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ABSTRACT 

The objective of this MQP is to design, test, and assess the feasibility of a flapping-

wing remote controlled micro air vehicle (MAV).  The group designed an MAV with a 

wingspan and total length of under one foot and a weight of under one ounce, similar to 

existing projects.  The group then manufactured, assembled, and performed several tests 

on a prototype of the MAV.  Finally, the group proposed design improvements and 

recommendations for future work at WPI.  
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1. INTRODUCTION 

Within recent years, interest in unmanned aerial vehicles (UAVs) has experienced a 

steady rise.  In particular, micro air vehicles (MAVs) hold a special interest among 

engineers for both civil and military applications.  MAVs that fly using flapping wings hold 

great potential for indoor reconnaissance and hovering observation.   

The objective of this project is to build a small flapping wing vehicle that possesses a 

wingspan of approximately 1 ft. (30cm) and weighs approximately one ounce (28g).  This 

vehicle should be capable of vertical takeoff and landing (VTOL) as well as high 

maneuverability for indoor environments.    

1. 1 Background 

 Our team is far from the first group to take on this challenge. There have been 

numerous other attempts to replicate flapping bird and insect flight from a mechanical 

device.  Notable projects that we examined were the RoboBee at Harvard University, the 

Mentor at University of Toronto, and the Delfly at TU Delft. 

Professor Wood and his team at Harvard University have made great strides in 

developing a robot capable of hovering and flight that is of similar size and weight to a 

common insect.  The University of Toronto’s Mentor robot and Delft University of 

Technology’s Delfly both use parts modeled on natural flapping wing animals as well as 

integrating parts similar to conventional aircraft.  Both Delfly and Mentor are biplane MAVs 

utilizing four wings in what is known as a clap and fling method for obtaining lift and 

thrust.   
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1.1.1 University of Toronto Mentor 

 Mentor at the University of Toronto was among the first radio controlled MAV’s to 

achieve hover using 4 wings in a clap and fling motion, as shown below in Figure 2.   

 

Figure 1: Toronto Mentor Project 

Mentor proved the viability of the clap and fling method and the possibility that 

such a device could be stable while under remote control without any sort of autopilot.  

Mentor was designed to have a similar wingspan at 26cm but a much higher weight than 

our project calls for. Mentor had two configurations: one with an internal combustion 

engine (ICE) and another on battery power.  The ICE method weighed 580g – a fourth of 

that being the fuel and motor.  The battery powered method could not make use of 

relatively recently developed Lithium-Ion batteries but instead used much more inefficient 

Nickel Cadmium.  This resulted in a weight of 440g – over half of which was allocated to the 

motor and batteries.  Mentor was never intended to emulate any actual bird or insect.  It 

was proof the clap and fling method could be used to achieve stable lift and hover even 
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with a relatively heavy aircraft.  This inspired the WPFly design as it pointed the group in 

the direction of clap and fling research.   

1.1.2 TU Delft Delfly 

 

Figure 2: DelFly II (Left), DelFly I (Right), DelFly Micro (Front)  (De Croon, G. 2009) 

 

Delfly has existed in three major forms.  The first, Delfly I, is an MAV capable of 

forward flight as well as slow near-hovering flight.  DelFly I weighed 21g with a wingspan 

of 50cm. Like all prototypes, Delfly I suffered from a number of problems relating to 

stability, control, and reliability.  Its inverted V tail allowed for stable forward flight but 

created difficulty in controlling attitude changes.  Delfly I’s drive train was designed so that 

as the motor turned, a Z shaped crank would rotate causing the wings to move up and 

down.  This method was difficult to sync and resulted in the craft experiencing slight rolling 

during flight.  Also, the motor did not possess a high efficiency which, along with it not 
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being brushless, caused it to build up heat during flight.  This decreased reliability caused 

for frequent motor replacements.   

