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1 Abstract

Current underwater inspection vehicles are either extremely slow or high priced despite their plethora

of use cases. The Tethered Submersible Surveyor is an underwater, semi-autonomous tethered vehi-

cle designed to glide across the ocean floor for fast close inspection work. The tether provides the

craft’s primary propulsion as well as communications and power supplied from a boat on the surface.

The TSS aims to enable applications such as topology scanning, utility mapping, and other surveying

applications.
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2 Introduction

The Tethered Submersible Surveyor (TSS) is an underwater, semi-autonomously controlled vehicle

akin to a UAV, or “drone.” Primary propulsion is provided by means of a tether, connecting the vehicle

to a boat on the surface. Topside infrastructure also provides an operators console, telemetry read-

out, navigational elements and sensing, and primary power via a battery bank and/or generator. The

primary purpose of the TSS is for underwater exploration and surveying tasks.

2.1 Background

There are many existing robotics vehicles and solutions to problems involving underwater exploration

and manipulation. When brainstorming our Tethered Submersible Surveyor (TSS) we looked at some

of the existing solutions and the gaps or shortcomings they have and how they relate to our project.

2.2 Prior Art

There are many existing examples of drones and/or sensors designed for subsurface data collec-

tion. Some examples we found inspiration include both military and civilian craft. These craft range

from hobbyist tethered ROVs, that require direct control from a surface operator, to completely au-

tonomous unmanned underwater Vehicles (UUV) used by the United States Military for water mine

countermeasures operations. Below are some examples of vehicles and sensors that provided con-

text and/or inspiration during our research:

2.2.1 Hydroid Remus MK18 Family of Drones

The United States Navy uses this family of drones for shallow water mine countermeasures, seafloor

mapping, and hydrographic reconnaissance [14]. These drones function autonomously and surface

for retrieval after completing a mission. These drones tend to be extremely long ( > 3 meters) and

require specialized technicians to operate.
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Figure 1: Hydroid MK 18 Mod 1 Swordfish UUV [13]

2.2.2 Boat-towed Metal Detectors

There are many commercial options for high sensitivity boat-towed metal detectors. These sen-

sors are usually single purpose, however, and a generally extremely expensive (approx. $10,000 USD

(2020)). Despite this, they are a common tool of treasure hunters for their wide detection area [12].

Figure 2: JWFisher Pulse 12 Boat Towed Metal Detector [12]

2.2.3 Robotic Operated Underwater Vehicles (ROVs)

Used for both commercial and research purposes, ROVs are designed for direct control by a remote

operator. ROVs also tend to have manipulation / actuation capabilities for collecting samples or

performing repairs [6].
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Figure 3: ROV performing subsurface work on an offshore drilling platform [6]

2.3 Project Scope and Goals

We aimed to construct the TSS underwater vehicle and topside infrastructure sufficient for basic

operation - correct buoyancy, hydrodynamics, waterproofing, and control systems - as well as a full

sensor suite and an operators’ console with telemetry display. The main goal of this project is to

construct a working system and to enable further development of sophisticated control and autonomy

systems including obstacle avoidance, payload integration, and mapping tasks.

2.3.1 Product Requirements

A minimum viable product will have the following elements and capabilities:

• Can control and maintain depth setpoint down to 20 meters depth

• Is controllable and operable underwater.

• Waterproofing is sufficient to ensure no uncontrolled leakage at 20 meters depth
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• Environmental sensing capability including depth and inertial measurements

• Basic control software including actuation of control surfaces

• Depth modulation using a ballast tank

These requirements are representative of a baseline operational environment, including a large

factor of safety for initial pool testing. With these capabilities, the craft should be able to attain basic

maneuvering as well as providing enough sensor capabilities suitable for simple operation.

Additional stretch goals include:

• Modular or semi-modular sensor bay availability for payload

• Environmental sensing capability including water speed, water pressure, front+side rangefind-

ing, and inertial measurements

• Control software to enable autonomous bottom-following and arbitrary actuation tasks

More sophisticated sensors and control software will allow us to meet our operational goals and

maneuver along the bottom of the pool or in a lake or ocean environment free of most obstacles.

Additionally, the project will emphasize the following design goals:

• 3D printed structural components where possible to enable rapid design iteration

• Continuous testing and integration of software and hardware to validate continued functional-

ity

• Minimized cost, with the understanding that one-off or low-volume hardware is expensive

• Minimized size of underwater vessel in order to decrease manufacturing time, maximize as-

sembly speed, and facilitate transport

These design goals allow for the most rapid iteration and reduced machine tool requirements.

This should allow us to reduce the time spent on-campus, as well as simplifying procedures.
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2.4 Legal Implications

Depending on the locale, a variety of laws and treaties limit the rights of underwater surveyors in

the activities of treasure hunting, underwater archaeology, and salvage. Relevant summaries are

presented in the subsections below.

2.4.1 UNESCO Convention on the Protection of the Underwater Cultural Heritage

A 2001 UNESCO Convention saw the signing of several articles which limit or prohibit the act of trea-

sure hunting by increasing the scope of the definition of ‘underwater heritage’ [1]. While this com-

ponent of international law limits treasure hunting, underwater archaeology, and salvage activities in

the signatory countries, many major countries (including USA) are not signatories to this agreement.

This means that treasure hunting and salvage operations in the United States are unaffected by the

Convention [11].

2.4.2 United States Abandoned Shipwreck Law

Depending on the state, the laws surrounding the exploration and extraction of abandoned shipwrecks

can vary. Some states (such as Massachusetts) have highly regulated and organized boards over-

seeing the underwater resources within their territory, while others have little to no regulation. More

research is required regarding specific states’ laws and how they compare with the Federal laws. [3].

3 System Overview

We separated our system into three sections - the mechanical section, the electrical section, and the

software section. The mechanical section focuses on creating a physical body that is hydrodynamic

when moving through the water as well as designing the electromechanical systems for control of

the craft. The electronics provide the power systems that run the craft and handles the input and

output of data and control signals to allow the craft perform its duties underwater. The software
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section interprets the data and control signals and moves the mechanical sections to the appropriate

positions. It also sends data to the topside, which allows for control by the user through an application

that monitors and controls the craft’s subsystems.

3.1 Mechanical Overview

The key characteristics relevant to mechanical design in our project include the need to allow for

a craft to be tethered and dragged by a boat through water at a maximum depth of 20m and at a

speed of approximately 5-15 knots. Although the end goal of this project is to integrate enable real-

time scanning of the sea bed for treasure and other inspection related uses, the focus of the first

stage of our project this year was to create small-scale, proof of design concept prototype that could

potentially be scaled up to meet the ultimate objectives.

As the first iteration prototype for this project, we placed heavy emphasis on the creation of a

baseline for a hydrodynamic craft that could be iterated on in future work. 4 shows a labelled system

diagram of the major components for our craft, which includes the fuselage, wings, tail, and internal

subsystems.

Once the main body of the craft was designed, we could determine additional requirements for

interior design of the craft and subsystems needed for control of the craft. The main design goal

for the mechanical portion of this project was to design and assemble a hydrodynamic craft that

could submerse and emerge from the water independently through remote control as well as having

basic control functions to maintain stability while in motion when dragged with a tether through the

water. Key mechanical design requirements for the craft include water tightness for all mechanical

subsystems and as well as modularity and compactness for internal subsystems.

Although much of the design of hydrodynamic components for our craft, such as the wings and

the fuselage, was based on the design and documentation for airplanes as both crafts are essentially

large streamlined objects designed to move through fluids as efficiently as possible, it was important

to review update as necessary the calculations and formulas presented in referenced material to cor-

rectly align with our distinct objectives and environment. Two of the biggest areas of concern include
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the differences in operating medium, as the denser water over air necessitates a differentiation and

correction in the uses of in-water weight over weight due to gravity, and the lack of self-propulsion

of the craft since it would be towed by an external source, which affects free-body diagrams and ne-

cessitate that analysis of the motion of the craft be about the tether point rather than the center of

mass.

Much of the craft was prototyped by 3D-printing parts using ABS at 50-60% infill since we were

able to break-up the craft into modular components that were printable and allowed for relative ease

in making given the limited resources that we had. External parts including the hull and the wing

were coated in epoxy as a method of ensuring a water-tight seal for parts individually as well as re-

inforcement; however, despite much time spent on the design these components, we encountered

many difficulties and obstacles during the assembly and integration phase with electrical subsys-

tems, namely the waterproofing at the interfaces between components and unaccounted tolerances

due to post-processing of 3D-printed parts.

3.2 Electrical Overview

The electrical system has two main goals: Ensure power is able to flow to all the components, and

commands are able to be sent to and from the craft. A diagram can be seen in figure 5 showing the

overall connectivity of our electrical system.

Motor specifications were determined based on power and torque requirements derived from

mechanical design. Other considered factors included overall size and operational voltage. The

motors were the main driver of our power requirements, though the robustness of our power system

was less than desired due to severe pressure hull space constraints.

We chose motors operating at 12V with sufficient output torque to drive the ballasts without a

gearbox. This allowed us to place the motors on-axis with the ballast and reduce our overall pack-

aging envelope, since a gearbox would have taken significant space. The 12V rating allowed us to

use a standard automotive 24V->12V buck voltage regulator, meaning we could run power over the

tether at a higher voltage to lessen resistance losses at higher current draw. For our aileron and tail
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Figure 5: Electrical System Block Diagram



motors, we selected Gobilda 2000-0025-0002 servos for their small size and suitable output torque.

Since those operated from 4.8V-7.4V, we selected standard 12V->5V voltage regulators.

The components are vertically stacked - the 24 to 12V power converter and two motor controllers

sit on top of a 3D printed divider, which is on top of the microcontroller, and below that are the 12V

to 5V power converters. There is almost no vertical or horizontal room left, which compresses the

wires. The tether provides data and power through Ethernet, and that Ethernet cable further reduces

our space available. Our initial electronics bay used solid core wiring, which led to many instances

of the wires breaking. In our final iteration, we used stranded wire, which was far more flexible and

easy to work with.

3.3 Software Overview

The Software for this project is divided into two main parts: The Operator Console and the Robot

Control System.

Within these two parts are four distinct, yet connected components: The first is the Craft Control

component, which maintains the functionality of the craft during operation, and interprets instructions

into actions. The second is the Communications component, which ensures smooth and consistent

information exchange between the craft’s on-board software and a remote server. The third is the Data

Management component, which aggregates and visualizes key data about the system for a human

operator. The fourth is the Command Interface, which provides an intuitive and accurate method for

a human operator to control the craft.

Much of the software for this project is based around providing the ability for a human operator to

remotely control the craft. This goal presents numerous challenges, including those of networking,

human-computer interaction, data aggregation and visualization, and feedback-based control. To ad-

dress the various challenges associated with kind of software application, we used several different

technologies in tandem.

The software element of the project takes advantage of many well-established technologies. In

the design and implementation of each software component, we attempted to use the simplest and
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most stable tools to accomplish the necessary requirements. This design also provides the foun-

dation for future improvement of the software as a whole. With the end goal of this project being

location of specific elements in and around the seafloor, we selected certain technologies for their

capacity for future improvement, and designed the software system to be able to support the addition

of new sensors, networking methods, data visualizations, and operator controls as the requirements

and goals of the project evolve.

4 System Design and Configuration

The following sections describe overall architecture decisions as well as research and development

in specific project hardware or software areas.

4.1 Topside Infrastructure

On the surface of the water, supporting infrastructure for operation of the TSS is housed on a boat,

including a tether, power delivery hardware, batteries, and computing hardware for data processing

and operator control.

4.1.1 Tether

To connect our robot and the boat, we needed a tether. The tether provides both a mechanical and

data link between the two craft - the data link will be discussed in section 4.3.2. To start, we needed

to choose a type of rope for the tether. There are many types of rope, and Home Depot provides

a comprehensive list [24]. They suggested that polypropylene-based rope would be our best bet.

Polypropylene is buoyant, and hollow-braided polypropylene allows us to run the cables through the

rope, providing protection and making sure that the cable does not hold any of the towing tension.

Furthermore, in our research of other ROVs, we found that SVSeeker, another underwater ROV, used

hollow braided polypropylene rope for their tether [25], which further backed up our choice.
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4.1.2 Power Delivery

The tether provides power to our vehicle, which requires a large on-boat battery to provide enough

power to last more than two hours. This battery sits at a high voltage - and is transferred down to the

vehicle through the tether. We decided to use stranded, burial-rated Ethernet cabling, which is water-

resistant and allows for repeated bending without breakage. By running a high-voltage, low-current

power line, we are able to minimize the power loss due to resistance from small wire diameter in the

tether, leading to greater efficiency. Though the tether does heat under high loads, heat is dissipated

into the surrounding water.

We chose our battery voltage to be 24V - We could not fit a larger 48V converter in the current

iteration of the craft. On board the craft we have 24V->12V and 12V->5V that step down to operational

voltage for our motors and electronics.

4.1.3 Infrastructure

The topside infrastructure communicates with the robot via Ethernet as part of the tether assembly.

The two systems communicate using a standard UDP client and server configuration. The direct phys-

ical connection and elementary networking protocol allows for speedy transmission of data in both

directions. Raw sensor data from the robot are transmitted and processed by the data management

software component of the topside infrastructure, and control commands from the topside operator

console are transmitted to the robot.

4.1.4 Computing Hardware

Given the mostly-software oriented nature of the Topside Infrastructure component of the project, the

required hardware is limited. The primary component needed is a laptop to allow for visual informa-

tion display and user input. This laptop can be outfitted with rugged outdoor / saltwater protection

for the environment of a seagoing vessel.
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4.2 Mechanical Design

4.2.1 Body Design Parameters

The design of the body of this craft was relatively simple in comparison to the rest of the craft since

we knew approximately what we wanted it to look and perform like from the outset. We knew we

wanted a long torpedo-like shape for housing all of our payload and ballast, and we knew that it

needed to have very low drag, since drag causes more horizontal force on the tether, which results in

a longer tether being necessary to achieve the same depth.

Most importantly, it needed to be large enough to contain all of our electronics and ballast. Our

first design used a revolved profile of two ellipses to create the shape in Figure 6 for initial approximate

simulations.

Figure 6: Unoptimized body shape used in initial simulations.

Although this has relatively low drag, it is far from optimized. We decided to turn to conven-

tional wisdom on this aspect and use an extremely low drag NACA 16-006 airfoil, which has a drag

coefficient that ranges between 0.007 and 0.1 depending on angle of attack.

In our application, the craft will typically be moving straight forwards through the water at a near

zero degree angle of attack, and when ascending and descending will only have a few degrees, so the

drag coefficient will be limited to approximately 0.02 or 0.03, plenty low enough to minimize force on

our tether. After revolving that profile around its chord, we get the shape shown in Figure 7.

The slightly more pointed nose of the profile reduces drag as it pierces the water, and the pointed

tail eliminates flow separation and vortices, a large source of drag in the first design. Additionally, the

relatively steep angles on the front and back make it easier to add longitudinal screws, which helps
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Figure 7: Revolved solid of a NACA 16-006 airfoil profile.

immensely with assembly, as will be shown in section 4.2.8.

4.2.2 Static Analysis

Tether Attachment The tether attachment mechanism to the TSS specifically needs to be able to

accomplish the following:

• Quick and automatic detachment when the tether or craft becomes caught/stuck and thus

immediate cease of operations is necessary, and

• Allow for water tight bypass of electrical cables from the tether into the hull.

For the initial prototype at this first stage, we did not design a complex tether mounting mecha-

nism for the hull of the craft, and instead focus on the attachment point of the tether to the hull as

well as design for bypass of cables into the craft. Placement of the tether mounting point directly

affects stability in the towing of the craft when operated, and thus should meet the following design

points [23]:

• The mount point should be directly above the center of weight of the craft when submerged in

water

• The mount point should be in front of the aerodynamic center of the craft

• The center of mass of the craft should be in between the tow point and the aerodynamic center

and closer to the tow point
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• The center of buoyancy should be behind the center of weight when submerged in the water in

order for the craft to pitch downwards at low velocities and thus generate negative lift to help

the craft stay submerged.

The specific placement of the tether mount point is discussed in Section 4.2.7 in context of the

design of the control surfaces for the tail.

4.2.3 Wing Design

As far as priorities go, our wing design process went somewhat similarly to our body design process.

Again, we primarily focused on drag reduction in order to minimize tether force. In this case, however,

we also needed to make sure that the wings would produce sufficient lift force for the craft to be

maneuverable in the water and able to dive and surface quickly in order to accomplish basic turns

and obstacle avoidance during operation.

Since we knew the hull was going to be a torpedo-shape, we could narrow down our reasonable

wing options very quickly. Essentially, our choices were a single long narrow wing down the whole

side of the craft or a more airplane style wide winged setup

Figure 8: Our two wing design options for simulation.

with a separate tail. These two options are shown in Figure 8. The main advantage of the first,

narrower, idea was less drag, but upon simulating both in Ansys Fluent, we found that the second
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Figure 9: Flow simulation results from a basic Ansys simulation for drag coefficients between two

wing design options

actually had a lower drag coefficient, effectively eliminating any perceived advantages of the first.

The results and comparison of the flow simulation from Ansys for the two wing designs are shown in

Figure 9 and supports the conclusion that the second design is more suitable based on drag forces

induced by the wings.

Although we did discuss using an asymmetrical airfoil to create downward lift at a zero degree

angle of attack to offset the upward force of the tether, we decided to offset the tether force by

aggressive drag reduction and generate upward and downward force purely by changing our angle of

attack. Once again, we used the extremely low drag NACA 16-006 airfoil due to its low drag and decent

lift at moderate angles of attack. Our initial simulations, which are shown in Figure 10, indicated that

at an angle of attack of 5°, the lift force was enough that we were nearly sure it would tear the wings

off and would generate massive vortices at the wingtips, so we shortened the wings substantially as

well as raking the tips to reduce induced drag [4]. After these changes and adding temporary rudder

tailpieces, we arrived at the design shown in Figure 11.

This design has a lift coefficient of 0.1602 at an angle of attack of 5°, which, given a surface area

of 0.64 m2, means that it will generate 319 N (72 lbf) at 5 knots (2.5 m/s) and 3031 N (681 lbf) at 15

knots (7.7 m/s). The high amount of lift force indicates the need to carefully regulate our angle of

attack at high speeds lest we apply 600 pounds of force to our wings and tear them off. The drag
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Figure 10: CFD for chosen wing design and simulated lift coefficient

Figure 11: Final body and wing design with temporary rear control surfaces and raked wingtips.



coefficient is 0.0425 at the same angle of attack, which results in 84 N (19 lbf) of drag force at 5 knots

and 804 N (181 lbf) at 15 knots. Once again, this shows that at high speeds we need to have a very

small angle of attack to prevent that force ever actually being applied. Overall, we can confidently say

that this design will produce plenty of lift even at low speeds while having relatively low drag forces.

4.2.4 Pressure Hull/Electronics Enclosure Design

The main purpose of the pressure hull for the TSS is to contain all of the electronics and non-water

resistant internal components for the craft in a centralized place. The final design for the pressure

hull is shown in Figure 12.

Figure 12: Final pressure hull design

The main components for the pressure hull include the pressure hull tank, two end caps with O-
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rings and bypass connectors, and an internal holder platform to organize and separate electronics.

Due to the requirement for the pressure hull to be fully watertight in order to protect the internal com-

ponents contained within the pressure hull, an overarching design goal was to test and ensure that no

water could enter the hull in the worst case scenario, which is to be fully submerged. Additional de-

sign requirements considered for the pressure hull was that the container needed to be big enough to

contain an assortment of internal components for the TSS and not just the basic electronics for con-

trolling the craft, e.g., sensors and additional modular/customizable payload components. Due to the

nature of prototyping, the pressure hull also needed to be designed to be easily assembled/disassem-

bled and assessed for both any damage to the hull itself as well as the condition of the components

contained within, e.g., status LEDs from the MCU, disconnections from insertion/assembly, leaks,

etc. Finally, the pressure hull needs to be able to withstand the worst case environment, which is full

submersion in ocean water at extreme depths in the case that the TSS becomes disconnected and

the external hull floods/collapses due to water pressures.

Pressure Hull Design The main factors that affect the design choices for the pressure hull con-

tainer include ease of assembly and assessment, resilience to worst case environments, and size

constraints. To meet the first requirement, the pressure hull was desired to be made of a transparent

material since it allows for easy debugging and examination of components contained as discussed

in the aforementioned examples. This eliminates opaque materials that are traditionally used, such

as PVC and metal tubes. We used this criteria alone to narrow down our material choices to three

materials: glass, polycarbonate, and acrylic. Glass was removed from the list despite having an

ideal density (being the heaviest material out of the three), since glass is be inherently difficult to

machine and work with, and sourcing glass tubes of a large length and diameter to meet dimension

requirements would be more difficult compared to the other two.

