

Multi-Modal Locomotion Robot

A Major Qualifying Project Report

Submitted to the Faculty of

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted by:

Andrew Euredjian

Ankur Gupta

Revant Mahajan

Dante Muzila

Date: May 6, 2021

Submitted to:

Professor Michael A. Gennert

Professor Mohammad Mahdi Agheli Hajiabadi

Professor Randy Clinton Paffenroth

This report represents the work of four WPI undergraduate students submitted to the faculty as

evidence of a degree requirement. WPI routinely publishes these reports on its website without

editorial or peer review. For more information about the projects program at WPI, please see:

http://www.wpi.edu/Academics/Projects

http://www.wpi.edu/Academics/Projects

i

Abstract

A variety of animals such as primates, dogs, and bears switch modes of locomotion between

quadrupedalism and bipedalism to better complete certain tasks. However, very few robotic

platforms can effectively combine the two forms of locomotion. A multi-modal robotic platform

with such capabilities would provide additional adaptability in unstructured environments,

broadening its potential applications. Therefore, we extended an existing quadrupedal platform

with the capability to transition into a bipedal stance. In this project, we built a physical robot,

developed an accompanying software stack with a reinforcement learning pipeline, implemented

quadrupedal locomotion, and achieved stance transition in simulation. Our integrated hardware

and software platform affords future roboticists the opportunity to test and develop more

adaptable locomotion strategies and increase the functionality of robots more broadly.

ii

Acknowledgments

We would like to thank Professor Gennert, Professor Agheli, and Professor Paffenroth for their

for guidance throughout this project.

We also extend our gratitude towards the Open Dynamic Robot Initiative and ODrive

community for their help.

Lastly, we want to acknowledge Abigail Payne for her time and support.

iii

Table of Contents
Abstract .. i

Acknowledgments ... ii

List of Figures ... v

List of Tables .. vii

1 Introduction .. 1

2 Background .. 3

2.1 Overview of Multi-Modal Robotics .. 3

2.2 Quad-Bi Locomotion .. 3

2.2.1 State of the Art ... 3

2.2.2 Control and Stance Transition .. 4

2.2.3 Foot Design .. 5

2.3 Solo8 ... 6

2.3.1 Mechanical Design ... 7

2.3.2 Software ... 7

2.3.3 Electronics .. 8

2.4 Reinforcement Learning for Robot Control .. 8

2.4.1 A Gentle Introduction to Machine Learning .. 8

2.4.2 Reinforcement Learning .. 15

3 Design Decisions ... 19

3.1 Software Stack .. 19

3.2 Electronics Changes .. 22

3.2.1 Single Board Computer .. 22

3.2.2 Arduino .. 24

3.2.3 Brushless Motor Controller .. 25

3.2.4 Supporting Electronics ... 25

3.2.5 Wiring .. 27

3.3 Robot Analysis .. 28

3.4 Mechanical Modifications .. 29

3.4.1 Flat Foot ... 29

3.4.2 Body Structure and Rear Legs ... 33

3.4.3 Fabrication and Hardware Acquisition .. 34

4 Implementation .. 36

4.1 Reinforcement Learning Experiments .. 36

4.1.1 Inverted Pendulum & Lessons Learnt .. 36

iv

4.1.2 Solo 8 Quadrupedal Standing .. 38

4.2 Revised Robot Analysis & Build .. 39

4.3 ODrive Tuning .. 42

4.4 Pivot from Arduino Due to Teensy 4.1 ... 44

4.5 Updated Wiring ... 45

4.6 Quadrupedal Home Position ... 46

4.7 Quadrupedal Standing ... 48

4.8 Flat Foot Testing ... 54

4.9 Quadrupedal Walking ... 54

4.10 Stance Transitioning ... 58

5 Results and Discussion .. 62

5.1 Reinforcement Learning ... 62

5.1.1 Pendulum-v0 .. 62

5.1.2 Quadrupedal Standing .. 63

5.2 Quadrupedal Walking Tests .. 68

5.2.1 Damage to Module 1 .. 73

5.2.2 Walking Gait Discussion ... 74

5.3 Stance Transition .. 74

6 Recommendations and Future Work .. 75

6.1 Implementing Multi-Modalism ... 75

6.2 Control System Improvements.. 75

6.3 Design Modifications .. 76

6.4 Reinforcement Learning ... 76

7 Conclusion ... 78

References ... 79

Appendix A: Software Architecture Diagram... 83

Appendix B: Torque Analysis .. 84

Appendix C: Foot Requirements and Specifications .. 91

Appendix D: Bill of Materials .. 93

v

List of Figures
Figure 1: Charlie ... 4

Figure 2: Solo8 .. 6

Figure 3. Brushless actuator module (a) assembled and (b) parts ... 7

Figure 4. A four-layer, feed forward neural network .. 10

Figure 5. The Heaviside and Logisitic Sigmoid functions .. 13

Figure 6. The ReLU activation function ... 14

Figure 7. The RL representation of an agent-environment interaction. .. 14

Figure 8. The PPO with Adaptive KL Penalty algorithm from the original paper 18

Figure 9: Diagram of Software Stack (Concise) ... 21

Figure 10: Wiring diagram for robot ... 27

Figure 11: Initial torque analysis notation .. 28

Figure 12: Modified Solo8 CAD model ... 29

Figure 13: Four bar linkage design (left) and gear drive design (right) .. 30

Figure 14: Flat foot with heal (left), dog foot (center), J-foot (right) ... 31

Figure 15: Lower leg and foot prototype .. 33

Figure 16: Modified body structure .. 34

Figure 17. Open AI Gym’s Pendulum-v0 environment.. .. 36

Figure 18: Updated torque analysis notation .. 39

Figure 19: Module labels .. 40

Figure 20: Encoder assembly (left) and brass right (right) ... 41

Figure 21: Flat foot assembly exploded view ... 42

Figure 22: 47nF capacitors soldered to both ODrive axes .. 43

Figure 23: PID tuning graph ... 43

Figure 24: Wiring diagram with Teensy replacement ... 46

Figure 25: Hip module’s horizontal axis aligned with the pulley’s horizontal axis 46

Figure 26: Upper leg module’s horizontal axisperpendicular to the pulley’s horizontal axis 47

Figure 27: Home position ... 48

Figure 28: Robot’s original electronics with PDU that was too heavy. .. 49

Figure 29: Initial quadrupedal standing leg configuration .. 50

Figure 30: Removed wiring weighing about 190 grams ... 51

Figure 31: Wire reduction ... 52

Figure 32: Home-made PDU .. 53

Figure 33: Robot standing after reducing the weight of wiring .. 53

Figure 34: Point foot configuration (left) and flat foot configuration (right).. 54

Figure 35: An example of a symmetrical walking gait. .. 55

Figure 36: Horizontal velocity and horizontal displacement of each leg in transfer phase 56

Figure 37: Vertical velocity and vertical displacement of each leg in transfer phase 56

Figure 38: Vertical displacement vs horizontal displacement with respect to ground and body 56

Figure 39. Labels and reference frames for the robot with a forward tilt. ... 57

Figure 40. Labels and reference frame for performing inverse kinematics on our Solo’s legs. 58

Figure 41. The stance transition starting position ... 59

Figure 42. The robot in its stable standing stance ... 60

Figure 43. The testing episode reward during the model training .. 62

Figure 44. The agent attempting quadrupedal standing with the Naïve Height reward 63

Figure 45. The agent trying to stand quadrupedally using (23) as the reward function 64

Figure 46. The agent standing quadrupedally by optimizing (24) .. 65

https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481861
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481862
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481863
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481864
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481865
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481867
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481869
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481874
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481896
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481897
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481899
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481900
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481901
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481902
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481903

vi

Figure 47. A visual representation of our custom Gaussian tolerance function ... 66

Figure 48. Quadrupedal standing results using (26) as the reward function. .. 67

Figure 49: Robot performing walking gait on carpet. ... 68

Figure 50: Gait test on plywood board .. 69

Figure 51: Gait transitioning from concrete surface to brick path. ... 70

Figure 52: Gait test on grass ... 71

Figure 53: Robot on cobblestone path moments before the motor overheated. .. 72

Figure 54: Motor melted the PLA and broke off its mounting. .. 73

Figure 55: We had to cut the shell apart to free the motor. ... 73

Figure 56. Our Solo8 performing a stance transition in simulation. ... 75

https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481904
https://wpi0-my.sharepoint.com/personal/agupta4_wpi_edu/Documents/QB20/final-report.docx#_Toc71481905

vii

List of Tables
Table 1: Board Evaluation………………………………………………………………………………...24

Table 2: Foot Torque Analysis……………………………………………………………………………31

Table 3: Weight of Original Hardware…………………………………………………………………....52

1

1 Introduction

As we aim to develop robots with improved task completion capabilities, the environments in

which robots operate are becoming increasingly complex. In order to maneuver through

unstructured terrains, and complete their designated tasks, robots must possess adaptable and

robust locomotion strategies. For roboticists, the challenge remains in developing robotic

systems and corresponding locomotion strategies that can stably and efficiently traverse

unstructured terrains while also maintaining task completion capabilities.

Today, with advances in mechanical design and control systems, roboticists are

implementing a variety of walking gaits and locomotion techniques on two and four-legged

robotic systems. Inspired by humans, bipedal robots such as NASA’s Valkyrie and Boston

Dynamics’ ATLAS, move on two actuated limbs and have demonstrated the ability to walk,

jump, and hop [1]. These robots are not only popular because of their multiple gaits, but also

because their upper limbs provide manipulation and dexterity capabilities that other robots (e.g.,

quadrupeds) lack. Quadruped robots mimic the physical features and locomotion strategies of

dogs, cats, and other four-legged animals [2]. Robots like Spot and BigDog from Boston

Dynamics [3] and HyQ from the Italian Institute of Technology [4], have demonstrated stable

walking on unstructured terrain alongside trotting, squatting, and jumping capabilities.

Even though bipeds and quadrupeds have demonstrated some impressive locomotion

capabilities, certain disadvantages to mono-modal locomotion currently persist. Dynamic

stability is an ever-present issue for bipedal robots and traversing uneven terrain remains a

challenging task [5]Click here to enter text.. Quadrupedal robots are considered to be more stable

than their bipedal counterparts since they generally possess a larger support polygon [6]Click

here to enter text.; however, they lack the object manipulation abilities needed to complete

complex tasks [5]Click here to enter text.. This usually limits quadrupeds to reconnaissance work

[1]. Furthermore, while humanoid bipeds possess the dexterity required for complex tasks, their

movement is typically more energy-intensive than quadrupeds, making them comparatively

inefficient walkers over long distances [7].

Just as bipedal and quadrupedal robots are biologically inspired, we can once again look

towards nature in an attempt to overcome the current shortcomings of mono-modal robot

systems. In the natural world there are a variety of animals who benefit from the ability to move

through multiple locomotion types or achieve multiple walking gaits. Primates are perhaps the

most well-known example of multi-modal locomotion. Primates can seamlessly transition

between quadrupedal and bipedal walking, as well as swinging and climbing. Employing

multiple gaits allows primates to move efficiently in their terrestrial-arboreal environment and

adapt to different surroundings.

Unfortunately, in robotics, very few platforms can transition between multiple

locomotion types. Of the multi-modal locomotion robots that have been developed, a variety of

strategies have been explored, some mimicking nature and others taking a more artificial

approach [8]. Among the different multi-modal locomotion strategies, a robotic platform that can

stably convert between a quadrupedal and bipedal stance has the greatest potential for real-world

2

application. A robot with this capability would provide beneficiaries with the advantages that

both quadrupedal and bipedal locomotion afford. This serves as motivation for developing a

multi-modal robot that can efficiently walk long distances or traverse uneven terrain in

quadruped mode while converting to biped mode to complete tasks where dexterity and object

manipulation are required.

The goal of this project is to create a robotic platform capable of multi-modal transition

and locomotion. This platform is intended to be used for research and development purposes;

therefore, it has been designed with future usability in mind. Our platform extends an existing

open-source quadruped design, swaps out all custom electronics with off-the-shelf (OTS)

variants, and offers a seamless simulation-to-reality testing experience. Our simulation stack also

features a built-in pipeline for Reinforcement Learning (RL) experiments. Our final system

demonstrates full quadrupedal capabilities as well as bipedal standing in simulation. An easily

extendible multi-modal robotic platform will decrease the steep barrier of entry into multi-modal

robotics and offer opportunities to create robots that navigate a diverse range of environments.

3

2 Background

Over the years roboticists have developed various multi-modal robots in an attempt to create

more effective and adaptable locomotion strategies. This section provides background on the

field of multi-modal robotics and details the state-of-the-art in quad-bi robotics and control

systems. We also discuss the Solo8, an open-source quadruped robot, and provide insight into

the platform’s role in our project. Lastly, we discuss Reinforcement Learning (RL) for robot

controls and explain the basics of RL.

2.1 Overview of Multi-Modal Robotics

In the field of multi-modal robotics, several platforms exist that implement different types of

multi-modal locomotion. Reconfigurable robotic systems achieve multi-modal locomotion

through the simple premise of connectable mechatronic modules that can alter their shape and

function to changing environments [9]. Russo et al. [10] developed Scout, a cubic-shaped

reconfigurable robot that can perform inchworm locomotion in a three-module configuration and

quadrupedal locomotion using five modules (one for the body and four for the legs). Other

systems have modules that can be configured to form a snake or spider-like shape for crossing

uneven terrain, as well as forming a ball or wheel for quick movement on flat surfaces [10].

Robots like the PENS-FlyCrawl, a disaster-zone reconnaissance robot developed by Kuswadi et

al. [11], can fly and crawl using a bi-copter mechanism for aerial propulsion and two 360-degree

rotating legs for terrestrial crawling. Legged-wheeled locomotion is another form of multi-modal

locomotion, which consists of wheels mounted on legs to move, either by using its wheels, by

stepping, or both [12]. The Halluc II of the Chiba Institute of Technology is an eight-legged

robot equipped with driven wheels at the end of each appendage. The Halluc II can switch

between wheel-cruising and leg-walking, offering increased mobility performance [5]. Work has

also been done in the field of posture conversion and quadrupedal-to-bipedal (quad-bi)

locomotion.

2.2 Quad-Bi Locomotion

Despite being a relatively niche field of robotics, quad-bi locomotion has been implemented on

several robots. These robots range in design and capabilities. The following section details

current multi-modal platforms in the field of quad-bi locomotion and describes the various

control techniques used for stance conversion and movement. The foot design of certain multi-

modal robots is also discussed.

2.2.1 State of the Art

There are a handful of robotic platforms that can change their posture and perform quad-bi

locomotion. These platforms implement multi-modalism in different ways and to varying

extents. As part of the DARPA Robotics Challenge, Carnegie Mellon University developed

4

CHIMP, a humanoid-inspired robot that moves on motorized tracks. CHIMP can move and stand

bipedally on its rear legs, as well as change its posture to drive on all four tracks. In bipedal

mode, CHIMP can use its high degree-of-freedom arms, while transitioning to its quadrupedal

posture to stably move over uneven terrain [13]. WAREC-1 is a novel four-limbed robot that was

designed to exhibit versatility in locomotion styles. The robot’s mechanically identical legs and

three degrees-of-freedom hip/shoulder joints enable WAREC-1 to stand on two or four limbs,

transition between quadrupedal and bipedal walking, and perform vertical ladder climbing [14].

Quad-bi locomotion has also been achieved through designs that implement biomimicry.

The Gorilla Robot III [15] and the hominid-robot Charlie [16] were designed to mimic the

physical appearance and locomotion strategies of gorillas and chimpanzees, respectively. Both

robots can perform bipedal and quadrupedal walking, as well as change their posture.

Additionally, researchers have implemented quadrupedal locomotion on humanoid robots.

Huang et al. [17] implemented quad-bi locomotion on the BHR-6, a traditional humanoid

platform. In simulation, the researchers were able to develop a motion planning method that

allowed the BHR-6 to dynamically transition between a hand-knee crawling gait and a bipedal

walking gait. Yoon and Kim [18] approached the problem of humanoid multi-modal locomotion

differently. By studying the differences in pelvis length between bipedal humans and

quadrupedal anthropoids, they designed a humanoid robot with an adaptive pelvis mechanism

that allows for effective quadrupedal and bipedal gaits. The robot can successfully perform

bipedal and quadrupedal walking; however, the robot can not transition between the two

locomotion types on its own.

Figure 1: Charlie in quadrupedal posture (left) and bipedal posture (right) [16]

2.2.2 Control and Stance Transition

The challenge with multi-modal locomotion is developing a path planning and control algorithm

that can transition between and realize both locomotion forms. To achieve a transition gait on the

5

BHR-6, Huang et al. [17] proposed and verified in simulation a path-generation method based on

kinematic primitives of crawling and walking. The transition gait is constructed with a

combination of motion primitives, created by performing a kinematic primitive analysis on

obtained joint trajectories, and a polynomial interpolation of varying parameters. Adapted from

the path planning scheme for the humanoid ASIMO, Kamioka et al. [19] developed a new

algorithm with intermediate transitions for bipedal and quadrupedal locomotion. The algorithm is

based on the linear time-variant inverted pendulum model, which is used to determine the base

Zero Moment Point trajectory and calculate the trajectory at the center of gravity. Using this

control method, a biped test robot demonstrated multi-modal locomotion with gait transitions.

Several control algorithms for quad-bi locomotion use Central Pattern Generators

(CPGs), a biologically inspired control method that generates and controls periodic motion (ie.

walking) [20]. In robotics, CPGs are a network of oscillators that act as a controller by

generating rhythmic joint trajectories and providing stability properties [21]. Aoi and Tsuchiya

[22] proposed and verified a control system that obtained a smooth gait transition for a robot in

simulation. The control scheme implemented a CPG that created nominal joint trajectories by the

phases of nonlinear oscillators. The mapping of the joint trajectories is continuously and

gradually changed as the robot converts from a quadrupedal to a bipedal gait. Aoi, Tsuchiya, and

others modified this control system to implement multi-modalism on a physical bipedal robot.

Using the same oscillator network model, they incorporated a phase resetting mechanism to

increase the robustness of the gait transition. During experiments, the bipedal test robot was able

to stably transition between quadrupedal and bipedal gaits [23]. However, it is difficult for robots

to generate stable walking by CPG only [20]. Asa, Ishumua, and Wada tried to solve this issue

by pairing CPG with an independent posture controller. In simulation, the researchers used the

bifurcation phenomenon to realize adaptive transition behavior depending on the gradient of a

slope. Bifurcation of the potential function for the transition gave the robot the ability to switch

from a control law for biped walking to another for quadruped walking, based on bifurcation

parameters (ie. the gradient of the slope) [20].

2.2.3 Foot Design

Most quadruped robots are equipped with single-point-contact feet (point feet) because it

simplifies the robot’s design and control requirements. Unlike bipeds who have a considerably

smaller support polygon, quadrupeds can utilize point feet because stability is provided by their

large support polygon. Most bipeds are designed with some type of flat foot, whether it be

passive or actuated, to increase the robot’s contact area with the ground [24].

