
DESIGNING A VISUAL PROGRAMMING LANGUAGE

FOR CREATING MULTIPLAYER EMBODIED GAMES

BY

Matthew Micciolo

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Interactive Media and Game Development

in the Graduate College of Worcester Polytechnic Institute , 2018

Worcester, Massachusetts

ADVISOR:

Ivon Arroyo

READERS:

Brian Moriarty and Erin Ottmar

ABSTRACT

Games as a means of education have been starting to become more of an everyday reality. Not

only are games used in classrooms, but they are used in industry to train soldiers, medical staff,

and even surgeons. This thesis focuses on physically active (i.e. embodied) multiplayer games

as a means of education; not only by having students play, but also by having students create

games. The embodied multiplayer aspect allows for a more interactive experience between

players and their environment, making the game immersive and collaborative. In order to create

these games, students must exercise their computational thinking abilities. The Wearable

Learning Cloud Platform has been developed to enable students to design, create, and play

multiplayer games for STEM. This platform allows users to create, edit, and manage the

behavior of mobile technologies that act as support to players of these games, specified as

finite-state machines. The platform provides a means of testing created games, as well as

executing(running) these games wirelessly by serving them to smartphones (or smart watches)

so that students can play them with other students, in teams, or as individual players. The

platform features a full drag and drop game editor with a sophisticated validation engine that

prevents users from making syntax errors. Visually programmed games transpile to JavaScript

for execution on the game server and provide two separate levels of programming abstraction.

This platform has been successfully tested with 18 participants and they have shown significant

improvements in their understanding of Finite State Machines and have shown an increase in

their Computational Thinking abilities.

1

ACKNOWLEDGMENTS

I would like to formally thank the following individuals and organizations who helped

make this thesis possible and successful.

PROJECT ADVISOR

Ivon Arroyo

PROJECT READERS

Brian Moriarty

Erin Ottmar

EMBODIED LEARNING GROUP at WPI

MASSACHUSETTS ACADEMY OF MATH & SCIENCE

2

TABLE OF CONTENTS

INTRODUCTION 6

BACKGROUND RESEARCH 8
Technology In The Classroom 8
Computational Thinking 9
Visual Programming Languages as Educational Tools 10
Finite State Machines 12
Multiplayer Embodied Games for Mathematics Learning 13

Game Playing Studies 14
Past Game Creation Studies 15

RESEARCH QUESTIONS 18

METHODS 19
Developing a Visual Programming Language 19

Multiplayer Aspect 19
Multiplayer Scope 20
States 21
Connections 22

Self Loopback Connection 22
Loopback Connection 22
Neighbor Loopback Connection 22

Transitions 22
Wearable Learning Cloud Platform 23

Architecture 23
Testbed 24

Host Setup 25
Virtual Machines 25

Web VM 25
WLCP VM 25
Seafile VM 26
Desktop VM 26

Data Model 26
Selected Tools 26
Design 27

3

Master 27
State 28
Connection 29
Transition 29

Test Data 30
Main Interface 31

Selected Tools 31
Design 32

Index 32
Game Editor 32
Game Manager 37
Game Player (Virtual Device) 40

Transpiler 41
Selected Tools 42
Design 42

Transpiler Template 42
Transpiler 45

Game Server 46
Selected Tools 47
Design 47

Modules 48
Tasks 49
VM 50

Game Server API 51
Shared Library 52

Study 52
Participants 53
Procedure 54

Day 1 : Playing EstimateIt! 54
Presentation 54
Activity 54

Pre-Study 54
EstimateIt! 55

Homework 55
Day 2 & 3: Game Creation 55

Presentation 55
Activity 56
Homework 57

Day 4 & 5 : Wearable Learning Cloud Platform 57

4

Presentation 57
Activity 57
Homework 58

Day 6 : Testing and Debugging 58
Presentation 58
Activity 58
Homework 58

RESULTS 59
Measures 59

Pre & Post Test 59
Post Study Survey 60
Game Products & Coding 63

Coding Guide 64
Coding 65
Finite State Machine Diagram Coding 65

Day 3 65
Day 5 67
Day 3 & 5 68

Game Products 69

DISCUSSION 74

FUTURE WORK AND CONCLUSION 76

REFERENCES 77

APPENDIX A. Pretest/Posttest in Computational Thinking 79

APPENDIX B. Survey about Perceptions of the WLCP’s “Game Editor” 82

5

INTRODUCTION
In recent years, games as a way of education have been growing in popularity, and a

large amount of research has been conducted to show the effectiveness and impact of playing

games as a way to learn and practice curricular content (Steinkuehler, Squire & Barab, 2012,

Habgood & Ainsworth, 2011, Lester et al., 2013). Most of this research focuses on students

playing games as a means of education, while little research seems to have focused on game

creation as a means of education. There are benefits to having students “create” games as a

way of engaging with STEM content. First, as a way for students to deepen their understanding

of curricular concepts --for instance, thinking about math questions from a deep inquiry “problem

posing” perspective (Arroyo, Schapira & Woolf, 2001, Silver & Cai, 1996) as opposed to a

problem-solving perspective. Second, as a way to have students engage in abstract and

systematic thinking, also called computational thinking (Wing, 2006), which implies a high level

of precision in the specification of a solution to a problem, which has contemplated all possible

movable parts, such as temporal restrictions (what happens first and later), conditional

restrictions (what happens in specific situations, as a consequence of a condition), concurrency

issues (e.g. states in the game might depend on the states of other players in the game, not

only of the previous states of this same player).

The goal of this research project is the generation of a programming language, and a

software platform, that would allow students to experiment with both creating and playing

multiplayer educational math games that involve the use of mobile technologies to assist

players as they practice and learn, while moving around in a highly social and physical spaces.

Something unique about this programming language is that it would allow for the “programming”

of such mobile devices that support multiple players. Each player carries a device, and the

“program” running in the mobile device guides and supports individual players, and/or teams of

6

synchronized players (see Figure 1). By creating these games, participants should engage in a

deep process of computational thinking, as well as experience, discuss, and deepen their

understanding of mathematics concepts in a community of practice.

In order for students to create these games, a visual programming language and system

must be developed and implemented to both give students an opportunity to practice their math

skills (as game players) and also their computational thinking skills (as game creators). This

programming language has been developed in an iterative manner, after pilot studies that

studied both the feasibility of K-12 students both playing and creating these kinds of games, and

is the topic of this masters thesis.

This thesis will first describe the context of this research and background research, and

will proceed to focus on the architecture of the platform designed to “run games” and the visual

programming language designed for children to create games as “finite state machines.” While

finite-state automata is considered a fairly abstract concept in Computer Science (Hopcroft &

Ullman, 1979), it is actually an intuitive way to represent a system as a series of actions and

reactions, and states and transition events between states. This paper shows how we created a

simple programming language based on finite state machines for K-12 students to create fun,

physically active math games, involving multiple players, math challenges, and math support,

building on our knowledge of what a traditional tutoring system would be able to do.

7

BACKGROUND RESEARCH

Technology In The Classroom

Over the past few decades, technology has exploded into something that we use and

interact with every day without even thinking about it. We use it at home, at work, and it is

constantly used in schools for educational purposes. When we think of the application of

technology in schools, we think of things such as performing research using the internet, writing

papers, creating presentations and other stereotypical school tasks, but we forget about many

of the intriguing possibilities that could be used in classrooms (Van Horn, 2007). One such

possibility is the integration of games into the curriculum and using them as an educational tool.

This could include both playing and creating games and could help by adding fun to learning,

and in response, make the subject matter much more appealing to students (Micciolo, 2017). By

making the games interactive, it could also get students up and moving instead of sitting in front

of a whiteboard all day long. According to a 2009 High School Survey of Student Engagement,

in which more than 42,000 students participated in, only 2% said they’d never been bored in

school and only 41% said they went to school because of what they learn in class (Yazzie-

Mintz, 2010). After the analysis of these survey results however, students did indicate what

might motivate them. Things such as opportunities to be creative and more engaged were

brought up. Games are an excellent way to keep people engaged and by adding the aspect of

students creating their own educational games, this allows for them to be as creative as they

want, as designing educational games takes a lot of creativity to make a serious topic fun.

Games in the classroom could be very beneficial to both the teacher and the students.

8

Computational Thinking

Playing and creating digital educational games not only has the ability to educate the

creator in the topic that the game addresses, but also gets the mind thinking computationally.

While playing the games, players may think or be curious about how the game works behind the

scenes. More importantly, when creating games, creators must think computationally and

programmatically about how they can implement the game they want to. Over the past decade,

computational thinking has become a very hot topic and the push to educate students on this

topic has been increasing (Shute, Sun & Asbell-Clarke, 2017). Many think that computational

thinking only involves programming skills, but it involves more than that such as managing

information effectively and efficiently with technologies, so important in our data-driven era.

Developing digital games is a great exercise for computational thinking. It can help people get

an understanding of programming, algorithms, and event driven tasks. Giving the students an

opportunity to experiment with creating these educational games could very well increase their

computational skills.

9

Figure 1 : Diagram of Computational Thinking (Computational Thinkers, 2018)

Visual Programming Languages as Educational Tools

Over the past few years, there has been a large push to teach computational and

programming skills in American schools. Computer science courses for children have

proliferated and a 2016 Gallup report found that 40% of American schools now offer coding

classes (Tarnoff, 2017). This percent has almost doubled from a few years ago. Teaching kids

to program can provide them with skills they need in order to succeed in today’s technologically

run world. However, teaching them traditional languages such as C/C++ and Java can be

difficult and very time consuming for young children. Due to this, programming environments

intentionally designed to support novices have become increasingly popular (Price, Dong,

10

Lipovac, 2017). These environments allow students to experiment with programming without

having to worry about a complex syntax or about making errors, using a visual programming

language that involves dragging and placing blocks, designing their programs graphically rather

than textually. At the same time, these programming languages tend to give the user feedback

and suggestions. One of the most famous visual programming languages is ​Scratch,​ created by

the MIT Media Lab (Maloney et al., 2010), where children program by dragging blocks that

indicate a flow of behaviors, loops, conditional statements, and other programming language

functions. The key to a programming environment such as this is its user-friendly nature, so that

programming itself can be learned very easily. While one may never use such programming

language for a real-world task, it teaches young users how to think computationally, how

programs should be organized, and the concept of flow.

Figure 2 : SCRATCH Visual Programming Language by MIT (Medium, 2018)

11

Finite State Machines

A Finite State Machine (FSM) is a method of explaining computer behavior in terms of

simple actions and reactions. Finite State Machines can be visually represented by Finite State

Machine Diagrams (FSMD). Essentially, a Finite State Machine is an abstract representation of

a number of states and transitions between the states that correspond to an input. This behavior

can be seen in everyday scenarios such as traffic lights that change when a pedestrian wants to

cross the street. In this example, the pedestrian pressing the crosswalk button is an example of

input and the change from a green traffic light to a red traffic light is an example of a transition.

