elements of electricity can be compared to the mechanical properties of 

water flow. Voltage (volts), or potential, is similar to the pressure differential of the water in a 

pipe. Current (amperes) is comparable to flow rate or in the case of electricity: the amount of 

electrons moving past a certain point per second. Power (active power) is comparable to the work 

done at a given moment by the water from the pipe, such as spinning a turbine. Active power is 
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measured in watts. Energy is a measure of the power delivered over time, measured in joules or 

watt-seconds.   

 

2.1.1 Multi-Phase Voltages 

The most fundamental form of an AC voltage is expressed by the function, for example, as 

a sine wave: 

 

VPhaseA = Vp * sin((2*60Hz*π*t)+0°) 

 

VP is the scalar (magnitude only), peak voltage value of the sine wave in reference to 

neutral. 60Hz represents the standard for United States AC frequency. The variable “t” 

represents time, in seconds. In a three phase system, as shown in Figure 5, Phase A is shifted 0° 

in reference to Phase B and C. Phases B and C are 120° out of phase of the other 2 phases, 

meaning phase shift values of 120° and 240° respectively. 

Multi-phase voltage systems introduce the concepts of line to line voltages (designated as 

VLL) and line to neutral voltages designated as VLN.  A ‘line’ refers to the conductors attached to 

the phases in a circuit. VLL voltages are measured across two lines in the system while VLN voltages 

are measured from a line to the neutral point in the system. A neutral wire serves as a reference 

point for the voltage of the lines in the circuit and is a return path for the current back to the 

source.   

Phase A can also be represented using the RMS (root mean square) value of the function. 

The RMS value is equivalent to the DC voltage value that produces the same amount of power in 

a resistive load. Vrms is calculated by taking the square root of the mean average of the square of 

the voltage from 0° to 360° of the sine wave. Vrms is calculated using the following equation:   

Vrms = Vp / ◊2. RMS values allow average power to be calculated for time varying voltage and 

current. It is important to note that RMS value is not the average value of a sine wave, as the 

average value of an AC sine wave with a DC offset of 0 is 0 [3]. 

When transforming three phase voltages, high voltage and low voltage side circuit 

configurations are a combination of Delta and Wye (see Figure 2 and Figure 3), designated as such 

for their configuration shapes. The motivation of configuring the high and low side as either Delta 

or Wye depends on the application of the transformer.  

In a delta configuration as seen in Figure 2, the loads are connected between phases A, B 

and C. The voltage obtained across connected loads is VLL.  
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Figure 2 – Delta Circuit Configuration [4] 

 

Wye configurations, as seen in Figure 3, may or may not have a neutral point that is either 

grounded or not grounded at the common point of connection of all three phases. In this circuit, 

VLN = VLL / ◊3 and ILN = ILL. Wye configurations offer the advantage of being able to deliver multiple 

voltage levels.  

 

 
Figure 3 – Wye Circuit Configuration [4] 

 

 

 

 



Page 5 

Four terms refer to ‘power’: apparent, instantaneous, active and reactive. 

 

Apparent Power = Vrms * Irms 

 

Instantaneous Power = V * I 

 

Active Power = Vrms * Irms * cos(θ) ;  

Active Power = 1/T * ∫v(t) * i(t) * dt; T is the period of time  

 

Reactive Power = Vrms * Irms * sin(θ) 

 

Apparent power is the sum of the vectors of the active and reactive power, expressed in 

Volt-Amperes (VA). More simply, it is the product of the RMS values of current and voltage. The 

distinction among these types of power are important in a power systems analysis. The heating of 

a transformer (current flow through the transformer), for instance, is determined from the 

apparent power being delivered. The power triangle in Figure 4 shows the relationship of active, 

reactive and apparent power.   

 

 
Figure 4 – The Power Triangle [3] 

 

Instantaneous power is the product of the instantaneous values of voltage and current at 

a given time.  Active power is the power dissipated by a resistive load.  Power factor, cos(θ), is the 

ratio of active power to apparent power in the circuit. This means a purely resistive load has a 

power factor of 1. When a circuit contains capacitance or inductance, energy is stored and 

discharged from these elements introducing reactive power into the circuit, measured in Volt-
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Amperes-Reactive (VAR). Purely capacitive and inductive elements consume no active power. A 

capacitor and inductor each create a ≤90° phase shift between voltage and current, the average 

power of which is 0.   

 

2.1.2 3-Phase Voltages 

In commercial and industrial distribution systems such as WPI, three phase voltage grids 

are used as represented in Figure 5. Phase 1, 2 and 3 are sine waves equal in voltage magnitude.  

However, the peaks of each voltage phase are off-set by 120° from each other.  This results in a 

voltage greater in magnitude between the phases.   

 

 
Figure 5 – Three Phase Voltage Graphical Representation [5] 

 

The new voltage derived from phase to phase measurement is the result of the voltage magnitude 

and phase angle between the two original phasors. A phasor is defined as a vector with a length 

representing the amplitude of the voltage and an angle between the vector and positive X axis 

representing the phase voltage.  

 A three phase system has a number of advantages. First, by distributing the load equally 

on each of the phases there is theoretically no power flow on the neutral wire of the system, as the 

other phases are used as a return path. The neutral wire is able to have a smaller conductor sizing 

than in a single phase system. Second, three phase delivers a more consistent amount of power to 

load devices. This is particularly important in the application of three phase motors where 

consistent power improves rotational performance and torque. 3-phase power produces a rotating 
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magnetic field for the motor. In addition, three phase power allows a higher voltage to be obtained 

from phase to phase.  

 

2.1.3 One-Line Diagrams 

A one-line diagram (OLD) is a simplified way of representing a three-phase power system. 

Each significant electrical element is represented by standardized symbols within a schematic. 

Within the OLD, only one line represents all three phases; this representation makes it easier for 

a viewer to understand the power system. An example one-line diagram can be seen in Figure 23 

of Section 3.1.2. Table 1 shows the symbols used by the selected simulation software. Each 

component also includes a circuit breaker to enable/disable the device. In Section 3.4.1, the 

simulation software is further elaborated upon.  
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Table 1 – One-Line Diagram Component Symbols 

Symbol Device 

 
Buses 

 
Transmission 

Lines 

 
Generation 

 
Transformers 

 

Loads 

 

Circuit 
Breakers 

2.1.4  Frequency  

The relationship between generation and the load brings in the element of frequency. The 

alternation of current in the United States power grid (i.e. the number of times, in one second, the 

current reverses its polarity and return back to its original polarity) is 60 Hz. Most electrical 

distributors deliver power at a frequency within 0.05 Hz of 60 Hz. This standard is to ensure a 

balance of generation and load as well as for those devices that use 60  Hz as a reference, such as 

motor generators connected to the grid [6].  

As shown in Figure 6, in an event where generation is less than the load, the frequency 

drops requiring either load to be shed or increased generation to be activated. Similarly, an excess 

of generation causes frequency instability issues. Mechanical, regulated generation such as coal-

fired power plants automatically account for frequency changes by increasing or decreasing their 

mechanical output in the event of a drop or rise of frequency respectively [7].  Smaller, on-site 

points of generation lack the ability to vary electrical output depending on the frequency of the 

connected grid. This is problematic for ensuring a steady source of power from such generation.  
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Figure 6 - Frequency Related to Water Flow [8] 

 

 

2.2  The Need for Resilient Energy 

The world’s reliance on electricity is a highly visible issue whenever there is a lapse in the 

electrical supply from the power grid. Component failures, fuel shortages, demand overloads, and 

damage to the grid from natural disasters can all result in outages that vary in severity.  Not only 

do these outages have long-reaching financial impacts for businesses who can no longer operate 

but these outages can be catastrophic for facilities and institutions that provide vital services or 

residence. Figure 7 shows the results of Eaton’s Blackout Tracker containing reported blackouts 

across the U.S. from 2008 to 2014 [9]. These outages vary in severity but have the criteria of any 

grid failure that impacted customers.  From 2013 to 2014 there has been a 12% increase in the 

number of outages. The figure further exemplifies the stability issues seen with a centralized 

power grid. Even a sh0rt-lasting interruption can damage equipment with voltage instability, 

repeated power cycling and reboot times of equipment that may not automatically power on after 

a failure.  

 

 
Figure 7 – Power outages in the US since 2008 [9] 
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2.3  Natural Disasters 

Concerns of energy resiliency have become more important in recent years. Since 2010, five 

major storms have struck Massachusetts [10]. In New England, natural disasters can strike the 

region at any time of the year. In recent years, Massachusetts has experienced a number of major 

storms. Some notable examples include hurricanes Sandy and Irene which resulted in coastal 

flooding and strong winds that carried debris and damaged power lines in the impacted areas. 

During Hurricane Sandy, nearly 400,000 customers were without power by mid-day on October 

29, 2012. By 2pm on November 1, roughly 12,000 customers had not yet been restored. One day 

later by 5pm, 7,200 customers remained without power [11].  

Winterstorm Nemo delivered considerable snowfall and resulted in damaged power lines 

due to falling tree branches and ice accumulation causing power outages for over 400,000 

customers. Local utilities were able to restore 75% of power to customers within 2 days but further 

outages required nearly a week for restoration. According to local Natural Gas provider NStar, 

much of the delay was associated to conditions being too dangerous for utility workers to be in 

[11].  

The inherently high fuel costs of fossil fuel-based emergency generators, lost food stores 

due to inoperable cooling units, damaged electrical distribution systems, idle staff and increased 

security concerns are just some of the costs incurred [12]. Figure 8 shows the annual cost of power 

outages per state. The cost for Massachusetts is in the upper tiers for the United States, in excess 

of $4 billion [13]. This cost reveals the potential benefits and need of energy resiliency investments 

to ensure power delivery despite grid failure.  

 

 
Figure 8 – Annual Business Losses from Electrical Outages [13] 
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2.4 Traditional Emergency Generation 

Historically, the need for resilient energy has been addressed with stand-by generators 

which power the loads for a customer post- grid failure. Unfortunately, these generators can 

negatively impact the environment.  Stand-by generators typically burn fossil fuels such as diesel 

fuel or natural gas. Such generators produce greenhouse gases and other harmful emissions from 

the combustion of fossil fuels that are more potent than other centralized generation sources due 

to lack of filtering for emission controls [14]. Scientific consensus has linked anthropogenic 

greenhouse gasses such as the ones emitted from diesel generation to the acceleration of climate 

change [15]. Additional emissions from diesel generation, such as Sulfur dioxide (SO2) and NOx, 

are leading contributors to smog and acid rain [16]. With low-efficiency and harmful byproducts, 

diesel generators do not represent a sustainable back-up method in light of growing grid failures. 

Fossil fuel combustion also has an impact on human health. The Massachusetts Department 

of Environmental Protection states “The air contaminants emitted by engines and turbines can 

have significant health impacts....Particulate matter, especially the finer-particle-size particulate 

matter generated by fuel combustion, can cause and contribute to serious respiratory problems” 

[16]. Due to these health and environmental effects, federal EPA regulations limits emergency 

stationary combustion engines (excluding portable, propelled or self-propelled motors) to a 

maximum of 100 hours of operation per year in both testing and emergency use, of which 50 hours 

can be used for non-emergency situations such as power contribution to the existing grid[17].  

Larger, stationary diesel engines in continuous operation must also meet strict criteria such as the 

use of ultra-low sulfur diesel, annual EPA compliance reports, emission controls and more. For 

critical sites in New Jersey after Hurricane Sandy, where power was not restored for over a week 

[18], some facilities depleted their 100 hours due to a single natural disaster. 

Diesel generation means a limited supply of energy on-site. During natural disasters, a re-

supply of fuel may not be possible due to impassable transportation routes such as roads or 

bridges. In the aftermath of Hurricane Katrina in 2005, diesel fuel generators of four hospitals 

went off-line due to fuel depletion and mechanical failure. Since most access roads were flooded 

or blocked by debris, these critical facilities were unable to refuel inducing evacuations for all four 

of the sites [19].  The practical issue with the method of on-site diesel generation is that it relies 

on finite fuel supplies which could become depleted during a prolonged outage unless resources 

are available for refueling.  

The limitations of a centralized power system and the environmental impacts of on-site 

fossil fuel generation call for a new power grid model. With the additional threat of man-made 
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and natural disasters increasing in severity, a new model must be resilient to potential grid failure 

and environmentally sustainable. The solution is distributed generation.  