From the literature, all legged multi-modal robots at the very least have active feet, with a

few having more complex flexible-active feet. Active feet are actuated by a servo or motor and

provide at least one degree of freedom at the ankle. Flexible-active feet have three degrees of

freedom, with an active joint at the toes and two passive, spring torsioned, joints at the heel and

toes [24]. Fondahl et al [25], writes that while passive feet are sufficient for effective

quadrupedal walking, it hinders stable and efficient locomotion in bipedal walking. For this

reason, the previously discussed Gorilla Robot III [15] and BHR-6 [17] have active feet with

6

two-degrees of freedom and Charlie [16] has flexible-active feet. Charlie’s feet are multi-point

contact feet with three degrees of freedom at the ankle. The ankle joint, toe actuators, and

flexible heel imitate the damping and Windlass mechanism of human feet [26]. This provides

stable locomotion in both locomotion types and allows for smoother transition between

quadrupedal and bipedal locomotion.

2.3 Solo8

The Solo8 is an open-source torque-controlled quadruped robot system developed by the Max-

Planck Institute for Intelligent Systems in collaboration with New York University’s Tandon

School of Engineering [27]. As part of the Open Dynamic Robot Initiative (ODRI), the Solo8

was developed to enhance robot locomotion research through its lightweight and modular design.

Through experiments, the Solo8 has demonstrated a diverse range of quadrupedal locomotion

capabilities. The robot can jump 0.65m (twice its leg length), balance on moving platforms, and

walk over uneven surfaces [27].

For our project, we chose to extend this platform because we believed the Solo8’s

modular and lightweight design would aid us. The robot is easy to transport, work with, and

modify. However, an even greater benefit of the Solo8 is its open-source nature. All the Solo8’s

mechanical and electrical hardware blueprints in addition to software are open-source under the

BSD-3-clause license. The robot’s bill of materials and assembly instructions, along with STL

and CAD files for 3D printing and part modification, are available on the Open Dynamic Robot

Initiative’s GitHub repository. Given the inherent time restriction of a nine-month-long project,

using the Solo8’s design as our starting point made achieving our project’s goals more feasible.

Figure 2: Solo8 [27]

7

2.3.1 Mechanical Design

The Solo8 consists of four identical legs and a 3D printed body structure. Like many quadrupeds,

the Solo8 has point feet. The 8-DoF robot has 2-DoF in each leg and multi-revolution capable

joints. An individual leg is composed of two identical brushless actuator modules and a lower

leg. The actuator modules consist of a brushless motor (T-Motor Antigravity 4004, 300KV), a

high-resolution optical encoder with an index pulse and a 5000 pulse-per-revolution code wheel

mounted to the motor shaft. Additionally, the actuator modules have a 9:1 dual-stage timing belt

transmission that allows for impedance and force control at the joints. All the actuator modules’

components are housed within a lightweight, 3D printed shell. Except for the motor shafts and

pulleys, which are machined from stock material, all the modules’ components are either 3D

printed or off-the-shelf parts. In total, the Solo8 weighs 2.2kg and has a standing hip height of

24cm, a body length of 42cm and a width of 33cm [27].

(a) Actuator Module (b) Parts Overview

Figure 3. Brushless actuator module (a) assembled and (b) parts. BDLC Motor (1), two-part 3D printed shell

structure (2), high resolution encoder (3), timing belts (4), and output pulley (5). Brushless motor (6), optical

encoder (7), timing belts (8), bearings (9), fasteners (10), machined parts (11), and 3D printed parts (12). [27]

2.3.2 Software

Currently, the documentation for the Solo8’s software is minimal and everything we learned

about the software was through communications with the original creators on the ODRI

discourse forum (https://odri.discourse.group/). On the forum we were told that the Solo8’s

software stack is based on the dynamic graph concept to generate dynamically stable walking

gaits. The steps involved in executing an algorithm are as follows.

1. Prototype and implement an algorithm in simulation (PyBullet) using Python

2. Translate the algorithm into C++ to execute on the real robot

3. Embed the algorithm in a dynamic graph to be executed

4. Execute it on the real robot.

https://odri.discourse.group/

8

Upon pursuing more research on the dynamic graph concept, we could not gather more

information. Since our only means of gathering information was by communicating with the

Solo8 developers, the team decided to pursue other avenues for time purposes. Since we were

having difficulty getting basic information about the software during the planning phase of the

project, we were skeptical about the feasibility of using their undocumented software for our

project timeline. Therefore, we decided to create our own software stack. This decision is

explained more in Section 3.1.

2.3.3 Electronics

The Solo8’s electronics are contained within the body structure and the robot is externally

powered and remotely controlled by a PC. The motors are controlled with off-the-shelf TI micro-

controller evaluation boards and custom TI motor driver electronics. The micro-controllers are

equipped with two BLDC booster cards that are capable of Field Oriented Control (FOC) and

can execute dual motor torque control at 10 kHz. The motor driver electronics were miniaturized

by a volume factor of ten to reduce the electronics footprint. The resulting MPI Micro-Driver

electronics are open-source and consist of a Texas Instruments micro-controller

(TMS320F28069 M) and two brushless motor driver chips (DRV8305) on a single six-layer

printed circuit board. The board includes a JTAG port for programming, CAN and SPI ports for

control communications, and operates at motor voltages up to 40V [27].

2.4 Reinforcement Learning for Robot Control

In traditional robot control algorithms, a roboticist orchestrates a movement by changing motor

values (positions, torques, etc.) to perform a task. However, the human designed solution is not

always the most efficient way to complete the given task.

 Reinforcement Learning (RL) is an active field of research that aims to remove human

bias when solving a task. RL methods use Machine Learning (ML), a technique used to infer the

behavior of an arbitrary function, to “teach” robots to complete tasks by themselves. These

algorithms only require information about the environment (observations, how well it is

performing, etc.), heavily reducing the amount of human bias in the algorithm design process.

This section offers a working introduction to ML, how it is used within RL, and concludes with

the algorithms chosen by this team.

2.4.1 A Gentle Introduction to Machine Learning

In computer science, machine learning is a class of algorithms that aims to discover relationships

in data without any prior information on the data’s domain. These algorithms can be broadly

described as supervised and unsupervised, based on the nature of the data. Unsupervised

machine learning algorithms find hidden patterns in data without the need for any human

intervention. Common unsupervised machine learning problems include clustering and

dimensionality reduction. In contrast, supervised machine learning algorithms require a ground

9

truth, or prior knowledge of a desired output value for a given input. If the desired output is

discrete, then the machine learning task is described as classification. Otherwise, if the desired

output is continuous, the task is described as regression. The scope of this project only involves

supervised machine learning models aimed at solving regression tasks.

2.4.1.1 Neural Networks

Artificial neural networks (ANNs) are a type of machine learning technique that mimic the

structure of the human brain to learn the solution to a task [28]. ANNs can be broken down into

their atomic units called artificial neurons, or neurons for short. Each neuron receives an input

signal and sends an output signal to its connected neurons, which receive the signal as an input

[28].

In most neural networks, neurons are split into groups called layers. In feedforward

networks, layers are connected sequentially, where each neuron’s output from a given layer is

every neuron’s input in the next layer. Note that in feedforward neural networks, no cycles exist

between any two neurons. Neural networks with cycles between neurons are called recurrent

neural networks and have shown great success in representing sequence-dependent data [29].

However, recurrent neural networks are outside the scope of this project.

 Therefore, the input to any given neuron is simply a linear combination of the outputs of

the previous layer with a vector of weights (𝐰) and biases (𝐛). An activation function (𝜎) is then

applied to this combination, and this result is the output of the neuron. Hence, the output (z) of a

neuron in layer 𝑙 is expressed as:

𝑧𝑖
(𝑙) = 𝜎(∑ 𝐰𝑗

(𝑙−1)𝒛𝑗
(𝑙−1) + 𝐛𝑗

(𝑙−1)

𝑛(𝑙−1)

𝑗=1

) (1)

where:

• 𝑛(𝑙−1) is the number of neurons in layer 𝑙 − 1

• 𝐳j
(𝑙−1)

 is the output of the ith neuron in layer 𝑙 − 1

• 𝐰𝑗
(𝑙−1)

 is the weight associated with 𝐨𝐣
(𝑙−1)

• 𝒃𝑗
(𝑙−1)

 is the bias weight associated with 𝐨j
(𝑙−1)

• 𝜎 is the activation function

Then, we can define 𝐳(𝑙) to be the vector output for a layer 𝑙 as:

 𝒛(𝑙) = [𝑧1
(𝑙)

𝑧2
(𝑙)

⋯ 𝑧𝑛
(𝑙)]

T

(2)

10

Therefore, in vector notation, this entire operation per neuron layer can be expressed as:

 𝒛(𝑙) = 𝜎(𝐖(𝑙)𝐳(𝑙−1) + 𝐛(𝑙)) (3)

In this case, 𝐖(𝑙) is an 𝑚 × 𝑛 matrix, where 𝑚 is the number of neurons in layer 𝑙 (the current

layer) and 𝑛 is the number of neurons in layer 𝑙 − 1. One particularity to note is that 𝜎, even

though it is given a vector input, is applied element-wise. Additionally, one requirement of 𝜎 is

that it be differentiable—this is elaborated upon in Section 2.4.1.2.

Thus, for a feedforward neural network with 𝐿 layers, 𝐳(𝑙) is the input to 𝐳(𝑙+1) and 𝐳(𝐿) is

the final output of the network. A simple example of a neural network with four layers can be

seen in Figure 4. Formally, we express the final output 𝐳(𝐿) of the network as a function of a

single data point 𝐱:

 𝐳(𝐿) = 𝜎(𝐿)(𝐖(𝐿)⋯(σ(2)(𝐖(2)σ(1)(𝐖(1)𝐱 + 𝐛(1)) + 𝐛(2))⋯+ 𝐛(𝐿) (4)

Note that 𝐱 ∈ ℝ𝑛
(1)

, where 𝑛(1) is the number of neurons in the input layer. Additionally,

the activation function 𝜎 can differ between layers, so 𝜎(𝑙) refers to layer l’s activation function.

2.4.1.2 Objective Functions & Learning

As mentioned in Section 2.4., since we are interested in building a regressor, we sample a

response variable 𝐲 which is the output of the ground-truth function 𝑓(𝐱). However, the ground-

truth function is unknown; therefore, supervised machine learning aims to best approximate 𝑓(𝐱)

when only given 𝐱 and 𝐲.

Figure 4. A four-layer, feed forward neural network. Observe that the input to highlighted neuron in the second layer

is just a linear combination of layer one’s outputs, as per (1). Note that the inputs to layer one considered the inputs

to the entire network and that the output of layer 4, or 𝒛(4), is the output of the entire network.

11

By stacking layers with different amounts of neurons, neural networks can effectively

transform an input vector 𝐱 into any desired dimensional space. Therefore, neural networks can

be viewed as a function on arbitrary dimensions:

 �̂� = 𝑓(𝐱) ∶ ℝn → ℝ𝑚 (5)

where

• 𝑓(𝐱) is the neural network attempting to approximate the ground truth function 𝑓(𝐱)

• �̂� is the guess of the neural network. Note that �̂� = 𝐳(𝐿)

• 𝑛 is the dimensionality of 𝐱. Observe that this value is the same as the number of neurons

in layer 𝑙 = 1

• 𝑚 is the dimensionality of the output, or �̂�. This is also the same number of neurons in layer

𝑙 = 𝐿.

Once dimensioned correctly, the performance of a neural network is evaluated via an

objective function. The neural network is then iteratively optimized with respect to the objective

function to reduce the amount of error in the approximations [30].

In regression tasks, one of the most popular objective functions is Mean Squared Error

(MSE), simply defined as

𝑀𝑆𝐸 =

1

2𝑝
∑‖�̂�𝑖 − 𝐲𝑖‖2

𝑝

𝑖=1

 (6)

Recall that ‖�̂�𝑖 − 𝐲𝑖‖2 is the l2-norm, or the Euclidean distance, between the ground truth

𝐲𝑖 and the network’s approximation �̂�𝑖.

Observe that 𝑀𝑆𝐸 in (6) is uniformly differentiable. Additionally, as 𝜎 is required to be

differentiable—initially stated in Section 2.4.1.1—notice that �̂� is comprised of purely

differentiable operators: function composition, multiplication, and addition. Therefore, �̂� is

differentiable.

By the chain rule, we know that
𝜕𝑀𝑆𝐸

𝜕�̂�
 exists. Therefore, for any tunable weight 𝑤 encased

in either a weight matrix 𝐖 or a bias weight vector 𝐛, we can compute
𝜕𝑀𝑆𝐸

𝜕𝑤
 as

 𝜕𝑀𝑆𝐸

𝜕𝑤
=
𝜕𝑀𝑆𝐸

𝜕�̂�

𝜕�̂�

𝜕𝑤
 (7)

Recall that for a vector 𝐯, and a function 𝑓, the gradient of 𝑓 w.r.t. 𝐯 is defined as:

∇𝐯𝑓 = [

𝑑𝑓

𝑑𝐯1

𝑑𝑓

𝑑𝐯2
…

𝑑𝑓

𝑑𝐯𝑛
]
T

 (8)

where 𝑛 is the number of elements in 𝐯.

12

Then, by (7), (8) and the chain rule, for any layer 𝑙 in a neural network, ∇𝐖(𝑙)𝑓 and ∇𝐛(𝑙)𝑓

can be computed. Recall that the gradient is a vector pointing in the direction of greatest change

[31].

Using these weight gradients, the neural network can iteratively “learn” to reduce the

error in its approximations. Since 𝑀𝑆𝐸 is the error between the ground truth 𝐲𝑖 and the network’s

guess �̂�𝑖, ∇𝐯 𝑀𝑆𝐸 is the partial derivatives of 𝑀𝑆𝐸 with respect to 𝐯 to increase the error most

quickly.

However, since the goal of learning is to decrease the error, ∇𝐯 𝑀𝑆𝐸 can simply be

negated to find the direction of quickest error decrease. Then, a small update can be made to all

the weight parameters:

 𝐖(1) = 𝐖(1) − 𝛼∇𝐖(1) 𝑀𝑆𝐸

𝐛(1) = 𝐛(1) − 𝛼∇𝐛(1) 𝑀𝑆𝐸

𝐖(2) = 𝐖(2) − 𝛼∇𝐖(2) 𝑀𝑆𝐸

𝐛(2) = 𝐛(2) − 𝛼∇𝐛(2) 𝑀𝑆𝐸

⋮
𝐖(𝐿) = 𝐖(𝐿) − 𝛼∇𝐖(𝐿) 𝑀𝑆𝐸

𝐛(𝐿) = 𝐛(𝐿) − 𝛼∇𝐛(𝐿) 𝑀𝑆𝐸

(9)

Note that the gradients’ updates are being subtracted—this is to reduce the error, as

mentioned previously. Additionally, as ∇𝐯𝑀𝑆𝐸 is simply the direction of greatest change, it is

multiplied by a small value 𝛼, known as the learning rate, to ensure that the gradient update does

not overshoot back and forth during training.

Efficiently computing these gradient updates is known as backpropagation [30] and is

outside the scope of this project. However, most deep learning libraries such as Pytorch [32] and

Google’s TensorFlow [33] have backpropagation efficiently implemented. Using

backpropagation and gradients to iteratively reduce loss is an algorithm known as gradient

descent. While there have been improvements to gradient descent—such as ADAM, which

dynamically adjusts the learning rate [34]—the idea of using the gradient to reduce the loss on an

arbitrary function is the key intuition to making neural networks learn.

2.4.1.2 Choosing Activation and Objective Functions

In neural networks, activation functions typically dictate how the network will learn while

objective functions dictate what the network will learn. In the original neural network, the

Heaviside step function was used, which directly models the all-or-none firing nature of

biological neurons [35]:

13

 𝜎(𝑧) = {
1 𝑧 ≥ 0
0 𝑧 < 0

 (10)

A visualization of this function can be seen in Figure 5. However, the gradient is 0 over

almost the entire domain. Considering how important of a role the gradient plays in the learning

process, this was largely replaced by the logistic sigmoid, which can be seen in Figure 5:

𝜎(𝑧) =

1

1 + 𝑒−𝑧

(11)

Recall from (4) that the final output of a multi-layered neural network is a large

composition of the activation functions. Additionally, recall the chain rule for a function

𝑓(𝑔(𝑥)):

 𝑑𝑓

𝑑𝑥
=
𝑑𝑓

𝑑𝑔

𝑑𝑔

𝑑𝑥
 (12)

Therefore, for neural networks that have many layers, the computations for the final

layers’ gradients must undergo tens, if not hundreds of multiplications. Observe that at large

magnitudes within the domain, the logistic sigmoid’s gradient is near zero. A common error that

can arise while training large networks is that the final layers’ gradients undergo many near-zero

multiplications. This can cause floating-point inconsistencies and end up with a gradient of 0,

preventing any future learning. This is often referred to as the vanishing gradient problem [36].

Rectified Linear Units (ReLU) attempt to solve this problem by forcing a fixed value for

the derivative of all positive values. ReLU, seen in Figure 6 is defined below:

Figure 5. On the left, the Heaviside function as defined in (10). On the right, the logistic sigmoid, as stated in (11).

14

𝑅𝑒𝐿𝑈(𝑧) = max {0, 𝑧} (13)

Here, the derivative of ReLU is always either 1 or 0. Even though ReLU does have a zero

derivative, having a fixed derivative for all positive domain values is enough to “restart” a

neuron with a zero gradient [36]. The ReLU activation function has shown great empirical

success in training modern neural networks and was selected for this project.

In contrast, objective functions control what the network learns. In the preceding

example, 𝑀𝑆𝐸 was used as the objective function of choice; however, the only requirements for

a loss function (an objective function that is minimized instead of maximized) is that it is

differentiable and always positive. 𝑀𝑆𝐸 is the simple Euclidean distance between two vectors,

so it fits the criteria for an objective function that aims to minimize l2-error. Many advanced

applications of machine learning often involve directly modifying the objective function to get

the desired behavior from the network.

Figure 6. The ReLU activation function, as stated in

(13)

Figure 7. The RL representation of an agent-environment interaction.

15

2.4.2 Reinforcement Learning

Reinforcement Learning (RL) uses ML to teach autonomous agents how to optimally navigate an

environment. RL differs from traditional supervised learning problems in that the ground truth

labels are usually discovered by the agent during exploration. This section offers an overview of

RL and the techniques used in our experiments.

2.4.2.1 Agents & Environments: The RL Problem Formulation

In RL problems, an agent evaluates the state 𝑠𝑡 of the environment at timestep 𝑡 and performs an

action 𝑎𝑡. The agent’s decision-making process is called its policy. Typically, an agent’s policy

is represented by a probability distribution 𝜋(𝑎𝑡|𝑠𝑡). The environment responds—sometimes

non-deterministically; imagine a car on any icy road—with a new state 𝑠𝑡+1. During training, the

environment also gives the agent a reward 𝑟𝑡 based on the agent’s previous action. This cycle can

be seen in Figure 7.

 The agent continues this cycle for a fixed number of timesteps 𝑇 or until the environment

terminates it, such as in a video game. This collection of tuples,

((𝑠1, 𝑎1, 𝑟1), (𝑠2, 𝑎2, 𝑟2), … (𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇)) that describe the agent’s interaction with the environment

is called a trajectory or an episode.