Synonymous to the traffic light, Finite State Machines can only be in one state at a time, called

the current state. The states change when triggered by a condition or event (input), called a

transition event. The standard representation of a Finite State Machine Diagram is as follows:

states are represented by circles or boxes and events are connected via arrows which represent

transitions (Ottmar, Arroyo, Castro, Hulse, Chatani, Harrison & Micciolo, 2017, pp. 3-4). Finite

State Machines are part of the Appendix A, the Finite State Machines test given to students to

assess their computational thinking ability.

Figure 3 : Finite state machine diagram that represents a locker

12

Multiplayer Embodied Games for Mathematics Learning

One of the major goals of the research presented here was to create an infrastructure

that would allow both the play and the creation of technology-based games that are: a)

physically active games so that students are highly engaged and move in a physical space; b)

highly social multiplayer games, so that a full class of children can play (think authentic

children’s playground games such as scavenger hunts, tag, or capture the flag); c) each player

carries a mobile device that guides and supports the player, sets challenges for individuals and

team for an enhanced ‘augmented reality’ experience; d) games could be “educational” in that

games blend mathematics concepts in them, so that children would have to traverse spaces

and encounter challenges; e) players can “input” objects or places found via button pushes, QR

scans, RFID scans, camera inputs, or GPS locations.

Figure 4 : Students playing the Embodied Math Game EstimateIt!

13

Game Playing Studies

One of the large feasibility questions that we had, in relation to this new technology and

games idea, was whether elementary school students would be able to understand these

games in order to play them, or whether the complexity was too much for them. That is, given

that each student is equipped with a mobile device that “runs” a game such as a math

scavenger hunt, would they be able to understand the goals of the game, understand the role of

the cell phone as a scaffold provider and as a guide? Would they understand the role of

individual players within a team? Even further, would students learn mathematics from such an

augmented reality learning experience?

The result of one controlled study carried out with 53 fourth graders in two schools

carried out by a collaborator in the Philippines was an overwhelming “yes”. Participants were 53

students from two math classes in two schools in the Philippines. Students from each school

were randomly assigned to one of three conditions: a lecture-only condition, a

lecture-plus-game condition, and a game-only condition. The lecture-only group was given a

lecture. The lecture-plus-game group was given the same lecture and then played a scavenger

hunt game called Estimate It!, where students had to find, measure, and estimate the

measurements of target geometric objects in the classroom that had been color coded (and had

to be “input” in the cell phones via colored button presses). If students got “stuck”, they could

push a button to get help and support. Scaffolds helped them understand the concept

underlying the task, and got them closer to the solution (target object).

The game-only group played EstimateIT! but did not experience the lecture. Results

suggested that the groups playing EstimateIT! obtained the highest means in math post-test

performance scores, and that the lecture-only group obtained the low-est means in math

14

post-test performance. This showed the feasibility of such technology-based games to be

implemented in schools, and that at this game was an activity conducive to student math

learning, boosting the learning potential of a lecture covering the same material. Also, students

really liked the active embodied math game. When asked if the game was fun, 93% of students

said the game was “fun”, citing reasons such as physicality (e.g. "the game not only makes me

learn, it also makes me exercise"), and social interaction (e.g. "it's fun because I'm playing with

my friends"). 86% of students said they would prefer playing the EstimateIT! game over usual

classroom instruction. Some students asked whether the game was available for download in

the app/play store. The results in general suggest that student experience was extremely

positive (Arroyo et al, 2017; Casano et al., 2016).

Other studies in the United States and China also showed that such active learning

game experiences, with students carrying individual devices that would give them support, are

conducive to learning. For instance, students playing the Tangrams Race, a relay race that

encourages teams of students to take turns to find target geometric objects in a basket at an

end line, and then run back to the starting line, followed by construction of a puzzle with the

retrieved pieces, led to significant performance gains in standardized test math questions, after

only a single session of playing the game (Arroyo et al., 2016).

The Wearable Learning Cloud Platform is infrastructure that allows the creation and

playing of such distributed games, and facilitates research on active embodied student learning

in such collaborative and competitive experiences.

Past Game Creation Studies
We wanted the Wearable Learning Cloud Platform to enable the easy creation of new

games; a game creation environment that is simple enough for teachers, and even for middle

school children to create these active games. One of the questions we had was whether

15

middle/high school students would be able to manage to conceive and create such physically

active math games. On the one hand, younger folks who have played playground games only a

few years earlier should probably be able to imagine and conceive fun multiplayer games, even

better ones than adults would. However, would they be able to manage the level of abstraction?

Would they generate interesting and feasible math game experiences that go beyond the

EstimateIT! scavenger hunt we had created? Would they manage to represent them and specify

them with a high level of precision?

In order to answer this question, fifty-four (54) sixteen-year-old students from a high

school in Massachusetts were involved in a “math game design” study. Students worked on a

variety of activities during three one-hour sessions, three consecutive days in 2017. Students

worked in teams to create, draw, and specify multiplayer active math games on large paper

pads, given the following constraints: a) The game you design must be playable by 4-6th

graders (9-12 year olds); b) The game has to teach students some math concepts appropriate

for their age; c) The game must be multiplayer (at least 6 simultaneous players); d) They should

make sure the game is active by getting the students to move around, at least to some extent.

 In addition to this, students played EstimateIT!, with the purpose of having students

understand the role that mobile devices could play as guides and assistants/tutors in the math

game. Students were explained how the game they just played worked as well the system

behind it powering it. Day three was completely different than day one and day two in that the

entire group redesigned the games they had created before to include mobile devices, similar to

EstimateIT! (guiding and supporting the players). Last, students were given a presentation that

summarized the idea of finite state machines (finite state automata), and how actually the

EstimateIT! game was internally specified as a finite state machine, from start to finish, with

states representing outputs and button presses as inputs and transitions between states.

16

Students proceeded to redesign their games to include cell phones, and specified the

behavior of these as finite state machines. After they were done redesigning their games, they

presented their new games to each other. After each day, students were given a homework

assignment, writing a two-page summary of what they had produced each day. Other

submissions to this conference show that students were able to conceive these games, include

technology, and specify them to a large level of detail as finite state machines, with a good level

of precision. Thus, the result to the feasibility of at least high school students creating these

games was extremely positive (Arroyo et al., 2017, Hulse et al., submitted; Harrison et al.,

submitted). Students were able to create a large variety of games that went beyond our initial

scavenger hunt, assign a role for the cell phones, and specify the phone behavior in detail using

finite state machine diagrams.

Figure 5 : Student created paper FSMD

17

RESEARCH QUESTIONS

As said before, the goal of this research project is the generation of a programming

language and a software platform, which I named as the ​Wearable Learning Cloud Platform​.

This platform allows students to experiment with both creating and playing multiplayer

educational math games that involve the use of mobile technologies to assist players as they

practice and learn, while moving around in a highly social and physical spaces. By creating

these games, participants will engage in a deep process of computational thinking, as well as

experience, discuss, and deepen their understanding of mathematics concepts in a community

of practice. The following research questions will try to be answered with this master's thesis

project.

● Regarding Students’ Computational Thinking:

○ Does a person's knowledge of defining a computational system with Finite State

Machines (one way to assess students’ Computational Thinking ability) change

by designing multiplayer math games, both on paper and in the WLCP?

● Regarding the visual Programming Language:

○ Is the WLCP suitable for use by K-12 students?

○ Is it possible to create a user friendly and easily usable of designing and playing

finite state machine games digitally?

● Regarding Students’ Coding and Game Development Processes:

○ How well can someone translate a game they designed on paper into a Finite

State Machine Diagram on paper?

18

○ When going from paper FSMD games to WLCP FSMD games, did users

encounter limitations?

METHODS

This Thesis is comprised of 3 parts: The Wearable Learning Cloud Platform, a study and

an analysis of that study. The Wearable Learning Cloud Platform part is comprised of many

small submodules that provide a means for users to design, create, and play multiplayer games

for STEM. It is comprised of a Visual Programming Language Specification, Data Model, Game

Editor, Game Server, Transpiler and Web App. The next part, the study, will consist of students

volunteering their time to test designing, creating and playing games using the game editor and

visual programming language. Lastly, results from this study will be analyzed and a conclusion

made about how effective the system is.

Developing a Visual Programming Language
WLCP is a visual programming language whose underlying model of computation is a

Finite-state machine (FSM). The programming language consists of 3 main components: states,

connections and transitions. States exists as a mean of output such as displaying text on a

screen. Connections provide a path to another state to transition to. Lastly, transitions provide a

way to control connections via inputs such as button presses, keyboard input, rfid scans, etc.

Multiplayer Aspect

What makes this visual programming language more unique than others is its ability to

define real time multiplayer games. This has to do with how the data is defined and treated

when using the programming language. The language contains three scopes at which data can

19

be accessed : The Game Wide Level (Global), the Team Wide Level and the Player Wide Level.

If data is defined at the Game Wide Level, then all clients running program have access to that

data. If data is defined at the Team Wide Level, then all clients of the same team have access to

that data. If data is defined at the Player Wide Level it is only accessible by an individual client

(player). The following works in reverse; Player Wide Level can access Team Wide Level and

Game Wide Level and Team Wide Level can access Game Wide Level.

Multiplayer Scope

The multiplayer scope is similar to how scope works in a traditional language such as

C/C++ and Java. Below is an example of how scope works in a traditional textular language.

This is C/Java pseudo code.

{

 Int gameWideVariable = ​0​;
 ​if​(team == ​1​) {
 Int teamOneVariable = ​1​;
 read(gameWideVariable);

 ​read(teamTwoPlayerOneVariable);
 }

 ​if​(team == ​2​ && player == ​1​) {
 Int teamTwoPlayerOneVariable = ​21​;
 read(gameWideVariable);

 ​read(teamOneVariable);
 }

}

Figure 6 : Traditional textual language scoping

On the first line a game wide variable is declared. Then in each of the if blocks (which represent

team scope and player scope), is the declaration of two more variables, one for the team if and

one for the player if. Each of the if statements can read the variable defined at the top, just like

how teams and players can both see the game wide scope. However, the team 1 if cannot read

20

the team 2 player 1 if statements declared variable because it is out of scope. The same applies

for the opposite. The same applies for this language. When data is defined at the team level,

you cannot define it at the player wide level.

States

Because the WLCP Language is based on the concept of Finite-State-Machines, states

need to be defined; thus, states are represented as boxes with a label that describes itself.

States also contain one input and one output node (represented as circles in the top center of

the state and bottom center of state respectively). The input node may contain single or multiple

input connections and the output node may contain single or multiple output connections.

States contain variable and output data. The data is defined for the three different

scopes as described in the ​Multiplayer Aspect​ section. Whenever a state is transitioned to, its

variables and output data is enabled for the scope of the current client (player). These different

types of output data include but are not limited to text, images, sounds, light, etc.

