
Vir and the Army of Tenebrax

Interactive Media and Game Development

A Major Qualifying Project Report

submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

by Peter Lepper, Tyree Robinson, and Robert Smieja

This report represents the work of WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes

these reports on its website without editorial or peer review. For more information about

the projects program at WPI, please see

http://www.wpi.edu/academics/ugradstudies/project-learning.html

Advisors: Mark Claypool, Brian Moriarty

http://www.wpi.edu/academics/ugradstudies/project-learning.html

Abstract

We set out to create a game that would act as a showcase of our individual

abilities and talents. We designed the game based on the two different art styles of our

artists. We created original 2D art and fully animated it, and coded the game in Unreal

Engine 4 using Blueprints. We performed playtesting in order to evaluate our game, and

ended with a well-polished project.

1

Table of Contents

1 Introduction .. 4

2 Design ... 5

2.1 Original Team and New Idea .. 5

2.2 Story.. 8

2.3 Gameplay .. 10

2.4 Level Design ... 11

2.5 Upgrades .. 13

3 Art .. 14

3.1 Models/Figures ... 14

3.2 Animation .. 16

3.3 Music... 18

3.4 Sound Effects .. 19

4 Technical Implementation .. 20

4.1 Animation .. 21

4.2 Hero .. 23

4.3 Enemies .. 29

5 Evaluation .. 31

6 Technical Evaluation of a Scene in Unreal Engine 4 33

2

6.1 Platform ... 35

6.2 Procedure ... 35

6.3 Results .. 40

6.4 Summary ... 44

7 Conclusion ... 45

8 Works Cited ... 47

9 Appendix.. 48

9.1 Design Process and Re-Scoping .. 50

3

1 Introduction

For our MQP we set out to create a game that would showcase all of our

individual strengths, our artistic abilities, our programming abilities, and provide a good

portfolio piece.

In other to do this, we created a two dimensional side-scrolling platformer that

included a simple combat system and a few “role playing” elements in the form of

upgrades.

We combined the two different art styles of our artists in order to create four

different villain characters, a fully animated main hero character with fourteen different

sets of sprites, a combined total of nine original sound effects and music, and two

original backgrounds.

We used Unreal Engine 4 to create the two levels of the game, including the

animation system used to handle the animations and art for the enemies and the main

player character, the upgrade system used in the game, the UI, and the AI used for the

enemies.

For the rest of the report, we will review the design process of our game,

beginning with the idea of the game, story and play mechanics, followed by the creation

of the art assets and the technical implementation.

4

2 Design

2.1 Original Team and New Idea

We started brainstorming with the goal of making a short level for a well-polished

and fun game that would serve as a good portfolio piece, showcasing art from both

artists. We eventually agreed to combine the more cartoonish style of one artist with the

more realistic style of the other, and to make that combination the basis of our new idea.

Two art styles became two sides in a conflict; cartoonish became good, realistic

became evil. Two worlds clashing, one invading the other.

We self-imposed several measures to deal with our limited time constraint. We

would make 2D art instead of 3D, there would be no procedural generation in the level

design, our game would only end up running for about five minutes, and contain a

minimal set of features in order to create a well-polished demo.

We then hashed out a basic design for Vir and the Army of Tenebrax, creating

concept art and a platforming tech demo. We settled on three basic minion types; the

warrior, slow but powerful with heavy armor and a sword; the brawler, fast and

aggressive but not as durable; and the wizard, physically weak but able to conjure and

throw fire.

The original concept art for the villains took some inspiration from such games as

World of Warcraft (Blizzard, 2004) and Guild Wars II (NCSOFT, 2012), but with our own

unique spin, as seen in Figure 1 below. Tenebrax was a high fantasy world, and the

minions were supposed to be faceless and interchangeable while still being imposing

and intimidating.

5

Figure 1: Early concepts for the three minion types which ended up becoming the

Warrior, Brawler, and Wizard respectively.

The concept for the boss was based on the minions. He was to be the final

challenge, and playing the game had to teach the player strategies to fight him:

therefore, a fusion of the three enemy types would make the most sense. In his first

stage, he fights like a warrior; in his second, once you have knocked his armor off, he

acts as a brawler. Once his health drops below a threshold, he teleports away and

behaves like a wizard. In each form, the boss is more powerful than the minion

equivalent, thus presenting players with a similar situation but still challenging them.

Concept art for the boss can be seen below in Figure 2.

6

Figure 2: Early concept of the boss.

Our idea for the game’s introduction was a non-interactive “cut scene” movie.

The player sees the world of Luxan at peace, when suddenly a portal is opened from

which the villains of Tenebrax emerge. The cut scene was designed as a static image to

save production time.

7

2.2 Story

 Two worlds collide in violent struggle as the Highlord of Tenebrax leads his army

of warriors, mages and brawlers into the peaceful realm of Luxan in search of battle and

conquest. Most of the world’s inhabitants prove easy prey for the trained killers, but one

man vows to put a stop to the violence and save his world from enslavement.

Characters

● Vir: A citizen of Luxan, Vir is the main character of the game. He enjoys the

peacefulness of Luxan, and hopes one day to become a motor bike sportsman.

When his home is invaded, he will fight at all costs to save the inhabitants of

Luxan and achieve his dream.