 However, some states are more desirable than others. For example, an agent driving

under the speed limit is probably performing better than an agent skidding out of control—

assuming the agent’s task is to travel safely. The value of a state is its expected discounted sum

of rewards over time. Mathematically, the discounted sum of rewards starting at state 𝑠𝑡 is

expressed as:

𝑟(𝑠𝑡) =∑𝛾𝑗−𝑡
𝑇

𝑗=𝑡

𝑟𝑗
(14)

Where 𝑡 ∈ [1, 𝑇] ∩ ℤ and 𝛾 ∈ [0, 1). As gamma is strictly less than one, observe that

rewards later in the trajectory have less of an effect on the value of the state. As more trajectories

are computed, the value, 𝑉(𝑠𝑡), converges to 𝔼[𝑟(𝑠𝑡)], the expected reward starting at state 𝑠𝑡.

Thus, the value function 𝑉(𝑠) effectively ranks the state space of the environment.

As the expected sum of rewards is computed per trajectory, it tends to have a large

sampling variance. To reduce the variance and help assist training, the advantage of a state is

typically used rather than the value or the discounted sum of rewards. The advantage for a state

𝑠𝑡 is defined as

 𝐴𝑡 = 𝑟(𝑠𝑡) − 𝑉(𝑠𝑡)

= ∑𝛾𝑗−𝑡
𝑇

𝑗=𝑡

𝑟𝑗 − 𝔼 [∑𝛾𝑗−𝑡
𝑇

𝑗=𝑡

𝑟𝑗]
(15)

16

The advantage function simply subtracts the expected rewards from the collected rewards—

effectively making 𝐴𝑡 unbiased.

2.4.2.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) was initially introduced in 2017 by OpenAI as an RL

algorithm for continuous control [37]. Since 2017, iterations have been made to PPO to optimize

it for data sampling efficiency as well as runtime improvements on NVidia CUDA-enabled

Graphics Processing Units (GPUs). PPO was designed to overcome the shortcomings of previous

RL algorithms; therefore, it heavily resembles algorithms such as Advantage Actor Critic [38]

and Trust Region Policy Optimization [39]. Unfortunately, a full history of RL techniques is

outside the scope of this paper and a working explanation for PPO will be offered instead in this

section.

As mentioned in Section 2.4.2, RL’s primary difference against traditional supervised

learning is that the agent is actively interacting with the environment to gather data. Thus,

traditional training measures such as 𝑀𝑆𝐸 can cause aggressive gradient updates which make the

environment irrecoverable. For example, imagine a robot attempting to walk up a flight of stairs.

Even one misstep could cause the robot to tumble all the way down—resulting in a new

environment that the network has never trained for. One of the primary challenges in RL is

effectively limiting agent exploration with minimal consequences during training.

When designing PPO, OpenAI intended for it to “perform comparably or better than

state-of-the-art approaches while being much simpler to implement and tune” [37]. As such, PPO

begins by replacing the policy with a neural network that optimizes a very intuitive objective

function:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝔼[𝐴𝑡]
(16)

Note that the policy network 𝜋𝜃 is a neural network that inputs 𝑠𝑡 and outputs a

distribution for the action 𝑎𝑡 to be sampled from. In practice, this usually means that 𝜋𝜃 outputs a

mean and a standard deviation—but most ML libraries have their own canonical implementation

of statistical distributions [32], [33].

Here, PPO’s objective is very straightforward: optimize the policy network 𝜋𝜃 such that

the expected advantage is increased. In practice, this involves collecting a set of trajectories

under a policy 𝜋𝜃, computing the advantages, and using that data to train 𝜋𝜃. Note that to prevent

bias, after every iteration of updating 𝜋𝜃, a new set of trajectories will need to be collected.

 This simple objective function is known to cause relatively large training updates and be

unstable while training policy networks [39]. To help mitigate this, a policy ratio is applied to 𝐴𝑡,
yielding:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝔼 [

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝑡]

(17)

17

Here, a copy of the policy network, 𝜋𝜃𝑜𝑙𝑑 is saved between iterations. By maintaining

𝜋𝜃𝑜𝑙𝑑 , we can not only get the probability of the current policy choosing an action, 𝜋𝜃(𝑎𝑡|𝑠𝑡), but

also the probability of the previous policy, 𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡).

By introducing the probability ratio, 𝐴𝑡 effectively gets amplified when the current 𝜋𝜃 is

more likely to perform an action and vice versa. This only works because we know from (15)

that 𝐴𝑡 is unbiased and that less-optimal actions correspond to negative 𝐴𝑡 values.

 However, observe that 𝜋𝜃(𝑎𝑡|𝑠𝑡) is just a single point in the action space; this objective

function does not consider the distribution of all possible actions. PPO addresses this by

punishing large differences between distributions:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝔼 [

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝑡] − 𝛽𝔼[𝐾𝐿(𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑)]

(18)

Where 𝐾𝐿(𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑), is the Kullback-Leibler (KL) divergence for the 𝜋𝜃 and 𝜋𝜃𝑜𝑙𝑑

distributions evaluated at state 𝑠𝑡. Recall that the KL-divergence measures the difference

between two data distributions 𝑃 and 𝑄:

𝐾𝐿(𝑃, 𝑄) = 𝔼𝑥 [log

𝑃(𝑥)

𝑄(𝑥)
] (19)

and that larger values of 𝐾𝐿 correspond to a greater difference between distributions [40].

This KL-penalty is then multiplied by a variable 𝛽 that controls the weight of the KL-

penalty. In implementation, 𝛽 is dynamically adjusted. Another hyperparameter is typically

introduced, 𝛿, which is the target KL-divergence per iteration. However, if 𝐾𝐿(𝜋𝜃, 𝜋𝜃𝑜𝑙𝑑) >

1.5𝛿, that means that the agent is making too drastic of an update and 𝛽 is simply doubled to

punish that for the next iteration. If 𝐾𝐿(𝜋𝜃 , 𝜋𝜃𝑜𝑙𝑑) <
𝛿

1.5
, then the converse is true and 𝛽 is simply

halved as a result. The decision to multiply and divide 𝛿 by 1.5 is arbitrary but is recommended

by the original authors [37]. By automatically adjusting 𝛽, PPO effectively allows the researcher

to control the exploration per iteration via 𝛿. Finally, note that the penalty is being subtracted

because the overall objective function is being maximized. The entire algorithm and training

process can be seen in Figure 8.

The combination of a policy ratio and a KL penalty has shown great empirical success in

RL applications. Even as late as 2019, PPO has shown the most consistent convergence among

top RL algorithms [41]. As such, PPO is one of the top algorithms of choice for researchers

exploring new problems; it allows them to focus on how the environment should reward the

agent rather than having to worry about the nitty gritty details of optimization.

OpenAI later silently released PPO2, a CUDA GPU-accelerated version of PPO. PPO2

was shown to run 3x faster than PPO on OpenAI’s Atari environments [37] and was the

18

algorithm chosen in this project. Using PPO, Google DeepMind was able to achieve quadrupedal

standing on a quadruped; however, their quadruped has 12 DoFs compared to the Solo8’s 8 [42].

Since we were only considering 8 DoFs in our problem, we were hopeful that we would be able

to successfully use PPO in our project.

Figure 8. The PPO with Adaptive KL Penalty algorithm from the original paper [37]. Note that ℒ𝜃𝑘is simply

OpenAI’s shorthand for (17) and that �̅�𝐾𝐿(𝜃||𝜃𝑘) is the KL-divergence between 𝜋𝜃 and 𝜋𝜃𝑜𝑙𝑑 , as explained in

(19). Observe that at the end of every iteration, 𝛽 is adjusted to maintain a target KL-divergence.

19

3 Design Decisions

While the Solo8 provided a good starting point for the project, the platform required

modifications for us to achieve our goals. As discussed in Section 2.3 the software stack was

convoluted and required multiple code re-writes to go between the simulation environment and

real robot. The robot’s electronics where custom built and lightly documented, making it difficult

to replicate them and learn how to use them. The robot’s point feet were also not conducive with

bipedal standing as they provided a small bipedal support polygon. To overcome these

shortcomings, we modified robot’s software architecture, electronics, and mechanical design to

varying degrees. This section details our design decisions, how we made them, and provides

justifications for them.

3.1 Software Stack

As mentioned in Section 2.3.2, the Solo8’s software stack had various constraints that made it

difficult for us to implement the software in our project. Being new to the platform, we were

unfamiliar with the ODRI’s specific tools and libraries. This problem was compounded by a

severe lack of documentation regarding the Solo8’s software stack and slow response time on the

ODRI discourse forum. Since this was our primary means of communicating with the Solo8

developers, we were skeptical of being able to address any unforeseen issues and bugs with the

software in a timely manner. Therefore, we decided to develop our own software stack for this

project because we felt more confident in our ability to create a custom stack that would meet

our project’s goals and timeline. We decided to use standard tools and libraries, like ROS and

Arduino, because we were familiar with them, and they provided better access to community

support.

On the ODRI forum, we discovered that the original Solo8 has a multi-language software

stack for simulation and the robot. Algorithms must be written in Python to be tested in

simulation. When porting over to the robot, these algorithms are then converted to C++. We

thought that this conversion step from Python to C++ could potentially induce bugs that would

be difficult to troubleshoot on the real robot. As such, we decided to create a single language

software stack and implemented it in Python. By doing so, we could improve the simulation-to-

robot pipeline and make it easier to use.

We also decided to split the robot control between two controllers. The Raspberry Pi is

responsible for all higher-level planning and control (quadrupedal trajectory, bipedal trajectory)

and the Arduino is responsible for all lower-level control (controlling motors, communicating

with sensors). Our decision to use this hardware is further explained in Section 3.2. We decided

to use ROS2 Dashing on our Raspberry Pi. ROS has a lot of benefits in terms of already

implemented standard tools and libraries for various standard hardware. Originally, we were

planning to use ROS Melodic instead of ROS2 due to our familiarity with it and its arguably

larger presence in the field. Later, we switched to ROS2 given its native support for Python 3

and full availability of features and libraries that we thought might be useful for this project.

ROS2 also has a growing community with heavy active development; so, we predict that ROS2

20

will only get better over time. Furthermore, using ROS2 ensures compatibility with sensors like

Lidars, depth cameras, etc. for future use cases.

Based on the above-mentioned decisions, we created a software architecture that can be

found in Appendix A. A concise version of the software architecture diagram can be found in

Figure 9. The software architecture can be broken down into three primary components: path

generation and execution, simulation, and Reinforcement Learning (RL). We also decided to

structure our code so that the same program would run in both the simulation as well as the real

robot; doing this increased our confidence when porting our code. For the real robot, we divided

the software stack into two parts, one part responsible for all the actuating, sensing, and lower-

level implementations, and the other part responsible for higher-level decision making. We

decided to use the ROS2 framework for the higher-level system. The motion to be executed--

implemented on ROS2 --is divided into two parts: path generation and trajectory executor

(denoted by ‘dyn_stabalizing’ in (Appendix A). The logic separation allows the user to

independently define the path to be executed. The path generator also needs to handle the case

when the robot gets stuck in an unrecoverable state during the execution of the trajectory by

producing a new path. The trajectory executor converts the path into a trajectory. It is also

responsible for executing this trajectory, making minor adjustments to keep the robot on the

predefined path as needed, and terminating the trajectory if the robot goes into an unrecoverable

state. An example of an unrecoverable state would be the robot falling over. In order to execute

the trajectory, the trajectory executor on the Raspberry Pi communicates with the Arduino over a

serial UART connection. The Arduino is responsible for controlling the motors, reading data

from the sensors, and storing the current state of the robot. Furthermore, at the end of every

control loop cycle, the trajectory executor requests the current state of the robot from the

Arduino. Using this information, any deviations from the goal trajectory will be calculated. To

successfully complete the trajectory a best effort is made to employ the corrections. If the robot

goes into an unrecoverable state, the trajectory executor lets the path generator know. It is now

the path generator’s responsibility to define the correct behavior to handle such a case. By

handling unforeseen terminations this way, we give users the option to define their own error

handling, leading to more robust and tweakable solutions. We use the industry standard serial

communication practices of preamble and checksum verification for serial communication to

ensure data packet validity.

21

Figure 9: Diagram of Software Stack (Concise)

A similar process is used to control the robot in simulation. In this case, both ROS2 and

the simulator run on the same platform and all communication is done via software serial ports.

Since we had a need for both software and real serial communication, we decided to create an

abstract communication node for ROS2. This way, the appropriate mode of communication is

dynamic to the platform: serial for the real robot and software serial for simulation. By doing so,

no user change is required to switch mode of communication. This was in line with our vision of

creating a seamless transition between the simulation and the real robot. We created a wrapper

that acts as an intermediary between ROS2 and the simulator with the sole purpose of providing

seamless communication between the two. For our simulator, we decided to use PyBullet, an

open-source physics simulator prevalent within the RL community. While there is not much

associated documentation, the Solo8 creators did confirm using PyBullet as their simulator,

giving us confidence in its abilities. To abstract all our problem-specific knowledge we created a

wrapper for PyBullet simulator. In accordance with the open-source nature of our project, we

designed our wrapper to be modular, well-tested, and conformant to domain standards--

specifically the OpenAI Gym API.

Abstracted out, our problem shares quite a few similarities with many other (solved)

problems in Reinforcement Learning: a continuously controlled agent is being given a set of

observations and tries to optimize a continuous reward. As such, many experts in the field have

released open-source implementations of the top RL algorithms. Because these implementations

are highly optimized and verified to be correct, we decided to use these off-the-shelf solutions as

much as possible. This is where the well-thought design of the simulation wrapper comes into

play. As we already conforming to the field’s golden standard, OpenAI’s Gym API, our

simulated Solo8 environment is immediately compatible with both stable-baselines and

Tensorflow Agents- the two most actively maintained implementations of RL algorithms

available. With these libraries, we now have access to the top continuous-control learning

algorithms (PPO, TRPO, DDPG).

 We also wrote an autotrainer framework to automate the entire hyperparameter tuning

step for Reinforcement Learning. This autotrainer heavily leveraged the Weights & Biases

https://github.com/hill-a/stable-baselines
https://www.tensorflow.org/agents
http://wandb.ai/

22

(W&B) service. W&B is an online machine learning monitoring tool. However, they also offer a

“sweeps” feature, where W&B coordinates your training servers to tune your model. W&B also

uses a probabilistic model to intelligently tune the hyperparameters, rather than the industry-

standard random search. Additionally, as we already have access to implementations of various

RL models, we designed the W&B hyperparameter search to not only tell us what the best

parameters for a given algorithm are, but also what the highest performing algorithm is. This

functionality is reduced to one command: wandb agent, which can be run on any computer to

start intelligently training.

To ensure that we did not accumulate too much technical debt near the end of the project,

we decided to diligently follow proper coding practices. Every change that was pushed into the

master branch of our code repository was reviewed by at least one other team member.

Additionally, we followed PEP standards and stylistic formats for Python for easy code

readability. Throughout the project, we were very stringent about making sure our code was

tested and reliable.

3.2 Electronics Changes

Instead of using the Solo8’s custom electronics, we decided to use off-the-shelf (OTS) hardware.

The only electronic components that we decided to keep from the original Solo8 were the motors

(T-Motor’s antigravity 4004 KV300) and encoders (Broadcom AEDT-9810-Z00). By using the

antigravity motors, we saved ourselves the time of having to redesign the actuator modules to

accommodate a new motor. Reasoning for this decision is give in Section 3.3. The decision to

use OTS hardware also went hand-in-hand with our decision to implement a custom software

stack. We believed that OTS electronics would better match our software requirements, since our

unfamiliarity with the Solo8’s custom electronics would make porting our software stack onto

the custom boards a challenge. The replacement electronics consists of three major components:

a single board computer, an Arduino microcontroller, and brushless motor controllers. The team

researched various off-the-shelf electronics to determine the best fit for each component. We

specifically focused on OTS parts due to their wider community support.

3.2.1 Single Board Computer

When looking at single board computers (SBCs), the team’s criteria for selection included price,

community support, connectivity, performance, and applicability to our project. The four

contenders included the Raspberry Pi 4B, the Jetson Nano Dev Kit, the LattePanda, and the

BeagleBone. Other SBCs were considered but were similar enough to these boards in all

categories while being less powerful that they did not make the cut. The chosen SBC needed to

interface with an Arduino microcontroller through a serial connection and run ROS on Ubuntu

18.04. This section covers the pros/cons of each of the four SBCs mentioned and explains which

board(s) our team decided to use.

23

BeagleBone

The BeagleBone has a few different variants that specialize in different robotics topics. For

example, the BeagleBone AI is geared towards more computationally heavy tasks while

sacrificing performance in other areas outside the processor, such as RAM (only 1GB).

Additionally, the BeagleBone product line generally limits options for connectivity by having a

single serial port in some cases and none in others. On the positive side, the BeagleBone has

considerable community support. The prices for these boards range from ~$30 to ~$150.

LattePanda

The LattePanda also comes in a wide range of variants. The prices of these boards range from

~$100 to ~$900. The LattePanda is an SBC with a processor capable of running Windows 10 as

well as having an Arduino coprocessor on the same board with the appropriate pinout headers.

Although the board has this integration between a more powerful than average processor and

Arduino coprocessor, the Arduino coprocessor is based on a Leonardo. Leonardo is one of the

smaller Arduino boards that lacks pinouts. Although we did not foresee needing too many

pinouts, we wanted to have as many as possible to cover unforeseen future needs. Also, the

combination of the x86 processor and Arduino coprocessor into one board brings about potential

new complications or issues that could be avoided by having separate boards. Additionally, these

boards are preloaded with Windows 10. Since we decided to use ROS, we would have had to

replace the default OS with Ubuntu anyways. Traditionally, such a procedure is straightforward

on x86 based systems. However, due to the unique configuration of this board, such a change

could also bring about unwanted complications. Although the LattePanda is a very intriguing

board, the uncertainties associated with the board’s construction disqualified it for use in our

project as our team needed to minimize as many potential issues as possible.

Jetson Nano Dev Board

The Jetson Nano Dev Board has a couple of different variants that have similar features. The

Nano takes the general form and configuration of a Raspberry Pi while adding a NVidia GPU to

make the board more capable in AI applications. NVidia also provides a custom Linux image to

use on the Nano based on Ubuntu 18.04 and preloaded with various packages/libraries

commonly used in AI. In terms of pinout and connectivity, the Nano mimics the Raspberry Pi

3B. It carries most of the same external device connections while also adding a Display Port and

barrel jack power input. Its pinout is also largely the same as the Pi’s, consisting of interfaces for

various communications protocols (I2C, I2S, SPI, UART). However, due to this board being

relatively new in the market, it does not have a very large support community compared to other

boards. In some instances, support forums for the Pi can be applied to the Nano, but there is no

guarantee of compatibility. The price of the Jetson Nano Dev Board is ~$100.

https://beagleboard.org/bone
https://www.lattepanda.com/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

24

Raspberry Pi 4B

The Raspberry Pi has been around for several years and has had multiple evolutions, the most

recent being the 4B model with options of 1, 2, 4, or 8GB RAM. The Pi is one of, if not the most

popular SBC in the robotics community with an exceptionally large support community. The

Raspberry Pi Foundation provides a custom image for the Pi called “Raspbian” based on Debian.

Canonical also recently started providing official images of Ubuntu server and desktop for the Pi.

The Pi 4B offers a variety of different pinouts and connectivity options. It carries the standard

external device connections such as USB, HDMI, and network interfaces. The Pi 4B also sports a

40 pin GPIO header that provides access to various communications protocols (I2C, SPI,

UART). The price of the Raspberry Pi 4B ranges from $35 to $75.