 

Figure 3: Delfly I Drivetrain (Bruggeman, B. 2010) 

The project was later redesigned with many of these flaws corrected into the DelFly 

II.  This model was smaller and lighter, weighing only 16g with a wingspan of 28cm.  The 

drive train was completely redesigned to eliminate the rolling motion present in DelFly I.  

Additionally, the revamped design included custom-made high-performance components, 

such as a custom brushless motor capable of much higher efficiencies and a custom 

microcontroller for experiments with autonomous flight.  The tail was redesigned to use a 

classic cruciform tail seen on most model aircrafts to allow for pitching and yawing 

motions which the vehicle was previously incapable of.  This vehicle was capable of both 

indoor and outdoor flight, as well as maintaining the stability required to have a camera as 

payload.  This design has been the subject of numerous research projects on optimizing the 

flapping motion and increasing lift as well as various controls and autonomous flight 

experiments.   
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1.1.3 Harvard University RoboBee 

 Robert Wood and his team at Harvard University recently developed a very small 

robot that very closely mimics a flapping insect.  By making use of piezoelectric actuators, 

the wings have three degrees of freedom.  The robot does not have a tail and makes its 

attitude adjustments through manipulating its wings.  This is the same as how an actual 

insect flies and controls itself.  The robot suffers from scaling issues and the device requires 

external power, for no commonly available power source is small enough to fit onboard.  

The lack of a tail and any sort of control sensor also results in unstable flight; most tests 

only run for a few seconds until the aircraft loses control.  RoboBee is a marvel of 

engineering, using novel miniaturization and manufacturing techniques; however, with a 

wingspan of just one inch, its scale is smaller than the scope of this project and was not 

heavily considered in our design.    

1.2 Clap and Fling 

The clap and fling method is a method of flapping that generates more lift then 

conventional beating of wings.  It can be seen being used in nature by sparrows and some 

species of fly.  Mechanically the clap and fling works by rapidly bringing two wings together 

beginning with the leading edge.  The leading edges touch and flexible wings will follow in a 

phenomenon known as feathering.  As the wings come together air is pushed out the back 

generating thrust, which when angled properly will create lift.  Once the wings are together 

they immediately begin to peel apart allowing air to rush in from the front.  This suction 

also creates thrust, pulling the wings forward.  From an outside perspective the air is being 

circulated around the wings, which creates lift under the Kutta condition.  The wing is 

rapidly moving though air resulting in unsteady flow and vortices forming around the 
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leading edge.  These vortices will interact in ways not yet understood with the vortices 

coming off the edge of the wing creating additional lift.  All of these phenomenon together 

are illustrated below.   

 

 

Figure 4: Clap and Fling Method (Sane, S.P. 2003) 

 

1.3 Organization of the Work 

 The following chapters will detail the design, manufacturing, and testing of this 

project’s flapping wing MAV.  The design section will explain the design objectives and 

material selection for each component of the MAV.  The manufacturing section will detail 

the manufacturing processes associated with each component.  The testing section will 

explain tests run on the components to ensure they will not fail. 
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2. DESIGN 

The group sifted through the literature to gain insight into the motion of flapping 

wings and how they generate lift.  Previous projects involving flapping wing MAVs inspired 

the group and provided a foundation from which to base the WPFly.  

The modeling process began with a basic idea of what the group was hoping to 

achieve with this project – a relatively small flapping wing vehicle capable of vertical 

takeoff and landing, hover, and horizontal flight.  Through research, that it was decided that 

mimicking a two-wing bird or insect would be rather difficult and unreasonable, for these 

animals move in a very complex manner.  Through more research and the discovery of the 

clap-and-fling method of flight, the group decided upon a four-wing vehicle with tail 

surfaces to provide stability and control.  This would be easier to model and manufacture 

than the motion required for a two-wing vehicle to take flight. 

