TRACT: Threat Rating and Assessment Collaboration Tool*

A Major Qualifying Project Report:
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Bachelor of Science

By

Robert Hollinger

Doran Smestad

Date: October 17, 2013

MIT Lincoln Laboratory Advisor: Philip Marquardt

Professor George Heineman, Major Advisor

! This work is sponsored by the Assistant Secretary of Defense for Research & Engineering
under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United
States Government.

Table of Contents

TADIE OFf FIGUIES .evieiiiieieeee ettt e s st e e e e e e bb e e e e e s s abbaaeeesesabeaeeeseaannneeeeas 4
LY o1y - [o1 A TSP PP PPPPTOTPPTON 5
ACKNOWIEAGEMENTSeiviiiiieiieeee e e e s e e e s st te e e e e s s s abaeeeessssbbaeaeesensnseaeeesannns 6
EXECUTIVE SUMMIAIY .t s e e e e e e e e e e e et ettt et et e s e e e eeaeeeeeeeneeeannnnes 7
R [0} o 1o [o1 { [] o F T PP PP P PP PPPPPOPII 13
1.1 Problem StatemENT ... e 13
A o o] [T o A o T | £ PP PPPUPPPPPPPN 14
P T 1ol 4= { o U T o PP UPPPR 16
2.1 NEtWOIK ANAIYSTS.ceiiiiiiiiiitei ettt e e e e e s e st e e e s s s bbaaeeesssnbtaeeeesensseaeaeeas 18
2.2 Information RELFIEVALeiiiiiiiiieie e s 19
V{114 oo Te [o] Fo =AY AN PP PPPRPPPPPPN 22
B R TR =TI =T = TP PPPPPPP 22
3.3 Data Collection and Search AlgOrithMSoociiiiiiiiiiiec e 24
3.3 Application & Social NetWOrKiNGccovuiiiiiiiiiiee e saeeee e 26
3.4 Prototype Testing and EValuationooiiiiiiiiiieiinec e 30
4 System Architecture and DESIZN.......coii it et e e s s s sabaeee e s 32
R @Yo LI D 1T 1= o PP PPRTRPP 32
4.2 Advanced User CoNfiSUrationscciiieiiiieeiiiiiiiiee e essietee ettt e e s s baae e e s e sanee s 33
4.3 Data COBCLION ettt sttt e e st e e s bt e e e ane e e e nns 33
4.4 GatheriNg POSES ...uuuiiiiiiiiiiiiiee et e e s e e e s et e e e e e s saba e e e e s e s abbaaeeeesnanreees 35
4.5 MySQL Database......cueeiiiiiiiiieeeiiiiiiiee ettt e e st e e e s st e e e s s sbbae e e e s s sabaeeeesssaabbaeaeeesnaseeees 36
4.6 FIOW OF INfOrM@tion ..c....eiiiiiiiiee e s 38
4.7 Sections Of DEVEIOPMENT......iiiiiiiiiiiiie ettt s e e e s s s baaee e e e easeeees 39
4.8 LRNOC INEEITACE ...ttt ettt e e e b e e st e e sbb e e e e nneeeenns 44
5 RESUITS @Nd DiSCUSSION....ceiiuiiiiiiiiiieeitie ettt ettt sttt e et e st e e e sab e e e s e e snre e e e saneeeeanns 45
T AV oTe (U] - T oYU PPPRP 45
5.2 Testing and DOCUMENTATION c.o.uuiiiiiiiiiiicee e e e e e baeeee s 46
I 1 T= 3] o <] O TP PP PUPPPPN 47

5.4 Prototype Backend (Information Retrieval and Database).........ccccceecvveeeiieciiieeeececcineene. 48

5.5 Prototype Frontend (User INTerface)ccuuiieieeiiiiieiiiie ettt e e 49
B CONCIUSION .ttt e e st e s et e e st e e e e e bb e e e sbb e e e e bbeeeennneeesanns 52
6.1 FUTUIE WOTK .ottt e st e st e s s bn e e s eaneee s 52
Appendix A: Database DeSiSN TabIEScciiiiiiiiiiiiiiiiieee et e e s e s sabaeee e s 55
Transport Storage Database (SQLILE)eeevueeercieeiiiiie ettt ciee st e e e e ssre e e e saae e e saaaee e 55
Permanent STOrage(IMYSQL)ccccuueiiiciiiee it ettt e etee e et e e et e e esae e e e sae e e e saeeessabaeessnsaeeenananeenns 56
ApPPENdiX B: UML DIagramsuuiiiiiiriiiieeesisiiiiteeeessiireeessssiireeeessssisaaeeessssssaseeessssssssesesssssssseeesens 58
FAY oY1= g Vo I G € (o 1Y | PSP PR 60
RETEIENCES ...ttt e et st e e s st e s et b e s e et e e e ba e e e eaneee s 61

Table of Figures

Figure 1: Example of the results from an Information Extraction System..........cccccovvviviviiinnnnnen. 21
Figure 2: TRACT WEICOME SCrEEN ..ccovvuiiiiiieeeeiiiitee ettt e e e st e e e e st ae e e s s s aree e e e s sssbaaaeeessasneees 40
Figure 3: TRACT SEArch RESUILSeeiiiieiiiiieeeccte ettt e e s s 41
Figure 4: TRACT RefiN@MENT PrOCESS.....uuviiiiiiiiiiiieetiiiiiitee e s esiiree e e s s srere e e s s siree e e e s ssbaaeeesssasseees 42
FigUre 5: TRACT LLCYSA QUETY ...eeiiiiiiieiiiiiee ettt ettt ettt ettt ettt e sttt e s set e e s sana e e s eabeeesenbaeeeeanneens 42
Figure 6: TRACT DashbOarduieiiiiiiiiiiieeiiiiieee ettt e s e e e e s s baae e e e s seaeeees 43
Figure 7: A spike in Adobe activity is easily noticed when displayed in a graph.cccceevvnnneee. 50

Abstract

Over a nine week time period we designed and developed a prototype threat rating and
collaborative assessment tool for MIT Lincoln Laboratory. This tool is designed to help network
analysts identify and monitor emerging vulnerabilities in computing software and determine
the level of threat discovered vulnerabilities poses to Lincoln Laboratory’s infrastructure. The
developed tool was designed both to be modular and extensible, to allow for further
development and advancement of this technology at Lincoln Laboratory, and to facilitate

teamwork between otherwise isolated analysts as they work to identify threats.

Acknowledgements

Philip Marquardt (MIT/LL) — Project advisor and sponsor. Lead of LRNOC, spent many hours
with the project team designing project specifications and provided any resource the team

needed.