Verdict

After considering the four options discussed, our team opted to move forward with the Raspberry

Pi 4B. Table 1 provides a summary of how well each SBC aligned with the criteria our team set.

Table 1 – Board evaluation with the leftmost criteria being most important and rightmost being least important.

Community

Support

Connectivity /

Pinout

ROS

Compatibility

Cost

Raspberry Pi 4B High High High Cheap

Jetson Nano Med High High Mid-range

LattePanda Low Med High Expensive

BeagleBone Med Low Med Mid-range

The most important reason for our decision was the overwhelming size of the community for the

Pi due to its popularity among roboticists. When compared to the other three SBCs, the Pi was an

obvious choice. The BeagleBone does not have as large a community as the Pi and none of the

variants are as versatile in terms of pinout or connectivity. The LattePanda is an interesting

concept, and its main processor is potentially more powerful/faster than the Pi’s depending on

the variant; however, the smaller support community and uncertainties associated with the

board’s unusual configuration makes it difficult to choose. Its Arduino coprocessor is also based

on the Leonardo, which is lacking in pinouts and connectivity. The Jetson Nano was a strong

contender but considering that the chosen compute module does not perform any sort of heavy-

duty AI work, it did not make sense to spend more on what is essentially a Pi 3B with a NVidia

GPU when the GPU would not be used. Additionally, the support community is not as large as

that of the Pi’s.

3.2.2 Arduino

In the robotics community, Arduino microcontrollers are ubiquitous for their many variants and

different applications. Boards such as the UNO and Leonardo are considered “starter” boards

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

25

while the Mega and Due are examples of boards for more advanced uses. Features common to

most, if not all Arduino boards include digital I/O, analog I/O, and communications interfaces

(I2C, SPI, UART). From the official Arduino lineup, our team chose to use the Due since it has

the most versatile and diverse pinout of any official Arduino board. It also boasts the fastest

processor the official Arduino lineup has to offer at 84 MHz. Before making this decision, we

recognized that there are unofficial Arduino variants that could offer better performance than the

Due. However, we felt that the Due would reduce potential complications in the future. Based on

future issues that will be further discussed in Section 4.4, we ultimately decided to switch to a

Teensy 4.1

3.2.3 Brushless Motor Controller

When searching for motor controllers, our team needed to confirm that the selected motor

controllers had smart features such as built-in PID position control. In the market, we found a

few different motor controllers that provided these features. The first was the RoboClaw motor

controller by BasicMicro. The feature set of the RoboClaw fit all of our team’s requirements,

however, all their current motor controllers are designed for brushed motors only. BasicMicro

has revealed that they are working on a brushless variant of their motor controller, but it would

not make it to market in time to be used for this project. Next, we came across a brushless motor

controller by Embention designed for use with drones called the Veronte GIM3. Once again, the

GIM3 provided the features that our team was looking for as well as much more. Apart from

integrated PID control, the GIM3 has IP67 waterproofing, embedded data recording, telemetry

on motor health, and regenerative braking. While these features are attractive, they are

unnecessary for our project and would not be used. The additional features also drive the cost of

the GIM3 to a price our team could not afford: 550 EUR per unit. Finally, our team considered

the ODrive by ODriveRobotics. The ODrive is an open-source brushless motor controller

capable of running two motors at once. In line with our requirements, it provides onboard PID

control as part of the package and offers a variety of running modes. To enable onboard PID

control, the motors and their corresponding encoders connect directly to the ODrive at a

designated header. From there, the specifications of the encoders being used, such as pulses per

revolution (PPR) are programmed into the ODrive. The ODrive also supports a variety of

protocols for communication with a microcontroller or other external controllers including CAN,

I2C, and UART. Given the relatively low cost ($149) and the support it has in terms of both

community and documentation, we decided to move forward with the ODrive.

3.2.4 Supporting Electronics

With all the core electronic components chosen, our team worked to find the supporting

electronics for power delivery. At the basic level, this consisted of a power supply, a circuit

breaker, a power distribution block (PDU), and DC-to-DC converters. Additionally, we needed a

CAN breakout board to enable the CAN functionality on our Arduino Due.

https://www.basicmicro.com/RoboClaw-2x30A-Motor-Controller_p_9.html
https://www.basicmicro.com/RoboClaw-2x30A-Motor-Controller_p_9.html
https://www.embention.com/product/motor-controller/
https://odriverobotics.com/shop/odrive-v36

26

When looking for power supplies, the primary consideration was the amount of current

we expected to draw. Since the ODrive, Arduino, and Raspberry Pi all draw a small amount of

current, in the order of milliamps, the motors were the deciding factor on the amount of current

and voltage the power supply would need to output. To reduce cost since power supplies tend to

be expensive, we assumed that the max current draw would be in the scenario where the robot is

transitioning to standing on two legs and almost exclusively using 4 of the 8 motors. With the

motor operating natively at 24V, and the motor’s 9 amps continuous current draw rating in mind,

we chose the 24V 40A RSP-1000-24 power supply from Jameco Electronics.

After selecting the power supply, choosing the rest of the power delivery electronic

components became trivial. Power distribution blocks are easily found at large electronics

suppliers such as McMaster-Carr, which is where we purchased ours from

(https://www.mcmaster.com/9290T11/). Circuit breakers and DC-to-DC converters are common

enough that they can be found at both electronics suppliers and general online retail websites. In

our case, we purchased these components from Amazon (Surface Mount 60A Circuit Breaker,

24V to 12V DC Converter, 24V to 5V DC Converter). Choosing a circuit breaker is

straightforward as the only specification to look for is the current draw at which the breaker

pops. Since we were expecting to draw a maximum of around 40A, our circuit breaker was rated

for 60A to deal with any potential spikes in current draw that could be caused by a short circuit

for example. For DC-to-DC converters, the required specification is defined by the voltage of the

power supply (24V) and the input voltage range of the Due (7-12V), Raspi (5V), and servos at

the ankle joints (8.4V). Since the current draw of the Due and Raspi are trivial, just about any

DC converter would work such as the ones we purchased from Amazon. The servos, however,

draw around 2A each at their stall torque. We found DC converters capable of supplying this

amount of current on Aliexpress (24V to 8.4V DC Converter).

Lastly, we needed to get a CAN transceiver to enable the CAN ports on the Due.

Although the Due already has CAN TX and RX pins broken out to a header, these pins do not

directly translate to the high and low signals CAN uses for carrying data along a wire. As such, a

CAN transceiver is required as an interface between the differential signal carried on the wire

and the CAN port on the Due. The ODrive has a built-in CAN transceiver so an external

breakout board is not required on the ODrive’s side. There are a few CAN transceiver boards

commonly used in the Arduino community that breakout different transceiver chips, with the

most popular one being the MCP2515 chip. However, in our case we chose a breakout board by

CopperHill Technologies based on the SN65HVD230 chip since its operating voltage is the same

as the Due (3.3V).

https://www.jameco.com/z/RSP-1000-24-MEAN-WELL-AC-to-DC-Power-Supply-High-Output-24-Volt-40-Amp-960-Watt_1585717.html
https://www.mcmaster.com/9290T11/
https://www.amazon.com/dp/product/B004XXOW0E?th=1
https://www.amazon.com/EPBOWPT-Converter-Regulator-Voltage-Transformer/dp/B07V6X6L89/ref=sr_1_6?dchild=1&keywords=24V%2Bto%2B12V%2BConverter&qid=1605232315&sr=8-6&th=1
https://www.amazon.com/EPBOWPT-Converter-Regulator-Voltage-Transformer/dp/B01M0323MJ/ref=sr_1_6?dchild=1&keywords=24V%2Bto%2B12V%2BConverter&qid=1605232315&sr=8-6&th=1
https://www.aliexpress.com/i/4000687432773.html
https://copperhilltech.com/can-bus-mini-breakout-board/
https://copperhilltech.com/can-bus-mini-breakout-board/

27

3.2.5 Wiring

When wiring together all the electronic components, we used four different types of connectors.

Ring terminals of different sizes were used for all power related connections since these

components use screw terminals. Dupont cables were used as data wires between the Raspi, Due,

and ODrives as well as feeding power to the Raspi. Molex connectors were used exclusively for

connecting the encoders to the ODrives and the Anderson connectors were used to connect the

motors to the ODrives. Figure 10 shows the complete wiring diagram for the robot including all

electronic components.

Figure 10: Wiring diagram for robot

28

3.3 Robot Analysis

Figure 11: Initial torque analysis notation

To evaluate the feasibility of the Solo8 undergoing stance transition, we conducted a preliminary

analysis at the beginning of the project. For this, we did a simple torque analysis by considering

the robot as an open chain manipulator (attached in Appendix B). This simplification is valid in

our case because we are calculating the torques when the robot undergoes stance transition,

during which it essentially acts as an open chain manipulator. We calculated the worst-case

torque requirements for when the robot would lift its front limbs in order to undergo stance

transition. The resultant torques, presented at the end of Appendix B, are the torque requirements

for the end effectors on each body link. Torque requirements for the motors were calculated by

accounting for the gear reduction. Unfortunately, we misinterpreted the gear reduction to be 81:1

back in A term. In reality, it is a much smaller value of 9:1. After accounting for the gear

reduction, albeit the wrong value, the torques translate to the following based on notation from

Figure 11:

𝜏1 = 0.0291𝑁𝑚
𝜏2 = 0.1375𝑁𝑚
𝜏3 = 0.005𝑁𝑚
𝜏4 = 0𝑁𝑚

We compared these torques to the motors’ stall torque and ensured they were within the

stall torque limit of 0.34 Nm (this value was discovered after contacting a sales representative

from T-Motors). After confirmation, we decided to use these motors for our modified robot. As

mentioned, our calculations were erroneous due to the wrong gear reduction, so this result was

invalid. We later rectified and overcame this mistake, and this is discussed in Section 4.2.

29

3.4 Mechanical Modifications

While the Solo8 provided a strong starting point, certain modifications to the Solo8’s design

were required to achieve the project’s goals. Firstly, in order to achieve stable bipedal standing,

the robot’s bipedal support polygon had to be increased. We decided to do this by creating a flat

foot on the rear legs. The robot’s body structure also had to be modified to support OTS

electronics. This section details our decisions regarding the robot’s fabrication and part

acquisitions.

3.4.1 Flat Foot

The original Solo8 was designed with conventional point feet. While point feet are effective for

quadrupedal walking, they are very ineffective for bipedal locomotion because they provide a

small support polygon. The team decided that the Solo8’s rear feet required a redesign to

increase the robot’s bipedal support polygon and improve bipedal stability.

 At the beginning of the design process, the team created a list of requirements that

outlined the foot design’s basic operations and brainstormed potential solutions. The full list of

requirements can be found in Appendix C. The most important requirement that we identified

was that the foot needed to support both quadrupedal and bipedal locomotion, while also

increasing the robot’s bipedal support polygon. To be effective in both locomotion types, the

team concluded that the rear feet needed to convert between a point and flat foot. This way the

robot would be capable of accomplishing quad-to-bi stance transition.

 Figure 12: Modified Solo8 CAD model

30

Using these requirements as a starting point we sketched different preliminary designs

that involved a flat foot rotating around the Solo8’s original point feet. Early in the design

process, we decided that the flat foot should be actuated by a servo because it affords the greatest

locomotion versatility. Unlike a servo, a latch or a spring-loaded system would only allow the

flat foot to be deployed once and it would not be able to convert back to a point foot for

quadrupedal locomotion. This would limit the Solo8 to a single stance conversion, whereas a

servo-actuated foot affords continuous multi-modalism. Preliminary designs considered

connecting the servo and flat foot with a four-bar linkage or a gear drive as shown in Figure 13.

We ultimately decided to pursue a gear drive for a few reasons. Firstly, the design is more

compact. More importantly, the gear drive provides a greater range of motion and allows us to

keep the foot flat parallel to the ground as the angle of the robot’s leg changes.

Figure 13: Four bar linkage design (left) and gear drive design (right)

The flat foot went through three major design iterations: a flat foot with a heel, the dog-

inspired foot, and the J-foot. Figure 14 shows CAD models for the three different designs.

The J-foot design, named after its resemblance to a backward J, was determined to be best suited

for our application because it allows for the easiest point-to-flat foot conversion. For the first two

designs, the flat foot sits beneath the point foot. Consequently, point-to-flat conversion can only

occur if the robot’s rear leg is elevated off the ground. This would not afford a smooth transition

between quadruped and biped mode. The J-foot overcomes this flaw with its co-radial design.

The flat foot’s heel and lower leg’s point foot are co-radial so that the flat foot can rotate while

the point foot remains in contact with the ground. This provides a smooth point-to-flat

conversion that does not interfere with the robot’s stance transition or either locomotion type.

31

Figure 14: Flat foot with heal (left), dog foot (center), J-foot (right)

The foot mechanism was prototyped with both the foot and 20-tooth gear as separate

parts and as one component. During the prototyping phase, we realized that fastening the foot

and gear with screws added unnecessary complexity to the assembly process. After juxtaposing

the two, we decided to incorporate the foot and gear into a single part because of how small the

parts are. This also helped to slightly reduce the number of components in the assembly.

The flat foot provides 560mm2 of surface contact and is actuated by a DS150CLHV

micro servo with a 5:6 gear ratio (24-tooth servo gear and 20-tooth foot gear). An important

factor in choosing the DS150CLHV micro servo over other models was that it is small enough to

be embedded inside the lower leg. This meant that we did not have to make drastic modifications

to the rear lower legs to support the foot design. Our decision to use the DS150CLHV micro

servo was also informed by a simple torque analysis that we conducted on the foot and servo

shaft. The analysis assumed a “worst case scenario” where the robot’s full weight is on the front

tip of the flat foot.

Table 2 – Foot torque analysis

Assumptions and Criteria:

1. All of the robot’s weight is acting on the foot’s front tip

2. The robot weighs 3.1kg

3. 5:6 gear ratio

32

3.1kg * 9.81m/s2 = 30.41N

T1 = 30.41N * 0.0265m = .78Nm

T2 = T1 * (NI/NO) = 0.78Nm * (6/5) = 0.93Nm

From this analysis, the torque acting on the servo was determined to be ∼0.93Nm. Based on this

result, we chose the DS150CLHV micro servo because it produces 150oz-in (1.06Nm),

exceeding the worst-case-scenario torque requirement. Even though 150oz-in does not provide a

large safety margin, the team felt that the “worst-case-scenario” that the analysis was based on

was unlikely to occur. It is important to note that the torque analysis in Table 2 has some

shortcomings, as it does not account for the torques exerted on the servo by the front limbs

during stance transition.

33

Figure 15: Lower leg and foot prototype

3.4.2 Body Structure and Rear Legs

The Solo8’s original body was designed to house custom boards and hardware that are much

smaller than the PDU and ODrives that we used. As a result, we redesigned the Solo8’s body to

accommodate the robot’s larger OTS hardware. Since the ODrives are fragile, expensive, and

crucial to the robot’s operation, we decided to place the four ODrives inside the body structure

because it maximized their protection. The ODrives’ placement is staggered between the top and

bottom body braces to provide accessibility for wiring. To fit the ODrives in the body cavity, the

side plates were widened from 26.5mm to 47.5mm. The top and bottom body braces were also

modified by adding new mounting brackets for the ODrives, power converters, and Raspi. The

ODrives and 24V/5V converter are screwed to the braces while the other electronics are zip tied.

Since the PDU was the heaviest component, we placed it on the rear in an attempt to improve the

robot’s standing stability by using the PDU’s weight to shift the robot’s COM backwards and

lower.

34

Figure 16: Modified body structure

 The rear lower legs were also modified so that the micro servo could be embedded inside

the leg structure. A recess was created at the bottom of the leg so the servo could be secured. The

recess was made 1mm larger than the servo’s width to provide some tolerancing. The rear lower

legs were also made 12mm wider to improve the leg’s structural strength. The added width

provides additional material around the servo so that the leg’s structural integrity is not

compromised by the servo’s recess.

3.4.3 Fabrication and Hardware Acquisition

Even though the ODRI GitHub repository “Open Robot Actuator Hardware” page has

recommendations and instructions for part fabrication and acquisition, the team still made

decisions regarding the sourcing and fabrication of certain parts. We decided to outsource the

machined parts because we believed this would be most cost-effective, considering the numerous

hours we would need to spend machining the parts in Washburn, not to mention the cost of

machining errors. We got quotes from various machine shops and ordered the parts from the

cheapest option, KVC Engineering. Additionally, someone on the ODRI forum recommended

KVC and affirmed that KVC could machine the parts to the required tolerances. We faced a

similar decision with the robot’s codewheels and encoders, where we had the option between

purchasing the parts separately or buying an encoder kit which included the codewheel. The

encoder kit cost less; however, the codewheel from the kit had an aluminum flange that needed

to be lathed off for the codewheel to be compatible with the actuator module. Once again, we

reached out to the ODRI forum and learned that others had issues lathing the aluminum flange

because fixturing the codewheel to the lathe was difficult. As a result, people regularly damaged

or completely broke the codewheel while machining. This information helped us make the

decision to purchase custom codewheels from PWB Encoders GmbH.

35

The Solo8 developers specify that the body parts and actuator module shells should be

printed with PC-ABS on a FDM printer and that the 3D printed pulleys and encoder mounts

should be printed with the Accura Xtreme filament on an SLA printer. We printed the body parts

and actuator module shells in PLA on a Prusa MK3s+ printer. We opted for PLA because it was

readily available to us and we thought it would provide similar performance to PC-ABS. While

most of the robot was printed in-house, the team decided to outsource the 3D printed pulleys and

encoder mounts. We outsourced these parts because we did not have access to an SLA printer

and the parts’ small, detailed features could not be replicated on the MK3s+. We conducted

several test prints on the MK3s+ and we could not print the parts to a satisfactory level of detail.

Even though outsourcing these parts came at a cost of $460, it allowed us to properly print them

on an SLA printer. This gave us confidence that the parts would function properly in the actuator

module.

36

4 Implementation

While we intended to implement the design decisions discussed in Section 3, practical

constraints and unforeseen challenges forced us to change course in certain areas. This section

details our actual implementations and how they deviated from our initial decisions. After

overcoming numerous challenges, the team successfully validated our software stack via RL

experiments, built and tested the robot, and developed a quadrupedal walking gait and stance

transition trajectory in simulation.

4.1 Reinforcement Learning Experiments

The development of the OpenAI gym wrapper was completed before the robot was fully built.

As such, we validated our RL pipeline by first solving known RL problems and then teaching the

Solo8 to stand quadrupedally.

4.1.1 Inverted Pendulum & Lessons Learnt

In Section 3.1, we discussed how our pipeline was built around running RL experiments as

efficiently as possible. Supporting features such as automatic deployment, hyperparameter

tuning, and OTS RL implementations removed much of the boilerplate work involved in setting

up the RL experiments.

 To debug the pipeline, we first trained an agent to solve a RL problem with a known

solution. For our test problem, we chose the Pendulum-v0 environment that is included in the

base OpenAI gym package. In Pendulum-v0, the agent’s goal is to apply a rotational force to a

pendulum to keep it upright. When the pendulum is fully upright, the agent is given a reward of 1

and 0 otherwise. Screenshots of this environment can be seen in Figure 17.