 

2.5  Distributed Generation Increases Resiliency 

Multiple points of generation allow for resiliency of a system. Resiliency is defined as a 

system’s ability to operate effectively in the event a disruption occurs such as a natural disaster or 

other damages [20]. The significance of a generation source going off-line due to damage from 

man-made or natural disasters is diminished with multiple power sources connected to the same 

grid. Figure 9 and Figure 10 contrast the concept of centralized generation with the distributed 

generation model of multiple sources of generation at various distances from the load. Distributed 

generation sources implemented with renewable generation further increase the resiliency of a 

system by eliminating the need for large on-site fuel storage and replenishment. By 

interconnecting distributed generation, excess power produced can flow back to the grid and thus 

meet the demands of other customers, depending on the utility provider’s regulations.  

 

         

  Figure 9  – Centralized Generation Model[21]   Figure 10 – Distributed Generation Model [21] 

 

 Micro-grids use distributed generation technologies for on-site generation independent of 

the power provided by a central plant. Micro-grids vary in scale, and have traditionally been seen 

in emergency generation (stand-by generation) systems where a grid failure (defined as the ability 

of the grid to be within a range of variables such as current, voltage and frequency) triggers an 

isolation of a load that is then powered by a local generator. This is referred to as “islanding”. In 
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the Standards for Interconnection of Distributed Generation, utility provider National Grid 

defines islanding as:  

 

“‘Islanding’ shall mean a situation where electrical power remains in a portion of an 

electrical power system when the Company’s transmission or distribution system has 

ceased providing power for whatever reason (emergency conditions, maintenance, etc.). 

Islanding may be intentional, such as when certain segregated loads in an Interconnecting 

Customer or Customer’s premises are provided power by a Facility after being isolated 

from the Company EPS after a power failure. Unintentional Islanding, especially past the 

PCC [point of common coupling i.e. interconnection point between the customer and the 

utility], is to be strictly avoided.” [22] 

 

Micro-grids can also incorporate on-site generation that normally produces power and is able to 

produce power during islanding.  

 

2.5.1 On-Site Generation Integration with the Centralized Power Grid 

Fossil-fuel based plants can be called upon to supplement distributed generation in the case 

of an increased load or decreased generation. Renewable sources produce less consistent power 

than fossil-fuel generation.  For regulatory and economic reasons, the majority of distributed 

generation is disconnected from the power grid when there is a significant change in a grid 

variable such as voltage or frequency [23]. This disconnection not only protects the customer’s 

connected loads but also prevents electricity flowing from the on-site generation into a 

presumably unstable, offline grid. Micro-grids must incorporate proper technology to ensure 

appropriate islanding takes place as well as adequate generation to supply isolated loads.  

 

2.6 Load Shedding 

Load shedding is the disconnection of non-critical loads so as to be able to power critical 

loads. Installing generation to meet the entire electrical demands within a micro-grid is generally 

not economically feasible. Instead, the installed generation should be minimally sized to meet the 

demands of the critical loads only. What constitute as a critical load varies from site-to-site. 

Refrigeration units and emergency lighting at a local hospital, for example, can be considered 

critical as they are vital for the function of the health and safety of those which are served by the 

institution [24]. 
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Renewable, intermittent sources of electricity add the possibility of deficient generation 

inside the islanded system. When islanding occurs, load prioritization must occur in order to 

determine the order in which critical loads go offline [25]. For example, a load shedding system 

may turn off air conditioning in a facility during a power outage and only enable critical loads.  

 

2.6.1  Implementation 

The shedding of non-critical loads involves the creation of a second circuit. Alternatively, 

active load control can automatically power down or reduce the demand of non-critical loads. This 

active control, for example, can reduce the speed of a ventilation fan to thus reduce its power 

consumption. In the event of a grid failure and complete reliance on on-site generation, pre-

programmed hierarchy of non-critical load shedding can be implemented to remove certain loads 

from the circuit that are deemed less important than others. Active control can also shed non-

critical loads based on certain variables such as voltage and/or frequency. These regulation 

devices also aid in preventing damages to devices during increased or decreased voltage and 

instead remove them from the circuit until sufficient power is restored [25]. 

 

2.7  Micro-grid Generation Technologies 

The simulation provides a tool to simulate future WPI grid enhancements, including Micro-

grid generation on the WPI campus. The technologies to implement on-site generation are 

numerous; however, the primary solutions relative to the Massachusetts region and applicable to 

the WPI campus are Combined Heat and Power (CHP), Solar Photovoltaic, and Fuel Cells. Other 

generation technologies, such as wind power, solar thermal and biomass will not be considered 

for the purpose of this paper due to land/height requirements, regional availability of solar energy 

and long-term maintenance, respectively. These generation technologies come with advantages 

and disadvantages in terms of power production, initial cost and integration. No singular piece of 

technology is the end-all solution for on-site generation; it is a mixture of various renewables that 

create a resilient system.  

 

2.7.1  Combined Heat and Power 

CHP involves using the waste heat from an electricity-producing unit to help meet the 

user’s thermal energy needs. Figure 11 shows the functionality of a CHP system and the overall 

energy efficiency of the process. By capturing the waste heat and using it for other purposes such 

as space heating or cooling, the overall efficiency of the combined heat and electrical production 

is increased up to 85% and more of the fuel’s energy contents are conserved in contrast to that 
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energy being released in the surrounding environment [7]. CHP represents a unique system in 

that it is a source of energy management and generation. Capturing waste heat from CHP systems 

as opposed to separate electrical and heat generation systems can reduce energy demands for an 

installation by as much as 40% [7].  

 

 
Figure 11 - Combined Heat and Power System [26] 

 

 Instead of using waste heat to meet hot water and heating demands, combined cycle uses 

the waste heat from electrical generation to power a secondary system, such as the spinning of a 

turbine to produce more electricity. Excess production when load is reduced is controlled through 

reducing the amount of fuel intake, with less energy needed to maintain the generator’s speed. 

However, without a grid as backup power there is no supplement for an underrated CHP system. 

For many users the need for their facility to become an electrical island in the event of a power 

outage, i.e. a load independent of the larger grid, outweighs the substantial capital investment.  

[27] 

Under the Green Communities Act’s Alternative Energy Portfolio, CHP was allowed to be 

researched and implemented for its useful thermal generation despite its reliance on fossil 

fuels[28]. Massachusetts currently contains 12 facilities with integrated CHP. The largest of these 

systems is serving the Longwood Medical Campus in Boston, rated at 47.5 MW (megawatts) of 

power output. Currently, high electricity prices and low natural gas prices allow for a 58% savings 

in cost per kW (kilowatt) when generating on-site using CHP. In order to run most efficiently, 

CHP requires high pressure natural gas, a resource not available in all sections of Massachusetts 

including portions of Boston. Without the availability of high-pressure natural gas, the return on 

investments for end-users diminishes, requiring additional financial incentives for installations 

[26]. 
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2.7.2  Solar Photovoltaics 

Solar electric or photovoltaic (PV) systems work by converting the energy of the sun to 

electrical generation. PV is able to be scaled to the direct loads it will be supplying as individual 

panels are rated in maximum wattage output and can be added to or removed from a system. 

Traditional PV modules have no mechanical parts, are relatively resistant to extreme weather, and 

are adaptable in their installation locations ranging from ground to roof mounting. All of these 

factors increase PV’s maximum time between failure.    

PV systems may be in either grid-connected or off-grid configurations. In grid-connected 

systems, the output of the PV is supplied to the load alongside the grid’s power. Off-grid systems 

output to the load and excess capacity is stored in batteries or not utilized. Grid-connected 

modules that are installed on the load-side of the utility meter face the issue of having to ensure 

an automatic islanding of the circuit, as a PV module will continue to produce electricity during a 

blackout. Grid-connected modules installed on the line-side of the meter (between the utility and 

the customer) allow the customer to sell the power produced by the modules to the utility 

company.  However, in the event of a grid failure, most photovoltaic systems are required to 

disconnect from the grid for safety reasons thus no longer producing power. This means they 

cannot provide emergency power to the customer as well. Independent systems are not able to 

sell their excess power to the utility and generally must purchase expensive batteries that last 5 

years if heavily utilized and 10 years if only utilized on occasion.  [7] 

 

2.7.2.1  Solar Output 

Massachusetts has a relatively low amount of sun available throughout the year, with sun 

light averaging ~7 hours per day depending on the season. To gauge the efficiency of any electrical 

generation, capacity factor is used. Capacity factor is the ratio of potential (rated) output of the 

photovoltaic modules to the module’s actual output in a given year.  Boston’s capacity factor is 

17% using an axis-tracking system (PV modules that automatically align to the sun) and 15% with 

horizontal installations. This means, on average, customers in the Massachusetts region are able 

to obtain 17% of the rated output of their purchased PV modules. [7] 

 

2.7.3  Fuel Cells 

Fuel cells convert chemical energy (most commonly from Natural Gas) into electrical energy 

by combining oxygen and hydrogen using electrodes and across an electrolyte [29]. The products 

of this conversion are water, meaning the usual combustion products of carbon-dioxide, sulfur, 

methane, etc. are not emitted. Figure 12 illustrates the contrast in fuel cells versus conventional 
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combustion. Fuel cells have a much higher efficiency as they are not converting chemical energy 

to heat to drive a mechanical motion. Efficiencies as high as 65% can be seen with fuel cells.  

When using the waste heat from fuel cells to drive another cycle or meet a thermal load, 

efficiencies can be as high as 80% [7]. With no vibrations, fuel cells can be placed close to the load 

with minimal line losses from distribution and transmission. Maintenance is also diminished on 

fuel cells with no charge or discharging actions and no moving parts.  

 

 
Figure 12 - Fuel Cell vs Conventional Combustion  [7] 

 

2.8  Micro-grid Storage Technologies 

Storage options provide power to a Micro-grid load when generation is no longer producing 

power. Most commonly this is useful for wind and solar generation where generation is not 

consistent throughout a day and thus needs to be stored when produced. Like generation, storage 

should be sized to meet the critical demands of a Micro-grid over the maximum time period the 

generation may not be in operation or until the local facility can receive external assistance.  

 

2.8.1  Battery Storage 

The incorporation of on-site batteries allows a cycle of depletion and charging to occur at 

times where generation is unavailable. Inverters are often incorporated in battery storage systems 

to allow alternating current devices to use the direct current produced by the batteries. The 

inverter also allows an alternating current source in the same circuit to charge the batteries. 

SolarCity, partnering with Tesla, has released a battery suitable for residential applications. 
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Figure 13 and Figure 14 show the operations of these batteries with a photovoltaic system in the 

event of a grid failure.  

 

 
Figure 13 - SolarCity Residential Backup Batteries with Photovoltaics Daylight Operation [30] 

 

During daylight hours when sunlight is available, the photovoltaic systems charge the 

battery while providing power to the loads. When the source is no longer able to produce power 

at nighttime in Figure 14, the batteries discharge their stored power to the loads. A battery storage 

system with renewables allows a repeated cycle of charging and depletion provided the correct 

weather conditions.  

 

 
Figure 14 - SolarCity Residential Backup Batteries with Photovoltaics at Nighttime [30] 
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Battery storage systems work with commercial and industrial applications as well by increasing 

the storage capability of the batteries to match the higher demands.  

 

2.8.1.1  Design Considerations 

Traditional lead-acid batteries found in automobiles are designed to provide short bursts 

of high electric current and are unsuitable for applications requiring any appreciable usage of the 

batteries’ capacity. Instead, lead-antimony also known as deep-cycle batteries are used. Deep-

cycle batteries have a lifetime of approximately ten years when only drained to 25% of their 

capacity and five years when drained to 50% of their capacity. Lead-based batteries are 

temperature sensitive as well, with variances of room temperature increasing or decreasing the 

discharge rate. For every 10° Celsius above 25° Celsius, the lifespan of the battery is decreased by 

half [7]. This requires facilities to ensure a level of climate control for battery installations, 

potentially using critical square footage within a facility. The relatively low energy-density of lead-

based systems is problematic in this realm.  

 

2.8.1.2  Lithium-Ion 

Lithium-ion batteries represent a system with greater energy density, five times that of 

lead-acid [7]. In Massachusetts, a company called A123 Energy Solutions [31] has developed a 

Grid Storage Solution that incorporates a large array of lithium-ion batteries, frequency 

regulation and power conversion contained inside freight-container-like units. An example of 

such units can be seen in Figure 15. Lithium-Ion storage systems have a charge/discharge 

efficiency of around 80%.  

