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Abstract 
 

A variety of animals such as primates, dogs, and bears switch modes of locomotion between 

quadrupedalism and bipedalism to better complete certain tasks. However, very few robotic 

platforms can effectively combine the two forms of locomotion. A multi-modal robotic platform 

with such capabilities would provide additional adaptability in unstructured environments, 

broadening its potential applications. Therefore, we extended an existing quadrupedal platform 

with the capability to transition into a bipedal stance. In this project, we built a physical robot, 

developed an accompanying software stack with a reinforcement learning pipeline, implemented 

quadrupedal locomotion, and achieved stance transition in simulation. Our integrated hardware 

and software platform affords future roboticists the opportunity to test and develop more 

adaptable locomotion strategies and increase the functionality of robots more broadly. 
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1 Introduction  
 

As we aim to develop robots with improved task completion capabilities, the environments in 

which robots operate are becoming increasingly complex. In order to maneuver through 

unstructured terrains, and complete their designated tasks, robots must possess adaptable and 

robust locomotion strategies. For roboticists, the challenge remains in developing robotic 

systems and corresponding locomotion strategies that can stably and efficiently traverse 

unstructured terrains while also maintaining task completion capabilities.  

Today, with advances in mechanical design and control systems, roboticists are 

implementing a variety of walking gaits and locomotion techniques on two and four-legged 

robotic systems. Inspired by humans, bipedal robots such as NASA’s Valkyrie and Boston 

Dynamics’ ATLAS, move on two actuated limbs and have demonstrated the ability to walk, 

jump, and hop [1]. These robots are not only popular because of their multiple gaits, but also 

because their upper limbs provide manipulation and dexterity capabilities that other robots (e.g., 

quadrupeds) lack. Quadruped robots mimic the physical features and locomotion strategies of 

dogs, cats, and other four-legged animals [2]. Robots like Spot and BigDog from Boston 

Dynamics [3] and HyQ from the Italian Institute of Technology [4], have demonstrated stable 

walking on unstructured terrain alongside trotting, squatting, and jumping capabilities. 

Even though bipeds and quadrupeds have demonstrated some impressive locomotion 

capabilities, certain disadvantages to mono-modal locomotion currently persist. Dynamic 

stability is an ever-present issue for bipedal robots and traversing uneven terrain remains a 

challenging task [5]Click here to enter text.. Quadrupedal robots are considered to be more stable 

than their bipedal counterparts since they generally possess a larger support polygon [6]Click 

here to enter text.; however, they lack the object manipulation abilities needed to complete 

complex tasks [5]Click here to enter text.. This usually limits quadrupeds to reconnaissance work 

[1]. Furthermore, while humanoid bipeds possess the dexterity required for complex tasks, their 

movement is typically more energy-intensive than quadrupeds, making them comparatively 

inefficient walkers over long distances [7].  

Just as bipedal and quadrupedal robots are biologically inspired, we can once again look 

towards nature in an attempt to overcome the current shortcomings of mono-modal robot 

systems. In the natural world there are a variety of animals who benefit from the ability to move 

through multiple locomotion types or achieve multiple walking gaits. Primates are perhaps the 

most well-known example of multi-modal locomotion. Primates can seamlessly transition 

between quadrupedal and bipedal walking, as well as swinging and climbing. Employing 

multiple gaits allows primates to move efficiently in their terrestrial-arboreal environment and 

adapt to different surroundings.  

Unfortunately, in robotics, very few platforms can transition between multiple 

locomotion types. Of the multi-modal locomotion robots that have been developed, a variety of 

strategies have been explored, some mimicking nature and others taking a more artificial 

approach [8]. Among the different multi-modal locomotion strategies, a robotic platform that can 

stably convert between a quadrupedal and bipedal stance has the greatest potential for real-world 
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application. A robot with this capability would provide beneficiaries with the advantages that 

both quadrupedal and bipedal locomotion afford. This serves as motivation for developing a 

multi-modal robot that can efficiently walk long distances or traverse uneven terrain in 

quadruped mode while converting to biped mode to complete tasks where dexterity and object 

manipulation are required.  

The goal of this project is to create a robotic platform capable of multi-modal transition 

and locomotion. This platform is intended to be used for research and development purposes; 

therefore, it has been designed with future usability in mind. Our platform extends an existing 

open-source quadruped design, swaps out all custom electronics with off-the-shelf (OTS) 

variants, and offers a seamless simulation-to-reality testing experience. Our simulation stack also 

features a built-in pipeline for Reinforcement Learning (RL) experiments. Our final system 

demonstrates full quadrupedal capabilities as well as bipedal standing in simulation. An easily 

extendible multi-modal robotic platform will decrease the steep barrier of entry into multi-modal 

robotics and offer opportunities to create robots that navigate a diverse range of environments. 
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2 Background 
 

Over the years roboticists have developed various multi-modal robots in an attempt to create 

more effective and adaptable locomotion strategies. This section provides background on the 

field of multi-modal robotics and details the state-of-the-art in quad-bi robotics and control 

systems. We also discuss the Solo8, an open-source quadruped robot, and provide insight into 

the platform’s role in our project. Lastly, we discuss Reinforcement Learning (RL) for robot 

controls and explain the basics of RL. 

 

2.1 Overview of Multi-Modal Robotics 

 

In the field of multi-modal robotics, several platforms exist that implement different types of 

multi-modal locomotion. Reconfigurable robotic systems achieve multi-modal locomotion 

through the simple premise of connectable mechatronic modules that can alter their shape and 

function to changing environments [9]. Russo et al. [10] developed Scout, a cubic-shaped 

reconfigurable robot that can perform inchworm locomotion in a three-module configuration and 

quadrupedal locomotion using five modules (one for the body and four for the legs). Other 

systems have modules that can be configured to form a snake or spider-like shape for crossing 

uneven terrain, as well as forming a ball or wheel for quick movement on flat surfaces [10]. 

Robots like the PENS-FlyCrawl, a disaster-zone reconnaissance robot developed by Kuswadi et 

al. [11], can fly and crawl using a bi-copter mechanism for aerial propulsion and two 360-degree 

rotating legs for terrestrial crawling. Legged-wheeled locomotion is another form of multi-modal 

locomotion, which consists of wheels mounted on legs to move, either by using its wheels, by 

stepping, or both [12]. The Halluc II of the Chiba Institute of Technology is an eight-legged 

robot equipped with driven wheels at the end of each appendage. The Halluc II can switch 

between wheel-cruising and leg-walking, offering increased mobility performance [5]. Work has 

also been done in the field of posture conversion and quadrupedal-to-bipedal (quad-bi) 

locomotion.  

 

2.2 Quad-Bi Locomotion 

 

Despite being a relatively niche field of robotics, quad-bi locomotion has been implemented on 

several robots. These robots range in design and capabilities. The following section details 

current multi-modal platforms in the field of quad-bi locomotion and describes the various 

control techniques used for stance conversion and movement. The foot design of certain multi-

modal robots is also discussed.  

 

2.2.1 State of the Art 

 

There are a handful of robotic platforms that can change their posture and perform quad-bi 

locomotion. These platforms implement multi-modalism in different ways and to varying 

extents. As part of the DARPA Robotics Challenge, Carnegie Mellon University developed 
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CHIMP, a humanoid-inspired robot that moves on motorized tracks. CHIMP can move and stand 

bipedally on its rear legs, as well as change its posture to drive on all four tracks. In bipedal 

mode, CHIMP can use its high degree-of-freedom arms, while transitioning to its quadrupedal 

posture to stably move over uneven terrain [13]. WAREC-1 is a novel four-limbed robot that was 

designed to exhibit versatility in locomotion styles. The robot’s mechanically identical legs and 

three degrees-of-freedom hip/shoulder joints enable WAREC-1 to stand on two or four limbs, 

transition between quadrupedal and bipedal walking, and perform vertical ladder climbing [14].  

Quad-bi locomotion has also been achieved through designs that implement biomimicry. 

The Gorilla Robot III [15] and the hominid-robot Charlie [16] were designed to mimic the 

physical appearance and locomotion strategies of gorillas and chimpanzees, respectively. Both 

robots can perform bipedal and quadrupedal walking, as well as change their posture. 

Additionally, researchers have implemented quadrupedal locomotion on humanoid robots. 

Huang et al. [17] implemented quad-bi locomotion on the BHR-6, a traditional humanoid 

platform. In simulation, the researchers were able to develop a motion planning method that 

allowed the BHR-6 to dynamically transition between a hand-knee crawling gait and a bipedal 

walking gait. Yoon and Kim [18] approached the problem of humanoid multi-modal locomotion 

differently. By studying the differences in pelvis length between bipedal humans and 

quadrupedal anthropoids, they designed a humanoid robot with an adaptive pelvis mechanism 

that allows for effective quadrupedal and bipedal gaits. The robot can successfully perform 

bipedal and quadrupedal walking; however, the robot can not transition between the two 

locomotion types on its own.  

 

  
Figure 1: Charlie in quadrupedal posture (left) and bipedal posture (right) [16] 

 

2.2.2 Control and Stance Transition  

 

The challenge with multi-modal locomotion is developing a path planning and control algorithm 

that can transition between and realize both locomotion forms. To achieve a transition gait on the 
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BHR-6, Huang et al. [17] proposed and verified in simulation a path-generation method based on 

kinematic primitives of crawling and walking. The transition gait is constructed with a 

combination of motion primitives, created by performing a kinematic primitive analysis on 

obtained joint trajectories, and a polynomial interpolation of varying parameters. Adapted from 

the path planning scheme for the humanoid ASIMO, Kamioka et al. [19] developed a new 

algorithm with intermediate transitions for bipedal and quadrupedal locomotion. The algorithm is 

based on the linear time-variant inverted pendulum model, which is used to determine the base 

Zero Moment Point trajectory and calculate the trajectory at the center of gravity. Using this 

control method, a biped test robot demonstrated multi-modal locomotion with gait transitions.  

Several control algorithms for quad-bi locomotion use Central Pattern Generators 

(CPGs), a biologically inspired control method that generates and controls periodic motion (ie. 

walking) [20]. In robotics, CPGs are a network of oscillators that act as a controller by 

generating rhythmic joint trajectories and providing stability properties [21]. Aoi and Tsuchiya 

[22] proposed and verified a control system that obtained a smooth gait transition for a robot in 

simulation. The control scheme implemented a CPG that created nominal joint trajectories by the 

phases of nonlinear oscillators. The mapping of the joint trajectories is continuously and 

gradually changed as the robot converts from a quadrupedal to a bipedal gait. Aoi, Tsuchiya, and 

others modified this control system to implement multi-modalism on a physical bipedal robot. 

Using the same oscillator network model, they incorporated a phase resetting mechanism to 

increase the robustness of the gait transition. During experiments, the bipedal test robot was able 

to stably transition between quadrupedal and bipedal gaits [23]. However, it is difficult for robots 

to generate stable walking by CPG only [20]. Asa, Ishumua, and Wada tried to solve this issue 

by pairing CPG with an independent posture controller. In simulation, the researchers used the 

bifurcation phenomenon to realize adaptive transition behavior depending on the gradient of a 

slope. Bifurcation of the potential function for the transition gave the robot the ability to switch 

from a control law for biped walking to another for quadruped walking, based on bifurcation 

parameters (ie. the gradient of the slope) [20].  

 

2.2.3 Foot Design 

 

Most quadruped robots are equipped with single-point-contact feet (point feet) because it 

simplifies the robot’s design and control requirements. Unlike bipeds who have a considerably 

smaller support polygon, quadrupeds can utilize point feet because stability is provided by their 

large support polygon. Most bipeds are designed with some type of flat foot, whether it be 

passive or actuated, to increase the robot’s contact area with the ground [24]. 

From the literature, all legged multi-modal robots at the very least have active feet, with a 

few having more complex flexible-active feet. Active feet are actuated by a servo or motor and 

provide at least one degree of freedom at the ankle. Flexible-active feet have three degrees of 

freedom, with an active joint at the toes and two passive, spring torsioned, joints at the heel and 

toes [24]. Fondahl et al [25], writes that while passive feet are sufficient for effective 

quadrupedal walking, it hinders stable and efficient locomotion in bipedal walking. For this 

reason, the previously discussed Gorilla Robot III [15] and BHR-6 [17] have active feet with 
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two-degrees of freedom and Charlie [16] has flexible-active feet. Charlie’s feet are multi-point 

contact feet with three degrees of freedom at the ankle. The ankle joint, toe actuators, and 

flexible heel imitate the damping and Windlass mechanism of human feet [26]. This provides 

stable locomotion in both locomotion types and allows for smoother transition between 

quadrupedal and bipedal locomotion. 

 

2.3 Solo8 

 

The Solo8 is an open-source torque-controlled quadruped robot system developed by the Max-

Planck Institute for Intelligent Systems in collaboration with New York University’s Tandon 

School of Engineering [27]. As part of the Open Dynamic Robot Initiative (ODRI), the Solo8 

was developed to enhance robot locomotion research through its lightweight and modular design. 

Through experiments, the Solo8 has demonstrated a diverse range of quadrupedal locomotion 

capabilities. The robot can jump 0.65m (twice its leg length), balance on moving platforms, and 

walk over uneven surfaces [27].  

For our project, we chose to extend this platform because we believed the Solo8’s 

modular and lightweight design would aid us. The robot is easy to transport, work with, and 

modify. However, an even greater benefit of the Solo8 is its open-source nature. All the Solo8’s 

mechanical and electrical hardware blueprints in addition to software are open-source under the 

BSD-3-clause license. The robot’s bill of materials and assembly instructions, along with STL 

and CAD files for 3D printing and part modification, are available on the Open Dynamic Robot 

Initiative’s GitHub repository. Given the inherent time restriction of a nine-month-long project, 

using the Solo8’s design as our starting point made achieving our project’s goals more feasible.  

 

 
Figure 2: Solo8 [27] 
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2.3.1 Mechanical Design 

 

The Solo8 consists of four identical legs and a 3D printed body structure. Like many quadrupeds, 

the Solo8 has point feet. The 8-DoF robot has 2-DoF in each leg and multi-revolution capable 

joints. An individual leg is composed of two identical brushless actuator modules and a lower 

leg. The actuator modules consist of a brushless motor (T-Motor Antigravity 4004, 300KV), a 

high-resolution optical encoder with an index pulse and a 5000 pulse-per-revolution code wheel 

mounted to the motor shaft. Additionally, the actuator modules have a 9:1 dual-stage timing belt 

transmission that allows for impedance and force control at the joints. All the actuator modules’ 

components are housed within a lightweight, 3D printed shell. Except for the motor shafts and 

pulleys, which are machined from stock material, all the modules’ components are either 3D 

printed or off-the-shelf parts. In total, the Solo8 weighs 2.2kg and has a standing hip height of 

24cm, a body length of 42cm and a width of 33cm [27]. 

 

 
(a) Actuator Module                                                             (b)   Parts Overview  

Figure 3. Brushless actuator module (a) assembled and (b) parts. BDLC Motor (1), two-part 3D printed shell 

structure (2), high resolution encoder (3), timing belts (4), and output pulley (5). Brushless motor (6), optical 

encoder (7), timing belts (8), bearings (9), fasteners (10), machined parts (11), and 3D printed parts (12). [27] 

2.3.2 Software 

 

Currently, the documentation for the Solo8’s software is minimal and everything we learned 

about the software was through communications with the original creators on the ODRI 

discourse forum (https://odri.discourse.group/). On the forum we were told that the Solo8’s 

software stack is based on the dynamic graph concept to generate dynamically stable walking 

gaits. The steps involved in executing an algorithm are as follows. 

1. Prototype and implement an algorithm in simulation (PyBullet) using Python 

2. Translate the algorithm into C++ to execute on the real robot 

3. Embed the algorithm in a dynamic graph to be executed 

4. Execute it on the real robot. 

https://odri.discourse.group/
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Upon pursuing more research on the dynamic graph concept, we could not gather more 

information. Since our only means of gathering information was by communicating with the 

Solo8 developers, the team decided to pursue other avenues for time purposes. Since we were 

having difficulty getting basic information about the software during the planning phase of the 

project, we were skeptical about the feasibility of using their undocumented software for our 

project timeline. Therefore, we decided to create our own software stack. This decision is 

explained more in Section 3.1. 

 

2.3.3 Electronics 

 

The Solo8’s electronics are contained within the body structure and the robot is externally 

powered and remotely controlled by a PC. The motors are controlled with off-the-shelf TI micro-

controller evaluation boards and custom TI motor driver electronics. The micro-controllers are 

equipped with two BLDC booster cards that are capable of Field Oriented Control (FOC) and 

can execute dual motor torque control at 10 kHz. The motor driver electronics were miniaturized 

by a volume factor of ten to reduce the electronics footprint. The resulting MPI Micro-Driver 

electronics are open-source and consist of a Texas Instruments micro-controller 

(TMS320F28069 M) and two brushless motor driver chips (DRV8305) on a single six-layer 

printed circuit board. The board includes a JTAG port for programming, CAN and SPI ports for 

control communications, and operates at motor voltages up to 40V [27]. 

 

2.4 Reinforcement Learning for Robot Control 

 

In traditional robot control algorithms, a roboticist orchestrates a movement by changing motor 

values (positions, torques, etc.) to perform a task. However, the human designed solution is not 

always the most efficient way to complete the given task. 

 Reinforcement Learning (RL) is an active field of research that aims to remove human 

bias when solving a task. RL methods use Machine Learning (ML), a technique used to infer the 

behavior of an arbitrary function, to “teach” robots to complete tasks by themselves. These 

algorithms only require information about the environment (observations, how well it is 

performing, etc.), heavily reducing the amount of human bias in the algorithm design process. 

This section offers a working introduction to ML, how it is used within RL, and concludes with 

the algorithms chosen by this team.  