David O’Gwynn (MIT/LL) — LLCySA Technical Staff, provided knowledge for LLCySA queries and

technical advice during the design of our system.

Professor George Heineman (WPI) — Advisor to the project, provided advice on the software

modularity, and best design practices.

Executive Summary

MIT Lincoln Laboratory, a federally funded research and development center working under the
purview of Massachusetts Institute of Technology and the Department of Defense, is
responsible for the creation of advanced technologies in support of national security (MITLL:
History, 2013). Lincoln Laboratory’s Information Services Department (ISD) ensures the
operational integrity of the Laboratory’s information technology infrastructure (MITLL: Services
Department, 2013). ISD analysts constantly monitor online sources to remain up-to-date on the
latest information security threats, also known as cyber threats. Based upon information
gathered, these analysts evaluate the risk that each threat poses to the network and take the
appropriate measures to ensure the network’s security. Lincoln Laboratory’s Group 51 conducts
research and development in the field of Cyber Systems and Operations, building tools to

provide analysts with insight into the current state of the network.

This project works with Group 51 to automate the threat detection process by automatically
collecting cyber threat information from online sources and providing this data, with threat
assessment information, to analysts. Automating this process will expedite the analyst’s threat
assessment process allowing them to better ensure the security of the network. The
development of this tool will be guided by a set of core goals. First, the project will deliver a
working prototype that successfully automates the aggregation of posts from various online
sources as well as aiding analysts in the identification and assessment of cyber-threats. Second,
the prototype will be designed and developed to be modular and extensible allowing for future

expansion. Third, all code will be well documented ensuring that the objectives and function of

each section of code is clear to future developers. Last, the system will incorporate a full set of

test cases to ensure the proper functioning of the system.

One of the challenges of developing this prototype is the unique infrastructure at Lincoln
Laboratory that the system was built upon. The main part of the application, including the user
interface and long-term storage engine, run inside of the Lincoln Research and Network
Operations Center (LRNOC). Due to security restrictions systems present within the LRNOC are
isolated from the outside world making it impossible to gather information from online sources
directly. For this reason, the system is divided into two halves: an Ingester that operates
outside of LRNOC, collecting data and sending it into the LRNOC and the DBTransfer which

collects the data for permanent storage and querying by analysts.

Analysts using this application are able to create, run and save searches they conduct over the
information held within the system’s data store. It is important that searches can be saved for
future use, because they are often difficult to write and are typically executed multiple times.
Analysts are able to learn from others how to write searches and which search criteria are
useful to run. This social media aspect of the system will allow for greater collaboration and
productivity among the analysts. Interviews were conducted with analysts at Lincoln Laboratory
to guide the process of development and to aid in the brainstorming phase of the system’s
development. Such interviews supported the central idea that analysts currently use online
feeds, such as RSS and Twitter, to monitor breaking news on vulnerabilities. It was also
confirmed that this process is time consuming because analysts must inspect vast amounts of

useless data before finding specific information related to cyber security or vulnerabilities. Our

prototype will simplify this process and saves analysts time, further ensuring the security of the

network.

We designed the system to both satisfy the requirements of a proof-of-concept while also
aiming to be a fully functional prototype. We held interviews with analysts studying and
securing the Laboratory network, and analysts within Group 51 who hold experience with
creating cyber visualizations. We were able to ascertain a few data sources analysts would use
to stay up to date on the latest security threats; these data feeds range from official origins,
such as Microsoft Security blogs, to feeds on Twitter by security enthusiasts, such as Bruce
Schneier (https://twitter.com/schneierblog). The team decided to build data handlers for two
types of online data: RSS/ATOM syndication format and Twitter. Once we collect the data from
specific sources supporting these types (an RSS feed, or Twitter list) we send it into the LRNOC

using specialized transfer techniques for further handling.

The team researched the best ways to retrieve information from the vast collection of posts we
began to accumulate over the course of our project. After holding a conversation with a
member from Group 52 (the Human Language Technology group), and performing literary
research we discovered options that would increase the fidelity of our search results but were
too complex for the timeline of our project. We decided to implement Regular Expression
search terminology to achieve better results compared to simple keyword matching while
leveraging the existing functionalities already in existence within MySQL Server and the LRNOC.
We designed modularity into our system to support any database system and any form of

Information Retrieval for future projects to implement.

The most important aspect of our project is the work we performed to encourage and enable
communication and collaboration between analysts engaging with our data. We display to all
users the searches frequently run, those searches users have saved, and the refinement process
others followed to get to a strong regular expression query. We also highlight the actions other
users are currently doing in the system to show other users information that they might have
not noticed buried in the data. The results of how successfully users can integrate with the
system and the time-savings it causes by ending the need to crawl through the online resources
manually are important to our system’s success. However, what is vital to how we measure
success is whether or not analysts will be able to use this system to effectively collaborate and

identify threats in a seamless and efficient manner.

After the completion of our prototype it was important to look over the successes and the
shortcomings of what we completed. We reviewed our initial goals and evaluated how the
system accomplished those goals. One of our central goals was to create a modular design that
would allow for simple and efficient development upon our foundation by laboratory
personnel. The design of our system is governed by several interfaces that outline the
functionalities of each component of our system. These interfaces allow for individual parts of
the prototype to be replaced without requiring modification to the rest of the prototype.
Thorough testing was accomplished through JUnit testing and coverage was measured through
EclEmma (EclEmma Code Coverage, 2013) (JUnit Testing Framework, 2013). Our prototype has
85% coverage ensuring that all classes created are performing as intended and that the
prototype as a whole works together as an integrated system. In addition to this testing,

documentation was implemented through JavaDoc, inline documentation, a README file, and a

-10-

User’s Manual which together outlines how our prototype is currently functioning as well as an

explanation of how analysts should use the system.

Through the use of the Twitter4) library and the Rome library we fully accomplished the goal of
supporting Twitter, RSS and Atom feeds (ROME Java Library, 2013) (Twitter4) Java Library,
2013). The chosen storage mechanism of all information gathered from these sources was a
MySQL database that supports multiple users querying the database for information
simultaneously. This infrastructure was the preferred choice as it eliminated the need to
develop a network protocol between a server and the users. Information retrieval, being
completed through regular expression matching, was also implemented through the MySQL

built-in regular expression query.

The User Interface was implemented using the Swing library build into the Java programming
language. Our user interface is centered on providing analysts the ability to run regular
expression queries over a set time period. Additional abilities include saving regular
expressions, flagging posts, and viewing a “Dashboard” or a quick overview of what others
users are doing and what is currently trending in the newest, incoming data. This functionality
will be especially useful for analysts looking to monitor timely vulnerabilities as soon as possible
so they can ensure their network is protected before the vulnerability ever reaches their

network.