 

 
Figure 15 - Battery Bank of Grid Storage Solution [31] 
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The containers are able to operate in temperatures from -30° to 50° Celsius and can be 

purchased in lengths from 20 feet to 53 feet with varying storage capacity depending on the needs 

of the consumer [32]. The application of these systems allows for easy integration with a building’s 

current system. All aspects of the batteries can be monitored and controlled remotely. In addition, 

the incorporation of power regulation and conversion in one system saves on installation costs 

and creates ease for future upgrades as the system is not directly installed into the facility. 

 

2.8.2  Flywheels 

Flywheels work by storing electric energy as mechanical energy. When the flywheel is 

charging and an electric current is applied (connected to a generation source such as the existing 

grid) the internal generator acts as a motor, absorbing rotational energy from the torque applied 

to it. When the current is no longer present, the inertia of the rotor applies torque to a generator 

which induces a current that generates electricity. Flywheels are versatile in their applications.  

Flywheel systems range from three kW to one MW in size [33]. Vacuum-sealed 

installations and magnetic levitation of the internal mass (as opposed to the traditional friction 

bearings) means less friction for the system when rotating, resulting in efficiency measures of up 

to 90%. Installations cost on average $330/kWh in contrast to lithium-ion battery installations of 

$500/kwh. If the rotor is suspended magnetically, flywheels have a theoretically indefinite 

lifespan provided proper routine maintenance occurs. This gives flywheels another advantage 

over lithium-ion batteries with a five to ten year lifespan [34].  

The disadvantage of flywheels is their low energy capacity as Fly Wheels are intended to 

provide immediate sources of power within a system. A lithium-ion battery may have an energy 

density (kilowatt-hour per kilogram) of 0.128 where a flywheel for electric power backup is around 

0.043 [35]. One example of providing an immediate source of power is during a micro-grid’s 

transition from grid-connected to islanding where there may be a delay in on-site generation to 

turn on and produce power. This requires a generator with high power but low energy.  

 

2.8.2.1  Installation Examples 

Beacon Power has installed two large-scale flywheel systems in the United States [33]. In 

2010, a system was installed in California to store the energy from a wind turbine. The system was 

integrated with the wind turbine with much success. Another installation took place in 

Stephentown, New York. A 20 MW frequency-regulation plant was installed with 200 flywheels 

in order to supplement peak loads on the local grid. Both projects have proved successful and 

show the feasibility of flywheels.  
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2.8.3  Thermal Storage 

Thermal storage operates on the principle of raising the temperature of a substance in 

order to store energy within it or, in contrast, storing a chilled substance for later use in a thermal 

cycle. Figure 16 outlines the latter with particular benefits in the application of air conditioning 

by performing the cooling process at nighttime (lower ambient temperatures thus higher 

efficiency) and outside of peak electricity rate hours. Once the chilled water is stored, it can be 

used to in the air conditioning process without the need of the chillers.  [36] 

Applications of molten salt work in a similar way. In applications of solar thermal 

collectors, sunlight is used to heat the molten salt that is then stored in insulated vessels. When 

there is no longer sunlight, the molten salt is used to create steam that then drives mechanical 

motion to produce electricity. In times of grid failure, thermal storage allows energy production 

outside of the times when a renewable source may be able to generate. In situations where there 

is a grid failure and a limited supply of fuel for generation, thermal storage increases the efficiency 

by allowing the generation source to operate when conditions are most optimal.   

 

 
Figure 16 – Ice Storage Air Conditioning [37] 

 

2.9  Financial Benefits of On-Site Generation 

2.9.1  Types of modules 

The biggest cost derived from the use of solar panels is the initial cost of the module and 

the installation. Due to the low efficiency of solar power technologies producing a relatively small 

amount of power, a large array of modules may be needed. For example, a solar system using 6% 

efficient 500 watt panels will take up twice as much area as a system using 12% efficient panels of 
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the same wattage. Currently, 21% efficiency is the highest rated solar technology available for 

commercial use.  

 There are several types of solar technologies that have been developed. Crystalline panels, 

which are the most common type of PV panel, come in two varieties: monocrystalline and 

polycrystalline, both of which are capable of being 20% efficient. Crystalline solar panels are 

highly reliable and usually come with a 25-year warranty. Crystalline solar panel arrays are most 

common for residential use.  

 Another type of solar technology are thin film modules. These modules are very 

inexpensive but can be inefficient. The lifespan of the thin film modules is often questionable and 

their efficiency only goes up to 10%. However, they are extremely versatile. They are light weight, 

can be made microscopically thin, are flexible, and do not require a lot of material to fabricate. 

Due to their cost effective property, most research and advancement have been invested in making 

thin film modules more durable and efficient. 

Finally, building integrated photovoltaics (BIPV) are designed to look like a part of a roof. 

They are created to be the same size as the roof shingles. Compared to the above modules, they 

are less efficient and more expensive. To optimize their function, they are best used on large roof 

space in very sunny areas [38].  

 

2.9.2  Average cost and factors 

In order to determine PV’s installation cost to cover part or all of a user’s electric load, 

these following questions need to be answered: How many kilowatt hours are used per month? 

How much roof area is available to install modules? How many sun hours does that location get 

per day? Finally, how much money is willing to be invested in the installation and module cost 

process? According to Figure 17 which illustrates the solar insolation for the United States, 

Massachusetts gets about 4.0 kWh/m2 per day.  

 
Figure 17 - Photovoltaic Solar Resource of the United States [39]  
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2.9.3  Financial incentive programs 

The US federal government offer business and residential tax incentives and rebates from 

the purchase and installation of solar panels. Massachusetts alone has a variety of financing 

options for residents and businesses looking to invest in solar renewables. These options include 

direct ownership, solar leases, and power purchase agreement (PPA) contracts [28]. 

 

The upfront cost of installation and unit purchase can be offset by the following: 

 

 Federal Tax Credit – A 30% federal Investment Tax Credit (ITC) for qualified residential 

and commercial projects.  

 Massachusetts Personal Income Tax Credit – The lesser of 15% of the total cost of the PV 

system or $1,000, for qualified clean energy projects 

 Modified Accelerated Cost Recovery System (MACRS) - Accelerated depreciation is 

available for eligible commercial projects [38] 

 
Long term costs and incentives can include avoided electricity costs, solar renewable energy 

certificates, and net metering.   

 

After the initial installation and equipment fee, solar energy does not add to greenhouse 

emissions, acid rain, or smog. With the increasing technology and dedication to making solar 

panels more efficient, the cost of solar panels has decreased in the past few years. Solar panels 

require maintenance over time, but offer a viable solution for businesses or residents looking to 

save money and reduce their carbon footprint [28]. 

 

2.9.4  CHP 

Massachusetts offers incentives for CHP systems.  The GREEN Communities Grant 

Program provides funding for municipalities to pursue installations of CHP systems. The 

conditions for eligibility include developing a plan to reduce energy use by 20% below a 

determined baseline within 5 years. Since June 2010, the program had approximately $7 million 

to award for these programs [40]. 
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2.10  Case Studies 

To both increase resiliency and lessen energy costs, a number of college and universities 

have implemented micro-grid solutions. In particular, University of Hartford, University of 

Connecticut and Clark University have successfully designed on-campus generation allowing 

them to isolate from the larger centralized grid while still maintaining a power source. These 

examples are beneficial to study for their selection of critical loads and on-site generation in 

similar climates.  

 

2.10.1 University of Connecticut (UConn) 

Through financial assistance from the Connecticut Department of Energy and 

Environmental Protection’s micro-grid Program, UConn was able to create a micro-grid using 

existing fuel cells and a 6.6 kW photovoltaic array. Previously, there was no system in place to 

allow the grid-tied generation to remain online during a grid outage. The fuel cells provide 

sufficient thermal and electrical generation to supply staging areas, electrical vehicle charging 

stations, kitchens and space heating for UConn’s Depot Campus. [41] 

The micro-grid is dual-purpose serving as an educational resource for engineering 

students researching such designs. Figure 18  shows an overview of the micro-grid’s generation 

sources and critical loads present.  The electrical charging station allows UConn’s fleet of 

emergency vehicles to operate without access to gasoline. The gasifier on-campus is primarily 

for education purposes but allows bi0-waste to be converted into usable gas for the fuel cells. 

While the PureCell fuel cell traditionally runs on grid-provided Natural Gas, it can also run on 

anaerobic digestion.  

 

  
Figure 18 – UConn Micro-grid Overview [41] 
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2.10.2 Clark University 

Clark University in Worcester, Massachusetts supplies a majority of its electrical and 

thermal load for main campus buildings and residence halls using a natural gas 2.0 MW 

cogeneration system, renovated in January 2013 (see Figure 19).  

 

 
Figure 19 - Clark Universities 2MW Diesel Engine 

 

During the summer months, the heat supplied solely by cogeneration allows the university to 

suspend operations of its existing three high pressure steam boilers. Waste heat from the 

generator’s exhaust and envelope is recovered and converted to steam and delivered through the 

campus’ steam grid. In certain years, the system was able to provide up to 90% of Clark’s electrical 

demand. Cogeneration is able to meet such large electrical demands through energy reduction 

measures taken across campus that reduced the overall electrical demand. [42] 

 

2.10.3 University of Hartford (UHartford) 

The University of Hartford recently completed a micro-grid project to connect all campus 

buildings to emergency diesel generators. The primary goal of the project was to ensure all 

residence halls were connected to these emergency generators so as to maintain residential living 

during a prolonged power outage. Funding for this project came from the Connecticut 

Department of Energy & Environmental Protection’s same micro-grid initiative that allowed 

University of Connecticut to incorporate their micro-grid.  
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2.11  Potential Project Discussion 

Following the theme of resiliency and micro-grid incorporation at WPI, the team had 

multiple options for the focus of the project. Table 2 outlines the goals of these potential projects 

and the advantages/disadvantages of pursuing each. These potential projects are composed of 

subjects recommended by WPI Facilities, Professor John Orr and the team itself. Primarily, the 

team placed emphasis in selection on the educational value of the project (ensuring it was 

sufficiently challenging) and the usefulness of the project to the WPI community after completion.  

The determination of creating a software simulation of the power system 0f WPI’s campus 

came about as the team believed the project solved an immediate issue at WPI. The project also 

creates a stepping stone for future WPI energy projects (student or institution led). To further the 

usefulness of the simulation, load information from data accessed through both WPI’s networked 

electrical meters and National Grid billing information was imported into the simulation.   
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Table 2 - Potential Project Comparison 

 

 

Potential Project Goals Advantages/Disadvantages

-  Possibility of not being implemented 
due to a number of factors thus 

negating a majority of the project

 + Allows future IQP/MQP/Facilities 
projects to focus their research on 

incorporating generation into existing 
network

+ Solves an immediate problem too of 
lack of WPI grid analysis

- Broad in scope, may require greater 
time frame than available

- Limited in scope, may be simple fix 
and thus not educational

- Scope limitations also mean if it is not 
feasible project utility is null

 Analysis of redundancy 
between substations 

Primary Goals:
o   Simulate interconnection, 

transformers, wires, lump loads 
and protection.

o  Create a tutorial for future users of 
the simulation to modify it. 

o   Provide a stepping stone for future 
renewable generation. 

Secondary Goals:
o  Asses potential on-site generation 
installation at WPI and recommend 

generation type & tie-in location

Primary Goals:
o   Design generation to meet 100% of 

WPI's electrical load
o   Reduce long-term energy costs

o Increase outage resiliency at WPI

Secondary Goals:
o Lower WPI's carbon foot print 

through Renewables

Primary Goals:
o   Provide 100% of Rec Center's 
thermal loads through Co-gen

o   Reduce WPI's net-energy costs 
& consumption. 

       o  Provide engineer calculation 
for design implementation. 

Secondary Goals:
 o Create an education resource for 
students to learnCHP operations. 

Primary Goals:
o   Analyze WPI electrical sources to 

determine source interconnection 
feasability in order to reduce power 

outage time due to failure of 
Park Ave substation 

(planned & unplanned outages) 

Secondary Goals:
(None)

+ Provide groundwork for redundancy 
analysis of existing generation and grid-

provided electricity. 

Co-gen installation at 
Recreation Center

WPI electrical distribution 
software simulation using 

PowerWorld

100% on-site generation
 to power WPI central 

campus loads

 + Meets an immediate demand on 
campus

+ Increases efficiency of thermal 
generation for Rec Center pool

- Limited academic scope

- Similar projects done by National Grid 
staff and during WPI lectures

 + Less operation interruption time

 + Reduces WPI’s carbon footprint & 
long-term energy costs

+ Allow WPI to serve as a model for 
other institutions 

- High implementation cost, may not 
be implemented
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2.11.1  Simulation Tool Selection 

In choosing a simulation tool to model the campus power grid, the team had four primary 

criteria the simulation tool needed to meet: 

 

1. Ease of Use -  The software should have a relatively quick learning curve before. 

This is due to the time scope of the project as well as ease of use for stake holders in 

the simulation. An overly complex software would hinder future use.  

