
Project Number. GFP0807

Internet Based Suicide Counseling System

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

___________________________

Gregory Sheaffer

Date: February 1, 2010

Approved:

______________________________

Professor Gary F. Pollice, Major Advisor

1. Suicide Prevention

2. Samaritans

3. Instant Messaging



Abstract

The Samaritans of Boston is an organization which provides anonymous 

phone counseling for depressed and suicidal individuals. The organization is 

currently seeking a way to expand their services using the internet to provide 

teenagers with a more familiar environment for interaction.

This project worked to create a tool to provide online counseling services 

based on Instant Messaging. The project was generally a success, implementing 

a solid beta version of the software which includes a server that handles IM 

distribution and various administrative tasks and a fully featured IM client. 

Future work to complete all of the desired features and finalize the 

application is still required.
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1. Introduction

The Samaritans of Boston, founded in 1974, is an organization that 

provides anonymous telephone counseling services. Most of their work involves 

handling suicidal or depressed individuals, and their services include a special 

hotline for teenage callers known as the 'Samariteen' help line that is staffed by 

teenage volunteers. The Samaritans approached us seeking a way to expand 

this hotline and make it more accessible to its target demographic.

A previous IQP's research concluded that using new technology would 

yield these results, and that an online instant messaging or texting service would 

be the most effective solution. Teens, the research discovered, were less likely to 

use the phone hotline and were more comfortable with newer text-based 

technology. Similar solutions, revolving around anonymised email and cell phone 

text messaging, had been successfully implemented by a Samaritans group in 

the UK in previous years.

Our team endeavored to create a set of software applications to support 

such an instant messaging system for the group. The product produced, while 

not entirely complete, is a functional proof of concept that, with some additional 

work, could be implemented with the group and possibly help to save the lives of 

a multitude of teenagers.
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The remaining sections of the paper are as follows:

1. Methodology: A discussion of our approach to the problem, our 

language and library decisions, requirements for the project, and our 

design.

2. Results and Analysis: A discussion of the final project iteration, its  

features, and the testing done.

3. Future Work and Conclusions: A discussion of possible future 

improvements that could be made to the project, and conclusions 

based upon it.
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2. Methodology

Our methodology focused on an agile development approach. That is, we 

worked hard to ensure that our application could easily accept new requirements 

or accommodate changes to the old requirements. 

The steps involved in our work can be broken down into three general 

categories:

Requirements

We talked with the Samaritans on several occasions, both in person and over 

the phone, to develop requirements.

After we decided upon an Instant Messaging solution, the basic elements 

needed came together quickly. Multiple Samaritan counselors would need to be 

able to log in securely and have multiple independent conversations with outside 

clients from behind a central screen name. All conversations needed to be 

completely anonymous, with neither the outside user or the counselor having any 

access to any screen-names or other personal information. History logs of all 

conversations would be kept for review by administrative staff to monitor 

performance and handle complaints.

Throughout the later steps, we returned to this stage repeatedly to evaluate 

old requirements or add new ones. We presented our design to the Samaritans 

at various stages to get feedback and ensure we were working towards a product 

that they would want to use.
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Design

Once we had a clearer idea of the requirements the Samaritans were after, 

the client/server distribution design we settled upon seemed like an obvious 

choice. Illustration 1 shows a basic model for the overall system design. A central 

server, running an automated Instant Messaging client under a single screen 

name, accepts any incoming instant messages, processes them (removes 

screen-names, records history, etc.), and then distributes them to client 

applications run by internally connected counselor clients. 

The server would establish two-way conversations between teens (clients) 

and Samaritan counselors. It would use these conversations to ensure that all 

incoming and outgoing messages involved were all properly routed to the correct 

recipient. Our design work included detailed use cases and storyboards, which 

we then reviewed and used to refine requirements and create lists of features 

necessary for each part of the system.

Illustration 1: Design Overview
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Implementation

We selected the Python® programming language for building the application, 

due to the fact that we found several simple libraries for handling instant 

messaging functionality in an application. In addition, the Pydev plugin made 

working in the language easy on the Eclipse™ development platform. Although 

several members had limited experience with the language, we believed this was 

a surmountable barrier and would provide valuable experience.

For our client GUI implementation we selected the TKinter library. Our initial 

research turned up several other options, notably PyQT, but we wanted to move 

forward quickly and TK seemed to be the best choice from that perspective. The 

examples we found of TKinter applications showed promise, the learning curve 

appeared quite manageable, and the fact that it was already included in most 

major Python distributions made it easily accessible.

Unfortunately we ran into several problems with the library as the project 

progressed. The first, and most major, problem was with the way TK windows 

and frames are managed in the Microsoft Windows® OS... our initial architecture 

depended on the fact that conversation windows could be entirely separate, but 

in Windows a single application cannot run multiple root TK windows even if they 

are in separate threads. This issue was eventually remedied by changing the 

design to use the current tabbed frame setup, tying all of the windows to a single 

root, but still delayed the overall project by several weeks while we tried to track 

down the issue. The second issue had to do with cross-platform compatibility 

problems causing errors and missing features when the client, which was initially 
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written and tested in a Macintosh® OS, was ported to a PC. We solved this by 

changing the project package to include a full set of standardized Python 

libraries. The final issue was with the simplicity of the library itself. While simple 

GUI windows are easy to get working, more complex windows presented 

difficulty. Advanced features, such as the tabbed frame redesign, took more work 

than expected and some tricks that were found online. The tabs are actually 

simulated using standard window frames and radio buttons that change the 

content in the viewed frame to that of another.