To meet the requirement of resilience to extreme environments, both polycarbonate and acrylic

function well under harsh conditions. Both are chemically resistant to saline environments and rel-

atively easy to obtain for a wide range of sizes, and both are able to withstand the water pressure
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at extreme depths; for our prototype in the first stage of the project, the deepest depth possible for

testing conditions is approximately 50-60ft, which translates to a pressure of 2 atm at most. With the

yield strength of acrylic on average 75MPa and polycarbonate being slightly lower at 65MPa, both

are able to handle water depths of approximately 7km (pressure increases by an atm for every 10m

descended), well exceeding even our overall product requirements. Polycarbonate was ultimately

chosen between the two due to costs, since acrylic tubes were about three times more expensive

than acrylic ones for the same size. In order to accommodate for the size of the components needed

to be contained within the hull, consultation with ECE yielded dimensions of 8” in length and OD/ID

of 3.5”/3.25” to be sufficient for containing all of the necessary electronics needed for the TSS for at

the very least the elements required for control and basic sensors for the craft. The size of the hull

was also ensured to fit within the external hull of the craft.

End Caps The main two design constraints for the end caps of the pressure hull include being easy

for assembly and maintaining water tightness under all circumstances. To create the endcaps, we

decided to 3D print them for rapid prototyping and ease of accessibility to the tools needed under

COVID restrictions. To obtain the level of waterproofing necessary for the pressure hull, we relied on

three techniques: selection of filament material, printing method, and post processing.

Based on online research of material commonly used for watertight applications, the four differ-

ent filaments were weighed against each other, which is summarized in the following table. Mechan-

ical properties were taken from the Matweb database [10, 9, 8, 7].

From the list of materials in Table 1, both PP filaments were immediately eliminated, since PP

is less dense than water while PP GF30 is too expensive and had properties that exceeded our re-

quirements by more than necessary. Between ABS and PETG, while PETG overall has more desirable

properties in terms of density, water absorption, and ease of use, ABS was selected initially due to its

availability and largely due to its ability known compatibility with post processing for waterproofing.

Specifically, post processing techniques were needed in order to prevent leakage through the

3D printed material, since the layers of a 3D printed part inherently contain microscopic gaps that
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Table 1: Characteristic comparison between 3D printing material

Material Properties

Polypropylene (PP) • Commonly used for food packaging/bottles/containers

• Hydrophobic

• One of the most chemically resistant 3D printing materials

• Flexible

• Density: 0.915g/cc

• Water absorption: 0.0109%

• Tensile strength: 32.6 MPa

• Cost: $50/500g

PP GF30 • 30% glass fiber reinforced PP

• Extremely resistant to highly aggressive environments such as high heat,

UV, and chemicals

• Glass fiber reinforcement adds rigidity/strength

• Density: 1.14g/cc

• Water absorption: 0.0258%

• Tensile strength: 77.6 MPa

• Cost: $100+/700g

PETG • Easiest to print

• Impact resistant

• Slightly flexible

• Poor processing applications

• Density: 1.26 g/cc

• Water absorption: 0.146%

• Tensile strength: 48.2 MPa

• Cost: $20/1000g

ABS • Difficult to print

• Long history in use for 3D printing

• Known compatibility with water proofing post processing techniques

• Density: 1.07 g/cc

• Water absorption: 0.410 %

• Tensile strength: 44.8 MPa

• Cost: $20/1000g



(a) Holder design (b) Holder within pressure hull

Figure 13: Holder design for electronics in pressure hull

would allow for water to leak through. To counter this effect, we selected the commonly used post

processing epoxy XTC-3D as it was well documented to work with ABS and known to ensure water

tightness in the part.

Additionally, we needed a reliable and non-permanent sealing method to prevent water from en-

tering the hull through the endcaps. To achieve such sealing, we used a custom-made O-ring using

O-ring cord stock bought from McMaster-Carr. The O-ring width and corresponding gland was spec’d

according to the SAE AS568 standard listed in the Parker O-ring handbook; since the standard re-

quires backup rings for only when pressures exceed 1.5 ksi, only a single O-ring was integrated in the

design for the end caps [5]. The O-ring material was selected to be EPDM, as it was cheaper than

silicone cord stock and is known to be resistant in salt water applications.

Internal Electronics Holder In order to allow for organization and prevention of short circuiting

of the electronics placed inside the pressure hull, we designed an internal holder for the various

electronics and other components shown in Figure 13. The holder fastens the two motor controllers

needed for the ballasts as well as the power converter to step down the voltage from 24V delivered

over Ethernet to the 12V used to drive the motors.
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4.2.5 Ballast Design

The ballast of the TSS plays a crucial role in its operation, since it allows for general control over the

attitude of the craft and thus gives it the ability to ascend and descend in the water. The ballasts in

the TSS mainly control the attitude of the craft when it is at rest, i.e. when it is not being towed by

the boat; during towing operation, the operator can actuate the control surfaces in order to adjust the

position of the craft in the water, and therefore the ballasts are used to ensure that the craft can be

neutrally buoyant during the operation phase and resurface on its own for retrieval.

Ballast Operating Principles The main principle in concern for the ballast is the amount and distri-

bution of buoyancy that the craft carries. Due to the fact that the inside of the craft will be contained

with mostly air, the craft will be naturally buoyant in water since the weight of the water displaced by

the craft will be greater than that of the craft. The buoyant force for the craft is calculated simply via

the following equation:

∆B =
FB − FG

g
= M −∇ρ (1)

where ∆B is the net buoyancy, FB is the buoyant force, FG is the weight of the TSS, g is acceler-

ation due to gravity, M is the total mass of the TSS, ∇ is the displacement volume of the TSS, and ρ

is the density of the displaced medium, in our case salt water, which has a density of approximately

1025 kg/m3, or freshwater, which has a density of 1000 kg/m3.

In order to control the buoyancy of an object in water, two parameters can be changed, which

are the mass of the object or the volume of water that it displaces. Since in our case the volume of

the main body of the craft must be held constant and can’t be varied easily, the focus of the ballast

is to consequently adjust the amount of mass that is on board the TSS. Additionally, dense weights

such as lead shots can be used to offset the mass of the TSS, thus aiding the ballast by reducing the

capacity of water needed for successful control of the attitude of the TSS.

It should be noted here that while the ballast is used to control attitude for the TSS, its main
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purpose is simply to allow for a general method for the TSS to ascend and descend easily and in-

dependently, not to maintain an attitude. Since the ballast is able to adjust the amount of mass

on-board the TSS and thus its buoyancy, the TSS can be adjusted to be either positively, neutrally, or

negatively buoyant, where in each state the TSS will ascend, maintain attitude, or descend respec-

tively. In the neutrally buoyant state, the craft will experience zero buoyant force; however, due to the

external forces of drag and tension from the tether acting on the TSS, independent control surfaces

such as in the form of ailerons and elevators are necessary for counteracting these forces in order

to maintain a constant depth.

Ballast Driving Mechanism As stated before, the two primary parameters that can be controlled

by the ballast to adjust buoyancy for the TSS is its mass and/or its volume. Based on prior ballast

designs for ROVs and AUVs, three different types of ballasts have been known to work for such

vehicles, which are as follows [2]:

1. Enclosed: a bidirectional pump in conjunction with valves and a plumbing system allows for

water to be let in and out of a ballast tank.

2. Piston: a motor uses linear actuation to drive a piston head back and forth in a ballast tank,

where when the piston head is driven backwards, water is sucked into the tank and when the

piston head is driven forwards, water is expelled

3. Flexible: water is pumped in and out of a balloon or other flexible apparatus and is located

outside of the TSS rather than being internally contained within the craft

As stated prior, the flexible option was immediately eliminated due to the concerns about relia-

bility and effects on the operation of the TSS, since such a ballast has a possibility of bursting and

would negatively affect the drag of the craft when being towed. In order to narrow down between a

piston or pump design, we used the decision flow chart provided by Tiwari and Sharma [22] and is

shown in the following figure:
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Figure 14: Decision flow chart for ballast mechanism selection



Since the general shape of our TSS has a long and thin geometry and thus a high L/D ratio, and

is operated for long periods and at fast speeds, we determined that a piston driven variable ballast

system (VBS) would be most suitable for our needs. The main components for a piston driven VBS

is a cylindrical ballast tank, the piston head and complementary linear actuator, as well as the intake

line for the water to enter and exit the ballast tank. Furthermore, in order to aid in pitch stability, we

used two ballast tanks to help distribute the load from the ballast to be between the head and tail of

the body.

The size of the front and rear ballast tanks are 2.75” in diameter and 5” in length each, which

gives a total ballasting capacity of approximately 1.75lb. The final design is shown in Figure 15.

We decided to use two ballasts instead of a single one for two reasons: first, by having two

ballasts at the front and rear, we could independently shift the weight distribution of the craft about

its center of mass, which helps to improve intrinsic pitch stability; second, by having ballasts fitted

at the ends of the craft, we could centralize the electronics into a single pressure hull at the center

of the craft rather than broken up into separate containers distributed throughout the craft, therefore

minimizing places for potential failure and resources required. The isometric and side profile views

of the ballasts in the craft are shown in Figure 16.

Due to space constraints from size of the hull unique to our first stage prototype, we had to find

an alternative method to actuate the piston head, since the traditional method with the lead screw

would require space outside of the ballast tank where the lead screw could fully extend when the

head is retracted to draw in water. To reduce the size footprint of the ballast system, we considered

three different designs: a smooth rod driven by angled bearings, a telescoping/compressive design,

and a bypass lead screw design. Examples of the angled bearings and telescoping system are shown

in Figure 17.

Since the piston driving mechanism needs to be able to handle the pressure from the water in

the tank to maintain constant ballast capacity at all times, the smooth rod and bearing system was

eliminated. The telescoping mechanism was eliminated due to its space efficiencies and complexity

in the mechanism, since a large portion of the tank needs to be sacrificed even in the compressed

29



30

Figure 15: Final ballast design
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(a) Isometric view of ballasts in craft

(b) Side profile view of ballasts in craft

Figure 16: Dual ballast system embedded in craft



(a) smooth rod and bearing [21] (b) telescoping mechanism [19]

Figure 17: Alternative piston driving mechanisms

form, and the increased amount of parts in the system entails additional complications in creating a

reliable system. Thus, a bypass lead screw design was chosen.

The main concern for the bypass lead screw design lies in maintaining a watertight seal at the

interface between the piston head and the lead screw that passes through. In order to accomplish a

watertight seal, we relied on two methods, which were 1) using an extremely tight tolerance leadscrew

and flange to form a labyrinth seal, and 2) using lubrication to fill in the remaining space between

the flange and the leadscrew. The use of lubrication was inspired from the original design use of

a labyrinth seal to retain lubrication in machines, and works well in our case since the use of the

same marine grease used to lubricate the O-rings was viscous enough to prevent water from leaking

through the path along the leadscrew. To test the sealing interface, we filled a water bottle with water

and had the leadscrew-flange attached to the cap so that water would only pass through if there was

a leak through the leadscrew as shown in Figure 18.

Although our initial test without the lubrication resulted in continuous leakage, after lubrication

was run along the entire leadscrew, the flange was completely effective in sealing the interface after

a 12 hour test with the bottle sitting cap side down. Once the actuation for the ballast was complete,

we moved forward with prototyping our design. The final assembled prototype is shown in Figure 19.

The ballast tank was selected to be made of a PETG cylinder with ID 2.75” and OD 3”, since the

mechanical properties of PETG are more desirable compared to acrylic in regards to its higher density
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Figure 18: Test for leakage through leadscrew flange combination

and yield strength. The leadscrew and flange nut were their ultra-precision parts with diameter of

7/32”-20.8 thread size and 4 starts. The leadscrew and flange nut are made of 303 stainless steel

and acetal plastic respectively in order to withstand the aquatic environments.

To control the ballasting, two limit switches were placed on the end cap in the holes seen on the

top and bottom of the right-hand side end cap in Figure 15. One limit switch is placed with the switch

facing inwards to limit the full ballast position, as the piston head will press the switch once retracted

all the way. The other limit switch is controlled by a wire attached to the piston head in order to limit

the piston head and signal the empty state. The wire is connected to the limit switch facing outwards

away from the piston head and measured so that once the piston head reaches the front end of the

ballast, the wire pulls on the switch and thus signals the empty state.

To determine the actuation force required to move the piston head, we first calculated the thrust

required to move the piston head at the maximum depth, which is where pressure on the piston head

would be the highest. The thrust force required is given by the following equation [22]:
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Figure 19: Prototype of ballast



T = Acs∆P = (π/4)D2
p∆P = (π/4)D2

p((ρgh+ Patm)− Pin) (2)

where Pin is pressure inside the ballast tank, Patm is atmospheric pressure, h is submersion

depth, and g is acceleration due to gravity. With the first semester prototype operating at a maximum

depth of approximately 50ft, an internal pressure of atmospheric pressure, and a piston head diameter

of 2.75in, we can expect approximately 130lbf of thrust required to actuate the head.

Then, using the axial force equation provided by SDP/SI’s guide on leadscrew calculation, we can

calculate the required torque for the motor to drive the piston head [18].

Force =
2π

16
Tpη (3)

where Force is the load on the flange nut, T is the torque exerted on the lead screw by the motor, p

is the threads per inch of the lead screw, and η is the lead screw efficiency. Using 130lbf for the force,

20.8 for the tpi, and 0.65 for the lead screw efficiency based on the median for acme rods with plastic

nuts [20], we arrive at a torque required of 70oz-in. To allow for a safety margin of operation of 2 to

account for greater leadscrew inefficiencies, friction at the piston head, coupler inefficiency between

the lead screw and the motor, and other losses or factors not accounted for in our calculations, we

double the torque requirement for the motor to be approximately 150 oz-in.

Additionally, for the motor requirements of the ballast, we need to determine the rpm that it can

run at. Since the piston head travels 4.25” from front to back in the ballast and we desire for the

ballast to be able to go from full to empty in about 5 seconds, we can calculate the rpm as follows:

ωrpm =
Lp

nt
∗ 60 (4)

where L is the length traveled, p is tpi, n is the number of starts, and t is travel time. With a

length of 4.25”, 20.8 tpi, 4 starts, and 5 seconds of travel time, we determine a rpm requirment of

approximately 270rpm for the motor.
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4.2.6 Aileron Design

To allow control over the movement of the craft in cases such as basic roll stabilization or object

avoidance, we needed to design ailerons for the wings along their tips in addition to the rudder and

elevator at the rear. The final design of the aileron and the linkage needed to control it are shown in

Figure 20.

Since the goal of the design of the aileron was to establish a rough baseline for future iterations

to fine tune through testing, dimensions and parameters of the aileron are based on average specifi-

cations commonly found for ailerons from [16], which includes a aileron chord to wing chord ratio of

0.25 and an inner and outer span ratio of 0.65 and 1.00 respectively. The aileron is designed to be

actuated for a maximum angle of attack α of −30° to 30°. The material of the aileron is consistent

with the rest of the craft and is 3D-printed with ABS with 100% infill, while the links are all machined

out of brass. The key parameters of the aileron are listed in Table 2.

Table 2: Parameters for aileron design

Aileron parameter Value

Sa/2 41.12 cm2

ba/2 10.04 cm

bai/2 24.96 cm

Ca 4.10 cm

δamax +/-30°

To actuate the ailerons themselves, we use a 4-bar linkage mechanism, where a shaft that runs

throughout the wings is directly connected to and rotated by a servo embedded in the wings closer

to the body of the TSS. At the end of the motor shaft is a coupler that connects the motor shaft to the

aileron link, which is then connected to arm under the aileron. The hinge point where the intermediate

aileron link attaches to the aileron is directly underneath the hinge for the aileron itself to allow for
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Figure 20: Aileron Subsystem Diagram



equal changes in rotation between the servo and the aileron. This design was the simplest design

that was feasible for our wings due to the increasing thinness moving out from the body.

To determine the amount of torque required for the servo to actuate the aileron to the maximum

deflection angle of +/-30°, we use calculated the hinge moment of the aileron using the equations

provided by Sadraey [16], which is given as follows:

H =
1

2
ρU2ScCcCh (5)

Ch = Cho + ChααLS + Chδc
δc (6)

where H is the hinge moment, ρ is density, U is the velocity, Sc and Cc are the planform area and

mean aerodynamic chord (MAC) of the aileron respectively, Ch is the hinge moment coefficient, Cho

is the hinge moment coefficient due to the pitching moment, Chα and αLS are the hinge moment

coefficient and angle of attack of the lifting wing, and similarly Chδc
and δc are the hinge moment

coefficient and angle of attack of the aileron. Since αLS of the wing is 0 and the wing is symmetric,

and using the typical value −0.3 rad−1 for Chδc
and a maximum deflection angle of 30°, we calculated

an approximate hinge moment of 0.33 Nm for the aileron. We then double the moment required as

a safety factor to ensure that the servo motor actuating the aileron can produce enough torque for

maximum deflection, yielding a final torque requirement of 0.66 Nm for the aileron servo motor.

Since this torque requirement is only 30% of the rated torque of the selected servo motors, the

aileron links were chosen to be about a 1:1 overall ratio, providing a large factor of safety and mini-

mum footprint.

4.2.7 Elevator and Rudder Design

In addition to the ailerons to control roll, we needed additional control surfaces in order to stabilize

and control the pitch and yaw of the craft, which can be accomplished by actuating an elevator and

rudder at the rear of the craft. The majority of the design process and calculations for these con-

trol surfaces is again based on Sadraey’s textbook on aircraft design with necessary adjustments to
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Figure 21: Free body diagram of the craft for design of the horizontal tail

reflect the account for the physics of a towed craft underwater [17].

Horizontal Tail In order to control and stabilize the pitch of the craft as it was being towed, we

designed the horizontal tail to act as both a tail and a rudder. The parameters of the tail are chosen

and calculated based on steady-state operation when the craft has been submerged to the desired

depth and is simply moving forward at a constant depth. Figure 21 shows the free body diagram

(FBD) with the key forces needed to determine the location and size of the tail.

In the FBD, pivot is the pivot point where the tether attaches and tows the craft, l is the respective

distance between points of interest, AC is the aerodynamic center, D is the drag on the wing, W is the

weight of the craft when it is submerged, Lth is the lift generated by the horizontal tail, and CoM is

the center of mass of the entire craft. Since the wing has a symmetric airfoil and is fixed at an angle

of attack of 0°, we omit the pitching moment at the wing’s aerodynamic center as well as the pitching

moment for the horizontal tail since it is relatively small compared to the other forces acting on the

craft.

The location of the horizontal wing was determined by selecting a ratio of 0.55 between the dis-

tance from the wing aerodynamic center to the horizontal tail aerodynamic center and the aircraft

overall length from Table 3, since the configuration of our craft most similarly resembles the con-

ditions of number 2 where the tether force corresponds to the thrust force generated by the engine
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Table 3: Typical values for l/L for various aircraft configurations from Sadraey [17]

above the wing and our a craft possesses an aft tail.

Since we conduct our calculations assuming steady state operation, then the moments about the

pivot point must be balanced. The summation of these moments is derived using the FBD and is

illustrated in the following equation.

ΣMpivot = Dwinglwing −Win waterlCoM + Lthlth = 0 (7)

The lift and drag of the wing and horizontal tail can be calculated using the standard lift equation

L =
1

2
ρV 2SCL

where ρ is the density of the medium, V is the velocity of the craft, S is the planform area of the

aerodynamic body, and CL is the lift or drag coefficient. We assumed a velocity of approximately

4.5 m/s, as the first, scaled down prototype would unlikely reach the full speed of 10 m/s in our

original objective. However, since both the lift and the size of the horizontal tail is both unknown

early on in preliminary design, we had to select a typical volume coefficient from Table 4. Since our

application most closely resembles the motor glider listed in the first row of Table 4, we selected a

volume coefficient V H of 0.6.
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Table 4: Typical values for horizontal and vertical tail volume coefficients from Sadraey [17]



Using the volume coefficient of 0.6, we can calculate the planform area of the wing with the

following equation:

Sth =
V HCSw

l
(8)

where C is the mean aerodynamic chord (MAC) length of the wing, Sw and Sth are the planform

areas of the wing and horizontal tail respectively, and l is the distance from the wing aerodynamic

center to the horizontal tail aerodynamic center. Once the planform area of the horizontal tail was

determined, the lift coefficient required from the horizontal tail as well as the remaining parameters

could be calculated. Additional parameters related to the size of the wing include the aspect ratio,

which was taken to be simply 2/3 of the wing’s aspect ratio, the taper ratio, which was arbitrarily

selected to be 0.5 to fit in the range of typical values for transport aircrafts, and the sweep angle, which

was chosen to be the same as the sweep angle as the wing. Finally, based on the recommendation of

Sadraey, we simply selected the NACA 0012 airfoil, as the specific airfoil at this stage in design is not

critical and can be iterated based on results from testing later on. Table 5 lists all of the significant

parameters that make up the horizontal tail. Additional details on the calculations and formulas used

can be found in Chapter 6 of Sadraey’s textbook [17].