Over the nine working weeks at MIT Lincoln Laboratory the team leveraged the resources of

Group 51 and ISD to accomplish the goal of creating an automated cyber threat aggregation

-11 -

and evaluation tool for analysts. While the project was scoped down from a fully automated
threat detection system to a tool that give analysts the ability to detect these threats in real
time, the initial goal of giving analysts the ability to more efficiently search over online content

for relevant and important information was preserved.

The delivered prototype is a fully functional system that analysts can use; though there are
areas of our system that could still be improved given more time and resources. In our
prototype, information retrieval was implemented through regular expression matching; we
feel that given greater time and resources more advanced algorithms such as machine learning
or Term Frequency — Inverse Document Frequency could be implemented and further the
success of this system. We also recommend the continued addition of online cyber security
sources to the system; with more of these sources the system will become more robust and

useful to analysts.

-12 -

1 Introduction

MIT Lincoln Laboratory is a federally funded research and development center (FFRDC) working
to create advanced technologies in support of national security. In pursuit of this goal, Lincoln
Laboratory’s Information Services Department (ISD) maintains the Laboratory’s information
technology infrastructure and controls computer network access. ISD protects the network
against the latest emerging information security threats (also called cyber threats) by collecting
timely and accurate information from numerous sources then implementing the appropriate
defenses. ISD also makes use of technologies developed by Group 51, the Cyber Systems and
Operations group, that provide insight into the current state of the network (situational
awareness) and disseminate commands across the network (command and control). This
project automates the collection of threat information from a wide range of online sources
then enables analysts to work together and quickly search over and view information that they

consider relevant and important.

1.1 Problem Statement

Network security analysts monitor the corporate network and watch for possible security
breaches. These analysts maintain a mental model of their network’s operational patterns and
investigate events that deviate from expected behavior. Additionally, network analysts may
watch external security news feeds concerning the latest security vulnerabilities and reported
attacks; the analyst then would use this knowledge to put forward the appropriate protections

to mitigate the threats. At MIT Lincoln Laboratory, ISD analysts undertake this job and provide

-13-

recommendations for an appropriate resolution, whether that is an immediate patch, a change

in firewall rules, or other more sophisticated options.

These analysts observe a number of external sources, including social media sources, to learn of
emerging threats. Analysts must then decide how “threatening” the cyber threat is to Lincoln
Laboratory’s network. This process, which will be referred to as the “Threat Assessment
Process,” is a manual process that consumes much of the analysts’ time; therefore the goal of
this Major Qualifying Project (MQP) will be to develop a system, using the resources of Group
51, to assist in this task. The system will automatically retrieve new content, save the content
into a database ready for searching, and allow analysts to search the collected information to
identify the new trends in security threats. Having this single repository of searchable data
reduces or eliminates the need for analysts to manually review numerous separate feeds of

information on the Internet.

1.2 Project Goals

The MQP project has four primary goals. First, the project will develop a working prototype to
automate the initial phases of the threat assessment process performed by network analysts.
This project will deal with the completely automate the collection phase of an analyst’s threat
detection process, as well providing analysts with a means to search over the collected
information and see only what is relevant. The system will also help analysts learn about how
this threat relates to Lincoln Laboratory’s network but the choice and execution of any
mitigation strategies are out of scope of this project. Second, the prototype will be extensible

and modular to support future changes and facilitate the integration of more advanced threat

-14 -

detection algorithms. Third, all code written will be thoroughly documented using inline
comments, JavaDoc, and technical documentation. Fourth, the system will incorporate
automated test cases to validate the proper functionality of the prototype. Fulfilling these goals
will ensure that the project delivers a fully working and tested prototype that analysts may use
to learn more about potential threats to the security of their network while also providing a

foundation for future expansion and research.

-15-

2 Background

MIT Lincoln Laboratory operates underneath the purview of Massachusetts Institute of
Technology (MIT) and the Department of Defense (DoD). Founded in 1951 to design an air
defense system for the United States, the Laboratory has operated for over sixty years
developing and rapidly prototyping new technologies in support of national security (MITLL:
History, 2013). Despite its deep roots in radar technologies, the Laboratory has grown into
many diverse fields of work ranging from the original air and missile defense systems to now
include topics such as microelectronic fabrication and securing computer infrastructure (MITLL:
History, 2013), (MITLL: Organization, 2013). To accomplish these goals Lincoln Laboratory now
employs over 1,700 technical staff and 2,000 subcontractors across eight divisions and forty-

nine groups (MITLL: Employment, 2013).

Lincoln Laboratory’s research and development efforts are organized into eight distinct
divisions, each with a broad focus area and commonly referred to by their numerical title
instead of their full name (for example “Division 4” not “Homeland Protection and Air Traffic
Control”). Each division is broken into a number of groups having a particular portion of the
division’s focus area. Division 5’s focus area is in Cyber Security and Information Sciences and
has the responsibility to create technologies that provide mission support through information
derived from the cyber domain. The five groups within Division 5 cover topics such as
penetration testing, visualization of network activities, and machine processing of human
language. These groups aim to build proof-of-concept prototypes in alignment with sponsor

needs and transfer the technology to production environments. This process involves

-16 -

researching the problem, developing the prototype systems and components, evaluating the
prototypes, and deploying the finished products. Alternatively, the groups may hand off the
completed research to commercial entities for further use (MITLL: Cyber Security and

Informational Sciences, 2013).

Group 51 focuses on Cyber Systems and Operations. This involves providing operations mission
critical cyber information and sensing layers. Group 51 accomplishes this through the research
and development of systems that provide analysts with “cyber situational awareness and
command and control in the cyber domain” (MITLL: Cyber Systems and Operations, 2013)
Cyber situational awareness, similar to the situational awareness of a physical battlefield,
includes monitoring computer networks and infrastructure to evaluate its operational integrity.
Situational awareness solutions try to answer questions such as: Is our network under attack?
Is there strange behavior on the network that could indicate an intrusion? What are our
network’s normal operation patterns and have they changed recently? Being able to provide
answers to these questions in real time can prevent mission critical devices from becoming

compromised as well as ensuring the security of confidential information.

Group 51 is also responsible for the operation and development of the Lincoln Research
Network Operations Center (LRNOC). The LRNOC was created to provide cyber analysis of
Lincoln Laboratory’s own network traffic, information technology (IT) logs, configuration data,
and security system alerts (MITLL: Cyber Security and Information Science Accomplishments,
2013). The LRNOC also functions as an environment for evaluation and refinement of new

techniques and technologies before fully deploying them on an active network. Due to the

-17 -

nature of the information stored in LRNOG, it is located on a network separate from Lincoln’s
local area network (LLAN.) This network will only allow information to travel across the network

into the LRNOC; no network traffic is allowed to leave the LRNOC.