As the group continued to model the MAV, the next step was to choose which 

components and materials would be used in the design.  In the development of the body, 

and wings, the group researched materials that were lightweight, yet durable enough to 

withstand impact and rapid movement.  The group also researched materials that could be 

manufactured on the WPI campus to conserve the financial budget.  Also involved in the 

design are several electronic components: a battery and adapter, a motor and speed 

controller, three actuators, a receiver, and a transmitter.  These components must power 

the MAV, flap the wings, and control the tail surfaces, while still fitting within the proposed 

weight budget.  Detailed descriptions of these components and their purpose, as well as 

why the group chose each specific item, will be included in this section.  An isometric view 

of the current design is seen in Figure 5. 
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Figure 5: Isometric View of the SolidWorks Model  

 

2.1 Body 

Because weight is a significant design constraint, the group eliminated metals as an 

option for the body material and instead decided to research composites and polymers.  

The group eventually narrowed the field to two different materials.  The first, balsa wood, 

had been used in previous flapping wing MAVs.  The group also found a polymer, 

Polymethacrylimide foam, that is often used in sandwich construction and less dense than 

balsa wood.   This foam is easy to shape, as it can be sliced with a hot-wire foam cutter, and 

also adhesive to epoxy, which would aid in the construction of the MAV.  However, this 

foam is less widely available than balsa wood, and thus more expensive.  Balsa wood would 

be easy to customize in-house, for it can be easily cut and sanded to the desired size and 

shape.  Although balsa is denser than the polymer foam, the body is small enough for this 
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weight difference to be minimal.  Because balsa wood is cheap, customizable, and durable, 

the group selected it to build the body of the MAV. 

The shape of the body was designed to be simple and lightweight.   There is a solid 

piece running from the tail to the nose, where there is another section designed to mount 

the drive train and hinge.  The length of the body was designed to match the wing span, 

thus keeping the MAV as small as possible while making control feasible as well. 

The body shape was finalized for ease of manufacturing and for simplicity as well.  

The finalized drive train was used to design the front part of the body, and a very simplistic 

final design was chosen.  Minimizing the frontal area mitigates drag losses due to the 

frontal profile.  To connect the slim body structure to the front portion, a simple approach 

was taken.  Milling out a section on the front piece that the back section could be slotted 

into and glued gave the body stability and strength.  The finalized body was rather 

simplistic, and its design can be seen in Figure 5. 

2.2 Wings and Tail  

For a design involving four wings, it is crucial for each wing to be as lightweight as 

possible.  For this purpose, the group decided to research thin polyester films to comprise 

the wing, and lightweight spars to provide support and allow for the clap and fling effect.  

While researching different wing shapes, the group took previous MAVs and 

manufacturing techniques into consideration.  The design, mostly rectangular in shape, was 

selected to mimic that of the DelFly.  This design will prevent the wing spars from being 

overly complicated and flimsy, while still keeping much of the surface area necessary for 

lift.  The design is tapered at the outer edge of the trailing edges, allowing for the support 
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spar to bed closer to the leading edge and preventing the backside corners of the wings 

from being unstable during flapping.   

 The group also researched multiple designs for the tail structure.  The first option 

considered was an inverted V-tail.  This requires only two control surfaces, however the 

MAV would not be highly maneuverable.  This is demonstrated by the DelFly, where the V-

tail was abandoned due to inadequate control of longitudinal motion in wake of the 

flapping wings  (De Croon, G. 2009). 

 Because maneuverability is a primary objective of this project, the group researched 

traditional cruciform tails.  The use of a rudder and two unlinked elevators allows for 

higher maneuverability than an inverted V-tail.  Three servos are used to control each 

surface and allow the MAV to yaw, pitch, and roll.  Although the group originally selected 

this style as its final tail design, it was later discovered that a redesign was necessary for 

manufacturing purposes.  The group realized the design was slightly too complicated to 

manufacture on campus, especially given its small scale and delicacy.   