Vertical Tail The procedure for designing the vertical tail was similar to the design of the horizontal

tail, with most of the parameters derived from either recommendations by Sadraey [17] or from the

existing parameters for the horizontal tail. Parameters that were kept the same between the hor-

izontal vertical tail include the distance between the wing aerodynamic center and the vertical tail

aerodynamic center, the NACA airfoil profile, the taper ratio, and the sweep angle. The volume coeffi-

cient was selected from the higher end of typical values for vertical tail volume coefficients in Table 4

since the vertical tail would function doubly as the rudder required to essentially steer the craft and

control the craft along the yaw axis. Sadraey recommends that the aspect ratio is a value between 1

and 2, and so was simply chosen to be the midpoint at 1.5, which was reflected based on the average

aspect ration from the provided examples in the textbook. All other values for the vertical tail can be
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Table 5: Parameters for horizontal tail design

Horizontal tail parameter Value

l 50.52cm

VH 0.6

Sth 373.41 cm2

CLh 0.002635

ARth 2.13

λth 0.5

Λth 16.13°

Cth 13.23 cm

Chroot 17.01 cm

Chtip 8.505 cm

derived in the same fashion as for the horizontal tail, which are listed in Table 6.

As hinted to before, the need for the vertical tail in regards to maintaining yaw stability is minimal,

since under steady state conditions there would not be an asymmetric force distribution about the

pivot of the craft, thus theoretically generating minimal to no moment about the pivot. However, the

horizontal tail is still required as it plays a large role in the control of the craft in the yaw axis, such as

in the cases where the boat makes a turn; the craft would be required to properly rotate in response

to the turning of the boat so that it can maintain the same direction. Thus, while a preliminary vertical

tail was designed with reference to existing documentation for vertical tail design for aircrafts, future

testing must ensure and adjust accordingly the parameters of the tail so that it can meet the demands

of various scenarios for control of the orientation of the craft at all times.
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Table 6: Parameters for vertical tail design

Vertical tail parameter Value

l 50.52cm

VV 0.08

Stv 171.36 cm2

ARtv 1.5

λtv 0.5

Λtv 16.13°

Ctv 10.69 cm

Cvroot 13.74 cm

Cvtip 6.87 cm

Motor Control Requirements Torque requirements for the horizontal and vertical tail were calcu-

lated by treating them as rudders used for boats, in which case readily available formulas exist for

calculating the torque needed to rotate the shaft that the rudder is attached to. We referenced the

DNV GL ”Rules for classification: Ships” on how to calculate the torque needed to drive the tail sur-

faces [15]. The formulas to solve for the torque are as follows:

CR = 132K1K2K3AV
2 (9)

K1 = (AR + 2)/3 (10)

QR = CRc(0.33− k) (11)

whereCR is the rudder force, A is the planform area of the rudder, V is velocity, K1 is a coefficient

depending on aspect ratio AR, K2 is the rudder profile coefficient and is 1.1 for a NACA-00 series
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profile, K3 is a rudder interference coefficient and is taken to be 1 since there are no propellers or

nozzle, QR is the rudder torque, c is the MAC of the rudder, and k is the ratio of the planform area in

front of the center line of the pivot of the rudder to the total planform area of the rudder.

Given these equations, we determined that the vertical tail required a torque input of 1.23Nm at

the pivot shaft while the horizontal tail would require an input of 6.32Nm. Both tail surfaces are also

designed to deflect +/- 15°.

Linkage Specifications To determine the exact linkage specifications, an iterative approach was

taken based on the method of instantaneous centers. The linkage was simply modeled in Solidworks

and link lengths were chosen to minimize the effective gear ratio n. The effective gear ratio for a

4-bar linkage anchored at two points can be derived geometrically as:

n =
AO2 ∗BI13
AI13 ∗BO4

(12)

whereAO2 is the length of link A,BO4 is the length of link B, andAI13 andBI13 are the distances

between link A and the instantaneous center, and link B and the instantaneous center, respectively.

Output torque (aboutO4) within the +/- 15° actuation range must fulfill the 6.32Nm requirement at

minimum. Beginning with a base distance (between O2 and O4) of 120mm, based on motor location

constraints, link lengths were varied to maximize effective gear ratio. Based on our servo motor

selection, which had the highest output torque available in that form factor ( 2.2Nm), we needed to

maintain an effective gear ratio of less than or equal to 2.2/6.32 = 0.335. Link lengths of 20 and

61.5 respectively accomplished this, with the highest ratio near the neutral position of the elevator,

aka the position of lowest applied torque.

4.2.8 Multi-part Assembly

One of the major design challenges that we faced when it came to the external hull of the craft was

how to design it in such a way that would make it easy to create, assemble, seal, and disassemble

multiple times. The final division of the hull into pieces that could fit together and be 3D-printed is
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Figure 22: Method of instantaneous centers for elevator linkage

Figure 23: Effective Gear Ratio from Elevator Linkage



shown in an exploded view in Figure 24.

Figure 24: Division of hull for multi-part creation and assembly

Parametric modeling Due to build-volume limitations of 3D printers, we needed to ensure that each

piece of the hull could fit within the space constraints. To begin, we used Solidworks derived parts

and the Intersect feature to parametrically model separate pieces of the hull.

In Figure 25, each plane denotes a surface on which the model was cut. After splitting the main

body model using the planes, the component parts are each processed in their own files to add details

such as screw holes for connecting to each other, interfaces between parts to secure their positions

relative to each other, cavity spaces to fit internal components such as the pressure hull and ballasts,

and tolerances for 3D-printing and post-processing.

Similarly, the wings were split up in the same manner as shown in Figure 26.

As a means of simplifying the reassembly and disassembly process, the center pieces of the

hull and all of the pieces of the wing were epoxied together to permanently secure them as a single

piece. Figure 27 shows the exploded view of each of the divided pieces of the hull and wings grouped

together into what would form the independent pieces of the craft when fully created and can be easily

assembled and disassembled.
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Figure 25: Use of planes to cut the model into printable sections.

4.3 Electronics Design

Based on our research and criteria for our craft, we produced a list of requirements for our electrical

system:

• Sensors

• Motors and motor controllers

• Power from the tether

• Onboard voltage transformers

• Powerful microcontroller

• Data connection through the tether

4.3.1 Required Systems

The vehicle has subsystems that provide it information and capabilities. Our list for the systems

includes:
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Figure 26: Multi-part assembly of the wing



Figure 27: Combined parts of the hull and wing into separable groups when made

• Power System

• Orientation Sensor

• Pressure Sensor

• Motors

• Motor Controllers

• Servos

Power System From the topside, the tether provided us a 24V signal. None of our components can

run on 24V, so we needed a way to step it down to a more usable voltage. Our motors ran on 12V, so

we decided on using a 24->12V converter. Our motors required 2.5A nominal, 3A max for operation

at 12V, while servos would require 2A stall current at 5V, so we would want at least 10A output. We

eventually settled on a HOMELYLIFE Waterproof 120W converter, which was small enough to fit in our

pressure hull but also had enough current output to power our systems.

The microcontroller, however, runs on 5V. In our first iteration, we decided to use a portable phone
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Figure 28: The HOMELYLIFE Waterproof 120W 24V to 12V Power Converter

charger to power our microcontroller. The main issue with this approach was that the microcontroller

would always be on and drawing power when we sealed the craft, which complicated the testing

procedure and will be discussed in the Results section.

In our second iteration, we decided on a suite of 12V to 5V converters. While we only used one,

as the ailerons were never connected, there is space for up to five converters; one that powers the

microcontroller, two that power the ailerons, and two that would power the rudder and elevator. This

removes the need for the wakeup system described in section 6.1, but also provides power for the

entire craft through only one avenue, which makes the system far simpler.

With our quick disconnect system, found in section 4.3.3, we connect the Ethernet and power

delivery system to a series of 24AWG connectors as the internal ethernet connections are 24AWG.

However, this creates issues with power draw - while the ballasts are drawing power, the pressure

sensor doesn’t have enough power to run. This worked in our first iteration, as we had 20AWG wires

connecting from the Ethernet wires to the power converter. In a future iteration, this could be aleviated

by upgrading the ballast connector to 8 pins rather than 6 pins, and using the extra two to connect

the power part of the PoE system.
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Orientation Sensor A form of orientation sensing is required to keep the craft upright and level. To

implement this, we needed a 9DoF (Degrees of Freedom) sensor, which includes a 3-axis accelerome-

ter, 3-axis gyroscope, and 3-axis magnetometer. We began our implementation with a value analysis -

from prior experience, we knew that the magnetometers found in all-in-one 9DoF sensors were poor,

so our chosen implementation was a 6DoF sensor consisting of an accelerometer and gyroscope,

and then a separate magnetometer. The value analysis can be seen in Figure 7 and 8.

52



Ta
bl

e
7:

Va
lu

e
an

al
ys

is
fo

r6
Do

F
Se

ns
or

s

Se
ns
or

Co
st

Ac
ce
lR

an
ge

Ac
ce
lN

oi
se

An
gu

la
rR

an
ge

An
gu

la
rN

oi
se

Su
pp
ly
Vo

lta
ge

In
te
rf
ac
e

Cu
rre

nt
Co

ns
um

p-

tio
n

Ot
he
rs

ls
m

6d
sm

2.
92

+-
2/

4/
8/

16
g

75
-1

30
ug

/s
qr

t(H
z)

±1
25

/±
25

0/
±5

00
/±

10
00

/±
20

00

dp
s

3.
5

m
dp

s/
sq

rt(
Hz

)
1.

7-
3.

6
I2

C
-U

p
to

40
0k

Hz
45

0-
65

0u
A

Au
x

SP
I,

M
as

te
rI

2C

ic
m

42
68

8p
6.

66
+-

2/
4/

8/
16

g
70

ug
/s

qr
t(H

z)
±1

5.
62

5,
±3

1.
25

,

±6
2.

5,
±1

25
,

±2
50

,

±5
00

,
±1

00
0,

an
d

±2
00

0
de

gr
ee

s/
se

c

2.
8

m
dp

s/
sq

rt(
Hz

)
1.

7-
3.

6
I2

C
-U

p
to

1M
Hz

88
0u

A
DM

P

ic
m

20
64

9
8.

69
+-

4/
8/

16
/3

0
g

28
5

ug
/s

qr
t(H

z)
±5

00
dp

s,
±1

00
0

dp
s,

±2
00

0
dp

s,
an

d

±4
00

0
dp

s

17
.5

m
dp

s/
sq

rt(
Hz

)
1.

7-
3.

6
I2

C
-U

p
to

40
0k

Hz
3.

21
m

A
Au

xi
lia

ry
I2

C,
DM

P

bm
i2

70
6.

01
+-

2/
4/

8/
16

g
16

0
ug

/s
qr

t(H
z)

±1
25

/±
25

0/
±5

00
/±

10
00

/±
20

00

dp
s

7
m

dp
s/

sq
rt(

Hz
)

1.
7-

3.
6

I2
C

-U
p

to
1M

Hz
68

5u
A

@
1.

8V
Au

xi
lia

ry
Se

ns
or

In
-

te
rfa

ce

53



Ta
bl

e
8:

Va
lu

e
An

al
ys

is
fo

rM
ag

ne
to

m
et

er

Se
ns
or

Co
st

Fi
el
d
Ra

ng
e

Fi
el
d
No

is
e

Bi
td

at
a
ou
tp
ut
/s
en
si
tiv

ity
Su

pp
ly
Vo

lta
ge

In
te
rf
ac
e

Cu
rre

nt
Co

ns
um

pt
io
n

m
m

c5
88

3m
a

4.
93

+-
80

0u
T

0.
4-

1.
2m

G
RM

S
16

bi
t,

25
uT

/L
SB

2.
16

-3
.6

I2
C

-U
p

to
40

0k
Hz

12
0u

A

ak
09

94
0

7.
12

+-
12

00
uT

40
-7

0
nT

RM
S

18
bi

t,
10

nT
/L

SB
1.

7-
2

I2
C

-U
p

to
40

0k
Hz

10
0-

20
0u

A

LI
S2

M
DL

1.
77

+-
50

00
uT

3m
G

RM
S

16
bi

t,
15

0u
T/

LS
B

1.
7-

3.
6

I2
C

-U
p

to
40

0k
Hz

20
0u

A

54



From these, we chose to use the LSM6DSM and LIS2MDL together, as they provided fine per-

formance along with being the cheapest of the combinations. From research, we noted that others

tended to use this combination as well. We designed the schematic, and decided to connect the

LIS2MDL to the LSM6DSM’s auxilary I2C connector. This was done so that we could communicate

with both at the same time and not worry about the data being out of sync.

The schematic and PCB were both designed using KiCad. While both sensors run on 3.3V, we

decided that the input should be 5V and to use a 5V to 3.3V LDO to minimize noise and ensure

power stability. When we implement our power supply system, it will be 48V and converted to lower

voltages on board, which we expect to be 12V and 5V. Converting to 3.3V and running those power

lines would’ve been an extra hassle. Furthermore, the LDO has a high PSRR, which means that there

should be very low levels of noise, as these sensors are sensitive to power supply noise. We are using

I2C to communicate with the sensor as it needs fewer wires (easier to route inside the craft) as well

as that it handles longer distances better than SPI. The schematic and PCB can be found in Figure

29 and 30 respectively.
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Figure 30: IMU PCB

Pressure Sensor To determine the absolute depth of water that the craft is submerged in, we

decided to use a pressure sensor. We researched OpenROV’s implementation, and they used the

MS5803 Pressure Sensor. We decided to use the same sensor, as it provides readings of up to 14bar

or 150m. OpenROV claims that they were able to get 1cm of sensitivity, which is perfect for our needs,

as we want to be as close to the ocean floor as possible, and this will allow us to know whether we

are keeping a consistent depth or not.

OpenROV put their IMU and pressure sensor on the same board, however we decided to separate

them. This was due to concerns about the IMU possibly being exposed to water, as well as making

it easier to place on the craft. The MS5803 is placed next to the Ethernet port on the top of the hull,

and potted to avoid water getting on anything but the sensor.

We used I2C to communicate with the pressure sensor, as that is what we were already using with
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the IMU. We also put a 5V to 3.3V LDO on the board for the same reasons as we did with the IMU.

The schematic and PCB can be found in Figure 31 and 32 respectively.

58



59

Fi
gu

re
31

:P
re

ss
ur

e
Se

ns
or

sc
he

m
at

ic



Figure 32: Pressure Sensor PCB

We wrote our own I2C driver for the MS5803. Once the I2C bus is initialized, we need to read

the coefficients from the PROM. There are 6 coefficients in total, and they are calibration coefficients

necessary to compute the temperature and pressure. To get the temperature and pressure values, we

read from the ADC. To start, we send a code comprised of the command (read ADC), the type of com-

mand (temperature or pressure), and the precision. Once that is written, we wait a few milliseconds,

and then tell the MS5803 to move into read mode. From there, we read 24 bits out.

To get the true temperature and pressure values, we need to read both, as the calculations require

on each other. You can find the code in Appendix B.

Motors Ballast motors were selected to fulfill the calculated requirements of 150 oz-in at 270 rpm.

While there are a very wide range of motors available for purchase, it is difficult to identify specific

SKUs since there are few central storefronts. We identified a suitable motor available from Amazon
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with a rated torque of 15 oz-in at 3000rpm, which fits these specifications when paired with an 10:1

gearbox. The motor actually far exceeds these specifications and was able to drive the full load of the

ballast when directly driving the leadscrew (no gearbox) at a 50% duty cycle. This motor operates at

12V, matching our system voltage, with a rated current of 3A under full load. While we never observed

this current consumption, we ensured that our voltage regulator would be able to provide that much

power.

Motor Controllers We needed motor controllers to control the ballast motors, as direct-driving

through the microcontroller would be impossible. We ordered the BTS7960 PWM H-Bridge Motor

Controllers, which are small, simple, and rated for a high enough current. Many off the shelf motor

controllers are available, but most small, cheap controllers are rated for lower voltage and/or lower

power operation. Since the stall current of the ballast motors is approximately 3A, we needed a rating

of at least 36W continuous. With their large heat sink, the BTS7960 motor controllers are theoreti-

cally rated for 43A, and are suitable to driving brushed DC motors between 6V and 27V, so they fit our

application perfectly. They also cost very little, at about $15 for two controllers. In practice, these

controllers will likely not tolerate rated specifications, so we ensured that we would run them with a

large factor of safety.

They work through pulse-width modulation, or PWM. This is when instead of passing a DC signal

to your motor, you run a square wave at varying duty cycles. The higher the duty cycle, the faster the

motor.

On one side, we have the microcontroller connections. This include a 5V and GND connection for

the controller to function, a current sensing output, a left and right enable signal, and a left and right

PWM signal. The other side’s connections are a screw terminal, where there are two battery inputs,

and two motor inputs.

For the system to work, both enable signals must be turned on - that turns on the two BTS7960B

Drivers and allows them to function. The Current Sense outputs are unnecessary to the function of

the device but allow us to see whether there is an overcurrent event.
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Figure 33: The BTS7960 Motor Controller

The two PWM signals work as opposites. If you want to turn the motor counterclockwise, the

right PWM signal needs to be on and the left needs to be off. If you want to turn the motor clockwise,

the left PWM signal needs to be on and the right needs to be off.

We used Timer 2, which provides 3 PWM channels. We used channels 1 and 3, with a prescaler of

15 - which divides our clock by 16. Then, we had our counter at 299 - which gave us a timer running

at 20kHz. Both PWM signals are initially turned off, but both the duty cycle and the direction can be

set through signals sent from the boat.

Our code has four functions - one that shuts off the motors by disabling their enable signals, one

that turns on the motors by enabling the enable signals, ones that stop the motor by turning off their

PWM signal, and one that rotates the motor in a specific direction and by a specific duty cycle. The

code can be found in Appendix C.

Servos The aileron motor was selected to fulfill the 0.66Nm calculated torque requirement and to fit

within small volume constraints. The most advantageous motor packaging is inside the otherwise-

unused space within the wings. To fit within this space, a standard-form-factor servo motor was

selected. The highest-torque option available common off the shelf was the Gobilda 2000-0025-0002

”Dual-Mode Torque” servo with a torque rating of 2.12Nm at 5V. This far exceeds the aileron torque

requirement, and allows us to reuse the same small servo motors, with linkage, for the tail elevator
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and rudder. Additionally, the integrated absolute position feedback allows us to reduce overall part

count and software complexity by utilizing the servo’s hardware control loop.

Servos are simpler to control in comparison to the motor controllers. For power, they can handle

anywhere from 4.8V to 7.4V. We selected an operating voltage of 5V so we could reuse the same

12V->5V voltage regulators used to power the other system electronics.

Its third connection is a PWM signal that tells it what position to go to. This PWM signal works

off of signal timing rather than duty cycle, so a 500µs pulse puts the servo at its minimum position,

while a 2500µs pulse puts the servo at its maximum position, which is around 300 degrees.

To implement this, we provided a 50Hz PWM signal, which was created by using a prescaler of

959 and a counter period of 2000. To tell the servo to go to its minimum position, we give it a PWM

pulse of 50 - which corresponds to a 500µs pulse. Its maximum position is at 250, which corresponds

to a 2500µs pulse. This maps 300 degrees of travel to 200 values, which is enough precision for our

application.

4.3.2 Connectivity

To connect our vehicle to the boat, we need both a physical link and a data link. The physical link

came in the form of a tether, as discussed in section 4.1.1. For the data link, we considered two

options - we could use the UART (Serial), or Ethernet convention. UART is easy to use but has a low

data rate, while Ethernet is much more complicated to implement but is high data rate and ubiquitous.

We decided to use Ethernet, as its high throughput provides enough overhead for us to put as many

sensors on the craft as possible and still be able to send all the data to our operators console. It also

would allow the end-user to plug in the robot and set it up with little to no issue, as most computers

have an ethernet port.

From here, we had to decide how we wanted to wire up the tether. We very quickly decided on

a standard ethernet cable, as they are cheap, ubiquitous, and would already fit into most peoples

computers. This would also allow us to use Power over Ethernet - a power delivery method where we

send power down the unused wire pairs in the ethernet cable for use on the robot.
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To connect the tether internally and externally, we relied on Power Over Ethernet (PoE) splitters.

These are components designed to either combine or split Ethernet and power. On the topside, we

used a splitter to connect our batteries and laptop, and on the craft side we used a splitter to connect

the Ethernet to the microcontroller and the power to the converter without having to manually break

out the wires into power and ethernet.

Power over Ethernet Power over Ethernet comes in two types: active or passive. Active PoE de-

termines necessary voltage that the ethernet cable needs to supply, and requests it. Passive PoE

means that the voltage down the cable is constant, even if the device connected to it needs a dif-

ferent amount than the supply. Active is safer, as it ensures that there will be no over-voltage event,

but requires a lot more space compared to passive. We decided to use passive PoE on our robot, as

we are designing the hardware ourselves. Active PoE requires additional hardware and design space

and increases overall system complexity. With passive, we are free to design our own power delivery

system that takes in the provided voltage and steps down to the voltages that we require, with no

software negotiation required.