2.1 Network Analysts
Network analysts are responsible for monitoring the computer networks and responding to any
detected threats or anomalous traffic that occur. As new threats are discovered, analysts react
to prepare their systems to detect and handle attempted exploits before a vulnerable network-
enabled device, or host, is compromised. Analysts complete the task of assessing potential
threats and how the Laboratory should react by browsing various online resources and
gathering information on vulnerabilities which have already been discovered by others; analysts
then assess the vulnerability and its potential impact before determining how they should best
prepare for it. We term this process the “Threat Assessment Process”. Consider the following
scenario:
Scenario: An analyst monitoring twitter feeds, reading security blogs, and watching
mailing lists notices a flurry of activity regarding an Internet Explorer zero-day
vulnerability being exploited in the wild. The analyst quickly starts to perform research:
how many machines on the network are running IE version 8.72? Of those machines,
which have already been compromised? The analyst gathers the information, writes
manual queries, and sees 34% of the Laboratory computers are vulnerable yet none

show signs of compromise. The analyst then acts to quickly patch those machines
and/or firewall them appropriately to prevent exploitation.

This process takes time because analysts must (1) manually search through numerous online
sources for information; and (2) upon discovery of a potential vulnerability, analysts must
manually calculate the risk it presents to their organization. In addition, the analyst may

underestimate or overestimate the threat of the vulnerability. Lincoln Laboratory’s IT

-18 -

department, more commonly known as the Information Services Department (ISD), has a host
of analysts that watch the Laboratory network and monitor external sources of information for

possible emerging threats against the laboratory (MITLL: Services Department, 2013).

Our project will automate and simplify this process for an analyst. The system developed will
automatically gather data (posts) from a list of sources and store them for future use. Gathering
such information can be done in two formats: one, actively going out and gathering content
(“pulling”) or two, having sites send the information directly to us (“pushing.”) Pulling would
support any website, because a software tool can simply load the page and manually extract
the desired content. Pushing would be an efficient implementation, because the software tool
would not have to go find the information; it would be automatically sent to the tool by the
website as necessary. Once all information is gathered, analysts should be able to quickly
search and monitor the discussion of certain topics. For example, an analyst could create a
search for “Flash vulnerabilities” and see only the posts that pertain to their topic. This
searching process must implement an Information Retrieval technology to determine which

posts pertain to a search executed by a user.

2.2 Information Retrieval

Information retrieval (IR) is the process of finding relevant information among a body of work
based upon some supplied query. IR technologies generally work to find documents from a
given set that pertain to a given topic. The topic itself would be defined by the information
retrieval query that is executed (Greengrass, 2013, p. 8). IR technologies vary greatly based

upon their implementation and desired results. The most commonly known example of an

-19-

information retrieval system is a web search engine, such as Google. While IR algorithms used
by Google are very sophisticated, more simplistic means of implementing IR could take the
form of a Boolean search function that iterates over a collection of words and shows the exact
matches it finds (Greengrass, 2013). A more advanced method to perform this task is called
term frequency - inverse document frequency (TF-IDF), which associates a document with the
frequency certain words are repeated in the document; by doing so the TF-IDF has a set of high
frequency words which then can be queried and results are ordered by determined relevance
(Greengrass, 2013, pp. 19-20). The ordered results derived from TF-IDF is more powerful and
useful to an end user, as the Boolean search function simply returns the results that satisfied
the query, the results cannot be organized by how well the matched the query. An interview
with a member of Group 52 specializing in natural language processing revealed another
method of information retrieval, multi-polynomial probabilities. Multi polynomial probabilities
are used to make a statement similar to “it is highly probable that the query entered was used
to generate this document” and provide a probability-ranked search result; this method,
instead of categorizing a search as it applies to documents, can be thought of as evaluating a

document for how it applies to a search.

Similarly to IR technology another technology used to find relevant information is called
Information Extraction (IE). IE systems, instead of performing a search for key terms provided
in a query, process the data and returns meaningful pieces of information (Greengrass, 2013).
Sarawagi’s information extraction system (Figure 1) is an example in which the system
processes a document and pulls out the address information (Sunita, 2008, p. 271). Information

extraction can also pull upon multiple documents to gather one piece of information, as it is not

-20-

pulling pieces of text from the document, but rather developing conclusions based upon all of

the information processed (Greengrass, 2013).

Address text [Segmented address]

0 M. J. Muller, 71, route de Longwy L-4750 PETANGE
[recipient: M. J. Muller] [House#: 71]
[Street: route de Longwy] [Zip: L-4750] [city:PETANGE]
1 Viale Europa, 22 00144-ROMA RM
[Street: Viale Europa] [House#: 22] [City: ROMA]
[Province: RM] [Zip: 00144-]
2 7D-Brijdham Bangur Nagar Goregaon (W) Bombay 400 090
[House#: 7D-] [Building: Brijdham)]
[Colony: Bangur Nagar| [Area: Goregaon (W)]
[City: Bombay] [Zip: 400 090]
3 18100 New Hamshire Ave. Silver Spring, MD 20861
[House#: 18100], [Street: New Hamshire Ave.],
[City: Silver Spring,], [State: MD], [Zip: 20861]

Figure 1: Example of the results from an Information Extraction System

Unprocessed date is typically put into one of three categories: a structured source (database), a
semi-structured source (webpage), or an unstructured source (raw text) (Chang, Kayed, Girgis,
& Shaalan, 2006, p. 1). Information extraction systems typically rely upon preprocessors to use
natural language processing for identification of sentence structures and locating parts of
speech within the sentence. The extractor is then able to take this identification and process it

in a meaningful way.

-21-

3 Methodology

3.1 Initial Design

The project started with a meeting between the team and Lincoln Laboratory staff to discuss
the goals and expected final deliverable. At first, we were given the project to automatically
determine the threat that emerging cyber threats pose to the Laboratory’s network. These
threats are often reported by various Internet sources ranging from official vulnerability reports
to a warning tweet posted by a computer security enthusiast. To determine the specific threat,
if any, of these reported cyber threats, the developed system would build a query via
information retrieval and information extraction procedures. This query would be executed in
order to evaluate threat with relation to the network statistics collected in the Lincoln Research
Network Operations Center (LRNOC). For example, if many machines in Lincoln Laboratory
were running particular version of a web browser determined to be vulnerable, the threat
would be considered high; on the other hand, if very few machines were running the vulnerable
software, there would be little threat against Lincoln Laboratory. Later, the project was
refocused into a tool that collects information from these Internet sources and compiles them
into a searchable structure with a graphical user interface an analyst could leverage to
determine the threat level. For the purpose of clarity, this paper will only be discussing our

actions in regards to the refocused project.