 

2.4.1 A Gentle Introduction to Machine Learning 

 

In computer science, machine learning is a class of algorithms that aims to discover relationships 

in data without any prior information on the data’s domain. These algorithms can be broadly 

described as supervised and unsupervised, based on the nature of the data. Unsupervised 

machine learning algorithms find hidden patterns in data without the need for any human 

intervention. Common unsupervised machine learning problems include clustering and 

dimensionality reduction. In contrast, supervised machine learning algorithms require a ground 
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truth, or prior knowledge of a desired output value for a given input. If the desired output is 

discrete, then the machine learning task is described as classification. Otherwise, if the desired 

output is continuous, the task is described as regression. The scope of this project only involves 

supervised machine learning models aimed at solving regression tasks. 

 

2.4.1.1 Neural Networks 

 

Artificial neural networks (ANNs) are a type of machine learning technique that mimic the 

structure of the human brain to learn the solution to a task [28]. ANNs can be broken down into 

their atomic units called artificial neurons, or neurons for short. Each neuron receives an input 

signal and sends an output signal to its connected neurons, which receive the signal as an input 

[28]. 

In most neural networks, neurons are split into groups called layers. In feedforward 

networks, layers are connected sequentially, where each neuron’s output from a given layer is 

every neuron’s input in the next layer. Note that in feedforward neural networks, no cycles exist 

between any two neurons. Neural networks with cycles between neurons are called recurrent 

neural networks and have shown great success in representing sequence-dependent data [29]. 

However, recurrent neural networks are outside the scope of this project. 

 Therefore, the input to any given neuron is simply a linear combination of the outputs of 

the previous layer with a vector of weights (𝐰) and biases (𝐛). An activation function (𝜎) is then 

applied to this combination, and this result is the output of the neuron. Hence, the output (z) of a 

neuron in layer 𝑙 is expressed as: 

 

𝑧𝑖
(𝑙) = 𝜎( ∑ 𝐰𝑗

(𝑙−1)𝒛𝑗
(𝑙−1) + 𝐛𝑗

(𝑙−1)

𝑛(𝑙−1)

𝑗=1

) (1) 

where: 

• 𝑛(𝑙−1) is the number of neurons in layer 𝑙 − 1 

• 𝐳j
(𝑙−1)

 is the output of the ith neuron in layer 𝑙 − 1 

• 𝐰𝑗
(𝑙−1)

 is the weight associated with 𝐨𝐣
(𝑙−1)

 

• 𝒃𝑗
(𝑙−1)

 is the bias weight associated with 𝐨j
(𝑙−1)

 

• 𝜎 is the activation function 

Then, we can define 𝐳(𝑙) to be the vector output for a layer 𝑙 as: 

 𝒛(𝑙) = [𝑧1
(𝑙)

𝑧2
(𝑙)

⋯ 𝑧𝑛
(𝑙)]

T
 

(2) 
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Therefore, in vector notation, this entire operation per neuron layer can be expressed as: 

 𝒛(𝑙) =  𝜎(𝐖(𝑙)𝐳(𝑙−1) + 𝐛(𝑙)) (3) 

   

In this case, 𝐖(𝑙) is an 𝑚 × 𝑛 matrix, where 𝑚 is the number of neurons in layer 𝑙 (the current 

layer) and 𝑛 is the number of neurons in layer 𝑙 − 1. One particularity to note is that 𝜎, even 

though it is given a vector input, is applied element-wise. Additionally, one requirement of 𝜎 is 

that it be differentiable—this is elaborated upon in Section 2.4.1.2.  

Thus, for a feedforward neural network with 𝐿 layers, 𝐳(𝑙) is the input to 𝐳(𝑙+1) and 𝐳(𝐿) is 

the final output of the network. A simple example of a neural network with four layers can be 

seen in Figure 4. Formally, we express the final output 𝐳(𝐿) of the network as a function of a 

single data point 𝐱: 

 

 𝐳(𝐿) = 𝜎(𝐿)(𝐖(𝐿)⋯(σ(2)(𝐖(2)σ(1)(𝐖(1)𝐱 + 𝐛(1)) + 𝐛(2))⋯+ 𝐛(𝐿) (4) 

 

Note that 𝐱 ∈ ℝ𝑛
(1)

, where 𝑛(1) is the number of neurons in the input layer. Additionally, 

the activation function 𝜎 can differ between layers, so 𝜎(𝑙) refers to layer l’s activation function. 

 

2.4.1.2 Objective Functions & Learning 

 

As mentioned in Section 2.4., since we are interested in building a regressor, we sample a 

response variable 𝐲 which is the output of the ground-truth function 𝑓(𝐱). However, the ground-

truth function is unknown; therefore, supervised machine learning aims to best approximate 𝑓(𝐱) 

when only given 𝐱 and 𝐲. 

 

 

Figure 4. A four-layer, feed forward neural network. Observe that the input to highlighted neuron in the second layer 

is just a linear combination of layer one’s outputs, as per (1). Note that the inputs to layer one considered the inputs 

to the entire network and that the output of layer 4, or 𝒛(4), is the output of the entire network. 
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By stacking layers with different amounts of neurons, neural networks can effectively 

transform an input vector 𝐱 into any desired dimensional space. Therefore, neural networks can 

be viewed as a function on arbitrary dimensions: 

 

 �̂� = 𝑓(𝐱) ∶  ℝn → ℝ𝑚 (5) 

where 

• 𝑓(𝐱) is the neural network attempting to approximate the ground truth function 𝑓(𝐱) 

• �̂� is the guess of the neural network. Note that �̂� = 𝐳(𝐿) 

• 𝑛 is the dimensionality of 𝐱. Observe that this value is the same as the number of neurons 

in layer 𝑙 = 1 

• 𝑚 is the dimensionality of the output, or �̂�. This is also the same number of neurons in layer 

𝑙 = 𝐿. 

 

Once dimensioned correctly, the performance of a neural network is evaluated via an 

objective function. The neural network is then iteratively optimized with respect to the objective 

function to reduce the amount of error in the approximations [30].  

In regression tasks, one of the most popular objective functions is Mean Squared Error 

(MSE), simply defined as 

 
𝑀𝑆𝐸 =

1

2𝑝
∑‖�̂�𝑖 − 𝐲𝑖‖2

𝑝

𝑖=1

 (6) 

 

Recall that ‖�̂�𝑖 − 𝐲𝑖‖2 is the l2-norm, or the Euclidean distance, between the ground truth 

𝐲𝑖 and the network’s approximation �̂�𝑖. 

Observe that 𝑀𝑆𝐸 in (6) is uniformly differentiable. Additionally, as 𝜎 is required to be 

differentiable—initially stated in Section 2.4.1.1—notice that �̂� is comprised of purely 

differentiable operators: function composition, multiplication, and addition. Therefore, �̂� is 

differentiable. 

By the chain rule, we know that 
𝜕𝑀𝑆𝐸

𝜕�̂�
 exists. Therefore, for any tunable weight 𝑤 encased 

in either a weight matrix 𝐖 or a bias weight vector 𝐛, we can compute 
𝜕𝑀𝑆𝐸

𝜕𝑤
 as  

 

 𝜕𝑀𝑆𝐸

𝜕𝑤
=  
𝜕𝑀𝑆𝐸

𝜕�̂�

𝜕�̂�

𝜕𝑤
 (7) 

 

Recall that for a vector 𝐯, and a function 𝑓, the gradient of 𝑓 w.r.t. 𝐯 is defined as: 

 

 
∇𝐯𝑓 =  [

𝑑𝑓

𝑑𝐯1

𝑑𝑓

𝑑𝐯2
…

𝑑𝑓

𝑑𝐯𝑛
]
T

 (8) 

where 𝑛 is the number of elements in 𝐯. 
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Then, by (7), (8) and the chain rule, for any layer 𝑙 in a neural network, ∇𝐖(𝑙)𝑓 and  ∇𝐛(𝑙)𝑓 

can be computed. Recall that the gradient is a vector pointing in the direction of greatest change 

[31].  

Using these weight gradients, the neural network can iteratively “learn” to reduce the 

error in its approximations. Since 𝑀𝑆𝐸 is the error between the ground truth 𝐲𝑖 and the network’s 

guess �̂�𝑖, ∇𝐯 𝑀𝑆𝐸 is the partial derivatives of 𝑀𝑆𝐸 with respect to 𝐯 to increase the error most 

quickly. 

However, since the goal of learning is to decrease the error, ∇𝐯 𝑀𝑆𝐸 can simply be 

negated to find the direction of quickest error decrease. Then, a small update can be made to all 

the weight parameters: 

 𝐖(1) = 𝐖(1) − 𝛼∇𝐖(1)  𝑀𝑆𝐸 

𝐛(1) = 𝐛(1) − 𝛼∇𝐛(1)  𝑀𝑆𝐸 

𝐖(2) = 𝐖(2) − 𝛼∇𝐖(2)  𝑀𝑆𝐸 

𝐛(2) = 𝐛(2) − 𝛼∇𝐛(2)  𝑀𝑆𝐸 

⋮ 
𝐖(𝐿) = 𝐖(𝐿) − 𝛼∇𝐖(𝐿)  𝑀𝑆𝐸 

𝐛(𝐿) = 𝐛(𝐿) − 𝛼∇𝐛(𝐿)  𝑀𝑆𝐸 

(9) 

 

Note that the gradients’ updates are being subtracted—this is to reduce the error, as 

mentioned previously. Additionally, as ∇𝐯𝑀𝑆𝐸 is simply the direction of greatest change, it is 

multiplied by a small value 𝛼, known as the learning rate, to ensure that the gradient update does 

not overshoot back and forth during training. 

Efficiently computing these gradient updates is known as backpropagation [30] and is 

outside the scope of this project. However, most deep learning libraries such as Pytorch [32] and 

Google’s TensorFlow [33] have backpropagation efficiently implemented. Using 

backpropagation and gradients to iteratively reduce loss is an algorithm known as gradient 

descent. While there have been improvements to gradient descent—such as ADAM, which 

dynamically adjusts the learning rate [34]—the idea of using the gradient to reduce the loss on an 

arbitrary function is the key intuition to making neural networks learn. 

 

2.4.1.2 Choosing Activation and Objective Functions 

 

In neural networks, activation functions typically dictate how the network will learn while 

objective functions dictate what the network will learn. In the original neural network, the 

Heaviside step function was used, which directly models the all-or-none firing nature of 

biological neurons [35]: 
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 𝜎(𝑧) =  {
1 𝑧 ≥ 0
0 𝑧 < 0

 (10) 

 

A visualization of this function can be seen in Figure 5. However, the gradient is 0 over 

almost the entire domain. Considering how important of a role the gradient plays in the learning 

process, this was largely replaced by the logistic sigmoid, which can be seen in Figure 5: 

 
𝜎(𝑧) =

1

1 + 𝑒−𝑧
 

(11) 

 

Recall from (4) that the final output of a multi-layered neural network is a large 

composition of the activation functions. Additionally, recall the chain rule for a function 

𝑓(𝑔(𝑥)): 

 𝑑𝑓

𝑑𝑥
=
𝑑𝑓

𝑑𝑔

𝑑𝑔

𝑑𝑥
 (12) 

Therefore, for neural networks that have many layers, the computations for the final 

layers’ gradients must undergo tens, if not hundreds of multiplications. Observe that at large 

magnitudes within the domain, the logistic sigmoid’s gradient is near zero. A common error that 

can arise while training large networks is that the final layers’ gradients undergo many near-zero 

multiplications. This can cause floating-point inconsistencies and end up with a gradient of 0, 

preventing any future learning. This is often referred to as the vanishing gradient problem [36].  

Rectified Linear Units (ReLU) attempt to solve this problem by forcing a fixed value for 

the derivative of all positive values. ReLU, seen in Figure 6 is defined below: 

 

 

 

Figure 5. On the left, the Heaviside function as defined in (10). On the right, the logistic sigmoid, as stated in (11). 
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𝑅𝑒𝐿𝑈(𝑧) = max {0, 𝑧} (13) 

Here, the derivative of ReLU is always either 1 or 0. Even though ReLU does have a zero 

derivative, having a fixed derivative for all positive domain values is enough to “restart” a 

neuron with a zero gradient [36]. The ReLU activation function has shown great empirical 

success in training modern neural networks and was selected for this project.  

In contrast, objective functions control what the network learns. In the preceding 

example, 𝑀𝑆𝐸 was used as the objective function of choice; however, the only requirements for 

a loss function (an objective function that is minimized instead of maximized) is that it is 

differentiable and always positive. 𝑀𝑆𝐸 is the simple Euclidean distance between two vectors, 

so it fits the criteria for an objective function that aims to minimize l2-error. Many advanced 

applications of machine learning often involve directly modifying the objective function to get 

the desired behavior from the network. 

 

   

Figure 6. The ReLU activation function, as stated in 

(13) 

 

Figure 7. The RL representation of an agent-environment interaction. 
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2.4.2 Reinforcement Learning 

 

Reinforcement Learning (RL) uses ML to teach autonomous agents how to optimally navigate an 

environment. RL differs from traditional supervised learning problems in that the ground truth 

labels are usually discovered by the agent during exploration. This section offers an overview of 

RL and the techniques used in our experiments. 

 

2.4.2.1 Agents & Environments: The RL Problem Formulation 

 

In RL problems, an agent evaluates the state 𝑠𝑡 of the environment at timestep 𝑡 and performs an 

action 𝑎𝑡. The agent’s decision-making process is called its policy. Typically, an agent’s policy 

is represented by a probability distribution 𝜋(𝑎𝑡|𝑠𝑡). The environment responds—sometimes 

non-deterministically; imagine a car on any icy road—with a new state 𝑠𝑡+1. During training, the 

environment also gives the agent a reward 𝑟𝑡 based on the agent’s previous action. This cycle can 

be seen in Figure 7.  

 The agent continues this cycle for a fixed number of timesteps 𝑇 or until the environment 

terminates it, such as in a video game. This collection of tuples, 

((𝑠1, 𝑎1, 𝑟1), (𝑠2, 𝑎2, 𝑟2), … (𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇)) that describe the agent’s interaction with the environment 

is called a trajectory or an episode. 

 However, some states are more desirable than others. For example, an agent driving 

under the speed limit is probably performing better than an agent skidding out of control—

assuming the agent’s task is to travel safely. The value of a state is its expected discounted sum 

of rewards over time. Mathematically, the discounted sum of rewards starting at state 𝑠𝑡 is 

expressed as: 

 

𝑟(𝑠𝑡) =∑𝛾𝑗−𝑡
𝑇

𝑗=𝑡

𝑟𝑗 
(14) 

Where 𝑡 ∈ [1, 𝑇] ∩ ℤ and 𝛾 ∈ [0, 1). As gamma is strictly less than one, observe that 

rewards later in the trajectory have less of an effect on the value of the state. As more trajectories 

are computed, the value, 𝑉(𝑠𝑡), converges to 𝔼[𝑟(𝑠𝑡)], the expected reward starting at state 𝑠𝑡. 

Thus, the value function 𝑉(𝑠) effectively ranks the state space of the environment.  

As the expected sum of rewards is computed per trajectory, it tends to have a large 

sampling variance. To reduce the variance and help assist training, the advantage of a state is 

typically used rather than the value or the discounted sum of rewards. The advantage for a state 

𝑠𝑡 is defined as 

 𝐴𝑡 =  𝑟(𝑠𝑡) − 𝑉(𝑠𝑡) 

= ∑𝛾𝑗−𝑡
𝑇

𝑗=𝑡

𝑟𝑗 −  𝔼 [∑𝛾𝑗−𝑡
𝑇

𝑗=𝑡

𝑟𝑗] 
(15) 
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The advantage function simply subtracts the expected rewards from the collected rewards—

effectively making 𝐴𝑡 unbiased. 

 

2.4.2.2 Proximal Policy Optimization 

 

Proximal Policy Optimization (PPO) was initially introduced in 2017 by OpenAI as an RL 

algorithm for continuous control [37]. Since 2017, iterations have been made to PPO to optimize 

it for data sampling efficiency as well as runtime improvements on NVidia CUDA-enabled 

Graphics Processing Units (GPUs). PPO was designed to overcome the shortcomings of previous 

RL algorithms; therefore, it heavily resembles algorithms such as Advantage Actor Critic [38] 

and Trust Region Policy Optimization [39]. Unfortunately, a full history of RL techniques is 

outside the scope of this paper and a working explanation for PPO will be offered instead in this 

section. 

As mentioned in Section 2.4.2, RL’s primary difference against traditional supervised 

learning is that the agent is actively interacting with the environment to gather data. Thus, 

traditional training measures such as 𝑀𝑆𝐸 can cause aggressive gradient updates which make the 

environment irrecoverable. For example, imagine a robot attempting to walk up a flight of stairs. 

Even one misstep could cause the robot to tumble all the way down—resulting in a new 

environment that the network has never trained for. One of the primary challenges in RL is 

effectively limiting agent exploration with minimal consequences during training. 

When designing PPO, OpenAI intended for it to “perform comparably or better than 

state-of-the-art approaches while being much simpler to implement and tune” [37]. As such, PPO 

begins by replacing the policy with a neural network that optimizes a very intuitive objective 

function:  

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝔼[𝐴𝑡] 
(16) 

Note that the policy network 𝜋𝜃 is a neural network that inputs 𝑠𝑡 and outputs a 

distribution for the action 𝑎𝑡 to be sampled from. In practice, this usually means that 𝜋𝜃 outputs a 

mean and a standard deviation—but most ML libraries have their own canonical implementation 

of statistical distributions [32], [33]. 

Here, PPO’s objective is very straightforward: optimize the policy network 𝜋𝜃 such that 

the expected advantage is increased. In practice, this involves collecting a set of trajectories 

under a policy 𝜋𝜃, computing the advantages, and using that data to train 𝜋𝜃. Note that to prevent 

bias, after every iteration of updating 𝜋𝜃, a new set of trajectories will need to be collected. 