Figure 7 : WLCP Visual Programming Language. Consisting of States, Connection and
Transitions

21

Connections
In the WLCP Language, connections are represented as lines with one arrow that

connect from one output node to one input node. A single connection may not contain more

than one transition, but does not have to contain any.

Self Loopback Connection

It is possible to make a connection from a states output to that same states input, thus

creating a self loopback connection. If the connection does not have a transition attached this

creates an infinite loop. If there is a transition attached this creates a controlled infinite loop.

Loopback Connection

A connection whose output does not equal the same states input is defined as a

loopback connection. It behaves the same as the Self Loopback Connection, but does not loop

back to itself, just from another state.

Neighbor Loopback Connection
A connection whose target is a neighbors (share a same parent state) input.

Transitions
In the WLCP Language, transitions are represented as small boxes that reside on the

center of a connection. A transition can only ever belong to one connection. Transitions work

exactly in the same way as a state with the exception that they work as inputs and thus contain

input data rather than output data. The different types of input data include but are not limited to

single button presses, sequence button presses, keyboard input, RFID Scans, GPS location,

Accelerometer, etc.

22

Wearable Learning Cloud Platform

The main goal of this section is to describe the Wearable Learning Cloud Platform

(WLCP), a system designed to support the creation and deployment of multiplayer embodied

games via a web-based platform. The WLCP provides the following services: (1) communication

with the devices; (2) maintains the state of individual players and games; (3) aids the users

(game manager) in the general functioning of activities (start the game, verify progress,

determine the winner); (4) management of game lobbies of players; (5) keeping track of

individual and team progress; (6) creation of new games through a “game editor” based on finite

state machine diagrams. Any user can login to any of the three main modules of the WLCP,

which are game manager, game editor, and game player.

Architecture
Before actual development started a decision had to be made on how the project should

be setup and which tools should be used in order to implement the WLCP. In order for the

system be accessible by everyone, regardless of which machine or operating system they were

using, a decision was made to make everything web based. The next decision was which tool

suite to use to build this web based platform. Java and JavaScript were selected. Java would be

used for backend development and JavaScript would be used for frontend development.

For development of the platform, the cloud approach was taken. This means that the

software is hosted by one entity and accessible everywhere as long as you have access to the

internet. This means that users don't need to install any extra software or host it themselves.

They simply access it from their web browser using a PC or mobile devices such as tablets and

phones.

23

The platform can be broken up into several parts which include: Java Persistence API

(JPA) Data Model with MySQL, HTML5 web based UI using SAP OPENUI5 (game manager,

game editor, and virtual device), multithreaded asynchronous TCP socket Java game server,

JavaScript transpiler and SPRING web app. More detail about these various components will be

revealed in the following sections. Below you can see a diagram of the WLCP which is

comprised of its backend technical components, frontend client presentation components and

lastly, the game play component of students building and playing games.

Figure 8. Architecture of the Wearable Learning Cloud Platform

Testbed

For development, testing and study purposes a physical server was needed to host the

WLCP and all of its components and dependencies. An HP ProLiant DL165 G5 was selected.

The server contain dual AMD 4 core processors, 16gb RAM, and a 4 x 73gb RAID ARRAY in

RAID 5. The server was setup in the Atwater Kent building with the permission of Worcester

Polytechnic Institute and given a static ip.

24

Host Setup

Ubuntu Server 16.04 was installed as the host operating system. From there, KVM and

Libvirt were configured to provide virtualization and virtual Network Address Translation (NAT).

The virtualization allows for emulating different computers running different operating systems

and the virtual NAT allows for emulating a software router between all of the virtual machines.

This allows for many servers to be run on a single piece of hardware and logically split up in the

network like they were independent physical machines. Apache Web server and BIND DNS

were also configured. Apache was setup to act a reverse proxy and forward web request to

other virtual machines.

Virtual Machines

Four virtual machines were then configured. The web VM, wlcp vm, seafile vm and the

desktop vm. The first three were configured with Ubuntu Server 16.04 and the last with Ubuntu

Desktop 16.04.The VMs were split up based on the services that they had to provide since this

testbed has multiple purposes. They are described in detail individually in the following sections.

Web VM

The purpose of the Web VM is to handle web traffic going to embodied.wpi.edu and its

other sub cnames. To do this it uses Webmin and Virtualmin. These two packages provide a

way to manage the server remotely as well as setup new accounts for hosting various domains.

WLCP VM

The WLCP VM handles hosting an instance of the Wearable Learning Cloud Platform.

This includes a MySQL database server, TOMCAT Web Server, Java Game Server, Jenkins

Server and Nexus Repository Manager Server.

25

Seafile VM

The Seafile VM runs an instance of Seafile. Seafile is a cloud file sharing application that

enables the storing and retrieving of files via the web.

Desktop VM

The Desktop VM provides an instance of Ubuntu Desktop 16.04. This is used for

managing the other virtual machines as well as accessing internal resources behind proxies for

maintenance and configuration.

Data Model

The first and most important part of developing the WLCP was to design the data model.

The data model is responsible for storing and providing all of the data for the entire platform in

an organized and easily modifiable way. This includes all of the different relationships between

entities as well. For example, a parent entity may have a relationship to a child entity. Most

databases are designed using an SQL language or some other API that allows for the creation

and management of the relational data.

Selected Tools

Since most of the application was going to be written using Java or a web scripting

language such as JavaScript, the choice was clear to use the Java Persistence API (JPA)

instead of an SQL language to design the database. JPA is provided by Java out of the box

allows one to design a database by placing annotations on different classes and members of

those classes. Using another library called EclipseLink enables the automatic generation of SQL

code and thus automatic database generation for all of the major databases such as MySQL,

PostgreSQL, etc. MySQL was chosen as the database for this project as it is very widely used

and supported. The project would be called WLCPDataModel in the repository.

26

Design

With the database and persistence API chosen, it was time to start designing some of

the tables, the relationship between the tables and the items in the tables. The data model was

split up into four main categories : master, state, connection and transition. Inside each of these

categories are classes to describe different tables.

Master

Master contains all of the definitions for tables that will store master data. Master data is

defined as core data that usually stays pretty static and doesn't get modified much. The WLCP

has 4 tables defined in master data which include : game, game instance, game lobby and

username.

The class (table) username stores information about an individual user of the system.

Things such as username id, password, first name, last name and email address. These are all

defined using Java standard types such as String, Int, Float, etc and annotations such as @Id

(defines primary key) and @Column (defines this attribute as a column in the table). JPA also

allows for fields to be defined using lists, maps, etc. For example, username also contains a

field that is a list of game lobbies (will be explained later) the username owns. Lists can be

defined using the @JoinTable annotation which creates a separate table to manage the list

items.

The next class (table) is game lobby. A game lobby is defined as a group of players that

can play a game together. They will be described in more detail in the ​Game Manager​ section.

This class contains the fields game lobby id, game lobby name, username and a list of

usernames that are in the lobby. JPA also allows referencing other tables via their class type.

27

The game lobby class contains a username that is defined using the java class. JPA maps this

to the primary key of that username by using the @JoinColumn annotation.

The next class (table) is game. This contains information about a game created in the

editor. This includes the fields: game id, team count, player per team, username, visibility, state

count, connection count, transition count, data log, list of states, list of connections, list of

transitions. Most of these fields are just references to parts of the game stored in other classes

(tables).

The last class (table) is game instance. This contains information about instances of

games running on the game server. A game instance can be defined as a game lobby playing a

game. This includes the fields game instance id, game lobby, game, username, debug instance.

State

State contains all of the classes (tables) required to store the data for a state that is

placed in the game editor. In the WLCP there are two different types of states; the start state

and an output state. A start state stores no data and simply signifies where the program begins.

An output state stores data about the different types of outputs it has configured. Due to the fact

that these two types share similar data such as position in the editor, etc a base class (table)

called State was configured using the @Inheritance annotation which joins the base with either

the start state class (table) or output state class (table) depending on the type that the state is

defined as.

The state class (table) stores all of the base data for every single state. This includes the

following fields: state id, game, state type, position x, position y, list of input connections, list of

output connections.

The start state class (table) does not contain any additional fields to the state class. It

does however set the state type field of the super class to START_STATE.

28

The output state class (table) contains one additional field which is a string to string map

called display text. This field maps the scope of the output state to the display text it has been

configured with. In order to to do this an @ElementCollection and @CollectionTable and

@MapKeyColumn annotation were used to create a new table which maps an output state to its

display text map entries.

Connection

The connection category includes a single class (table) called connection. This purpose

of this class is to store all of the different connections between states for all of the different

games. It contains the following fields: connection id, game, connection from, connection to,

backwards loop and transition. The connection from and connection to fields are references to

the state where the connection comes from and the state where the connection goes to. The

transition field is defined as null if there is no connection on the transition. If there is, it is set as

a reference to that transition in the transition class (table), which is described next.

Transition

Transition contains all of the classes (tables) required to store the data for a transition

placed in the game editor. This includes a transition class, single button press, sequence button

press and keyboard input. The transition class contains the following fields: transition id, game,

connection, active transitions map, single button press map, sequence button press map,

keyboard input map. Active transitions are a map of the scope to the transition type that is

currently being used (single, sequence, etc). The single button press map maps a scope to

another class (table) which contains the single button press data. This is the same for the

sequence button press and keyboard input map.

29

The single button press class (table) contains four booleans for four different buttons that

could be pressed for this transition to succeed. The sequence button press class (table)

contains a list of sequences that can be input for the transition to succeed. Lastly, the keyboard

input class (table) contains a list of input strings that can be input for the transition to succeed.

@Entity

@Table​(name = ​"USERNAME"​)
public​ ​class​ ​Username​ ​implements​ ​Serializable​ {

 ​private​ ​static​ ​final​ ​long​ serialVersionUID = ​1L​;

 ​@Id
 ​@Column​(length = ​40​, name = ​"USERNAME_ID"​)
 ​private​ String usernameId;

 ​@Column​(length = ​40​, name = ​"PASSWORD"​)
 ​private​ String password;

 ​@Column​(length = ​40​, name = ​"FIRST_NAME"​)
 ​private​ String firstName;

 ​@Column​(lengt = ​40​, name = ​"LAST_NAME"​)
 ​private​ String lastName;

 ​@Column​(length = ​40​, name = ​"EMAIL_ADDRESS"​)
 ​private​ String emailAddress;

 ​@JoinTable​(name = ​"USERNAME_GAMELOBBIES"​, joinColumns = ​@JoinColumn​(name = ​"USERNAME_ID"​,
referencedColumnName = ​"USERNAME_ID"​), inverseJoinColumns = ​@JoinColumn​(name = ​"GAME_LOBBY"​,
referencedColumnName = ​"GAME_LOBBY_ID"​))
 ​@OneToMany​(orphanRemoval = ​true​)
 ​private​ List<GameLobby> gameLobbies = ​new​ ArrayList<GameLobby>();
}

 Figure 9 : Username JPA Table Definition

Test Data
The test data project was developed as a tool for use during development and during

deployment. This project is a very basic web application whose sole purpose is to generate the

databases schema from the JPA data model and then populate that newly generated schema

with some test data. Test data can be defined as made up usernames, games, game lobbies,

etc that are created for use during development to help speed up the process. This project

30

contains one main servlet called TestDataLoader. When a HTTP request to this servlet is made,

a connection is made to the database. Next, eclipselink generates the databases schema and

tables from the JPA data model. Lastly, data is loaded from CSV files and placed into the

appropriates entities and tables.The database is now generated and populated with data for use

during development. This project can also be used to initially generate an empty schema when

deploying the WLCP to a new host.