After this meeting, the first week of the project was devoted to initial designs as well as
researching the background knowledge required to proceed. The primary challenge was to

deliver a working prototype by October 4™ approximately seven weeks from start to finish. To

-22-

meet this goal, we chose to use the Java programming language due to its compatibility across
operating systems and the pre-existing knowledge held by the team. Java also gives analysts the
flexibility to use their preferred system to run our code and greatly simplifies server-side
portability. Furthermore, our need for rapid development would be supported by the
availability of pre-existing Java libraries that we could leverage to lay the foundation of our

program.

Next, we studied the LRNOC's isolated network and the Cyber Situational Awareness (LLCySA)
APIs to understand the system’s data handling and restrictions to accessing the data. Due to
security concerns, the LRNOC is isolated from the outside world by a single one-way link; data
to be stored and worked with may only flow into the LRNOC but never out. Therefore, for our
system to both receive updates from the Internet and utilize the resources within LRNOC,
multiple standalone applications needed to be developed. That is, at least one application lives
outside of the LRNOC, passing updates in via the one-way link, and another application inside
the LRNOC handles the incoming data. While actually connecting with the LRNOC’s APl and
executing queries is out of the scope of our project, we wanted to have a base level of
understanding to construct our system to allow for the addition of direct connectivity to these

resources at a later time.

To overcome the limitations of the one-way connection, we established the paradigm of
running three separate applications called the Ingester, the DBTransfer, and the Application. At
a high level the three-part system was designed to work as follows: The Ingester resides on a

LLAN (Lincoln local area network) facing server to pull down data from the Internet. It then

-23-

sends this collected data across the LRNOC’s one-way connection to the DBTransfer. The
DBTransfer, running on a server in the LRNOC, reads the incoming data and puts it into a long-
term storage repository. Then the Application is run on an analyst’s machine; functioning as a
client, it connects to the long-term storage repository. The Application allows the user to
execute search queries over the data. The system is designed to operate with a single instance
of the Ingester and DBTransfer running, but any number of users can be independently running

the Application.

3.3 Data Collection and Search Algorithms

For our system to be considered useful by an analyst we needed to ensure that the data we
collected from the Internet was actually data an analyst would want. To determine what data
was useful to analysts we scheduled an interview on August 27th with a network security
analyst of Lincoln Laboratory. While we did not discuss any specifics regarding what the analyst
does with the information due to operational security, we did learn about a number of the
security feeds they monitor. In addition to the normal vulnerability feeds you would expect ISD
employs a few authentication-restricted feeds and, interestingly, a number of Twitter feeds. For
example, the analysts follow a list of over a hundred Twitter names ranging from the official
Microsoft security account (@msftsecurity), to security professionals (Bruce Schneier), to

everyday users simply interested in cyber security.

Based upon the information we learned in the interview the team decided to implement two
types of data collectors: one for handling RSS/Atom and the other for querying Twitter. We

chose only these two as they seemed to be the most relevant to analysts. Other feed

=24 -

possibilities include: Facebook, Reddit, email mailing lists, and a number of more specific pay-
to-use sources. The team ruled out support for these (and other) types of data due to both the
brevity of the project timeline, and the fact that we are simply building a prototype. Additional
sources may be added at any time with minor code changes to our prototype if desired (see
Section 4.3 on Data Collection.) After deciding on the collectors we needed to specify the
sources those data collectors would process. That is, while we have a collector written for
Twitter, we need to specify the Twitter accounts or Twitter searches to retrieve the results
from. The team seeded the system with a few RSS feeds we found by quick Google searches for
“cyber security RSS feeds,” and some sources we learned about from our interviews with

analysts.

While this is a naive approach to selecting strong and reputable sources, the team decided it
was acceptable for our prototype. It is intended that analysts input their own feeds they know
to be useful. To facilitate this, and forms of more advanced configuration, we designed a
command-line interface to manage the sources which the Integer processes the data from, and
a properties file allowing more fine-grain control over aspects of the system than just the

standard graphical user-interface alone (see Section 4.3 on Advanced User Configurations.)

As data is collected, the Ingester stores the information and has it transported into the LRNOC.
Once there it is copied into the long-term storage solution to be held indefinitely. This long-
term storage solution can be any database or storage system capable of complying with the
needs of the system as specified in our document (see Section 4.1 on Code Design). Itis

important to keep this information over the long-term so that trends can be established and

-25-

shown to analysts and it also allows users to ask questions about the data from months ago.
These abilities allow an analyst to gain additional background knowledge and perhaps see
patterns which would have otherwise been missed. The team made sure to design our
requirements for the long-term storage system so that any data is accessible when needed; this

ability is strongly wanted by the project sponsors.

Processing analysts’ searches over the vast collection of data takes special software to locate
the relevant articles; this class of software is called Information Retrieval, or IR. To select the
best option available the team met with a member of Group 52, or the language processing
group, and inquired about modern day IR systems. The member from Group 52 gave the team a
high level understanding of how IR works and common techniques to implement such
functionality. Due to the time restrictions on our project, we opted for finding solution which
was already in existence and we could easily add to our prototype. After a conversation with
the project sponsors it was decided that a search system based on Regular Expressions would
suffice as long as our system came with the option to modularly upgrade to a more

sophisticated solution in the future (see subsection of Section 4.7 on Information Retrieval.)

3.3 Application & Social Networking

All the work outlined in this section so far has been building the foundation to power our
Graphical User Interface (GUI). This interface will be composed of the various windows that an
analyst will interact with to utilize the powerful system underneath. The interface packaged
with our prototype is not intended to be extended or modified in the future; it is simply a proof

of concept to show what the team believes to be just one use case the underlining architecture

-26-

can be used for. Most notably, we place emphasis on the ability of analysts to build a sense of
community knowledge, collaborative threat discovery, and up-to-date information on how

other analysts are using the system.

Currently analysts we interviewed go through their process of threat identification by
themselves. There is some collaboration between those physically present in the same office,
but unless something particularly noteworthy is discovered, an analyst will work in isolation.
The team set out to identify how to construct an interface that allows for analysts to transfer
information to one another. We do not attempt to replace email or instant messaging systems
as most institutions already have those standard forms of communication in place; instead we
wanted to allow analysts to build up communal information relating to the data held within our
system. To accomplish this we integrated a number of features allowing analysts to mark the
information they find, or the procedures to find that information, as something worth sharing
with others. Due to time limitations and little concern from the sponsor with regard to privacy
of our system’s data (especially while hosted within the LRNOC), we did not implement any

access controls over shared data.