4.3.3 Quick Disconnect System

After our first test, we found out that passing wires through the pressure hull endcaps without per-

manent sealing results in leakage, no matter how well-sealed it looks. If we were to permanently seal

the wires, however, we could never remove the electronics from the pressure hull. To work around

this issue, we designed a quick-disconnect system (QDS) for the electronics bay. The block diagram

can be seen in Figure 34.

We used two connectors for the QDS. The ballast connector used 18-AWG wires, so we used

6-pin Mini-Fit Jr 5557 connectors, which are better known for being the connectors used in 6-pin

ATX connectors in computers. We chose them as Jeffrey had experience crimping them, they could

handle 18AWG wires, and they had locking mechanisms. The second connectors chosen were for

the PoE system, pressure sensor, and ailerons, and were meant to handle 24AWG wires. We chose

64



JST-PA 6-pin connectors, as they could handle the wire gauge we were using, as well as lock into

place. However, we were unable to crimp them properly, and ended up buying XINGYHENG Female-

Male Connection Plugs, which were pre-crimped 24AWG connectors, and while they did not lock like

the Mini-Fit connectors, they were sturdy enough for our purposes.

Figure 34: Illustrated quick disconnect system

Figure 35 shows an initial test of the quick-disconnect system. On one end is the ballast, and on

the other end is the motor controller, limit switches, and enable switches. The motor worked through

this connection, which meant that we proceeded to implement the QDS into both endcaps.

This solved multiple issues. In our first iteration, we designed the system to be fully modular.

However, due to everything being soldered to the microcontroller, it was one bulky unit, which made

it hard to do maintenance on any one part. Furthermore, we are able to seal the wires of the QDS

into the endcaps using epoxy, which meant that there was no possibility for leakage. We could still
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Figure 35: Initial test of quick-disconnect system.

remove the endcaps, as we can just disconnect the system on either side to separate the parts. ‘

There were still issues with the implementation, however. The wires that of the ballast connectors

inside of the endcap were stranded, but also 18AWG, so they were tough to maneuver. Furthermore,

the connectors themselves were also quite rigid, so it was tough to squeeze them in. We were able to

put the connectors to the sides of the motor controllers and the 24AWG connectors for the Ethernet,

pressure sensor, and ailerons were able to fit under the board.

Figure 36 shows the final implementation of the quick-disconnect system. On the left is the rear

endcap, which holds a ballast connector and two aileron connectors. On the right, the front endcap

can be seen with numbered connectors for the Ethernet and Pressure Sensor. This is because the

XINGYHENG connectors came in sets of three, and since we needed 10 wires for the front endcap,

we had to use four connectors which all looked identical, so we needed a way to distinguish between

them. Connector 1 was the pressure sensor SDA, SCL, and GND. Connector 2 was pressure sensor

VDD. Connector 3 was the Ethernet’s red, black, and white connectors. Finally, connector 4 was the
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Ethernet’s green connector, as well as the Power over Ethernet VDD and GND.

Figure 36: Quick disconnect system installed into the pressure hull

4.3.4 Computing Hardware

Our robot needs to be able to make decisions very quickly, as well as at a predictable speed. To do

this, we needed a microcontroller with enough processing power to handle our sensors and to be able

to run a real-time operating system (RTOS), which is a highly deterministic operating system capable

of running very tight timing restraints for systems that need to be predictable, like ours. To choose a

microcontroller, we came up with a list of what we valued in a microcontroller.

• Cost

• Speed

• Onboard RAM

• IO pins

• Communication methods (Ethernet is a must)

From these, we looked at what kind of microcontrollers others had used in the past, and created a

comparison chart between our choices. Many of the options we looked at are STM32 based, as there

are a wide variety of STM32 microcontrollers that would suit our needs.
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From the list in Table 9, we narrowed our choices down to the Renesas R7FA, and the STM32F746.

Eventually, we decided that the STM32F746 was our best fit - while the R7FA was far cheaper and

provided more RAM, the F746 had a far better processor for a slightly higher price that would not

amount to much if we produced boards in a small enough quantity. For our initial prototypes, we

decided to use a development board as we felt our time, at this stage of the project, would be bet-

ter spent working with a development board than attempting to design and produce a custom PCB.

The most well-known brand of STM32 development boards come from Nucleo, and only cost around

$25 no matter what microcontroller we ended up choosing. Due to this, we decided to go with the

STM32F767, which had more RAM and flash than the F746. This would provide more processing

headroom with only a small cost increase.

While working on the project, we learned that the STM32F767 drivers had many issues, and while

the processor is great on paper, has many issues during implementation. We do not recommend

continuing work with this processor, but instead moving to a different one. The F746 is a good option,

and does not seem to have the same driver related problems.

4.4 Software Architecture

The software for this project is divided into two main parts: The Operator Console and the Robot

Control System. Within each of the parts are specific components, which address a specific challenge

associated with that part of the system.

The Operator Console is the software application which coordinates the functionality of the en-

tire system. This application runs on a computer located upon the vessel towing the tethered sub-

mersible. The application is responsible for taking in raw data from the robot, the environment, and

the internet, and crafting helpful visualizations to allow a human operator to easily understand the

environment around the robot, and provide instructions to the robot.

The Data Management component of the Operator Console is responsible for aggregation, vi-

sualization, and general management of all data sent between the craft and the operator console.

Included in the process of Data Management is the creation of logs.
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The Command Interface component of the Operator Console is responsible for providing the user

of the Operator Console to control the actions of the craft with an intuitive interface.

The Robot Control System is the software that coordinates the different functional elements of

the robot in operation. The Robot Control System oversees the robot’s responses to stimuli, receives

and processes commands from the Operator Console, and packages recorded data for transmission.

The control system abstracts the low-level commands to actuators so that the human operator does

not have to pay attention to the details of the robot’s physical operation over time.

The Craft Control component of the Robot Control System is responsible for translating com-

mands sent to craft into actions, including actuation of motors.

The Communications component of the Software interacts with both the Robot Control System

and the Operator console, and is responsible for transmitting and receiving messages for both sys-

tems. This software component provides the foundation for the correct implementation of all of the

other Software components.

4.4.1 Components of the Operator Console

The Operator Console software application includes three of the four primary components of the

software system of the project.

• Communications

• Data Management

• Command Interface

In addition to these components, the Operator Console includes the Graphical User Interface

which supports multiple components.

Communications The communications component consists of a UDP Client/ Server setup between

the Operator Console and the Craft, implemented with the simple and ubiquitous network socket
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Figure 37: High Level Software Diagram



architecture. The server and client are configured with Static IP addresses and connected in a peer-to-

peer network. The Operator Console application acts as the server, while the craft’s control software

acts as the client. The craft streams data to the Operator console, while the Operator console sends

control instructions to the craft.

Graphical User Interface The Graphical User Interface (GUI) is the main part of the application with

which the human operator directly interacts. The GUI consists of various text and images which

allows the operator to visualize the robot’s telemetry and sensor data. The GUI also includes input

to allow the operator to send commands to the submersible via the tether. The GUI interacts heavily

with Data Management and Command Interface components.

Data Management The data management part of the application consists of both Data aggregation

and Visualization pieces. Data aggregation is performed by identifying and converting sensor data

streamed from the submersible into usable information for display. This more useful data is then

used for visualizing the data for the operator.

Command Interface The Command Interface is the component of the software which processes

a user’s commands and ensures that the corresponding message is handed to the Communications

component.

4.4.2 Components of the Robot Control System

The Robot Control System includes two parts:

• Craft Control

• Communications

Craft Control The Craft Control component of the software interprets commands coming from the

Communications component, and translates them into real-world actions, such as movement of the
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control surfaces or entering sleep mode.

4.4.3 Process

Establishing Connectivity To start development, we first addressed the need for basic Craft Control

software, in order to prevent the development and testing of electronic and mechanical aspects of

the project from having to wait on software development. Initially, we attempted to use a Real-Time

Operating System (RTOS) as the supporting software for the robotic craft’s control software. There

are many different kinds of RTOS, but we chose FreeRTOS for its popularity, and therefore support,

and open-source nature. We also were not sure of all the specific requirements of the software as

the craft was actively being developed, and therefore opted for a general-purpose, mainstream RTOS

for ease of development.

From there, we needed an Ethernet driver for FreeRTOS. We narrowed our choices down to the

Lightweight Internet Protocol (LwIP) and FreeRTOS’s proprietary TCP/IP stack. FreeRTOS documenta-

tion provided a step-by-step setup for their proprietary stack, so we decided to use that. Unfortunately

FreeRTOS was not compatible with the hardware platform we used, due to a conflict of drivers, so we

used LwIP instead without FreeRTOS.

Successfully using LwIP to connect the craft’s microcontroller to the server proved difficult. After

much troubleshooting, we found that we needed to use a static IP configuration on a peer-to-peer

(P2P) network in order for the two devices to recognize each other.

Once we established that the two devices could network together, we set up a simple UDP server

and client configuration to pass messages back-and-forth across the network. This was accom-

plished using the software resources provided by the manufacturer of our microcontroller, and a

basic Python sockets application. With UDP configuration and P2P networking configured, we were

finally able to send and receive messages across the network. We used this capability in a simple

python application to create a real time graph, that updated as data was sent to the computer from

the craft’s microcontroller.
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Handling Multiple Simultaneous Tasks Once reliable connectivity between the client and server

was established, we moved toward implementing basic information exchange between the two de-

vices. The major challenge of this goal was to process incoming data for each device, take the

appropriate action, and handle other tasks simultaneously. For the server, we had to design the ca-

pability to receive many messages in a very short period of time, due to rapid data output from the

microcontroller. Based on the contents of the message, different actions would be performed, such

as visualization, calculation, or logging. The server also had to run the Graphical User Interface and

handle user input.

The way we handled this was through multithreading. Each logical task performed by the Op-

erator’s Console is separated into its own distinct thread, which runs independently of the others.

This allows us to maximize the concurrency of the system and ultimately accomplish more tasks in

a smaller amount of time. The threads exchange information through Python’s queue module, which

allows for thread-safe storage and retrieval of arbitrary information. Each software component of

the Operator’s Console has its own dedicated thread. These are the UDP Server (Communications)

thread, Logging (Data Management) thread, and Command thread. The Graphical User Interface is

run inside of the main process and therefore does not have its own separate thread.

The onboard software for the craft uses a slightly different approach to handling many tasks.

Instead of using multithreading, the craft software uses a polling system. The software reads sensors

and checks for incoming messages many times a second. If data is detected, it is immediately

processed. For sensor data, this means it is sent to the server. For an incoming message, this means

that the message content is immediately read and an action determined.This method prevents data

from becoming stale by immediately acting on data as it received. Since each operation is so quick to

complete, there is no noticeable disadvantage to not doing multiple concurrent threads in this case.
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5 System Integration

During the second half of our project, we gradually transitioned our efforts to integration of mechan-

ical and electrical components to achieve a fully functional prototype that could be tested in water.

In preparation of our first major test, where we aimed to seal and submerge the entire craft with the

minimum electronics needed to communicate and control the ballasts, we broke up our process into

a series of assembly, integration, and testing tasks, which is shown in the flowchart in Figure 38.

During the integration process, we encountered several difficulties that we failed to address prior

in the design of each subsystem. The major problems that we needed to resolve during the integration

phase prior to our first full test are summarized as follows.

5.1 Bypasses and Modularity

Although one of the initial design goals for our craft was to maximize modularity by designing sub-

systems to be independent and separable from each other, which we had to a degree succeeded in,

we failed to account for the ability for each subsystem to be actually disconnected from each other

in our design even though the physical subsystems were separate from each other. For example,

although the ballasts and the pressure hull were independent physical entities, the wiring that con-

nected the motor and the limit switches were originally planned to simply bypass through the endcaps

of the pressure hull. With this design, we essentially nullified the benefits of the modularity, since

they could not be detached from each other and thus the internal components of the pressure hull

had to be inserted permanently and as a result made the integration and testing process awkward to

work with as a whole.

5.2 Insufficient Tolerances for Assembly

Another major setback during the integration process was the poor incorporation of proper tolerances

in the hull, which was made worse when compounded by the amount of warping and imperfections
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Figure 38: Flow chart highlighting key stages in the integration and testing process



that arose when 3D-printing the hull components. Although the initial test assembly of the hull com-

ponents by themselves showed no apparent problem, we found that once the XTC-3D epoxy was

coated onto the parts, the additional layer as well as increased stiffness in the parts made it ex-

tremely difficult for the upper and lower halves of the hull to fit together; this was due to the tight

fit in the design of the interface between the upper and lower halves of the hull, and as a result the

epoxy after coating acted as a filler and therefore prevented the parts of the hull from fitting together

properly.

5.3 Space Constraints in Hull and Pressure Hull

The issue with unaccounted tolerances was worsened by unexpected space constraints internal to

the craft, which were only made apparent after we had embedded the electrical components such as

the pressure sensor and Ethernet jack and tried to assemble the hull with the all of the subsystem

components placed inside. Specifically, the internal cavity of the hull left for the pressure hull was

designed to be exactly the same diameter as the pressure hull at 3.5”. This design decision was

made in the hopes of decreasing the amount of free space internal to the craft as much as possible

so that we could reduce the amount of additional weights needed to calibrate the buoyancy of the

craft. However, by doing so, we failed to account the need to route wires alongside the pressure hull,

since the wires for the pressure sensor and Ethernet intruded the hull directly above the pressure hull,

thus needing to route them so that they could enter the pressure hull through one of the endcaps. This

problem, along with the aforementioned lack of tolerances, resulted in the laborious manual removal

of hull material so that the hull could actually be assembled for our first full test, and eventually a

reprint of the upper half of the hull with these issues accounted for.

Additionally, we were also met with another major obstacle involving space constraints and in-

tegration, which was the lack of space that was required for the control linkages of the rudder and

elevator. Because motor selection for the ballast and design of the control surfaces came later on in

the project after design of the fuselage was complete, we had found out too late that the size of the

motors and their respective linkages needed to meet the requirements of the ballast and rear control
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surfaces were larger than what we could afford in the space leftover after the pressure hull and bal-

lasts. This issue was temporarily resolved through the use of a hull extension, and we expect that

this problem would naturally resolve itself once our prototype could be scaled up to the size that we

originally had in mind, as the space allocated to the electronics would increase at a lesser magnitude

compared to the hull.

Figure 39: First iteration Pressure Hull with electronics inside

6 Results

6.1 Subsystem and Integration Testing

In order to build up to a full system test where we could deploy the entire craft in its sealed state

underwater, we conducted a series of rigorous tests throughout the integration and assembly of the

craft in order to ensure that each subsystem would work with each other and that we could build up

to the full test in stages rather than all at once. By doing so, we were able to detect, troubleshoot,
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and resolves issues more thoroughly as well as ensure reliability of subsystems through the repeated

tests administered each time we moved forward with a stage of integration.

Pressure Hull Waterproof Testing In order to test the pressure hull, the entire assembly was con-

structed and submerged in a bathtub of water with a depth of approximately 9” for close to 24 hours.

The assembled pressure hull and testing environment are shown in Figure 40.

Figure 40: Pressure hull submersion test

After the 24 hour period of submersion, no leaks were observed with the inside of the tube main-

taining complete dryness. However, there are a couple notes to point out about the test: first, while

the pressure hull was able to successfully achieve a sealed state in this test, being submerged in

only 9” of water means that the results of this test can’t ensure that the same watertightness can be

achieved when submerged in several feet of water due to the greatly increased amount of water pres-

sure on either end caps; and second, the printed end caps were not coated with the XTC-3D epoxy for

this round of testing, which indicates that the concern for water leakage through a printed part was

potentially overestimated in design. However, this can only be verified after future testing at greater
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depths.

Wakeup System In our first iteration of the craft, we used a portable phone charger to power the

microcontroller and sensors. This meant that, when we sealed the craft, the system would be on until

we unsealed and unplugged the microcontroller, or the battery ran out of power. To work around this,

we came up with the Wakeup System.

The STM32F767 comes with many low-power modes, one of which is called Standby. In standby

mode, all peripherals are turned off and the SRAM and registers are wiped. This has the benefit of

extremely low power consumption, where at absolute worst conditions, it would draw around 68 µA

of current. Our battery was rated at 5000 mA h, which meant it would take years for it to drain in

standby. The downside was we would have to wake up the craft every time we plugged it in, and the

only way to do that was using the Real-Time Clock and giving it a date & time to provide an interrupt,

or giving a signal on one of 5 dedicated wakeup pins.

We chose to do the wakeup pin route, and connected a voltage divider to pin PC13, where one

end was connected to the 12V line and the other was connected to ground. When we connected the

24V on topside, the divider would create a 4V signal to wake up the craft. The voltage divider was

constructed using a 1 MΩ and 510 kΩ resistor. We ran into issues where it would only intermittently

work, and discovered that the Nucleo has built-in 220 kΩ pull-down resistors. When we changed to

a 300 kΩ and 510 kΩ resistor setup instead, it worked. If we told it to go into standby while power

was still connected, however, it would wake up immediately. If we put it into standby again, it would

be unable to wake up. However, if we disconnected power before putting it into standby, it would be

able to wake up and sleep as many times as necessary.

In our second iteration, we replaced the phone battery with 12V to 5V power converters, so the

wakeup system was discarded.

Semi-Submersion Testing Prior to our full system submersion test after the complete assembly

and sealing of the craft, we conducted a semi-submersion test by submerging half of the assembled
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craft in a bathtub and testing to make sure that the internal electromechanical subsystems of the

craft, including the ballasts, pressure sensor, and internal pressure hull electronics, would all work as

expected in simulated conditions where the craft would encounter water. Specifically, we made sure

that both of the ballasts would be able to draw water externally through the tubing passed through

the bottom of the hull, wakeup and power delivery over the ethernet was working correctly, and data

could be successfully read and sent back to the operator’s console from the pressure sensor after

wakeup. This stage in the integration process was vital to the success of our first full system test of

the craft as it served as the final checkpoint before sealing the entire craft, which in essence meant

that no further adjustments could be made internally until after the full system test as doing so would

break the seal. Figure 41 captures a moment during the semi-submersion test.

Figure 41: Bathtub testing of the craft for the semi-submersion test

81



6.2 Software Results

Onboard Controls The onboard control software allows us to have fine-tuned control over the ballast

and hydrodynamic control surfaces of the craft. This is important for controlling the motion and

maintaining stability during operation. The operator interacts with GUI and Command Interface to

send instructions to the robot, which processes the instruction messages to perform a real world

action, such as changing the fill level of one or both ballast tanks, or changing the angle of one of the

hydrodynamic control surfaces.

Operator Console The Operator’s console allows the user to view the incoming messages from the

craft, and includes the Control Interface which allows the user to send commands to the craft.
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6.3 Full System First Dive

On April 8th, we conducted what we consider to be the very first full system integrated test, where all

integration of electrical and mechanical components up until this point was deemed ready to be fully

sealed in the hull and deployed in waters beyond the bathtub.

6.3.1 Testing Procedure

We began preparations on April 7th. Our first step was to seal the craft, where we started by sealing

the pressure hull, and because this was our first iteration, we put the craft into standby mode. We

used hot glue to seal the wires that were entering and leaving the endcaps in case the craft leaked.

Figure 43: The craft just before final checks and sealing

Then, we sealed the craft itself. We put silicone in the connections between the hull and the

craft, and then attempted to put the two sections together. This proved to be quite difficult, as the

two sections were unable to fit perfectly with the ballasts, leaving gaps in between the two halves as

well as in the nosecone and tailcone. We applied a liberal amount of hot glue and silicone to remedy

this. Because of the gaps in the craft, we were unable to screw the end-cones in, so we had to duct

tape them on to make sure they wouldn’t be torn off.

We also put together a checklist of materials to bring with us to the pool. This checklist included:

• Tether with Ethernet Cable

• Topside PoE splitter
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Figure 44: Letting the silicone rest for 24 hours before the first test

Figure 45: The craft just before we went to the pool for the first time

• 2 12V Batteries

• 3 sets of alligator clips

• Phone Camera

• The craft itself

• Laptop with control software

• Emergency Duct Tape

• Weights

• Cardboard to put everything on top of

To make sure the tether was both waterproof and unable to come out of the jack, we used hot

glue and duct tape. On our way to the pool, the tether popped out and keeping it in was a challenge.

When we got to the pool, we set up the craft and woke it up. After setting up all of the topside

infrastructure, namely power from the batteries and communication with the laptop, we did a final

check to ensure that the internal electronics were still responsive and working as expected. Once the

condition of the craft was ascertained, we lowered the craft into the pool and floated as expected.

To begin, we tested the ballasts and made sure that the craft could take in and expel water from both

ballasts.