2. Affordability – The software should be at a cost feasible for the institution to occur 

for a Major Qualifying Project.    

3. Geographic Capabilities – In order to most accurately simulate the campus, the 

software should be able to incorporate geographical coordinates (longitude and 

latitude) of grid components.  

4. Incorporate Static & Transient Loads – The software should be able to simulate 

electrical loads based off the user’s input in both static and time transient inputs.  

 

With these criteria in mind, the software that was selected was PowerWorld Simulator. 

Since PowerWorld is used in WPI Electrical Engineering courses, the team was familiar with its 

operation thus mitigating the initial learning curve of the application. In addition, the software 

was readily available through an educational license on the WPI servers. PowerWorld offers the 

feature of overlaying electrical components on a latitude and longitude map. As explained later in 

this report, this feature allows the importation of the campus’ layout from Google Earth Pro (a 

free software) into the simulation. Finally, the software tool can simulate active and reactive loads 

through a static value or values that change over time, inputted in a spreadsheet format.  
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2.12  2015 WPI Power Grid Analysis  

Electricity provided to WPI is first obtained through an energy purchasing consultant, 

Power Options.  Power Options advised WPI to use Direct Energy as an electricity generation 

broker in order to find a cost-effective rate. The generated power is sourced from various 

generators in and out of the Massachusetts region. The below table, provided by WPI Facilities, 

shows the breakdown of the fuel types used to generate the electricity WPI consumed in 2014. 

Overall in 2014, 59% of Massachusetts’s power was generated from natural gas while 9.5% was 

generated using coal [43].  

 
Table 3 – Fuel Sources for WPI’s Electricity  

Fuel Type Fuel % 

Biomass 2.05% 

Coal 4.86% 

Diesel 1.07% 

Digester Gas 0.03% 

Efficient Resource (Maine) 0.54% 

Fuel Cell 0.17% 

Hydroelectric/Hydropower 6.73% 

Jet 0.03% 

Landfill Gas 0.58% 

Municipal Solid Waste 1.17% 

Natural Gas 36.49% 

Nuclear 32.87% 

Oil 7.20% 

Solar Photovoltaic 0.70% 

Trash-to-Energy 2.08% 

Wind 1.77% 

Wood 1.66% 
 

National Grid (NG) utility company, WPI’s electricity distributor ensures power reaches campus 

from the source(s) of generation (see Figure 20).  
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Figure 20 – WPI Electrical Distribution Flow chart 

 

The energy for the main campus is received through two substations. The entirety of WPI’s 

campus is broken up into sections; the buildings located in the area between Institute, Park 

Avenue, Salisbury & Boynton are all centrally metered at the WPI Powerhouse located in the 

center of campus. This meter can be found in the basement of the Powerhouse (see Figure 21). As 

it pertains to this study, Founders Hall, East Hall, Ellsworth, Fuller, Stoddard Hall, Gateway Park 

& the Sports and Recreation Center are connected directly to National Grid’s service and metered 

separately.  Through various meetings, and information derived from the WPI IQP Report 

“Monitoring Electricity Consumption on the WPI Campus” [44] this information was obtained to 

provide a broad outline for the way WPI’s power grid is segmented.  

 

 

Figure 21 - WPI Powerhouse elcetrical sub-meter 
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2.12.1  E-mon Demon Smart Meters 

E-mon Demon smart meters (EDSM) (see Figure 22) have been installed on various 

buildings at WPI. For a full list of buildings, see Table 4.   Software capabilities that come with 

these meters can inform the WPI community on the energy usage of metered buildings. Usage 

reports play a fundamental role in determining where energy consumption can be decreased on 

WPI’s campus and the effectiveness of energy reduction measures. Upon meeting with Robert 

Durning (October 14, 2015), Manager of Energy Efficiency at GreenerU, the team was able to 

ascertain the capabilities of the EDSM’s for the analysis of the campus power grid.  

The EDSMs send their load data to the data aggregation software every 15 minutes seven 

days a week. This software records instantaneous voltage, current and kilowatts for all EDSM’s 

then stores the data on a private WPI network that is isolated for security reasons. Although the 

data is made available to specific project groups, it was not convenient in this format. GreenerU 

uses a data analysis software ‘Skyspark’ (a comprehensive suite for analysis of energy resources 

including electrical demand, consumption and cost) to view the data in graphical format.  

 

Table 4 – E-Mon D-Mon Buildings 

List of WPI Buildings with E-Mon D-Mon Meters 

Alden Hall, Atwater Kent, Boynton Hall, Rubin Campus Center, Daniels Hall 

Gateway, Goddard Hall, Gordon Library, Harrington Auditorium, Higgins Labs 

 Morgan Hall, Olin Hall, Sports & Recreation Center, Riley Hall, Salisbury Labs, 

 Stratton Hall, Washburn Labs 

 

 
Figure 22 - E-mon Demon Smart Meters WPI Powerhouse 

 

2.12.2  Existing Generation & Emergency Generators on Campus 

Cogeneration, as the name suggests, is the systematic generation of two forms of useful 

energy from a thermodynamic cycle, usually power and heat [45]. The two Tecogen systems 
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located at Gateway generate power and heat that offsets 30% of the building’s electrical energy 

usage [46]. The CHP system is also controlling ambient temperature and humidity. Beyond 

cogeneration at Gateway, fourteen emergency generators are also located at WPI, eight of which 

use oil as a fuel type and six of which use natural gas. These emergency generators operate as 

stand-by, meaning (outside of regular testing) they do not run unless needed for backup power.  
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3 Design Approach 

 

3.1 Introduction  

 This project’s goal was to develop a simulation of the present WPI campus power grid to 

provide existing and new projects with an essential stepping stone in the process of bringing them 

from planning stages to reality. The team organized the project around four main objectives:  

 

1. Collecting campus electrical data from respective stakeholders. 

2. Developed a geographic system on which to overlay electrical components.  

3. Imported available campus electrical data into the simulation and verified the 

accuracy of component ratings and campus power flow.  

4. Created a user-friendly tutorial for future IQPs, MQPs, internal projects to 

manipulate the simulation.   

 

3.2 Objective 1: Analyzing the WPI Power Grid 
 

3.2.1 Obtaining Existing One-Line Diagrams  

To complete the first objective, existing One-Line Diagrams (OLDs) were obtained from 

WPI Facilities. The most recent OLDs were part of an on-going update project by external 

consultant Fischbach & Moore (F&M) and existed in Adobe PDF format. These diagrams were a 

combination of diagrams completed by Coughlin Electric in 2007 and present updates made by 

F&M. In order to maintain the security of the documents, the diagrams were uploaded to WPI’s 

SharePoint server for selected user access and team collaboration. An example diagram of 

Faraday Residence Hall can be seen in Figure 23. With these diagrams, the team compiled a list 

of primary buildings on campus to simulate. Notably, these were: academic buildings, residence 

halls and campus-event spaces.  

Due to the complexity and ambiguity of the diagrams after the electrical service entered 

the building, it was also decided to simulate up to the main distribution of a building. Components 

after the main distribution panel would only be included to show the connection point of 

generation.  



Page 34 

These diagrams provided key component ratings: 

 Physical location of components 

 Transformer maximum kVA 

 Transformer high and low side voltage levels 

 Circuit breaker ratings 

 Delineation between utility-owned and WPI-owned property 

 

 

Figure 23 – Fischbach & Moore One-Line Diagrams  

 

These new diagrams, however, were generally lacking: 

 

 Physical location of distribution cables 

 Transformer impedance ratings (WPI or National Grid-owned).  

 Various component ratings, designated by “??” in their place.  
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 Various interconnection points of emergency generation. 

To go forward with the simulation, it was necessary to obtain these values through other means.  

 

3.2.2 National Grid Meeting 

A number of WPI buildings not centrally located on-campus derive their power from a direct 

connection to the campus electrical provider, National Grid. The team met with Andrea Gossage, 

a member of National Grid’s Community & Customer Management as well as distribution 

engineer Nathan Walsh at the Sustainability Hub in Worcester, MA. From this meeting, the team 

was able to obtain the ratings of the transformers owned by National Grid. The ratings provided 

included: maximum kVA, high and low side voltages, and positive/zero-sequence impedance 

ratings in ohm values and per-unit values.  

 

3.2.3 Campus Walkdowns  

In order to gain a physical understanding of the campus grid and to verify component 

ratings from the F&M diagrams, walkdowns 1F

2 with WPI Facilities members were scheduled to 

clarify certain aspects.  Ultimately these walkdowns clarified a number of discrepancies in the 

documentation; discrepancies which were noted for the F&M designers to review.  

 

3.2.4 Generator Ratings 

The team obtained information on campus emergency generators from WPI Facilities. The 

information obtained included the fuel source of the generator, maximum rated output power, 

and the manufacturer. Discrepancies were noted between the F&M diagrams and WPI Facilities’ 

records and later clarified in the campus walkdowns.  

 

3.2.5 Load Profiles 

In order to model the power consumed by various buildings within the simulation, electrical 

load data was obtained from two primary sources. First, for buildings with E-Mon D-Mon smart 

meters monitoring electrical consumption, GreenerU provided the team with data from each 

meter at 15-minute intervals throughout 2015. This data was not complete; meters were 

                                                        
2 Walkdowns are methodical, on-site, visual visits of a campus or facility electrical equipment.  [47]  
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integrated into the campus network at different points and some meters went off-line for a large 

period of time.  

Second, for those buildings provided power directly from the power grid, monthly National 

Grid utility bills were used.  The team was provided with a spreadsheet of kW usage per month 

per building for the 2014 fiscal year.  

 

3.3 Objective 2: Develop a Geographical Overlay 

 

3.3.1 Google Earth & Geographical Information System (GIS) 

Since PowerWorld Simulator is able to import latitude and longitude data from shape files, 

the team decided to use Google Earth Pro to outline the campus and export individual areas. A 

larger overlay of the campus was imported to ensure proper mapping, followed by individual 

buildings. Shape files function by each point of the building containing a specific latitude, 

longitude and height data point.   

 

3.4 Objective 3: Import the Data into PowerWorld 

 

3.4.1 PowerWorld Fundamentals 

PowerWorld Simulator uses a traditional One-Line Diagram combined with animations and 

powerful calculation tools to implement an all-in-one solution of data management, simulations 

and visual representations. The core aspects of PowerWorld are the mathematical simulation for 

power flow.  

Each component created can be given custom parameters by the user, but begin as “drag-

and-drop” functionality. This allows the user to visually create the simulated electric grid. These 

components are illustrated in Figure 24.  
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Figure 24 – PowerWorld Fundamentals Example 

 

Table 5 – PowerWorld Components List 

Buses A point of interconnection for other components at the same voltage 
potential. 

Transmission 
Lines 

A common voltage wire connected between components.  
A single transmission line represents three phase power flow.  

Generation Source of power flow, can either be given a maximum power output or 
“slack” mode to match its output to the given load. 

Transformers Voltage changes from bus to bus included with a pie chart to display 
percentage of maximum power output transformer is producing. 

Loads Megawatt and/or reactive power draw from a bus 

Circuit 
Breakers 

Can be toggled to show open or closed, thus enabling/disabling device.  
These are automatically placed with each new component.  
 

 

3.4.2 PowerWorld Enhanced License 

The initial educational trial version of PowerWorld which the team was provided, has a bus 

limit of 40 per simulation. In order to simulate the campus’ buildings and points of connection 

for emergency/on-site generation, the team needed a greater bus limit due to reaching the 

maximum of 40 early in the simulation design. To accommodate this, the team obtained the 

educational license for PowerWorld through WPI’s Electrical Engineering department. The 

Buildings 

Buses 
Generation 

Transformer 

Transformer 

Loading  

Percentage 

Loads 
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license was installed on a local computer in Atwater Kent which the team used Windows Remote 

Desktop to access.  

 

3.5 Objective 4: Tutorial 
To ensure that future users of the simulation are able to manipulate it properly, the team 

created a brief tutorial incorporating screen captures for users to follow alongside the simulation. 

The tutorial covered each step, from logging into the server to performing fault analysis studies. 