To allow for shared data between the analysts, the team implemented the ability to save a
search performed by a user. In addition to being convenient for future use, this allows an
analyst to build up a list of searches they feel are worth repeating and inspecting the results of.
To facilitate the growth of community knowledge we allow any user to see the saved searches
of any user. Some searches may not apply to all types of analyst work, but we feel this will allow

both for the sharing of interesting searches but also unique ways to look for a particular piece

-27 -

of information. Due to the choice of regular expressions as an information retrieval system,
building the perfect query might take some work, and once a user arrives at something they
believe is ideal, we want to share that item with all users of the system. Leveraging this
information the system can track the number of times a search is run and build up a list of
popular searches; searches in this list have a decay over time putting only the most recent,
repeatedly searched expression at the top. This allows an analyst to quickly identify what

others may have already noticed as a threat to watch for.

Second, the team implemented the concept of “refining” a search. When an analyst starts with
a search expression, reviews the results, and then decides that the search would be better in a
different form, we believe is an important decision to keep track of. Whether the search was
too precise to return many results, too generic to give relevant results, or even was simply mis-
formatted, our system tracks this change. We gather together these choices and build a
directed weighted graph representing how users navigate through our system. This is then
displayed in a panel for future users who perform the same search. For example, if a user were
to search for vulnerabilities relating to Java 7, there may be too many results to be very useful;
the user would utilize our refine feature to follow the path set by a previous analyst to “Java 7
vulnerabilities” or some other more precise search. The refine options presented to a user are
organized by popularity and then decay with time, keeping the list up to date with the recent

refinements as search results change over time.

Third, the team wanted to have a notion of posts worth more attention by all analysts. We also

wanted this notion to be global, because if one analyst believes it is important; all analysts

-28-

should be alerted about the post. After an analyst performs a search and reviews the results he
or she may come across a post they wish to mark as interesting. This could be for any reason
deemed appropriate by the analysts of the system: for example they could agree a flagged post
means a vulnerability needing to be looked into. The analyst who reviewed and dealt with the

possible threat would then remove the flag indicating the post is no longer a concern.

With all of the data held in the system, the project sponsor asked the team to develop a panel
providing an instant overview to the system. We took this idea and expanded upon it to give
analysts the ability to get a quick update on the current trends in online sources and updates on
user activity within the system. To support this, a “dashboard” was developed that includes a
graph of how many posts several generic regular expressions matched over the past day, a feed
of the most recent analyst activity, and a feed of the most recent relevant posts added to the
system. The graph can easily and quickly show analysts if there was a spike for a regular
expression potentially representing a new vulnerability. The feed of user activity can also be
used by analysts to learn of the searches other analysts are running and create their own
searches accordingly. Lastly, the feed of posts shows the posts most recently added that match
one of the regular expressions in the graph. This panel is meant to give context to a spike in the
number of posts matching a regular expression. The dashboard can be used by individual
analysts to cater their searches according to live data, or it could be displayed all the time on a
big screen for constant monitoring. In this case, the application could then be run to gain more

information if an analyst found something on the dashboard interesting.

-29-

Finally, we designed how our application would interface with the LLCySA APIs to provide an
analyst with a step forward after discovering something interesting within our prototype. We
aimed to have our system construct the query for the LLCySA system that an analyst could
copy, paste, and execute the query. Unfortunately due to technical problems outside of our
control, we were unable to fully complete this communication. Instead, we put together a
couple of specific use cases and detailed how the LLCySA system could be connected to our
system after our project ends. We were able to implement a first pass of generating a
syntactically correct query as a proof-of-concept, but were not able to process much past this
point. The team left detailed documented instructing how to add this functionality for the next

team.

3.4 Prototype Testing and Evaluation

After developing the prototype, we evaluated our prototype and measured how successful the
system was in accomplishing its goals. First, it is important to look back upon the core goals
defined at the start of our project: a working prototype, a modular design, complete
documentation, and a complete suite of test cases. If accomplished, these goals would ensure
that the prototype is both functional and easy for Lincoln Laboratory to build upon in the
future. It is also important to ensure that the prototype is running efficiently and can expedite
the threat detection process for analysts. To measure this we evaluated the information
retrieval technology implemented as well as ensuring that our system returned results to

analysts in a timely fashion. These statistics were measured and tracked throughout the

-30-

development process to monitor the progress of development and to ensure that the libraries

and algorithms being implemented satisfied the system’s requirements.

-31-

4 System Architecture and Design

4.1 Code Design

The overarching goal for all code written was to ensure it was modular in design, easily
extended, well documented, and thoroughly tested. All class and interfaces mentioned in this
section can be seen with more detail in our UML diagram found in Appendix A. The code base
currently holds four fundamental interfaces which, when called in order, process and display
the output we intend. First, we have the IExtract interface; this interface dictates the functions
required for a new source type to be added into the Ingester for retrieving data from the
Internet. Classes which implement this interface are expected to make their own web-requests
(if appropriate) and return a collection of posts to be handled by the system. Our prototype was
delivered with two fully functional classes implementing /Extract: a RSS/Atom feed processor,
and a Twitter feed processor. Second are the IStorage interfaces, these interfaces dictates how
code dealing with an underlying data storage mechanisms must interact with our system. There
are two interfaces dealing with storage, one for the information being transferred from the
Ingester into the LRNOC (/TransportStorage), the other handling the long-term storage of data
after it arrives in the LRNOC (/Storage). The last interface implemented is /InformationRetrieval,
responsible for all classes that conduct information retrieval on the data stored. The
implementation of these interfaces allows future developers to easily replace parts of our
prototype with more advanced technologies. For example, if a new information retrieval class
was developed it could be ‘plugged into’ our code as long as it follows the rules defined by the

linformationRetrieval interface.

-32-

4.2 Advanced User Configurations

The team believes that the code fulfills the modularity and extensibility parts of the original
goals set, however we also wanted a user to be able to modify the system in custom ways
without needing to edit and recompile the code. To accomplish this we developed two methods
by which an advanced user can customize our system. First, we built a command-line interface
for manipulating the sources pulled by the Ingester. We realized during our own testing that a
user may want to add or remove sources at any time while the Ingester is running. Since the
sources are held within a SQLite database, manual modification is nearly impossible; therefore
the command-line interface we bundled with the Ingester provides the user with the ability to
list, add, or remove sources. Each source contains all of the information that the Ingester needs
to pull information from that source including a type, an identifier, as well as common name
that allows an analyst to quickly identify a source. Second, we implemented a properties file
allowing an advanced user more control over some fine points within the system than provided
by the graphical user interface. A user can modify this file with any text editor and control

various program properties such as the update frequency of the Ingester.