 This simple objective function is known to cause relatively large training updates and be 

unstable while training policy networks [39]. To help mitigate this, a policy ratio is applied to 𝐴𝑡, 
yielding: 

 
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝔼 [

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝑡] 

(17) 
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Here, a copy of the policy network, 𝜋𝜃𝑜𝑙𝑑  is saved between iterations. By maintaining 

𝜋𝜃𝑜𝑙𝑑 , we can not only get the probability of the current policy choosing an action, 𝜋𝜃(𝑎𝑡|𝑠𝑡), but 

also the probability of the previous policy, 𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡). 

By introducing the probability ratio, 𝐴𝑡 effectively gets amplified when the current 𝜋𝜃 is 

more likely to perform an action and vice versa. This only works because we know from (15) 

that 𝐴𝑡 is unbiased and that less-optimal actions correspond to negative 𝐴𝑡 values. 

 However, observe that 𝜋𝜃(𝑎𝑡|𝑠𝑡) is just a single point in the action space; this objective 

function does not consider the distribution of all possible actions. PPO addresses this by 

punishing large differences between distributions: 

 
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝔼 [

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝑡] − 𝛽𝔼[𝐾𝐿(𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑)] 

(18) 

  

Where 𝐾𝐿(𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑), is the Kullback-Leibler (KL) divergence for the 𝜋𝜃 and 𝜋𝜃𝑜𝑙𝑑  

distributions evaluated at state 𝑠𝑡. Recall that the KL-divergence measures the difference 

between two data distributions 𝑃 and 𝑄: 

 
𝐾𝐿(𝑃, 𝑄) = 𝔼𝑥 [ log

𝑃(𝑥)

𝑄(𝑥)
] (19) 

  

and that larger values of 𝐾𝐿 correspond to a greater difference between distributions [40].  

This KL-penalty is then multiplied by a variable 𝛽 that controls the weight of the KL-

penalty. In implementation, 𝛽 is dynamically adjusted. Another hyperparameter is typically 

introduced, 𝛿, which is the target KL-divergence per iteration. However, if 𝐾𝐿(𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑) >

1.5𝛿, that means that the agent is making too drastic of an update and 𝛽 is simply doubled to 

punish that for the next iteration. If 𝐾𝐿(𝜋𝜃 , 𝜋𝜃𝑜𝑙𝑑) <
𝛿

1.5
, then the converse is true and 𝛽 is simply 

halved as a result. The decision to multiply and divide 𝛿 by 1.5 is arbitrary but is recommended 

by the original authors [37]. By automatically adjusting 𝛽, PPO effectively allows the researcher 

to control the exploration per iteration via 𝛿. Finally, note that the penalty is being subtracted 

because the overall objective function is being maximized. The entire algorithm and training 

process can be seen in Figure 8. 

The combination of a policy ratio and a KL penalty has shown great empirical success in 

RL applications. Even as late as 2019, PPO has shown the most consistent convergence among 

top RL algorithms [41]. As such, PPO is one of the top algorithms of choice for researchers 

exploring new problems; it allows them to focus on how the environment should reward the 

agent rather than having to worry about the nitty gritty details of optimization.  

OpenAI later silently released PPO2, a CUDA GPU-accelerated version of PPO. PPO2 

was shown to run 3x faster than PPO on OpenAI’s Atari environments [37] and was the 
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algorithm chosen in this project. Using PPO, Google DeepMind was able to achieve quadrupedal 

standing on a quadruped; however, their quadruped has 12 DoFs compared to the Solo8’s 8 [42]. 

Since we were only considering 8 DoFs in our problem, we were hopeful that we would be able 

to successfully use PPO in our project. 

 

  

 

Figure 8. The PPO with Adaptive KL Penalty algorithm from the original paper [37]. Note that ℒ𝜃𝑘is simply 

OpenAI’s shorthand for (17) and that �̅�𝐾𝐿(𝜃||𝜃𝑘) is the KL-divergence between 𝜋𝜃  and 𝜋𝜃𝑜𝑙𝑑 , as explained in 

(19). Observe that at the end of every iteration, 𝛽 is adjusted to maintain a target KL-divergence. 
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3 Design Decisions 
 

While the Solo8 provided a good starting point for the project, the platform required 

modifications for us to achieve our goals. As discussed in Section 2.3 the software stack was 

convoluted and required multiple code re-writes to go between the simulation environment and 

real robot. The robot’s electronics where custom built and lightly documented, making it difficult 

to replicate them and learn how to use them. The robot’s point feet were also not conducive with 

bipedal standing as they provided a small bipedal support polygon. To overcome these 

shortcomings, we modified robot’s software architecture, electronics, and mechanical design to 

varying degrees. This section details our design decisions, how we made them, and provides 

justifications for them. 

 

3.1 Software Stack 

 

As mentioned in Section 2.3.2, the Solo8’s software stack had various constraints that made it 

difficult for us to implement the software in our project. Being new to the platform, we were 

unfamiliar with the ODRI’s specific tools and libraries. This problem was compounded by a 

severe lack of documentation regarding the Solo8’s software stack and slow response time on the 

ODRI discourse forum. Since this was our primary means of communicating with the Solo8 

developers, we were skeptical of being able to address any unforeseen issues and bugs with the 

software in a timely manner. Therefore, we decided to develop our own software stack for this 

project because we felt more confident in our ability to create a custom stack that would meet 

our project’s goals and timeline. We decided to use standard tools and libraries, like ROS and 

Arduino, because we were familiar with them, and they provided better access to community 

support.  

On the ODRI forum, we discovered that the original Solo8 has a multi-language software 

stack for simulation and the robot. Algorithms must be written in Python to be tested in 

simulation. When porting over to the robot, these algorithms are then converted to C++. We 

thought that this conversion step from Python to C++ could potentially induce bugs that would 

be difficult to troubleshoot on the real robot. As such, we decided to create a single language 

software stack and implemented it in Python. By doing so, we could improve the simulation-to-

robot pipeline and make it easier to use.  

We also decided to split the robot control between two controllers. The Raspberry Pi is 

responsible for all higher-level planning and control (quadrupedal trajectory, bipedal trajectory) 

and the Arduino is responsible for all lower-level control (controlling motors, communicating 

with sensors). Our decision to use this hardware is further explained in Section 3.2. We decided 

to use ROS2 Dashing on our Raspberry Pi. ROS has a lot of benefits in terms of already 

implemented standard tools and libraries for various standard hardware. Originally, we were 

planning to use ROS Melodic instead of ROS2 due to our familiarity with it and its arguably 

larger presence in the field. Later, we switched to ROS2 given its native support for Python 3 

and full availability of features and libraries that we thought might be useful for this project. 

ROS2 also has a growing community with heavy active development; so, we predict that ROS2 
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will only get better over time. Furthermore, using ROS2 ensures compatibility with sensors like 

Lidars, depth cameras, etc. for future use cases.  

Based on the above-mentioned decisions, we created a software architecture that can be 

found in Appendix A. A concise version of the software architecture diagram can be found in 

Figure 9. The software architecture can be broken down into three primary components: path 

generation and execution, simulation, and Reinforcement Learning (RL). We also decided to 

structure our code so that the same program would run in both the simulation as well as the real 

robot; doing this increased our confidence when porting our code. For the real robot, we divided 

the software stack into two parts, one part responsible for all the actuating, sensing, and lower-

level implementations, and the other part responsible for higher-level decision making. We 

decided to use the ROS2 framework for the higher-level system. The motion to be executed--

implemented on ROS2 --is divided into two parts: path generation and trajectory executor 

(denoted by ‘dyn_stabalizing’ in (Appendix A). The logic separation allows the user to 

independently define the path to be executed. The path generator also needs to handle the case 

when the robot gets stuck in an unrecoverable state during the execution of the trajectory by 

producing a new path. The trajectory executor converts the path into a trajectory. It is also 

responsible for executing this trajectory, making minor adjustments to keep the robot on the 

predefined path as needed, and terminating the trajectory if the robot goes into an unrecoverable 

state. An example of an unrecoverable state would be the robot falling over. In order to execute 

the trajectory, the trajectory executor on the Raspberry Pi communicates with the Arduino over a 

serial UART connection. The Arduino is responsible for controlling the motors, reading data 

from the sensors, and storing the current state of the robot. Furthermore, at the end of every 

control loop cycle, the trajectory executor requests the current state of the robot from the 

Arduino. Using this information, any deviations from the goal trajectory will be calculated. To 

successfully complete the trajectory a best effort is made to employ the corrections. If the robot 

goes into an unrecoverable state, the trajectory executor lets the path generator know. It is now 

the path generator’s responsibility to define the correct behavior to handle such a case. By 

handling unforeseen terminations this way, we give users the option to define their own error 

handling, leading to more robust and tweakable solutions. We use the industry standard serial 

communication practices of preamble and checksum verification for serial communication to 

ensure data packet validity. 
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Figure 9: Diagram of Software Stack (Concise) 

 

A similar process is used to control the robot in simulation. In this case, both ROS2 and 

the simulator run on the same platform and all communication is done via software serial ports. 

Since we had a need for both software and real serial communication, we decided to create an 

abstract communication node for ROS2. This way, the appropriate mode of communication is 

dynamic to the platform: serial for the real robot and software serial for simulation. By doing so, 

no user change is required to switch mode of communication. This was in line with our vision of 

creating a seamless transition between the simulation and the real robot. We created a wrapper 

that acts as an intermediary between ROS2 and the simulator with the sole purpose of providing 

seamless communication between the two. For our simulator, we decided to use PyBullet, an 

open-source physics simulator prevalent within the RL community. While there is not much 

associated documentation, the Solo8 creators did confirm using PyBullet as their simulator, 

giving us confidence in its abilities. To abstract all our problem-specific knowledge we created a 

wrapper for PyBullet simulator. In accordance with the open-source nature of our project, we 

designed our wrapper to be modular, well-tested, and conformant to domain standards--

specifically the OpenAI Gym API. 

Abstracted out, our problem shares quite a few similarities with many other (solved) 

problems in Reinforcement Learning: a continuously controlled agent is being given a set of 

observations and tries to optimize a continuous reward. As such, many experts in the field have 

released open-source implementations of the top RL algorithms. Because these implementations 

are highly optimized and verified to be correct, we decided to use these off-the-shelf solutions as 

much as possible. This is where the well-thought design of the simulation wrapper comes into 

play. As we already conforming to the field’s golden standard, OpenAI’s Gym API, our 

simulated Solo8 environment is immediately compatible with both stable-baselines and 

Tensorflow Agents- the two most actively maintained implementations of RL algorithms 

available. With these libraries, we now have access to the top continuous-control learning 

algorithms (PPO, TRPO, DDPG). 

 We also wrote an autotrainer framework to automate the entire hyperparameter tuning 

step for Reinforcement Learning. This autotrainer heavily leveraged the Weights & Biases 

https://github.com/hill-a/stable-baselines
https://www.tensorflow.org/agents
http://wandb.ai/
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(W&B) service. W&B is an online machine learning monitoring tool. However, they also offer a 

“sweeps” feature, where W&B coordinates your training servers to tune your model. W&B also 

uses a probabilistic model to intelligently tune the hyperparameters, rather than the industry-

standard random search. Additionally, as we already have access to implementations of various 

RL models, we designed the W&B hyperparameter search to not only tell us what the best 

parameters for a given algorithm are, but also what the highest performing algorithm is. This 

functionality is reduced to one command: wandb agent, which can be run on any computer to 

start intelligently training. 

To ensure that we did not accumulate too much technical debt near the end of the project, 

we decided to diligently follow proper coding practices. Every change that was pushed into the 

master branch of our code repository was reviewed by at least one other team member. 

Additionally, we followed PEP standards and stylistic formats for Python for easy code 

readability. Throughout the project, we were very stringent about making sure our code was 

tested and reliable. 

 

3.2 Electronics Changes 

 

Instead of using the Solo8’s custom electronics, we decided to use off-the-shelf (OTS) hardware. 

The only electronic components that we decided to keep from the original Solo8 were the motors 

(T-Motor’s antigravity 4004 KV300) and encoders (Broadcom AEDT-9810-Z00). By using the 

antigravity motors, we saved ourselves the time of having to redesign the actuator modules to 

accommodate a new motor. Reasoning for this decision is give in Section 3.3. The decision to 

use OTS hardware also went hand-in-hand with our decision to implement a custom software 

stack. We believed that OTS electronics would better match our software requirements, since our 

unfamiliarity with the Solo8’s custom electronics would make porting our software stack onto 

the custom boards a challenge. The replacement electronics consists of three major components: 

a single board computer, an Arduino microcontroller, and brushless motor controllers. The team 

researched various off-the-shelf electronics to determine the best fit for each component. We 

specifically focused on OTS parts due to their wider community support. 

 

3.2.1 Single Board Computer 

 

When looking at single board computers (SBCs), the team’s criteria for selection included price, 

community support, connectivity, performance, and applicability to our project. The four 

contenders included the Raspberry Pi 4B, the Jetson Nano Dev Kit, the LattePanda, and the 

BeagleBone. Other SBCs were considered but were similar enough to these boards in all 

categories while being less powerful that they did not make the cut. The chosen SBC needed to 

interface with an Arduino microcontroller through a serial connection and run ROS on Ubuntu 

18.04. This section covers the pros/cons of each of the four SBCs mentioned and explains which 

board(s) our team decided to use. 
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BeagleBone 

 

The BeagleBone has a few different variants that specialize in different robotics topics. For 

example, the BeagleBone AI is geared towards more computationally heavy tasks while 

sacrificing performance in other areas outside the processor, such as RAM (only 1GB). 

Additionally, the BeagleBone product line generally limits options for connectivity by having a 

single serial port in some cases and none in others. On the positive side, the BeagleBone has 

considerable community support. The prices for these boards range from ~$30 to ~$150. 

 

LattePanda 

 

The LattePanda also comes in a wide range of variants. The prices of these boards range from 

~$100 to ~$900. The LattePanda is an SBC with a processor capable of running Windows 10 as 

well as having an Arduino coprocessor on the same board with the appropriate pinout headers. 

Although the board has this integration between a more powerful than average processor and 

Arduino coprocessor, the Arduino coprocessor is based on a Leonardo. Leonardo is one of the 

smaller Arduino boards that lacks pinouts. Although we did not foresee needing too many 

pinouts, we wanted to have as many as possible to cover unforeseen future needs. Also, the 

combination of the x86 processor and Arduino coprocessor into one board brings about potential 

new complications or issues that could be avoided by having separate boards. Additionally, these 

boards are preloaded with Windows 10. Since we decided to use ROS, we would have had to 

replace the default OS with Ubuntu anyways. Traditionally, such a procedure is straightforward 

on x86 based systems. However, due to the unique configuration of this board, such a change 

could also bring about unwanted complications. Although the LattePanda is a very intriguing 

board, the uncertainties associated with the board’s construction disqualified it for use in our 

project as our team needed to minimize as many potential issues as possible.  

 

Jetson Nano Dev Board 

 

The Jetson Nano Dev Board has a couple of different variants that have similar features. The 

Nano takes the general form and configuration of a Raspberry Pi while adding a NVidia GPU to 

make the board more capable in AI applications. NVidia also provides a custom Linux image to 

use on the Nano based on Ubuntu 18.04 and preloaded with various packages/libraries 

commonly used in AI. In terms of pinout and connectivity, the Nano mimics the Raspberry Pi 

3B. It carries most of the same external device connections while also adding a Display Port and 

barrel jack power input. Its pinout is also largely the same as the Pi’s, consisting of interfaces for 

various communications protocols (I2C, I2S, SPI, UART). However, due to this board being 

relatively new in the market, it does not have a very large support community compared to other 

boards. In some instances, support forums for the Pi can be applied to the Nano, but there is no 

guarantee of compatibility. The price of the Jetson Nano Dev Board is ~$100. 

 

 

https://beagleboard.org/bone
https://www.lattepanda.com/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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Raspberry Pi 4B 

 

The Raspberry Pi has been around for several years and has had multiple evolutions, the most 

recent being the 4B model with options of 1, 2, 4, or 8GB RAM. The Pi is one of, if not the most 

popular SBC in the robotics community with an exceptionally large support community. The 

Raspberry Pi Foundation provides a custom image for the Pi called “Raspbian” based on Debian. 

Canonical also recently started providing official images of Ubuntu server and desktop for the Pi. 

The Pi 4B offers a variety of different pinouts and connectivity options. It carries the standard 

external device connections such as USB, HDMI, and network interfaces. The Pi 4B also sports a 

40 pin GPIO header that provides access to various communications protocols (I2C, SPI, 

UART). The price of the Raspberry Pi 4B ranges from $35 to $75. 

 

Verdict 

 

After considering the four options discussed, our team opted to move forward with the Raspberry 

Pi 4B. Table 1 provides a summary of how well each SBC aligned with the criteria our team set. 

 
Table 1 – Board evaluation with the leftmost criteria being most important and rightmost being least important. 

 

 
Community 

Support 

Connectivity / 

Pinout 

ROS 

Compatibility 

Cost 

Raspberry Pi 4B High High High Cheap 

Jetson Nano Med High High Mid-range 

LattePanda Low Med High Expensive 

BeagleBone Med Low Med Mid-range 
 

The most important reason for our decision was the overwhelming size of the community for the 

Pi due to its popularity among roboticists. When compared to the other three SBCs, the Pi was an 

obvious choice. The BeagleBone does not have as large a community as the Pi and none of the 

variants are as versatile in terms of pinout or connectivity. The LattePanda is an interesting 

concept, and its main processor is potentially more powerful/faster than the Pi’s depending on 

the variant; however, the smaller support community and uncertainties associated with the 

board’s unusual configuration makes it difficult to choose. Its Arduino coprocessor is also based 

on the Leonardo, which is lacking in pinouts and connectivity. The Jetson Nano was a strong 

contender but considering that the chosen compute module does not perform any sort of heavy-

duty AI work, it did not make sense to spend more on what is essentially a Pi 3B with a NVidia 

GPU when the GPU would not be used. Additionally, the support community is not as large as 

that of the Pi’s. 