Main Interface

With the data model now designed and developed, the main interface could now begin

development. This main interface would be web based and serve as three services: Game

Manager, Game Editor and Game Player. The game manager would be used for managing

game lobbies and starting and stopping games. The game editor used for creating and editing

the games using the WLCP visual programming language. Lastly, the game player would serve

as a client for playing the games on.

Selected Tools

Java and JavaScript were the main tools used for the implementation of the WLCP. Java

was be used for the backend web app components and JavaScript for the frontend presentation

layer. For the frontend presentation layer, SAP OPENUI5 was chosen. This is a fairly new

HTML5 JavaScript UI framework with a modern look, modern features and rich data binding

characteristics. The framework relies on the Model View Controller (MVC) design pattern. The

model is represented using JSON, views are designed using XML files and controllers are

programmed using JavaScript. For the backend web app the following frameworks were chosen

: Apache OData and SPRING. OData provided a REST service in which the frontend data

model could bind to and access data in the database. SPRING provides a similar service and

31

other things and has mostly replaced OData in this project. This project would be called

WLCPFrontEnd and WLCPWebApp in the repository.

Design

Index

When a user first accesses the main interface via any web browser, they are presented

with an index page. This is default page that everyone navigates to. Once a user has navigated

to this page they can then select whether they would like to be logged into the game editor,

game manager or game player.

Figure 10 : WLCP Index Login Screen

Game Editor

The game editor’s purpose is to provide a means for users to create, edit and debug

games using the finite state machine based WLCP visual programming language. The interface

relies heavily on dragging, dropping and clicking. The editor also features a validation engine

that will automatically enable and disable options based on how the game is configured. This is

32

done in real time and allows for instantaneous feedback to the programmer. Data is provided to

the game editor via SPRING controllers in JSON format.

General Layout
The editor consists of a toolbar at the top that allows for creating new games, loading,

saving, and running (testing and debugging) them. When the new button is pressed a dialogue

is presented and one must fill out the game name, team count, players per team count and if its

visible to the public or not. Clicking load opens up a new dialogue with a drop down where one

can select the game they want to load. Pressing save opens a waiting dialogue and saves the

game in the background. Both the loading and saving use a SPRING controller to load the data

as JSON and save the data from JSON. A SPRING controller is used because it can

automatically translate JSON to and from a JPA data model, which is what is being used for the

data model. Lastly, clicking the run and debug button saves the game, transpiles the game and

then starts a debug game instance on the game server and opens a game player window. In a

debug instance, any team or player can be selected and you don't have to setup a game lobby

and manually start an instance making it quicker and easier to develop and debug games.

 It also consists of a toolbox on the left-hand side that allows users to drag states and

transitions onto the screen. The remaining space is the editor pad, where the game can be

made. States can be moved around by dragging while holding left click. Connections can be

made from dragging off an output end point while holding left click and dropping onto another

input endpoint. Transitions can be dragged onto an already existing connection. Users can

remove states and transitions by clicking the X in the upper right hand corner. A connection can

be removed by dragging it off a end point while holding left click.

33

Figure 11 : WLCP Game Editor

State & Transition Config
Double Clicking on an output state (does not work for start state) or input transition

causes the configuration dialogue to open. The configuration dialogue for the both states and

transitions consists of a scope selection box at the top, a type selection box to the left, a

configuration page to the right an accept button and a cancel button. The scope selection box

contains an aggregation of icon tabs which allow users to select either the game wide, team

wide or player wide scopes. An output state has an additional input field at the top called state

description which is used as the value for the text displayed on the output state in the editor

canvas.

Once a scope is selected a state or transition type can be selected. An output state can

be configured with a display text, which displays text on the game players screen. This can be

input into a text box on the configuration page. A transition can be configured with a single

button press, sequence button press or keyboard input. A single button press configuration

page contains 4 check boxes with either red, green, blue or black. Ticking any of them means if

34

that button is pressed, the transition will go to the next state. A sequence button press

configuration page has a list of sequences and an add button. Adding a sequence requires one

to drag a red, green, blue or black tile in an order and submit. It can be any length long. When

the sequence is put in correctly on the game player, the transitions goes to the next state.

Lastly, the keyboard input configuration looks the same as the sequence button press

configuration but instead of dragging a sequence in a specific order for the configuration, you

type in text into an input. Entering the correct text into the input on game player causes the

transition to go to the next state. For both the sequence button press and keyboard input, if an

empty sequence is configured this means that the transition will trigger if the sequence or

keyboard input from the game player is not contained in the list of sequences or keyboard inputs

configured for that scope and transition.

After a state or transition is done being configured, the user has the option to select the

accept or cancel button. Clicking the accept button confirms the changes and notifies the

validation engine to revalidate the appropriate states and transitions. Clicking the cancel button

reverts the state or transition to the configuration values it had when it was first opened.

35

Figure 12 : WLCP State Config. Transition Config is the same but with Single
Button Press, Sequence Button Press and Keyboard Input

Validation Engine

Every programming language has to have some sort of feedback for the syntax. For a

textual based programming language, the compiler does this by checking the syntax of the code

as it compiles and stops if there are any errors. For my visual language, I chose to build this into

the code editor rather than into the JavaScript transpiler. This offers a few key advantages for

the user such as: they cant make syntax errors and won't have to deal with debugging them and

as changes are make to your code, the syntax is revalidated live and you options of what you

can choose are modified depending on what you do. This essentially makes it impossible for a

programmer to make a syntactical error that would cause the game not to transpiler or play

correctly.

In order to do this a validation engine had to be built for the game editor. The engine

would be tasked with dynamically revalidating a state or transitions scope based upon what is

configured for that state or transition and also based upon what is configured for its parent,

36

neighbor, etc state or transition. For example, if the game wide scope is configured all of the

others would disappear. If team 1 was configured, the game wide scope and team 1 player wide

scopes would disappear. If team 1 player 1 was configured, the game wide scope and team 1

scope would disappear.

Game Manager

The game manager is responsible for managing the playing of the games that were

created in the game editor. It provides the following services : managing game lobbies, games

and game instances. These services can be accessed by using menu on the left hand side of

the screen. Data is provided to the game manager via the OData service from the web app.

Game Lobbies

A game lobby is defined as a group of usernames that can play a game together. Game

lobbies were created as a solution to an existing problem. When a game was started, anyone

using the system could see every single game running. This could potentially make it hard to

find the game you want to join is many are running and also could allow for unwanted users to

join the game. In short they act as a filter so that when a user is trying to join games, they will

only be allowed to join a lobbies game if their username is in the lobbies list.

When you click on the game lobbies menu item, you will be redirected to a tile interface

showing all of the game lobbies you have created. You can create a new one by clicking on the

green plus button. If you click on a game lobby tile, the user editor screen is brought up. From

here one can add users and delete users to and from the game lobby respectively. The

interface also provides a means to search for game lobbies by name and create them via an

uploaded CSV file.

37

Figure 13 : Game Lobbies Screen. Create, Edit and Delete Game Lobbies.
Managing Games

In the game manager, you can manage games created in the editor. This screen uses

the same tile interface that the game lobbies screen uses. The functionality is limited to the

ability to viewing games by name, delete games by name and navigating to them. Creation of

games is only supported in the game editor. If a user wants to delete a game, they can click the

red trash can button and then the X button on the tile that corresponds to the game they want to

delete. Clicking on a tile will automatically redirect the user to that game in the game editor. A

search bar at the top provides an easy way to find games.

38

Figure 14 : WLCP Games. Can edit in editor and delete.

Managing Game Instances

A game instance is defined as a game lobby playing a game on the server. This screen

provides a means of starting and stopping game instances. This screen is used when a user

wants to start and game with others and connect using the game player to play it. The game

instances screen is organized the same way as the game lobby and game screen. Currently

running game instances are shown as tiles and a search bar at the top provides an easy way to

find game instances. When the user clicks the green plus button and user is presented with a

dialogue in which they must select a game lobby and what game for that game lobby to play.

When the click start, the game is started on the WLCP game server and can be played using

the game player. To stop a game instance one must click the red trash can and then the red X

on the tile corresponding to the game instance they want to stop.

39

Figure 15 : WLCP Game Instances. Can start and stop game instances. Requires a game
and game lobby with users.

Game Player (Virtual Device)

The game player (virtual device) acts as a user client that is interacted with when playing

a game. All communication between the virtual device and game server is done using web

sockets and a custom shared packet system which will be described in more detail in a later

section. Using the game player consists of the following steps: selecting a game instance,

selecting a team, playing.

After logging in and selecting game player, a drop down appears that contains a list of

game lobbies that you belong to that have a game instance running. After the user selects the

game lobby they want to play in they then select what team they want to be on. If the team is full

it won't show up. The player has now successfully joined a game and is presented with the

virtual device.

The virtual device is broken up into three main components : the title bar, outputstate

page and the input transition page. The title bar has the text virtual device and a disconnect

40

button. The output state page contains a text box that display any output text. The input

transition page changes depending on what type of transition has been configured in the game.

It will either be four static buttons for single button press, a drag and drop interface for sequence

button press and an input field for keyboard input. This behaviour would be the same for output

state if there was more than just a display text output.

Figure 16 : WLCP Game Player (Virtual Device)

Transpiler

The transpiler is one of the most important parts of the entire Wearable Learning Cloud

Platform. It is responsible for the important task of translating the games from their data model

representation into another form that can be executed on the game server. In this case, it is

transpiled to JavaScript which is then executed on the game server using the Nashorn

JavaScript engine.

Transpiling from the data model to JavaScript was chosen over other methods such as

writing an interpreter for the data model for several reasons. The first is that by using JavaScript

41

you get a lot of features that would have had to been implemented from scratch, for free. Some

of these things include branching, looping, variables and expression evaluation. Also, by

designing a transpiler, one could easily transpile these games to other languages and thus run

them on other servers designed by others. Another benefit is it allows more advanced users to

design games using JavaScript. Lastly, by transpiling to an intermediate language such as

JavaScript one can start to understand how a textual languages works just from working with a

visual one first and seeing how it transpiles. Since education is one of the main focuses on this

project, this provides an additional step of education being able to see how your visual

representation could be represented in code.