 The new tail still consists of two elevators and a rudder, however the entirety of 

each surface is a movable control surface.  This design is simpler to manufacture than 

attaching elevators onto the horizontal tail, and is expected to allow for more control 

during flight.   The tail redesign, including the control disks and actuators, is shown in 

Figure 6.  The control devices for the tail were designed so the controllers could be created 

using a sandwich method of a cheaper plastic, to make manufacturability easier, and to 

make a stronger controller than the original design.  These discs can be seen in Figure 6. 
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Figure 6: SolidWorks CAD Model of Tail Structure  

 

To finalize the size of the wings, the group used a lift equation found through 

literature.  This equation is an estimated equation derived through testing of rectangular 

flapping wings.  Although this wing shape is not rectangular, the group used the equation 

shown below as a preliminary estimate. 

𝐿𝑟𝑒𝑐𝑡 = 𝜑02 ∙ 𝜋2 ∙ 𝑓2 ∙ 𝐶𝐿 ∙ 𝜌 ∙ 𝑐0 ∙ 𝑙 ∙
1
3 

In this equation, 𝜑 is the flapping amplitude, f is the flapping frequency, CL is the lift 

coefficient, assumed as 1, 𝜌 is the air density, c0 is the chord length, and l is the wing span.  

Implementing our values into this equation yields a lift value high enough to provide lift to 

our vehicle.  This equation is summarized in the table below. 
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Figure 7: Lift Equation Results 

After finalizing the size and shape of the wings and tail, the group researched 

materials to form the spars and membrane.  These materials would need to be as 

lightweight as possible, but strong enough to flap without failing. 

Upon investigating WPI’s 3D printers, the group discovered that the available 

plastics were not strong enough to withstand the rapid movement and clapping of the wing 

spars.   Taking these demanding applications into account, the group researched common 

durable materials such as titanium alloys, carbon fiber, and Polyether ether ketone (PEEK).  

All three materials would be strong enough to support the wings, but the group chose 

PEEK, the least dense of the three.  PEEK, a thermoplastic, is known for its robustness and 

high performance, and is often used in applications requiring movement, such as pistons 

and bearings.  PEEK’s only downfall is its price; however, after reviewing the budget, the 

group decided it would be worth it for its strength and reliability.  Once the group chose 

PEEK as the spar material, it was time to focus on a membrane that could be effectively 

bonded to it. 
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Through literary research, the group discovered that a polyester film, commonly 

referred to as Mylar, has been successfully used to create wing membranes in other MAVs.  

Mylar is widely available and can be manufactured into extremely thin sheets.  Although 

only fractions of a millimeter thick, these sheets have proven to be tear-resistant when 

used on flapping wing MAVs, such as the DelFly (De Croon, G. 2009).  Mylar also adheres 

well to epoxies, and holds well long after drying.  For these reasons, the group purchased a 

roll of 26 micron (0.026mm) thick Mylar. 

2.3 Hinge 

 A hinge is necessary to hold the four wings together and allow a flapping motion 

that brings the leading edges together.  The group originally chose aluminum 6061 as a 

material.  This would withstand the rapid movement without failure, and because the hinge 

is so small, would not add a considerable amount of weight to the MAV.  The symmetry of 

the hinge allows for the same part to be manufactured twice and pinned together.  The 

original design was intended to be easy to manufacture, but due to its tiny size, the group 

had to further simplify the design.  

This simpler hinge, although more angular than the original, was not as practical to 

manufacture as we hoped.  We discovered through talking with shop supervisors in Higgins 

that this design would be impractical to manufacture out of aluminum, and a 3D printed 

version was creating using WPI’s 3D Objet printer.  

2.4 Drive Train 

 The motion of the hinge will be created by a drive train connected to the motor.  The 

group considered two different drive train options.  The first contained gears that would 
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spin parallel to the axis of forward movement (with their axels perpendicular).  Although 

this design has been successfully implemented onto previous MAVs, it was dismissed due 

its complicated drive train and the effect that gyroscopic forces would have on flight.   

 Instead, the group chose a method involving two counter-rotating gears, spinning 

perpendicular to the forward movement of the MAV (with their axels parallel).  