The tutorial video file resides on both the PowerWorld serve as well as in the Appendix.   
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4 Project Implementation 
 

4.1 Geographical Information System 

After selecting the buildings to include in the simulation, meter billing addresses were 

obtained from WPI Facilities and National Grid (see Appendix A). It is important to note a 

majority of buildings are attached to the meter for 183 West Street, the central campus electrical 

meter. Within Google Earth, roof space of each building was individually traced as a polygon to 

represent its footprint. Figure 25 shows the yellow polygons traced for various buildings. Google 

Earth also includes the functionality for a 3D trace of each building to incorporate its height. 

However, this was not implemented for this project due to complexity and varying inaccuracy 

from building to building.   

  

 
Figure 25 – Google Earth Shape Files  

 

Shape files exported from Google Earth needed to be converted into “.shp” files to be 

imported into PowerWorld. To do this, a free service at MyGeoData.com was used. MyGeoData 

has the capability to specify latitude and longitude map projections for North America as well as 

specifications for polygon shape output.  Figure 26  shows the conversion of Alden Hall’s shapefile.  
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Figure 26 – MyGeoData.com Shape File Conversion 

 

Each shape file was imported into PowerWorld with a magnification of 100,000 in order for the 

building sizes to be proportional to the overlaid component sizes (see Figure 27).  

 
Figure 27 – GIS Import: Modify and Control Tab 
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Figure 28 – Imported Building Shapes  

 

Figure 28 shows the PowerWorld simulation with the imported buildings, football field, Park 

Avenue Garage and border streets. This aerial view shows the areas of Gateway, central campus, 

Faraday and the WPI Facilities Lee Street office.  

 

4.2 Master Bus List 

To create the simulation, the team compiled the collected data to form a Master Bus List 

found in Appendix B. This spreadsheet identifies each building simulated as a Bus in PowerWorld 

included with this are the ratings of the transformer connected to the bus, generation at the bus 

and the high/low voltage circuit breaker ratings.   

 

4.3 One-Line Formatting 

Before inserting components over the campus map, the “Default Drawing” settings of the 

simulation were modified to automatically color components based on the magnitude of the 

voltage.  Figure 29 shows the Default Drawing settings found under the Drawing tab. Using the 

color legend in Figure 30, buses, transformers, generators and transmission lines will 

automatically be colored upon insertion.  

 



Page 42 

 
Figure 29 – “Default Drawing” window in PowerWorld 

 

 
Figure 30 – One-Line Color Key 

4.4 MVA Limits 

A key parameter within the simulation for transmission lines and transformers is the MVA 2F

3 

rating of the component. In this simulation, transformer MVA limits were inputted from 

specifications on the F&M diagrams as well as information obtained from National Grid.  The 

values obtained from National Grid were converted to kVA.   

Within PowerWorld different types of lines can be drawn. Pertinent to this simulation are 

transformer lines and transmission lines. If two busses have already been made and their ratings 

properly inputted, then a transformer line can be drawn and placed between the busses. Doing 

                                                        
3 [MVA] is the unit Mega volt-amperes. A unit of VA describes apparent power, designated as “S” which 
gives a direct indication of heating and it is used as a rating unit of power equipment.  
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this will automatically set up the voltages for the transformer line. However, all other parameters 

require manual input. In the case of transformer MVA limits, these limits could be manually 

inputted from documentation that the team received from National Grid. However, when a 

transmission line is placed between two buses a nominal voltage for the transmission line is 

determined by PowerWorld as the same as the bus voltage that the transmission line is connected 

to. It is key to understand that this is not a MVA limit for the line. 

The reason behind this in depth look at MVA ratings is due to PowerWorld’s functionality 

with ‘circuit breakers’.  “Circuit breakers are used to indicate status of lines and transformers (not 

true breaker representation). Location of a circuit breaker on the line does not matter. Typically, 

one is placed at each end, automatically.” [48]   The way that the team alleviated this setback of a 

circuit breaker that did not function as a circuit breaker was to set MVA limits for the transmission 

lines that were drawn. During a simulation if PowerWorld determines that a MVA rating for a line 

has been reached, the simulation will show an overload on the line with red power flow errors 

alerting the user.  

For this simulation a MVA limit is needed for the A, B and C phase parameters in 

PowerWorld (see Figure 31 for example of MVA limits inputted). An MVA limit has to be 

calculated for PowerWorld, it is not a value that the software will actually generate based off of 

bus parameters. This formula is used to find apparent power (which is the MVA limit in the 

simulation): 

 

S	 ൌ ඥܲଶ  ܳଶ	 

 

Description of variables:  

S = Apparent Power, P = Active Power, Q = Reactive Power 

 

To calculate transmission line MVA limits for the team’s simulation the following formula was 

used: 

 

ܸܶܣ	ݐ݈݅݉݅ ൌ ݏݑܤ ܸି ∗ ܫ ∗ √3	

ൌ ܵ	ሾܸܣሿ	

ሾܣܸܯሿ ൌ ܵ	ሾܸܣሿ ∗ 	10ି 

Description of variables: 	

ܸܶܣ	ݐ݈݅݉݅ ൌ 	ݐ݈݅݉݅	݁ݎ݉ܽ	݁݃ܽݐ݈ݒ	݈݁݊݅	݊݅ݏݏ݅݉ݏ݊ܽݎܶ

ܵ	ሾܸܣሿ ൌ  ݏ݁ݎ݁݉ܽ	݁݃ܽݐ݈ݒ	݊݅ݎ݁ݓܲ	ݐ݊݁ݎܽܣ
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Figure 31 – MVA Limit Example 

 

As an example, the below equations calculate the MVA limit specifically for the line in Figure 31: 

 

ܸܶܣ	ݐ݈݅݉݅ ൌ ݏݑܤ ܸି ∗ ܫ ∗ √3	

																					ൌ 208ܸ ∗ ܣ100 ∗ √3	

																											ൌ 36026.7	ሾܸܣሿ ∗ 	10ି	

																			ൌ 0.036027	ሾܣܸܯሿ 

 

4.5 Layers 

Inputted components into the simulation were placed into pre-selected layers that can be 

toggled on or off for the users to see. A list of the layers can be found in the “Screen Layers” 

window. By specifying a conditional zoom as well as Low & High zoom levels, a layer’s size can 

remain static on the viewer’s screen while other components are enhanced. The advantage of 

layering components is that the user can display the components that are currently being selected. 

In addition, for security purposes, groups of components can be hidden from simulations.  With 

all but the GIS layers disabled, the simulation serves as a GIS tool for campus. The list can be seen 

in Figure 32.  
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Figure 32 – Screen Layers Window 

 

4.6 Load Calculations 

PowerWorld accepts load data in the forms of watts [W] and reactive power [VAR] (see Figure 

33). 

 
Figure 33 – Load Options 
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The data available to the team was instantaneous kW usage from the E-Mon D-Mon electrical 

meters (where applicable) and the kW-hours from monthly National Grid bills. From these data 

were derived two separate values. The resulting calculations can be found in Appendix C: Load 

Data.  

 

E-Mon D-Mon kW; 

 

ሺࢋࢍࢇ࢘ࢋ࢜	ܹܯ	݀ܽܮሻ ൌ
ሺ	∑〖ܹ݇	ݏ݃݊݅݀ܽ݁ݎ	ሻ〗

ݏ݃݊݅݀ܽ݁ݎ	ܹ݇	݂	# ∗ 1000
	

 

ሺܲ݁ܽ݇	ܹܯ	݀ܽܮሻ ൌ
݃݊݅݀ܽ݁ݎ	ܹ݇	ݐݏ݄݁݃݅ܪ

1000
	

 

National Grid Monthly Electric Bills kWh: 

 

ሺࢋࢍࢇ࢘ࢋ࢜	ܹܯ	݀ܽܮሻ ൌ
ሺ	∑〖ܹ݄݇	ݏ݃݊݅݀ܽ݁ݎ	ሻ〗

ݏ݃݊݅݀ܽ݁ݎ	ܹ݄݇	݂	# ∗ ݏݎ24݄ ∗ ݏݕ30݀ܽ ∗ 1000
	

 

ሺࢇࢋࡼ	ܹܯ	݀ܽܮሻ ൌ
݃݊݅݀ܽ݁ݎ	݄ܹ݇	ݐݏ݄݁݃݅ܪ
ݏݎ24݄ ∗ ݏݕ30݀ܽ ∗ 1000

	

 

 The disadvantage to the calculations for kWh is that the peak values are largely neglected, 

as kWh readings are an average of kW usage over time. Therefore, average and peak values derived 

will be lower than actual usage. However, with the lack of sub-meters to provide real-time usage 

information and further access to electric bills the data obtained was the most accurate the team 

could calculate.   
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4.7 Simulation Layout 

 

 
Figure 34 – Overview of Simulation 

 

 The one-line diagram begins with Substation A and Substation B. These two substations 

supply power to all simulated buildings accordingly, the delineation of which was provided by 

National Grid. Generators are connected to these substations that meet the demand on the 

substation, aka “slack” generators. This represents the power grid beyond WPI.  

 

 
Figure 35 – View of simulated building components  

  

From the two substations, power is delivered to a “bus” at each building representing the 

main distribution panel for that building. A bus can include load information for peak and average 

values and generation connected to that bus. For peak MW values, the time the peak was 
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measured is also displayed. For E-Mon D-Mon readings, there is a date and time stamp whereas 

National Grid electric bills have a month and year stamp.  

Per-unit impedance parameters were entered for all National Grid-owned transformers as 

well as the per-phase A, B and C MVA limits corresponding to the kVA rating of the transformer.  

In addition, all known transformers were specified as Delta-Wye configurations with a 30° phase 

shift from high to low voltage. 

 For all WPI-owned transformers, due to the deficit of information, the lowest impedance 

values were used on transformers where documentation was not found and where nameplates 

were inaccessible for the team. A Delta-Wye and 30° phase shift was also assumed as this is 

common for most step-down transformers. 

 

 
Figure 36 – Transformer Parameters 

  

Through the use of “Model Explorer” under the “Case Information” tab, all components in the 

simulation can be viewed and modified in a spreadsheet type format. This allows mass changes to 

be made easily, such as closing or opening a circuit breaker to allow for a generator to be ‘on/off’ 
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or bus renaming.  The Model Explorer function demonstrates the ability for the simulation to 

serve not just as a visual representation but as a database as well.   

 Using the “Custom” tab under each component allows custom floating points, integers and 

string values to be entered as well as an open-response box for notes. In this simulation, for 

instance, one custom string for all Generators was designated as “Gen. Manufacturer”. All known 

manufacture values accompany each generator, as well as the “Fuel Type” (Natural Gas or Oil).  

 

 
Figure 37 – Custom Tab on Generator Options 

 

The connections to each bus in the simulation can also be viewed in a one-line format, as seen in 

Figure 38. The Transformer loading, incoming and outgoing connections are shown. 

 

 
Figure 38 – Bus Views 



Page 50 

4.8 Simulation Access 

The simulation is stored on a remote desktop server housed in Atwater Kent at WPI, named 

‘powerworld1.wpi.edu’. This server includes a license for the education license of PowerWorld 

allowing over 40 buses, thus the simulation must be accessed here. In particular, the simulation 

can be found by navigating to the root of C:\ Drive, under the folder 

‘Private_PowerGrid_Analysis_MQP2015-2016’.   

The remote desktop server uses WPI Admin credentials for access. Individual WPI user 

accounts can be given access through Professor John Orr (orr@wpi.edu). The directory of the 

simulation files also requires specific administrative access right granted by Professor Orr this 

directory is stored on a public share of the remote desktop with the potential for other, non-

authorized users to have access. For a step-by-step tutorial of modifying the simulation, see 

Appendix D: PowerWorld Tutorial. A document in Adobe PDF format of this tutorial is also 

available in the simulation directory on the remote desktop server.   
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5 Results & Examples 
 

This projects’ main starting goal was the development of a simulation that could accurately 

represent the WPI campus, not only to represent campus in a precise component parameter 

manner but also in proper geographical format.  The end goal was to have any person be able to 

look at the simulation, recognize that it was WPI’s campus, then be able to understand that power 

was being transferred from a geographic location of Point A to another location of Point B. 

However, the simulation has many other capabilities, relevant to this section, they are 

unnecessary to discuss in depth.  

Throughout this section select examples of the simulation will be portrayed. Examples will 

go over key points of the simulation to give the reader a better understanding of its capabilities. 

The pertinence of this is to demonstrate the underlying factors of the simulation that hold useful 

information that otherwise might go unnoticed. 

 

5.1 Visual Representation of Power Flow on Campus 

A simplistic way to understand if the developed simulation is functioning is to test and see 

if there is power flow. Within PowerWorld this is a straightforward test. At the top of the software 

window click ‘Run Mode’ and in the 3rd section of that tab select the green circular play button. 