Selected Tools

Since most of the other applications were being written using Java it was only

appropriate to design the transpiler using Java as well. This would allow the transpiler to easily

be triggered from a call to a web app controller. It would also allow for some reuse of code that

is used in order to access the data model and read its entities. Other than that, all the transpiler

does is produce a textual JavaScript file, so not much more was needed.

Design

Transpiler Template

The first thing to design for the transpiler was a code template that could be filled in with

different code and data depending on how states, connections and transitions were configured

in the game. Since the visual programming language is finite state machine based, it was

decided to design the template as a finite state machine but using JavaScript. Below you can

see the empty template.

var​ states = {
 thesis_start : ​0​,

42

};

var​ FSMGame = {

 gameInstanceId : ​0​,
 team : ​0​,
 player : ​0​,
 playerVM : ​null​,

 running : ​true​,
 state : states.thesis_start,

 oldState : ​null​,

 start : ​function​() {
 while​(​this​.running) {
 if​(​this​.state != ​this​.oldState) {
 this​.oldState = ​this​.state;
 this​.stateMachine(​this​.state);
 }

 }

 },

 stateMachine : ​function​(state) {
 switch​(state) {
 case​ states.thesis_start:
 this​.thesis_start();
 break​;
 }

 },

 thesis_start : ​function​() {
 },

};

var​ SetGameVariables = ​function​(gameInstanceId, team, player, playerVM) {
 FSMGame.gameInstanceId = gameInstanceId;

 FSMGame.team = team;

 FSMGame.player = player;

 FSMGame.playerVM = playerVM;

}

Figure 17 : The transpiler template

The template above is broken up into six main parts : 1. State enumeration, 2. Namespace and

variables, 3. Start function, 4. State machine, 5. State machine functions (states), 6. Set game

variables. The purpose of the state enumeration is to map the state id to an integer, so it can be

43

converted from one to the other. The namespace is basically just a global variable that contains

the entire program. Inside of the namespace are some variable declarations such as the

gameInstanceId, current team and player the player is, current state, etc. The start function is

the main loop of the game. It continually checks if the state variable has changed (due to a

transition) and if so, calls that next state in the stateMachine. The state machine function simply

calls the correct state function based off of the value of the state variable. Lastly, the set game

variables method provides a way for variables in the JavaScript to be set from Java code.

It is important to note that the transpiler generates a state function such as the one

below for every state that exists in the visual representation.

 ​thesis_state_2 : ​function​() {
 }

Figure 18 : A state function that the transpiler generates for every state in the FSMD

These functions are filled with calls to the PlayerVM (described later) to trigger different outputs

and inputs. In the snippet below we can see the state requesting the VM shows some text on

the devices screen.

 thesis_state_2 : ​function​() {
 this​.playerVM.DisplayText(​"Hello World!"​);
 }

Figure 19 : A state function that displays text

In this snippet below, we see a SingleButtonPress call being made to the VM to request input

from the device, in this case a single button press of red, green, blue or black. The code below

specifies that either 1 or 2 will transition to state 3. This corresponds to either a single press or

red or green.

 thesis_state_2 : ​function​() {
 this​.playerVM.DisplayText(​"Hello World!"​);
 this​.state = ​this​.playerVM.SingleButtonPress([​"1"​, ​"2"​], [states.thesis_state_3,
states.thesis_state_3]);

 }

44

Figure 20 : A state function that displays text and encodes a button push transition event

In this snippet, we see a SequenceButtonPress call being made to the VM. This works similarly

to the single button press, except the press value is a sequence of buttons. For example, 12

represents the sequence red, green.

 thesis_state_2 : ​function​() {
 this​.playerVM.DisplayText(​"Hello World!"​);
 this​.state = ​this​.playerVM.SequenceButtonPress([​"12"​], [states.thesis_state_3]);
 },

Figure 21 : A state function that displays text and encodes a colored sequence transition

event

In this snippet, we see a KeyboardInput call being made to the VM. This functions exactly like a

sequence button press except takes an array of input strings instead of button presses.

 thesis_state_2 : ​function​() {
 this​.playerVM.DisplayText(​"Hello World!"​);
 this​.state = ​this​.playerVM.KeyboardInput([​"input text"​], [states.thesis_state_3]);
 },

Figure 22 : A state function that displays text and encodes a text input transition event

In this last snippet below, we can see that the state is requesting to be transitioned directly to

the next one without any type of transition.

 thesis_state_2 : ​function​() {
 this​.playerVM.DisplayText(​"Hello World!"​);
 this​.state = states.thesis_state_3;
 },

Figure 23 : A state function that displays text and encodes an immediate transition to a

state

Transpiler

After the template for the transpiler was done being designed, it was time to design the

Java code whose responsibility is to take the data from the data model and transpile it to this

JavaScript template. Due to the fact that the transpiler template is split up into parts, it made

45

sense to also split the transpilers code up into different classes responsible for these different

parts.

The transpiler functions by executing a list of ITranspilerSteps. Each ITranspilerStep has

a method called PerformStep that must be implemented by any class who implements the

ITranspilerStep interface. The transpiler looks through this list and calls each steps PerformStep

method. The steps that have been implemented in the transpiler correspond one to one to the

different parts of the transpiler template. For example, there is a

GenerateNameSpaceAndVariablesStep whose responsibility is to generate the JavaScript of

that part of the transpiler template.

var​ FSMGame = {

 gameInstanceId : ​0​,
 team : ​0​,
 player : ​0​,
 playerVM : ​null​,

 running : ​true​,
 state : states.thesis_start,

 oldState : ​null​,

Figure 24 : The Transpiler’s GenerateNameSpaceAndVariablesStep

After all of the transpiler steps are completed, all of the results from each of the steps are

appended into a single JavaScript file and saved into the game servers program directory for

execution.

Game Server

The game server is another vital component to the WLCP. It handles all of the

communication between clients as well as physically runs the transpiled JavaScript games. It

46

also handles server wide functions such as starting and stopping game instances as well as

starting and stopping debug games instances.

Selected Tools

Like the other projects, the game server was developed using Java. The built in Java

asynchronous tcp socket communication was also used. Other than that no other external

dependencies were used other than the basic JPA and eclipselink libraries for communication

with the database.

Design

The design of the game server could have gone two different ways. The first way was to

use HTTP for communication between the game server and client. This would entail writing the

game server as a SPRING HTTP controller. The advantage of this would be it would require

much less development. The disadvantage is that it would be difficult to have complete control

over communication and sending data to the client would be difficult without having first

received a request. Push technology could be used, but it would be better to implement a

communication protocol from scratch. This brings us to our second way which is to use

asynchronous TCP communication with a custom communication protocol. This method was

eventually chosen and it gave the most flexibility and complete control over everything.

However, this was chosen knowing there would be significantly more development work.

When designing the game server, a few standards were defined that the server had to

meet. It had to be heavily multithreaded and easily extensible. Both of these allow for scalability

as the number of users increase. Rather than having all of the games and users run on a single

thread and potentially a single CPU core, each game runs on its own thread as well as each

player, meaning they can be spread out across cores and as core count increases so does the

number of players the server can handle. Since game instances and players all run on their own

47

thread this also means that it doesn't matter what server they are actually running on. A load

balancer can be placed in front of many instances of the game server and redirect data to the

correct one due to the design of the communication protocol. Since the server is multithreaded it

was also chosen to use asynchronous tcp communication rather than synchronous

communication to the multithreaded nature.

Modules

The design of the game server follows the module design pattern in software

engineering. This means that the entire server is split up into different modules (usually

singleton classes), that each provide their own separate functionality. In the game server, there

are 4 different modules: the configuration, game server, logger and task manager modules.

The configuration modules provides a means for the host of the server to configure it to

suit their needs. It does this by reading some config xml files located in the configuration

directory. This allows for configuring the server host name as well as port number. It also allows

one to configure the heartbeat (timeout) timer for clients.

The game server module is responsible for setting up all of the asynchronous tcp socket

communication. This includes binding to an address, accepting incoming connections, and

reading and writing to the channel. It is also responsible for handling websockets. This includes

websocket hand shakes, connecting, disconnecting and reading and writing to the channel.

Websockets have to be handled specially because they have a special header on top of all data

transmitted through them. When data is read through a regular socket or websocket, it is then

passed onto the packet distributor, which will distribute it to the correct location, a server task or

a game instance task.

48

The logging module is responsible for writing output to the log console and log file. This

includes all system output as well as any user configuration output via the logging API it

provides.

The task manager module is responsible for managing running tasks. This includes

starting and stopping them. Tasks will be described in the next section.

Tasks

A task is simply a thread. A task can be started by adding it to the task manager module

and stopped by removing it. When started a task will run on a separate thread, so it is important

to be aware of proper memory access techniques. The game server has 3 different tasks: game

instance task, packet distributor task and server packet handler task.

When a user requests a game instance to be started from the web ui, a new game

instance task is started. This means that all game instances run on their own thread. The game

instance task is responsible for handling all game instance packets. These will be routed to the

appropriate game instance via the packet distributor based on the game instance id in the

packet header. Once they are routed they are then handled appropriately by the game instance

task. This includes things such as users connecting and disconnecting, heartbeats and input

transitions.

The packet distributor task is responsible for routing packets of different types to their

appropriate tasks. There are two different types of packets a server packet and a game instance

packet. When a server packet is received it is routed to the server packet handler (explained

next) and when a game instance packet is received it is routed to the game instance that

corresponds to the game instance id in the packets header (explained above).

49

The server packet handler task is responsible for handling server tasks and packets.

This includes things such as starting and stopping regular and debug game instances. It also

includes getting list of available game lobbies for a player to join.

VM

When a player joins a game instance, a player vm is started on a new thread. The player

vm is responsible for configuring and starting the transpiled JavaScript game using the Nashorn

JavaScript Engine. It configures some of the transpiled games variables like the game instance

id, team number, player number and a reference to the Java player vm. It then invokes the start

method in the transpiled code and the game begins for that player.

The transpiled JavaScript was passed a reference to the Java player vm meaning it can

make calls to the player vm Java code. This beneficial because this means its possible call java

methods to send and receive packets. This is done through the PlayerVM API which includes

methods to send and receive Display Text, Single Button Press, Sequence Button Press and

Keyboard Input packets. Below you can see how the transpiled JavaScript code maps to the

PlayerVM Java code.

 thesis_state_2 : ​function​() {
 this​.playerVM.DisplayText(​"Hello World!"​);
 }

public​ ​void​ ​DisplayText​(String text) {
 gameInstanceTask.getPacketDistributor().AddPacketToSend(​new​ DisplayTextPacket(text),
usernameClientData.clientData);

 }

Figure 25 : How the transpiled JavaScript code maps to the PlayerVM Java code

50

Here you can see that the transpiled javascript this.playerVM.DisplayText actually sends a new

DisplayTextPacket to that client, so their device can display the text in the transpiled JavaScript.