 

3.2.2 Arduino 

 

In the robotics community, Arduino microcontrollers are ubiquitous for their many variants and 

different applications. Boards such as the UNO and Leonardo are considered “starter” boards 

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
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while the Mega and Due are examples of boards for more advanced uses. Features common to 

most, if not all Arduino boards include digital I/O, analog I/O, and communications interfaces 

(I2C, SPI, UART). From the official Arduino lineup, our team chose to use the Due since it has 

the most versatile and diverse pinout of any official Arduino board. It also boasts the fastest 

processor the official Arduino lineup has to offer at 84 MHz. Before making this decision, we 

recognized that there are unofficial Arduino variants that could offer better performance than the 

Due. However, we felt that the Due would reduce potential complications in the future. Based on 

future issues that will be further discussed in Section 4.4, we ultimately decided to switch to a 

Teensy 4.1 

 

3.2.3 Brushless Motor Controller 

 

When searching for motor controllers, our team needed to confirm that the selected motor 

controllers had smart features such as built-in PID position control. In the market, we found a 

few different motor controllers that provided these features. The first was the RoboClaw motor 

controller by BasicMicro. The feature set of the RoboClaw fit all of our team’s requirements, 

however, all their current motor controllers are designed for brushed motors only. BasicMicro 

has revealed that they are working on a brushless variant of their motor controller, but it would 

not make it to market in time to be used for this project. Next, we came across a brushless motor 

controller by Embention designed for use with drones called the Veronte GIM3. Once again, the 

GIM3 provided the features that our team was looking for as well as much more. Apart from 

integrated PID control, the GIM3 has IP67 waterproofing, embedded data recording, telemetry 

on motor health, and regenerative braking. While these features are attractive, they are 

unnecessary for our project and would not be used. The additional features also drive the cost of 

the GIM3 to a price our team could not afford: 550 EUR per unit. Finally, our team considered 

the ODrive by ODriveRobotics. The ODrive is an open-source brushless motor controller 

capable of running two motors at once. In line with our requirements, it provides onboard PID 

control as part of the package and offers a variety of running modes. To enable onboard PID 

control, the motors and their corresponding encoders connect directly to the ODrive at a 

designated header. From there, the specifications of the encoders being used, such as pulses per 

revolution (PPR) are programmed into the ODrive. The ODrive also supports a variety of 

protocols for communication with a microcontroller or other external controllers including CAN, 

I2C, and UART. Given the relatively low cost ($149) and the support it has in terms of both 

community and documentation, we decided to move forward with the ODrive. 

 

3.2.4 Supporting Electronics 

 

With all the core electronic components chosen, our team worked to find the supporting 

electronics for power delivery. At the basic level, this consisted of a power supply, a circuit 

breaker, a power distribution block (PDU), and DC-to-DC converters. Additionally, we needed a 

CAN breakout board to enable the CAN functionality on our Arduino Due. 

https://www.basicmicro.com/RoboClaw-2x30A-Motor-Controller_p_9.html
https://www.basicmicro.com/RoboClaw-2x30A-Motor-Controller_p_9.html
https://www.embention.com/product/motor-controller/
https://odriverobotics.com/shop/odrive-v36
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When looking for power supplies, the primary consideration was the amount of current 

we expected to draw. Since the ODrive, Arduino, and Raspberry Pi all draw a small amount of 

current, in the order of milliamps, the motors were the deciding factor on the amount of current 

and voltage the power supply would need to output. To reduce cost since power supplies tend to 

be expensive, we assumed that the max current draw would be in the scenario where the robot is 

transitioning to standing on two legs and almost exclusively using 4 of the 8 motors. With the 

motor operating natively at 24V, and the motor’s 9 amps continuous current draw rating in mind, 

we chose the 24V 40A RSP-1000-24 power supply from Jameco Electronics. 

After selecting the power supply, choosing the rest of the power delivery electronic 

components became trivial. Power distribution blocks are easily found at large electronics 

suppliers such as McMaster-Carr, which is where we purchased ours from 

(https://www.mcmaster.com/9290T11/). Circuit breakers and DC-to-DC converters are common 

enough that they can be found at both electronics suppliers and general online retail websites. In 

our case, we purchased these components from Amazon (Surface Mount 60A Circuit Breaker, 

24V to 12V DC Converter, 24V to 5V DC Converter). Choosing a circuit breaker is 

straightforward as the only specification to look for is the current draw at which the breaker 

pops. Since we were expecting to draw a maximum of around 40A, our circuit breaker was rated 

for 60A to deal with any potential spikes in current draw that could be caused by a short circuit 

for example. For DC-to-DC converters, the required specification is defined by the voltage of the 

power supply (24V) and the input voltage range of the Due (7-12V), Raspi (5V), and servos at 

the ankle joints (8.4V). Since the current draw of the Due and Raspi are trivial, just about any 

DC converter would work such as the ones we purchased from Amazon. The servos, however, 

draw around 2A each at their stall torque. We found DC converters capable of supplying this 

amount of current on Aliexpress (24V to 8.4V DC Converter). 

Lastly, we needed to get a CAN transceiver to enable the CAN ports on the Due. 

Although the Due already has CAN TX and RX pins broken out to a header, these pins do not 

directly translate to the high and low signals CAN uses for carrying data along a wire. As such, a 

CAN transceiver is required as an interface between the differential signal carried on the wire 

and the CAN port on the Due. The ODrive has a built-in CAN transceiver so an external 

breakout board is not required on the ODrive’s side. There are a few CAN transceiver boards 

commonly used in the Arduino community that breakout different transceiver chips, with the 

most popular one being the MCP2515 chip. However, in our case we chose a breakout board by 

CopperHill Technologies based on the SN65HVD230 chip since its operating voltage is the same 

as the Due (3.3V). 

 

 

 

 

 

 

 

https://www.jameco.com/z/RSP-1000-24-MEAN-WELL-AC-to-DC-Power-Supply-High-Output-24-Volt-40-Amp-960-Watt_1585717.html
https://www.mcmaster.com/9290T11/
https://www.amazon.com/dp/product/B004XXOW0E?th=1
https://www.amazon.com/EPBOWPT-Converter-Regulator-Voltage-Transformer/dp/B07V6X6L89/ref=sr_1_6?dchild=1&keywords=24V%2Bto%2B12V%2BConverter&qid=1605232315&sr=8-6&th=1
https://www.amazon.com/EPBOWPT-Converter-Regulator-Voltage-Transformer/dp/B01M0323MJ/ref=sr_1_6?dchild=1&keywords=24V%2Bto%2B12V%2BConverter&qid=1605232315&sr=8-6&th=1
https://www.aliexpress.com/i/4000687432773.html
https://copperhilltech.com/can-bus-mini-breakout-board/
https://copperhilltech.com/can-bus-mini-breakout-board/
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3.2.5 Wiring 

 

When wiring together all the electronic components, we used four different types of connectors. 

Ring terminals of different sizes were used for all power related connections since these 

components use screw terminals. Dupont cables were used as data wires between the Raspi, Due, 

and ODrives as well as feeding power to the Raspi. Molex connectors were used exclusively for 

connecting the encoders to the ODrives and the Anderson connectors were used to connect the 

motors to the ODrives. Figure 10 shows the complete wiring diagram for the robot including all 

electronic components. 

 

  

 

Figure 10: Wiring diagram for robot 
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3.3 Robot Analysis 

 

 
Figure 11: Initial torque analysis notation 

To evaluate the feasibility of the Solo8 undergoing stance transition, we conducted a preliminary 

analysis at the beginning of the project. For this, we did a simple torque analysis by considering 

the robot as an open chain manipulator (attached in Appendix B). This simplification is valid in 

our case because we are calculating the torques when the robot undergoes stance transition, 

during which it essentially acts as an open chain manipulator. We calculated the worst-case 

torque requirements for when the robot would lift its front limbs in order to undergo stance 

transition. The resultant torques, presented at the end of Appendix B, are the torque requirements 

for the end effectors on each body link. Torque requirements for the motors were calculated by 

accounting for the gear reduction. Unfortunately, we misinterpreted the gear reduction to be 81:1 

back in A term. In reality, it is a much smaller value of 9:1. After accounting for the gear 

reduction, albeit the wrong value, the torques translate to the following based on notation from 

Figure 11: 

𝜏1 = 0.0291𝑁𝑚 
𝜏2 = 0.1375𝑁𝑚 
𝜏3 = 0.005𝑁𝑚 
𝜏4 = 0𝑁𝑚 

We compared these torques to the motors’ stall torque and ensured they were within the 

stall torque limit of 0.34 Nm (this value was discovered after contacting a sales representative 

from T-Motors). After confirmation, we decided to use these motors for our modified robot. As 

mentioned, our calculations were erroneous due to the wrong gear reduction, so this result was 

invalid. We later rectified and overcame this mistake, and this is discussed in Section 4.2.  
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3.4 Mechanical Modifications 

 

While the Solo8 provided a strong starting point, certain modifications to the Solo8’s design 

were required to achieve the project’s goals. Firstly, in order to achieve stable bipedal standing, 

the robot’s bipedal support polygon had to be increased. We decided to do this by creating a flat 

foot on the rear legs. The robot’s body structure also had to be modified to support OTS 

electronics. This section details our decisions regarding the robot’s fabrication and part 

acquisitions.  

 

3.4.1 Flat Foot  

 

The original Solo8 was designed with conventional point feet. While point feet are effective for 

quadrupedal walking, they are very ineffective for bipedal locomotion because they provide a 

small support polygon. The team decided that the Solo8’s rear feet required a redesign to 

increase the robot’s bipedal support polygon and improve bipedal stability.  

 At the beginning of the design process, the team created a list of requirements that 

outlined the foot design’s basic operations and brainstormed potential solutions. The full list of 

requirements can be found in Appendix C. The most important requirement that we identified 

was that the foot needed to support both quadrupedal and bipedal locomotion, while also 

increasing the robot’s bipedal support polygon. To be effective in both locomotion types, the 

team concluded that the rear feet needed to convert between a point and flat foot. This way the 

robot would be capable of accomplishing quad-to-bi stance transition. 

 
 Figure 12: Modified Solo8 CAD model 
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Using these requirements as a starting point we sketched different preliminary designs 

that involved a flat foot rotating around the Solo8’s original point feet. Early in the design 

process, we decided that the flat foot should be actuated by a servo because it affords the greatest 

locomotion versatility. Unlike a servo, a latch or a spring-loaded system would only allow the 

flat foot to be deployed once and it would not be able to convert back to a point foot for 

quadrupedal locomotion. This would limit the Solo8 to a single stance conversion, whereas a 

servo-actuated foot affords continuous multi-modalism. Preliminary designs considered 

connecting the servo and flat foot with a four-bar linkage or a gear drive as shown in Figure 13. 

We ultimately decided to pursue a gear drive for a few reasons. Firstly, the design is more 

compact. More importantly, the gear drive provides a greater range of motion and allows us to 

keep the foot flat parallel to the ground as the angle of the robot’s leg changes. 

 

 
Figure 13: Four bar linkage design (left) and gear drive design (right) 

The flat foot went through three major design iterations: a flat foot with a heel, the dog-

inspired foot, and the J-foot. Figure 14 shows CAD models for the three different designs. 

The J-foot design, named after its resemblance to a backward J, was determined to be best suited 

for our application because it allows for the easiest point-to-flat foot conversion. For the first two 

designs, the flat foot sits beneath the point foot. Consequently, point-to-flat conversion can only 

occur if the robot’s rear leg is elevated off the ground. This would not afford a smooth transition 

between quadruped and biped mode. The J-foot overcomes this flaw with its co-radial design. 

The flat foot’s heel and lower leg’s point foot are co-radial so that the flat foot can rotate while 

the point foot remains in contact with the ground. This provides a smooth point-to-flat 

conversion that does not interfere with the robot’s stance transition or either locomotion type.  
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Figure 14: Flat foot with heal (left), dog foot (center), J-foot (right) 

The foot mechanism was prototyped with both the foot and 20-tooth gear as separate 

parts and as one component. During the prototyping phase, we realized that fastening the foot 

and gear with screws added unnecessary complexity to the assembly process. After juxtaposing 

the two, we decided to incorporate the foot and gear into a single part because of how small the 

parts are. This also helped to slightly reduce the number of components in the assembly. 

The flat foot provides 560mm2 of surface contact and is actuated by a DS150CLHV 

micro servo with a 5:6 gear ratio (24-tooth servo gear and 20-tooth foot gear). An important 

factor in choosing the DS150CLHV micro servo over other models was that it is small enough to 

be embedded inside the lower leg. This meant that we did not have to make drastic modifications 

to the rear lower legs to support the foot design. Our decision to use the DS150CLHV micro 

servo was also informed by a simple torque analysis that we conducted on the foot and servo 

shaft. The analysis assumed a “worst case scenario” where the robot’s full weight is on the front 

tip of the flat foot.  

 
Table 2 – Foot torque analysis 

Assumptions and Criteria: 

1. All of the robot’s weight is acting on the foot’s front tip 

2. The robot weighs 3.1kg 

3. 5:6 gear ratio 
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3.1kg * 9.81m/s2 = 30.41N 
 

T1 = 30.41N * 0.0265m = .78Nm 
 

T2 = T1 * (NI/NO) = 0.78Nm * (6/5) = 0.93Nm  

 

From this analysis, the torque acting on the servo was determined to be ∼0.93Nm. Based on this 

result, we chose the DS150CLHV micro servo because it produces 150oz-in (1.06Nm), 

exceeding the worst-case-scenario torque requirement. Even though 150oz-in does not provide a 

large safety margin, the team felt that the “worst-case-scenario” that the analysis was based on 

was unlikely to occur. It is important to note that the torque analysis in Table 2 has some 

shortcomings, as it does not account for the torques exerted on the servo by the front limbs 

during stance transition.  
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Figure 15: Lower leg and foot prototype 

3.4.2 Body Structure and Rear Legs 

 

The Solo8’s original body was designed to house custom boards and hardware that are much 

smaller than the PDU and ODrives that we used. As a result, we redesigned the Solo8’s body to 

accommodate the robot’s larger OTS hardware. Since the ODrives are fragile, expensive, and 

crucial to the robot’s operation, we decided to place the four ODrives inside the body structure 

because it maximized their protection. The ODrives’ placement is staggered between the top and 

bottom body braces to provide accessibility for wiring. To fit the ODrives in the body cavity, the 

side plates were widened from 26.5mm to 47.5mm. The top and bottom body braces were also 

modified by adding new mounting brackets for the ODrives, power converters, and Raspi. The 

ODrives and 24V/5V converter are screwed to the braces while the other electronics are zip tied. 

Since the PDU was the heaviest component, we placed it on the rear in an attempt to improve the 

robot’s standing stability by using the PDU’s weight to shift the robot’s COM backwards and 

lower.  
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Figure 16: Modified body structure 

 The rear lower legs were also modified so that the micro servo could be embedded inside 

the leg structure. A recess was created at the bottom of the leg so the servo could be secured. The 

recess was made 1mm larger than the servo’s width to provide some tolerancing. The rear lower 

legs were also made 12mm wider to improve the leg’s structural strength. The added width 

provides additional material around the servo so that the leg’s structural integrity is not 

compromised by the servo’s recess. 

 

3.4.3 Fabrication and Hardware Acquisition  

 

Even though the ODRI GitHub repository “Open Robot Actuator Hardware” page has 

recommendations and instructions for part fabrication and acquisition, the team still made 

decisions regarding the sourcing and fabrication of certain parts. We decided to outsource the 

machined parts because we believed this would be most cost-effective, considering the numerous 

hours we would need to spend machining the parts in Washburn, not to mention the cost of 

machining errors. We got quotes from various machine shops and ordered the parts from the 

cheapest option, KVC Engineering. Additionally, someone on the ODRI forum recommended 

KVC and affirmed that KVC could machine the parts to the required tolerances. We faced a 

similar decision with the robot’s codewheels and encoders, where we had the option between 

purchasing the parts separately or buying an encoder kit which included the codewheel. The 

encoder kit cost less; however, the codewheel from the kit had an aluminum flange that needed 

to be lathed off for the codewheel to be compatible with the actuator module. Once again, we 

reached out to the ODRI forum and learned that others had issues lathing the aluminum flange 

because fixturing the codewheel to the lathe was difficult. As a result, people regularly damaged 

or completely broke the codewheel while machining. This information helped us make the 

decision to purchase custom codewheels from PWB Encoders GmbH.  
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The Solo8 developers specify that the body parts and actuator module shells should be 

printed with PC-ABS on a FDM printer and that the 3D printed pulleys and encoder mounts 

should be printed with the Accura Xtreme filament on an SLA printer. We printed the body parts 

and actuator module shells in PLA on a Prusa MK3s+ printer. We opted for PLA because it was 

readily available to us and we thought it would provide similar performance to PC-ABS. While 

most of the robot was printed in-house, the team decided to outsource the 3D printed pulleys and 

encoder mounts. We outsourced these parts because we did not have access to an SLA printer 

and the parts’ small, detailed features could not be replicated on the MK3s+. We conducted 

several test prints on the MK3s+ and we could not print the parts to a satisfactory level of detail. 

Even though outsourcing these parts came at a cost of $460, it allowed us to properly print them 

on an SLA printer. This gave us confidence that the parts would function properly in the actuator 

module.  
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4 Implementation 
 

While we intended to implement the design decisions discussed in Section 3, practical 

constraints and unforeseen challenges forced us to change course in certain areas. This section 

details our actual implementations and how they deviated from our initial decisions. After 

overcoming numerous challenges, the team successfully validated our software stack via RL 

experiments, built and tested the robot, and developed a quadrupedal walking gait and stance 

transition trajectory in simulation.  

 

4.1 Reinforcement Learning Experiments 

 

The development of the OpenAI gym wrapper was completed before the robot was fully built. 

As such, we validated our RL pipeline by first solving known RL problems and then teaching the 

Solo8 to stand quadrupedally.  

 

4.1.1 Inverted Pendulum & Lessons Learnt 

  

In Section 3.1, we discussed how our pipeline was built around running RL experiments as 

efficiently as possible. Supporting features such as automatic deployment, hyperparameter 

tuning, and OTS RL implementations removed much of the boilerplate work involved in setting 

up the RL experiments. 