85



Once we determined that the ballasts were functional, we moved onto conducting a preliminary

attempt to calibrate the ballasts, where we attached one of the weights to the craft using a plastic

bag and rope. The importance of calibrating the ballasts is due to the default positive buoyancy of

the craft since we did not fill in the empty space inside the craft; in order for the ballasts to function

properly, we require the craft to be neutrally buoyant when the ballasts are filled to half capacity.

At full capacity, the additional water taken in by the ballast would cause the craft to be negatively

buoyant and thus sinking the craft, and vice versa, when the ballasts are emptied, the craft should be

positively buoyant again and allow it to surface on its own. Thus, we needed to determine the amount

additional weight we would need in order for the craft to be neutrally buoyant when the ballasts were

filled to half capacity.

During testing, we encountered multiple issues that we were unable to properly resolve in the

span of the allotted testing time. First, we were unable to secure the tether such that the Ethernet

would remain plugged in and watertight, which resulted in the Ethernet port being filled with water.

To remedy this, we tried to cover the port by using three layers of duct tape on it, yet we suspect that

this was not enough to fully prevent water from entering. Second, when we sunk the craft, we found

that at full ballast, 9.2lb of weights were enough to sink it. However, we were unable to test with any

more granular than the single weight of 9.2lbs.

6.3.2 Testing Results

Upon returning, we attempted to connect the craft to the laptop to empty the ballasts and put it in

standby mode. We were unable to get an Ethernet connection, which was a big red flag.

When we removed the external silicone and the end-cones, water flowed from the craft, showing

that we were unable to seal it properly, but this was not unexpected. When we went to pry it open,

however, the top half of the craft broke. It broke in half at the Ethernet area.

Opening the pressure hull, we noticed it was slightly damp and the power brick was off. When

we plugged it in, the brick was completely discharged, which was not good considering it was fully

charged the day before. When we plugged in the microcontroller to our laptop, we noted that the
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Figure 46: The TSS floating in the water for the first time

Figure 47: Upon opening the craft, the top broke in two.



Ethernet port was only lighting up intermittently and that the laptop did not recognize the board.

We determined that water had leaked into the pressure hull through the hot-glue sealant as well as

possibly leaked into the Ethernet port during the submersion test. We tested the power converter,

which seemed to still work. We did not test the motor controllers, but decided to use new ones

anyway.

Planning for the next iteration began almost immediately. We decided to reprint the craft, thinning

it out such that it would be able to fit everything inside. We also got to work redesigning the electrical

system.

In the new electrical system, we used stranded wire rather than solid core. Our first iteration used

only solid core, which led to many wires breaking due to the strain that they were under, whereas

stranded is far more malleable and will not break when we bend it.

We also decided to design the system with a series of quick-disconnects - on the outside of the

craft, we can connect the ballasts, Ethernet, pressure sensors, and ailerons to connectors, and do

the same on the interior of the craft. That way, we are able to remove the ballasts, endcaps, and

electronics without having to keep everything in close proximity. This is explained in more detail in

section 4.3.3.

6.4 Full System Second Dive

On May 6th, we conducted our second and final full system integrated test. After the first full system

test, we determined that it was not essential to deploy the craft in the pool as it would fit in the bathtub

without the wings.

6.4.1 Testing Procedure

The preparations for this test were similar to the preparations we made in the previous full dive test.

Our goals for this test were to demonstrate buoyancy control of the craft through filling and emptying

of the ballast. The tolerances and fit between components of the hull were improved in this iteration
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of the craft, meaning that we did not have any large gaps in the interfaces between parts that needed

to be filled with hot glue; we sealed the craft fully with silicone and screwed the nosecones in rather

than using duct tape to fasten together the hull. The craft post-sealing can be found in Figure 48.

There were multiple improvements beyond the QDS (discussed in Section 4.3.3) - we redesigned

the tether attachment point to go into the hull itself and sealed the outside of the tether, as well

as powered the MCU through the tether rather than a portable charger. We also redesigned the top

part of the hull to have more internal space for the ballasts and pressure hull, and we improved the

tolerances between the top and bottom halves of the hull to reduce gaps.

Figure 48: The craft post-sealing

We decided to test in the bathtub as we were only focused on testing the craft’s ability to inde-

pendently control its buoyancy and calibrating the in-water weight of the craft to be neutrally buoyant

when the ballasts are at half capacity. Thus, the bathtub provided a deep and wide enough area for

the test to take place since we did not have to deal with the full wingspan of the craft. We also did

not know how long our tests would take, and we would have had a 45 minute time limit in the pool,

undercutting the full hour that we needed to complete our test.

We lowered the craft into the bathtub and made sure that the ballasts worked, then sank it manu-

ally to test leakage. Right away, we noticed bubbles in the unused grooves of the nosecone allotted

for the screws. Since we deemed it only necessary to screw in half of the fastening screws between

the nosecone and the middle parts of the hull, the remaining holes were left empty. Therefore, al-

though the area between the nosecone and the hull was sealed, the leftover holes were inadequately

sealed and thus allowed for minor flooding of the craft during submersion.
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Figure 49: The TSS floating in the bathtub

We also found that the front ballast failed to fill fully, the reason for which we were unable to

diagnose during testing. The back ballast also had problems during emptying - it could fill, but it

would stop after a second during emptying, and a second command had to be issued for it to continue

emptying.

To weigh down the craft, we put together a rig that could hold two bags of ball bearings, which

can be seen in Figure 50. This held two bags of ball bearings that we could adjust the offset weight

needed to calibrate the buoyancy of the craft to be neutrally buoyant and allow the ballasts to change

the craft to be either positive and negative buoyancy.

6.4.2 Testing Results

We were able to get the craft to sink a few inches underwater on its own power, using approximately

8.2lb of ball bearings divided equally between the two sides of the rig. We could not sink it further

due to the flooding in the hull as well as failure of the intake cap for the rear ballast. Due to the failed

ballasts, the weight required to sink the TSS has a margin of error of around +/-1.7lb, which is the

total weight of water that the ballasts can intake.

While the leak in the nosecone was the most obvious, we also noticed some leaks at the tether

attachment point as well as the tail-cone. Upon unscrewing all 3 of them, water began to flow out,

leading us to believe that there were sealing issues in the interfaces different parts of the hull.
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Figure 50: The TSS with the ball-bearing rig

Upon disassembling the craft, the hull once again fractured at the lower-mid aft section, as seen

in Figure 51. To fix this problem, the craft needs to be redesigned with internal waterproofing such

that it doesn’t need internal silicone, thus making it easier to pull apart. Additionally, the hull com-

ponents could be further reinforced, as the XTC-3D epoxy provided only a surface finish and the hull

components by themselves inherently are weakened by 3D-printing faults and the 50% infill they were

printed at.

We also found that water had leaked into the pressure hull. We had done a test where we filled

up the pressure hull with water, sealed it, and let it sit for a few hours, which did not exhibit signs

of leakage. However, we did not do a full-submersion test as we had done in our first iteration of

the pressure hull. Luckily, the entry of water into the pressure hull did not noticeably damage the

electronics, as the pressure hull stayed upright throughout the test and all the water congregated at

the bottom away from the rest of the electronics. We suspect that the leakage was due to inadequate

sealing at the endcaps for the QDS, and in the future, a full-submersion test of the pressure hull needs

to be performed and the waterproofing needs to be fixed accordingly.
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Figure 51: The TSS after its second test

Figure 52: A few millimeters of water leaked into the pressure hull.



Upon inspection of the rear ballast, we found that the fitting on the front end cap had actually

separated the top layer of the part, resulting a hole that water could escape from as shown in Fig-

ure 53. This is what caused the rear ballast to fail us at the end of the test. To fix this issue, the

endcap should be reinforced with epoxy and printed at a higher infill percentage beyond the 20%,

ideally greater than 50%, to make sure it is structurally sound.

Figure 53: The broken front endcap on the rear ballast

7 Conclusions

7.1 Summary of Goals

• Can control and maintain depth setpoint down to 20 meters depth

• Is controllable and operable underwater.

• Waterproofing is sufficient to ensure no uncontrolled leakage at 2 meters depth
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• Environmental sensing capability including depth and inertial measurements

• Basic control software including actuation of control surfaces

• Depth modulation using a ballast tank

We partially met two of the critical mission goals: depth modulation using ballast tanks and oper-

able underwater. We could somewhat control depth, but due to leakage and insufficient calibration,

we could not control the depth fully. We were almost able to waterproof the entire craft, but due to

small oversights with the nosecone and tail-cone, we were unable to fully waterproof the craft. We did

not include environmental sensing capabilities, and our control software was limited to the ballasts

as the control surfaces were not finished in time for the end of the project.

7.2 Future Work

Hull Design A major improvement to the project would be a more rigorous airfoil design and ex-

panded hull volume to accommodate a larger pressure hull and more electronics. More expansive

hydrodynamic simulation would be useful for increasing performance. A continuation project could

first directly scale up the existing design.

Control Systems While control surfaces and system dynamics were partially modeled, a full sys-

tem model was never developed. Additional control code is necessary to operate and maneuver the

system effectively.

Custom Electronics Off the shelf electronics accelerated development time but also consumed

much of our constrained pressure hull space. Custom hardware for voltage regulation and perhaps

a simple motor controller would be useful to reduce electronics volume and increase performance.

Sensors More sensing capabilities should be added to increase overall capabilities. To accomplish

the navigation tasks, we propose a scanning sonar sensor, additional IMU capabilities, internal sens-
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ing to monitor pressure hull moisture and temperature, and better position sensing for the ballast

plungers.

Live Location Mapping A live location display over a map of the current surrounding area would

allow an operator not only to have awareness and visualization of the subsurface conditions sur-

rounding the craft, but also for the surface surrounding the towing vessel. This interface would work

similarly to mobile Map software, and could use geofencing concepts to inform the operator about

important weather conditions, national borders, restricted areas, and sites of scientific or historic

interest. One software suite we identified that could help with this goal is called OpenCPN, and is

used by many mariners to help with navigation.

Figure 54: Screen Capture from OpenCPN’s Mobile App

Object Detection with Sonar Incorporating a sonar transducer would allow our robot to detect ob-

jects its vicinity. Combining sonar with specialized software incorporated into the Operator’s Con-

sole, we could include a basic object detection and seafloor mapping functionality. This would give

more insight to the operator about the local subsurface physical conditions surrounding the craft,

and would prove useful in the search for objects or sites of value.
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Flooding the Craft An idea that came up very early in the design of the craft was allowing the hull

itself to flood, and making sure that the internal components were perfectly waterproof. We decided

to focus on external waterproofing, which turned out to be far harder than anticipated. If a future

team decides to flood the hull, the ballast needs to be reworked such that it is fully watertight on both

ends, and the motor needs to be properly waterproofed.

Redesign of Operators Console During the integration process, we determined that the Operator

Console performance was inadequate for a user’s needs. The console struggles to handle incoming

data at high rates. When the TSS Control Software provided rapid data output, it caused freezing and

crashing in the Operator Console, leading to a frustrating testing process. A future extension of this

project could focus on improving the performance and user experience of the Operator Console in

order to ensure a smooth experience and effective command capability.

An additional improvement for the Operator Console is to increase the readability of the incoming

data. The current operator console only displays the messages from the TSS Control Software in

raw format. This is useful for debugging purposes, but unhelpful for functional operation. A better

data visualization component that uses charts, graphs, or other standard data visualization methods

would benefit the Operator Console in terms of readability, ease-of-use, and overall aesthetics. This

could potentially be achieved using a standard python data visualization library, such as Matplotlib.

Furthermore, implementing such data visualization of sensor data in real time would doubly enhance

the utility that the Operator Console provides a user.
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Appendix

A Craft Mechanical Properties

The following image shows the mechanical properties of the craft assembly generated using Solid-

work’s Mass Properties tool, and provides information regarding the approximately mass, volume,

and center of mass coordinates for the craft as a whole, including the pressure hull, ballasts, and

control surfaces.

Figure 55: Mass properties of entire craft assembly generated by Solidworks
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B Pressure Sensor Code
� �

1 / *
2 * ms5803 . c

3 *
4 * C r e a t e d on : F eb 2 2 , 2021

5 * A u t h o r : R a v i K i r s c h n e r

6 * /

8 # i n c l u d e ” ms5803 . h ”

10 / * *
11 * @ b r i e f R e a d s f r o m MS5803

12 * @param h a n d l e The I 2 C h a n d l e b e i n g u s e d

13 * @param b u f p The b u f f e r t o be r e a d i n t o

14 * @param l e n The l e n g t h o f t h e b u f f e r i n 8 − b i t i n c r e m e n t s

15 * @ r e t v a l HAL S t a t u s

16 * /

17 H A L _ S t a t u s T y p e D e f MS5803_read ( vo i d * h a n d l e , u i n t 8 _ t * b u f p , u i n t 1 6 _ t l e n ) {

18 r e t u r n H A L _ I 2 C _ M a s t e r _ R e c e i v e ( h a n d l e , MS5803_ADDR , b u f p , l e n , 1 0 0 0 ) ;

19 }

21 / * *
22 * @ b r i e f W r i t e s t o MS5803

23 * @param h a n d l e The I 2 C h a n d l e b e i n g u s e d

24 * @param b u f p The b u f f e r t o r e a d f r o m

25 * @param l e n The l e n g t h o f t h e b u f f e r i n 8 − b i t i n c r e m e n t s

26 * @ r e t v a l HAL S t a t u s

27 * /

28 H A L _ S t a t u s T y p e D e f M S 5 8 0 3 _ w r i t e ( vo i d * h a n d l e , u i n t 8 _ t * b u f p , u i n t 1 6 _ t l e n ) {

29 r e t u r n H A L _ I 2 C _ M a s t e r _ T r a n s m i t ( h a n d l e , MS5803_ADDR , b u f p , l e n , 1 0 0 0 ) ;

30 }
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32 / * *
33 * @ b r i e f R e s e t s t h e MS5803

34 * @param h a n d l e The I 2 C H a n d l e b e i n g u s e d

35 * @ r e t v a l HAL S t a t u s

36 * /

37 H A L _ S t a t u s T y p e D e f M S 5 8 0 3 _ r e s e t ( vo i d * h a n d l e ) {

38 u i n t 8 _ t b u f [ 1 2 ] ;

39 b u f [ 0 ] = MS5803_RESET ;

40 H A L _ S t a t u s T y p e D e f r e t = H A L _ I 2 C _ M a s t e r _ T r a n s m i t ( h a n d l e , MS5803_ADDR , bu f ,

1 , 1 0 0 0 ) ;

41 H A L _ D e l a y ( 3 ) ;

42 r e t u r n r e t ;

43 }

45 / * *
46 * @ b r i e f G e t s t h e 6 C o e f f i c i e n t s f r o m t h e MS5803 and r e a d s them i n t o t h e

M S 5 8 0 3 _ c o e f f i c i e n t a r r a y .

47 * @param h a n d l e The I 2 C H a n d l e b e i n g u s e d

48 * @param c o e f f The p o i n t e r t o t h e c o e f f i c i e n t b e i n g r e a d i n t o

49 * @param v a l u e The c o e f f i c i e n t n um ber

50 * @ r e t u r n HAL S t a t u s

51 * /

52 H A L _ S t a t u s T y p e D e f M S 5 8 0 3 _ c o e f f ( vo i d * h a n d l e , u i n t 1 6 _ t * c o e f f , u i n t 8 _ t v a l u e )

{

53 u i n t 8 _ t b u f [ 1 2 ] ;

54 b u f [ 0 ] = MS5803_PROM + ( v a l u e < < 1 ) ; / / c o e f f i c i e n t t o r e a d

55 H A L _ S t a t u s T y p e D e f x = M S 5 8 0 3 _ w r i t e ( h a n d l e , bu f , 1 ) ; / / t e l l MS5803 t h a t we

w a n t i t

56 H A L _ D e l a y ( 2 ) ; / / d e l a y u n t i l i t i s r e a d y

57 u i n t 8 _ t c [ 2 ] ;

58 x = MS5803_read ( h a n d l e , c , 2 ) ; / / r e a d t h e c o e f f i c i e n t
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59 * c o e f f = ( c [ 0 ] < < 8 ) + c [ 1 ] ; / / t u r n t h e two 8 − b i t v a l u e s i n t o one c o h e r e n t

v a l u e .

60 r e t u r n x ;

61 }

63 / * *
64 * @ b r i e f R e a d s t h e MS5803 ADC

65 * @param h a n d l e The I 2 C H a n d l e b e i n g u s e d

66 * @param t y p e The m e a s u r e m e n t t y p e , c h o s e n f r o m m e a s u r e m e n t enum

67 * @param p r e c The p r e c i s i o n t o use , c h o s e n f r o m p r e c i s i o n enum

68 * @ r e t v a l Raw 24 − b i t d a t a f r o m t h e ADC

69 * /

70 u i n t 3 2 _ t MS5803_ADC ( vo i d * h a n d l e , measurement t y p e , p r e c i s i o n p r e c ) {

71 u i n t 3 2 _ t r e s u l t ;

72 u i n t 8 _ t b u f [ 1 2 ] ;

73 b u f [ 0 ] = MS5803_ADC_CONV + t y p e + p r e c ; / / t e l l t h e ADC t o c o n v e r t a l o n g

w i t h t h e p r e c i s i o n and t y p e

74 H A L _ S t a t u s T y p e D e f x = M S 5 8 0 3 _ w r i t e ( h a n d l e , bu f , 1 ) ;

75 H A L _ D e l a y ( 1 ) ;

76 sw i t c h ( p r e c ) {

77 case ADC_256 : H A L _ D e l a y ( 1 ) ;

78 case ADC_512 : H A L _ D e l a y ( 3 ) ;

79 case ADC_1024 : H A L _ D e l a y ( 4 ) ;

80 case ADC_2048 : H A L _ D e l a y ( 6 ) ;

81 case ADC_4096 : H A L _ D e l a y ( 1 0 ) ; / / D e l a y l o n g e r i f h i g h e r p r e c i s i o n , as

c o n v e r s i o n t a k e s l o n g e r .

82 }

83 b u f [ 0 ] = MS5803_ADC_READ ; / / T e l l t h e MS5803 t h a t we w a n t t o r e a d t h e ADC

84 M S 5 8 0 3 _ w r i t e ( h a n d l e , bu f , 1 ) ;

85 H A L _ D e l a y ( 2 ) ;

86 u i n t 8 _ t c [ 3 ] ;

87 MS5803_read ( h a n d l e , c , 3 ) ; / / Read o u t t h e ADC
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88 r e s u l t = ( c [ 0 ] < < 1 6 ) + ( c [ 1 ] < < 8 ) + c [ 2 ] ; / / C o n v e r t t h e t h r e e 8 − b i t

v a l u e s i n t o one v a l u e .

89 r e t u r n r e s u l t ;

90 }

92 / * *
93 * @ b r i e f G e t s t e m p e r a t u r e and p r e s s u r e v a l u e s f r o m t h e MS5803

94 * @param h a n d l e The I 2 C H a n d l e b e i n g u s e d

95 * @param p r e c The p r e c i s i o n t o be u s e d

96 * @param t e m p e r a t u r e The p o i n t e r t o t h e t e m p e r a t u r e v a r i a b l e b e i n g r e a d i n

t o .

97 * @param p r e s s u r e The p o i n t e r t o t h e p r e s s u r e v a r i a b l e b e i n g r e a d i n t o .