Below we will look at the more complex SingleButtonPress.

 thesis_state_2 : function() {

 this​.playerVM.DisplayText(​"Hello World!"​);
 this​.state = ​this​.playerVM.SingleButtonPress([​"1"​, ​"2"​], [states.thesis_state_3,
states.thesis_state_3]);

 }

public​ ​int​ ​SingleButtonPress​(String[] buttons, ​int​[] transitions) ​throws​ ScriptException {

 block = ​true​;
 gameInstanceTask.getPacketDistributor().AddPacketToSend(​new
SingleButtonPressPacket(gameInstanceTask.getGameInstanceId(), team, player, ​0​),
usernameClientData.clientData);

 ​int​ state;
 ​while​((state = block()) == -​2​) {}
 ​if​(state != -​2​ && state != -​1​) { ​return​ state; }
 SingleButtonPressPacket packet = ​null​;
 ​if​(blockPacket ​instanceof​ SingleButtonPressPacket) {
 packet = (SingleButtonPressPacket) blockPacket;

 } ​else​ {
 ​return​ gotoSameState();
 }

 ​for​(​int​ i = ​0​; i < buttons.length; i++) {
 ​if​(buttons[i].equals(Integer.toString(packet.getButtonPress()))) {
 ​return​ transitions[i];
 }

 }

 ​return​ gotoSameState();
 }

Figure 26 : How the transpiled JavaScript code maps a Single Button Press

For transitions things are a little bit different. They have to implement blocking. First they send a

Single Button Press Packet to the device to tell it to block for input and what type of input

(single, sequence, keyboard, etc). Then the player vm blocks until it gets a response back from

the client. When it does, it returns the state number to transition to depending on how the

transition was configured. Sequence button press and keyboard input work in very similar ways

and won't be gone into detail about.

51

Game Server API
The game server API is a very basic Java API meant for people who want to develop a

Java client for the WLCP. It provides a means of connecting, disconnecting, sending data and

receiving data to and from the server. This API masks a lot of the backend setup and

communication with the server making it very easy to implement new clients on any devices that

run Java and have an internet connection such as Android devices.

Shared Library
The shared library project contains class definitions that need to be used when

communicating with the game server. These class definitions define the packet structure that is

to be used when communicating with the server. In this case, the library is written in Java

meaning this library should be used when communicating to the server in a Java environment.

For example, writing an Android player client.

All packets must extend a base type Packet and implement the interface IPacket. This

ensures that they implement required methods such as populateData and assemblePacket

which are necessary for reading and writing data from and to packets. The base type Packet

only contains two fields, packetType (enum byte) and packetSize(int).

The library contains two packet definitions called GamePacket and ServerPacket that

extend Packet. These two classes add on a few different fields to Packet depending on which

one. GamePacket adds on gameInstanceId (int), team (int) and player (int). These fields are

used to make sure the packet makes it to the correct game instance and player. This class is

meant to be extended when creating packets that go to and from a game instance on the

server. ServerPacket doesn't add any fields, but is meant to be extended when creating a

packet that is meant for the server in general and not game specific such as starting a new

game instance.

52

Study
In order to prove if the use of the WLCP helps with computational thinking skills and

allows for easy creation of multiplayer embodied games, a study was performed. The study

involved around 15-20 participants and were broken up into groups over several days in which

participants designed games on paper, entered them into the WLCP, debugged and played.

After the study, the games would be coded using the Multiplayer Game Design and

Computational Thinking Coding Guide by the Embodied Games Group at WPI.

Participants
Worcester Polytechnic Institute and the Embodied Games Group at WPI have a great

relationship with The Massachusetts Academy of Math and Science. This school is a free,

co-educational, public school of excellence that enrolls approximately 100 academically

accelerated 11th and 12th grade students from Massachusetts. Math and science are

emphasized within a comprehensive, interactive academic program. Rigorous junior year

classes and senior classes taken at Worcester Polytechnic Institute (WPI) prepare students for

college academics before they’ve graduated from high school (Massachusetts Academy of Math

& Science at WPI).

Since the platform was still in its early stages we decided to test with older students. At

the time of this writing, studies have already been done with younger students and these results

will be published elsewhere.

Fortunately Mass Academy was able to provide us with 22 students to participate in the

study as an elective program as the students were required by the school participate in an after

53

school elective. Of the 22 participants, 18 of them showed up for the after school program.

These 18 participants were broken up into 6 teams of either 3 or 4 people per team.

For each team a Google Drive folder was created for them to store any documents or

deliverables they were required to complete. Each team folder would also contain a folder for

each individual of the team. This structure would be used to store the results for both teams and

team members.

Procedure

The study was run as an after school program at The Massachusetts Academy of Math

and Science. It ran for 1 hour from 3-4 PM every tuesday for the next 6 weeks (total of 6 days).

At the beginning of each day a presentation would be given to give the participants some

background on the days tasks and goals. The following sections contain these activities, their

description and their purpose.

Day 1 : Playing EstimateIt!

The first day of the study was meant as an introduction to what the participants would be

doing over the next 6 weeks.

Presentation

At the beginning of the first day, a presentation was given to the students on how the

rest of the elective would be run. The group was split into half for the day. Since each day was 1

hour long, the day was split up into two 30 minute blocks. Each half of the participants would

participate in a 30 minute block and then switch. By the end of the day both groups will have

played EstimateIt! and taken the pre test. The presentation also outlined how to access the

online pre study as well as play EstimateIt!

54

Activity

Pre-Study

The first block was taking a pre-study questionnaire. Participants would spend 30

minutes filling this out and if they didn't finish, they could take up to 30 minutes for homework to

finish as much as they can since each student was assigned a google drive folder. They weren't

required to finish the entire thing (due to time constraints). The purpose of this was to get a

metric of their understanding of finite state machines at the beginning of the study.

EstimateIt!

The second block consisted of playing the game EstimateIt! This game is a scavenger

hunt game where players have to hunt for different objects by estimating their size. The game is

split up into 3 teams with 3 players per team. In level 1, players work individually to find objects

but then in level 2 and 3, players work together as teams to find objects. The purpose of playing

this game was to get the participants familiar with the types of games they would be creating the

remainder of the elective.

Homework

The participants were asked to take up to 30 minutes for homework to finish filling out as

much as they could of the prestudy they started on earlier in the day.

Day 2 & 3: Game Creation

Days 2 and 3 of the study were dedicated to designing a math game with the other

people assigned to your team.

55

Presentation

At the beginning of day 2, a presentation was given to the participants before the activity

that day. The presentation contained one slide that outlined how students would be broken up

into 6 groups of 3-4 partners. It contained participants names and the team they have been

assigned to. These teams would be used for the rest of the study.

At the beginning of day 3, a presentation was given to the participants on what a Finite

State Machine is (FSM). This presentation explained what a state is, what a transition is and

what a state machine is. It also showed some examples of FSMs. The presentation also

explained how EstimateIt! works behind the scenes and how it uses a FSM. By showing this,

the WLCP was introduced to the participants. Lastly, it contained instructions on converting the

games they designed on paper on day 2 into FSMs.

Activity

On day 2, the participants were told to put themselves in the shoes of a younger student

(3rd or 4th grade) when designing the game. They were given a variety of writing utensils as

well as a large multipage writing pad. Students were then told to design a math game, describe

the game and draw a representation on the paper pads. The game had to meet the following

criteria:

● A game that 3-4th grade kids can play in school over recess (it can be played in the

classroom or outside in a playground/park or in the gym),

● The game has to teach (or allow students to practice) a particular math concept

● The game should have at most 4 players and if there are teams, at most 2 teams

● We want to get the students moving, so the game must be active; it should require

physical movement by the students

● Ideally, the movement should be connected to the math in some way.

56

● The game should involve mobile technology (cell phones)

● We want you to specify the game (show us how your game works) on these pads on

paper, and we will ask you to explain how it works later.

At the end of class if there was time, students would give a small 3 minute presentation on the

game they designed to the rest of the class.

On day 3, the students were tasked with converting their games from day 2 into FSMs,

now that they had a presentation on what a FSM is. They would perform this on their paper

pads that they used from day 2.

Homework

The homework was the same for days 2 and 3. This was to upload a document to their

teams google drive folder containing the following:

● Please write instructions that describes how your game works. This should be written as

if you were explaining your game to 4th-6th grade students (2 pages).

● Please draw a representation (pictures/diagrams) that demonstrates how your game

works. ​(You can take a photograph of your pads to add to the report if you want)

● Any changes made to the game.

Participants were told to take up to 30 minutes on this assignment.

Day 4 & 5 : Wearable Learning Cloud Platform

Presentation

On day 4 a presentation was given to the participants. This presentation was a tutorial

on how to use The Wearable Learning Cloud Platform. This is the tool suite that they would be

using for the remainder of the study. This would allow participants to create and edit games as

57

well as play and debug them. It was explained how the games could be multiplayer games and

examples were demonstrated to the participants.

Activity

Now that students have been introduced to The Wearable Learning Cloud Platform, they

were tasked with converting their paper FSM games into WLCP FSM games. This would include

using the WLCP Game Editor which would allow students to define their states, connections

and transitions and then debug and play them. Since students had many questions during these

two days of the study, extra staff was on hands to help answer particiaptns questions promptly

and thoroughly.

Homework

Day 4 and 5 homework was similar to days 2 and 3 homework. Students were asked to

spend up to 30 minutes each night documenting their ideas and progress.

Day 6 : Testing and Debugging

Presentation

At the beginning of the day, participants were instructed on how the day would
organized.

Activity

The first 15 minutes of day was allocated for teams finalizing their games for play testing.

Once the 15 minutes was up each team was given about 5 minutes to present their game and

and pick some volunteers from the rest of the participants to play it. The rest would spectate.

This would continue for each team until all days were presented and played. This allowed for

everyone to see everyone elses game and give them a chance to play some. The last 10

minutes of the day would be allowed to filling out a small survey.

58

Homework

The first homework consisted of filling out a post-study questionnaire. Participants were

instructed to take up to 1 hour to complete this.

The second homework consisted of documenting how play testing went. Participants

were instructed to take up to 10 minutes to complete this and were asked to answer questions

such as:

● How did playtesting your game go?

● Did you find any bugs in your game?

● What would you have changed about your game?

RESULTS

Measures
In order to answer my study questions proposed in the beginning of this thesis write up, I

would need to be able to measure some type of quantifiable data. In order to do this, data would

have to be captured before the study, during the study and after the study. As explained in the

study section​ ​​this would be done by proctoring a pre and post test, survey and keeping all

assets and game products (that the participants generated) after the study was completed to be

later coded.

Pre & Post Test
The pre and post test was given to the students on the first and last day respectively.