 To debug the pipeline, we first trained an agent to solve a RL problem with a known 

solution. For our test problem, we chose the Pendulum-v0 environment that is included in the 

base OpenAI gym package. In Pendulum-v0, the agent’s goal is to apply a rotational force to a 

pendulum to keep it upright. When the pendulum is fully upright, the agent is given a reward of 1 

and 0 otherwise. Screenshots of this environment can be seen in Figure 17. 

  

Figure 17. Open AI Gym’s Pendulum-v0 environment. Here, the agent applies torques to a pendulum 

with one rotational point. On the left, the agent’s torque is being visualized by an arrow representing 

direction and magnitude. On the right is a properly trained agent. This agent is actually applying 

torques to balance the pendulum, but they are so minute that it is not visible in the screenshots. 
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 The Pendulum-v0 environment was specifically chosen because both the environment’s 

states and the agent’s actions are continuous. Recall from Section 2.4.2.1, that in RL, the agent is 

trying to learn a policy function 𝜋 that outputs an action 𝑎𝑡 given an environment state 𝑠𝑡. When 

running RL experiments with our robot, we expect the environment state to be the robot’s sensor 

inputs and the agent’s actions to either be motor torques or joint positions. Regardless, we know 

that both 𝑠𝑡 and 𝑎𝑡 are continuous. By choosing Pendulum-v0, we can be certain that the 

resolution of our state and action spaces between problems are the same—albeit the spaces 

associated with our robot will have more dimensions simply due to having more sensors and 

motors to control. Additionally, as Pendulum-v0’s default reward function is known to 

converge, a properly trained Pendulum-v0 agent would imply that the entire pipeline works. 

 For the model training, we used the PPO2 implementation from stable-baselines. As 

stable-baselines is OpenAI Gym-compatible and known to work correctly, it transferred well to 

our robot’s RL experiments once the pipeline was validated. While the results for our pipeline 

validation experiments can be found in Section 5.1.1, we learned several important lessons that 

were implemented into the pipeline for our Solo experiments. 

 

4.1.1.1 Normalized State & Action Spaces 

 

When initially training the Pendulum-v0 agent, we encountered severe issues with the PPO2 

model diverging. Upon further investigation, it was due to the gradient updates ∇--defined in 

(8)—being too large. This is because PPO2 assumes that the state and action spaces are normal 

when being sampled. However, as the state space of Pendulum-v0 is valued between 0 and 

360—the current angle of the pendulum—this caused PPO2 to sample values greater than 1. 

 As per [43], this is a known shortage of PPO2 and the recommended solution is to ensure 

that the state and action spaces are normalized to be in [−1, 1]. As such, we modified our 

pipeline to dynamically normalize the state and action spaces. For uniformly-distributed values, 

such as the angle of the pendulum, this was done via a simple scaling operation:  

 

�̃� = −2 ∗
𝐱 − min(𝐱)

max(𝐱) − min(𝐱)
− 1 

(20) 

 As each dimension of 𝐱 can have different domains, 𝑚𝑖𝑛 and 𝑚𝑎𝑥—in fact, all 

operations—are applied element-wise in (20). Observe that this will map all values in 

[min(x) ,max(x)] to �̃� ∈ [−1, 1]. For nonuniformly distributed values, such as sensors tracking 

velocity, standardization was used: 

 

�̃� =
𝐱−𝛍

𝛔
  (21) 

 Note that just in (20), all operations in (21) are applied element-wise. In this case, 𝛍 is a 

vector of averages, with the ith value of 𝛍 corresponds to the average of the ith values of 𝐱. 

Similarly, 𝛔 is a vector of 𝐱’s standard deviations. In our implementation, 𝛍 and 𝛔 were 

dynamically calculated as states are collected. All actions outputted from the networks were 

https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html
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valued in [−1, 1] and were scaled back to their original ranges before being sent to the 

environment. 

 

4.1.1.2 Environment Vectorization 

 

Recall from Section 2.4.2.2, that PPO trains based off trajectories for the current iteration of the 

policy 𝜋. This means that trajectories cannot be reused during iterations. To increase our runtime 

training performance, we vectorized our environment to run on multiple CPU cores at the same 

time. In our experiments, our trajectory terminates after 𝑇 timesteps; however, our vectorized 

environment wrapper can also handle non-standard trajectories with premature terminations. In 

practice, we found that vectorizing over 12 CPU cores yields a near 10x decrease in training 

time; heavily increasing the effectiveness of our training pipeline. 

 

4.1.2 Solo 8 Quadrupedal Standing 
 

Once we had our pipeline validated, we wanted to run some proof-of-concept experiments on the 

Solo8 model. We chose quadrupedal standing as a baseline task due to its intuitive nature and 

because it would allow us to focus on having PPO control the gym_solo environment. 

Unfortunately, our version of the Solo8 model was in heavy development, so we used ODRI’s 

model of the unmodified Solo8 as a placeholder. Note that the only difference between the two 

models is that our final version of the modified Solo8 included an ankle joint. However, the 

ankle joint is intended to be inactive during quadrupedal mode; therefore, excluding it has 

minimal consequences. 

When designing our environment, we wanted to mimic realistic conditions as much as 

possible. We only allowed the agent to observe its motor encoder position and velocity values. 

As in traditional robot control, the agent outputs either motor torque or joint position values. 

Note that since our pipeline automatically normalizes actions, as mentioned in Section 4.1.1.1, 

switching the meaning of the agent’s output has minimal effects on its training. 

With the environment properly configured, we focused our attention to shaping the 

reward function. As mentioned in Section 2.4.2.2, PPO’s goal is to choose the best robot control 

to optimize the given reward. However, these rewards need to be designed very strategically. For 

example, simply rewarding the agent 1 for quadrupedal standing and 0 otherwise, similar to the 

inverted pendulum in Section 4.1.1, will not work. In the inverted pendulum, the agent will often 

randomly hit the “goal” state, so it can learn which actions most often yield that behavior. 

However, for more complicated tasks such as quadrupedal standing, randomly achieving the goal 

state is nearly impossible. Under the simple reward function, this would mean that the agent is 

essentially getting no meaningful feedback from the environment—making any form of learning 

impossible. Instead, the bulk of the experimentation is done in “shaping” the reward function; 

specifically, determining the best way to incrementally reward the agent to the end goal. Our 

specific variants and results are explored in Section 5.1. 
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4.2 Revised Robot Analysis & Build 

 

As discussed in Section 3.3, our initial analysis erroneously considered the gear reduction to be 

81:1 instead of 9:1. While fixing this error, we also realized that we never accounted for the fact 

that in a 2D representation of the robot, two actuators are supplying the required torques. Thus, 

the actuator module torque requirements in Appendix B had to be divided by two. After 

rectifying these mistakes, we got the following torque requirements for the motors. 

 

𝜏1 = 0.1311𝑁𝑚 

𝜏2 = 0.6189𝑁𝑚 

𝜏3 = 0.0261𝑁𝑚 

𝜏4 = 0𝑁𝑚 

 

We observed that 𝜏2 was almost twice the stall torque of the motor. Based on these updated 

torque values, we realized that our robot could not perform every case of transitioning to a 

bipedal stance. We had to take a conservative approach for finding a transitioning trajectory that 

fell under our torque constraints.  

We also updated this analysis to account for the ankle joints. Instead of four joints, we 

now had five joints to consider. The updated torque analysis notation diagram is show in Figure 

18. 

 
Figure 18: Updated torque analysis notation 

 

 

We created a MATLAB script to calculate the torque requirements based on a robot’s 

stance. Using this, we manually found a stance and the corresponding torque values that fulfilled 

our constraints. This is elucidated more in Section 4.10.  
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The robot was built following the assembly instructions found on the ODRI GitHub 

repository “Open Robot Actuator Hardware” page. For testing and documentation purposes, each 

actuator module was labeled 1 through 8. The Figure below shows how the modules were 

labeled.  

 

 
Figure 19: Module labels 

 

Module 1: Front Left Hip Module 

Module 2: Front Left Upper Leg Module 

Module 3: Front Right Hip Module 

Module 4: Front Right Upper Leg Module 

Module 5: Back Left Hip Module 

Module 6: Back Left Upper Leg Module 

Module 7: Back Right Hip Module 

Module 8: Back Right Upper Leg Module 

 

The actuator modules were built with the exact same components as the original Solo8 

except for one part: the 6mm wide, 201 tooth AT3 GEN III Synchroflex® Timing Belts in the 

dual stage timing belt transmission. When we were purchasing parts for the actuator modules 

there was a global shortage of 6mm wide, 201 tooth AT3 GEN III Synchroflex® Timing Belts 

and we could not source them. Instead, we purchased “standard” AT3 Synchroflex® Timing 

Belts. The polyurethane material in the standard belts is not as tough as the GEN III version but 

the Solo8 developers told us on the ODRI forum that it should function the same. For all the 
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parts and materials used to build the robot, a comprehensive bill of materials can be found in 

Appendix D. 

When assembling the actuator modules, we sometimes encountered clearance issues 

between the codewheels and encoders. This was caused by the codewheel sitting too high on the 

encoder mount and resulted in the codewheel’s upper surface rubbing against the encoder. If the 

misalignment was not corrected, the codewheel would get scratched and stop functioning 

properly. We encountered this issue on actuator modules 1, 2, and 7. We solve the issue by 

removing the brass ring that acts as a spacer between the aluminum pulley and motor. This 

lowered the codewheel enough that it correctly aligned with the encoder.  

 
Figure 20: Encoder assembly (left) and brass right (right) 

 

For the foot mechanism, the flat feet and servo gears were 3D printed with PLA. Figure 

21 shows an exploded view of the foot mechanism components. Due to 3D printer tolerances, the 

shaft hole in the lower leg and foot were made slightly larger than the ¼” shaft diameter. The 

servo gear is screwed to a round servo arm that is fastened to the servo shaft. The ¼” shaft was 

cut to size and using a Dremel, rings were cut into the shaft ends for the retaining rings.  
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Figure 21: Flat foot assembly exploded view 

4.3 ODrive Tuning 

 

ODrives are very powerful motor controllers, but to harness their full potential, they need to be 

tuned for the specific motors they are driving. Thankfully, ODrives are relatively well 

documented and have an amazing support community. While referencing the documentation, we 

created a basic configuration for the ODrives. We tested the basic configuration by moving the 

motor to a specific set point. During testing we observed an interesting error where the motors 

only moved after immediate calibration, but not after a reboot. After discussing with the ODrive 

community and diving deeper into the documentation, we realized that noise on the encoder’s 

index channel could be causing the issue. To rectify the problem, we soldered a 47 nF capacitor 

between the index pin (Z) and ground (GND) on both ODrive axes. After installing the 

capacitors, our tests were successful both after immediate calibration and reboot. This validated 

that the ODrives, motors, and encoders were functioning properly.  

 

https://docs.odriverobotics.com/
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Figure 22: 47nF capacitors soldered to both ODrive axes 

 

During additional testing, we observed that the motor would not move to its desired 

setpoints. This occurred because the ODrives were not yet tuned for our motors. We followed the 

ODrive tuning instructions to tune our system. It is important to note that the ODrive controller 

does not implement a regular PID loop. Instead, they use a cascading Position, Velocity and 

Current Controller. After tuning, we got the following PID tuning graph in Figure 23 for all our 

actuator modules.  

 

 
Figure 23: PID tuning graph. The y-axis corresponds to the revolution of the motor and x-axis corresponds to the 

time. 

https://docs.odriverobotics.com/control
https://docs.odriverobotics.com/control
https://docs.odriverobotics.com/control
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Another problem we encountered was the need for index calibration every time we 

booted-up the ODrives. Currently, ODrives require that incremental index encoders search for 

the index pulse at bootup to calibrate. The only way to avoid this was by implementing a custom 

firmware on the ODrives. Given our time constraints, we decided against this option because of 

our unfamiliarity with the ODrive stack. Instead, we decided to implement a mechanical 

workaround for the index calibration. We fixed the direction of the index calibration to move the 

legs away from the center of the body during it. We then assembled the legs in the robot home 

position at the index position of the encoders. This is explained more in Section 4.6. The robot 

legs are moved a little bit towards the center of the robot from the home position. When the robot 

is powered on from this position, the robot legs move into the home position (Figure 27). After 

tuning and calibration were completed, our actuator modules were ready to be integrated with the 

software stack. 

 

4.4 Pivot from Arduino Due to Teensy 4.1 

 

As was mentioned in Section 3.2.2, our team’s original plan was to connect the ODrives to the 

Due through CAN bus. However, while we were developing code to implement the CAN 

protocol, issues arose that prevented us from successfully establishing two-way communication 

between the ODrives and Due. For reasons we were unable to figure out, the Due would 

consistently receive heartbeat messages from the ODrive over CAN but when the Due sent a 

message to an ODrive, the ODrive would not receive the message. For about two weeks, we 

rigorously tested the validity of the code, debugged the signals on the wire, and discussed 

potential solutions with the ODrive community. Ultimately, we were unable to resolve the issue 

and chose to pivot instead of spending more time trying to solve the problem. There were two 

other communication protocols to choose from that the ODrive supported: I2C and UART. We 

chose to use UART because it had better documentation and it was the safer bet since to enable 

I2C, we would have to physically modify the ODrives by de-soldering the CAN transceiver from 

the PCB. After some quick testing, the UART protocol proved to work perfectly in code on both 

hardware and software serial ports. 

Despite its success in code implementation, the switch to serial UART produced a new 

issue on the hardware end. Our robot uses four ODrives to drive all the motors and the Arduino 

Due has four hardware serial ports. One of the ports is pre-configured to work with a console on 

a host computer connected via USB. Another port is consumed by the serial connection to the 

Raspberry Pi. This leaves just two hardware serial ports available, which is not enough to control 

the robot’s four ODrives because each ODrive needs a dedicated serial port connection. After 

researching potential solutions, our team came up with 4 options: 

 

1. Completely cut out the Due and use four of the Raspberry Pi’s six hardware serial ports 

to run the ODrives directly. This would also require that the Raspberry Pi run a control 

loop for the motors separate from the existing ROS nodes. 
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2. Get a second Due, such that each Due controls two ODrives, and synchronize their 

control loops over I2C. 

3. Continue using a single Due and add more serial ports using a software serial library. A 

software serial library creates additional serial ports by bit-banging digital pins. 

4. Swap out the Due with a Teensy 4.1 that has eight hardware serial ports. 
 

We ultimately chose to move forward with Option 4: Swap out the Due with a Teensy. 

We chose this route due to concerns we had with the other three options and because of the 

simplicity of transitioning to the Teensy. With Option 1, our concern was that since ROS is not a 

real-time system, there could be timing issues with the movements we want to send to the 

ODrives. Option 2 was a feasible option, but when compared to Option 4, Option 2 becomes 

inefficient, both in terms of the number of electronic components needed and code that needs to 

be written. Option 3 was arguably the closest contender with Option 4, but its largest drawback 

was the fact that software serial ports have a history of instability and could cause issues down 

the line. With these thoughts in mind, Option 4 was the best choice to move forward with 

because there were no perceptible drawbacks. Transitioning over to the Teensy proved to be a 

trivial task, and the Teensy provided a boost in speed when comparing its 600Mhz processor to 

the Due’s 84Mhz processor. 

 

4.5 Updated Wiring 
 

A consequence of switching the Due with the Teensy 4.1 was that our wiring needed to be 

changed to accommodate the Teensy. Both the Teensy and the Due have an operating voltage of 

3.3V, however their input voltage requirements are different. The Due has an input range of 7-

12V while the Teensy requires a 5V input source. Luckily, the Raspberry Pi also requires a 5V 

input, so we were able to use the same DC converter for both the Raspberry Pi and the Teensy. 

This also allowed us to completely remove the 24V to 12V DC converter. The only other change 

we needed to make was wiring between the Teensy and the ODrives. Since we were moving 

from CAN to serial UART, we were able to cut out the CAN transceiver breakout board and wire 

the ODrives directly to the Teensy’s hardware serial ports. Figure 24 shows an updated version 

of the wiring diagram after the change. 
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Figure 24: Wiring diagram with Teensy replacement 

 

4.6 Quadrupedal Home Position 

 

The Solo8’s quadrupedal home position is the position where all the legs are straight and 

perpendicular to the ground. The home position is important because it acts as a zeroing point 

from which other leg configurations can be set. However, setting the home position was 

complicated by the actuator modules’ design and the incremental encoders. As described in 

Section 2.3.1, each actuator module has an output pulley to which the subsequent appendage 

(actuator module or lower leg) is attached too. As shown in Figure 25, when the robot is in its 

home position, the output pulley’s horizontal axis should be aligned with the hip module’s 

horizontal axis. For the upper leg module, the output pulley’s horizontal axis should be 

perpendicular to the module’s horizontal axis (Figure 26).  

 

 
Figure 25: Hip module’s horizontal axis (yellow line) aligned with the pulley’s horizontal axis (red line) 
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Figure 26: Upper leg module’s horizontal axis (yellow line) perpendicular to the pulley’s horizontal axis (red line) 

 

By nature of the 9:1 dual-stage timing belt transmission, one rotation of the pulley 

(equivalent to one rotation of the connected appendage) is equal to nine rotations of the motor 

shaft (i.e. nine rotations of the codewheel since the codewheel is directly attached to the motor 

shaft). When the robot is powered on, the motors automatically move to the codewheels’ index 

position. However, the codewheel’s index position does not necessary correspond with the 

robot’s home position because one rotation of the codewheel is 1/9th a rotation of an appendage. 