 The art style and gameplay of Vir are inspired by several characters from

other games. His simple body shape and helmet were drawn from Excite Bike.

The glowing visor on his head is reminiscent of Samus from the Metroid series.

The enemy placement and weapon choices are similar to those found in the

Mega Man series.

● The Highlord: Ruler of Tenebrax, a dystopian world of fire, death and endless

war, the Highlord led his armies to conquest over his entire realm. With nothing

left to conquer and bored of isolation, he turned to his cadre of mages and

ordered them to tear open a rift between worlds so that he could spread his

empire beyond the reaches of his own dimension. The Highlord is shown below

in Figure 3.

8

Figure 3: The Highlord.

A mighty warrior, The Highlord is skilled in all forms of combat employed by his

troops, displaying peerless skill with a sword, destructive magic and his bare

fists. Clad from head to toe in thrice-forged armor of dark iron, inscribed with

blood-red runes of power, he carries a huge sword into battle but is not afraid to

get his hands dirty if the situation calls for it.

9

The idea for our story was inspired by the conflict between the art styles of our

two artists. The best way of using both styles in the same project, we decided, would be

to have two different worlds.

 Tyree’s more cartoonish, abstract art style seemed more appropriate for the

peaceful land of Luxan, as cartoonish drawings often appear friendlier, whereas Peter’s

more realistic style and specialization in fierce, threatening characters made him more

suited to create the villains. Peter took charge of the Highlord and Tenebrax, while

Tyree focused on Vir and Luxan. The two developed separately, but ideas were

swapped and suggestions made regarding the world and story of the other.

2.3 Gameplay

The gameplay of our project is comprised of two mechanics, platforming and

combat. The player has to navigate the hero Vir from platform to platform, making their

way towards the end of the level in the top right hand corner of the map. The combat

system lets the player attack in order to remove enemies, which appear as obstacles on

the player’s path to the goal. There is no scoring system, only a counter that keeps track

of defeated enemies and rewards the player with upgrades, as described in Section 2.5.

The game contains three different types of enemies, and a boss enemy. The first

enemy created for the game was the Warrior, a fairly simple enemy that guards

platforms that the player needs to traverse in order to get to the boss. Warriors patrol on

the platform they are standing on by walking from edge to edge. When a player

approaches, they attack until they either die, or run away. The Warrior is able to take

three attacks from the player, which is significantly more than other enemies, as a result

of all of the Warrior’s heavy armor, slow mobility, and simple AI. To compensate for the

10

ease that the player can avoid Warriors, each attack from a Warrior deals fifteen points

of damage to the player.

The second enemy in the game is the Wizard, which has behavior similar to a

“turret”. He floats in the air until a player approaches within a predetermined radius. He

then begins to charge up a fireball and maintains that charge. If the player approaches

even closer, the Wizard releases the charged-up fireball and immediately begins to

charge another one to bombard the player with projectiles. Each fireball deals ten

damage, since they are harder to avoid than a warrior's attacks but easier than a

brawler's. The lightly-armored Wizard can be defeated in one attack from the enemy.

The Brawler is the third type of enemy. When the Brawler spots the player, he

relentlessly pursues them using his high movement speed. Though armored even more

lightly than the Wizard, his powerful physique lets him withstand two attacks from a

player.

For our game, the health system for enemies consists of a number that

represents the number of “hits” they can take. Each player attack counts as one hit. The

player is able to regenerate health depending on the upgrades chosen. The total health

regenerated per second is increased with each “good” upgrade, and the health gain

system which initially starts at zero increases with each corresponding “bad” upgrade.

2.4 Level Design

We created two main levels; one for Luxan, where the player starts, and one for

Tenebrax, which serves as the boss level, the arena where the player encounters the

Highlord.

11

Figure 4: A rough draft of the main level.

We created a rough first draft in image format, color-coded to show the locations

of enemies, as shown in Figure 4 above. This image was then sent off to Tyree, who

implemented it and recreated the image in the game. The circles below correspond as

follows:

● Large blue circle - This circle at the end of the level represents the end

goal that the player must reach to progress to the final boss.

● Large green circle - This circle represents where the player starts.

● Red circles - These represent Warriors that patrol the platforms.

● Brown circles - These represent the placement of Brawlers.

● Purple circles - These represent the Wizards.

12

2.5 Upgrades

Vir is able to purchase an upgrade once he reaches a new tier, which is unlocked

upon killing any five enemies. Each tier contains two upgrades, with a total of three

tiers. The player is only allowed to choose one upgrade per tier, and each upgrade

aligns either with Vir’s home world, or with the world of the invading armies of Tenebrax.

The three upgrades that correspond to the “good” or Luxan side are themed

around improving Vir’s existing capabilities:

● Stronger Punches - Increase the amount of damage.

● Jump Height Increase - This is achieved through a double-jump.

● Increased Health Regeneration - While all upgrades provide some health

regeneration for the player, this upgrade increases it significantly.

The three upgrades that correspond to the “bad” or Tenebrax side allow Vir to

adapt and utilize the tools of the invading army:

● Sword - The sword extends the range of the melee attack.

● Chain - The chain allows Vir to grab distant enemies and pull them closer,

with an example being the Wizard who typically floats out of range.

● Fireball – Shoot a fireball.