Students were given about 30 minutes for both and told they can spend extra time at home

completing it. The pre and post test contained the same questions. By having it taken before the

59

study and after the study, one could quantify if the participants learned anything. The pre test

would only contain the average amount of questions completed during the post test. This was

done because one could not quantify if a participant learned something if there is no post data

to compare the pre data to.

Out of the 18 participants in the study, 18 completed the pretest and 9 completed the

post test on computational thinking. All of the students completed the pretest because it was

required to be done in class. The post test was assigned as homework on the last day of the

study, so there was no guarantee every participant would complete it. Of the 9 participants that

completed the post study, an average of the first 3 questions were completed. These 3

questions can be found in Appendix ​A. ​​The table below shows a summary of the pre and post

test.

Table 1 : Means, Standard Deviations and T-test results for Gains in Computational
Thinking

Paired Samples T-Test
 M SD n 95% Confidence IntervaI

for Mean Difference
t p

Posttest-Pretest 0.17 0.18 9 0.04, 0.31 2.91 0.02*

Post Q1 - Pre Q1 0.13 0.27 9 -0.07, 0.34 1.51 0.17

Post Q2 - Pre Q2 -0.37 0.14 9 -0.14, -0.07 -0.80 0.45

Post Q3 - Pre Q3 0.44 0.55 9 0.02, 0.87 2.41 0.04*

Significance level at *p<0.05

As you can see, only the first 3 questions of the pre and post test were used. Looking at

the overall statistics, students improved by 17% from the pretest to the posttest, and this

difference is statistically significant (t(9)=2.91, p<0.05). When analyzing questions individually,

we see that students improved most in question 3 (creating a finite state machine from scratch),

and the difference for question 3 is significant, while the improvement in questions 1

(interpreting a state machine) and 2 (modifying a state machine) showed no significant

60

improvement from pre to posttest. This is mostly likely due to the fact that the study was focused

around interpreting and creating finite state machines and not modifying them. If we take a look

at just questions 1 and 3 we can see that the students improved by 28.5%. This is a pretty

significant increase and answers the research question whether a person's knowledge of Finite

State Machines change by designing games on paper and in the WLCP.

Post Study Survey
On the last day of the study, participants were asked to take the last 10 minutes of that

day to fill out a post study survey. If they didn't finish it during the last 10 minutes, they were

asked to try and finish it up for homework. This survey mostly concentrated on questions that

have to do with using the WLCP. The purpose of this survey was to get feedback from the

participants on this such as how easy the WLCP was to use, any difficulties they faced, any

features they wish it had, etc. Out of the 18 participants, 14 completed the survey. This survey

can be found in ​Appendix B.

The first question on the survey asked what participants ​liked ​​about the WLCP. Most

participants liked how “user friendly” it was and how “it's simple and easy to understand.” Others

liked its aesthetic, the drag and drop interface and how “little programming knowledge was

needed.” This proves that it is possible to create a user friendly and easily usable of designing

and playing finite state machine games digitally.

The second question on the survey asked what participants ​disliked ​​about the WLCP.

Most participants disliked that there was no way to represent variables or expressions. Also that

there was limited functionality (only display text, button presses) and some bugs made it very

frustrating at points.

The third question on the survey asked participants what features they would like to see

added to the WLCP. Participants wanted to see the addition of variables, expressions,

61

communication with other devices, QR codes, GPS, and other types of new sensors. Some also

wanted things such as copy and paste features.

Skipping to the ninth question, participants were asked how hard it was to transfer their

games from paper to the WLCP. The question was based on a 1 to 5 scale with 1 being very

easy and 5 being very hard. The results are shown below.

Figure 27 : Student Survey Responses: Ease of transferring the FSMD from paper to the
WLCP

As you can see, 5 people found it easy and 7 people found it hard and 1 person found it

intermediate. The next question asked to justify their answer using text. The participants who

found it hard to transfer over said it was because the editor did not support features they

needed. The participants who said it was easy stated that they had to make some modifications

to their games, but once they did, the transfer wasn't that hard.

The past few questions answer the research question about it users would encounter

limitations when converting their FSMD games into WLCP FSMD games. Users did encounter

62

limitations when transferring their games. This however was mostly due to the WLCP lacking

features or having bugs causing users not to be able to do things. With more time to develop the

WLCP, users would encounter less limitations.

Skipping to the 14 and 15 question, participants were asked if they think younger

students would be able to use the game editor. Below is the pie chart of the responses from

question 14.

Figure 28 : Student Survey Responses: Perceptions of Ease of use of Game Edito​​r

The response was an overwhelming yes with no participants responding an explicit no. This

question allowed for other responses. By addressing the issues in those responses, it is with no

doubt this could be implemented with younger students. Question 15 asked participants to

justify the answer to the pie chart. Most responses were as follows : “it is pretty easy to use,

instructions clear”, “It was self explanatory and easy”, “the editor was really easy to us.” Other

responded saying things such as : “needs error logging”, “if certain bugs were fixed” and “if

more features were added.” Just like the pie chart, these are minor things and can be easily

63

addressed and fixed. This answers another research question, if the WCLP is suitable for use

by younger students.

Game Products & Coding
While students were creating their games, they were asked to work out of large sketch

pads that were provided to them. They were also asked each day for homework to take pictures

of all of their work and writeup what they did into a Google Document. This was done so that the

Multiplayer Game Design and Computational Thinking Coding Guide could be used to

determine things such as the types of game students created and how well their finite state

machine diagrams held up to a standard.

Coding Guide

The coding guide that used to code the game designed and created during the study is

broken up into many sections. A diagram of these different sections is shown below.

64

Figure 29 : A diagram of the Coding guide for Multiplayer Game Design and
Computational Thinking, created by the Embodied Games group at WPI

Because this thesis is concentrated mostly towards creation of games using the WLCP, only

select sections from this will be used to code the data. This will include Finite State Machine

Diagrams section and other relevants ones to the WLCP such and collaboration and

competitions, team descriptors, technological descriptors, etc.

Coding

The coding was done by three students in the WPI Embodied Research Group. All three

students were properly trained before coding and have had prior experience using this guide to

code other data. After students have completed coding by using the coding and data provided,

65

inter reliability checks were done between students to verify that coders were agreeing on

things. If coders don't agree within a certain percent the results could be considered

questionable. The three students had 86% agreeability. Anything above 80% is considered to

be high agreeability and thus highly reliable data.

Finite State Machine Diagram Coding

Day 3

After day 3 and 5 of the study were coded, the results could be compared. It was

decided to compare day 3 and 5 FSMDs because we wanted to compare their on paper FSMDs

to digital FSMDs.

Five of the six teams (83%) created a diagram on Day 3, the results of which are

highlighted below in ​Table 1​​. The FSMD Elements marked the presence of input types, the

domain level of the FSMD, and the presence of FSMD features such as If-Then Statements that

would suggest Evidence of Programming Language Knowledge (EPLK). The FSMD Criteria

regarding representation, consistency, and completion were coded on a 4-point Likert scale

based on the overall diagram (0=Never, or mostly never meeting criteria; 3=Always, or Almost

Always meeting criteria) while the FSMD Quantitative Analysis items were coded on a

continuous scale to count the individual components of the FSMD

Table 2 : Means, Standard Deviations and Frequencies of Technology Elements included
by students in the Finite State Machine Diagram Representations on paper (day 3)

FSMD Elements N Percent FSMD Criteria Mean SD MODE

Input Types : RFID 0 0 Output State Representation 2.6 0.89 3

Input Types : Buttons 4 0.8 Transition State Representation 3 0 3

Input Types : GPS 0 0 Consistency with Rules 2.8 0.44 3

Input Types : Keyboard 4 0.8 State Consistency 2.6 0.54 3

Input Types : Touch Interface 1 0.2 Transition Consistency 2.4 0.89 3

Input Types : Timer 0 0 Completion 2.8 0.44 3

66

Input Types : Another Player 1 0.2 FSDM Quantitative Analysis Mean SD Mode

Input Types : Other (please write) 0 0 States / Boxes 7 3.54 NA

Domain Level :
Management-Level

1 0.2 Transitions / Arrows 9.8 4.60 NA

Domain Level : Team-Level 3 0.6 Labeled Arrows 7.8 5.06 NA

Domain Level : Player-Level 3 0.6 Numbered States 0 0 0

EPLK : If-then Statements 3 0.6

EPLK : Programmatic Loops 4 0.8

EPLK : Loop to Prior State Arrows 4 0.8

Looking at the coded results we can see that for FSMD Elements most teams were

using button presses or keyboard input for their input types. Most games were also defined at

the team or player level, meaning they were mostly multiplayer oriented. The games also

contained a decent amount of EPLK. Looking at the FSMD Criteria, we can see the averages

are pretty close to 3 (perfect representation), but because the diagrams are being done by hand

on paper there is still some human error. Lastly, looking at FSMD Quantitative Analysis we can

see that the teams games on paper weren't very complex due to the little number of states and

transitions they contained.

Day 5

The next day that was coded was day 5. On this day students were using the WLCP to

create their Finite State Machine Diagrams rather then drawing them in their pads. Below are

the coded results for the WLCP Finite State Machine Diagrams from day 5.

Table 3 : Means, Standard Deviations and Frequencies of Technology Elements included
by students in the Finite State Machine Diagrams in the WLCP Game Editor (day 5)

FSMD Elements N Percent FSMD Criteria Mean SD MODE

Input Types : RFID 0 0 Output State Representation 3 0 3

Input Types : Buttons 5 100 Transition State Representation 3 0 3

Input Types : GPS 0 0 Consistency with Rules 2.6 0.54 3

67

Input Types : Keyboard 3 0.60 State Consistency 3 0 3

Input Types : Touch Interface 0 0 Transition Consistency 3 0 3

Input Types : Timer 0 0 Completion 2.2 0.44 2

Input Types : Another Player 0 0 FSDM Quantitative Analysis Mean SD Mode

Input Types : Other (please write) 0 0 States / Boxes 43 51.45 NA

Domain Level :
Management-Level

1 0.20 Transitions / Arrows 55.2 69.12 NA

Domain Level : Team-Level 3 0.60 Labeled Arrows 54.6 68.85 NA

Domain Level : Player-Level 3 0.60 Numbered States 43 51.45 NA

EPLK : If-then Statements 3 0.60

EPLK : Programmatic Loops 4 0.80

EPLK : Loop to Prior State Arrows 4 0.80

Looking at the coded results we can see that for FSMD Elements teams were only using

button presses or keyboard input. This is because at the time of the study the WLCP only

supported those types of inputs. Most games were also defined at the team or player level,

meaning they were mostly multiplayer oriented. The games also contained a decent amount of

EPLK. Looking at the FSMD Criteria, we can see the averages are all 3 except for Consistency

With Rules. Since the participants were using the editor it wasn't possible to score lower than 3,

because you were forced to use its representation which is considered the correct way. Lastly,

looking at FSMD Quantitative Analysis we can see that the teams games in the WLCP were

very complex and boasted a very large amount of states and transitions. This is because by

creating these digitally they had as much space as they needed and the drag and drop interface

made it very easy to create and connect things.