Based on how the output pulleys and 201 tooth timing belts are assembled with the center 

pulleys, the connected appendages can theoretically be in nine different positions. Therefore, for 

the codewheel’s index position to correspond with the robot’s quadrupedal home position, the 

output pulleys need to be assembled in the correct orientation according to the codewheel’s 

positioning. Therefore, the output pulleys had to be positioned so that the quadrupedal home 

position corresponded with the codewheel’s index position. We did this by assembling the output 

pulleys and modules when the module’s motor and encoder were powered on and in the 

codewheel’s index position. Since the motor was powered on, it provided enough resistance so 

that the codewheel stayed stationary while we connected the output pulley to the timing belt 

transmission. The output pulleys were assembled along the axis orientations described before.  

 Unfortunately, due to physical constraints in the timing belt transmission we could not 

position the output pulleys so that their axes perfectly aligned with the modules’ axes. Instead, 

we aligned the axes as close as possible and accounted for the unique angle offset of each leg in 

the Arduino. To do this we powered the robot on and let the legs calibrate to the codewheels’ 

index positions. Next, using the Raspi we moved the modules until the connected appendage was 

vertical. Each modules’ offset angle was put into the Arduino code and the programmed 

quadrupedal home position was set. From then on, every time a home position command was 

sent from the Raspi, the robot went into the following position. 
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Figure 27: Home position 

4.7 Quadrupedal Standing 

 

After the legs were tuned and the quadrupedal home position was calibrated, we first implement 

quadrupedal standing on the robot. We tested quadrupedal standing by setting-up the robot in its 

standing position and placing it on the ground. However, our first attempt at quadrupedal 

standing was unsuccessful as the robot could not support its own weight. At this moment the 

team realized that we had made a great oversight as we never verified that the robot could 

support the weight of the OTS electronics. At this time, the robot weighed 3.1kg compared to the 

original Solo8’s weight of 2.2kg. The weight increase was due to our off-the-shelf hardware 

which was much larger and heavier than the original Solo8’s custom electronics. We made the 

mistake of assuming that the robot could support an additional 0.9kg and never conducted an 

analysis like we did for bipedal standing.  
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Figure 28: Robot’s original electronics with PDU that was too heavy. 

 

Another oversight was that we did not consider how the configuration of the legs would 

impact the robot’s ability to support its own weight. For our initial tests, the rear legs were 

positioned outside the body as shown in Figure 29. By positioning the legs outside the body, we 

moved them farther from the robot’s COM, thus increasing the amount of torque exerted on the 

rear leg motors. This problem was compounded by the fact that our off-the-shelf PDU, the 

robot’s heaviest hardware component, was placed on the robot’s rear. This further increased the 

weight that the rear leg motors had to support and as a result the rear legs struggled to support 

the robot’s weight. When the robot tried to support its own weight, the robot’s knee joints would 

bend and the motors on Module 6 and 8 began to overheat. 
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Figure 29: Initial quadrupedal standing leg configuration 

 

Based on our observations the team concluded that the robot’s weight had to be reduced. 

After discussing possible solutions, the team concluded that that the only way to reduce weight 

was to condense the wiring inside the robot and remove as much hardware as possible. When we 

first assembled the robot, we did not shorten the lengths of the motor and encoder wires. Instead, 

we bundled the wires with zip ties, creating a ‘rat’s nest’ of wires inside the robot. To give a 

sense of how much extra wiring was in the robot’s body, Figure 30 shows the wires we removed 

in order to reduce the robot’s weight.  
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Figure 30: Removed wiring weighing about 190 grams 

As seen in Figure 31, we removed roughly 0.2kg of weight by shortening the motor and encoder 

wires to their optimal lengths. We also removed the Anderson Power Poles that connected the 

motors to the ODrives and simply fastened the motor wires to the ODrive screw terminals.  
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Figure 31: Wire reduction 

To reduce the weight of the hardware, we evaluated each piece of hardware individually by 

considering its weight and functionality. We concluded that we could significantly reduce weight 

if we replaced the off-the-shelf PDU with a lighter, home-made solution. Our solution was to 

make a PDU out of two ¼” x 1-¾” bolts. The 24V power source’s wire ends were secured to the 

robot and each bolt was directly connected to the positive and negative ends, respectively. The 

bolts created a PDU from which the ODrives and power converters were connected to. After 

shortening the wires inside the body and modifying the PDU, we successfully reduced the 

robot’s weight to 2.65kg. 

 
                  Table 3 – Weight of original hardware  

Hardware Quantity Weight (kg) 

Power Distribution Module 1 0.25 

24V/5V Power Converter 1 0.069 

24V/8.4V Power Converter 1 0.0286 

Teensy 1 0.007 

Raspi 1 0.045 

Odrive 4 0.088 

Total Weight .76 
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Figure 32: Home-made PDU 

We also changed the configuration of the rear legs so that they were inside the robot’s body. This 

reduced the torque on the rear motors. After these changes were implemented, quadrupedal 

standing was retested, and successfully performed.  

 

 
Figure 33: Robot standing after reducing the weight of wiring and implementing the new leg configuration. 
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4.8 Flat Foot Testing 

 

To verify that the feet mechanisms functioned properly and were integrated into the robot’s 

controls, we tested the foot’s ability to convert between a flat and point foot. We started with the 

foot on the back right leg. After wiring the servo to the 24V/8.4V power converter and Teensy, 

we disassembled the flat foot to initially test the servo. This was done for safety reasons because 

it was our first time operating the servo and we did not want to damage the servo by over-

rotating the flat foot into the lower leg. After verifying that our code operated the servo as 

intended, we set the servo to 0 degrees and reassembled the flat foot in the point foot 

configuration. By doing this we protected the servo from over-rotating the flat foot, as the point 

foot configuration corresponds with the servo’s physical limit. Next, we successfully tested the 

point-to-flat conversion on the right foot and then used the same procedure to test the left foot. 

 

 
Figure 34: Point foot configuration (left) and flat foot configuration (right) 

 

4.9 Quadrupedal Walking 

 

We implemented a modified symmetric wave gait (an example is shown in Figure 35) for our 

robot because of its inherent stable nature. Since the Solo8 has 8DoFs, we do not have many 

ways to change the support polygon for the robot as it walks. By using a symmetric wave gait, 

we ensured that the robot always had three legs on the ground, giving it a relatively wider 
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support polygon, and making walking more stable. Furthermore, only having one foot off the 

ground at a time also reduces the torque load on the rest of the motors.  

 

 
Figure 35: An example of a symmetrical walking gait. Yellow boxed indicate the transfer phase (foot is off the 

ground) and the grey boxes indicate non transfer phase (foot is on the ground). In our implementation, leg 1 

is the front-right, leg 2 is back-right, leg 3 is front-left, and leg 4 is back-left. 

 

We decided to generate our trajectory based on the following parameters after extensive 

testing in simulation and on the real robot: 

• velocity of the robot 𝑣 = 0.15𝑚/𝑠 

• stride length of each foot 𝐿 = 0.15𝑚 

• duty factor 𝛽 = 0.9 

• cycle_time 𝑇 = 1𝑠 

Based on these parameters, we calculated the time in transfer phase for each leg to be 𝑇𝑙 =

𝑇(1 − 𝛽) = 0.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. We generated six intermediate points for the transfer phase 

1. Begin lifting the transfer foot up 

2. Begin moving the transfer foot forward while slowing down the leg lifting 

3. Move the leg horizontally with the foot suspended in the air 

4. Begin putting the foot down 

5. Stop moving the leg horizontally 

6. Place the foot down 

 

Based on the stride length, we calculated the max horizontal velocity in Figure 36 (a). 

Since the area under the velocity curve is the displacement, we simply broke down our curve into 

basic shapes to compute the area: (0.06 + 0.02) ∗
𝑣𝑥

2
= 0.15. 

Therefore, each leg must travel at a max horizontal velocity of 3.75 m/s. We used Figure 

36 (a) and took the derivative over Δ𝑡 = 0.02𝑠 to calculate the horizontal movement graph in 

Figure 36 (b). Based on experimentation, we decided to lift the robot’s leg 0.05 m vertically 

during the transfer phase to account for inconsistencies on the ground surface. Each leg is 

displaced to this vertical distance in the first half of the transfer phase and then brought back to 

the ground position. This is shown in Figure 37 (b). Based on Figure 37 (a), Figure 37 (b) is 

calculated by graphing the integral. By combining the graphs in Figure 36 (b) and Figure 37 (b), 

we can get the graph in Figure 37 (a), the vertical vs horizontal displacement of the leg for the 

transfer phase with respect to the ground. This is then converted into vertical vs horizontal 

displacement with respect to the body by subtracting the global position of the origin/hip joint, as 

shown in Figure 38 (b). The points represented in this graph are the actual values used to move 
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the leg during the transfer phase. Using inverse kinematics, we calculated the joint angles for 

each leg for all timesteps during the transfer and non-transfer phases. 

 
(a)                                                                                           (b) 

Figure 36: Horizontal velocity and horizontal displacement of each leg in transfer phase 

 
(a)                                                                                           (b) 

Figure 37: Vertical velocity and vertical displacement of each leg in transfer phase 

 
(a)                                                                                           (b) 

Figure 38: Vertical displacement vs horizontal displacement with respect to ground and body 
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As seen in Figure 38 (b), at the beginning of transfer phase, the foot position starts at 

0.075m behind the joint origin and ends 0.06m in front of the joint origin at the end of the 

transfer phase. For the non-transfer phase, we simply linearly interpolated between the start and 

end positions of the transfer phase. Once we had the leg location, we computed the joint angles 

via inverse kinematics. 

While testing the above-mentioned gait on the real robot, the team observed that the 

robot’s rear legs were not completely leaving the ground during its transfer phase. We attributed 

this observation to the fact that the robot’s center of mass was shifted towards the rear side of the 

body. This essentially caused the robot to tip slightly backwards whenever it was trying to lift the 

rear legs. To account for this, we decided to tilt the robot forward during walking. This was done 

by keeping the height of the front legs lower as compared to the height of the rear legs. Based on 

simple geometric calculations shown below, we calculated the Δx and Δ𝑦 for both front and back 

legs and added them to each point of the leg cycle. These values are visualized in Error! 

Reference source not found..  

  

𝛼 = tan−1 (
Δℎ
𝑙𝑏𝑜𝑑𝑦

) 

Δℎ𝑓 = 𝑙𝑓 sin(𝛼) 

Δ𝑥𝑓 =
Δℎ𝑓
cos(𝛼)

 

Δ𝑦𝑓 = Δℎ𝑓 tan(𝛼) 

Δℎ𝑏 = 𝑙𝑏 sin(𝛼) 

Δ𝑥𝑏 =
Δℎ𝑏
cos(𝛼)

 

Δ𝑦𝑏 = Δℎ𝑏tan (𝛼) 

 

Figure 39. Labels and reference frames  for the robot with a forward tilt. 
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After accounting for Δ𝑥 and Δ𝑦 for the front and back legs, we converted the position of the foot 

into joint angles using inverse kinematics. Each leg can be abstracted to a 2 DoF robot arm. 

Given the foot (x, y) values according to the axis in Error! Reference source not found., we 

can calculate the following: 

𝛼 = tan−1 (
𝑥

𝑦
) 

Note that our tangent term is 
𝑥

𝑦
 instead of 

𝑦

𝑥
; this is because of how our axes are defined. 

𝛽 = cos−1 (
𝐿1
2 + 𝑥2 + 𝑦2 − 𝐿2

2

2𝐿1√𝑥2 + 𝑦2
) 

With our 𝛽 term, we can then compute the joint angles: 

𝜃1
𝐹 = 𝛼 − 𝛽 

𝜃2
𝐹 = cos−1 (

𝑥2 + 𝑦2 − 𝐿1
2 − 𝐿2

2

2𝐿1𝐿2
) 

𝜃1
𝑅 = 𝛼 + 𝛽 

𝜃2
𝑅 = −cos−1 (

𝑥2 + 𝑦2 − 𝐿1
2 − 𝐿2

2

2𝐿1𝐿2
) 

 

These values can be visualized in Figure 40. 𝜃1 and 𝜃2 are then used to move the respective legs 

to the desired position.  

 

4.10 Stance Transitioning 

 

 

Figure 40. Labels and reference frame for performing inverse kinematics on our Solo’s legs. 
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For this project, we decided to implement the stance transition in a static manner. To do so, we 

always kept the body’s center of mass within the support polygon. We first calculated the robot’s 

center of mass experimentally. It was done this way because our real robot did not perfectly 

match our simulation model. We calculated the center of mass by balancing the robot on a 

suspended rod. The center of mass is shown in Figure 41 and Figure 42 as the green circle. 

As the next step, we found an initial quadrupedal starting position to transition from. 

Again, the important constraint was keeping the center of mass within the support polygon.  

While finding the position, we also wanted to be sure that all the torques on the joints were under 

the 3.4 Nm stall torque limit after gear reduction. Based on the starting position, we then found a 

reasonable bipedal position. There were two criteria for deciding this bipedal position. First was 

that the robot had to somewhat resemble a bipedal robot when in this stance. Second, was that 

the robot should have minimal movement of hip and knee joints while getting to this position 

from the initial quadrupedal position. Our major inspiration came from the way humans stand up 

when they are in squatting position and have their front limbs touching the ground. After some 

experimentation, involving a manual search for a reasonable starting and ending position, we 

found the poses in Figure 41 and Figure 42 with the respective torques based of the notation in 

Figure 18. They satisfied all our criteria. 

 

 
Figure 41. The stance transition starting position. In this position, the motor torque values are: 

𝜏1 = 0.82385𝑁𝑚 
𝜏2 = 0.48836𝑁𝑚 
𝜏3 = 2.9057𝑁𝑚 
𝜏4 = −0.050753𝑁𝑚 
𝜏5 = −0.014884𝑁𝑚 

We generated a stance transitioning trajectory based on these starting and ending 

positions. A quintic polynomial was used to generate this trajectory for each of the joints. We 

preferred the quintic polynomial over its cubic counterpart because it generates smoother 

transition motions. We generated our trajectory as the following: 

Quintic Trajectory: 
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𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 + 𝑎4𝑡
4 + 𝑎5𝑡

5 

Constraint Equations: 

𝑞0 = 𝑎0 + 𝑎1𝑡0 + 𝑎2𝑡0
2 + 𝑎3𝑡0

3 + 𝑎4𝑡0
4 + 𝑎5𝑡0

5 

𝑣0 = 𝑎1 + 2𝑎2𝑡0 + 3𝑎3𝑡0
2 + 4𝑎4𝑡0

3 + 5𝑎5𝑡0
4 

𝛼0 = 2𝑎2 + 6𝑎3𝑡0 + 12𝑎4𝑡0
2 + 20𝑎5𝑡0

3 

𝑞𝑓 = 𝑎0 + 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2 + 𝑎3𝑡𝑓

3 + 𝑎4𝑡𝑓
4 + 𝑎5𝑡𝑓

5 

𝑣𝑓 = 𝑎1 + 2𝑎2𝑡𝑓 + 3𝑎3𝑡𝑓
2 + 4𝑎4𝑡𝑓

3 + 5𝑎5𝑡𝑓
4 

𝛼𝑓 = 2𝑎2 + 6𝑎3𝑡𝑓 + 12𝑎4𝑡𝑓
2 + 20𝑎5𝑡𝑓

3 

In matrix form: 

[
 
 
 
 
 
 
 
1 𝑡0 𝑡0

2 𝑡0
3 𝑡0

4 𝑡0
5

0 1 2𝑡0 3𝑡0
2 4𝑡0

3 5𝑡0
4

0 0 2 6𝑡0 12𝑡0
2 20𝑡0

3

1 𝑡𝑓 𝑡𝑓
2 𝑡𝑓

3 𝑡𝑓
4 𝑡𝑓

5

0 1 2𝑡𝑓 3𝑡𝑓
2 4𝑡𝑓

3 5𝑡𝑓
4

0 0 2 6𝑡𝑓 12𝑡𝑓
2 20𝑡𝑓

3
]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5]
 
 
 
 
 

=

[
 
 
 
 
 
𝑞0
𝑣0
𝑎0
𝑞𝑓
𝑣𝑓
𝛼𝑓]
 
 
 
 
 

 

 

 

Figure 42. The robot in its stable standing stance.  

In this position, the joint torque values are: 

𝜏1 = 0.43189𝑁𝑚 
𝜏2 = −0.39103𝑁𝑚 
𝜏3 = 0.3507𝑁𝑚 
𝜏4 = 0.088422𝑁𝑚 
𝜏5 = −0.0067781𝑁𝑚 
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The quintic polynomials were generated for each of the five joints with the following parameters 

using a MATLAB script: 

• 𝑄0: starting joint position for the respective joint. 

• 𝑄𝑓: was the ending joint position for the respective joint 

• 𝑣0: initial velocity of 0 rad/sec 

• 𝑣𝑓: final velocity of 0 rad/sec 

• 𝛼0: initial acceleration of 0 rad/sec^2 

• 𝛼1: final acceleration of 0 rad/sec^2 

• 𝑇0: Starting time of 0 seconds for the transition trajectory 

• 𝑇𝑓: ending time of 3 seconds for the transition trajectory 

Based on the quintic polynomials, we generated 50 intermediate points. Time to reach a 

successive waypoint was calculated to be 
3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

50
= 0.006 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The number of 

intermediate points was chosen based on experimentation in our simulation. The trajectory along 

with the time for each way point was then exported as a simple csv file from MATLAB. Our 

simulation node read the trajectory from this csv and executed it in the simulation environment.  
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5 Results and Discussion 
 

5.1 Reinforcement Learning  

 

As discussed in Section 4.1.1, we first validated our RL pipeline on Open AI Gym’s Pendulum-

v0 environment. Once we had achieved a stable pipeline, we then trained the Solo8 to stand 

quadrupedally. In this section, we describe our experiments and associated results. Note that in 

all experiments, the policy network was a 4-layer neural network with an input layer, 2 layers of 

64 neurons each, and the output layer. We experimented by adding up to 10 layers between 16 to 

256 neurons each but did not notice any nontrivial results. We chose our specific architecture 

because it was recommended by the authors of stable-baselines and used it to evaluate all our 

results.  