98 * /

99 vo i d M S 5 8 0 3 _ g e t _ v a l u e s ( vo i d * h a n d l e , p r e c i s i o n p r e c , f l o a t * t e m p e r a t u r e ,

f l o a t * p r e s s u r e ) {

100 u i n t 3 2 _ t t e m p e r a t u r e _ r a w = MS5803_ADC ( h a n d l e , TEMPERATURE , p r e c ) ;

101 u i n t 3 2 _ t p r e s s u r e _ r a w = MS5803_ADC ( h a n d l e , PRESSURE , p r e c ) ; / / g e t

t e m p e r a t u r e and p r e s s u r e r a w v a l u e s

103 i n t 3 2 _ t sub = M S 5 8 0 3 _ c o e f f i c i e n t [ 4 ] * 2 5 6 ;

104 i n t 3 2 _ t dT = t e m p e r a t u r e _ r a w − sub ;

105 i n t 3 2 _ t temp = 2000 + ( dT* M S 5 8 0 3 _ c o e f f i c i e n t [ 5 ] ) / ( 8 3 8 8 6 0 8 ) ;

106 * t e m p e r a t u r e = temp / 1 0 0 . f ; / / d e t e r m i n e t e m p e r a t u r e a c c o r d i n g t o d a t a s h e e t

108 i n t 6 4 _ t OFF = ( ( i n t 6 4 _ t ) M S 5 8 0 3 _ c o e f f i c i e n t [ 1 ] ) *65536+

109 ( ( i n t 6 4 _ t ) M S 5 8 0 3 _ c o e f f i c i e n t [ 3 ] ) * ( ( i n t 6 4 _ t ) ( t e m p e r a t u r e _ r a w − sub ) )

/ 1 2 8 ;

110 i n t 6 4 _ t SENS = M S 5 8 0 3 _ c o e f f i c i e n t [ 0 ] * ( 3 2 7 6 8 ) + ( M S 5 8 0 3 _ c o e f f i c i e n t [ 2 ] * dT

) / ( 2 5 6 ) ;

111 i n t 3 2 _ t p r e s = ( p r e s s u r e _ r a w *SENS /2097152 − OFF ) / 3 2 7 6 8 ;

112 * p r e s s u r e = p r e s / 1 0 . 0 f ; / / d e t e r m i n e p r e s s u r e a c c o r d i n g t o d a t a s h e e t

113 }� �
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C Motor Controller Code
� �

1 / *
2 * BTS7960 . c

3 *
4 * C r e a t e d on : Mar 1 7 , 2021

5 * A u t h o r : R a v i

6 * /

8 # i n c l u d e ” main . h ”

9 # i n c l u d e ” BTS7960 . h ”

11 vo i d b a l l a s t _ r o t a t e ( T I M _ H a n d l e T y p e D e f *PWM, b a l l a s t number , u i n t 8 _ t d i r ,

u i n t 1 6 _ t PWMVAL ) {

12 i f ( number == BALLAST1 ) {

13 i f ( d i r == CCW ) {

14 PWM− > I n s t a n c e − > CCR1 = PWMVAL ;

15 PWM− > I n s t a n c e − > CCR3 = 0 ;

16 }

17 e l s e i f ( d i r == CW) {

18 PWM− > I n s t a n c e − > CCR1 = 0 ;

19 PWM− > I n s t a n c e − > CCR3 = PWMVAL ;

20 }

21 e l s e {

22 b a l l a s t _ s t o p (PWM, number ) ;

23 }

24 }

25 e l s e i f ( number == BALLAST2 ) {

26 i f ( d i r == CCW ) {

27 PWM− > I n s t a n c e − > CCR1 = PWMVAL ;

28 PWM− > I n s t a n c e − > CCR2 = 0 ;

29 }
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30 e l s e i f ( d i r == CW) {

31 PWM− > I n s t a n c e − > CCR1 = 0 ;

32 PWM− > I n s t a n c e − > CCR2 = PWMVAL ;

33 }

34 e l s e {

35 b a l l a s t _ s t o p (PWM, number ) ;

36 }

37 }

38 }

40 vo i d b a l l a s t _ s t o p ( T I M _ H a n d l e T y p e D e f *PWM, b a l l a s t number ) {

41 i f ( number == BALLAST1 ) {

42 PWM− > I n s t a n c e − > CCR1 = 0 ;

43 PWM− > I n s t a n c e − > CCR3 = 0 ;

44 }

45 e l s e {

46 PWM− > I n s t a n c e − > CCR1 = 0 ;

47 PWM− > I n s t a n c e − > CCR2 = 0 ;

48 }

49 }

50 vo i d b a l l a s t _ s h u t o f f ( b a l l a s t number ) {

51 i f ( number == BALLAST1 ) {

52 H A L _ G P I O _ W r i t e P i n ( R _ E N 1 _ G P I O _ P o r t , R _ E N 1 _ P i n , G P I O _ P I N _ R E S E T ) ;

53 H A L _ G P I O _ W r i t e P i n ( L _ E N 1 _ G P I O _ P o r t , L _ E N 1 _ P i n , G P I O _ P I N _ R E S E T ) ;

54 }

55 e l s e {

56 H A L _ G P I O _ W r i t e P i n ( R _ E N 2 _ G P I O _ P o r t , R _ E N 2 _ P i n , G P I O _ P I N _ R E S E T ) ;

57 H A L _ G P I O _ W r i t e P i n ( L _ E N 2 _ G P I O _ P o r t , L _ E N 2 _ P i n , G P I O _ P I N _ R E S E T ) ;

58 }

59 }

61 vo i d b a l l a s t _ o n ( T I M _ H a n d l e T y p e D e f *PWM, b a l l a s t number ) {

62 b a l l a s t _ s t o p (PWM, number ) ;
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63 i f ( number == BALLAST1 ) {

64 H A L _ G P I O _ W r i t e P i n ( R _ E N 1 _ G P I O _ P o r t , R _ E N 1 _ P i n , G P I O _ P I N _ S E T ) ;

65 H A L _ G P I O _ W r i t e P i n ( L _ E N 1 _ G P I O _ P o r t , L _ E N 1 _ P i n , G P I O _ P I N _ S E T ) ;

66 }

67 e l s e {

68 H A L _ G P I O _ W r i t e P i n ( R _ E N 2 _ G P I O _ P o r t , R _ E N 2 _ P i n , G P I O _ P I N _ S E T ) ;

69 H A L _ G P I O _ W r i t e P i n ( L _ E N 2 _ G P I O _ P o r t , L _ E N 2 _ P i n , G P I O _ P I N _ S E T ) ;

70 }

71 }� �

D Main Control Code
� �

1 / * USER CODE BEGIN H e a d e r * /

2 / * *
3 ******************************************************************************

4 * @ f i l e : m a i n . c

5 * @ b r i e f : M a i n p r o g r a m b o d y

6 ******************************************************************************

7 * @ a t t e n t i o n

8 *
9 * < h2 > < c e n t e r >& c o p y ; C o p y r i g h t ( c ) 2021 S T M i c r o e l e c t r o n i c s .

10 * A l l r i g h t s r e s e r v e d . < / c e n t e r > < / h2 >

11 *
12 * T h i s s o f t w a r e c o m p o n e n t i s l i c e n s e d b y ST u n d e r BSD 3 − C l a u s e l i c e n s e ,

13 * t h e ” L i c e n s e ” ; You may n o t u s e t h i s f i l e e x c e p t i n c o m p l i a n c e w i t h t h e

14 * L i c e n s e . You may o b t a i n a c o p y o f t h e L i c e n s e a t :

15 * o p e n s o u r c e . o r g / l i c e n s e s / BSD −3 − C l a u s e

16 *
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17 ******************************************************************************

18 * /

19 / * USER CODE END H e a d e r * /

20 / * I n c l u d e s

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

21 # i n c l u d e ” main . h ”

22 # i n c l u d e ” l w i p . h ”

24 / * P r i v a t e i n c l u d e s

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

25 / * USER CODE BEGIN I n c l u d e s * /

26 # i n c l u d e ” u d p _ c l i e n t . h ”

27 # i n c l u d e ” BTS7960 . h ”

28 # i n c l u d e ” ms5803 . h ”

29 # i n c l u d e < s t r i n g . h >

30 / * USER CODE END I n c l u d e s * /

32 / * P r i v a t e t y p e d e f

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

33 / * USER CODE BEGIN PTD * /

35 / * USER CODE END PTD * /

37 / * P r i v a t e d e f i n e

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

38 / * USER CODE BEGIN PD * /

39 / * USER CODE END PD * /

41 / * P r i v a t e macro

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

42 / * USER CODE BEGIN PM * /
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44 / * USER CODE END PM * /

46 / * P r i v a t e v a r i a b l e s

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

48 I 2 C _ H a n d l e T y p e D e f h i 2 c 2 ;

50 T I M _ H a n d l e T y p e D e f h t i m 2 ;

51 T I M _ H a n d l e T y p e D e f h t i m 3 ;

52 T I M _ H a n d l e T y p e D e f h t i m 4 ;

54 U A R T _ H a n d l e T y p e D e f h u a r t 3 ;

56 P C D _ H a n d l e T y p e D e f hpcd_USB_OTG_FS ;

58 / * USER CODE BEGIN PV * /

60 / * USER CODE END PV * /

62 / * P r i v a t e f u n c t i o n p r o t o t y p e s

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

63 vo i d S y s t e m C l o c k _ C o n f i g ( vo i d ) ;

64 s t a t i c v o i d M X _ G P I O _ I n i t ( vo i d ) ;

65 s t a t i c v o i d M X _ U S A R T 3 _ U A R T _ I n i t ( vo i d ) ;

66 s t a t i c v o i d M X _ U S B _ O T G _ F S _ P C D _ I n i t ( vo i d ) ;

67 s t a t i c v o i d M X _ T I M 2 _ I n i t ( vo i d ) ;

68 s t a t i c v o i d M X _ T I M 3 _ I n i t ( vo i d ) ;

69 s t a t i c v o i d M X _ I 2 C 2 _ I n i t ( vo i d ) ;

70 s t a t i c v o i d M X _ T I M 4 _ I n i t ( vo i d ) ;

71 / * USER CODE BEGIN PFP * /

73 / * USER CODE END PFP * /
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75 / * P r i v a t e u s e r c o d e

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

76 / * USER CODE BEGIN 0 * /

78 / * USER CODE END 0 * /

80 / * *
81 * @ b r i e f The a p p l i c a t i o n e n t r y p o i n t .

82 * @ r e t v a l i n t

83 * /

84 i n t main ( vo i d )

85 {

86 / * USER CODE BEGIN 1 * /

88 / * USER CODE END 1 * /

90 / * MCU C o n f i g u r a t i o n

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − * /

92 / * R e s e t o f a l l p e r i p h e r a l s , I n i t i a l i z e s t h e F l a s h i n t e r f a c e and t h e

S y s t i c k . * /

93 H A L _ I n i t ( ) ;

95 / * USER CODE BEGIN I n i t * /

97 / * USER CODE END I n i t * /

99 / * C o n f i g u r e t h e s y s t e m c l o c k * /

100 S y s t e m C l o c k _ C o n f i g ( ) ;

102 / * USER CODE BEGIN S y s I n i t * /

104 / * USER CODE END S y s I n i t * /
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106 / * I n i t i a l i z e a l l c o n f i g u r e d p e r i p h e r a l s * /

107 M X _ G P I O _ I n i t ( ) ;

108 M X _ U S A R T 3 _ U A R T _ I n i t ( ) ;

109 M X _ U S B _ O T G _ F S _ P C D _ I n i t ( ) ;

110 M X _ T I M 2 _ I n i t ( ) ;

111 M X _ L W I P _ I n i t ( ) ;

112 M X _ T I M 3 _ I n i t ( ) ;

113 M X _ I 2 C 2 _ I n i t ( ) ;

114 M X _ T I M 4 _ I n i t ( ) ;

115 / * USER CODE BEGIN 2 * /

116 command_buf = ( cha r * ) m a l l o c ( s i z e o f ( cha r ) * 6 3 ) ;

117 cha r * v a l u e = ( cha r * ) m a l l o c ( 4 1 * s i z e o f ( cha r ) ) ;

118 * command_buf = NULL ;

119 i p 4 _ a d d r _ t i p a d d r ;

120 IP4_ADDR ( & i p a d d r , 1 9 2 , 1 6 8 , 0 , 2 ) ;

121 u d p _ e c h o c l i e n t _ c o n n e c t ( & i p a d d r , 8 8 8 8 ) ;

122 b a l l a s t _ o n ( & h t i m 2 , BALLAST1 ) ;

123 b a l l a s t _ o n ( & h t i m 4 , BALLAST2 ) ;

124 H A L _ T I M _ B a s e _ S t a r t _ I T ( & h t i m 3 ) ;

125 HAL_PWR_EnableWakeUpPin ( PWR_WAKEUP_PIN4 ) ;

128 M S 5 8 0 3 _ r e s e t ( & h i 2 c 2 ) ; / / r e s e t

129 H A L _ D e l a y ( 2 ) ;

130 f o r ( i n t i = 1 ; i <= 6 ; i + + ) {

131 M S 5 8 0 3 _ c o e f f ( & h i 2 c 2 , & M S 5 8 0 3 _ c o e f f i c i e n t [ i − 1 ] , i ) ; / / g e t c o e f f i c i e n t s

132 }

133 u i n t 8 _ t w a n t T o S l e e p = 0 ;

134 u i n t 8 _ t s l e p t = 1 ;

135 i f ( __HAL_PWR_GET_FLAG ( PWR_FLAG_SB ) ) {

136 __HAL_PWR_CLEAR_FLAG ( PWR_FLAG_SB ) ;

137 PWR− > CR2 | = PWR_CR2_CWUPF4 ;
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138 w a n t T o S l e e p = 0 ;

139 s l e p t = 1 ;

140 M S 5 8 0 3 _ r e s e t ( & h i 2 c 2 ) ;

141 }

142 / / BALLAST 1

143 u i n t 8 _ t d i r _ v a l 1 = 0 ;

144 u i n t 1 6 _ t pwm_val1 = 0 ;

145 u i n t 8 _ t n e w d i r _ v a l 1 = 0 ;

146 u i n t 1 6 _ t newpwm_val1 = 0 ;

147 / / BALLAST2

148 u i n t 8 _ t d i r _ v a l 2 = 0 ;

149 u i n t 1 6 _ t pwm_val2 = 0 ;

150 u i n t 8 _ t n e w d i r _ v a l 2 = 0 ;

151 u i n t 1 6 _ t newpwm_val2 = 0 ;

153 / * USER CODE END 2 * /

155 / * I n f i n i t e l o o p * /

156 / * USER CODE BEGIN WHILE * /

157 wh i l e ( 1 )

158 {

159 / * USER CODE END WHILE * /

161 / * USER CODE BEGIN 3 * /

162 / / BALLAST1

163 u i n t 8 _ t R i g h t L i m i t 1 = ! H A L _ G P I O _ R e a d P i n ( L I M I T R _ 1 _ G P I O _ P o r t , L I M I T R _ 1 _ P i n

) ;

164 u i n t 8 _ t L e f t L i m i t 1 = ! H A L _ G P I O _ R e a d P i n ( L I M I T L _ 1 _ G P I O _ P o r t , L I M I T L _ 1 _ P i n )

;

165 / / BALLAST2

166 u i n t 8 _ t R i g h t L i m i t 2 = ! H A L _ G P I O _ R e a d P i n ( L I M I T R _ 2 _ G P I O _ P o r t , L I M I T R _ 2 _ P i n

) ;
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167 u i n t 8 _ t L e f t L i m i t 2 = ! H A L _ G P I O _ R e a d P i n ( L I M I T L _ 2 _ G P I O _ P o r t , L I M I T L _ 2 _ P i n )

;

168 M X _ L W I P _ P r o c e s s ( ) ;

169 i f ( * command_buf ) {

170 i f ( s t r s t r ( command_buf , ” F i l l B o t h ” ) ! = NULL ) {

171 n e w d i r _ v a l 1 = CCW ;

172 newpwm_val1 = 1 2 5 ;

173 n e w d i r _ v a l 2 = CCW ;

174 newpwm_val2 = 1 2 5 ;

175 }

176 e l s e i f ( s t r s t r ( command_buf , ” E m p t y B o t h ” ) ! = NULL ) {

177 n e w d i r _ v a l 1 = CW ;

178 newpwm_val1 = 1 2 5 ;

179 n e w d i r _ v a l 2 = CW ;

180 newpwm_val2 = 1 2 5 ;

181 }

182 e l s e i f ( s t r s t r ( command_buf , ” S t o p B o t h ” ) ! = NULL ) {

183 newpwm_val1 = 0 ;

184 newpwm_val2 = 0 ;

185 }

186 e l s e i f ( s t r s t r ( command_buf , ” F i l l F r o n t ” ) ! = NULL ) {

187 n e w d i r _ v a l 1 = CCW ;

188 newpwm_val1 = 1 2 5 ;

189 }

190 e l s e i f ( s t r s t r ( command_buf , ” F i l l B a c k ” ) ! = NULL ) {

191 n e w d i r _ v a l 2 = CCW ;

192 newpwm_val2 = 1 2 5 ;

193 }

194 e l s e i f ( s t r s t r ( command_buf , ” E m p t y F r o n t ” ) ! = NULL ) {

195 n e w d i r _ v a l 1 = CW ;

196 newpwm_val1 = 1 2 5 ;

197 }

198 e l s e i f ( s t r s t r ( command_buf , ” EmptyBack ” ) ! = NULL ) {
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199 n e w d i r _ v a l 2 = CW ;

200 newpwm_val2 = 1 2 5 ;

201 }

202 e l s e i f ( s t r s t r ( command_buf , ” S t o p F r o n t ” ) ! = NULL ) {

203 newpwm_val1 = 0 ;

204 }

205 e l s e i f ( s t r s t r ( command_buf , ” S t o p B a c k ” ) ! = NULL ) {

206 newpwm_val2 = 0 ;

207 }

208 e l s e i f ( s t r s t r ( command_buf , ” S l e e p ” ) ! = NULL ) {

209 w a n t T o S l e e p = 1 ;

210 }

211 e l s e i f ( s t r s t r ( command_buf , ” R e s e t P r e s s u r e ” ) ! = NULL ) {

212 H A L _ S t a t u s T y p e D e f t e s t = M S 5 8 0 3 _ r e s e t ( & h i 2 c 2 ) ;

213 H A L _ D e l a y ( 2 ) ;

214 f o r ( i n t i = 1 ; i <= 6 ; i + + ) {

215 M S 5 8 0 3 _ c o e f f ( & h i 2 c 2 , & M S 5 8 0 3 _ c o e f f i c i e n t [ i − 1 ] , i ) ; / / g e t

c o e f f i c i e n t s

216 }

217 }

218 * command_buf = NULL ;

219 }

220 i f ( s l e p t ) {

221 u d p _ e c h o c l i e n t _ s e n d ( ” MSG : AWAKE ” ) ;

222 s l e p t = 0 ;

223 }

224 i f ( READMS5803 ) {

225 READMS5803 = 0 ;

226 M S 5 8 0 3 _ g e t _ v a l u e s ( & h i 2 c 2 , ADC_512 , & t e m p e r a t u r e , & p r e s s u r e ) ; / / g e t

v a l u e s .

227 s p r i n t f ( v a l u e , ” DATA : temp : % . 2 f , p r e s : % . 2 f ; ” , t e m p e r a t u r e , p r e s s u r e

) ;

228 u d p _ e c h o c l i e n t _ s e n d ( v a l u e ) ;
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229 }

231 / / BALLAST FRONT

232 i f ( R i g h t L i m i t 1 && ( d i r _ v a l 1 == CCW && n e w d i r _ v a l 1 == CCW ) ) {

233 b a l l a s t _ s t o p ( & h t i m 2 , BALLAST1 ) ;

234 pwm_val1 = 0 ;

235 newpwm_val1 = 0 ;

236 u d p _ e c h o c l i e n t _ s e n d ( ” MSG : L I M I T F I L L E D , BALLAST FRONT ” ) ;

237 }

238 e l s e i f ( L e f t L i m i t 1 && ( d i r _ v a l 1 == CW && n e w d i r _ v a l 1 == CW) ) {

239 b a l l a s t _ s t o p ( & h t i m 2 , BALLAST1 ) ;

240 pwm_val1 = 0 ;

241 newpwm_val1 = 0 ;

242 u d p _ e c h o c l i e n t _ s e n d ( ” MSG : L I M I T EMPTY , BALLAST FRONT ” ) ;

243 }

244 / / BALLAST BACK

245 i f ( R i g h t L i m i t 2 && ( d i r _ v a l 2 == CCW && n e w d i r _ v a l 2 == CCW ) ) {

246 b a l l a s t _ s t o p ( & h t i m 4 , BALLAST2 ) ;

247 pwm_val2 = 0 ;

248 newpwm_val2 = 0 ;

249 u d p _ e c h o c l i e n t _ s e n d ( ” MSG : L I M I T F I L L E D , BALLAST BACK ” ) ;

250 }

251 e l s e i f ( L e f t L i m i t 2 && ( d i r _ v a l 2 == CW && n e w d i r _ v a l 2 == CW) ) {

252 b a l l a s t _ s t o p ( & h t i m 4 , BALLAST2 ) ;

253 pwm_val2 = 0 ;

254 newpwm_val2 = 0 ;

255 u d p _ e c h o c l i e n t _ s e n d ( ” MSG : L I M I T EMPTY , BALLAST BACK ” ) ;

256 }

257 wh i l e ( 1 ) {

258 b a l l a s t _ r o t a t e ( & h t i m 2 , BALLAST1 , d i r _ v a l 1 , pwm_val1 ) ;

259 b a l l a s t _ r o t a t e ( & h t i m 4 , BALLAST2 , d i r _ v a l 2 , pwm_val2 ) ;

260 i f ( ( d i r _ v a l 1 == n e w d i r _ v a l 1 && pwm_val1 == newpwm_val1 ) &&

261 ( d i r _ v a l 2 == n e w d i r _ v a l 2 && pwm_val2 == newpwm_val2 ) ) break ;
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262 i f ( d i r _ v a l 1 ! = n e w d i r _ v a l 1 && pwm_val1 > 0 ) {

263 pwm_val1 − − ;

264 }

265 e l s e i f ( d i r _ v a l 1 ! = n e w d i r _ v a l 1 && pwm_val1 == 0 ) {

266 d i r _ v a l 1 = n e w d i r _ v a l 1 ;

267 }

268 e l s e i f ( d i r _ v a l 1 == n e w d i r _ v a l 1 && newpwm_val1 > pwm_val1 ) {

269 pwm_val1 + + ;

270 }

271 e l s e i f ( d i r _ v a l 1 == n e w d i r _ v a l 1 && pwm_val1 > newpwm_val1 ) {

272 pwm_val1 − − ;

273 }

274 i f ( d i r _ v a l 2 ! = n e w d i r _ v a l 2 && pwm_val2 > 0 ) {

275 pwm_val2 − − ;

276 }

277 e l s e i f ( d i r _ v a l 2 ! = n e w d i r _ v a l 2 && pwm_val2 == 0 ) {

278 d i r _ v a l 2 = n e w d i r _ v a l 2 ;

279 }

280 e l s e i f ( d i r _ v a l 2 == n e w d i r _ v a l 2 && newpwm_val2 > pwm_val2 ) {

281 pwm_val2 + + ;

282 }

283 e l s e i f ( d i r _ v a l 2 == n e w d i r _ v a l 2 && pwm_val2 > newpwm_val2 ) {

284 pwm_val2 − − ;

285 }

286 H A L _ D e l a y ( 2 ) ;

287 }

288 i f ( w a n t T o S l e e p ) {

289 u d p _ e c h o c l i e n t _ s e n d ( ” MSG : SLEEPING ” ) ;

290 RCC − > APB1ENR | = ( RCC_APB1ENR_PWREN ) ;

291 HAL_PWR_EnterSTANDBYMode ( ) ;

292 }

293 }

294 / * USER CODE END 3 * /

116



295 }

297 / * *
298 * @ b r i e f S y s t e m C l o c k C o n f i g u r a t i o n

299 * @ r e t v a l None

300 * /

301 vo i d S y s t e m C l o c k _ C o n f i g ( vo i d )

302 {

303 R C C _ O s c I n i t T y p e D e f R C C _ O s c I n i t S t r u c t = { 0 } ;

304 R C C _ C l k I n i t T y p e D e f R C C _ C l k I n i t S t r u c t = { 0 } ;

305 R C C _ P e r i p h C L K I n i t T y p e D e f P e r i p h C l k I n i t S t r u c t = { 0 } ;

307 / * * C o n f i g u r e LSE D r i v e C a p a b i l i t y

308 * /

309 HAL_PWR_EnableBkUpAccess ( ) ;

310 / * * C o n f i g u r e t h e m a i n i n t e r n a l r e g u l a t o r o u t p u t v o l t a g e

311 * /

312 __HAL_RCC_PWR_CLK_ENABLE ( ) ;

313 __HAL_PWR_VOLTAGESCALING_CONFIG ( PWR_REGULATOR_VOLTAGE_SCALE3 ) ;

314 / * * I n i t i a l i z e s t h e RCC O s c i l l a t o r s a c c o r d i n g t o t h e s p e c i f i e d p a r a m e t e r s

315 * i n t h e R C C _ O s c I n i t T y p e D e f s t r u c t u r e .