This will cause arrows to appear in your simulation like the ones shown in Figure 39. 

 

 
Figure 39 – Representation of Power Flow 
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5.2 Emergency Generation & Potential for On-Site Generation 

It is expected and ideal that most facilities, commercial buildings, and college campuses are 

equipped for power-failures; this requires the implementation of emergency generation. WPI is 

currently not completely equipped or prepared for an emergency power failure; only certain 

portions of campus are ready to handle a major power failure. The access to on-site emergency 

generation will alleviate the need for outsourcing in the case of an extreme power failure.  

In Figure 40, Faraday Hall is depicted representing emergency generation with a natural 

gas fuel source. To know if the emergency generator is on in this image is a simple check. Typically 

power flows in via the transformer line, but as it is shown, the transformer line is currently 

disconnected by its circuit breaker to the bus. This allows for the emergency generators circuit 

breaker to be turned on thus enabling the average load to be powered through Faraday’s 

emergency generator. To check proper functionality, the direction of the arrows in the figure are 

oriented in such a manner that they are ‘flowing’ from the emergency generator through the bus 

and to the average load. That ensures that the explanation here is in fact correct. 

 

 

 
Figure 40 - Faraday Hall Emergency Generation 
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5.3 Transformer & Circuit Breaker Loading 

Within the PowerWorld simulation it is a fairly uncomplicated process to manipulate a 

transformer. Once two busses have been placed and their voltages set, a transformer line can be 

drawn connecting the busses. This is done by putting the simulation in ‘Edit Mode’ then selecting 

the draw tab at the top of the window. In the 3rd section click on Network. Once a drop down menu 

appears click on ‘Transformer’. To place the transformer, select the first bus it will be connected 

to then double click on the second bus. The line will be drawn after this step and the drawn 

transformer parameter window will appear to make edits to. 

 In Figure 41, an example of a transformers is shown at the upper center of the image. Here 

‘Transformer loading’ is being demonstrated. There are two circles with percentage ratings 

enclosed within them. The one on the left displays '16%', which means that the transformer it is 

connected to is loaded with 16% of the MVA that it can handle. While the transformer on the right 

is at ‘106%’, which means that this transformer is currently overloaded. When this happens the 

simulation will change the circle color to red to notify the user of the potential hazard. 

 

 
Figure 41 - Transformer Loading 

 

Figure 42 is an effective representation of circuit breaker loading. At the Stratton Hall bus, 

there are two lines connecting Stratton to the 120/208 Power House transformer. Each of these 
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lines has a circuit breaker percentile load gauge. Within the simulation the first circuit breaker is 

at a 59% which means that at the point in time when the screen shot was taken that circuit breaker 

had a 59% load on it out of the 100A it can handle. It can be deduced that 59A are currently on 

that specific line through the equation listed below: 

 

ܫ ൌ ௧ܫ ∗  %ܫ

																	ൌ ܣ100 ∗ 59%	

ܫ 	ൌ 	ܣ59

 

The same can be said for the 400 A line: 

 

ܫ ൌ ௧ܫ ∗ 	%ܫ

ܫ															 		ൌ ܣ400 ∗ 15% 

ܫ ൌ 60A	

 

 
Figure 42 – Circuit Breaker Loading  
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6 Future Enhancements 
 

6.1 Data Acquisition & Processing 

By coupling the simulation with Eco-Screen software provided by Automated Logic, load 

usage could be demonstrated in real-time. Automated Logic is a company that provides software 

which enables their customers to manage energy consumption and display that consumption in 

a public dashboard. In a given building, power consumption could be displayed, where the 

amount of power being used for a certain room or device, pending on the accuracy of the 

display, would be shown in real-time. This application would be significant for the WPI campus 

because the community would become more conscious about their power consumption; ideally 

making adjustments to their lifestyles to reduce use.  

By displaying power consumption and on-site generation in real-time, such as in the below 

figure, people are able to witness the main consumptions on campus. The team foresees this 

application being best used in a residence hall where a large amount of the campus power 

consumption occurs. In addition to making residents more aware about their consumption, this 

project could be used as a competition tool where halls compete to see who has the lowest power 

consumption after a certain period of time. Not only does this help the campus with power costs, 

but it instills positive sustainability practices in the WPI community.  

 

 
Figure 43 – Example of an Automated Logic’s Eco-Screen public dashboard [49] 
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6.2 Additional On-Site generation 

 This software simulation of WPI’s energy grid allows future campus projects to easily 

simulate the implementation of on-site generation. With the use of the team’s tutorial on 

PowerWorld, authorized users will be able to easily manipulate the simulation. It will be possible 

to see the possibility of new generation technologies on campus and what loads they will offset. 

This simulation is a stepping stone for feasibility studies of CHP or renewable power generation. 

It will allow campus engineers or future MQP participants to easily simulate the implementation 

of a renewable system. With further manipulation in PowerWorld, users are also able to calculate 

the cost of power for a certain amount of time. With this feature, power consumption with current 

practices can be compared to renewable implementation and the cost savings can be presented in 

a valid method.  

 

6.3 Transformer Loading 

With the accuracy of the simulation, WPI Facilities is able to see the loading on transformers 

across campus. This is not only useful for daily operations but for planning new loads to be 

supported by an existing transformer. A transformer that is reaching its peak capabilities will 

visually alert staff to take action.   

 

6.4 Stepping Stone for Projects 

This simulation is a stepping stone for future projects pertaining to the WPI power grid. It 

will enable past projects to be further enhanced that may have previously not had the access to a 

simulation software and database. In addition, future IQP or MQP projects at WPI concerning the 

electrical power grid can utilize the simulation to bypass the issues of having to use paper copies 

of the grid. The easy access and accessibility to this simulation will speed up the process for many 

power related projects to come.  

 

6.5 Arc Flash Study 

With further enhancement of the simulation by adding conduit sizes, lengths, and 

locations, it will be easier to conduct an arc flash study by giving engineers simplified access to 

component ratings. Arc Flash studies allow those working on WPI electrical equipment to 

determine the proper PPE (personal protective equipment) for the task at hand.  
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6.6 Transmission & Manhole Importation 

Fischbach & Moore is continuing a project on the update of WPI Facilities’ records of the 

physical location of underground wires on campus.  In addition, the project includes information 

on each manhole and the wires that are inputs and outputs to that manhole. With this project 

nearing completion, the transmission lines and buses in the simulation can be re-arranged to 

reflect the location and depth of the real-world wires.  Through importing shapes in the simulation 

and the “Memo” function, manhole locations and descriptions can be overlaid.  

 

 
Figure 44 – Example manhole layout as part of F&M project 

 

6.7 Facilities Use 

This simulation will enhance the capabilities of the WPI Facilities department to convey 

future projects and connect education with campus operation. WPI Facilities already plays a 

major role in advising and providing resources to student projects on-campus and this simulation 

would further that relationship.  
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7 Conclusion 
 

This project was a comprehensive simulation of the WPI campus power grid in order to assess 

the feasibility of on-campus generation. The team began by analyzing the latest WPI power grid 

one-line diagrams and viewing the grid layout in-person in order to determine what project 

deliverable would most benefit WPI. In addition, the team also researched other college campuses 

that had alternative, on-site generation resources already implemented. With this data, the team 

determined that there was a deficit of available resources on the state of the WPI power grid for 

both educational use and institutional projects 

The overall objective of this project was to design an accurate simulation of the WPI power 

grid to serve as an educational resource for the WPI community, be a dynamic database for 

campus electrical components and allow the simulation of potential projects. In order to achieve 

this, the team used Google Earth Pro to create a Geographical Information System that accurately 

mapped out the WPI campus in PowerWorld. Once completed, existing one-line diagrams were 

modeled in the software with supplementary data from National Grid and nameplate data from 

the components themselves. At the completion of modeling the campus electrical layout, the 

simulation was able to accurately display WPI campus power flow.  

Further enhancements for the simulation are outlined in Section 6. With the mapping 

capabilities of PowerWorld, the precise geographical location of transmission lines on-campus 

can be inputted into the simulation. In addition, further load data from the addition of future E-

Mon D-Mon meters will allow a more accurate simulation of campus electrical usage. Finally, if 

WPI implements Automated Logics’ public dashboard for the WPI community to view, this 

simulation can be integrated with the dashboard for a virtual simulation of real-time power flow.  
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Appendix A: List of WPI Buildings Included in the Study 
 

Building Meter Address 

Alden Hall (Auditorium, Classrooms)  183 West St. 

Alumni Gym (Gym, Offices, Pool)  183 West St. 

Atwater Kent (Classrooms, Labs)  183 West St. 

Bartlett Center (Admissions, Financial Aid)  183 West St. 

Boynton Hall (Offices, Administration)  183 West St. 

Campus Center (Offices, Meeting Rooms, Dining)  183 West St. 

Daniels Hall (Residence Halls, Offices)  183 West St. 

Fuller Labs (Classrooms, Auditorium)  183 West St. 

Goddard Hall (Classrooms, Labs, Offices)  183 West St. 

Gordon Library (Library, Meeting Rooms)  183 West St. 

Harrington Auditorium (Gymnasium, Classrooms)  183 West St. 

Higgins House (Offices, Food Service, Meeting Rooms)  183 West St. 

Higgins House Garage (Storage, Offices)  183 West St. 

Higgins Labs (Classrooms, Labs)  183 West St. 

Kaven Hall (Classrooms, Labs)  183 West St. 

Morgan Daniels Wedge (Meeting Rooms)  183 West St. 

Morgan Hall (Residence Hall, Offices, Food Service)  183 West St. 

Olin Hall (Classrooms)  183 West St. 

Powerhouse (Boiler Room)  183 West St. 

Project Center (Offices, Classrooms)  183 West St. 

Salisbury Labs (Classrooms, Labs)  183 West St. 

Sanford Riley Hall (Residence Hall, Administration)  183 West St. 

 Skull Tomb (Meeting Place)  183 West St. 

Stratton Hall (Classrooms, Offices, Physical Plant Workshops, 

Storerooms)  
183 West St. 
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Washburn (Classrooms, Labs)  183 West St. 

Field House (Storage)  100 Institute Road 

Press Box / Bleachers (Press Box)  100 Institute Road 

East Hall (Dorm) 30 Boynton Street 

Ellsworth Apartments (Dorm) 85 Institute Road 

Faraday Hall (Dorm) 75 Grove Street 

Founders Hall (Dorm) 26 Boynton Street 

Fuller Apartments (Dorm) 79 Institute Road 

Gateway (Life Sciences/BioMed Center) 60 Prescott Street 

Gateway Parking Garage 

31 Garden Street, 60 

Prescott Street Unit #1, 

Unit #2 

Institute Hall (Dorm) 12 Boynton Street 

Sports & Rec Center 100 Institute Road 

Stoddard Hall (Dorm) 95 Institute Road 

Stoddard A  

WPI Facilities 37 Lee Street 
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Appendix B: Master Bus List 
Abbreviation Key:  

ATS – Automatic Transfer Switch            NO – Normally Open 

NG – Natural Gas                                         NC – Normally Closed 

MSB – Main Switch Board 

OneLine Area 
Bus 

# 
Circuit 

# Bus Name 
From 
Bus # 

Voltage (kV 
L-L) 

Transformer 
kVA 

Lowest CB 
Rating (A) 

MVA Limit 
(Trans. 
Line) 

Emergency 
Generator 

Emergency 
Gen. 

Connection 

 Substation A 1 1 Substation A  13.800      

E02 

Stoddard 2 1 Stoddard A, B, 
C 

1 0.480 300 1200 LS    

Fuller 
Apartments 

3 1 Fuller 
Apartments 

1 0.208 300 600 LS    

Ellsworth 
Apartments 

4 1 Ellsworth 
Apartments 

1 0.208 300 1200 LS    

Institute Hall 5 1 Institute Hall 1 0.208 150 600 LS    

Founders Hall 6 1 Founders Hall 1 0.208 300 2000 LS to 
1600 Dist 

 115kW 
NG 

ATS to Dist. 

E03 East Hall 7 1 East Hall 1 0.480 750 2500 LS  
150kW 

OIL 

ATS to MSB | 
ATS to Emerg. 

Room 

E04 Faraday Hall 8 1 Faraday Hall 1 0.480 1000 1600 LS  
250kW 

NG 

ATS to 1600A 
MSB | E-ATS 

to 600A 

 Substation B 9 1 Substation B  13.800      

E05 Gateway 

10 1 Gateway 9 0.480 2000 ?? 
 500kW 

ATS to MSB | 
ATS to Emerg. 