 

5.1.1 Pendulum-v0 

 

Recall from Section 4.1.1 that Pendulum-v0 was primarily experimented upon to fix any 

problems with the RL pipeline. As Pendulum-v0 has a known solution, there were no 

modifications done to the states, actions, or rewards—other than those outlined in Section 

4.1.1.1. Our autotrainer makes is so that the only hyperparameter we had to tune was the training 

duration. One issue that we ran into was that we were not training for long enough. As seen in 

 

Figure 43. The testing episode reward during the model training. Observe that the 

 major convergences occur between timesteps 4 million and 6 million. 
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Figure 43, the agent seemed to converge between 4 million and 6 million timesteps—when we 

started, we were prematurely stopping the training at 1 million timesteps.  

 With 10,000 training episodes at 750 timesteps each, we were able to successfully train 

an agent to balance the pendulum upright. Our best agent was able to balance the pendulum 

within 30 timesteps, equating to less than a tenth of a second in real time. 

 

5.1.2 Quadrupedal Standing 

 

With our pipeline validated, we focused on teaching our Solo8 to stand quadrupedally. We 

wanted to give the agent a total of 5 seconds real time to stand up, so all experiments were run 

with 2,000 steps, spaced 0.025 seconds apart. Additionally, the Solo8 began each episode with 

all legs folded and the torso resting on the ground. This behavior can be seen in Figure 44. 

 

5.1.2.1 Naive Height Reward 

 

Our first experiment was simply to reward the agent for maintaining its torso a certain distance 

off the ground. We empirically found that the torso sits 0.337 meters off the ground during 

quadrupedal standing, so we set that as our target height. Then, our reward function simply 

interpolated the location of the torso: 

 

 
𝑟(𝑠𝑡) = 1 − 𝑐𝑙𝑎𝑚𝑝 (

|0.337 − ℎ𝑡|

ℎ𝑡
, 0, 1) (22) 

where  

• ℎ𝑡 is the height of the torso at timestep 𝑡 

• 𝑐𝑙𝑎𝑚𝑝(𝑣, 𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟) returns 𝑣 if 𝑙𝑜𝑤𝑒𝑟 ≤ 𝑣 ≤ 𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟 if 𝑣 ≤ 𝑙𝑜𝑤𝑒𝑟 and 𝑢𝑝𝑝𝑒𝑟 if 

𝑣 ≥ 𝑢𝑝𝑝𝑒𝑟 

 

  

Figure 44. The agent attempting quadrupedal standing with the Naïve Height reward (22). In an episode, the agent 

randomly moves its limbs, causing it to bounce around. As the height of the torso is usually ∈ [0, 2 ∗ 0.337], the 

agent is still getting a positive reward, even if it is doing undesirable behavior. The choice for 0.337 as our limit is  

elaborated upon in Section 5.1.2.1. 
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Thus, 𝑟(𝑠𝑡) ∈ [0, 1] s.t. 𝑟(𝑠𝑡) = 1 when the height is at the target. 𝑟(𝑠𝑡) = 0 when the absolute 

difference between the target and torso height is more than 0.337, the target height. 

 With this reward function, we found that the agent tends to “jump” to the target height. In 

other words, the agent randomly actuates all its motors with the hopes that a random movement 

will launch the robot off the ground to the correct height. However, this behavior is undesirable 

as the agent has no stability at the target height and does not actually achieve quadrupedal 

standing. 

 

5.1.2.2 Flat Torso Reward 

 

The most apparent problem that we saw with (22) was that the agent was actuating its joints too 

sporadically. To combat this, we introduced a new flat torso term: 
 

 

𝑟(𝑠𝑡) = 1 − 

(𝑐𝑙𝑎𝑚𝑝 (
|0.337 − ℎ𝑡|

ℎ𝑡
, 0, 1) + (

Δ𝜃𝑥
2 ∗ 𝜋 + 

Δ𝜃𝑦
2 ∗ 𝜋))

2
 (23) 

note that: 

• Δ𝜃𝑥 is the absolute deviation from the 𝑥 axis and Δ𝜃𝑦 with the 𝑦 axis, respectively 

• Δ𝜃𝑥 and Δ𝜃𝑦 are divided by 𝜋 as the maximum absolute deviation for an angle is valued 

∈ (0, 𝑝𝑖), assuming the angle is reported in radians. These values are then divided by 2 to 

ensure that the total value adds up to 1. 

 

Similar to (22), 𝑟(𝑠𝑡) ∈ [0, 1] in (23). However, with this reward function, we found that the 

agent often “tips” over and gets stuck in an upside-down position, as shown in Figure 45. 

Intuitively, this behavior makes sense. As the robot is stable on its back, it is achieving a perfect 

flat torso reward, at the expense of the height reward. At the end of the episode, the agent tries to 

get some height again by actuating its joints, but by that point the agent has already reached an 

  

Figure 45. The agent trying to stand quadrupedally using (23) as the reward function. The agent tended to 

“jump” up at the beginning to achieve the height reward but ends up tipping over onto its back—achieving a  

perfect “flat” reward. Near the end of the episode, the agent tries to move its legs to lift it up, but that 

is not enough to achieve quadrupedal standing. 
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unrecoverable state. So, even though the torso might have been more stable, the agent still could 

not stand quadrupedally. 

 

5.1.2.3 Stability Reward 

 

When training their quadruped, Google DeepMind also ran into issues with their agent 

consistently entering an unrecoverable state during training episodes. They combated this by 

penalizing large changes in the robot’s horizontal location and joint positions [42]. We 

implemented a similar reward function:  

 

 

𝑟(𝑠𝑡) = 1 − 

(

 
 
(𝑐𝑙𝑎𝑚𝑝(

|0.337 − ℎ𝑡|
ℎ𝑡

, 0, 1) + (
Δ𝜃𝑥
2 ∗ 𝜋

+ 
Δ𝜃𝑦
2 ∗ 𝜋

))

2

)

 
 𝑣ℎ
𝑙ℎ

𝑣𝜃
𝑙𝜃

 (24) 

where 

• 𝑣ℎ is the horizontal velocity of the agent 

• 𝑣𝜃 is the average joint velocity 

• 𝑙ℎ and 𝑙𝜃 are scaling factors on the horizontal and joint velocities. These values were 

determined experimentally 

 

Google DeepMind found success in multiplying by their stability reward rather than adding it as 

the effect distributes to both subrewards (the torso flatness and height rewards, respectively) 

[42]. As seen in Figure 46, during episodes the agent “jumps” up and lands in a quadrupedal 

standing stance. However, instead of dynamically moving its legs, the agent simply locks them 

into a stable position. Unfortunately, this “stable position” does not reach the target height. 

Therefore, while the robot is standing quadrupedally, it did not perform the desired behavior but 

rather found a shortcut to a locally optimal solution.  

 

 

Figure 46. The agent standing quadrupedally by optimizing (24). The agent jumps up, 

locks its legs, and simply stands on them. In this configuration, the agent’s height is 

only 0.3, when the target height is 0.337. However, the agent is incredibly stable as 

there are no actions performed once the agent is standing. For this agent,  

𝑙ℎ =  3.215𝑚  and 𝑙𝜃 = 10 𝑟𝑎𝑑/𝑠. 
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5.1.2.4 Gaussian Tolerances 

 

In the previous experiments, we see that the agent optimizes some subrewards while 

“sacrificing” others. This can be seen in Figure 46, where the robot achieves perfect small 

control, horizontal velocity, and torso flatness rewards—but a suboptimal height reward. Our 

intuition behind this behavior was that there was “no tolerance” in the rewards. 

 Since all of our subrewards are linearly interpolated, the only time the agent can get a 

reward of 1 is to achieve perfect quadrupedal standing. However, that is highly unrealistic, and 

the agent can be considered to be successfully standing quadrupedally even if there are slight 

deviations in the orientation and joint control. 

 To allow for toleranced rewards, we wrote a custom Gaussian interpolator: 

 

𝑔(𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑚, ℎ𝑚) =

{
 
 

 
 

1,                                   𝑖𝑓 abs(𝑥 − 𝑡𝑎𝑟𝑔𝑒𝑡) < ℎ𝑚

1

𝜎√2𝜋
𝑒

−
1
2(
(
𝑥±ℎ𝑚
𝑠𝑚

)−(𝑡𝑎𝑟𝑔𝑒𝑡±ℎ𝑚)

−2∗log(0.01)
)

, 𝑖𝑓 ℎ𝑚 ≤ abs(𝑥 − 𝑡𝑎𝑟𝑔𝑒𝑡) ≤ 𝑠𝑚

0,                                    𝑖𝑓 abs(𝑥 − 𝑡𝑎𝑟𝑔𝑒𝑡) > 𝑠𝑚

 (25) 

 

Where ℎ𝑚 is the hard margin of the tolerance and 𝑠𝑚 is the soft margin of the tolerance. The 

behavior of the function (visualized in Figure 47) is as follows: 

• If the difference between 𝑥 and 𝑡𝑎𝑟𝑔𝑒𝑡 is less than hard margin, yield a reward of 1 

(perfect reward) 

• If the difference between x and target is more than soft margin, yield a reward of 0 

 

Figure 47. A visual representation of our custom Gaussian tolerance function.  

Observe how the reward function returns 1while 𝑥 is within ℎ𝑚 of the 𝑡𝑎𝑟𝑔𝑒𝑡.  
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• If the difference is between hard margin and soft margin, then interpolate based off a 

Gaussian centered at 𝑡𝑎𝑟𝑔𝑒𝑡 + ℎ𝑚 and returns 0.01 when 𝑥 = 𝑠𝑚. Note that even 

though this calculation is based off the general formula for a PDF of a Gaussian 

distribution [44], it is scaled as per Section 4.1.1.1 to be in [-1, 1]. 

• Note that ℎ𝑚 is either added or subtracted from 𝑥 and/or 𝑡𝑎𝑟𝑔𝑒𝑡 depending on if 𝑥 ≤

𝑡𝑎𝑟𝑔𝑒𝑡 or 𝑥 ≥ 𝑡𝑎𝑟𝑔𝑒𝑡 
 

With this new tolerance function, we rewrote (24) as: 

 

𝑟(𝑠𝑡) = 1 − (
𝑐𝑙𝑎𝑚𝑝(𝑔(ℎ𝑡, 0.337, 𝑠𝑚ℎ, ℎ𝑚ℎ), 0, 1) + 𝑔(Δ𝜃𝑥, 0, 𝑠𝑚𝑥 , 𝑙𝑥) + 𝑔(Δ𝜃𝑦, 0, 𝑠𝑚𝑦, 𝑙𝑦) 

3
)

× 𝑔(𝑣ℎ , 0, 𝑠𝑚𝑣 , 𝑙𝑣)𝑔(𝑣𝜃, 0, 𝑠𝑚𝑠𝑐 , 𝑙𝑠𝑐) 
(26) 

where: 

• 𝑠𝑚ℎ and ℎ𝑚ℎ are the soft and hard margins for the torso height reward, respectively 

• 𝑠𝑚𝑥 is the soft margin for the torso rotation rewards, respectively. Note that 𝑠𝑚𝑥 =  𝑠𝑚𝑦 

in practice for symmetry. 

• 𝑠𝑚𝑣 is the soft margin for the horizontal velocity reward 

• 𝑠𝑚𝑠𝑐 is the soft margin for the joint velocity reward 

Using (26), we were able to achieve successful quadrupedal standing. As shown in Figure 48, the 

agent successfully brings the torso to the desired height and maintains it via dynamically 

adjusting its legs. By allowing tolerances in our reward function, we were able to train the agent 

to perform desired behavior, instead of settling for a local maximum.  

 Our final model was automatically tuned by our RL pipeline, as explained in Section 3.1, 

and the parameters for our best agent are as follows: 

 

Parameter Value 

Episodes 12000 

𝑠𝑚ℎ 0.1636 

ℎ𝑚ℎ 0.007876 

 

Figure 48. Quadrupedal standing results using (26) as the reward function. Here, 

the agent jumps up, lands on four feet, and performs leg adjustments to stay 

stable. 
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𝑠𝑚𝑥 4.33 

𝑙𝑥 0.06703 

𝑠𝑚𝑦 4.33 

 𝑙𝑦 0.06703 

𝑠𝑚𝑣 3.168 

𝑙𝑣 0.9127 

 𝑠𝑚𝑠𝑐 0 

𝑙𝑠𝑐 10.808 

 

 

5.2 Quadrupedal Walking Tests 

 

The quadrupedal symmetric wave gait was tested on multiple surfaces to evaluate the gait’s 

performance in different environments. These tests were all performed on relatively flat surfaces 

and produced varying results. This section describes the walking tests we conducted and gives 

the results of those tests.  

 

Carpet 

 

The gait was first tested on carpet because this was the flooring of the room where we built and 

set-up the robot. The robot successfully performed quadrupedal walking without any issues. Due 

to the size of the room and length of the power cord, the robot could only walk a maximum 

distance of roughly seven feet.  

 

 
Figure 49: Robot performing walking gait on carpet. 
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Plywood 

 

Tests were also conducted on a 4’x 2’ sheet of plywood. During multiple tests, the robot 

successfully walked; however, we routinely observed instances where the gait skipped steps as a 

result of the robot slipping on the plywood. The team attributed the skipping motion to the robot 

slipping and then regaining traction on the surface. During these tests, the robot walked roughly 

3’ because it was limited by the size of the plywood.   

 

 
Figure 50: Gait test on plywood board 

 

Brick Path and Concrete  

 

We tested the gait outside, on the brick and concrete paths around the Quad. Our observations 

and results were similar to those of the plywood test: the robot successfully walked on both 

surfaces, but the gait would occasionally skip. During the instances where the gait skipped, it 

was clear that the robot had momentarily lost traction, just as we observed during the tests on the 

plywood surface. We also tested the gait on a section of the path where the surface changed from 

concrete to brick. In this case, the gait was able to transition between the surfaces, but we did 

observe it skip.  
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Figure 51: Gait transitioning from concrete surface to brick path. 

 

Grass 

 

On grass, the walking gait was unsuccessful. The robot could not produce any forward motion 

and instead skipped in place. Fearing we would damage the robot by conducting further tests, we 

stopped and only performed a single test on grass. The team believes that the skipping in place 

was a more severe case of the phenomenon we observed during tests on the plywood and 

concrete & brick paths. A combination of poor traction and a slightly uneven surface interfered 

with the gait and prevented forward motion.  
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Figure 52: Gait test on grass 

 

Foam Matt 

 

We tested the gait on interlocking foam matts. These tests were successful, and the phenomenon 

of the gait skipping was never observed. From our observations, the gait appeared to function the 

smoothest when on the foam matts.  

 

Cobblestone 

 

Our last test was on the cobblestone path near the Fountain. Our tests on cobblestone were brief 

because the robot broke during testing. The robot performed quadrupedal walking during the first 

test, but while we were setting up the robot for a second test, the front left leg’s hip actuator 

module (Module 1) broke. While the robot was positioned in its prepared walking stance, the 

motor overheated, melting the PLA module shell from which the motor is secured to. A 

combination of the leg supporting the robot’s weight and the motor’s heat deforming the melting 

plastic, caused the motor to break free from the shell. At this moment the module had been 

compromised to a point where it could not support the robot’s weight and the robot subsequently 

collapsed.  
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Figure 53: Robot on cobblestone path moments before the motor overheated. 

 

We are confident that the motor did not overheat because of current overload. Our 

reasoning is that the ODrives limit the motors’ received current to 10A. If the ODrive receives a 

greater current than the set limit, the ODrive automatically powers off. Therefore, if too much 

current was being delivered to the ODrive and motor, the ODrive would have shut-down before 

the motor could become hot enough to melt the actuator module shell. This leads us to believe 

that the motor overheated for another reason. We believe the culprit was the uneven surface of 

the cobblestone. When we placed the robot on the ground, we think that the front left leg was 

positioned in a way where the leg contacted the ground at a point slightly below the other legs. 

This imbalanced the robot’s weight distribution and put more weight on the front left leg. 

Module 1 had to support this added weight, and this caused the motor to heat up. The extent of 

the damage to Module 1 is detailed in Section 5.2.1. 
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Figure 54: Motor melted the PLA and broke off its mounting. 

 

5.2.1 Damage to Module 1 

 

After breaking Module 1, we disassembled the front left leg and assessed the damage to the 

module. Once the module was disassembled, we determined that the damage was much less than 

initially feared. The timing belts were in working condition, the motor shaft was not bent, and 

the codewheel and encoder were not visibly damaged. The motor’s stator had some melted 

plastic on its coils which was manually cleaned off. The most damage was to the actuator 

module’s shell base. The PLA around the motor mount was severely deformed as the plastic had 

melted and then solidified once cool. Some PLA was fused to the motor and the shell had to be 

cut apart to free the motor from the plastic. 

 

 
Figure 55: We had to cut the shell apart to free the motor. 

 

We 3D printed a new module shell base to replace the broken one and reassembled the 

module. The module’s motor and encoder were tested, and the module was determined to 

function properly. Interestingly, the occurrence of the module shell melting might have been 

avoided if we used PC-ABS, like the Solo8 developers use, rather than PLA. The antigravity 

motors are designed for drones, and as such they rely on air cooling for temperature control. 
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However, on the robot, the motors do not receive much air flow since the robot and motors do 

not move very fast compared to a drone. This allows the motors to overheat easier, especially 

when they are stationary and holding a load above their stall torque, as we theorize happened 

when Module 1 broke. PC-ABS’ melting point is roughly 100°F greater than PLA, which might 

have withstood the heat from the motor overheating. In this way, our design choice to use PLA 

over PC-ABS may have played a role in Module 1 breaking and is an important note for future 

design iterations on the robot.  