13

3 Art

Peter used Autodesk Sketchbook Pro, which offers features such as layer

management and blending brushes. Sketchbook Pro can export images in many

formats, including the PNG file format used by the game engine. This format was

chosen for its high-quality lossless compression and support for alpha transparency. An

example of Autodesk Sketchbook Pro is shown below in Figure 5, showcasing the

several different layers that hold each “limb”.

3.1 Models/Figures

Figure 5: Autodesk Sketchbook Pro with the Warrior exploded to show parts.

Adobe Photoshop was used by Tyree to create the hero art. It has features

similar to Autodesk Sketchbook Pro, including PNG export. An image of Vir being

created in Adobe Photoshop is shown below in Figure 6.

14

Figure 6: Adobe Photoshop with Vir in sketched pose.

Images were initially drawn with a Wacom Intuos Pro tablet. This device supports

pressure sensitivity, which gave us the ability to control the width of brush strokes based

on the pressure applied while using the tablet pen. After a basic sketch, we added bold

lines to define the figure, then colored the art with flat colors, followed by shadows,

highlights, and other details. We then combined the line-art and color layers, exported

the resulting image and placed it in the game to see how it looked, repeating the

process for each art asset.

15

3.2 Animation

We did some research on which program we should use to create animations for

the characters in the game. We wanted a program that would let us individually

manipulate body parts, similar to 3D art programs such as 3D Studio Max.

We settled on a program called Spine from Esoteric Software. It allowed us to

animate characters by creating a “skeleton” and then attaching body pieces created in

Sketchbook and Photoshop to individual “bones.”

When animating, we assigned key frames to the bones to specify the rotation,

translation and scale of each body part over time. We also assigned key frames to

certain bones to which multiple images where attached, allowing us to switch between

different shapes. Example of this process can be seen in Figures 7 and 8.

Initially, we were going to export the animations using JSON, an efficient format

that contains all of the parameters needed for a game engine to play an animation.

Unfortunately, we soon discovered that Unreal Engine 4 does not accept JSON

files unless they are provided in a very specific format, and those produced by Spine

are not compatible. To overcome this setback, we exported our animations as a

sequence of PNGs, which Unreal is able to interpret as a traditional sprite sheet. This

brute-force approach took away a lot of flexibility, since each frame had to be a static

image instead of being composed in engine as a sum of the individual bones.

16

Figure 7: Animating the old Warrior in Spine

Figure 8: Adding image to hand bone of Vir.

Most of the animations that were created consisted of walks and jumps. The walk

animations were looped so that the key frames of the character’s pose at the beginning

and the end of an animation would be the same. All animations were rendered to be

17

played at 60 frames per second to insure a smooth appearance in the game. The other

animations created were the attack animations for each upgrade implemented in the

game such as the stronger punches upgrade as shown in figure 8.

Most of the animations were at least 30 frames long. Posing each one

sometimes required many hours over multiple work sessions. Refinements were made

based on feedback from other team members and our advisors. In total, there are more

than 144 animations spread across both artists in the project.

3.3 Music

The music for the game was created using Ableton Live 8.2. It is one of the more

convenient programs of music production, as it provides access to a wide range of

instruments which can be modified to create unique-sounding tracks. Music made with

Ableton was exported into Unreal Engine 4 using WAV format.

A screenshot of a song being created in Ableton can be seen in Figure 9. In each

row, there is a MIDI track with key presses for the instrument played.

18

Figure 9: Ableton 8.2 with music sheets on multiple tracks, showing the process

we used to create the music for the game.

3.4 Sound Effects

 The sound effects for our project were recorded using a Blue Yeti

microphone provided by the ATC. Reaper, an audio manipulation program, was used to

edit, overlap and tweak the eight sounds we captured, adding effects such as

equalization, pitch change and reverb as needed.

19

4 Technical Implementation

Our game is implemented in Unreal Engine 4. For programming in Unreal

Engine, there are two primary options: create the code in C++ or in the provided visual

scripting solution Blueprints. Blueprints is based on the Kismet visual scripting present

in the previous iteration of Unreal Engine 3, with significant changes and improvements.

Compared to Kismet, Blueprints are now able to be separated from a level,

meaning they are able to be re-used in various levels throughout a game and in the

same level easily. A “Blueprint” is also able to inherit from a C++ class in the Unreal

Engine 4 framework, allowing extension and the ability to create game logic.

The main benefit of Blueprints is the visual programming style, which allows

more accessibility so that non-engineers are able to make changes. There are some

drawbacks to using Blueprints, as complex procedures can become difficult to

understand. Unreal Engine 4’s framework also is not entirely exposed to Blueprints, but

the entire source code is exposed for manipulation in C++. For these reasons, C++

would be a better option to create that type of code and logic.

Blueprints was chosen as the primary method of implementation due to the

context search available when creating the scripts. An example of the context search

can be seen in Figure 10. Using Blueprints also gave us an additional benefit of

shortening the time required for code changes and testing, as while there was “hot

reloading” with C++ the time needed to recompile the C++ was still significantly longer.

“Hot reloading” without a full restart of the Unreal Engine 4 Editor was unavailable until

version 4.5, which was released after we started. Blueprints were also chosen for

greater compatibility with future versions of Unreal Engine 4.