Figure 17. Open AI Gym’s Pendulum-v0 environment. Here, the agent applies torques to a pendulum

with one rotational point. On the left, the agent’s torque is being visualized by an arrow representing

direction and magnitude. On the right is a properly trained agent. This agent is actually applying

torques to balance the pendulum, but they are so minute that it is not visible in the screenshots.

37

 The Pendulum-v0 environment was specifically chosen because both the environment’s

states and the agent’s actions are continuous. Recall from Section 2.4.2.1, that in RL, the agent is

trying to learn a policy function 𝜋 that outputs an action 𝑎𝑡 given an environment state 𝑠𝑡. When

running RL experiments with our robot, we expect the environment state to be the robot’s sensor

inputs and the agent’s actions to either be motor torques or joint positions. Regardless, we know

that both 𝑠𝑡 and 𝑎𝑡 are continuous. By choosing Pendulum-v0, we can be certain that the

resolution of our state and action spaces between problems are the same—albeit the spaces

associated with our robot will have more dimensions simply due to having more sensors and

motors to control. Additionally, as Pendulum-v0’s default reward function is known to

converge, a properly trained Pendulum-v0 agent would imply that the entire pipeline works.

 For the model training, we used the PPO2 implementation from stable-baselines. As

stable-baselines is OpenAI Gym-compatible and known to work correctly, it transferred well to

our robot’s RL experiments once the pipeline was validated. While the results for our pipeline

validation experiments can be found in Section 5.1.1, we learned several important lessons that

were implemented into the pipeline for our Solo experiments.

4.1.1.1 Normalized State & Action Spaces

When initially training the Pendulum-v0 agent, we encountered severe issues with the PPO2

model diverging. Upon further investigation, it was due to the gradient updates ∇--defined in

(8)—being too large. This is because PPO2 assumes that the state and action spaces are normal

when being sampled. However, as the state space of Pendulum-v0 is valued between 0 and

360—the current angle of the pendulum—this caused PPO2 to sample values greater than 1.

 As per [43], this is a known shortage of PPO2 and the recommended solution is to ensure

that the state and action spaces are normalized to be in [−1, 1]. As such, we modified our

pipeline to dynamically normalize the state and action spaces. For uniformly-distributed values,

such as the angle of the pendulum, this was done via a simple scaling operation:

�̃� = −2 ∗
𝐱 − min(𝐱)

max(𝐱) − min(𝐱)
− 1

(20)

 As each dimension of 𝐱 can have different domains, 𝑚𝑖𝑛 and 𝑚𝑎𝑥—in fact, all

operations—are applied element-wise in (20). Observe that this will map all values in

[min(x) ,max(x)] to �̃� ∈ [−1, 1]. For nonuniformly distributed values, such as sensors tracking

velocity, standardization was used:

�̃� =
𝐱−𝛍

𝛔
 (21)

 Note that just in (20), all operations in (21) are applied element-wise. In this case, 𝛍 is a

vector of averages, with the ith value of 𝛍 corresponds to the average of the ith values of 𝐱.

Similarly, 𝛔 is a vector of 𝐱’s standard deviations. In our implementation, 𝛍 and 𝛔 were

dynamically calculated as states are collected. All actions outputted from the networks were

https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html

38

valued in [−1, 1] and were scaled back to their original ranges before being sent to the

environment.

4.1.1.2 Environment Vectorization

Recall from Section 2.4.2.2, that PPO trains based off trajectories for the current iteration of the

policy 𝜋. This means that trajectories cannot be reused during iterations. To increase our runtime

training performance, we vectorized our environment to run on multiple CPU cores at the same

time. In our experiments, our trajectory terminates after 𝑇 timesteps; however, our vectorized

environment wrapper can also handle non-standard trajectories with premature terminations. In

practice, we found that vectorizing over 12 CPU cores yields a near 10x decrease in training

time; heavily increasing the effectiveness of our training pipeline.

4.1.2 Solo 8 Quadrupedal Standing

Once we had our pipeline validated, we wanted to run some proof-of-concept experiments on the

Solo8 model. We chose quadrupedal standing as a baseline task due to its intuitive nature and

because it would allow us to focus on having PPO control the gym_solo environment.

Unfortunately, our version of the Solo8 model was in heavy development, so we used ODRI’s

model of the unmodified Solo8 as a placeholder. Note that the only difference between the two

models is that our final version of the modified Solo8 included an ankle joint. However, the

ankle joint is intended to be inactive during quadrupedal mode; therefore, excluding it has

minimal consequences.

When designing our environment, we wanted to mimic realistic conditions as much as

possible. We only allowed the agent to observe its motor encoder position and velocity values.

As in traditional robot control, the agent outputs either motor torque or joint position values.

Note that since our pipeline automatically normalizes actions, as mentioned in Section 4.1.1.1,

switching the meaning of the agent’s output has minimal effects on its training.

With the environment properly configured, we focused our attention to shaping the

reward function. As mentioned in Section 2.4.2.2, PPO’s goal is to choose the best robot control

to optimize the given reward. However, these rewards need to be designed very strategically. For

example, simply rewarding the agent 1 for quadrupedal standing and 0 otherwise, similar to the

inverted pendulum in Section 4.1.1, will not work. In the inverted pendulum, the agent will often

randomly hit the “goal” state, so it can learn which actions most often yield that behavior.

However, for more complicated tasks such as quadrupedal standing, randomly achieving the goal

state is nearly impossible. Under the simple reward function, this would mean that the agent is

essentially getting no meaningful feedback from the environment—making any form of learning

impossible. Instead, the bulk of the experimentation is done in “shaping” the reward function;

specifically, determining the best way to incrementally reward the agent to the end goal. Our

specific variants and results are explored in Section 5.1.

39

4.2 Revised Robot Analysis & Build

As discussed in Section 3.3, our initial analysis erroneously considered the gear reduction to be

81:1 instead of 9:1. While fixing this error, we also realized that we never accounted for the fact

that in a 2D representation of the robot, two actuators are supplying the required torques. Thus,

the actuator module torque requirements in Appendix B had to be divided by two. After

rectifying these mistakes, we got the following torque requirements for the motors.

𝜏1 = 0.1311𝑁𝑚

𝜏2 = 0.6189𝑁𝑚

𝜏3 = 0.0261𝑁𝑚

𝜏4 = 0𝑁𝑚

We observed that 𝜏2 was almost twice the stall torque of the motor. Based on these updated

torque values, we realized that our robot could not perform every case of transitioning to a

bipedal stance. We had to take a conservative approach for finding a transitioning trajectory that

fell under our torque constraints.

We also updated this analysis to account for the ankle joints. Instead of four joints, we

now had five joints to consider. The updated torque analysis notation diagram is show in Figure

18.

Figure 18: Updated torque analysis notation

We created a MATLAB script to calculate the torque requirements based on a robot’s

stance. Using this, we manually found a stance and the corresponding torque values that fulfilled

our constraints. This is elucidated more in Section 4.10.

40

The robot was built following the assembly instructions found on the ODRI GitHub

repository “Open Robot Actuator Hardware” page. For testing and documentation purposes, each

actuator module was labeled 1 through 8. The Figure below shows how the modules were

labeled.

Figure 19: Module labels

Module 1: Front Left Hip Module

Module 2: Front Left Upper Leg Module

Module 3: Front Right Hip Module

Module 4: Front Right Upper Leg Module

Module 5: Back Left Hip Module

Module 6: Back Left Upper Leg Module

Module 7: Back Right Hip Module

Module 8: Back Right Upper Leg Module

The actuator modules were built with the exact same components as the original Solo8

except for one part: the 6mm wide, 201 tooth AT3 GEN III Synchroflex® Timing Belts in the

dual stage timing belt transmission. When we were purchasing parts for the actuator modules

there was a global shortage of 6mm wide, 201 tooth AT3 GEN III Synchroflex® Timing Belts

and we could not source them. Instead, we purchased “standard” AT3 Synchroflex® Timing

Belts. The polyurethane material in the standard belts is not as tough as the GEN III version but

the Solo8 developers told us on the ODRI forum that it should function the same. For all the

41

parts and materials used to build the robot, a comprehensive bill of materials can be found in

Appendix D.

When assembling the actuator modules, we sometimes encountered clearance issues

between the codewheels and encoders. This was caused by the codewheel sitting too high on the

encoder mount and resulted in the codewheel’s upper surface rubbing against the encoder. If the

misalignment was not corrected, the codewheel would get scratched and stop functioning

properly. We encountered this issue on actuator modules 1, 2, and 7. We solve the issue by

removing the brass ring that acts as a spacer between the aluminum pulley and motor. This

lowered the codewheel enough that it correctly aligned with the encoder.

Figure 20: Encoder assembly (left) and brass right (right)

For the foot mechanism, the flat feet and servo gears were 3D printed with PLA. Figure

21 shows an exploded view of the foot mechanism components. Due to 3D printer tolerances, the

shaft hole in the lower leg and foot were made slightly larger than the ¼” shaft diameter. The

servo gear is screwed to a round servo arm that is fastened to the servo shaft. The ¼” shaft was

cut to size and using a Dremel, rings were cut into the shaft ends for the retaining rings.

42

Figure 21: Flat foot assembly exploded view

4.3 ODrive Tuning

ODrives are very powerful motor controllers, but to harness their full potential, they need to be

tuned for the specific motors they are driving. Thankfully, ODrives are relatively well

documented and have an amazing support community. While referencing the documentation, we

created a basic configuration for the ODrives. We tested the basic configuration by moving the

motor to a specific set point. During testing we observed an interesting error where the motors

only moved after immediate calibration, but not after a reboot. After discussing with the ODrive

community and diving deeper into the documentation, we realized that noise on the encoder’s

index channel could be causing the issue. To rectify the problem, we soldered a 47 nF capacitor

between the index pin (Z) and ground (GND) on both ODrive axes. After installing the

capacitors, our tests were successful both after immediate calibration and reboot. This validated

that the ODrives, motors, and encoders were functioning properly.

https://docs.odriverobotics.com/

43

Figure 22: 47nF capacitors soldered to both ODrive axes

During additional testing, we observed that the motor would not move to its desired

setpoints. This occurred because the ODrives were not yet tuned for our motors. We followed the

ODrive tuning instructions to tune our system. It is important to note that the ODrive controller

does not implement a regular PID loop. Instead, they use a cascading Position, Velocity and

Current Controller. After tuning, we got the following PID tuning graph in Figure 23 for all our

actuator modules.

Figure 23: PID tuning graph. The y-axis corresponds to the revolution of the motor and x-axis corresponds to the

time.

https://docs.odriverobotics.com/control
https://docs.odriverobotics.com/control
https://docs.odriverobotics.com/control

44

Another problem we encountered was the need for index calibration every time we

booted-up the ODrives. Currently, ODrives require that incremental index encoders search for

the index pulse at bootup to calibrate. The only way to avoid this was by implementing a custom

firmware on the ODrives. Given our time constraints, we decided against this option because of

our unfamiliarity with the ODrive stack. Instead, we decided to implement a mechanical

workaround for the index calibration. We fixed the direction of the index calibration to move the

legs away from the center of the body during it. We then assembled the legs in the robot home

position at the index position of the encoders. This is explained more in Section 4.6. The robot

legs are moved a little bit towards the center of the robot from the home position. When the robot

is powered on from this position, the robot legs move into the home position (Figure 27). After

tuning and calibration were completed, our actuator modules were ready to be integrated with the

software stack.

4.4 Pivot from Arduino Due to Teensy 4.1

As was mentioned in Section 3.2.2, our team’s original plan was to connect the ODrives to the

Due through CAN bus. However, while we were developing code to implement the CAN

protocol, issues arose that prevented us from successfully establishing two-way communication

between the ODrives and Due. For reasons we were unable to figure out, the Due would

consistently receive heartbeat messages from the ODrive over CAN but when the Due sent a

message to an ODrive, the ODrive would not receive the message. For about two weeks, we

rigorously tested the validity of the code, debugged the signals on the wire, and discussed

potential solutions with the ODrive community. Ultimately, we were unable to resolve the issue

and chose to pivot instead of spending more time trying to solve the problem. There were two

other communication protocols to choose from that the ODrive supported: I2C and UART. We

chose to use UART because it had better documentation and it was the safer bet since to enable

I2C, we would have to physically modify the ODrives by de-soldering the CAN transceiver from

the PCB. After some quick testing, the UART protocol proved to work perfectly in code on both

hardware and software serial ports.

Despite its success in code implementation, the switch to serial UART produced a new

issue on the hardware end. Our robot uses four ODrives to drive all the motors and the Arduino

Due has four hardware serial ports. One of the ports is pre-configured to work with a console on

a host computer connected via USB. Another port is consumed by the serial connection to the

Raspberry Pi. This leaves just two hardware serial ports available, which is not enough to control

the robot’s four ODrives because each ODrive needs a dedicated serial port connection. After

researching potential solutions, our team came up with 4 options:

1. Completely cut out the Due and use four of the Raspberry Pi’s six hardware serial ports

to run the ODrives directly. This would also require that the Raspberry Pi run a control

loop for the motors separate from the existing ROS nodes.

45

2. Get a second Due, such that each Due controls two ODrives, and synchronize their

control loops over I2C.

3. Continue using a single Due and add more serial ports using a software serial library. A

software serial library creates additional serial ports by bit-banging digital pins.

4. Swap out the Due with a Teensy 4.1 that has eight hardware serial ports.

We ultimately chose to move forward with Option 4: Swap out the Due with a Teensy.

We chose this route due to concerns we had with the other three options and because of the

simplicity of transitioning to the Teensy. With Option 1, our concern was that since ROS is not a

real-time system, there could be timing issues with the movements we want to send to the

ODrives. Option 2 was a feasible option, but when compared to Option 4, Option 2 becomes

inefficient, both in terms of the number of electronic components needed and code that needs to

be written. Option 3 was arguably the closest contender with Option 4, but its largest drawback

was the fact that software serial ports have a history of instability and could cause issues down

the line. With these thoughts in mind, Option 4 was the best choice to move forward with

because there were no perceptible drawbacks. Transitioning over to the Teensy proved to be a

trivial task, and the Teensy provided a boost in speed when comparing its 600Mhz processor to

the Due’s 84Mhz processor.

4.5 Updated Wiring

A consequence of switching the Due with the Teensy 4.1 was that our wiring needed to be

changed to accommodate the Teensy. Both the Teensy and the Due have an operating voltage of

3.3V, however their input voltage requirements are different. The Due has an input range of 7-

12V while the Teensy requires a 5V input source. Luckily, the Raspberry Pi also requires a 5V

input, so we were able to use the same DC converter for both the Raspberry Pi and the Teensy.

This also allowed us to completely remove the 24V to 12V DC converter. The only other change

we needed to make was wiring between the Teensy and the ODrives. Since we were moving

from CAN to serial UART, we were able to cut out the CAN transceiver breakout board and wire

the ODrives directly to the Teensy’s hardware serial ports. Figure 24 shows an updated version

of the wiring diagram after the change.

46

Figure 24: Wiring diagram with Teensy replacement

4.6 Quadrupedal Home Position

The Solo8’s quadrupedal home position is the position where all the legs are straight and

perpendicular to the ground. The home position is important because it acts as a zeroing point

from which other leg configurations can be set. However, setting the home position was

complicated by the actuator modules’ design and the incremental encoders. As described in

Section 2.3.1, each actuator module has an output pulley to which the subsequent appendage

(actuator module or lower leg) is attached too. As shown in Figure 25, when the robot is in its

home position, the output pulley’s horizontal axis should be aligned with the hip module’s

horizontal axis. For the upper leg module, the output pulley’s horizontal axis should be

perpendicular to the module’s horizontal axis (Figure 26).

Figure 25: Hip module’s horizontal axis (yellow line) aligned with the pulley’s horizontal axis (red line)

47

Figure 26: Upper leg module’s horizontal axis (yellow line) perpendicular to the pulley’s horizontal axis (red line)

By nature of the 9:1 dual-stage timing belt transmission, one rotation of the pulley

(equivalent to one rotation of the connected appendage) is equal to nine rotations of the motor

shaft (i.e. nine rotations of the codewheel since the codewheel is directly attached to the motor

shaft). When the robot is powered on, the motors automatically move to the codewheels’ index

position. However, the codewheel’s index position does not necessary correspond with the

robot’s home position because one rotation of the codewheel is 1/9th a rotation of an appendage.

Based on how the output pulleys and 201 tooth timing belts are assembled with the center

pulleys, the connected appendages can theoretically be in nine different positions. Therefore, for

the codewheel’s index position to correspond with the robot’s quadrupedal home position, the

output pulleys need to be assembled in the correct orientation according to the codewheel’s

positioning. Therefore, the output pulleys had to be positioned so that the quadrupedal home

position corresponded with the codewheel’s index position. We did this by assembling the output

pulleys and modules when the module’s motor and encoder were powered on and in the

codewheel’s index position. Since the motor was powered on, it provided enough resistance so

that the codewheel stayed stationary while we connected the output pulley to the timing belt

transmission. The output pulleys were assembled along the axis orientations described before.

 Unfortunately, due to physical constraints in the timing belt transmission we could not

position the output pulleys so that their axes perfectly aligned with the modules’ axes. Instead,

we aligned the axes as close as possible and accounted for the unique angle offset of each leg in

the Arduino. To do this we powered the robot on and let the legs calibrate to the codewheels’

index positions. Next, using the Raspi we moved the modules until the connected appendage was

vertical. Each modules’ offset angle was put into the Arduino code and the programmed

quadrupedal home position was set. From then on, every time a home position command was

sent from the Raspi, the robot went into the following position.

48

Figure 27: Home position

4.7 Quadrupedal Standing

After the legs were tuned and the quadrupedal home position was calibrated, we first implement

quadrupedal standing on the robot. We tested quadrupedal standing by setting-up the robot in its

standing position and placing it on the ground. However, our first attempt at quadrupedal

standing was unsuccessful as the robot could not support its own weight. At this moment the

team realized that we had made a great oversight as we never verified that the robot could

support the weight of the OTS electronics. At this time, the robot weighed 3.1kg compared to the

original Solo8’s weight of 2.2kg. The weight increase was due to our off-the-shelf hardware

which was much larger and heavier than the original Solo8’s custom electronics. We made the

mistake of assuming that the robot could support an additional 0.9kg and never conducted an

analysis like we did for bipedal standing.

49

Figure 28: Robot’s original electronics with PDU that was too heavy.

Another oversight was that we did not consider how the configuration of the legs would

impact the robot’s ability to support its own weight. For our initial tests, the rear legs were

positioned outside the body as shown in Figure 29. By positioning the legs outside the body, we

moved them farther from the robot’s COM, thus increasing the amount of torque exerted on the

rear leg motors. This problem was compounded by the fact that our off-the-shelf PDU, the

robot’s heaviest hardware component, was placed on the robot’s rear. This further increased the

weight that the rear leg motors had to support and as a result the rear legs struggled to support

the robot’s weight. When the robot tried to support its own weight, the robot’s knee joints would

bend and the motors on Module 6 and 8 began to overheat.

50

Figure 29: Initial quadrupedal standing leg configuration

Based on our observations the team concluded that the robot’s weight had to be reduced.