316 * /

317 R C C _ O s c I n i t S t r u c t . O s c i l l a t o r T y p e = RCC_OSCILLATORTYPE_HSE ;

318 R C C _ O s c I n i t S t r u c t . H S E S t a t e = RCC_HSE_ON ;

319 R C C _ O s c I n i t S t r u c t . PLL . P L L S t a t e = RCC_PLL_ON ;

320 R C C _ O s c I n i t S t r u c t . PLL . P L L S o u r c e = RCC_PLLSOURCE_HSE ;

321 R C C _ O s c I n i t S t r u c t . PLL . PLLM = 4 ;

322 R C C _ O s c I n i t S t r u c t . PLL . PLLN = 9 6 ;

323 R C C _ O s c I n i t S t r u c t . PLL . PLLP = RCC_PLLP_DIV2 ;

324 R C C _ O s c I n i t S t r u c t . PLL . PLLQ = 4 ;

325 i f ( H A L _ R C C _ O s c C o n f i g ( & R C C _ O s c I n i t S t r u c t ) ! = HAL_OK )

326 {

327 E r r o r _ H a n d l e r ( ) ;
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328 }

329 / * * A c t i v a t e t h e O v e r − D r i v e mode

330 * /

331 i f ( H A L _ P W R E x _ E n a b l e O v e r D r i v e ( ) ! = HAL_OK )

332 {

333 E r r o r _ H a n d l e r ( ) ;

334 }

335 / * * I n i t i a l i z e s t h e CPU , AHB and APB b u s e s c l o c k s

336 * /

337 R C C _ C l k I n i t S t r u c t . C l o c k T y p e = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK

338 | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2 ;

339 R C C _ C l k I n i t S t r u c t . SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK ;

340 R C C _ C l k I n i t S t r u c t . A H B C L K D i v i d e r = RCC_SYSCLK_DIV1 ;

341 R C C _ C l k I n i t S t r u c t . A P B 1 C L K D i v i d e r = RCC_HCLK_DIV2 ;

342 R C C _ C l k I n i t S t r u c t . A P B 2 C L K D i v i d e r = RCC_HCLK_DIV1 ;

344 i f ( H A L _ R C C _ C l o c k C o n f i g ( & R C C _ C l k I n i t S t r u c t , FLASH_LATENCY_3 ) ! = HAL_OK )

345 {

346 E r r o r _ H a n d l e r ( ) ;

347 }

348 P e r i p h C l k I n i t S t r u c t . P e r i p h C l o c k S e l e c t i o n = RCC_PERIPHCLK_USART3 |

RCC _P ER IP HCL K_ I2 C2

349 | RCC_PERIPHCLK_CLK48 ;

350 P e r i p h C l k I n i t S t r u c t . U s a r t 3 C l o c k S e l e c t i o n = RCC_USART3CLKSOURCE_PCLK1 ;

351 P e r i p h C l k I n i t S t r u c t . I 2 c 2 C l o c k S e l e c t i o n = RCC_I2C2CLKSOURCE_PCLK1 ;

352 P e r i p h C l k I n i t S t r u c t . C l k 4 8 C l o c k S e l e c t i o n = RCC_CLK48SOURCE_PLL ;

353 i f ( H A L _ R C C E x _ P e r i p h C L K C o n f i g ( & P e r i p h C l k I n i t S t r u c t ) ! = HAL_OK )

354 {

355 E r r o r _ H a n d l e r ( ) ;

356 }

357 }

359 / * *
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360 * @ b r i e f I 2 C 2 I n i t i a l i z a t i o n F u n c t i o n

361 * @param None

362 * @ r e t v a l None

363 * /

364 s t a t i c v o i d M X _ I 2 C 2 _ I n i t ( vo i d )

365 {

367 / * USER CODE BEGIN I 2 C 2 _ I n i t 0 * /

369 / * USER CODE END I 2 C 2 _ I n i t 0 * /

371 / * USER CODE BEGIN I 2 C 2 _ I n i t 1 * /

373 / * USER CODE END I 2 C 2 _ I n i t 1 * /

374 h i 2 c 2 . I n s t a n c e = I 2 C 2 ;

375 h i 2 c 2 . I n i t . T i m i n g = 0 x20303E5D ;

376 h i 2 c 2 . I n i t . OwnAddress1 = 0 ;

377 h i 2 c 2 . I n i t . A d d r e s s i n g M o d e = I2C_ADDRESSINGMODE_7BIT ;

378 h i 2 c 2 . I n i t . D u a l A d d r e s s M o d e = I2C_DUALADDRESS_DISABLE ;

379 h i 2 c 2 . I n i t . OwnAddress2 = 0 ;

380 h i 2 c 2 . I n i t . OwnAddress2Masks = I2C_OA2_NOMASK ;

381 h i 2 c 2 . I n i t . G e n e r a l C a l l M o d e = I2C_GENERALCALL_DISABLE ;

382 h i 2 c 2 . I n i t . N o S t r e t c h M o d e = I2C_NOSTRETCH_DISABLE ;

383 i f ( H A L _ I 2 C _ I n i t ( & h i 2 c 2 ) ! = HAL_OK )

384 {

385 E r r o r _ H a n d l e r ( ) ;

386 }

387 / * * C o n f i g u r e A n a l o g u e f i l t e r

388 * /

389 i f ( H A L _ I 2 C E x _ C o n f i g A n a l o g F i l t e r ( & h i 2 c 2 , I2C_ANALOGFILTER_ENABLE ) ! =

HAL_OK )

390 {

391 E r r o r _ H a n d l e r ( ) ;
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392 }

393 / * * C o n f i g u r e D i g i t a l f i l t e r

394 * /

395 i f ( H A L _ I 2 C E x _ C o n f i g D i g i t a l F i l t e r ( & h i 2 c 2 , 0 ) ! = HAL_OK )

396 {

397 E r r o r _ H a n d l e r ( ) ;

398 }

399 / * USER CODE BEGIN I 2 C 2 _ I n i t 2 * /

401 / * USER CODE END I 2 C 2 _ I n i t 2 * /

403 }

405 / * *
406 * @ b r i e f TIM2 I n i t i a l i z a t i o n F u n c t i o n

407 * @param None

408 * @ r e t v a l None

409 * /

410 s t a t i c v o i d M X _ T I M 2 _ I n i t ( vo i d )

411 {

413 / * USER CODE BEGIN T I M 2 _ I n i t 0 * /

415 / * USER CODE END T I M 2 _ I n i t 0 * /

417 T I M _ C l o c k C o n f i g T y p e D e f s C l o c k S o u r c e C o n f i g = { 0 } ;

418 T I M _ M a s t e r C o n f i g T y p e D e f s M a s t e r C o n f i g = { 0 } ;

419 T I M _ O C _ I n i t T y p e D e f s C o n f i g O C = { 0 } ;

421 / * USER CODE BEGIN T I M 2 _ I n i t 1 * /

423 / * USER CODE END T I M 2 _ I n i t 1 * /

424 h t i m 2 . I n s t a n c e = TIM2 ;
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425 h t i m 2 . I n i t . P r e s c a l e r = 1 5 ;

426 h t i m 2 . I n i t . C o u n t e r M o d e = TIM_COUNTERMODE_UP ;

427 h t i m 2 . I n i t . P e r i o d = 2 9 9 ;

428 h t i m 2 . I n i t . C l o c k D i v i s i o n = T I M _ C L O C K D I V I S I O N _ D I V 1 ;

429 h t i m 2 . I n i t . A u t o R e l o a d P r e l o a d = TIM_AUTORELOAD_PRELOAD_ENABLE ;

430 i f ( H A L _ T I M _ B a s e _ I n i t ( & h t i m 2 ) ! = HAL_OK )

431 {

432 E r r o r _ H a n d l e r ( ) ;

433 }

434 s C l o c k S o u r c e C o n f i g . C l o c k S o u r c e = TIM_CLOCKSOURCE_INTERNAL ;

435 i f ( H A L _ T I M _ C o n f i g C l o c k S o u r c e ( & h t i m 2 , & s C l o c k S o u r c e C o n f i g ) ! = HAL_OK )

436 {

437 E r r o r _ H a n d l e r ( ) ;

438 }

439 i f ( H A L _ T I M _ P W M _ I n i t ( & h t i m 2 ) ! = HAL_OK )

440 {

441 E r r o r _ H a n d l e r ( ) ;

442 }

443 s M a s t e r C o n f i g . M a s t e r O u t p u t T r i g g e r = TIM_TRGO_RESET ;

444 s M a s t e r C o n f i g . M a s t e r S l a v e M o d e = TIM_MASTERSLAVEMODE_DISABLE ;

445 i f ( H A L _ T I M E x _ M a s t e r C o n f i g S y n c h r o n i z a t i o n ( & h t i m 2 , & s M a s t e r C o n f i g ) ! =

HAL_OK )

446 {

447 E r r o r _ H a n d l e r ( ) ;

448 }

449 s C o n f i g O C . OCMode = TIM_OCMODE_PWM1 ;

450 s C o n f i g O C . P u l s e = 0 ;

451 s C o n f i g O C . O C P o l a r i t y = TIM_OCPOLARITY_HIGH ;

452 s C o n f i g O C . OCFastMode = TIM_OCFAST_DISABLE ;

453 i f ( H A L _ T I M _ P W M _ C o n f i g C h a n n e l ( & h t i m 2 , & s C o n f i g O C , TIM_CHANNEL_1 ) ! = HAL_OK

)

454 {

455 E r r o r _ H a n d l e r ( ) ;
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456 }

457 i f ( H A L _ T I M _ P W M _ C o n f i g C h a n n e l ( & h t i m 2 , & s C o n f i g O C , TIM_CHANNEL_3 ) ! = HAL_OK

)

458 {

459 E r r o r _ H a n d l e r ( ) ;

460 }

461 / * USER CODE BEGIN T I M 2 _ I n i t 2 * /

462 HAL_T IM_P WM_St ar t ( & h t i m 2 , TIM_CHANNEL_1 ) ;

463 HAL_T IM_P WM_St ar t ( & h t i m 2 , TIM_CHANNEL_3 ) ;

464 / * USER CODE END T I M 2 _ I n i t 2 * /

465 H A L _ T I M _ M s p P o s t I n i t ( & h t i m 2 ) ;

467 }

469 / * *
470 * @ b r i e f TIM3 I n i t i a l i z a t i o n F u n c t i o n

471 * @param None

472 * @ r e t v a l None

473 * /

474 s t a t i c v o i d M X _ T I M 3 _ I n i t ( vo i d )

475 {

477 / * USER CODE BEGIN T I M 3 _ I n i t 0 * /

479 / * USER CODE END T I M 3 _ I n i t 0 * /

481 T I M _ C l o c k C o n f i g T y p e D e f s C l o c k S o u r c e C o n f i g = { 0 } ;

482 T I M _ M a s t e r C o n f i g T y p e D e f s M a s t e r C o n f i g = { 0 } ;

484 / * USER CODE BEGIN T I M 3 _ I n i t 1 * /

486 / * USER CODE END T I M 3 _ I n i t 1 * /

487 h t i m 3 . I n s t a n c e = TIM3 ;
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488 h t i m 3 . I n i t . P r e s c a l e r = 6 5 5 3 5 ;

489 h t i m 3 . I n i t . C o u n t e r M o d e = TIM_COUNTERMODE_UP ;

490 h t i m 3 . I n i t . P e r i o d = 3 0 ;

491 h t i m 3 . I n i t . C l o c k D i v i s i o n = T I M _ C L O C K D I V I S I O N _ D I V 1 ;

492 h t i m 3 . I n i t . A u t o R e l o a d P r e l o a d = TIM_AUTORELOAD_PRELOAD_DISABLE ;

493 i f ( H A L _ T I M _ B a s e _ I n i t ( & h t i m 3 ) ! = HAL_OK )

494 {

495 E r r o r _ H a n d l e r ( ) ;

496 }

497 s C l o c k S o u r c e C o n f i g . C l o c k S o u r c e = TIM_CLOCKSOURCE_INTERNAL ;

498 i f ( H A L _ T I M _ C o n f i g C l o c k S o u r c e ( & h t i m 3 , & s C l o c k S o u r c e C o n f i g ) ! = HAL_OK )

499 {

500 E r r o r _ H a n d l e r ( ) ;

501 }

502 s M a s t e r C o n f i g . M a s t e r O u t p u t T r i g g e r = TIM_TRGO_RESET ;

503 s M a s t e r C o n f i g . M a s t e r S l a v e M o d e = TIM_MASTERSLAVEMODE_DISABLE ;

504 i f ( H A L _ T I M E x _ M a s t e r C o n f i g S y n c h r o n i z a t i o n ( & h t i m 3 , & s M a s t e r C o n f i g ) ! =

HAL_OK )

505 {

506 E r r o r _ H a n d l e r ( ) ;

507 }

508 / * USER CODE BEGIN T I M 3 _ I n i t 2 * /

509 HAL_T IM_P WM_St ar t ( & h t i m 4 , TIM_CHANNEL_1 ) ;

510 HAL_T IM_P WM_St ar t ( & h t i m 4 , TIM_CHANNEL_2 ) ;

511 / * USER CODE END T I M 3 _ I n i t 2 * /

513 }

515 / * *
516 * @ b r i e f TIM4 I n i t i a l i z a t i o n F u n c t i o n

517 * @param None

518 * @ r e t v a l None

519 * /
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520 s t a t i c v o i d M X _ T I M 4 _ I n i t ( vo i d )

521 {

523 / * USER CODE BEGIN T I M 4 _ I n i t 0 * /

525 / * USER CODE END T I M 4 _ I n i t 0 * /

527 T I M _ M a s t e r C o n f i g T y p e D e f s M a s t e r C o n f i g = { 0 } ;

528 T I M _ O C _ I n i t T y p e D e f s C o n f i g O C = { 0 } ;

530 / * USER CODE BEGIN T I M 4 _ I n i t 1 * /

532 / * USER CODE END T I M 4 _ I n i t 1 * /

533 h t i m 4 . I n s t a n c e = TIM4 ;

534 h t i m 4 . I n i t . P r e s c a l e r = 1 5 ;

535 h t i m 4 . I n i t . C o u n t e r M o d e = TIM_COUNTERMODE_UP ;

536 h t i m 4 . I n i t . P e r i o d = 2 9 9 ;

537 h t i m 4 . I n i t . C l o c k D i v i s i o n = T I M _ C L O C K D I V I S I O N _ D I V 1 ;

538 h t i m 4 . I n i t . A u t o R e l o a d P r e l o a d = TIM_AUTORELOAD_PRELOAD_ENABLE ;

539 i f ( H A L _ T I M _ P W M _ I n i t ( & h t i m 4 ) ! = HAL_OK )

540 {

541 E r r o r _ H a n d l e r ( ) ;

542 }

543 s M a s t e r C o n f i g . M a s t e r O u t p u t T r i g g e r = TIM_TRGO_RESET ;

544 s M a s t e r C o n f i g . M a s t e r S l a v e M o d e = TIM_MASTERSLAVEMODE_DISABLE ;

545 i f ( H A L _ T I M E x _ M a s t e r C o n f i g S y n c h r o n i z a t i o n ( & h t i m 4 , & s M a s t e r C o n f i g ) ! =

HAL_OK )

546 {

547 E r r o r _ H a n d l e r ( ) ;

548 }

549 s C o n f i g O C . OCMode = TIM_OCMODE_PWM1 ;

550 s C o n f i g O C . P u l s e = 0 ;

551 s C o n f i g O C . O C P o l a r i t y = TIM_OCPOLARITY_HIGH ;
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552 s C o n f i g O C . OCFastMode = TIM_OCFAST_DISABLE ;

553 i f ( H A L _ T I M _ P W M _ C o n f i g C h a n n e l ( & h t i m 4 , & s C o n f i g O C , TIM_CHANNEL_1 ) ! = HAL_OK

)

554 {

555 E r r o r _ H a n d l e r ( ) ;

556 }

557 i f ( H A L _ T I M _ P W M _ C o n f i g C h a n n e l ( & h t i m 4 , & s C o n f i g O C , TIM_CHANNEL_2 ) ! = HAL_OK

)

558 {

559 E r r o r _ H a n d l e r ( ) ;

560 }

561 / * USER CODE BEGIN T I M 4 _ I n i t 2 * /

562 HAL_T IM_P WM_St ar t ( & h t i m 4 , TIM_CHANNEL_1 ) ;

563 HAL_T IM_P WM_St ar t ( & h t i m 4 , TIM_CHANNEL_2 ) ;

564 / * USER CODE END T I M 4 _ I n i t 2 * /

565 H A L _ T I M _ M s p P o s t I n i t ( & h t i m 4 ) ;

567 }

569 / * *
570 * @ b r i e f USART3 I n i t i a l i z a t i o n F u n c t i o n

571 * @param None

572 * @ r e t v a l None

573 * /

574 s t a t i c v o i d M X _ U S A R T 3 _ U A R T _ I n i t ( vo i d )

575 {

577 / * USER CODE BEGIN U S A R T 3 _ I n i t 0 * /

579 / * USER CODE END U S A R T 3 _ I n i t 0 * /

581 / * USER CODE BEGIN U S A R T 3 _ I n i t 1 * /
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583 / * USER CODE END U S A R T 3 _ I n i t 1 * /

584 h u a r t 3 . I n s t a n c e = USART3 ;

585 h u a r t 3 . I n i t . B a u d R a t e = 1 1 5 2 0 0 ;

586 h u a r t 3 . I n i t . W o r d L e n g t h = UART_WORDLENGTH_8B ;

587 h u a r t 3 . I n i t . S t o p B i t s = UART_STOPBITS_1 ;

588 h u a r t 3 . I n i t . P a r i t y = UART_PARITY_NONE ;

589 h u a r t 3 . I n i t . Mode = UART_MODE_TX_RX ;

590 h u a r t 3 . I n i t . H w F l o w C t l = UART_HWCONTROL_NONE ;