20

Figure 10: A list of functions provided by right-clicking in the Blueprints editor.

Unreal Engine 4’s 2D support was introduced in version 4.3 in the form of

Paper2D. Paper2D is the name given to the set of modules provided by Epic Games,

the engine developer, in order to assist with creating games using 2D sprites instead of

models. We utilized this subset of the engine extensively in order to render and manage

the art assets in our game.

4.1 Animation

After an artist was finished with an animation and created the set of image files

associated with that animation, the files were passed to our programmer, who imported

the images into Unreal Engine 4 as “Texture” assets. After the import finished, the

Texture assets could then be used to create “Sprite” assets, which could then be

21

combined into a “Sprite Flipbook” asset, which is Unreal Engine 4’s name for an

animation sequence composed of 2D sprites.

Figure 11: Creating the Sprites from the Texture files in Unreal Engine 4

 Although Unreal Engine 4 provides a special type of “Blueprint” called an

“Animation Blueprint” that acts as a state machine for all the different animations

available for a skeleton, the Paper2D system did not have a system for managing

transitions between different Flipbooks, so in the process of creating the main

characters for the game, a system had to be created in order to manage the different

types of animations each character would have.

The system that we used to manage the transitions between animations was

created in Blueprints and is composed of several pieces:

22

● A list of animations which are supposed to be constantly looped, such as

the idle animation for the hero, and are able to be “interrupted” and do not

have to play out completely

● A data gathering function on the character’s current state, which sets

corresponding variables

● A function that actually switches the animations, based on data provided

in the previous two steps

In hindsight, if the system had to be recreated, we would implement it using C++

as the system became excessively complicated and unruly to manage in Blueprints.

4.2 Hero

Objects in the world capable of action are called “Actors”. A child class of “Actor”

is the “Character” class, which is an actor that a player or an AI is able to control and

has basic movement capabilities. Vir, the main hero character, is implemented in

Blueprints and is sub-classed from the “PaperCharacter” class, which is a version of

“Character” specifically made for 2D games in Unreal Engine 4. Vir is implemented

through two Blueprints. One “Blueprint” acts as a parent “class” and contains all the

code and abilities, with a second “child Blueprint” that contains all the configuration

information. This implementation provided a system in which the main player character

could be swapped between different Blueprints in the middle of game, with each

“Blueprint” having different sprites for all the different animations. This design decision

was made due to our initial plan to use a different set of sprites after choosing an

upgrade, such that the visual appearance of the main character changed with the

player’s decision. We ended up going with a different system, with the functionality to

23

switch between a different set of animations in one “Blueprint”, due to how the Upgrade

system was actually implemented.

Movement for Vir is achieved using Unreal 4 Engine’s provided “Character

Movement” component. This component handles most of the movement related logic.

The portion of the logic that was required consisted of registering the buttons that would

act as input, such as W for “Jump” and D for “Move Forward”. After the input is

registered, an “Input Event” becomes available, and Vir was configured to process the

Input Events by applying the desired movement direction and the force to the movement

component using the “AddMovementInput” function.

Attacking for Vir is achieved by using two different collision components. One

component represents the area covered by his punching animation, and was adjusted

manually to cover that area. The other component covers the area of the sword attack

animation. After the attack input from the player is processed, the corresponding

animation is selected and played, and the corresponding collision component for the

attack checks for any enemy Actors that are currently overlapping. The enemies are

then sent a “Damage Event” that tells them which Actor is sending the event, and a float

value that tells how much damage is being dealt. In order to prevent too many damage

events from being sent in rapid succession, there is also a Boolean variable that is true

after a damage event has been sent and while the attacking animation is still playing, so

that one damage event is sent per punch.

While the Unreal 4 Engine provides a “Damage Event,” it does not provide a

health system. The player’s health system consists of their current health, which is a

float value that ranges from 0 to 100, a health “regeneration” system that adds to their

24

current health each second, and a health gain system that adds to their current health

each time the player successfully deals damage to an enemy.

Figure 12: A screenshot of our upgrade screen created using UMG

A screenshot of the final upgrade screen can be seen in Figure 12 above. The

upgrades on the left side correspond the Vir’s home world, and the right side

correspond to the realm of Tenebrax. The implementation of the upgrade screen is in

Unreal Motion Graphics (UMG). UMG is one of the two UI modules provided with Unreal

Engine 4, the other being Slate.

25

Slate is a UI programming framework that is primarily used for the Unreal Editor,

and is the main framework for all of the Unreal Engine 4. To interface with and use

Slate, a programmer needs to extend the core widget classes using C++. After creating

a custom widget class, the programmer creates an instance of the new widget and adds

it to the viewport of the player’s screen.

UMG is a visual UI design tool intended to help create in-game UIs. UMG is

based on Slate and extends it to create a library of basic widgets, such as checkboxes,

sliders, and buttons. The main interface for creating a UI widget in UMG is a graphical

interface in the Unreal Engine 4 editor, called the “Designer” interface. A UMG widget

also allows for the creation of Blueprints code, so that widgets can read data from

various variables, and “bind” or tie events to functions. For example, a Health Bar can

read the value of the player character and scale accordingly, and an Upgrade Button

can be tied to a function that alerts the player character that an upgrade has been

selected. A screenshot of the early stages of our Upgrade menu can be seen below in

Figure 13.