4.3 Data Collection

First, we wanted to be able to process RSS and Atom feeds. RSS (Rich Site Summary) typically is
included alongside many blogs or constantly updating sources of information; being a
syndication format it is designed to provide information about the website in a particular
format. Atom (Atom Syndication Format) feeds may be thought of as a newer revision of RSS

and supporting both of these formats allows our system to interface with a large number of

-33-

websites. Building a system to process the RSS and Atom XML formats is beyond the scope of
our project, instead we decided to leverage the Java library ROME which automatically pulls
and formats information from all versions of RSS and Atom feeds (ROME Java Library, 2013).
Second, following from our discussion with the Lincoln Laboratory analyst, we also needed to
have support for processing Twitter feeds. Unfortunately the latest version of the Twitter API
no longer supports the generation of RSS feeds; therefore we needed to communicate using
the JSON format standards. Instead of manually trying to work with JSON, or even using a JSON
library to interact manually with the Twitter API, we utilized the Java library Twitter4). Twitter4)
is the de facto standard for interaction between Java and Twitter although Twitter does not
officially endorse it (Twitter4J Java Library, 2013). Any number of these data collectors may be
added to the system, no limitation has been put into place; for example, with minor code

modifications you could support Facebook, Google Plus, or even a proprietary format.

In implementing the collection processes to pull the data from our sources we needed to
identify how we would receive updates: either through push notifications, which are more
efficient, or through polling of the site, which is simpler. Taking a look at our source types, RSS
and Atom feeds make no provision for push messaging as they are simply an XML formatted
page expressing the already existing content on a website. The only way to receive an update
for an RSS feed is to ask the website if there have been any changes since the last time you
asked, if there have been, you download the new updates. Twitter on the other hand definitely
supports push messaging for the notification of new tweets. Instead of continuously asking for
update information Twitter is able to simply send you a message when an update arrives so

that you can retrieve it. Yet, since RSS feeds do not support push messaging, the team decided

-34-

to simply use polling for both RSS and Twitter data to keep the system design simple. Since our
system must make the request in a polling system, a polling interval must be set. After
numerous rounds of Ingestion the team believes a ten-minute interval is a fair balance between
timely updates and fruitless requests. The polling interval can be changed in the properties file,
but we decided upon this default value based upon the frequent updates of twitter feeds, and
trying to keep a minimum delay between a post going live and an analyst able to query the
post. When the polling interval elapses, our system pulls all the data it can find and creates a
collection of post objects. We expect the system to be able to handle many hundreds if not
thousands of posts per polling cycle. These post objects might have duplicate entries compared
to the last time we pulled, therefore our storage mechanisms is designed to properly handle

duplicate data.

4.4 Gathering Posts

Once the Ingester receives all the data, it needs to be put into a standardized format that our
system can handle. The team decided to call this structure a “post.” A single post holds
information that is expressed in a single tweet, or a single RSS entry. A post is an object holding
Source Name, Title, Date, Author, and the body of the posted message (tweet / RSS entry). If a
round of Ingestion pulls 234 tweets from Twitter and 23 entries from an RSS feed, there will be
257 post objects created. We decided to use a SQLite database to transfer these post objects
from the Ingester to the DBTransfer. We felt that this was a simpler solution as it avoided the
need to serialize the object for storage in a text file or other custom data type; additionally

since no encoding is necessary a SQLite browser is able to quickly display the contents of the

-35-

Post table, this is very helpful when debugging the system. When the DBTransfer receives the

SQLite database it transfers the posts into a MySQL database for permanent storage.

4.5 MySQL Database

During the design of the three separate parts of our threat aggregation and assessment system
we realized that to have reliable and stable storage we would need a strong database backend.
Additionally, we would need to support a number of simultaneous connections to serve
multiple analysts querying the system at the same time. Database servers are specifically
designed to address these needs. After a discussion with the project supervisors, it was decided
that we would use a SQL-based storage mechanism instead of a No-SQL implementation due to
the restricted time frame of the project and pre-existing knowledge held by the team. The team
chose to use a relational database server due to the connections and interweaving of
information our tool requires: for example, we tie a username to the searches the user has
performed. After a quick review of the options available to us, we decided to use MySQL Server.
MySQL Server is a production-grade open-sourced database management system maintained
by Oracle and is designed to handle heavy use in an efficient and quick manner. The choice to
use MySQL Server over other offerings such as Oracle, Postgres, or MariaDB, was simply a

matter of convenience and the use of a well-known and trusted product.

Following closing with proper normalization techniques we designed a number of tables to
support the queries our system performs. A full description of the tables and how they are able
to interact may be found in Appendix A. Each table has an explicitly defined primary key. Most

of our tables use the standard auto-incremented integer for row identification; however, for

-36-

some tables we decided to use an inserted value as the key, such as Dimensions or Source
Types. These values are usually very short one or two-word phrases and therefore we felt that
simply using them as the primary key was more efficient than doing the extra table lookup to
discover which word maps to which automatically incremented integer. We also have defined
foreign keys and foreign key constraints to aid in the speed of our table joins and ensure that
our data remains internally consistent. That is, upon insertion of a new row any reference to a
different table is validated to be sure the row exists, and upon deletion of a row any row

depending upon the row deleted is also removed from the database.

The database table Post which is intended to hold all unique posts ever gathered by the
Ingester is expected to grow to be quite large. In order to maintain fast query times even when
there may be three million posts stored we added an index over the date column. The
application always constructs a query restricted to a particular timeframe that should be able to
keep regular expression query times to under a second. Similar in fashion to how we handled
duplicate posts in the SQLite transport database, we established a unique constraint on the
data field for the Post table. Since we implemented the data field as a MEDIUMTEXT data type
(capable of holding up to 16MB of information per row), the unique constraint needed to be
limited in scope. We decided that forcing the first 512 characters to be unique from row to row
was a good approach; it is short enough to facilitate quick insert times, yet long enough to
safely keep duplicate entries out of the system. This decision does have some effect on
insertion time, as the database must search over the entire table upon each and every insert of
a post. While this will cause the inserts to become slower and slower the more posts are added,

we decided this would not be a huge concern as the Ingester polling period will certainly be

-37-

longer than the time it takes to insert the queries; however, it would be our recommendation
that if this prototype is intended for production-level use a more sophisticated method of

preventing duplicated posts should be implemented.

4.6 Flow of Information

Application

Twitter, RSS, Atom

[osriown)
=

| Display Posts

Refine Query

Ingester

SQlite

SQlite

Figure 1: The figure depicts the flow of information through the system beginning with the Ingestion phase and ending in the
user interface.