 

5.2.2 Walking Gait Discussion  

 

Our tests results show that the quadrupedal symmetric wave gait was successfully 

implemented on the robot. While Module 1 broke during testing, we believe that the module 

breaking was unrelated to the gait since the module broke while the robot was stationary. The 

robot was unable to walk on grass, but it performed its walking gait on carpet, plywood, foam 

matts, concrete, and the brick and cobblestone surfaces. However, our tests show that the gait is 

far from ideal, as minor surface imperfections can be problematic for the gait. The robot’s 

inability to walk on uneven surfaces (i.e., grass), demonstrates the need for a more adaptable 

control system that can dynamically respond to its environment. The tests also show that the 

robot sometimes slips on smooth, low traction surfaces, or surfaces like concrete and brick paths 

that have small imperfections. The symmetric wave gait is a good first step as it validates the 

robot’s quadrupedal capabilities and achieves the team’s goal of implementing quadrupedal 

locomotion on the robot. However, more work is needed to increase the robot’s functionality and 

develop a walking gait that can maneuver through unstructured environments. 

 

5.3 Stance Transition 

 

We were successfully able to demonstrate stable bipedal standing in simulation. The standing 

trajectory gave us consistent results. While we were looking forward to implementing the 

transition trajectory on the real robot, we were unable to do so. This was due to lot of technical 

challenges that occupied our time, leaving us unable to spend time on our stretch goal of 

implementing the standing trajectory on the real robot. 
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(a)                                            (b)                                                 (c) 

Figure 56. Our Solo8 performing a stance transition in simulation. (a) is the starting position, (b) is a intermediate 

position and (c) is the ending position.  

6 Recommendations and Future Work 
 

Since our project was intended to be the first step in developing a multi-modal robotic platform, 

there is plenty of future work to be done to improve the Solo8’s quadrupedal and bipedal 

capabilities. Some of this future work involves implementing stance transition on the real robot, 

improving the robot’s control system, or making further mechanical modifications to the robot’s 

design. This work is intended to further develop the robot’s multi-modal abilities and improve 

the robot’s locomotion strategies.   

 

6.1 Implementing Multi-Modalism   

 

While the team achieved stance transition in simulation, we did not have enough time to 

implement the transition on the real robot. Right now, the Solo8 only has the theoretical 

capability to transition into a bipedal stance and stand stably. With more time, future teams can 

test the stance transition on the real robot, implement stable bipedal standing in real life, and 

develop a bipedal walking gait in simulation. This work would dramatically improve the Solo8’s 

multi-modal abilities. Work can also be done to optimize the quadrupedal walking gait. We 

implemented a quadrupedal symmetric wave gait because it was the simplest gait to develop in 

the time that we had. While the gait works, it was not compared to other gaits to optimize 

quadrupedal locomotion. In the future, a team can develop and implement additional 

quadrupedal walking gaits to improve its quadrupedal abilities.   

 

6.2 Control System Improvements 

 

Another way to improve the robot’s capabilities is to implement dynamic control. 

Currently, the Solo8 can only walk on flat surfaces because its control system has no sensing 

capabilities and cannot adapt to its environment. A dynamic control system would provide 

intelligent motion and increase the robot’s functionality. As part of a dynamic control system, 

future teams can also implement autonomous motion by adding a camera or other sensors to the 
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robot. With the ability to make decisions on its own, the Solo8 would have adaptability in 

unstructured environments and could decide when and where to change its stance or locomotion 

type.  

  

6.3 Design Modifications 

 

Larger design modifications, like increasing the Solo8’s degrees of freedom or designing 

manipulators for the front limbs, could also be pursued. The robot’s 10 degrees of freedom is 

enough to accomplish basic bipedal locomotion; however, mobility could be improved if an 

additional joint were created at the hip. The ODRI has a 12DoF version of the Solo8, with hip 

joints, and our robot could be modified with the ODRI’s design. The front limbs can also be 

modified to provide additional functionality in bipedal mode. Right now, the front limbs have no 

task completion capabilities as they only have 2DoFs and no manipulators. Future teams can 

design and implement manipulators that allow the Solo8 to perform tasks when in its bipedal 

stance. 

More work can also be done to optimize the flat feet. Even though the current flat foot 

design increases the robot’s bipedal support polygon, the support polygon is relatively small 

compared to the robot’s body. In its current iteration, the robot might have trouble remaining 

stable when the simulated stance transition is attempted on the real robot. A larger foot would 

improve stability, making bipedal standing easier for the robot and bipedal locomotion more 

feasible. An in-depth analysis of the foot could be conducted to determine the optimal foot length 

that provides the greatest support polygon without creating a moment arm that produces too 

much torque on the servo. There are also stronger micro-servos available on the market that 

could be implemented with minor changes to the design. To address the slipping issue we 

observed during the quadrupedal gait tests, future teams can prototype different foot materials 

that provide greater traction. 

If a camera or other sensors were added to improve the robot’s control system, new 

mountings might need to be designed and incorporated into the existing body structure. The body 

structure can also be changed if future teams decide that design changes are required to better 

support new sensing hardware.  

 

6.4 Reinforcement Learning 

 

Since our pipeline is already developed, future teams have the tools to conduct more 

experiments. We have already achieved quadrupedal standing via RL on ODRI’s original Solo8. 

Next steps in quadrupedal standing include re-training an agent using our updated Solo8 model. 

Additionally, due to the seamless nature of our sim-to-reality pipeline, all models can be run on 

the real robot as well—opening up interesting questions on how well theory translates to 

practice. 

 Furthermore, as our RL pipeline uses OTS implementations, it is compatible with the 

state-of-the-art algorithms. In our project, we used PPO2 to train our agent, but a potential venue 

for research would be comparing the efficacy between PPO2 and other upcoming RL algorithms. 
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Finally, we only explored quadrupedal standing to show that our pipeline works and can be used 

to achieve intelligent behavior. Past quadrupedal standing, there is room to explore quadrupedal 

walking as well as tasks such as fetching. Since our robot also supports bipedal locomotion, 

agents can be trained to perform stance transitions and bipedal tasks. With the tools we have 

developed, we hope to lower the barrier to explore these interesting problems—and hopefully get 

to see our physical robot run these algorithms. 

  



78 
 
 

7 Conclusion 
 

We intended our project to be a stepping-stone in the development of a robot capable 

of quadrupedalism and bipedalism. Despite COVID and time restrictions, we believe that we 

have created a novel multi-modal platform. We have built a physical robot, developed an 

accompanying software stack with a reinforcement learning pipeline, and implemented 

quadrupedal locomotion on the real robot as well as achieved stance transition in simulation. We 

are excited about the possibilities that our platform affords to future roboticists. Using 

locomotion strategies developed on our robot, we hope to inform and inspire a new era of multi-

modal robotics research here at WPI and beyond. 
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Appendix A: Software Architecture Diagram 
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Appendix B: Torque Analysis 
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Appendix C: Foot Requirements and Specifications 
 

Rear Foot Requirements  

 

Increases the ground surface contact area 

• Some sort of flat foot 

 

Converts from point to flat foot 

• Some type of mechanism or linkage 

• One-time latch release or servo operated 

o One-time latch release limits the robot’s ability to convert back to quad mode 

▪ Could be spring loaded 

▪ The release could be a servo or it’s somehow released by the changing 

angle of the leg as the robot beings to stand 

• Servo actuated increases complexity but gives the design more robustness (foot 

can convert back to a point foot for quad locomotion) 

An axle for the toe to rotate around when converting from point to flat foot 

Toe rotates around the point foot and creates a flush surface with the bottom of the point foot 

 

Degrees of Freedom? 

• If the foot is going to transform, then there needs to be at least 1 rotational DOF 

• The toe/flat foot does not require any DOFs 

o The robot can stand with a rigid foot (other biped robots have rigid feet) 

o Rigid feet aren’t optimal for walking but we’re are not trying to implement 

bipedal walking in this project 

 

Dimensions? 

• Creates a large enough support polygon to prevent some angle of pitch 

o Need to determine this angle 

 

Should the flat foot have ground contact infront or behind the robot’s frontal plane (both?)? 

• Choosing between infront/behind robot’s frontal plane is influenced by the configuration 

of the legs during bipedal standing 

• Each toe must rotate across a different angle depending on the configuration of the lower 

leg 

• Both: 

o Provides more pitch stability 

o Each toe is its own part 

o Either requires two servos or the motion of one toe needs to be connected to the 

motion of the other 

▪ Integrate gear teeth into the toe design to create the desired motion  

▪ Offset the gear teeth on either toe so that the back toe only rotates at the 

end of the front toe’s rotation 

▪ Need to determine the number of teeth 



92 
 
 

▪ Small teeth probably can’t be 3D printed so the gear hub needs to 

be large enough for the determined number of teeth 

• Design is most robust for the bipedal standing leg configuration  

 

Materials? 

• 3D printed is best because it’s cheap, lightweight, and allows for easier design iteration  

 

Servo 

• Where/how does the servo attach? 

• Imbedded in the lower leg 

• Needs to be small enough to fit in the leg 

• Needs to produce enough torque to move the toes 

o Need to determine the servo specifications  

 

Servo-foot connection 

• Two bar linkage 

• Flexible connection points between links and foot 

o Reduces the risk of damaging the servo 

o Gives the toe some flexibility  

• Gears 

o provides controlled motion 

o compact 

 

Lower leg design 

• Needs to be wide enough so the servo can be imbedded into the leg body 

• Could design a completely new lower leg that better compliments the flat foot 

o Keep the connection point between the lower leg and actuator module 

o Widen the leg for the servo if needed 

o Create an axle hole at the center of the point foot 

 

Parts in the whole assembly 

• Lower leg (includes point foot) 

• Front toe 

• Back toe 

• gear 

• Servo  
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Appendix D: Bill of Materials 
 

Actuator Module  

Part Name Description  Quantity Distributor 

Unit 
Cost 
($) 

Total 
Cost ($) 

Motor T-Motor Antigravity 4004 300kv 8 T-Motor 72.95 583.6 

Encoder  
Encoder Broadcom AEDT-9810-Z00 

8 
Mouser 

Electronics 
27.9 223.2 

Codewheel  
625cpr, ID 7mm / OD 25,56mm 

8 
PWB 

Encoders 
30.1 240.8 

First Stage Timing 
Belt 

Timing Belt Conti Synchroflex AT3 
GEN III, width: 4mm/ length: 150mm/ 
50 teeth  

8 Belting Online 5.94 47.52 

Second Stage 
Timing Belt 

Timing Belt Conti Synchroflex AT3, 
width: 6mm/ length: 201mm/ 67 
teeth  

8 Belting Online 8.25 66 

Output Shaft Bearing  6705-2RS 25x32x4mm 16 123Bearing 6.5 104 

Motor Shaft and 
Center Shaft Bearing  

MR84 Mini Ball Bearing 4x8x2mm 
Open 

24 
Bearings 

Direct 
6.59 158.16 

Timing Belt 
Tensioner Bearing  683-ZZ-ZEN 3x7x3mm 

16 123Bearing 2.64 42.24 

Timing Belt Washers  
M2.5 Screw Size, ID 2,7mm, OD 
5mm, 98689A111 

16 
McMaster-

Carr 
0.03 0.48 

Motor Shaft  
4mm x 3.99mm Stainless Steel Rod 

8 
KVC 

Engineering 
24 192 

Motor Pulley 
AT3 T10 Aluminium 7075 Pulley 

8 
KVC 

Engineering 
48 384 

Center Pulley 
AT3 T10 Aluminium 7075 Pulley 

8 
KVC 

Engineering 
83 664 

Actuator Module Total 2706 

Fasteners 

Part Name Description  Quantity Distributor 

Unit 
Cost 
($) 

Total 
Cost ($) 

Socket Head Cap 
Screw M3x8 - Stainless Steel, 91292A112 28 

McMaster-
Carr 0.05 1.4 

Socket Head Cap 
Screw M3x12 - Stainless Steel, 91292A114 16 

McMaster-
Carr 0.05 0.8 

Socket Head Cap 
Screw M3x16 - Stainless Steel, 91292A115 16 

McMaster-
Carr 0.06 0.96 

Socket Head Cap 
Screw M2.5x6 - Stainless Steel, 91292A010 40 

McMaster-
Carr 0.05 2 



94 
 
 

Socket Head Cap 
Screw 

M2.5x10 - Stainless Steel, 
91292A014 23 

McMaster-
Carr 0.06 1.38 

Flat Head Screw M3x5 - Stainless Steel, 92125A125 32 
McMaster-

Carr 0.04 1.28 

Flat Head Screw M3x10 - Stainless Steel, 92125A130 16 
McMaster-

Carr 0.06 0.96 

Flat Head Screw M3x16 - Nylon, 92929A246 16 
McMaster-

Carr 0.1 1.6 

Helicoil Threaded 
Inserts M3x4.5 Helicoil, 91732A647 28 

McMaster-
Carr 0.71 19.88 

Helicoil Threaded 
Inserts M3x6 Helicoil, 91732A773 16 

McMaster-
Carr 0.9 14.4 

Helicoil Threaded 
Inserts M2.5x3.8 Helicoil, 91732A767 64 

McMaster-
Carr 0.5 32 

Narrow Cheese 
Head Slotted Screw M3x12 - Zinc Plated, 90657A107 4 

McMaster-
Carr 0.023 0.092 

Low Profile Socket 
Head Screw M2x8 - Alloy Steel, 93070A277 4 

McMaster-
Carr 1.75 7 

Fasteners Total  76.66 

3D Printed Parts 

Part Name Material Quantity Distributor 

Unit 
Cost 
($) 

Total 
Cost ($) 

Body Structure 
Brace Part 1 PLA 2 NA 0.49 0.98 

Body Structure 
Brace Part 2 PLA 2 NA 0.48 0.96 

Body Scucture Side 
Part 1 PLA 2 NA 1.26 2.52 

Body Scucture Side 
Part 2 PLA 2 NA 1.26 2.52 

Body Structure 
Front/Back PLA 2 NA 0.5 1 

Hip Module Shell 
Base PLA 4 NA 1.12 4.48 

Hip Module Shell 
Cover PLA 4 NA 0.46 1.84 

Upper Leg Module 
Shell Base PLA 4 NA 1.13 4.52 

Upper Leg Module 
Shell Cover PLA 4 NA 0.46 1.84 

Front Lower Leg PLA 2 NA 0.48 0.96 

Rear Lower Leg PLA 2 NA 0.58 1.16 

Codewheel Mount Acurra Xtreme White 200 8 3D Hubs 10.78 86.24 
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Transmission Pulley 
AT3 T30 Center Acurra Xtreme White 201 8 3D Hubs 20.26 162.08 

Transmission Pulley 
AT3 T30 Output Acurra Xtreme White 202 8 3D Hubs 23.16 185.28 

Timing Belt 
Tensioner Roller 
10mm PLA 16 NA 0.01 0.16 

Servo Gear PLA 2 NA 0.02 0.04 

Right Flat Foot PLA 2 NA 0.1 0.2 

Left Flat Foot PLA 2 NA 0.1 0.2 

3D Printed Parts Total 456.98 

Servo-Actuated Flat Foot 

Part Name Description  Quantity Distributor 

Unit 
Cost 
($) 

Total 
Cost ($) 

Servo  150oz-in Micro, CLS DS150CLHV 2 ProModler 54.99 109.98 

Shaft 1/4"x1.5", 1327K133 2 
McMaster-

Carr 2.5 5 

Retaining Ring 1/4" OD, 97633A130 4 
McMaster-

Carr 0.08 0.32 

Hex Nut 
M2x0.4mm thread - Zinc Plated, 
90591A265 

4 
McMaster-

Carr 
0.02 0.08 

Nylon-Insert Locknut M3x0.5 thread - Steel, 90576A102 4 
McMaster-

Carr 0.04 0.16 

Round Servo Arm 21mm OD, PDRS107 2 ProModler 1.99 3.98 

Servo-Actuated Flat Foot Total 119.52 

Electronics 

Part Name Description  Quantity Distributor 

Unit 
Cost 
($) 

Total 
Cost ($) 

24V Power Supply Part no. 1585717 1 Jameco 230 230 

Circuit Breaker Blue Sea Systems 285-Series 60A 1 Amazon 40.66 40.66 

24V to 5V Power 
Converter EPBWOPT 1 Amazon 10.79 10.79 

ODrive ODrive V3.6, 24V 4 ODrive 129 516 

24V to 8.4V Power 
Converter 

XL4015 5A DC Buck Step Down 
Power Converter Voltage Current & 
LED Voltmeter USB 

1 ebay 6.95 6.95 

47nF Capacitor Bojack Ceramic Capacitor Kit 8 Amazon 0.01 0.08 

Rasberry Pi  1  35 35 

Teensy  1  19.95 19.95 
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Power Distribution 
Bolt 1/4in x 1-3/4in 2 Home Depot 1.99 

3.98 

Hex Nuts 1/4in 8 Home Depot 0.35 2.8 

Electronics Total  866.21 

Wiring 

Part Name Description  Quantity Distributor 

Unit 
Cost 
($) 

Total 
Cost ($) 

Encoder Wires 
EX Electronics Express - Hook Up 
Wire Kit, 22 Guage (6 Different 
colors), 25 ft long 

1 Amazon 20.99 20.99 

Motor Wires 
300V AC, 20 Guage, 25 ft long 
8054T14 

3 
McMaster-

Carr 
3.98 11.94 

ODrive Wires 
12 Guage, 25 ft long, Black Stranded 
CU THHN Wire 22964185 

2 Home Depot 12.21 24.42 

Power Supply Wires 
6 Guage, 10 ft long Copper Flexible 
Cable Wire 307832073 

2 Home Depot 20.35 40.7 

Ring Terminals  
Qiback Insulating Wiring Terminals 
Connectors Assortment Kit 

1 Amazon 24.99 24.99 

Dupont Pin 
Connectors Proster Dupont Pin Connectors Kit 

1 Amazon 24.99 24.99 

Dupont Jumper 
Wires Ribbon Cable Kit 

1 Amazon 9.99 9.99 

Wiring Total 158.02 

System Cost ($) 

Actuator Module 2706 

Fasteners 76.66 

3D Printed Parts 456.98 

Servo Actuated Flat Foot 119.52 

Electronics  866.21 

Wiring 158.02 

Total Cost ($) 4383.39 

 

 

 

 