After discussing possible solutions, the team concluded that that the only way to reduce weight

was to condense the wiring inside the robot and remove as much hardware as possible. When we

first assembled the robot, we did not shorten the lengths of the motor and encoder wires. Instead,

we bundled the wires with zip ties, creating a ‘rat’s nest’ of wires inside the robot. To give a

sense of how much extra wiring was in the robot’s body, Figure 30 shows the wires we removed

in order to reduce the robot’s weight.

51

Figure 30: Removed wiring weighing about 190 grams

As seen in Figure 31, we removed roughly 0.2kg of weight by shortening the motor and encoder

wires to their optimal lengths. We also removed the Anderson Power Poles that connected the

motors to the ODrives and simply fastened the motor wires to the ODrive screw terminals.

52

Figure 31: Wire reduction

To reduce the weight of the hardware, we evaluated each piece of hardware individually by

considering its weight and functionality. We concluded that we could significantly reduce weight

if we replaced the off-the-shelf PDU with a lighter, home-made solution. Our solution was to

make a PDU out of two ¼” x 1-¾” bolts. The 24V power source’s wire ends were secured to the

robot and each bolt was directly connected to the positive and negative ends, respectively. The

bolts created a PDU from which the ODrives and power converters were connected to. After

shortening the wires inside the body and modifying the PDU, we successfully reduced the

robot’s weight to 2.65kg.

 Table 3 – Weight of original hardware

Hardware Quantity Weight (kg)

Power Distribution Module 1 0.25

24V/5V Power Converter 1 0.069

24V/8.4V Power Converter 1 0.0286

Teensy 1 0.007

Raspi 1 0.045

Odrive 4 0.088

Total Weight .76

53

Figure 32: Home-made PDU

We also changed the configuration of the rear legs so that they were inside the robot’s body. This

reduced the torque on the rear motors. After these changes were implemented, quadrupedal

standing was retested, and successfully performed.

Figure 33: Robot standing after reducing the weight of wiring and implementing the new leg configuration.

54

4.8 Flat Foot Testing

To verify that the feet mechanisms functioned properly and were integrated into the robot’s

controls, we tested the foot’s ability to convert between a flat and point foot. We started with the

foot on the back right leg. After wiring the servo to the 24V/8.4V power converter and Teensy,

we disassembled the flat foot to initially test the servo. This was done for safety reasons because

it was our first time operating the servo and we did not want to damage the servo by over-

rotating the flat foot into the lower leg. After verifying that our code operated the servo as

intended, we set the servo to 0 degrees and reassembled the flat foot in the point foot

configuration. By doing this we protected the servo from over-rotating the flat foot, as the point

foot configuration corresponds with the servo’s physical limit. Next, we successfully tested the

point-to-flat conversion on the right foot and then used the same procedure to test the left foot.

Figure 34: Point foot configuration (left) and flat foot configuration (right)

4.9 Quadrupedal Walking

We implemented a modified symmetric wave gait (an example is shown in Figure 35) for our

robot because of its inherent stable nature. Since the Solo8 has 8DoFs, we do not have many

ways to change the support polygon for the robot as it walks. By using a symmetric wave gait,

we ensured that the robot always had three legs on the ground, giving it a relatively wider

55

support polygon, and making walking more stable. Furthermore, only having one foot off the

ground at a time also reduces the torque load on the rest of the motors.

Figure 35: An example of a symmetrical walking gait. Yellow boxed indicate the transfer phase (foot is off the

ground) and the grey boxes indicate non transfer phase (foot is on the ground). In our implementation, leg 1

is the front-right, leg 2 is back-right, leg 3 is front-left, and leg 4 is back-left.

We decided to generate our trajectory based on the following parameters after extensive

testing in simulation and on the real robot:

• velocity of the robot 𝑣 = 0.15𝑚/𝑠

• stride length of each foot 𝐿 = 0.15𝑚

• duty factor 𝛽 = 0.9

• cycle_time 𝑇 = 1𝑠

Based on these parameters, we calculated the time in transfer phase for each leg to be 𝑇𝑙 =

𝑇(1 − 𝛽) = 0.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. We generated six intermediate points for the transfer phase

1. Begin lifting the transfer foot up

2. Begin moving the transfer foot forward while slowing down the leg lifting

3. Move the leg horizontally with the foot suspended in the air

4. Begin putting the foot down

5. Stop moving the leg horizontally

6. Place the foot down

Based on the stride length, we calculated the max horizontal velocity in Figure 36 (a).

Since the area under the velocity curve is the displacement, we simply broke down our curve into

basic shapes to compute the area: (0.06 + 0.02) ∗
𝑣𝑥

2
= 0.15.

Therefore, each leg must travel at a max horizontal velocity of 3.75 m/s. We used Figure

36 (a) and took the derivative over Δ𝑡 = 0.02𝑠 to calculate the horizontal movement graph in

Figure 36 (b). Based on experimentation, we decided to lift the robot’s leg 0.05 m vertically

during the transfer phase to account for inconsistencies on the ground surface. Each leg is

displaced to this vertical distance in the first half of the transfer phase and then brought back to

the ground position. This is shown in Figure 37 (b). Based on Figure 37 (a), Figure 37 (b) is

calculated by graphing the integral. By combining the graphs in Figure 36 (b) and Figure 37 (b),

we can get the graph in Figure 37 (a), the vertical vs horizontal displacement of the leg for the

transfer phase with respect to the ground. This is then converted into vertical vs horizontal

displacement with respect to the body by subtracting the global position of the origin/hip joint, as

shown in Figure 38 (b). The points represented in this graph are the actual values used to move

56

the leg during the transfer phase. Using inverse kinematics, we calculated the joint angles for

each leg for all timesteps during the transfer and non-transfer phases.

(a) (b)

Figure 36: Horizontal velocity and horizontal displacement of each leg in transfer phase

(a) (b)

Figure 37: Vertical velocity and vertical displacement of each leg in transfer phase

(a) (b)

Figure 38: Vertical displacement vs horizontal displacement with respect to ground and body

57

As seen in Figure 38 (b), at the beginning of transfer phase, the foot position starts at

0.075m behind the joint origin and ends 0.06m in front of the joint origin at the end of the

transfer phase. For the non-transfer phase, we simply linearly interpolated between the start and

end positions of the transfer phase. Once we had the leg location, we computed the joint angles

via inverse kinematics.

While testing the above-mentioned gait on the real robot, the team observed that the

robot’s rear legs were not completely leaving the ground during its transfer phase. We attributed

this observation to the fact that the robot’s center of mass was shifted towards the rear side of the

body. This essentially caused the robot to tip slightly backwards whenever it was trying to lift the

rear legs. To account for this, we decided to tilt the robot forward during walking. This was done

by keeping the height of the front legs lower as compared to the height of the rear legs. Based on

simple geometric calculations shown below, we calculated the Δx and Δ𝑦 for both front and back

legs and added them to each point of the leg cycle. These values are visualized in Error!

Reference source not found..

𝛼 = tan−1 (
Δℎ
𝑙𝑏𝑜𝑑𝑦

)

Δℎ𝑓 = 𝑙𝑓 sin(𝛼)

Δ𝑥𝑓 =
Δℎ𝑓
cos(𝛼)

Δ𝑦𝑓 = Δℎ𝑓 tan(𝛼)

Δℎ𝑏 = 𝑙𝑏 sin(𝛼)

Δ𝑥𝑏 =
Δℎ𝑏
cos(𝛼)

Δ𝑦𝑏 = Δℎ𝑏tan (𝛼)

Figure 39. Labels and reference frames for the robot with a forward tilt.

58

After accounting for Δ𝑥 and Δ𝑦 for the front and back legs, we converted the position of the foot

into joint angles using inverse kinematics. Each leg can be abstracted to a 2 DoF robot arm.

Given the foot (x, y) values according to the axis in Error! Reference source not found., we

can calculate the following:

𝛼 = tan−1 (
𝑥

𝑦
)

Note that our tangent term is
𝑥

𝑦
 instead of

𝑦

𝑥
; this is because of how our axes are defined.

𝛽 = cos−1 (
𝐿1
2 + 𝑥2 + 𝑦2 − 𝐿2

2

2𝐿1√𝑥2 + 𝑦2
)

With our 𝛽 term, we can then compute the joint angles:

𝜃1
𝐹 = 𝛼 − 𝛽

𝜃2
𝐹 = cos−1 (

𝑥2 + 𝑦2 − 𝐿1
2 − 𝐿2

2

2𝐿1𝐿2
)

𝜃1
𝑅 = 𝛼 + 𝛽

𝜃2
𝑅 = −cos−1 (

𝑥2 + 𝑦2 − 𝐿1
2 − 𝐿2

2

2𝐿1𝐿2
)

These values can be visualized in Figure 40. 𝜃1 and 𝜃2 are then used to move the respective legs

to the desired position.

4.10 Stance Transitioning

Figure 40. Labels and reference frame for performing inverse kinematics on our Solo’s legs.

59

For this project, we decided to implement the stance transition in a static manner. To do so, we

always kept the body’s center of mass within the support polygon. We first calculated the robot’s

center of mass experimentally. It was done this way because our real robot did not perfectly

match our simulation model. We calculated the center of mass by balancing the robot on a

suspended rod. The center of mass is shown in Figure 41 and Figure 42 as the green circle.

As the next step, we found an initial quadrupedal starting position to transition from.

Again, the important constraint was keeping the center of mass within the support polygon.

While finding the position, we also wanted to be sure that all the torques on the joints were under

the 3.4 Nm stall torque limit after gear reduction. Based on the starting position, we then found a

reasonable bipedal position. There were two criteria for deciding this bipedal position. First was

that the robot had to somewhat resemble a bipedal robot when in this stance. Second, was that

the robot should have minimal movement of hip and knee joints while getting to this position

from the initial quadrupedal position. Our major inspiration came from the way humans stand up

when they are in squatting position and have their front limbs touching the ground. After some

experimentation, involving a manual search for a reasonable starting and ending position, we

found the poses in Figure 41 and Figure 42 with the respective torques based of the notation in

Figure 18. They satisfied all our criteria.

Figure 41. The stance transition starting position. In this position, the motor torque values are:

𝜏1 = 0.82385𝑁𝑚
𝜏2 = 0.48836𝑁𝑚
𝜏3 = 2.9057𝑁𝑚
𝜏4 = −0.050753𝑁𝑚
𝜏5 = −0.014884𝑁𝑚

We generated a stance transitioning trajectory based on these starting and ending

positions. A quintic polynomial was used to generate this trajectory for each of the joints. We

preferred the quintic polynomial over its cubic counterpart because it generates smoother

transition motions. We generated our trajectory as the following:

Quintic Trajectory:

60

𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 + 𝑎4𝑡
4 + 𝑎5𝑡

5

Constraint Equations:

𝑞0 = 𝑎0 + 𝑎1𝑡0 + 𝑎2𝑡0
2 + 𝑎3𝑡0

3 + 𝑎4𝑡0
4 + 𝑎5𝑡0

5

𝑣0 = 𝑎1 + 2𝑎2𝑡0 + 3𝑎3𝑡0
2 + 4𝑎4𝑡0

3 + 5𝑎5𝑡0
4

𝛼0 = 2𝑎2 + 6𝑎3𝑡0 + 12𝑎4𝑡0
2 + 20𝑎5𝑡0

3

𝑞𝑓 = 𝑎0 + 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2 + 𝑎3𝑡𝑓

3 + 𝑎4𝑡𝑓
4 + 𝑎5𝑡𝑓

5

𝑣𝑓 = 𝑎1 + 2𝑎2𝑡𝑓 + 3𝑎3𝑡𝑓
2 + 4𝑎4𝑡𝑓

3 + 5𝑎5𝑡𝑓
4

𝛼𝑓 = 2𝑎2 + 6𝑎3𝑡𝑓 + 12𝑎4𝑡𝑓
2 + 20𝑎5𝑡𝑓

3

In matrix form:

[

1 𝑡0 𝑡0

2 𝑡0
3 𝑡0

4 𝑡0
5

0 1 2𝑡0 3𝑡0
2 4𝑡0

3 5𝑡0
4

0 0 2 6𝑡0 12𝑡0
2 20𝑡0

3

1 𝑡𝑓 𝑡𝑓
2 𝑡𝑓

3 𝑡𝑓
4 𝑡𝑓

5

0 1 2𝑡𝑓 3𝑡𝑓
2 4𝑡𝑓

3 5𝑡𝑓
4

0 0 2 6𝑡𝑓 12𝑡𝑓
2 20𝑡𝑓

3
]

[

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5]

=

[

𝑞0
𝑣0
𝑎0
𝑞𝑓
𝑣𝑓
𝛼𝑓]

Figure 42. The robot in its stable standing stance.

In this position, the joint torque values are:

𝜏1 = 0.43189𝑁𝑚
𝜏2 = −0.39103𝑁𝑚
𝜏3 = 0.3507𝑁𝑚
𝜏4 = 0.088422𝑁𝑚
𝜏5 = −0.0067781𝑁𝑚

61

The quintic polynomials were generated for each of the five joints with the following parameters

using a MATLAB script:

• 𝑄0: starting joint position for the respective joint.

• 𝑄𝑓: was the ending joint position for the respective joint

• 𝑣0: initial velocity of 0 rad/sec

• 𝑣𝑓: final velocity of 0 rad/sec

• 𝛼0: initial acceleration of 0 rad/sec^2

• 𝛼1: final acceleration of 0 rad/sec^2

• 𝑇0: Starting time of 0 seconds for the transition trajectory

• 𝑇𝑓: ending time of 3 seconds for the transition trajectory

Based on the quintic polynomials, we generated 50 intermediate points. Time to reach a

successive waypoint was calculated to be
3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

50
= 0.006 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The number of

intermediate points was chosen based on experimentation in our simulation. The trajectory along

with the time for each way point was then exported as a simple csv file from MATLAB. Our

simulation node read the trajectory from this csv and executed it in the simulation environment.

62

5 Results and Discussion

5.1 Reinforcement Learning

As discussed in Section 4.1.1, we first validated our RL pipeline on Open AI Gym’s Pendulum-

v0 environment. Once we had achieved a stable pipeline, we then trained the Solo8 to stand

quadrupedally. In this section, we describe our experiments and associated results. Note that in

all experiments, the policy network was a 4-layer neural network with an input layer, 2 layers of

64 neurons each, and the output layer. We experimented by adding up to 10 layers between 16 to

256 neurons each but did not notice any nontrivial results. We chose our specific architecture

because it was recommended by the authors of stable-baselines and used it to evaluate all our

results.

5.1.1 Pendulum-v0

Recall from Section 4.1.1 that Pendulum-v0 was primarily experimented upon to fix any

problems with the RL pipeline. As Pendulum-v0 has a known solution, there were no

modifications done to the states, actions, or rewards—other than those outlined in Section

4.1.1.1. Our autotrainer makes is so that the only hyperparameter we had to tune was the training

duration. One issue that we ran into was that we were not training for long enough. As seen in

Figure 43. The testing episode reward during the model training. Observe that the

 major convergences occur between timesteps 4 million and 6 million.

63

Figure 43, the agent seemed to converge between 4 million and 6 million timesteps—when we

started, we were prematurely stopping the training at 1 million timesteps.

 With 10,000 training episodes at 750 timesteps each, we were able to successfully train

an agent to balance the pendulum upright. Our best agent was able to balance the pendulum

within 30 timesteps, equating to less than a tenth of a second in real time.

5.1.2 Quadrupedal Standing

With our pipeline validated, we focused on teaching our Solo8 to stand quadrupedally. We

wanted to give the agent a total of 5 seconds real time to stand up, so all experiments were run

with 2,000 steps, spaced 0.025 seconds apart. Additionally, the Solo8 began each episode with

all legs folded and the torso resting on the ground. This behavior can be seen in Figure 44.

5.1.2.1 Naive Height Reward

Our first experiment was simply to reward the agent for maintaining its torso a certain distance

off the ground. We empirically found that the torso sits 0.337 meters off the ground during

quadrupedal standing, so we set that as our target height. Then, our reward function simply

interpolated the location of the torso:

𝑟(𝑠𝑡) = 1 − 𝑐𝑙𝑎𝑚𝑝 (

|0.337 − ℎ𝑡|

ℎ𝑡
, 0, 1) (22)

where

• ℎ𝑡 is the height of the torso at timestep 𝑡

• 𝑐𝑙𝑎𝑚𝑝(𝑣, 𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟) returns 𝑣 if 𝑙𝑜𝑤𝑒𝑟 ≤ 𝑣 ≤ 𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟 if 𝑣 ≤ 𝑙𝑜𝑤𝑒𝑟 and 𝑢𝑝𝑝𝑒𝑟 if

𝑣 ≥ 𝑢𝑝𝑝𝑒𝑟

Figure 44. The agent attempting quadrupedal standing with the Naïve Height reward (22). In an episode, the agent

randomly moves its limbs, causing it to bounce around. As the height of the torso is usually ∈ [0, 2 ∗ 0.337], the

agent is still getting a positive reward, even if it is doing undesirable behavior. The choice for 0.337 as our limit is

elaborated upon in Section 5.1.2.1.

64

Thus, 𝑟(𝑠𝑡) ∈ [0, 1] s.t. 𝑟(𝑠𝑡) = 1 when the height is at the target. 𝑟(𝑠𝑡) = 0 when the absolute

difference between the target and torso height is more than 0.337, the target height.

 With this reward function, we found that the agent tends to “jump” to the target height. In

other words, the agent randomly actuates all its motors with the hopes that a random movement

will launch the robot off the ground to the correct height. However, this behavior is undesirable

as the agent has no stability at the target height and does not actually achieve quadrupedal

standing.

5.1.2.2 Flat Torso Reward

The most apparent problem that we saw with (22) was that the agent was actuating its joints too

sporadically. To combat this, we introduced a new flat torso term:

𝑟(𝑠𝑡) = 1 −

(𝑐𝑙𝑎𝑚𝑝 (
|0.337 − ℎ𝑡|

ℎ𝑡
, 0, 1) + (

Δ𝜃𝑥
2 ∗ 𝜋 +

Δ𝜃𝑦
2 ∗ 𝜋))

2
 (23)

note that:

• Δ𝜃𝑥 is the absolute deviation from the 𝑥 axis and Δ𝜃𝑦 with the 𝑦 axis, respectively

• Δ𝜃𝑥 and Δ𝜃𝑦 are divided by 𝜋 as the maximum absolute deviation for an angle is valued

∈ (0, 𝑝𝑖), assuming the angle is reported in radians. These values are then divided by 2 to

ensure that the total value adds up to 1.

Similar to (22), 𝑟(𝑠𝑡) ∈ [0, 1] in (23). However, with this reward function, we found that the

agent often “tips” over and gets stuck in an upside-down position, as shown in Figure 45.

Intuitively, this behavior makes sense. As the robot is stable on its back, it is achieving a perfect

flat torso reward, at the expense of the height reward. At the end of the episode, the agent tries to

get some height again by actuating its joints, but by that point the agent has already reached an

Figure 45. The agent trying to stand quadrupedally using (23) as the reward function. The agent tended to

“jump” up at the beginning to achieve the height reward but ends up tipping over onto its back—achieving a

perfect “flat” reward. Near the end of the episode, the agent tries to move its legs to lift it up, but that

is not enough to achieve quadrupedal standing.

65

unrecoverable state. So, even though the torso might have been more stable, the agent still could

not stand quadrupedally.