Mechanically, this design is more simple and easier to construct, and due to the counter-

rotation, the gyroscopic forces would be minimized.   

From our motor tests we discovered that a drive train ratio of 6-66 would be 

desirable, and we ordered gears to match this design.  This would give us an acceptable 

drive train assembly, and this drive train can be seen in Figure 7.  This drive train is 

simplistic and secure, so we are anticipating minimal issues with its assembly. 

For the design of the drive bar and the other design parameters, we used 

SolidWorks to created and test the kinematics of the drive train.  This process can be seen 

in Figure 8. 
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Figure 8: Finalized Drive Train 

 

Figure 9: Kinematic Model of the Drive Train Used for Parameter Determination 
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2.5 Battery 

 Lithium polymer batteries are commonly used in remote controlled planes and 

MAVs.  These batteries are fairly cheap and lightweight, which allows for longer and 

smoother flights.  After researching many lithium polymer batteries, the group settled on a 

one cell, 160 milliampere-hour, 3.7 volt battery from the vendor DraganFly (rctoys.com).  

The group researched both batteries and motors together, for the battery must have the 

ability to run the motor.  The battery voltage is crucial, for if it is below the nominal voltage 

of the motor, the motor will not start.  The electrical charge of 160 mAh is comparable to 

batteries used in other small ornithopters.  This battery was also selected for its small mass 

of 4.1 grams and slender profile that will allow it to fit nicely into the body of the MAV. 

2.6 Motor 

 The group researched different types of motors and decided that a brushless DC 

motor would be most appropriate for this project.  Brushless motors have several 

advantages over brushed motors.  They have more torque per weight, and more torque per 

watt, making them more efficient.  Brushless motors have increased reliability, leading to a 

longer lifetime.  The group narrowed the motor selection down to two: the Hobby King AP-

02 Brushless Micro Motor, and the Micromo Series 1307 004 BH brushless geared motor, 

each of which weigh less than 2.5 grams.   

The group initially selected the 1307 Series motor.   The 1307 motor includes an 

integrated gear head.  There are several ratios available, ranging from 6:1 to 659:1.  With a 

6:1 ratio, the output speed is estimated at 1639 rpm.  Once loaded, this ratio would be 

appropriate for the projected flapping frequency of ~13 Hz.   
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This frequency was selected through an analysis run in SolidWorks on the modeled 

wing spars.  Animating the spars to flap at various amplitudes, the group discovered that 

the PEEK spars have a natural frequency of ~13 Hz.  Matching this frequency allows for the 

maximum amount of lift.  

This motor also includes built-in hall sensors (tachometers) that can measure the 

true rpm of the loaded motor.  The integrated gear head and hall sensors would 

conveniently spare the group from purchasing and assembling its own gears and 

tachometer.  Even with these extra components, this motor weighs an impressive 2.1 

grams. 

However, after a review of the financial budget and further research into power 

requirements, the group decided that the 1307 motor would not suffice.  The output power 

of this motor is a trifling 0.157 Watts, whereas the AP-02 can reach up to 7 W.  Although the 

AP-02 does not have an integrated gear head or built-in tachometer, it is almost equally 

lightweight (2.3g) and will provide the power necessary to flap the wings.  The AP-02 is 

also less than one quarter of the price of the 1307, which helped the group finalize its 

decision. 

2.7 Actuators and Receiver  

 Because the tail will have three separate control surfaces, it will require three 

actuators to control these movements.  The group initially settled on the Toki Biowire 

servos from HobbyKing.  Weighing only 1 gram each, these servos are fairly light, and their 

slender shape would allow for easy integration with the rear end of the fuselage.  These 

servos would be able to rotate the elevators and rudders 30° in both directions.  However, 

after further research, the group discovered Plantraco Microflight’s 1.1 gram magnetic 
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actuators.  With the same range of motion and weight, this became the group’s primary 

choice.   These actuators also cost half as much as the Biowire servos, which will make an 

effective difference when purchasing three.  Because these actuators are magnetic, the 

original plan to use small metals brads to fasten them to the body was replaced with the 

design of three actuator mounts.  These mounts, made from PEEK, could be cut using the 

Washburn Shops laser cutter. 