Room 

 
2x 75kW Co 

Gen 
200A NC 

Switch to MSB 

11 1 
Gateway 
Parking 
Garage 

9 0.480 300 

400 MM 
SwitchBoard & 
(100, 125, 100) 

Main Elec 
Room 

 
125kW 

OIL 
125A to MM 
Switchboard 
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E06 Sports & Rec 
Center 

12 1 
Sports & 

Recreation 
Center 

1 0.480 1500 2000 LS  TBD TBD 

E01 

Power House 

39 1 
Powerhouse 
13.8kV SB 

1 13.800      

13 1 
Power House 

Bldg Dist 
39 0.480 1500 

200 HS, 800 
LS 

 
400kW 

OIL 
TS to MSB 

14 1 

Power House 
*Feeds: 

Boynton Hall, 
Skull Tomb, 

Project Center, 
Stratton Hall 

(2), Power 
House 

39 0.208 750 200 HS, 2000 
LS 

   

West - 2.4kVA 
Sub 15 1 

West - 2.4kVA 
Sub Station 
*Feeds Olin, 
Harrington, 
Field House 

41 2.400 2000 150 HS    

West - 13.8kv 
sub 41 1 

West - 13.8V 
Sub Station 39 13.800  200 HS 4.7748   

Olin Hall 16 1 Olin Hall 15 0.208 300 1200 LS    

Harrington 17 1 
Harrington 
Auditorium 15 0.208 500 ??  15kW 

TS to 300A 
Emerg. Room 

Campus 
Center 18 1 

Rubin Campus 
Center 41 0.480 1500 80 HS, 100 LS    

Bartlett 19 1 Bartlett Center 41 0.480 300 10? HS, 400 LS    

Goddard Hall 
20 1 

Goddard Hall 
Main 41 0.480 1500 200 HS  60kW NG  

49 1 
Goddard Hall 
Building Dist 20 0.208 300 200 LS 0.071968   

Higgins 
House 21 1 Higgins House 20 0.208      

Higgins Labs 
22 1 

Higgins Labs 
MAIN 

41 0.480 1500 
100 HS, 2500 

LS 
   

23 1 
Higgins Labs 
Building Dist 

22 0.208 750 
2500 HS, 2000 

LS 
   

Alden Hall 24 1 Alden Hall 41 0.208 500 50 HS, 1600 LS    
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Sanford Riley 
Hall 42 1 Riley Hall 24 0.208  50 HS, 600 LS 0.215904   

Daniels Hall 25 1 Daniels Hall 41 0.208 1000 50 HS, 4000 LS  80kW 
TS to 300A 

Emerg. Room 

Morgan Hall 43 1 Morgan Hall 25 0.208 1000 50 HS 1.43936 
*Emergency 

Battery 
System* 

Battery to 100 
A Emerg. 

Room 

Washburn 
Labs 

26 1 Washburn 39 0.480 1000 200 HS, 1200 
LS 

   

Fuller Labs 27 
1 

Fuller Labs 40 0.480 2000 
200 HS, 4000 

LS 

 200kW TS to MSB 

1  50kW TS to MSB 

East - 2.4kV 
Sub 

28 1 

East - 2.4kV 
Sub 

*Feeds Gordon 
Library, 

Atwater Kent, 
Salisbury Labs 
& Kaven Hall 

40 2.400 2000     

East 13.8kv 

Sub 
40 1 

East - 13.8kV 

Sub Station 
39 13.800  200 HS 4.7748 

  

Atwater Kent 29 1 Atwater Kent 28 0.208 750 
200 HS, 2000 

LS 
 

  

Salisbury Labs 

30 1 
Salisbury Labs 

MAIN 
28 0.208 500 

300 HS, 1600 

LS 
 

  

31 1 
Salisbury Labs 

GEN 
28 0.208 750 

300 HS, 1600 

LS 
 125kW 

TS to 4000A 

Emerg. Room 

Kaven Hall 32 1 Kaven Hall 28 0.208 300 80 HS, 600 LS    

Gordon 

Library 

33 1 
Gordon 

Library A 
28 0.480 750 

200 HS, 1000 

LS 
 

  

34 1 
Gordon 

Library B 
28 0.208 150 

200 HS, 1600 

LS 
 

  

Field House 35 1 Field House 1 ? ? ?    
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Press Box 36 1 Press Box 1 ? ? ?    

Boynton Hall 44 1 Boynton Hall 14   400 LS 0.143936   

Stratton Hall 45 
1 

Stratton Hall 14 0.208 
 400 LS 0.143936   

2  100 LS 0.035984   

Project Center 46 1 Project Center 14   200 LS 0.071968   

Alumni Gym 47 1 Alumni Gym 23 0.208  400 0.143936   

Skull Tomb 48 1 Skull Tomb 14 0.208  100 LS 0.035984   

- NO OLD - 
Facilities 

Office 

37 1 
Facilities 

Office 
1 0.208 150   

  

38 1 
Facilities 

Warehouse 
1 0.240 50   
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Appendix C: Load Data per Building 

BUILDING 
METER 

ADDRES
S 

Average 
Load 

(kWh/mont
h) 

Averag
e Load 
(kW) 

Averag
e Load 
(MW) 

Period 
Data 

Points Source 
Peak 

(kWh/mont
h) 

Peak 
(kW) 

Peak 
(MW) 

Time of Peak 
kW 

1. Alden Hall 
(Auditorium, 
Classrooms) 

183 West 
St. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- 80.14 0.08014 
January 1st:12am to Nov 2: 

9:45pm 6197 
Greener

U - 176.03 0.17603 
9/29/2015 
18:45:00 

2. Alumni 
Gym (Gym, 

Offices, 
Pool) 

-  
0.0000

0 -  
Greener

U -  
0.0000

0  

3. Alumni 
Gym 

Extension 
(Locker 
Rooms, 
Offices) 

-  
0.0000

0 
  

Greener
U 

-  
0.0000

0 
 

4. Atwater 
Kent 

(Classrooms, 
Labs) 

- 89.88 
0.0898

8 
January 1st:12am to Nov 2: 

9:45pm 
6199 

Greener
U 

- 142.74 0.14274 
5/5/2015 
14:45:00 

5. Bartlett 
Center 

(Admissions, 
Financial 

Aid) 

- 
MISSIN

G 
#VALU

E! MISSING 
MISSIN

G  - 
MISSIN

G 
#VALU

E! MISSING 

6. Boynton 
Hall 

(Offices, 
Administrati

on) 

- 28.24 0.02824 
January 1st:12am to Nov 2: 

9:45pm 
6857 

Greener
U 

- 70.59 
0.0705

9 
10/6/2015 

8:45:00 

7. Campus 
Center 

(Offices, 
Meeting 
Rooms, 
Dining) 

- 202.36 0.20236 
January 1st:12am to Nov 2: 

9:45pm 5325 
Greener

U - 506.31 0.50631 
9/9/2015 
12:45:00 

8. Daniels 
Hall 

(Residence 
- 205.04 0.20504 January 1st:12am to Nov 2: 

9:45pm 
5706 Greener

U 
- 661.81 0.66181 9/9/2015 

11:45:00 
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Halls, 
Offices) 

9. Fuller 
Labs 

(Classrooms, 
Auditorium) 

- 
MISSIN

G 
#VALU

E! 
MISSING 

MISSIN
G 

MISSIN
G 

- 
MISSIN

G 
#VALU

E! 
MISSING 

10. Goddard 
Hall 

(Classrooms, 
Labs, 

Offices) 

- 283.21 0.28321 
January 1st:12am to Nov 2: 

9:45pm 4852 
Greener

U - 564.56 0.56456 
7/30/2015 
10:45:00 

11. Gordon 
Library 

(Library, 
Meeting 
Rooms) 

- 285.70 0.28570 
January 1st:12am to Nov 2: 

9:45pm 5793 
Greener

U - 492.22 0.49222 
8/18/2015 
14:45:00 

12. 
Harrington 
Auditorium 

(Gymnasium
, 

Classrooms) 

- 115.16 0.11516 
January 1st:12am to Nov 2: 

9:45pm 6197 
Greener

U - 203.84 
0.2038

4 
8/26/2015 
13:45:00 

13. Higgins 
House 

(Offices, 
Food 

Service, 
Meeting 
Rooms) 

- 
MISSIN

G 
#VALU

E! 
MISSING 

MISSIN
G 

 - 
MISSIN

G 
#VALU

E! 
MISSING 

14. Higgins 
House 
Garage 

(Storage, 
Offices) 

- MISSIN
G 

#VALU
E! 

MISSING MISSIN
G 

MISSIN
G 

- MISSIN
G 

#VALU
E! 

MISSING 

15. Higgins 
Labs 

(Classrooms, 
Labs) 

- 254.91 0.25491 
January 1st:12am to Nov 2: 

9:45pm 
5325 

Greener
U 

- 721.25 0.72125 
7/28/2015 
15:45:00 

16. Kaven 
Hall 

(Classrooms, 
Labs) 

- 
MISSIN

G 
#VALU

E! MISSING 
MISSIN

G 
MISSIN

G - 
MISSIN

G 
#VALU

E! MISSING 
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17. Morgan 
Daniels 
Wedge 

(Meeting 
Rooms) 

- 
MISSIN

G 
#VALU

E! MISSING 
MISSIN

G 
MISSIN

G - 
MISSIN

G 
#VALU

E! MISSING 

18. Morgan 
Hall 

(Residence 
Hall, Offices, 

Food 
Service) 

- 227.71 0.22771 
January 1st:12am to Nov 2: 

9:45pm 6195 
Greener

U - 509.09 
0.5090

9 
9/3/2015 
17:45:00 

19. Olin Hall 
(Classrooms

) 
- 68.21 0.06821 

January 1st:12am to Nov 2: 
9:45pm 

6198 
Greener

U 
- 162.41 0.16241 

9/8/2015 
14:45:00 

20. 
Powerhouse 

(Boiler 
Room) 

- MISSIN
G 

#VALU
E! 

MISSING MISSIN
G 

MISSIN
G 

- MISSIN
G 

#VALU
E! 

MISSING 

21. Project 
Center 

(Offices, 
Classrooms) 

- 
MISSIN

G 
#VALU

E! 
MISSING 

MISSIN
G 

MISSIN
G 

- 
MISSIN

G 
#VALU

E! 
MISSING 

22. Salisbury 
Labs 

(Classrooms, 
Labs) 

- 129.48 0.12948 
January 1st:12am to Nov 2: 

9:45pm 
6198 

Greener
U 

- 371.38 0.37138 
9/8/2015 
13:45:00 

23. Sanford 
Riley Hall 

(Residence 
Hall, 

Administrati
on) 

- 17.12 0.01712 
January 1st:12am to Nov 2: 

9:45pm 
5711 

Greener
U 

- 47.27 0.04727 
9/29/2015 
18:45:00 

24. Skull 
Tomb 

(Meeting 
Place) 

- MISSIN
G 

#VALU
E! 

MISSING MISSIN
G 

MISSIN
G 

- MISSIN
G 

#VALU
E! 