In the end these were overcome, but using a more powerful and up to date 

tool like PyQT initially would probably have avoided the issues and saved us time 

in the long run, despite the longer setup time and learning curve.

The initial client interface design was based upon several independent 

windows for each new conversation or selection, with a main window that 

handled functions like logging in/out and various general options. An early 

example from an initial concept storyboard  can be seen in Illustration 2 .
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After the problems mentioned earlier with the TKinter library manifested, 

the design was shifted to one based upon a single window with functions 

differentiated using a tab system. The main tab windows are broken up into 3 

types: menu (for availability, logout/login, and options), conversation (for instant 

message communications) and information(history or note page logs). Some 
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screen-shots of the final implementation (as viewed in the Windows 7 OS) can be 

seen in illustration 3.
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3. Results and Analysis

Setbacks

The project had several setbacks and time sinks that could have been 

avoided. There were repeated scheduling and time conflicts between the 

members, combined with a general lack of continual communication, that made 

our weekly team meetings one of the only times we met as a group. This in turn 

made testing and dividing work difficult, and progress from the various members 

hard to track and build on. Some project members were unavailable 

intermittently, sometimes for entire 7-week quarters, while another left the project 

before it was entirely complete. Communication with the Samaritans was also 

intermittent, and we learned only after several months of work that the group had 

decided that a different approach to the project would have been better. 

Choosing the Python language when the majority of the group had little 

experience with it also slowed the project by the weeks it took for the members to 

familiarize themselves with it. Software issues also set the work back by several 

weeks, notably the TKinter and Python compatibility issues in the client. These 

issues took an exceptionally long time to discover and resolve, as they were 

based on mostly undocumented issues with the underlying language and 

libraries and not necessarily problems in our own work as we at first assumed.

Final product and testing

However, despite these obstacles, the final product is a working early beta 

version of the application. The client side is for all intents fully functioning. It 
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provides all of the necessary features, and many others: multiple simultaneous 

instant message conversations, various options, note entry, note and history 

viewing, etc. It also includes a simple graphical user interface for ease of use. 

The final client consisted of 12 classes, 70 functions, and approximately 2000 

lines of code. As the full finalized list of requirements was completed, the client 

application was a decidedly successful part of the project.

Once the framework for sending/receiving messages was solid, the client 

testing was done incrementally through the UI, usually with the full server running 

and outside instant messaging test messages. Lower-level mechanical testing 

was done through the Eclipse debugger or with simple print statements at 

various steps to ensure everything was working.

The other half of the application, the server side, is stable and handles basic 

IM distribution. However, this half requires a significant amount of additional 

work and the creation of a database before it can completely meet the initial 

requirements (this work is detailed in the next section).

13



4. Future Work and Conclusions

The project as it stands is essentially two thirds complete.

The most obvious missing part is a database component. Without one set up 

and integrated into the server, many of the initial requirements are unattainable 

(most notably secure log-in and note/history recording and retrieval). A database 

that can handle these tasks securely needs to be implemented, and then calls for 

accessing or modifying it need to be added to the necessary parts of the server 

(As documented in the appropriate classes).

The server, while functional on a basic level, is also missing many major 

components. It still does not properly distribute conversations in complex 

situations (multiple outside clients conversing with multiple inside clients who log 

in and out, for example), which should be a high priority fix. It also does not 

properly handle the availability setting for clients. All of the client sent commands 

and responses are unimplemented aside from basic test values (the server 

allows any log-in attempt to succeed, for example), which should also be a high 

priority once the database is implemented. The last major missing feature is 

name encoding to protect the anonymity of outside users, which was an 

important requirement for the Samaritans final implementation.

The client is, for all intents, fully functional. Any future work should focus 

on re-factoring the code to clean it up and fixing some of the lingering UI issues. 

Most of those issues have to do with the advanced elements of the tab setup, 

such as removing tabs or having them flash when activity occurs within one that 
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is not being viewed, but there are some basic issues such as better input 

validation in some options (this is detailed in the comments for the appropriate 

classes). Rebuilding the UI on a better base, such as PyQT, is also an option 

worth considering if time permits.

The project as a whole also needs work to package the software for 

distribution and use, along with more extensive testing in larger-scale situations 

closer to those that it would be expected to work under. The Samaritans 

expressed a distinct interest in a similar system for use on their website, perhaps 

based off of other embedded instant messaging systems. Such a system would 

be an interesting followup project.

Overall, as previously stated, the project is about two thirds complete. 

Despite missing features (almost entirely due to the missing database), it is a 

working prototype for the intended system that is ready to be expanded upon and 

tested more thoroughly. Most of the setbacks and delays suffered were issues 

with the underlying tools themselves rather than our design, and our robust 

framework allowed us to quickly implement solutions once the problems were 

located.
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Glossary

Instant Message: Instant messaging (IM) is a form of real-time direct text-based 

communication between two or more people using shared clients. The text is 

conveyed via devices connected over a network such as the internet. IM falls 

under the umbrella of 'chat', as it is a real-time text-based networked 

communication system, but is distinct in that it is based on clients that facilitate 

connections between specified known users (often using "Buddy List", "Friend 

List" or "Contact List"), whereas Chat includes web-based applications that allow 

communication between (often anonymous) users in a multi-user environment. 

An analogy would be comparing a telephone and a bar-room. With the 

telephone, you have to know the contact information to reach the other person, 

whereas you just show up at the bar and see who is there to chat with. (Taken 

from http://en.wikipedia.org/wiki/Instant_Message)
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