26

Figure 13: “Designer” interface for Unreal Motion Graphics,

showing our Upgrade Screen.

Our implementation of the upgrade screen utilized these features to set Booleans

in the main hero object. These Booleans were used to determine whether the code for

upgrades should be used, using standard if statements. The actual upgrades that the

player can chose from on the “Luxan” side, or the left side, are as follows:

27

● Stronger Punches - This is achieved by using a different floating point

value for damage if the Boolean for this upgrade is set.

● Jump Height Increase - This is done using a simple counter and if

statement that checks to see if the jump button has been pressed twice,

and if it hasn’t it calls the “Jump” function.

● Increased Health Regeneration - Health generation is accomplished by

using the Unreal Engine 4’s OnTick event, and scaling the amount in

accordance with the amount of time occurred since the last tick.

The upgrade options that correspond to the “Tenebrax” side are as follows:

● Sword - The sword is implemented using a secondary collision area,

similarly to how the punch is implemented. The hero character reads the

Boolean and selects the appropriate area to use, along with the

appropriate animation.

● Chain - The chain is the most complicated upgrade from a technical

perspective. The chain is created on the Unreal Engine 4’s “BeginPlay”

event which triggers on the game start, but after character creation. In this

event, the chain links are created and are set to be hidden. When the

player presses the button to use the chain, the OnTick event runs a

method called “UpdateChain” which sets the visibility of the chain links.

This sets the visibility to visible, from the first link to the last one, and then

back to hidden from the last link to the first.

28

● Fireball - The fireball upgrade creates a new “Fireball” actor that uses

Unreal Engine 4’s built-in projectile motion component for objects to shoot

forward until the fireball either collides with an object or reaches the end of

its timed lifespan. The actor is created from a predetermined offset, and

uses the hero’s rotation to determine which direction it needs to move in.

4.3 Enemies

The enemies are implemented using the same “PaperActor” that the main

character Vir is sub-classed from. The enemies all share a base class “Basic Enemy”.

The reason for this is that they all share the same damage processing code, and using

a single base class for all enemies provides a common class that can be used to check

if an Actor being encountered is an enemy.

While Unreal Engine 4 provides an event that is triggered upon an Actor hitting

the edge of the ledge, there were unresolved issues with the event never being

triggered. As a workaround, our own version of detecting when the Warrior was on the

edge of ledge was created. This checks the current velocity of the Actor, and upon

detecting it has reached zero and that the Actor has stopped moving, our “At Edge of

Ledge Detection” event is triggered. This causes the force that is being applied to the

Warrior to change and apply in the opposite direction, and updates the movement

animation to face the correct direction.

The Warrior achieves the attacking in a similar manner to how the main player

character Vir achieves his melee attacks, with a collision area in front of them that the

Warrior checks for the presence of players, and if any are found, plays the attack

29

animation and sends a damage event to the player. Like the man character, Warriors

also use a Boolean to prevent sending more than one damage event per attack.

The second enemy, the Wizard, is a stationary character that shoots fireballs,

limited to one every five seconds. To shoot a fireball, the Wizard creates a new

“Fireball” actor at a predetermined offset from his current location. The fireball is given a

rotation that orients it towards the player, then proceeds to travel forward in that

direction until it either reaches the end of its lifespan, or collides with an object. During a

collision, it checks to see if the colliding object is a player, and if so deals damage, then

destroys itself regardless of what object it hit.

The third enemy, the Brawler, uses edge detection in a way similar to the

Warrior, but instead of turning around the Brawler proceeds to jump and continue

chasing. Due to how our “Edge Detection” works, the Brawler also jumps when he hits

the edge of the platform, and then jumps up on the top of the platform to continue his

pursuit of the player. When the Brawler finally catches up to the player, he proceeds to

attack the player using a quick punching assault, using a Boolean to prevent additional

damage events before the animation finishes playing.

When the boss is loaded, he starts off by playing an “Evil Laugh” animation and

sound. When the sound finishes playing, an event is triggered that begins the normal

boss AI. The boss functions as all three different enemies, using an enumeration that

determines his current state. The boss switches between the different behaviors after

taking a certain amount of damage at each stage. For example, after the Boss has

taken ten points of damage while behaving like a Warrior, he then updates the variable

that represents his current state to become a Brawler. The basic implementation of the

30

boss is similar to all the previous enemies, which the main difference being a switch

statement being at each “Event” such as the “Edge of Ledge” and “Tick” events, so that

depending on the boss’s current state, the correct code is executed.

5 Evaluation

 In order to evaluate our success, we needed to be able to verify that we were

able to do the following:

● Create a demo that could be completed in 5 minutes.

● Have an easily understandable control scheme.

● Have a set of balanced upgrades.

We conducted several playtesting sessions with friends to determine if we were able to

meet the above criteria.

 When conducting the playtest sessions, we recorded the overall time a

participant needed to reach the boss level. We had one person recording video of the

play session and another designated person observe and write down notes on the

actions the player took, what they were confused about when they played, and

recording any feedback the play tester had at the end. A screenshot of one of our

playtesting sessions can be seen below in Figure 14.