5.1.2.3 Stability Reward

When training their quadruped, Google DeepMind also ran into issues with their agent

consistently entering an unrecoverable state during training episodes. They combated this by

penalizing large changes in the robot’s horizontal location and joint positions [42]. We

implemented a similar reward function:

𝑟(𝑠𝑡) = 1 −

(

(𝑐𝑙𝑎𝑚𝑝(

|0.337 − ℎ𝑡|
ℎ𝑡

, 0, 1) + (
Δ𝜃𝑥
2 ∗ 𝜋

+
Δ𝜃𝑦
2 ∗ 𝜋

))

2

)

 𝑣ℎ
𝑙ℎ

𝑣𝜃
𝑙𝜃

 (24)

where

• 𝑣ℎ is the horizontal velocity of the agent

• 𝑣𝜃 is the average joint velocity

• 𝑙ℎ and 𝑙𝜃 are scaling factors on the horizontal and joint velocities. These values were

determined experimentally

Google DeepMind found success in multiplying by their stability reward rather than adding it as

the effect distributes to both subrewards (the torso flatness and height rewards, respectively)

[42]. As seen in Figure 46, during episodes the agent “jumps” up and lands in a quadrupedal

standing stance. However, instead of dynamically moving its legs, the agent simply locks them

into a stable position. Unfortunately, this “stable position” does not reach the target height.

Therefore, while the robot is standing quadrupedally, it did not perform the desired behavior but

rather found a shortcut to a locally optimal solution.

Figure 46. The agent standing quadrupedally by optimizing (24). The agent jumps up,

locks its legs, and simply stands on them. In this configuration, the agent’s height is

only 0.3, when the target height is 0.337. However, the agent is incredibly stable as

there are no actions performed once the agent is standing. For this agent,

𝑙ℎ = 3.215𝑚 and 𝑙𝜃 = 10 𝑟𝑎𝑑/𝑠.

66

5.1.2.4 Gaussian Tolerances

In the previous experiments, we see that the agent optimizes some subrewards while

“sacrificing” others. This can be seen in Figure 46, where the robot achieves perfect small

control, horizontal velocity, and torso flatness rewards—but a suboptimal height reward. Our

intuition behind this behavior was that there was “no tolerance” in the rewards.

 Since all of our subrewards are linearly interpolated, the only time the agent can get a

reward of 1 is to achieve perfect quadrupedal standing. However, that is highly unrealistic, and

the agent can be considered to be successfully standing quadrupedally even if there are slight

deviations in the orientation and joint control.

 To allow for toleranced rewards, we wrote a custom Gaussian interpolator:

𝑔(𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑚, ℎ𝑚) =

{

1, 𝑖𝑓 abs(𝑥 − 𝑡𝑎𝑟𝑔𝑒𝑡) < ℎ𝑚

1

𝜎√2𝜋
𝑒

−
1
2(
(
𝑥±ℎ𝑚
𝑠𝑚

)−(𝑡𝑎𝑟𝑔𝑒𝑡±ℎ𝑚)

−2∗log(0.01)
)

, 𝑖𝑓 ℎ𝑚 ≤ abs(𝑥 − 𝑡𝑎𝑟𝑔𝑒𝑡) ≤ 𝑠𝑚

0, 𝑖𝑓 abs(𝑥 − 𝑡𝑎𝑟𝑔𝑒𝑡) > 𝑠𝑚

 (25)

Where ℎ𝑚 is the hard margin of the tolerance and 𝑠𝑚 is the soft margin of the tolerance. The

behavior of the function (visualized in Figure 47) is as follows:

• If the difference between 𝑥 and 𝑡𝑎𝑟𝑔𝑒𝑡 is less than hard margin, yield a reward of 1

(perfect reward)

• If the difference between x and target is more than soft margin, yield a reward of 0

Figure 47. A visual representation of our custom Gaussian tolerance function.

Observe how the reward function returns 1while 𝑥 is within ℎ𝑚 of the 𝑡𝑎𝑟𝑔𝑒𝑡.

67

• If the difference is between hard margin and soft margin, then interpolate based off a

Gaussian centered at 𝑡𝑎𝑟𝑔𝑒𝑡 + ℎ𝑚 and returns 0.01 when 𝑥 = 𝑠𝑚. Note that even

though this calculation is based off the general formula for a PDF of a Gaussian

distribution [44], it is scaled as per Section 4.1.1.1 to be in [-1, 1].

• Note that ℎ𝑚 is either added or subtracted from 𝑥 and/or 𝑡𝑎𝑟𝑔𝑒𝑡 depending on if 𝑥 ≤

𝑡𝑎𝑟𝑔𝑒𝑡 or 𝑥 ≥ 𝑡𝑎𝑟𝑔𝑒𝑡

With this new tolerance function, we rewrote (24) as:

𝑟(𝑠𝑡) = 1 − (
𝑐𝑙𝑎𝑚𝑝(𝑔(ℎ𝑡, 0.337, 𝑠𝑚ℎ, ℎ𝑚ℎ), 0, 1) + 𝑔(Δ𝜃𝑥, 0, 𝑠𝑚𝑥 , 𝑙𝑥) + 𝑔(Δ𝜃𝑦, 0, 𝑠𝑚𝑦, 𝑙𝑦)

3
)

× 𝑔(𝑣ℎ , 0, 𝑠𝑚𝑣 , 𝑙𝑣)𝑔(𝑣𝜃, 0, 𝑠𝑚𝑠𝑐 , 𝑙𝑠𝑐)
(26)

where:

• 𝑠𝑚ℎ and ℎ𝑚ℎ are the soft and hard margins for the torso height reward, respectively

• 𝑠𝑚𝑥 is the soft margin for the torso rotation rewards, respectively. Note that 𝑠𝑚𝑥 = 𝑠𝑚𝑦

in practice for symmetry.

• 𝑠𝑚𝑣 is the soft margin for the horizontal velocity reward

• 𝑠𝑚𝑠𝑐 is the soft margin for the joint velocity reward

Using (26), we were able to achieve successful quadrupedal standing. As shown in Figure 48, the

agent successfully brings the torso to the desired height and maintains it via dynamically

adjusting its legs. By allowing tolerances in our reward function, we were able to train the agent

to perform desired behavior, instead of settling for a local maximum.

 Our final model was automatically tuned by our RL pipeline, as explained in Section 3.1,

and the parameters for our best agent are as follows:

Parameter Value

Episodes 12000

𝑠𝑚ℎ 0.1636

ℎ𝑚ℎ 0.007876

Figure 48. Quadrupedal standing results using (26) as the reward function. Here,

the agent jumps up, lands on four feet, and performs leg adjustments to stay

stable.

68

𝑠𝑚𝑥 4.33

𝑙𝑥 0.06703

𝑠𝑚𝑦 4.33

 𝑙𝑦 0.06703

𝑠𝑚𝑣 3.168

𝑙𝑣 0.9127

 𝑠𝑚𝑠𝑐 0

𝑙𝑠𝑐 10.808

5.2 Quadrupedal Walking Tests

The quadrupedal symmetric wave gait was tested on multiple surfaces to evaluate the gait’s

performance in different environments. These tests were all performed on relatively flat surfaces

and produced varying results. This section describes the walking tests we conducted and gives

the results of those tests.

Carpet

The gait was first tested on carpet because this was the flooring of the room where we built and

set-up the robot. The robot successfully performed quadrupedal walking without any issues. Due

to the size of the room and length of the power cord, the robot could only walk a maximum

distance of roughly seven feet.

Figure 49: Robot performing walking gait on carpet.

69

Plywood

Tests were also conducted on a 4’x 2’ sheet of plywood. During multiple tests, the robot

successfully walked; however, we routinely observed instances where the gait skipped steps as a

result of the robot slipping on the plywood. The team attributed the skipping motion to the robot

slipping and then regaining traction on the surface. During these tests, the robot walked roughly

3’ because it was limited by the size of the plywood.

Figure 50: Gait test on plywood board

Brick Path and Concrete

We tested the gait outside, on the brick and concrete paths around the Quad. Our observations

and results were similar to those of the plywood test: the robot successfully walked on both

surfaces, but the gait would occasionally skip. During the instances where the gait skipped, it

was clear that the robot had momentarily lost traction, just as we observed during the tests on the

plywood surface. We also tested the gait on a section of the path where the surface changed from

concrete to brick. In this case, the gait was able to transition between the surfaces, but we did

observe it skip.

70

Figure 51: Gait transitioning from concrete surface to brick path.

Grass

On grass, the walking gait was unsuccessful. The robot could not produce any forward motion

and instead skipped in place. Fearing we would damage the robot by conducting further tests, we

stopped and only performed a single test on grass. The team believes that the skipping in place

was a more severe case of the phenomenon we observed during tests on the plywood and

concrete & brick paths. A combination of poor traction and a slightly uneven surface interfered

with the gait and prevented forward motion.

71

Figure 52: Gait test on grass

Foam Matt

We tested the gait on interlocking foam matts. These tests were successful, and the phenomenon

of the gait skipping was never observed. From our observations, the gait appeared to function the

smoothest when on the foam matts.

Cobblestone

Our last test was on the cobblestone path near the Fountain. Our tests on cobblestone were brief

because the robot broke during testing. The robot performed quadrupedal walking during the first

test, but while we were setting up the robot for a second test, the front left leg’s hip actuator

module (Module 1) broke. While the robot was positioned in its prepared walking stance, the

motor overheated, melting the PLA module shell from which the motor is secured to. A

combination of the leg supporting the robot’s weight and the motor’s heat deforming the melting

plastic, caused the motor to break free from the shell. At this moment the module had been

compromised to a point where it could not support the robot’s weight and the robot subsequently

collapsed.

72

Figure 53: Robot on cobblestone path moments before the motor overheated.

We are confident that the motor did not overheat because of current overload. Our

reasoning is that the ODrives limit the motors’ received current to 10A. If the ODrive receives a

greater current than the set limit, the ODrive automatically powers off. Therefore, if too much

current was being delivered to the ODrive and motor, the ODrive would have shut-down before

the motor could become hot enough to melt the actuator module shell. This leads us to believe

that the motor overheated for another reason. We believe the culprit was the uneven surface of

the cobblestone. When we placed the robot on the ground, we think that the front left leg was

positioned in a way where the leg contacted the ground at a point slightly below the other legs.

This imbalanced the robot’s weight distribution and put more weight on the front left leg.

Module 1 had to support this added weight, and this caused the motor to heat up. The extent of

the damage to Module 1 is detailed in Section 5.2.1.

73

Figure 54: Motor melted the PLA and broke off its mounting.

5.2.1 Damage to Module 1

After breaking Module 1, we disassembled the front left leg and assessed the damage to the

module. Once the module was disassembled, we determined that the damage was much less than

initially feared. The timing belts were in working condition, the motor shaft was not bent, and

the codewheel and encoder were not visibly damaged. The motor’s stator had some melted

plastic on its coils which was manually cleaned off. The most damage was to the actuator

module’s shell base. The PLA around the motor mount was severely deformed as the plastic had

melted and then solidified once cool. Some PLA was fused to the motor and the shell had to be

cut apart to free the motor from the plastic.

Figure 55: We had to cut the shell apart to free the motor.

We 3D printed a new module shell base to replace the broken one and reassembled the

module. The module’s motor and encoder were tested, and the module was determined to

function properly. Interestingly, the occurrence of the module shell melting might have been

avoided if we used PC-ABS, like the Solo8 developers use, rather than PLA. The antigravity

motors are designed for drones, and as such they rely on air cooling for temperature control.

74

However, on the robot, the motors do not receive much air flow since the robot and motors do

not move very fast compared to a drone. This allows the motors to overheat easier, especially

when they are stationary and holding a load above their stall torque, as we theorize happened

when Module 1 broke. PC-ABS’ melting point is roughly 100°F greater than PLA, which might

have withstood the heat from the motor overheating. In this way, our design choice to use PLA

over PC-ABS may have played a role in Module 1 breaking and is an important note for future

design iterations on the robot.

5.2.2 Walking Gait Discussion

Our tests results show that the quadrupedal symmetric wave gait was successfully

implemented on the robot. While Module 1 broke during testing, we believe that the module

breaking was unrelated to the gait since the module broke while the robot was stationary. The

robot was unable to walk on grass, but it performed its walking gait on carpet, plywood, foam

matts, concrete, and the brick and cobblestone surfaces. However, our tests show that the gait is

far from ideal, as minor surface imperfections can be problematic for the gait. The robot’s

inability to walk on uneven surfaces (i.e., grass), demonstrates the need for a more adaptable

control system that can dynamically respond to its environment. The tests also show that the

robot sometimes slips on smooth, low traction surfaces, or surfaces like concrete and brick paths

that have small imperfections. The symmetric wave gait is a good first step as it validates the

robot’s quadrupedal capabilities and achieves the team’s goal of implementing quadrupedal

locomotion on the robot. However, more work is needed to increase the robot’s functionality and

develop a walking gait that can maneuver through unstructured environments.

5.3 Stance Transition

We were successfully able to demonstrate stable bipedal standing in simulation. The standing

trajectory gave us consistent results. While we were looking forward to implementing the

transition trajectory on the real robot, we were unable to do so. This was due to lot of technical

challenges that occupied our time, leaving us unable to spend time on our stretch goal of

implementing the standing trajectory on the real robot.

75

(a) (b) (c)

Figure 56. Our Solo8 performing a stance transition in simulation. (a) is the starting position, (b) is a intermediate

position and (c) is the ending position.

6 Recommendations and Future Work

Since our project was intended to be the first step in developing a multi-modal robotic platform,

there is plenty of future work to be done to improve the Solo8’s quadrupedal and bipedal

capabilities. Some of this future work involves implementing stance transition on the real robot,

improving the robot’s control system, or making further mechanical modifications to the robot’s

design. This work is intended to further develop the robot’s multi-modal abilities and improve

the robot’s locomotion strategies.

6.1 Implementing Multi-Modalism

While the team achieved stance transition in simulation, we did not have enough time to

implement the transition on the real robot. Right now, the Solo8 only has the theoretical

capability to transition into a bipedal stance and stand stably. With more time, future teams can

test the stance transition on the real robot, implement stable bipedal standing in real life, and

develop a bipedal walking gait in simulation. This work would dramatically improve the Solo8’s

multi-modal abilities. Work can also be done to optimize the quadrupedal walking gait. We

implemented a quadrupedal symmetric wave gait because it was the simplest gait to develop in

the time that we had. While the gait works, it was not compared to other gaits to optimize

quadrupedal locomotion. In the future, a team can develop and implement additional

quadrupedal walking gaits to improve its quadrupedal abilities.

6.2 Control System Improvements

Another way to improve the robot’s capabilities is to implement dynamic control.

Currently, the Solo8 can only walk on flat surfaces because its control system has no sensing

capabilities and cannot adapt to its environment. A dynamic control system would provide

intelligent motion and increase the robot’s functionality. As part of a dynamic control system,

future teams can also implement autonomous motion by adding a camera or other sensors to the

76

robot. With the ability to make decisions on its own, the Solo8 would have adaptability in

unstructured environments and could decide when and where to change its stance or locomotion

type.

6.3 Design Modifications

Larger design modifications, like increasing the Solo8’s degrees of freedom or designing

manipulators for the front limbs, could also be pursued. The robot’s 10 degrees of freedom is

enough to accomplish basic bipedal locomotion; however, mobility could be improved if an

additional joint were created at the hip. The ODRI has a 12DoF version of the Solo8, with hip

joints, and our robot could be modified with the ODRI’s design. The front limbs can also be

modified to provide additional functionality in bipedal mode. Right now, the front limbs have no

task completion capabilities as they only have 2DoFs and no manipulators. Future teams can

design and implement manipulators that allow the Solo8 to perform tasks when in its bipedal

stance.

More work can also be done to optimize the flat feet. Even though the current flat foot

design increases the robot’s bipedal support polygon, the support polygon is relatively small

compared to the robot’s body. In its current iteration, the robot might have trouble remaining

stable when the simulated stance transition is attempted on the real robot. A larger foot would

improve stability, making bipedal standing easier for the robot and bipedal locomotion more

feasible. An in-depth analysis of the foot could be conducted to determine the optimal foot length

that provides the greatest support polygon without creating a moment arm that produces too

much torque on the servo. There are also stronger micro-servos available on the market that

could be implemented with minor changes to the design. To address the slipping issue we

observed during the quadrupedal gait tests, future teams can prototype different foot materials

that provide greater traction.

If a camera or other sensors were added to improve the robot’s control system, new

mountings might need to be designed and incorporated into the existing body structure. The body

structure can also be changed if future teams decide that design changes are required to better

support new sensing hardware.

6.4 Reinforcement Learning

Since our pipeline is already developed, future teams have the tools to conduct more

experiments. We have already achieved quadrupedal standing via RL on ODRI’s original Solo8.

Next steps in quadrupedal standing include re-training an agent using our updated Solo8 model.

Additionally, due to the seamless nature of our sim-to-reality pipeline, all models can be run on

the real robot as well—opening up interesting questions on how well theory translates to

practice.

 Furthermore, as our RL pipeline uses OTS implementations, it is compatible with the

state-of-the-art algorithms. In our project, we used PPO2 to train our agent, but a potential venue

for research would be comparing the efficacy between PPO2 and other upcoming RL algorithms.

77

Finally, we only explored quadrupedal standing to show that our pipeline works and can be used

to achieve intelligent behavior. Past quadrupedal standing, there is room to explore quadrupedal

walking as well as tasks such as fetching. Since our robot also supports bipedal locomotion,

agents can be trained to perform stance transitions and bipedal tasks. With the tools we have

developed, we hope to lower the barrier to explore these interesting problems—and hopefully get

to see our physical robot run these algorithms.

78

7 Conclusion

We intended our project to be a stepping-stone in the development of a robot capable

of quadrupedalism and bipedalism. Despite COVID and time restrictions, we believe that we

have created a novel multi-modal platform. We have built a physical robot, developed an

accompanying software stack with a reinforcement learning pipeline, and implemented

quadrupedal locomotion on the real robot as well as achieved stance transition in simulation. We

are excited about the possibilities that our platform affords to future roboticists. Using

locomotion strategies developed on our robot, we hope to inform and inspire a new era of multi-

modal robotics research here at WPI and beyond.

79

References
[1] N. B. Ignell, N. Rasmusson, and J. Matsson, “An overview of legged and wheeled robotic

locomotion,” 2012. Accessed: Sep. 21, 2020. [Online].

[2] Y. Zhong, R. Wang, H. Feng, and Y. Chen, “Analysis and research of quadruped robot’s legs: A

comprehensive review,” International Journal of Advanced Robotic Systems, vol. 16, no. 3, p.

172988141984414, May 2019, doi: 10.1177/1729881419844148.

[3] E. Guizzo, “By leaps and bounds: An exclusive look at how Boston dynamics is redefining robot

agility,” IEEE Spectrum, vol. 56, no. 12, pp. 34–39, Dec. 2019, doi:

10.1109/MSPEC.2019.8913831.

[4] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell,

“Design of HyQ -A hydraulically and electrically actuated quadruped robot,” Proceedings of the

Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol.

225, no. 6, pp. 831–849, Aug. 2011, doi: 10.1177/0959651811402275.

[5] S. Dubey, “Robot Locomotion-A Review Design and Development of Pine Needle Collector

Robot View project.” [Online]. Available: http://www.ripublication.com.