 The Plantraco website recommends the Micro9 3 Channel PlugnPlay 0.9g Receiver 

as a compatible receiver option.  The Micro9 is designed to work specifically with the 

selected actuators, simplifying installation and control. With 4 channels, a range of 100 

meters, and a weight of 0.95 grams, this receiver is ideal for the group’s design intentions. 

2.8 Transmitter 

The team encountered issues with finding a transmitter suitable for this project.  

The receiver is designed to operate on a 900Mhz frequency.  The group sought to find a 

900Mhz transmitter on campus, however all of the transmitters owned by WPI professors 

unfortunately operate on either 2.4Ghz or 72Mhz.  These are the most common frequencies 

for RC aircraft in the US and 900Mhz is hard to find.  This is because in the USA, 900Mhz is 

right on the edge of the cell phone band, so amateur radio applications like RC planes stay 

away from that range.  However, our receiver was manufactured in Canada where the cell 

phone band ends at 850Mhz, allowing RC applications to extend further.  

Some older transmitters made for robotic applications have been made to operate 

on the correct frequency.  One such transmitter was obtained by the team from the local 

FIRST robotics chapter.  This transmitter was designed to plug into a computer and simply 

serve as a transmitter for a ground station.  Finding documentation for the controller, a 
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cable to attach to a computer, and programming a ground station would have been very 

difficult for the limited time available to our group.  The team decided to pursue other 

options.    

The team decided to purchase a transmitter from plantraco, the same vendor for the 

actuators and receiver.  This circumnavigated the problem entirely as this transmitter is 

900Mhz and designed to work specifically with Plantraco products.  The transmitter has 

controls for throttle, rudder, elevators, and ailerons.  Since this design calls for two 

seperatly moving elevons and a rudder the aileron and elevator control will both be used to 

control the flaps.  

2.9 Microcontroller  

 The group originally planned on programming the MAV to run autonomously.  If this 

is the case, a microcontroller is necessary.   However, the group determined autopilot is not 

a primary objective of this project, and using a transmitter to control the MAV remotely is a 

much more practical option.  In future developments and experiments with autopilot, the 

group recommends a microcontroller such as the Arduino Pro Mini, which has several 

analog and digital inputs and has been widely used at WPI.  This MAV, however, will not 

contain a microcontroller as it is outside the scope of this project. 
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3. MANUFACTURING 

3.1 Wing Spars 

 The wing spars, tail spars, and actuator mounts are cut using the laser cutter in 

Washburn Shops.  Because the final material is rather expensive, the group test cut the 

polystyrene first to ensure the final design would be successful on the first attempt.  The 

first cut proved the wing spars were much too thin, and needed to be reinforced before 

final cutting.  The tail structures were successful, but they too were chamfered at the 

corners to keep them from failing under unforeseen circumstances.  After this slight 

redesign to strengthen the joints, the group ran another test cut with improved results.  

The wing spars manufactured successfully and are much stronger than the first cut.  The 

strengthening on the tail is also noticeable from the previous cut.  Because there is PEEK 

remaining after the completion of the wing spars, it is also used to manufacture the drive 

train bars and the actuator mounts.  Because the drive bars move rapidly and experience 

both tension and compression during each rotation, PEEK’s strength and durability make it 

an ideal material.  This also makes PEEK a prime candidate for the actuator mounts, as they 

must be strong enough to hold the actuators in place in case of a flight mishap or crash. 

 Although the PEEK is very strong and durable, the laser cutter is able to make clean 

cuts through it with the proper settings.  With these settings, every piece needed is 

manufactured using only one 12” x 12” sheet of PEEK.  Additionally, there is a sizeable 

difference between the quality of the plastics; the wing spars performing much better than 

their counterparts did.  The difference in quality is evident though examination of the 

settings used to laser cut the parts.  To cut through the PEEK, the machine requires 
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maximum power at a very low speed, whereas the HIPS can be cut much faster at a lower 

power. 