68

Day 3 & 5

We can compare the results from day 3 and 5 to get an idea of things such as how the

participants games changed when going from paper to the WLCP.

The input types do not differ much, with the exception of Touch Interface and Another

player on day 3. This is because on day 3 we did not tell them that the WLCP was restricted to

only button presses (single, sequence) and keyboard input. As you can see on day 5, all teams

were using button presses or keyboard input because of this restriction.

Looking at Domain Level, we can see that the results are exactly the same for day 3 and

5. We can see that all of the teams created games that mostly use the team and player level

management. This is because participants were instructed in the beginning of the study to

design a multiplayer game.

The FSMD criteria determines how well their diagrams held up to a standard. The paper

games scored lower than the WLCP games. This is because the paper games contain human

error abiding to the standard, where when using the WLCP you automatically abide by the

standard.

Lastly, comparing the FSMD Quantitative Analysis, we can see that the WLCP games

have significantly more states, transitions and connections. Almost 500% more in some cases.

This is because the WLCP allows you to create games much faster than on paper. This is due

to its drag and drop interface, validation engine, user friendliness and rapid prototyping and

debugging.

In general, we can say that the FSMD representations mostly changed in the FSMD

representation accuracy and amount of states and transitions. It also mostly remained the same

in the types of inputs and outputs they used.

69

Game Products
At the end of the study, we had a huge collection of data and this can be called the

game products. This consists of games on paper in each teams sketch pads (as well as google

drive), homeworks for each night (google drive), finite state machines on paper and also their

games they created using the WLCP. Below are some examples of these game products.

Figure 30 : Paper FSMD Game

70

Figure 31 : Paper FSMD Game

Figure 32 : Paper FSMD Game

71

Figure 33 : WLCP FSMD Game

72

Figure 34 : WLCP FSMD Game

73

Figure 35 : WLCP FSMD Game

74

DISCUSSION
This thesis started with the ambitious goal of creating a programming language and

software environment for the creation of multiplayer, physically active educational games. I

consider this goal was accomplished and that each of the research questions have been

answered to a reasonable extent. I will now revisit each research question proposed in the

beginning of this report and summarize if the question has been answered or not.

● Regarding Student’s Computational Thinking
○ Does a person's knowledge of defining a computational system ​via​ Finite State

Machines (one way to assess students’ Computational Thinking ability) change
by designing multiplayer math games (both on paper measures and in the
WLCP)?

The results from the pre and post test were used to determine the answer to this

question. According to the results, students had and overall increase of 17% from the pretest to

the post test. If you exclude Q2 (study did not focus on modifying diagrams) then the

participants had an overall increase in 28%. This shows the students gained knowledge on

FSMDs.

● Regarding the visual programming language
○ Is the WLCP suitable for use by K-12 students?
○ Is it possible to create a user-friendly mechanism to design and play multiplayer

ubiquitous games (defining these finite state machine-based games digitally)?

The results from the post study survey was used in determining the answers to the

research questions above. According to the survey, participants said the WLCP was user

friendly and easy to use. They also agreed that they think even younger students would be able

to use it (elementary and middle school). Participants were also able to successfully design and

play multiplayer digital FSMD games using the system. Both of the questions above are

75

answered with a strong yes.

● Regarding Students’ Coding and Game Development Processes
○ How well can someone translate a game they designed on paper into a Finite

State Machine Diagram on paper?
○ When transfering games from FSMD on paper to defining them on the computer

(WLCP FSMD games), did users encounter limitations?

The answers to the research questions above were obtained by using the embodied

coding guide and coding the games on paper from day 3 and the games in the WLCP from day

5. Since all students were able to translate their games from paper to the WLCP, this answers

our first question. Games can translate very well from paper to the WLCP, however there can be

some issues, but you can work around them. For our second question, users do encounter

some issues when transferring their games. This is usually due to limited input and output types

and not having variables or expression evaluation. Participants were still however able to work

around this.

76

FUTURE WORK AND CONCLUSION

The WLCP will continued to be developed by the Embodied Games Research Group at

WPI with consulting provided by me. New output types such as images, video and sounds will

be added. New input types such as GPS, RFID, QR Code, another player will also be added.

There will be overall improvements and bug fixes from things we found during the study that

need improvement. During the study participants also recommended a copy and paste feature

and even collaborative editing. These features may also be added down the road for later

studies.

I consider this project to be a huge success. All of the research questions that were

initially proposed in the beginning were answered. More excitingly, the answers to these

questions were the ones I wanted to see. I wanted it to be possible to create a language and

game editor for easy creation of embodied math games. This puts us one step closer to schools

potentially creating entire curriculums about creating games. After working on projects with

playing games, it was very interesting to see how one would turn out with creating games or if

creating such a language to create these was even possible. This project has provided a solid

foundation for The Embodied Research group at WPI to now continue to make improvements,

add features and run more studies on game creation.

77

REFERENCES

Arroyo, I., Liu, Y., Wixon, N., Schultz, S. (2016) Toward Embodied Game-based Intelligent

Tutoring Systems. Proceedings of the 13th International Conference on Intelligent
Tutoring Systems. Zagreb, Croatia. Lecture Notes in Computer Science, Springer.

Arroyo, I., Schapira, A., Woolf, B. P. (2001) Authoring and sharing word problems in AWE

(Animalwatch web-based environment). Proceedings of the Tenth International
Conference on Artificial Intelligence in Education. San Antonio, TX. May 2001. pp.
527-529. IOS Press.

Arroyo, I., Micciollo, M., Casano, J., Ottmar, E., Hulse, T., Rodrigo, M. (2017) Wearable

Learning: Multiplayer Embodied Games for Math Proceedings of the ACM SIGCHI
Annual Symposium on Computer-Human Interaction in Play (CHI PLAY). Amsterdam,
Netherlands.

Casano, J., Arroyo, I., Agapito, J.L., Rodrigo, M.T. (2016) Wearable Learning Technologies for

Math on SmartWatches: a feasibility study. In Chen, W. et al. (Eds.) (2016). Proceedings
of the 24th International Conference on Computers in Education. �India: Asia-Pacific
Society for Computers in Education .

Computational Thinkers. 2018. Computational Thinking.

https://www.computationalthinkers.com/wp-content/uploads/2016/01/ComputationalThin
kingProductLogo-600x600.png

Ottmar, Arroyo, Castro, Hulse, Chatani, Harrison, Micciolo. (2017) MULTIPLAYER GAME

DESIGN AND COMPUTATIONAL THINKING CODING GUIDE.

Habgood, M.P.J & Ainsworth, S.E. (2011) Motivating children to learn effectively: Exploring the

value of intrinsic integration in educational games. Journal of the Learning Sciences 20
(2),169-206 .

Harrison, A., Hulse, T., Manzo, D., Micciolo, M., Ottmar, E., & Arroyo, I. (2018). Computational

thinking through game creation in STEM classrooms. Proceedings (Part II) of the 19th
International Conference on Artificial Intelligence in Education. London, U.K. pp.
134-138.

Hulse, T., Harrison, A., Micciolo, M., Arroyo, I., & Ottmar, E. : Engaging in computational

thinking by creating math games. Paper submitted for the International Conference of
the Learning Sciences, London, England (2018).

78

Hopcroft, J.E., Ullman, J.D. (1979) Introduction to Automata Theory, Languages, and

Computation. Reading, MA: Addison-Wesley.

Lester, J.C., Ha, E.Y, Lee, S.Y., Mott, B.W., Rowe, J.P., Sabourin, J.L.: Serious games get

smart: Intelligent game-based learning environments. AI Magazine 34 (4), 31-45 (2013).

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.​ The scratch programming

language and environment​. ACM Transactions on Computing Education (TOCE). 10(4).

Massachusetts Academy of Math & Science at WPI. ​https://www.massacademy.org​.

Medium. 3 Things To Know About Scratch 3.0. 2018.

https://medium.com/scratchteam-blog/3-things-to-know-about-scratch-3-0-18ee2f564278

Micciolo, M.: Physical Games for Learning II. Major Qualifying Project. Worcester Polytechnic

Institute. (2017).

Price, T.W., Dong, Y., Lipovac, D.: iSnap: Towards Intelligent Tutoring in Novice Programming

Environments. In: ACM Technical Symposium on Computer Science Education. (2017).

Shute, V., Sun, C., Asbell-Clarke, J. (2017) Demystifying computational thinking, In Educational

Research Review, Volume 22, Pages 142-158.

Steinkuehler, C., Squire, K., Barab, S. (2012) Games, Learning, and Society: Learning and

Meaning in the Digital Age. Cambridge University Press .

Silver, E.A., Cai, J.: An Analysis of Arithmetic Problem Posing by Middle School Students�.

Journal for Research in Mathematics Education, Vol. 27, No. 5 (Nov.), pp. 521- 539
(1996).

Tarnoff, B.: Tech's Push to Teach Coding Isn't About Kids' Success – It's About Cutting Wages.

ACM Careers. (2017).

Van Horn, R.: Educational Games. The Phi Delta Kappan, 89(1), 73-74. (2007).

Wing, J.: Computational thinking. Communications of the ACM 49(3), 33-35 (2006).

Yazzie-Mintz, E.: Latest HSSSE results show familiar theme: bored, disconnected students want

more from schools. UI News Room. (2010).

79

https://dl.acm.org/citation.cfm?id=1868363
https://dl.acm.org/citation.cfm?id=1868363
https://www.massacademy.org/

APPENDIX A. ​Pretest/Posttest in Computational Thinking

Please answer the following questions to the best of your ability. To help with future research,

please write an ​X​​ beside any question that is unclear. Thank you!

This is a visual model of how a machine works.

1a.) Can you tell what kind of machine this could be? What does it remind you of and why?

1b.) According to this model, what would happen if you put three (3) coins in? Can you?

1c.) The machine is currently locked. What would you have to do to get this machine to go
“unlocked” and then back to “locked”?

80

This is a model of how a traffic light works. It changes lights based on a timer.

2a.) We want to add a button that a pedestrian could push to cross the street. When pushing the
button, the light would immediately turn to red. Then it would resume its normal functioning.
Can you redraw the diagram from above to represent this new situation? What would need to be
added?

81

Could you design a diagram like the ones before to represent this new situation?

3.) Draw a diagram that will represent the output of the ​digital display​ of an elevator and how it
changes depending on which of two buttons are pressed. Make sure the diagram addresses:

● When hitting the “up” button, the digital display will show “Top Floor”
● When hitting the “down” button, the digital display will show “Bottom Floor”
● The button can be pressed when already at the top or bottom floor.

Draw your diagram below.

82

APPENDIX B. ​Survey about Perceptions of the WLCP’s “Game Editor”

83

84

85