31

Figure 14: One of our playtesting sessions

From these playtesting sessions, the feedback we received was that the game

was fun, although once a player had some of the upgrades, such as the double jump,

they were able to skip past parts of the level and jump around enemies. The play testers

were able to understand the control scheme, but gave us some feedback on how we

were able to simplify it, such as using “F” for the fireball upgrade, instead of “Q”.

Due to time constraints we were only able to conduct sessions with four different

play testers.

32

6 Technical Evaluation of a Scene in Unreal Engine 4

For the completion of the Computer Science requirement of our Major Qualifying

Project, Robert completed a technical evaluation of the Unreal Engine 4 using the

existing “Elemental Demo” available through the “Learn” tab in the Epic Games

Launcher. A series of trials was performed using different play methods in order to

determine what the impact of the play method would be on performance. The Elemental

Demo was made available with the release of version 4.1 of the Unreal 4 Engine, close

to when it was originally announced, as a demo that showcased all of the new features

of Unreal Engine 4, with the camera moving through a pre-scripted sequence. The

Elemental demo used was slightly modified to only play through the scripted sequence

starting from 100 seconds in until 150 seconds, since from initial testing that segment

provided the greatest change in framerate.

There are five different play methods that were explored, with three available

options:

● Playing the current level in the Unreal 4 Editor Viewport

● Launching the current level in a separate Unreal 4 Editor Window,

● Launching the current level in a Standalone Game, which is a separate

executable process.

The other play options that were explored were the two packaging options:

● Packaging with a “Development” configuration

● Packaging with a “Shipping” configuration.

33

Figure 15: The in-editor play menu with the play options displayed.

The other play options that were available but not considered are shown in Figure 15,

and are “Mobile Preview”, and “Simulate”. The reason for not using “Mobile Preview”

was because the Elemental Demo was originally designed for non-mobile devices so

using that method for asserting PC performance did not seem appropriate. “Simulate”

runs the demo and allows the user to freely navigate the level, as such it would not

actually run through the scripted camera sequence of the demo.

34

6.1 Platform

The hardware configuration used to conduct these trials was as follows:

● Windows 8.1 Pro 64-bit

● 8 GB DDR3-1600 MHz RAM Corsair XMS3 CMX8GX3M2A 1600C9

● Intel Core i7-2600 - 3.4 GHz

● EVGA GeForce GTX 780 Ti SC - 3GB DDR5

● Seagate 3 TB Hard Drive - 7200 RPM

The software used were as follows:

● Unreal Engine 4.7.5

● Fraps 3.5.99

6.2 Procedure

The follow procedures were used to configure the software before conducting the

trials:

Fraps Setup:

1. Navigate to www.fraps.com and download and install Fraps.

2. Once Fraps has been installed, launch the program, and select the “FPS”

tab at the top.

3. Ensure that the directory for the benchmarks to save in is valid.

4. Ensure that the “Benchmarking Hotkey” listed is valid.

5. Ensure that all three boxes under “Benchmark Settings” are checked and

that the setup matches the configuration shown in Figure 17.

6. Ensure that the “Stop benchmark after X seconds” is checked and set to

50 seconds.

35

http://www.fraps.com/

Figure 16: Screenshot of the settings used for Fraps

Packaged Methods Setup:

1. From the Epics Games Launcher, select the Unreal Engine 4 Project that

was created from the Elemental Demo and open it.

2. From the Unreal Editor window, select File, Package Project, Build

Configuration, and select the Development option.

3. From the Unreal Editor window, select File, Package Project, Windows,

Windows (64-Bit) and select a file directory to which the packaged project

will be saved.

4. Once that packaging has finished, repeat step 2 except selecting Shipping

instead of Development.

36

5. From the Unreal Editor window, select File, Package Project, Windows,

Windows (32-Bit) and select a different file directory to which the

packaged project will be saved.

Figure 17: The package project options used in the course of the trials.

After downloading the Elemental Demo project from the “Learn” tab and creating the

project, the following procedure was used to conduct the trials for the three in-editor

play methods:

1. Perform the earlier setup methods mentioned.

2. Launch a play method using the Play button.

3. Let the play method finish running through the scene at least once to “warm up”

the engine and to help eliminate any possible skewed data due to cached files.

4. Launch the level again using the same play method.

5. As soon as the level begins to play, press the previously set Benchmark hotkey

for Fraps to begin recording the data.

6. After the benchmark finishes, open the previously set directory for Fraps and

move all of the generated .csv files somewhere else with a label, such as

“/Trials/Trial 1/Standalone Game/”.

37

7. Repeat steps four to six twice more for two more trials worth of data, and then

repeat the entire procedure for each different Play method.

In order to get data for the packaged methods, the procedure for launching it is slightly

different:

1. Perform the earlier setup methods mentioned.

2. Navigate to the directory in which the packaged demo was saved.

3. Open the “WindowNoEditor” folder and double-click the *.exe file inside to launch

the game.

4. Let the game finish running through the scene at least once to “warm up” the

engine and to help eliminate any possible skewed data due to cached files.

5. Launch the level again using the same method.

6. As soon as the level begins to play, press the previously set Benchmark hotkey

for Fraps to begin recording the data.

7. After the benchmark finishes, open the previously set directory for Fraps and

move all of the generated .csv files somewhere else with a label, such as

“/Trials/Trial 1/Packaged - Development/”.