591 h u a r t 3 . I n i t . O v e r S a m p l i n g = UART_OVERSAMPLING_16 ;

592 h u a r t 3 . I n i t . O n e B i t S a m p l i n g = UART_ONE_BIT_SAMPLE_DISABLE ;

593 h u a r t 3 . A d v a n c e d I n i t . A d v F e a t u r e I n i t = UART_ADVFEATURE_NO_INIT ;

594 i f ( H A L _ U A R T _ I n i t ( & h u a r t 3 ) ! = HAL_OK )

595 {

596 E r r o r _ H a n d l e r ( ) ;

597 }

598 / * USER CODE BEGIN U S A R T 3 _ I n i t 2 * /

600 / * USER CODE END U S A R T 3 _ I n i t 2 * /

602 }

604 / * *
605 * @ b r i e f USB_OTG_FS I n i t i a l i z a t i o n F u n c t i o n

606 * @param None

607 * @ r e t v a l None

608 * /

609 s t a t i c v o i d M X _ U S B _ O T G _ F S _ P C D _ I n i t ( vo i d )

610 {

612 / * USER CODE BEGIN U S B _ O T G _ F S _ I n i t 0 * /

614 / * USER CODE END U S B _ O T G _ F S _ I n i t 0 * /
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616 / * USER CODE BEGIN U S B _ O T G _ F S _ I n i t 1 * /

618 / * USER CODE END U S B _ O T G _ F S _ I n i t 1 * /

619 hpcd_USB_OTG_FS . I n s t a n c e = USB_OTG_FS ;

620 hpcd_USB_OTG_FS . I n i t . d e v _ e n d p o i n t s = 6 ;

621 hpcd_USB_OTG_FS . I n i t . s p e e d = PCD_SPEED_FULL ;

622 hpcd_USB_OTG_FS . I n i t . d m a _ e n a b l e = DISABLE ;

623 hpcd_USB_OTG_FS . I n i t . p h y _ i t f a c e = PCD_PHY_EMBEDDED ;

624 hpcd_USB_OTG_FS . I n i t . S o f _ e n a b l e = ENABLE ;

625 hpcd_USB_OTG_FS . I n i t . l o w _ p o w e r _ e n a b l e = DISABLE ;

626 hpcd_USB_OTG_FS . I n i t . l p m _ e n a b l e = DISABLE ;

627 hpcd_USB_OTG_FS . I n i t . v b u s _ s e n s i n g _ e n a b l e = ENABLE ;

628 hpcd_USB_OTG_FS . I n i t . u s e _ d e d i c a t e d _ e p 1 = DISABLE ;

629 i f ( H A L _ P C D _ I n i t ( & hpcd_USB_OTG_FS ) ! = HAL_OK )

630 {

631 E r r o r _ H a n d l e r ( ) ;

632 }

633 / * USER CODE BEGIN U S B _ O T G _ F S _ I n i t 2 * /

635 / * USER CODE END U S B _ O T G _ F S _ I n i t 2 * /

637 }

639 / * *
640 * @ b r i e f GPIO I n i t i a l i z a t i o n F u n c t i o n

641 * @param None

642 * @ r e t v a l None

643 * /

644 s t a t i c v o i d M X _ G P I O _ I n i t ( vo i d )

645 {

646 G P I O _ I n i t T y p e D e f G P I O _ I n i t S t r u c t = { 0 } ;

648 / * GPIO P o r t s C l o c k E n a b l e * /
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649 __HAL_RCC_GPIOC_CLK_ENABLE ( ) ;

650 __HAL_RCC_GPIOF_CLK_ENABLE ( ) ;

651 __HAL_RCC_GPIOH_CLK_ENABLE ( ) ;

652 __HAL_RCC_GPIOA_CLK_ENABLE ( ) ;

653 __HAL_RCC_GPIOB_CLK_ENABLE ( ) ;

654 __HAL_RCC_GPIOD_CLK_ENABLE ( ) ;

655 __HAL_RCC_GPIOG_CLK_ENABLE ( ) ;

657 / * C o n f i g u r e GPIO p i n O u t p u t L e v e l * /

658 H A L _ G P I O _ W r i t e P i n ( GPIOB , L D 1 _ P i n | L D 3 _ P i n | L D 2 _ P i n , G P I O _ P I N _ R E S E T ) ;

660 / * C o n f i g u r e GPIO p i n O u t p u t L e v e l * /

661 H A L _ G P I O _ W r i t e P i n ( U S B _ P o w e r S w i t c h O n _ G P I O _ P o r t , U S B _ P o w e r S w i t c h O n _ P i n ,

G P I O _ P I N _ R E S E T ) ;

663 / * C o n f i g u r e GPIO p i n O u t p u t L e v e l * /

664 H A L _ G P I O _ W r i t e P i n ( GPIOC , R _ E N 2 _ P i n | L _ E N 2 _ P i n | R _ E N 1 _ P i n | L _ E N 1 _ P i n ,

G P I O _ P I N _ R E S E T ) ;

666 / * C o n f i g u r e GPIO p i n s : L D 1 _ P i n L D 3 _ P i n L D 2 _ P i n * /

667 G P I O _ I n i t S t r u c t . P i n = L D 1 _ P i n | L D 3 _ P i n | L D 2 _ P i n ;

668 G P I O _ I n i t S t r u c t . Mode = GPIO_MODE_OUTPUT_PP ;

669 G P I O _ I n i t S t r u c t . P u l l = GPIO_NOPULL ;

670 G P I O _ I n i t S t r u c t . Speed = GPIO_SPEED_FREQ_LOW ;

671 H A L _ G P I O _ I n i t ( GPIOB , & G P I O _ I n i t S t r u c t ) ;

673 / * C o n f i g u r e GPIO p i n : U S B _ P o w e r S w i t c h O n _ P i n * /

674 G P I O _ I n i t S t r u c t . P i n = U S B _ P o w e r S w i t c h O n _ P i n ;

675 G P I O _ I n i t S t r u c t . Mode = GPIO_MODE_OUTPUT_PP ;

676 G P I O _ I n i t S t r u c t . P u l l = GPIO_NOPULL ;

677 G P I O _ I n i t S t r u c t . Speed = GPIO_SPEED_FREQ_LOW ;

678 H A L _ G P I O _ I n i t ( U S B _ P o w e r S w i t c h O n _ G P I O _ P o r t , & G P I O _ I n i t S t r u c t ) ;
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680 / * C o n f i g u r e GPIO p i n : U S B _ O v e r C u r r e n t _ P i n * /

681 G P I O _ I n i t S t r u c t . P i n = U S B _ O v e r C u r r e n t _ P i n ;

682 G P I O _ I n i t S t r u c t . Mode = GPIO_MODE_INPUT ;

683 G P I O _ I n i t S t r u c t . P u l l = GPIO_NOPULL ;

684 H A L _ G P I O _ I n i t ( U S B _ O v e r C u r r e n t _ G P I O _ P o r t , & G P I O _ I n i t S t r u c t ) ;

686 / * C o n f i g u r e GPIO p i n s : L I M I T R _ 2 _ P i n L I M I T R _ 1 _ P i n * /

687 G P I O _ I n i t S t r u c t . P i n = L I M I T R _ 2 _ P i n | L I M I T R _ 1 _ P i n ;

688 G P I O _ I n i t S t r u c t . Mode = GPIO_MODE_INPUT ;

689 G P I O _ I n i t S t r u c t . P u l l = GPIO_PULLUP ;

690 H A L _ G P I O _ I n i t ( GPIOC , & G P I O _ I n i t S t r u c t ) ;

692 / * C o n f i g u r e GPIO p i n s : R _ E N 2 _ P i n L _ E N 2 _ P i n R _ E N 1 _ P i n L _ E N 1 _ P i n * /

693 G P I O _ I n i t S t r u c t . P i n = R _ E N 2 _ P i n | L _ E N 2 _ P i n | R _ E N 1 _ P i n | L _ E N 1 _ P i n ;

694 G P I O _ I n i t S t r u c t . Mode = GPIO_MODE_OUTPUT_PP ;

695 G P I O _ I n i t S t r u c t . P u l l = GPIO_NOPULL ;

696 G P I O _ I n i t S t r u c t . Speed = GPIO_SPEED_FREQ_LOW ;

697 H A L _ G P I O _ I n i t ( GPIOC , & G P I O _ I n i t S t r u c t ) ;

699 / * C o n f i g u r e GPIO p i n : L I M I T L _ 1 _ P i n * /

700 G P I O _ I n i t S t r u c t . P i n = L I M I T L _ 1 _ P i n ;

701 G P I O _ I n i t S t r u c t . Mode = GPIO_MODE_INPUT ;

702 G P I O _ I n i t S t r u c t . P u l l = GPIO_PULLUP ;

703 H A L _ G P I O _ I n i t ( L I M I T L _ 1 _ G P I O _ P o r t , & G P I O _ I n i t S t r u c t ) ;

705 / * C o n f i g u r e GPIO p i n : L I M I T L _ 2 _ P i n * /

706 G P I O _ I n i t S t r u c t . P i n = L I M I T L _ 2 _ P i n ;

707 G P I O _ I n i t S t r u c t . Mode = GPIO_MODE_INPUT ;

708 G P I O _ I n i t S t r u c t . P u l l = GPIO_PULLUP ;

709 H A L _ G P I O _ I n i t ( L I M I T L _ 2 _ G P I O _ P o r t , & G P I O _ I n i t S t r u c t ) ;

711 }
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713 / * USER CODE BEGIN 4 * /

714 vo i d H A L _ T I M _ P e r i o d E l a p s e d C a l l b a c k ( T I M _ H a n d l e T y p e D e f * h t i m )

715 {

716 / / C h e c k w h i c h v e r s i o n o f t h e t i m e r t r i g g e r e d t h i s c a l l b a c k and t o g g l e LED

717 i f ( h t i m == & h t i m 3 )

718 {

719 READMS5803 = 1 ;

720 }

721 }

722 / * USER CODE END 4 * /

724 / * *
725 * @ b r i e f T h i s f u n c t i o n i s e x e c u t e d i n c a s e o f e r r o r o c c u r r e n c e .

726 * @ r e t v a l None

727 * /

728 vo i d E r r o r _ H a n d l e r ( vo i d )

729 {

730 / * USER CODE BEGIN E r r o r _ H a n d l e r _ D e b u g * /

731 / * U s e r c a n add h i s own i m p l e m e n t a t i o n t o r e p o r t t h e HAL e r r o r r e t u r n

s t a t e * /

733 / * USER CODE END E r r o r _ H a n d l e r _ D e b u g * /

734 }

736 # i f d e f USE_FULL_ASSERT

737 / * *
738 * @ b r i e f R e p o r t s t h e name o f t h e s o u r c e f i l e and t h e s o u r c e l i n e n umb er

739 * w h e r e t h e a s s e r t _ p a r a m e r r o r h a s o c c u r r e d .

740 * @param f i l e : p o i n t e r t o t h e s o u r c e f i l e name

741 * @param l i n e : a s s e r t _ p a r a m e r r o r l i n e s o u r c e nu mb er

742 * @ r e t v a l None

743 * /

744 vo i d a s s e r t _ f a i l e d ( u i n t 8 _ t * f i l e , u i n t 3 2 _ t l i n e )
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745 {

746 / * USER CODE BEGIN 6 * /

747 / * U s e r c a n add h i s own i m p l e m e n t a t i o n t o r e p o r t t h e f i l e name and l i n e

number ,

748 t e x : p r i n t f ( ” Wrong p a r a m e t e r s v a l u e : f i l e %s on l i n e %d \ r \ n ” , f i l e ,

l i n e ) * /

749 / * USER CODE END 6 * /

750 }

751 # e n d i f / * U S E _ F U L L _ A S S E R T * /

753 / * *********************** ( C ) COPYRIGHT S T M i c r o e l e c t r o n i c s ***** END OF F I L E

*** * /� �

E Operator Console Code
� �

1 f rom t i m e impo r t s l e e p , a s c t i m e

2 impo r t wx

3 impo r t g u i

4 f rom t h r e a d i n g impo r t T h r e a d , L o c k

5 f rom queue impo r t Queue

6 f rom u d p _ s e r v e r impo r t U D P S e r v e r T h r e a d

7 f rom u d p _ c l i e n t impo r t U D P C l i e n t T h r e a d

8 f rom dummy_data impo r t DummyIMUThread

9 f rom l o g g e r impo r t L o g g i n g T h r e a d

11 commands_queue = Queue ( )

12 c o m m a n d s _ q u e u e _ l o c k = L o c k ( )

13 s e r v e r _ m e s s a g e s _ q u e u e = Queue ( )

14 s e r v e r _ m e s s a g e s _ q u e u e _ l o c k = Lo c k ( )

15 du m m y _ d a t a _ q u e u e = Queue ( )

16 d u m m y _ d a t a _ q u e u e _ l o c k = L oc k ( )
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17 c l i e n t _ m e s s a g e s _ q u e u e = Queue ( )

18 c l i e n t _ m e s s a g e s _ q u e u e _ l o c k = L o c k ( )

19 l o g g i n g _ m e s s a g e s _ q u e u e = Queue ( )

20 l o g g i n g _ m e s s a g e s _ q u e u e _ l o c k = L o c k ( )

22 u d p _ s e r v e r _ t h r e a d = U D P S e r v e r T h r e a d ( 1 , ” UDP S e r v e r T h r e a d ” , (

s e r v e r _ m e s s a g e s _ q u e u e , s e r v e r _ m e s s a g e s _ q u e u e _ l o c k ) ,

23 ( commands_queue , c o m m a n d s _ q u e u e _ l o c k ) )

24 u d p _ c l i e n t _ t h r e a d = U D P C l i e n t T h r e a d ( 2 , ” UDP C l i e n t T h r e a d ” , (

c l i e n t _ m e s s a g e s _ q u e u e , c l i e n t _ m e s s a g e s _ q u e u e _ l o c k ) ,

25 ( dummy_data_queue , d u m m y _ d a t a _ q u e u e _ l o c k

) )

26 d u m m y _ i m u _ t h r e a d = DummyIMUThread ( 3 , ” Dummy IMU T h r e a d ” , ( dummy_data_queue ,

d u m m y _ d a t a _ q u e u e _ l o c k ) )

28 f = open ( ” l o g s / l o g _ %s . t x t ” % a s c t i m e ( ) . r e p l a c e ( ” ” , ” _ ” ) . r e p l a c e ( ” : ” , ” _ ” ) ,

” w ” )

30 l o g g i n g _ t h r e a d = L o g g i n g T h r e a d ( 4 , ” L o g g i n g T h r e a d ” , f , (

l o g g i n g _ m e s s a g e s _ q u e u e , l o g g i n g _ m e s s a g e s _ q u e u e _ l o c k ) )

32 l o g g i n g _ t h r e a d . s t a r t ( )

33 u d p _ s e r v e r _ t h r e a d . s t a r t ( )

34 s l e e p ( 1 )

35 # u d p _ c l i e n t _ t h r e a d . s t a r t ( )

36 # d u m m y _ i m u _ t h r e a d . s t a r t ( )

38 app = wx . App ( )

39 f r a m e = g u i . f r a m e M a i n ( None , ( s e r v e r _ m e s s a g e s _ q u e u e ,

s e r v e r _ m e s s a g e s _ q u e u e _ l o c k ) , ( commands_queue , c o m m a n d s _ q u e u e _ l o c k ) , (

l o g g i n g _ m e s s a g e s _ q u e u e , l o g g i n g _ m e s s a g e s _ q u e u e _ l o c k ) )

40 f r a m e . t i m e r . S t a r t ( 1 0 0 0 )

41 f r a m e . Show ( )
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42 app . MainLoop ( )

43 u d p _ s e r v e r _ t h r e a d . j o i n ( )

44 # u d p _ c l i e n t _ t h r e a d . j o i n ( )

45 # d u m m y _ i m u _ t h r e a d . j o i n ( )

46 l o g g i n g _ t h r e a d . j o i n ( )

47 f . c l o s e ( )� �� �
1 impo r t s o c k e t

2 f rom t h r e a d i n g impo r t T h r e a d

3 impo r t queue

4 f rom t i m e impo r t t i m e , gmtime , s t r f t i m e

6 HOST = ’ ’

7 PORT = 8888

10 c l a s s U D P S e r v e r T h r e a d ( T h r e a d ) :

12 de f _ _ i n i t _ _ ( s e l f , t h r e a d _ i d , name , message_queue , o u t g o i n g _ q u e u e ) :

13 T h r e a d . _ _ i n i t _ _ ( s e l f )

14 s e l f . t h r e a d _ i d = t h r e a d _ i d

15 s e l f . name = name

16 s e l f . messages , s e l f . m e s s a g e s _ l o c k = mess age_que ue

17 s e l f . o u t g o i n g , s e l f . o u t g o i n g _ l o c k = o u t g o i n g _ q u e u e

19 de f message ( s e l f , msg ) :

20 s t r _ t i m e = s t r f t i m e ( ” %H: %M: % S ” , gmtime ( t i m e ( ) ) )

21 s e l f . m e s s a g e s _ l o c k . a c q u i r e ( )

22 s e l f . messages . p u t ( ” %s %s ” % ( s t r _ t i m e , msg ) )

23 s e l f . m e s s a g e s _ l o c k . r e l e a s e ( )

25 de f r u n ( s e l f ) :

26 bound = F a l s e
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27 a d d r = None

28 wh i l e no t bound :

29 # a t t e m p t s o c k e t c r e a t i o n

30 t r y :

31 s = s o c k e t . s o c k e t ( s o c k e t . AF_INET , s o c k e t . SOCK_DGRAM )

32 s e l f . message ( ’ [ S e r v e r ] S o c k e t c r e a t e d ’ )

33 excep t s o c k e t . e r r o r as msg :

34 s e l f . message ( ’ [ S e r v e r ] F a i l e d t o c r e a t e s o c k e t . E r r o r Code :

’ + s t r ( msg [ 0 ] ) + ’ Message ’ + msg [ 1 ] )

35 # a t t e m p t s o c k e t b i n d

36 t r y :

37 s . b i n d ( ( HOST , PORT ) )

38 excep t s o c k e t . e r r o r as msg :

39 s e l f . message ( ’ [ S e r v e r ] B i n d f a i l e d . E r r o r Code : ’ + s t r ( msg

) )

41 s e l f . message ( ’ [ S e r v e r ] S o c k e t b i n d c o m p l e t e ’ )

42 bound = T r u e

43 s . s e t t i m e o u t ( 1 )

44 wh i l e T r u e :

45 # o n l y t r y and s e n d i f we h a v e a d e s t i n a t i o n and a message

46 i f a d d r i s no t None and no t s e l f . o u t g o i n g . empty ( ) :

47 s e l f . o u t g o i n g _ l o c k . a c q u i r e ( )

48 msg = s e l f . o u t g o i n g . g e t ( )

49 s e l f . o u t g o i n g _ l o c k . r e l e a s e ( )

50 s . s e n d t o ( s t r . e n c o d e ( msg ) , a d d r )

51 s e l f . message ( ’ [ S e r v e r ] S e n t message t o %s : % s : ” % s ” ’ % ( a d d r

[ 0 ] , s t r ( a d d r [ 1 ] ) , msg . s t r i p ( ) ) )

52 # c h e c k f o r i n c o m i n g message

53 t r y :

54 r e c v = s . r e c v f r o m ( 1 0 2 4 )

55 d a t a = r e c v [ 0 ] . decode ( )

56 a d d r = r e c v [ 1 ]
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57 s e l f . message ( ’ R e c e i v e d Message f r o m %s : % s : ” % s ” ’ %( a d d r [ 0 ] ,

s t r ( a d d r [ 1 ] ) , d a t a . s t r i p ( ) ) )

58 excep t s o c k e t . t i m e o u t as msg :

59 pass

60 s . c l o s e ( )� �� �
2 f rom t h r e a d i n g impo r t T h r e a d

3 impo r t queue

5 c l a s s L o g g i n g T h r e a d ( T h r e a d ) :

7 de f _ _ i n i t _ _ ( s e l f , t h r e a d _ i d , name , f i l e , l o g _ q u e u e ) :

8 T h r e a d . _ _ i n i t _ _ ( s e l f )

9 s e l f . t h r e a d _ i d = t h r e a d _ i d

10 s e l f . name = name

11 s e l f . l o g _ q u e u e , s e l f . l o g _ l o c k = l o g _ q u e u e

12 s e l f . f i l e = f i l e

14 de f r u n ( s e l f ) :

16 wh i l e T r u e :

17 i f no t s e l f . l o g _ q u e u e . empty ( ) :

18 s e l f . l o g _ l o c k . a c q u i r e ( )

19 l i n e = s e l f . l o g _ q u e u e . g e t ( )

20 s e l f . l o g _ l o c k . r e l e a s e ( )

21 s e l f . f i l e . w r i t e ( ” %s \ n ” % l i n e )

22 s e l f . f i l e . f l u s h ( )� �
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