 

 Power Speed PPI Depth 
PEEK 100% 12% 1000 0.04 “ 
HIPS 75% 40% 500 0.04 “ 

Table 1: Laser Cutter Settings - PEEK vs. HIPS 

3.2 Body 

 The body was designed so that it could be easily manufactured using the laser cutter 

and then finalized on a milling machine.  A sturdy design for the body was achieved using 

this method and was glued together to create a very solid base for the MAV.  Two iterations 

of the body were created however, because on the first iteration the laser cutter’s power 

settings were set too high and the holes became too large.  On the second attempt only the 

outline was done on the laser cutter and the holes were put in afterwards by hand with the 

milling machine. 

3.3 Control Discs and Washers 

 The control discs, as shown in Figure 6, and washers were manufactured from High 

Impact Polystyrene (HIPS).  Because the control discs have a small gap in them, for the 

attachment of the PEEK tail frame, a sandwich method was used to allow for manufacturing 

with the laser cutter.  

 The HIPS was also used to manufacture washers for the rotating parts, such as the 

motor.  These washers protect the body of the MAV and also help these parts spin 

smoothly. 

  



 
 

22 

3.4 Final Assembly 

 After manufacturing the individual parts, assembly was rather straightforward.  The 

hinge, gears, drive bars, and control discs could all be fastened to the body with small metal 

brads.  Super glue is very effective in attaching the spars to the hinge, as well as the 

actuators to the mounts and subsequently, the mounts to the body.  A photograph of this 

assembly is shown below in Figure 10. 

 

Figure 10: Photograph of the complete assembly. 
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4. TESTING  

4.1 Motor Testing 

 The team performed a test on the motor to verify that it operated as intended and 

its power output was as stated by the manufacturer.  For ease of testing, the 

receiver/transmitter was replaced with an Arduino Uno board.  This allowed for far greater 

throttle control over the motor.  Based on documentation for the motor controller, it was 

established that the correct duty cycle at full throttle had a pulse duration of 2ms and the 

low throttle was 1.1ms.  This was programed into the Arduino and an oscilloscope was 

used to verify the signal clarity.  Because the Arduino nominally outputs 5V, a voltage 

divider was created to lower the voltage to 3.7V.  A 4kΩ and a 3kΩ resistor were used to 

reduce this voltage while still maintaining a clear signal to the motor.  In order to start a 

brushless motor, the throttle must first be set at full, then zero, then some middle throttle.  

The board was programed to output this and then run at 80% throttle continuously.  To 

test the total output of the motor system, enough torque was applied to stall the motor 

while the total current draw was measured, based on the formula W=A×V 

The group was able to determine at 3.7V and full throttle the motor draws .3A, giving a 

total of 1.1W of power.   

4.2 Drive Train Testing 

 After assembling the drive train, a test was performed to ensure that the gears and 

drive bars would perform properly.  Because the motor had not yet been mounted to the 

body, this was done through the use of a drill.  The drill, with the smallest gear attached to 

the drill tip and locked into one of the larger gears, was spun at increasing speeds.  The 
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drive train functioned properly, moving the hinge so that the wings flapped in a 

symmetrical manner. 

4.3 Electrical Component Setup and Testing 

The electrical components operate in two basic control loops that are then 

connected together.  The first control loop is the actuators, transmitter and receiver 

working together to provide stability and control.  The actuators are “plug and play” with 

the receiver and respond well to controls from the transmitter.  The receiver has magnetic 

points where a power supply can be attached.  At rest the receiver draws 40 mA of current 

and when the actuators are moving the current draw peaks at 200mA.  The second control 

loop involves the motor and electronic speed controller or ESC.  All brushless motors 

require an ESC to function.  The ESC takes signals from the receiver and coverts them into a 

pulse with modulation signal (PWM).  A PWM signal is an analog signal that behaves 

similar to a digital signal.  It fluctuates between high and low voltages and the ratio 

between the time it is high and the time it is low is known as the duty cycle.  Our receiver 

outputs a signal known as Pulse Position Modulation.  This signal is very similar to a PWM 

signal except it outputs a larger magnitude of voltage.  The ESC is capable of converting 

between the two automatically and the motor will be directly connected to the receiver.    