MISSING 

25. Stratton 
Hall 

(Classrooms, 
Offices, 
Physical 

Plant 

- 42.58 0.04258 January 1st:12am to Nov 2: 
9:45pm 

6199 Greener
U 

- 221.16 0.22116 5/28/2015 
14:45:00 
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Workshops, 
Storerooms) 

26. 
Washburn 

(Classrooms, 
Labs) 

- 19.06 0.01906 
January 1st:12am to Nov 2: 

9:45pm 
6194 

Greener
U 

- 37.41 0.03741 
4/9/2015 
15:45:00 

27. Field 
House 

(Storage) 
- MISSIN

G 
#VALU

E! 
MISSING MISSIN

G 
 - MISSIN

G 
#VALU

E! 
MISSING 

28. Football 
Field Garage 

(Storage) 
-  

0.0000
0 MISSING 

MISSIN
G 

MISSIN
G - 

MISSIN
G 

#VALU
E! MISSING 

29. Press 
Box / 

Bleachers 
(Press Box) 

- 
MISSIN

G 
#VALU

E! MISSING 
MISSIN

G 
MISSIN

G - 
MISSIN

G 
#VALU

E! MISSING 

East Hall 
(Dorm) 

30 Boynton 
Street 

95266.67000 132.31 0.13231 July '13 - June '14 12 
Monthl

y NG 
Bills 

116600.0000
0 

161.944 0.16194 July 2013 

Ellsworth 
Apartments 

(Dorm) 

85 Institute 
Road 

25143.33000 34.92 0.03492 July '13 - June '14 12 
Monthl

y NG 
Bills 

60320.0000
0 

83.778 0.0837
8 

February 2014 

Faraday Hall 
(Dorm) 

75 Grove 
Street 

56480.0000
0 

78.44 0.07844 
September '13 - June '14 

(New Construction) 
10 

Monthl
y NG 
Bills 

80000.0000
0 

111.111 0.11111 February 2014 

Founders 
Hall (Dorm) 

26 Boynton 
Street 

59800.0000
0 

83.06 0.08306 July '13 - June '14 12 
Monthl

y NG 
Bills 

80000.0000
0 

111.111 0.11111 February 2014 

Fuller 
Apartments 

(Dorm) 

79 Institute 
Road 

24630.0000
0 34.21 0.03421 July '13 - June '14 12 

Monthl
y NG 
Bills 

59560.00000 82.722 
0.0827

2 February 2014 

Gateway 
(Life 

Sciences/Bio
Med Center) 

60 Prescott 
Street 

- 381.15 0.38115 
January 1st:12am to Nov 2: 

9:45pm 
17112 

Greener
U 

941.04000 1.307 0.00131 
6/23/2015 
14:30:00 

Gateway 
Parking 
Garage 

31 Garden 
Street, 60 
Prescott 

Street Unit 
#1, Unit #2 

17212.50000 23.91 0.02391 July '13 - June '14 12 
Monthl

y NG 
Bills 

24800.0000
0 

34.444 0.0344
4 

March 2014 
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Institute 
Hall (Dorm) 

12 Boynton 
Street 

10014.55000 13.91 0.01391 August '13 - June '14 11 
Monthl

y NG 
Bills 

13520.00000 18.778 0.01878 December 2013 

Sports & Rec 
Center 

100 
Institute 

Road 

276366.6700
0 383.84 0.38384 July '13 - June '14 12 

Monthl
y NG 
Bills 

317000.0000
0 440.278 

0.4402
8 December 2013 

Stoddard 
Hall (Dorm) 

95 Institute 
Road 

55933.33000 77.69 0.07769 July '13 - June '14 12 
Monthl

y NG 
Bills 

122000.0000
0 

169.444 0.16944 February 2014 

WPI 
Facilities A 
(New Meter 

- Rear of 
Bldg) 37 Lee 

Street 

7594.08000 10.55 0.01055 July '13 - June '14 12 
Monthl

y NG 
Bills 

9392.00000 13.044 0.01304 February 2014 

WPI 
Facilities B 
(Warehouse 

Meter) 

1557.17000 2.16 0.00216 July '13 - June '14 12 
Monthl

y NG 
Bills 

2277.00000 3.163 0.00316 July 2013 
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Appendix D: PowerWorld Simulator Tutorial 

Table of Contents: 
 

A. Accessing the Simulation 

B. Preparing the Simulation 

C. Viewing Options 

D. Layers 

E. Inserting a New Building 

F. Inserting Components 

G. Formatting Components 

H. Visual Power Flow Simulation 

 
 

A) Accessing the Simulation: 

i. Contact Professor John Orr for access rights to the Remote Desktop 
Server ‘powerworld1.wpi.edu’ and administrative rights to the simulation 
folder.  

ii. Open “Remote Desktop” on any Windows computer. Enter 
‘powerworld1.wpi.edu’ in the ‘computer’ field. 

1.  

iii. When prompted for credentials, in the username field enter 
“ADMIN\yourusername” and in the password field enter your WPI 
password.  

iv. Once logged into the remote server, click ‘Start’, then ‘Computer’. Enter 
the ‘Windows (C)’ drive. Then enter the folder 
‘Private_PowerGrid_Analysis_MQP2015-2016’.  

v. In this remote directory, there are several files and folders 

1. Backups - contains an extra copy of the simulation in the event of 
corruption.  
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2. MouseJiggle.exe – program to prevent an automatic timeout of 
the remote server by automatically moving the user’s mouse.  

3. “.pwb” and “.pwd” file extensions – The file that contains the 
simulation is ‘Simulation_MQP_2015-
2016_CompletedBy_TPB_RPM_AMC.pwb’. Click this to open the 
simulation. The ‘.pwd’ file is the oneline diagram information 
containing a list of the electrical components and their properties 
without any custom settings or GIS information. This file is 
necessary for the simulation to run and must remain in the same 
directory.  

 

B) Preparing the Simulation 

i. Once the simulation is opened, choose ‘Edit Mode’ and then save the file 
to begin editing using the floppy disk icon on the top-left of the window.   

1.  

 

C) Viewing Options 

i. The software allows both a virtual and spreadsheet view of the 
components included in the simulation. For a list view, choose ‘Model 
Explorer’ under the ‘Case Information’ tab. Model Explorer allows a 
spreadsheet view of all buses, transformers, generation and their values.  

1.  

ii. Similarly, ‘Onelines’ tab -> ‘Bus View’ shows schematics of each bus and 
the what is connected to and from that bus. 
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1.  

iii. In the left-hand ‘Explore’ column, ‘Custom Field Descriptions’ window 
under ‘Case Information and Auxiliary’, the user can define custom 
variables as part of each component in the simulation. These variables can 
be in string, integer or floating point format and allow an easy way to 
attach non-standard data to components, such as year of purchase.  

iv. Alternatively, components can be viewed in respect to their physical 
location on the overlay of the campus map. To do so, visit the ‘Draw’ tab 
and adjust the ‘Zoom’ settings. 

1.  

 

D)  Layers 

i. In order to selectively view components, components are placed in 
‘Layers’ within the simulation. Layers can be shown/hidden depending on 
what the user is trying to view.  

ii. To choose a layer, navigate to the ‘Draw’ tab and click on ‘Layers’. By 
default, new components are placed in the Default Layer. See Section G of 
the tutorial to change a component’s layer.  

iii. A list of all layers can be seen by choosing ‘Define Layer’.  
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1.  

E) Inserting a New Building 

i. In order to insert a new building, the building’s rooftop must be traced 
using Google Earth Pro. This is free to download for all with a ‘.edu’ email 
address.  

ii. Once in Google Earth, navigate to the desired building. In the left-hand 
column, right-click ‘Temporary Places’ and click ‘Polygon’.  

1.  

iii. This will bring up a property window the polygon. Do NOT click ‘OK’, but 
instead navigate the cursor to a corner of the roof top. Click once, and this 
will create the first point of the polygon. Continue to make points around 
each edge of the rooftop.  
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1.  

iv. Once the trace is complete, title the building in the ‘Name’ field and then 
press ‘OK’.  

v. Right-click on the newly created shape in the left-hand column, and 
choose ‘Save Place As...’. Then save the shape as a ‘.kml’ file.  

vi. Visit http://converter.mygeodata.eu/. In the left-hand column, upload the 
‘.kml’ file.  

vii. The trace will now be shown on a map. Under the converter settings, 
change ‘Layer Creation Option’ to SHPT and POLYGON and press 
‘Convert Now’.  

1.  

viii. Open PowerWorld and navigate to ‘Draw’ tab -> ‘Background’ -> ‘Insert 
GIS Data from Shapefile’.  

ix. In the new window, choose ‘Read from Shapefile’ and navigate to the file 
exported from MyGeoData.  

x. Go to ‘Modify’ -> ‘Scale XY Data’ and enter 100,000 for both for X and Y 
values. Then click ‘Scale XY Data’.  



Page 75 
 

xi. On the bottom of the window ‘Insert into Layer’-> ‘GIS Buildings’. Then 
choose ‘Transfer Shapes to OneLine and Close’. The imported building 
will be automatically positioned based on its latitude and longitude.  

 

F) Inserting Components  

i. Navigate to ‘Draw’ tab. Choose ‘Network’ and select the component you 
wish to insert into the simulation. 

ii. Each component includes a ‘Custom’ tab in the property window to input 
custom numeric variables, strings or paragraph-style memos.   

iii. ‘Draw’ tab -> ‘Default Drawing’ has the fill and line colors of each 
component specified based on the voltage set by the user, meaning 
inserted components will automatically match the color key overlaid on 
the map.  

1. Buses 

a. Use to represent a point of common voltage, i.e. a main 
distribution panel or switch gear. Drag the shape to the 
desired size. In the property window, enter the nominal 
voltage of the bus and assign the bus a number. Set the 
per-unit voltage to 1.  

2. Transformers  

a. Connect the transformer between two buses or a bus and a 
load, ensuring that you single click at each grid corner 
when creating the transformer line to allow greater control 
later. In the property window, voltages are automatically 
configured but input is required for the per unit impedance 
parameters.    

b. Enter the ‘Phase Shift’ in the ‘Transformer Control’ tab, 
typically 30 degrees for Delta/Wye transformers.  

c. Enter the transformer configuration (Delta, Wye, etc.) in 
the ‘Fault Info’ tab as well as zero sequence impedance 
parameters.  

d. The ‘Display’ tab allows you to choose whether the device is 
‘Anchored’ to another component, choose the thickness of 
the wire, and specify the number of symbol segments, i.e. 
resolution of the wire’s symbols.  

3. Transmission Line  

a. Use to connect two components of equal nominal voltage. 
Per unit impedance parameters are required for insertion.   

b. The ‘Display’ tab allows you to choose whether the device is 
‘Anchored’ to another component, choose the thickness of 
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the wire, and specify the number of symbol segments, i.e. 
resolution of the wire’s symbols.  

c. In the ‘Parameters’ tab, any transmission line can be 
converted into a transformer.  

4. Generator  

a. Connect a generator to a bus. Choosing ‘Slack’ in the 
property windows will negate any power rating of the 
generator, with the generator’s output matching the load of 
the bus. This is useful for modeling substations.  

b. Enter a ‘MW Setpoint’, ‘Min.’ and ‘Max.’ MW values for the 
generator, typically found on the generator’s name plate.  

c. The generator property window includes a custom field 
under ‘Custom’ tab to input the generator manufacturer.  

d. Under ‘Power and Voltage Control’ -> ‘Wind Control Mode’ 
choose ‘Constant Power Factor’ and input the generator’s 
power factor. A 0.90 power factor was assumed for most 
generation unless otherwise specified.  

e. By specifying ‘Fuel Type’ and ‘Rotor Shape’, the type of 
generator can easily be seen on the campus map, i.e. 
Natural Gas or Diesel.  

5. Loads 

a. Loads are specified with MW or MVAR values and attached 
to a bus or transformer. In this simulation, peak and 
average load values are attached to each bus. A text box is 
manually inserted next to each load in order to specify 
average or peak.  

6. Text or Shapes 

a. Navigate to ‘Draw’ tab and choose ‘Background’. Users can 
input images, shapes, text boxes, memo texts directly onto 
the simulation. This allows easy communication from one 
user to another and greater specificity of each component.  

7. Line Flow Pie Charts   

a. ‘Draw’ tab -> ‘Pies/Gauges’ -> ‘Line/Transformer Flow Pie 
Chart’. Specify the to and from bus the pie chart is 
monitoring. Check ‘Always Show Value (percent)’ and 
‘Style’-> ‘Total power (MVA)’ to view the level of loading.  

b. By default, pie charts are inserted with each transformer 
and transmission line.  
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G) Formatting Components  

i. Select a component, ‘Draw’ tab -> ‘Format’. The format window will allow 
you to specify the layer in which the component resides, the fill and 
outline color, and order of appearance. In this simulation, the ‘Stack 
Level’ of all buildings are set to ‘Base’ while all components are set to 
‘Top’.  

ii. In the ‘Display/Size’ tab, users can choose whether to prevent an object 
from moving by making it ‘Immobile’.  

1.  

 

H)  Visual Power Flow Simulation 

i. To view power flow within the simulation, choose ‘Run Mode’. The 
navigate to ‘Tools’ tab and click the green arrow. The animated arrows 
shown on the map point in the direction of the power flow. To toggle a 
component on/off, click on a circuit breaker in series with the component.  

ii. Components with loads greater than their specified limits in the 
simulation can be viewed at ‘Tools’ tab -> ‘Limit Monitoring’ 

1. In the ‘Limit Monitoring’ window, choose ‘Violating Elements’ 
under ‘Elements to show’ to view all overly loaded elements.  

a.  

I) Additional Resources 

i. For an interactive video tutorial, visit: 
https://www.youtube.com/watch?v=q4Deo2324Ck 

ii. For in-depth tutorial on analyses available in PowerWorld, visit: 
http://www.powerworld.com/knowledge-base-term/tutorial  
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