8. Repeat steps five to seven twice more to generate two more trials worth of data,

and repeat this entire procedure again with the other packaged game.

38

For the last set of trials conducted, the following procedure was used to adjust the

graphics options:

1. Package the Unreal 4 project using the “Development” configuration as in steps

one to three above.

2. Navigate to

%LOCALAPPDATA%/ElementalDemo/Saved/Config/WindowsNoEditor/GameUs

erSettings.ini” and edit the file to contain the following:

[ScalabilityGroups]

sg.ResolutionQuality=100

sg.ViewDistanceQuality=3

sg.AntiAliasingQuality=3

sg.PostProcessQuality=3

sg.ShadowQuality=3

sg.TextureQuality=3

sg.EffectsQuality=3

This file must be edited in between each trial.

39

3. Gather results using the remaining steps, four through eight. After running

through the first set of trials using the starting configuration, modify the

configuration such that each different value for each option is tested, with the

other options remaining at their original values. The graphics options and values

that were explored were as follows:

● Resolution Scale, “sg.ResolutionQuality” - 25, 50, 75, 100

● View Distance, “sg.ViewDistanceQuality” - 0, 1, 2, 3

● Anti-Aliasing, “sg.AntiAliasingQuality” - 0, 1, 2, 3

● Post Processing, “sg.PostProcessQuality” - 0, 1, 2, 3

● Shadows, “sg.ShadowQuality “ - 0, 1, 2, 3

● Textures, “sg.TextureQuality“ - 0, 1, 2, 3

● Effects, “sg.EffectsQuality“ - 0, 1, 2, 3

6.3 Results

One of the initial tests conducted was an attempt to narrow the scope of the

demo to a particular scene that had many drops in frame rate when played using a

“Standalone Game,” and to see what adjustments might be able to help prevent the

drops in frame rate. Figure 18 below shows the current frame rate at each second along

any given second.

40

Figure 18. Framerate vs Second of the entire “Elemental Demo.”

From these initial trials, it was evident that the time period which had the most

drops in framerate was between 100 seconds to 150 seconds, and so the scope of time

that was examined in further trials was narrowed.

The next trials that were conducted looked at the different play options. After

conducting all the trials, and analyzing all the data, the following charts were created to

showcase the findings and conclusions that were drawn. Figure 20 below shows the

average frame rate for each trial on the left axis, and compares it against the different

play methods on the bottom axis.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

Fr
am

er
at

e
(f/

s)

Seconds

41

Figure 19: A bar chart showing the Average Frame Rate versus each Play Method
and how they compare to the overall Average Frame Rate.

As shown in Figure 19, the average frame rate across all trials stayed roughly the

same at around 60 frames per second, with the “Standalone Game” method showing

the overall lowest frame rates, and “Packaged - Shipping” showing the highest frame

rates.

After comparing the play methods available, the play method of “Packaged -

Shipping” was selected as the method that would be used in conjunction with testing

various combinations of the scalability options available to see if any of the options

would impact the performance of the scene when adjusted. While other play methods

were extremely close, this method is exactly what a player would experience on their

own machine.

42

Figure 20 displays the average frame rate (f/s) of the three different trials, with

each of the scalability options examined. Resolution Scale has a range of 25% to 100%,

and the other options range from zero to three.

Scalability Options \ Value Used 0 (25%) 1 (50%) 2 (75%) 3 (100%)

Resolution Scale 61.99 62.00 62.00 62.00

View Distance 62.01 62.00 61.97 62.00

Anti-Aliasing 62.00 61.99 62.00 62.00

Post Processing 62.00 61.99 62.00 62.00

Shadows 62.00 61.98 62.01 62.00

Textures 61.99 61.98 61.99 62.00

Effects 62.01 62.00 61.99 62.00

Figure 20: Average frame rate across all trials. 3 is the highest value possible

and 0 is the lowest

As can be seen from the table, there is only a minimal difference in frame rates

between all the options, with variations ranging between -0.02 to +0.01 frames per

second.

43

6.4 Summary

As can be seen from the results, using either the “Play In Selected Viewport” or

“Play in New Editor” play methods proved to be the closest way to see how actual

performance matches the “Shipping” configuration without packaging the entire game,

which can be a time consuming process. Changing the graphics option also had little

impact, which may be due to a variety of reasons, such as a frame limit that prevented

the engine from rendering more than 60 frames a second. Another way to explore the

impact of the scalability options would be to find a lower-end platform that these trials

could be conducted on, since that type of platform is more likely to utilize the scalability

options.

Potential errors may be due to the reset of the configuration file whenever the

game was restarted, in which the settings were overwritten by Unreal Engine 4 before

the trial was run. A potential fix for the configuration file reset is to configure the demo to

allow a custom configuration of options before it executes, or seeing if the overriding of

the configuration can be prevented. Another option to fix this error is to use one of the

non-packaging methods and use the in-editor scalability options. In order to fix the

frame rate capacity issue, there may exist a setting that allows it to be disabled.

44

7 Conclusion

We created a short 2D side-scrolling platformer game in Unreal Engine 4 using

Photoshop, Autodesk Sketchbook Pro, and Spine for creating the art. Creating the art in

both Photoshop and Sketchbook Pro went smoothly. Spine facilitated creating

animations for the characters in the game after importing the body parts for the

character and binding them to the skeleton we created for that character. We used

Ableton Live to make some sound effects and background music in a short period of

time.