[6] S. Böttcher, “Principles of robot locomotion.” Accessed: May 05, 2021. [Online].

[7] N. Kashiri et al., “An overview on principles for energy efficient robot locomotion,” Frontiers

Robotics AI, vol. 5, no. DEC. Frontiers Media S.A., p. 129, Dec. 01, 2018, doi:

10.3389/frobt.2018.00129.

[8] S. Mintchev and D. Floreano, “Adaptive morphology: A design principle for multimodal and

multifunctional robots,” IEEE Robotics and Automation Magazine, vol. 23, no. 3, pp. 42–54, Sep.

2016, doi: 10.1109/MRA.2016.2580593.

[9] W.-M. Shen et al., “Multimode locomotion via SuperBot reconfigurable robots,” vol. 20, pp. 165–

177, 2006, doi: 10.1007/s10514-006-6475-7.

[10] S. Russo et al., “Design of a robotic module for autonomous exploration and multimode

locomotion,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 6, pp. 1757–1766, 2013,

doi: 10.1109/TMECH.2012.2212449.

[11] S. Kuswadi, M. N. Tamara, D. A. Sahanas, G. I. Islami, and S. Nugroho, “Adaptive morphology-

based design of multi-locomotion flying and crawling robot ‘PENS-FlyCrawl,’” in 2016

International Conference on Knowledge Creation and Intelligent Computing, KCIC 2016, Mar.

2017, pp. 80–87, doi: 10.1109/KCIC.2016.7883629.

[12] F. Ois Michaud et al., “Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel

Articulations *,” 2005. [Online]. Available: http://www.gel.usherb.ca/laborius.

[13] A. Stentz et al., “CHIMP, the CMU Highly Intelligent Mobile Platform,” Journal of Field

Robotics, vol. 32, no. 2, pp. 209–228, Mar. 2015, doi: 10.1002/rob.21569.

[14] K. Hashimoto et al., “WAREC-1 - A four-limbed robot having high locomotion ability with

versatility in locomotion styles,” in SSRR 2017 - 15th IEEE International Symposium on Safety,

80

Security and Rescue Robotics, Conference, Oct. 2017, pp. 172–178, doi:

10.1109/SSRR.2017.8088159.

[15] T. Kobayashi, T. Aoyama, M. Sobajima, K. Sekiyama, and T. Fukuda, “Locomotion selection

strategy for multi-locomotion robot based on stability and efficiency,” in IEEE International

Conference on Intelligent Robots and Systems, 2013, pp. 2616–2621, doi:

10.1109/IROS.2013.6696725.

[16] D. Kuehn, M. Schilling, T. Stark, M. Zenzes, and F. Kirchner, “System Design and Testing of the

Hominid Robot Charlie,” Journal of Field Robotics, vol. 34, no. 4, pp. 666–703, Jun. 2017, doi:

10.1002/rob.21662.

[17] Y. Huang, Q. Li, A. Ming, Y. Liu, Y. Liu, and Q. Huang, “Dynamic Gait Transition of a

Humanoid Robot from Hand-Knee Crawling to Bipedal Walking based on Kinematic Primitives,”

in Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO, Oct.

2019, vol. 2019-Octob, pp. 240–245, doi: 10.1109/ARSO46408.2019.8948746.

[18] B. Yoon and S. Kim, “Note: Reconfigurable pelvis mechanism for efficient multi-locomotion:

Biped and quadruped walking,” Rev. Sci. Instrum, vol. 88, p. 126104, 2017, doi:

10.1063/1.4990544.

[19] T. Kamioka, T. Watabe, M. Kanazawa, H. Kaneko, and T. Yoshiike, “Dynamic gait transition

between bipedal and quadrupedal locomotion,” in IEEE International Conference on Intelligent

Robots and Systems, Dec. 2015, vol. 2015-Decem, pp. 2195–2201, doi:

10.1109/IROS.2015.7353671.

[20] K. Asa, K. Ishimura, and M. Wada, “Behavior transition between biped and quadruped walking by

using bifurcation,” Robotics and Autonomous Systems, vol. 57, no. 2, pp. 155–160, Feb. 2009, doi:

10.1016/j.robot.2008.04.005.

[21] S. Gay, J. Santos-Victor, and A. Ijspeert, “Learning robot gait stability using neural networks as

sensory feedback function for Central Pattern Generators,” in IEEE International Conference on

Intelligent Robots and Systems, 2013, pp. 194–201, doi: 10.1109/IROS.2013.6696353.

[22] S. Aoi and K. Tsuchiya, “Transition from quadrupedal to bipedal locomotion,” in 2005 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS, 2005, pp. 3419–3424, doi:

10.1109/IROS.2005.1545499.

[23] S. Aoi, Y. Egi, R. Sugimoto, T. Yamashita, S. Fujiki, and K. Tsuchiya, “Functional roles of phase

resetting in the gait transition of a Biped Robot from quadrupedal to bipedal locomotion,” IEEE

Transactions on Robotics, vol. 28, no. 6, pp. 1244–1259, 2012, doi: 10.1109/TRO.2012.2205489.

[24] F. B. Ouezdou, S. Alfayad, and B. Almasri, “Comparison of several kinds of feet for humanoid

robot,” in Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid Robots,

2005, vol. 2005, pp. 123–128, doi: 10.1109/ICHR.2005.1573556.

[25] K. Fondahl et al., “An adaptive sensor foot for a bipedal and quadrupedal robot,” in Proceedings

of the IEEE RAS and EMBS International Conference on Biomedical Robotics and

Biomechatronics, 2012, pp. 270–275, doi: 10.1109/BioRob.2012.6290735.

81

[26] R. Kaslin, H. Kolvenbach, L. Paez, K. Lika, and M. Hutter, “Towards a Passive Adaptive Planar

Foot with Ground Orientation and Contact Force Sensing for Legged Robots,” in IEEE

International Conference on Intelligent Robots and Systems, Dec. 2018, pp. 2707–2714, doi:

10.1109/IROS.2018.8593875.

[27] F. Grimminger et al., “An Open Torque-Controlled Modular Robot Architecture for Legged

Locomotion Research,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3650–3657, Apr.

2020, doi: 10.1109/LRA.2020.2976639.

[28] C. H. Dagli, Artificial Neural Networks for Intelligent Manufacturing. GBR: Chapman &

Hall, Ltd., 1994.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating

errors,” Nature, vol. 323, no. 6088, 1986, doi: 10.1038/323533a0.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[31] “Gradient -- from Wolfram MathWorld.” https://mathworld.wolfram.com/Gradient.html (accessed

May 02, 2021).

[32] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in

Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A.

Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.

8024–8035.

[33] Mart\’{\i}n~Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems.” 2015, [Online]. Available: http://tensorflow.org/.

[34] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” Dec. 2015, Accessed:

May 02, 2021. [Online]. Available: https://arxiv.org/abs/1412.6980v9.

[35] F. Rosenblatt, “The Perceptron: A Perceiving and Recognizing Automaton,” Buffalo, N.Y., Jan.

1957.

[36] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines.”

Accessed: May 02, 2021. [Online].

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization

algorithms,” arXiv. arXiv, Jul. 19, 2017, Accessed: May 02, 2021. [Online]. Available:

https://arxiv.org/abs/1707.06347v2.

[38] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” 33rd International

Conference on Machine Learning, ICML 2016, vol. 4, pp. 2850–2869, Feb. 2016, Accessed: May

02, 2021. [Online]. Available: http://arxiv.org/abs/1602.01783.

[39] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust Region Policy

Optimization,” 32nd International Conference on Machine Learning, ICML 2015, vol. 3, pp.

1889–1897, Feb. 2015, Accessed: May 02, 2021. [Online]. Available:

http://arxiv.org/abs/1502.05477.

82

[40] “Kullback-Leibler Divergence Explained — Count Bayesie.”

https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained (accessed

May 03, 2021).

[41] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep Reinforcement

Learning that Matters,” 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 3207–

3214, Sep. 2017, Accessed: May 03, 2021. [Online]. Available: http://arxiv.org/abs/1709.06560.

[42] Y. Tassa et al., “DeepMind Control Suite,” arXiv, Jan. 2018, Accessed: May 03, 2021. [Online].

Available: http://arxiv.org/abs/1801.00690.

[43] P.-W. Chou, D. Maturana, and S. Scherer, “Improving Stochastic Policy Gradients in Continuous

Control with Deep Reinforcement Learning using the Beta Distribution,” 2017. Accessed: May 04,

2021. [Online].

[44] “1.3.6.6.1. Normal Distribution.”

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm (accessed May 05, 2021).

83

Appendix A: Software Architecture Diagram

84

Appendix B: Torque Analysis

85

86

87

88

89

90

91

Appendix C: Foot Requirements and Specifications

Rear Foot Requirements

Increases the ground surface contact area

• Some sort of flat foot

Converts from point to flat foot

• Some type of mechanism or linkage

• One-time latch release or servo operated

o One-time latch release limits the robot’s ability to convert back to quad mode

▪ Could be spring loaded

▪ The release could be a servo or it’s somehow released by the changing

angle of the leg as the robot beings to stand

• Servo actuated increases complexity but gives the design more robustness (foot

can convert back to a point foot for quad locomotion)

An axle for the toe to rotate around when converting from point to flat foot

Toe rotates around the point foot and creates a flush surface with the bottom of the point foot

Degrees of Freedom?

• If the foot is going to transform, then there needs to be at least 1 rotational DOF

• The toe/flat foot does not require any DOFs

o The robot can stand with a rigid foot (other biped robots have rigid feet)

o Rigid feet aren’t optimal for walking but we’re are not trying to implement

bipedal walking in this project

Dimensions?

• Creates a large enough support polygon to prevent some angle of pitch

o Need to determine this angle

Should the flat foot have ground contact infront or behind the robot’s frontal plane (both?)?

• Choosing between infront/behind robot’s frontal plane is influenced by the configuration

of the legs during bipedal standing

• Each toe must rotate across a different angle depending on the configuration of the lower

leg

• Both:

o Provides more pitch stability

o Each toe is its own part

o Either requires two servos or the motion of one toe needs to be connected to the

motion of the other

▪ Integrate gear teeth into the toe design to create the desired motion

▪ Offset the gear teeth on either toe so that the back toe only rotates at the

end of the front toe’s rotation

▪ Need to determine the number of teeth

92

▪ Small teeth probably can’t be 3D printed so the gear hub needs to

be large enough for the determined number of teeth

• Design is most robust for the bipedal standing leg configuration

Materials?

• 3D printed is best because it’s cheap, lightweight, and allows for easier design iteration

Servo

• Where/how does the servo attach?

• Imbedded in the lower leg

• Needs to be small enough to fit in the leg

• Needs to produce enough torque to move the toes

o Need to determine the servo specifications

Servo-foot connection

• Two bar linkage

• Flexible connection points between links and foot

o Reduces the risk of damaging the servo

o Gives the toe some flexibility

• Gears

o provides controlled motion

o compact

Lower leg design

• Needs to be wide enough so the servo can be imbedded into the leg body

• Could design a completely new lower leg that better compliments the flat foot

o Keep the connection point between the lower leg and actuator module

o Widen the leg for the servo if needed

o Create an axle hole at the center of the point foot

Parts in the whole assembly

• Lower leg (includes point foot)

• Front toe

• Back toe

• gear

• Servo

93

Appendix D: Bill of Materials

Actuator Module

Part Name Description Quantity Distributor

Unit
Cost
($)

Total
Cost ($)

Motor T-Motor Antigravity 4004 300kv 8 T-Motor 72.95 583.6

Encoder
Encoder Broadcom AEDT-9810-Z00

8
Mouser

Electronics
27.9 223.2

Codewheel
625cpr, ID 7mm / OD 25,56mm

8
PWB

Encoders
30.1 240.8

First Stage Timing
Belt

Timing Belt Conti Synchroflex AT3
GEN III, width: 4mm/ length: 150mm/
50 teeth

8 Belting Online 5.94 47.52

Second Stage
Timing Belt

Timing Belt Conti Synchroflex AT3,
width: 6mm/ length: 201mm/ 67
teeth

8 Belting Online 8.25 66

Output Shaft Bearing 6705-2RS 25x32x4mm 16 123Bearing 6.5 104

Motor Shaft and
Center Shaft Bearing

MR84 Mini Ball Bearing 4x8x2mm
Open

24
Bearings

Direct
6.59 158.16

Timing Belt
Tensioner Bearing 683-ZZ-ZEN 3x7x3mm

16 123Bearing 2.64 42.24

Timing Belt Washers
M2.5 Screw Size, ID 2,7mm, OD
5mm, 98689A111

16
McMaster-

Carr
0.03 0.48

Motor Shaft
4mm x 3.99mm Stainless Steel Rod

8
KVC

Engineering
24 192

Motor Pulley
AT3 T10 Aluminium 7075 Pulley

8
KVC

Engineering
48 384

Center Pulley
AT3 T10 Aluminium 7075 Pulley

8
KVC

Engineering
83 664

Actuator Module Total 2706

Fasteners

Part Name Description Quantity Distributor

Unit
Cost
($)

Total
Cost ($)

Socket Head Cap
Screw M3x8 - Stainless Steel, 91292A112 28

McMaster-
Carr 0.05 1.4

Socket Head Cap
Screw M3x12 - Stainless Steel, 91292A114 16

McMaster-
Carr 0.05 0.8

Socket Head Cap
Screw M3x16 - Stainless Steel, 91292A115 16

McMaster-
Carr 0.06 0.96

Socket Head Cap
Screw M2.5x6 - Stainless Steel, 91292A010 40

McMaster-
Carr 0.05 2

94

Socket Head Cap
Screw

M2.5x10 - Stainless Steel,
91292A014 23

McMaster-
Carr 0.06 1.38

Flat Head Screw M3x5 - Stainless Steel, 92125A125 32
McMaster-

Carr 0.04 1.28

Flat Head Screw M3x10 - Stainless Steel, 92125A130 16
McMaster-

Carr 0.06 0.96

Flat Head Screw M3x16 - Nylon, 92929A246 16
McMaster-

Carr 0.1 1.6

Helicoil Threaded
Inserts M3x4.5 Helicoil, 91732A647 28

McMaster-
Carr 0.71 19.88

Helicoil Threaded
Inserts M3x6 Helicoil, 91732A773 16

McMaster-
Carr 0.9 14.4

Helicoil Threaded
Inserts M2.5x3.8 Helicoil, 91732A767 64

McMaster-
Carr 0.5 32

Narrow Cheese
Head Slotted Screw M3x12 - Zinc Plated, 90657A107 4

McMaster-
Carr 0.023 0.092

Low Profile Socket
Head Screw M2x8 - Alloy Steel, 93070A277 4

McMaster-
Carr 1.75 7

Fasteners Total 76.66

3D Printed Parts

Part Name Material Quantity Distributor

Unit
Cost
($)

Total
Cost ($)

Body Structure
Brace Part 1 PLA 2 NA 0.49 0.98

Body Structure
Brace Part 2 PLA 2 NA 0.48 0.96

Body Scucture Side
Part 1 PLA 2 NA 1.26 2.52

Body Scucture Side
Part 2 PLA 2 NA 1.26 2.52

Body Structure
Front/Back PLA 2 NA 0.5 1

Hip Module Shell
Base PLA 4 NA 1.12 4.48

Hip Module Shell
Cover PLA 4 NA 0.46 1.84

Upper Leg Module
Shell Base PLA 4 NA 1.13 4.52

Upper Leg Module
Shell Cover PLA 4 NA 0.46 1.84

Front Lower Leg PLA 2 NA 0.48 0.96

Rear Lower Leg PLA 2 NA 0.58 1.16

Codewheel Mount Acurra Xtreme White 200 8 3D Hubs 10.78 86.24

95

Transmission Pulley
AT3 T30 Center Acurra Xtreme White 201 8 3D Hubs 20.26 162.08

Transmission Pulley
AT3 T30 Output Acurra Xtreme White 202 8 3D Hubs 23.16 185.28

Timing Belt
Tensioner Roller
10mm PLA 16 NA 0.01 0.16

Servo Gear PLA 2 NA 0.02 0.04

Right Flat Foot PLA 2 NA 0.1 0.2

Left Flat Foot PLA 2 NA 0.1 0.2

3D Printed Parts Total 456.98

Servo-Actuated Flat Foot

Part Name Description Quantity Distributor

Unit
Cost
($)

Total
Cost ($)

Servo 150oz-in Micro, CLS DS150CLHV 2 ProModler 54.99 109.98

Shaft 1/4"x1.5", 1327K133 2
McMaster-

Carr 2.5 5

Retaining Ring 1/4" OD, 97633A130 4
McMaster-

Carr 0.08 0.32

Hex Nut
M2x0.4mm thread - Zinc Plated,
90591A265

4
McMaster-

Carr
0.02 0.08

Nylon-Insert Locknut M3x0.5 thread - Steel, 90576A102 4
McMaster-

Carr 0.04 0.16

Round Servo Arm 21mm OD, PDRS107 2 ProModler 1.99 3.98

Servo-Actuated Flat Foot Total 119.52

Electronics

Part Name Description Quantity Distributor

Unit
Cost
($)

Total
Cost ($)

24V Power Supply Part no. 1585717 1 Jameco 230 230

Circuit Breaker Blue Sea Systems 285-Series 60A 1 Amazon 40.66 40.66

24V to 5V Power
Converter EPBWOPT 1 Amazon 10.79 10.79

ODrive ODrive V3.6, 24V 4 ODrive 129 516

24V to 8.4V Power
Converter

XL4015 5A DC Buck Step Down
Power Converter Voltage Current &
LED Voltmeter USB

1 ebay 6.95 6.95

47nF Capacitor Bojack Ceramic Capacitor Kit 8 Amazon 0.01 0.08

Rasberry Pi 1 35 35

Teensy 1 19.95 19.95

96

Power Distribution
Bolt 1/4in x 1-3/4in 2 Home Depot 1.99

3.98

Hex Nuts 1/4in 8 Home Depot 0.35 2.8

Electronics Total 866.21

Wiring

Part Name Description Quantity Distributor

Unit
Cost
($)

Total
Cost ($)

Encoder Wires
EX Electronics Express - Hook Up
Wire Kit, 22 Guage (6 Different
colors), 25 ft long

1 Amazon 20.99 20.99

Motor Wires
300V AC, 20 Guage, 25 ft long
8054T14

3
McMaster-

Carr
3.98 11.94

ODrive Wires
12 Guage, 25 ft long, Black Stranded
CU THHN Wire 22964185

2 Home Depot 12.21 24.42

Power Supply Wires
6 Guage, 10 ft long Copper Flexible
Cable Wire 307832073

2 Home Depot 20.35 40.7

Ring Terminals
Qiback Insulating Wiring Terminals
Connectors Assortment Kit

1 Amazon 24.99 24.99

Dupont Pin
Connectors Proster Dupont Pin Connectors Kit

1 Amazon 24.99 24.99

Dupont Jumper
Wires Ribbon Cable Kit

1 Amazon 9.99 9.99

Wiring Total 158.02

System Cost ($)

Actuator Module 2706

Fasteners 76.66

3D Printed Parts 456.98

Servo Actuated Flat Foot 119.52

Electronics 866.21

Wiring 158.02

Total Cost ($) 4383.39