4.4 Actuator Testing 

 Before mounting the actuators to the body of the MAV, tests are conducted to ensure 

that the actuators function properly and can be controlled in tandem by the dual joystick 

transmitter.  Each of the three actuators is wired into the receiver so that the two actuators 

corresponding to the left and right elevators could be controlled with horizontal 
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movements of the left and right joystick, respectively, and so the rudder’s actuator could be 

controlled with vertical movements of the right joystick.  This would leave the vertical axis 

of the left joystick to interact with the motor’s speed controller.  Because this test was 

successful, the group attached the actuators to the body using the PEEK mounts.  Next, a 

test is performed to ensure that the actuators were powerful enough to move the tail 

structure.  Unfortunately, with the current design, the actuators were unable to spin the 

control discs and move the tail.  A solution to this is to design control discs with larger 

moment arms, thus allowing for the same actuators to move the tail.  
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5. CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

 The design process detailed by this report began with an examination of the project 

objective.  This is to build a flapping-wing micro air vehicle capable of vertical takeoff, 

hover, and forward horizontal flight.  After a thorough literary review, it was decided that 

the wing movements of most birds and insects is very complex with twists and other 

motions that are not yet fully understood by experts.  Because of this a four-wing design, 

utilizing the clap-and-fling effect, was selected.  This allows for the design of a vehicle 

capable of flight with a simplified wing motion.  These wings are attached to a symmetric 

hinge that is powered by a motor.  A battery powers the motor, allowing for free flight with 

an onboard power source.  Aside from the main wings, the design also includes a tail 

structure, composed entirely of two elevators and a rudder.  Allowing full movement in 

each component of the tail structure simplifies both the design and manufacturing 

processes. 

5.2 Recommendations 

For future improvements on this project, the group recommends a more careful 

selection of electronic components.  Focused mainly on the weight and financial budget, the 

group ordered the electronic components from multiple manufacturers.  This led to a 

compatibility gap between the components, which slowed the manufacturing and assembly 

processes considerably.  In future years, teams must continue to focus on their budget, but 

must place more emphasis on compatibility before placing orders for electronic 

components. 
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One improvement that may alleviate this problem would be the inclusion of a 

robotic expert, either within the MQP team or as a co-advisor.  This may allow the team to 

predict design flaws and take measures to prevent them in advance. 

Another area for improvement may be the wing spar material.  Originally it was a 

struggle to manufacture the durable PEEK, however the group eventually found the proper 

laser cutter settings to cut it with ease.  PEEK is a good selection for wing spar material, 

because it is extremely strong and durable, and its flexibility allows for the motion 

necessary to achieve the clap-and-fling effect.  However, PEEK is a very expensive material 

for the amount obtained.  In future years, teams may seek a cheaper material with similar 

material properties as PEEK.  An additional area for design improvement is in the hinge.  

The hinge the group manufactured was structurally too weak for the frequency required 

for lift, but a simple increase in size and thickness should make a printed hinge feasible for 

this application. 

These are some improvements that future MQP teams should take into 

consideration.  It is important to design the vehicle with respect to the weight and financial 

budgets, but also to avoid the budgets from hindering the success of the design. 
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APPENDIX 

Weight and Financial Budget 

 

Table 2: Weight and Financial Budget. 
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Prototypes 

  

 

Figure 11: Isometric Drawing of First Prototype 

 

Figure 12: Isometric Drawing of First Prototype Tail 
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Drawings 

 The following drawings are of all components designed by this group.  The units are 

in millimeters and angles in degrees. 
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