The testers were able to understand and finish the game within our expected

timeframe. Some had difficulty being able to tell when they were taking damage, while

others found the control scheme confusing. Although we were not able to address all of

the playtesting suggestions due to time constraints, we were able to implement some,

such as changing the controls.

Our decision to build a 2D game in Unreal Engine was not optimal. Even though

Paper2D has been out for a while in Unreal Engine 4, when we started it was brand new

and is still marked as “Early Access Preview”. The system for managing 2D sprite

animations is also significantly sub-par compared to the “Animation Blueprint” system

available for 3D models.

45

Coding a game entirely in Blueprints also did not work out as expected. While

Blueprints is an extremely useful tool and easy to use, it seems that the performance

suffers as the Blueprints grow in size

 Most of the above issues were consequences of doing a project in a relatively

new engine. As an example, during the course of our project, the engine went through

several major updates, and the documentation was frequently underdeveloped, missing,

or out of date.

Despite these problems, we believe we ended up with a well-polished game that

showcases our individual abilities.

46

8 Works Cited

"Portable Network Graphics." PNG () Home Site. http://www.libpng.org/pub/png/

"JSON Tutorial." JSON Tutorial. http://www.w3schools.com/json/

"Esoteric Software." Spine: Videos. http://esotericsoftware.com/spine-videos

Sieprawski, Brandon. "Unreal Engine 4.5 Released!" Unreal Engine 4.5 Released!

https://www.unrealengine.com/blog/unreal-engine-45-released 14 Oct. 2014. Web.

"Slate UI Framework." Unreal Engine.

https://docs.unrealengine.com/latest/INT/Programming/Slate/index.html

"UMG UI Designer User Guide." Unreal Engine.

https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/index.html

World of Warcraft. Blizzard Entertainment. Nov. 23, 2004.

Guild Wars 2. ArenaNet. Aug. 28, 2012.

Excitebike. Nintendo. November 30, 1984

Super Metroid. Nintendo. March 19, 1994

Mega Man. Capcom. December 17, 1987

47

http://www.libpng.org/pub/png/
http://www.w3schools.com/json/
http://esotericsoftware.com/spine-videos
https://www.unrealengine.com/blog/unreal-engine-45-released
https://docs.unrealengine.com/latest/INT/Programming/Slate/index.html
https://docs.unrealengine.com/latest/INT/Engine/UMG/UserGuide/index.html

9 Appendix

Original Idea

The original idea was for a first-person, 3D exploration and survival game with a

focus on story, set in the aftermath of a volcano eruption in California. It followed the

last member of a resistance group fighting back against Gabriel, the self-made tyrant of

what city was left semi-intact and the leader of one of two gangs that constantly fought

over the area -- the Devil’s Hounds, the gang with the most resources and best

organization, led by Gabriel, who treats those living in his domain as a resource to be

exploited; and the Crimson Storm, a gang of bloodthirsty marauders only barely held

together by their brutish leader, Ozhog.

Figure 20: An early concept drawing of Gabriel.

48

As these two gangs fought over the city, and the private military contractors who

had been sent in to keep order shoot first and ask questions later, the player must

survive and either escape or die.

Figure 21: A concept for a cut scene from the original game idea.

The goal of this game was to take down the two gangs and the PMCs by killing

the leaders of all three, after fighting through the rest of their gang, including mini-

bosses with names and backstories of their own. Taking over bits of the city would

confer bonuses, and the player might get some allies to fight beside the player along the

way.

49

9.1 Design Process and Re-Scoping

Our original idea for the game was far too large to be practical. It involved

combat, stealth, scavenging for supplies, character progression with three complete skill

trees, and a large open world city with both gangs to fight, a series of bosses, full voice-

acting, and multiple endings. Needless to say, this would be an ambitious idea for a full

studio with a few years to work. For a team of four who had one school year, it was

impossible.

So we re-scoped. The project became story-focused, and nearly all of the

combat, stealth, and everything else was dropped. We focused on the cinematic

experience, a story told through environment and cut scenes. The mechanic for this

story would be “active” objects that would trigger flashback cut scenes, such as a knife,

a radio, and an old newspaper.

 The goal became simply to find the player character’s friend, a scientist who

used to work for Gabriel, collect some spare parts and fuel, then repair a helicopter and

fly away. When player got to the end, however, it would be revealed that it was Gabriel

misleading the player all along.

50

	1 Introduction
	2 Design
	2.1 Original Team and New Idea
	2.2 Story
	2.3 Gameplay
	2.4 Level Design
	2.5 Upgrades

	3 Art
	3.1 Models/Figures
	3.2 Animation
	3.3 Music
	3.4 Sound Effects

	4 Technical Implementation
	4.1 Animation
	4.2 Hero
	4.3 Enemies

	5 Evaluation
	6 Technical Evaluation of a Scene in Unreal Engine 4
	6.1 Platform
	6.2 Procedure
	6.3 Results
	6.4 Summary

	7 Conclusion
	8 Works Cited
	9 Appendix
	9.1 Design Process and Re-Scoping