-38 -

4.7 Sections of Development

Information Extraction

Once all posts have reached the LRNOC they are stored into a mySQL database for future use.
The next phase of our program will need to run some information extraction technologies to
determine which posts actually contain information relevant to the needs of an analyst.
Information extraction technologies such as text matching, regular expression matching, and
more sophisticated tools such as Lucene, a Java based indexing and search technology, were
considered. Strict keyword matching was determined to be too confining, as we are reading
from user inputted text talking that can say the same thing in many different ways. For
example, we want to match ‘Firefox’ as well as ‘firefox’ in the same search. Looking further, we
also want to match on what version number of Firefox these specific posts are talking about
without having to define a keyword for every possible version number. Next regular expression
matching was considered as it allows for all of the abilities that keyword matching lacked in a
similar fashion. Lucene was also considered as it is a much more advanced search system. After
consideration and discussion with the Lincoln Laboratory team, it was determined that regular
expression matching would fulfill the requirements of our information extraction algorithm,

while maintaining our timeline.

The information retrieval algorithm implemented in our project will be dealing with semi-
structured data being pulled from various sources. Our data is semi-structured as it is coming
from feeds, governed by a specific format. This format allows us to pull the specific parts of the

posts out individually. For example, we can easily get the author, the title, and the date in

-39-

which it was published without doing any real information extraction. The actual content of the
posts can also be pulled out; however this section in itself is unstructured as an author can type
anything, in any format in this section. Information retrieval technologies will need to be
implemented allowing the system to determine if a post pertains to a query that a user

executed.

User Interface

A user interface was developed as a part of the prototype to allow analysts to interact and learn
from the data collected in the ingestion phase. The first phase of this application will be a log in
screen where the user enters access credentials, or creates an account. All queries executed
will be tagged with this user’s username. This will allow other users to see what queries were
executed and by whom in the future. Next, the user will need to select an already created

regular expression query, or create their own query along with a time frame (past day, week,

(&) TRACT = e
Welcome Robert | Dashboara |
Global Popular Searches [Linux: (Linux) [v] [toaa]
My Recent Searches [Java Search: (Java) [v] [toaa |
Flagged Posts | | My saved searches |
Start Search

Regular Expression |Firefox |
Dimension [browser [~]

Time Range From @ B @ To @ E @

Figure 2: TRACT Welcome Screen

month, etc.) and run it on the posts collected (See Figure 2). We determined that it would be

-40 -

useful for a user to have the ability to save a search that they conducted for future use. The
system will also show each user, a list of the most popular searches, among all users of the

system. This functionality will allow users to find valid regular expression that are popular

(&) TRACT = B8 %

- - Search Results

Search Expression: Firefox

Result Dimension: browser

New Search ‘ l Save Search ‘ ‘ LLCySA Query I ‘ Refine Search
Flag Type Source Title Article Title Author Date Body
=
[] |twitter-search |Firefox Vulns Search Firefox vulnerability lang:en liberty 10/11/13 06:30:45 High-Tech Bridge launches #free real time vulnerability detector for @Firefox

hitp:/it.co/BibOIZOH 1K #TechNews

[] |twitter-search |Firefox Vulns Search Firefox vulnerability lang:en Ville Raassina 10/1113 03:11:12 'Symantec Vulnerability Protection Add-in for Firefox (Browser IPS Addin) - update |
'Symantec Connect Community hitp:/it. coVSp75vi3Ak

[] |twitter-search |Firefox Vulns Search Firefox vulnerability lang:en Maldicore Alerts 10/10/13 13:13:26 Vuln: Mozilla Firefox/Thunderbird/SeaMonkey CVE-2013-1737 Security Bypass
Vulnerability hitp:/it. co/YWkB500mZg hitp:/it.co/FfaqYn1u2f

[[twitter-list Bl List1 bcl 1 Jonathan Cran 10/10/13 11:50:35 RT @antisnatchor: Ive just added to @beefproject a Firefox Extension dropper module.
Based on @mihi42 original work ;-) hitps:/it.co/PohV.

[] |twitter-search |Firefox Vulns Search Firefox vulnerability lang:en Maldicore Alerts 10/10/13 09:44:19 Vuln: Mozilla Firefox/Thunderbird/SeaMonkey CVE-2013-1728 Security Vulnerability
hitp:/it.corpA1NGiZ7 hitp:/it.co/FfgqYn1u2f

[] |twitter-search |Firefox Vulns Search Firefox vulnerability lang:en Security News 10/10/13 07:01:53 High-Tech Bridge launches free real time vulnerability detector for Firefox | ITProPortal.,
hitp:/it.co/Q8UmV3Hsdl

[] |twitter-search |Firefox Vulns Search Firefox vulnerability lang:en Artur Barseghyan |10/10/13 06:40:53 High-Tech Bridge launches free real time vulnerability detector for Firefox
hitp:/it.co/Zlafyu5Ckc

[] |twitter-search |Firefox Vulns Search Firefox vulnerability lang:en Kemlyn 10/10/13 06:05:01 High-Tech Bridge launches free real time vulnerability detector for Firefox

hitp:/it.colJHF7Mfu8vT via @itproportal

Figure 3: TRACT Search Results

among many users to start their searches off of. Once a search is run a list of posts matching
that regular expression will be presented (See Figure 3). The user will have the ability to
continually refine their regular expression and see how the list of posts that match the regular
expression change with each refinement. When refining a regular expression, the user will be

shown a graph of popular refinements based upon how other users refined this exact search in

-41 -

the past as well the refinements that lead other users to this search (See Figure 4).

| £ Cyber Threat Detection Tool = 8 x |
Search Results
Search Expression:\(Firefox) |
Result Dimension: browser Cancel J | Refine I
Popular Refinements
= e
-~
S e g o
»-
. a
(Firefox.3\.0) (Firefox).(3\\d)
cancel | [Refine

Figure 4: TRACT Refinement Process

The user will also have a chance to generate an LLCySA query based upon the regular

expression search that was conducted and how the posts matched that regular expression (See

(&) TRACT = = |

LLCySA Query

{"OPERATOR" : "select","INPUT" : [{ "DIMENSION" : ":browser", "VALUE" : "(Firefox)" },
{ "FIELD" : "field:al_events:timestamp", "VALUE" :

"20131001000000,20131011235959" }], "OUTPUT" : [{ "DIMENSION" :
"ALL_DIMENSIONS" }]}

Figure 5: TRACT LLCySA Query

-42 -

Figure 5). The information returned from the LLCySA query will allow users to obtain
information on how much of threat found vulnerabilities actually pose to Lincoln Laboratory’s
network. The final piece of the User Interface is the Dashboard. The Dashboard is intended to
give users a quick glance at what is happening right now and can quickly display what is

‘trending’ (See Figure 6.)

(& TRacT =8 =

Online Activity Monitor

8

Number of Posts
a

“w

0

1200 1300 1400 1500 1600 17:00 18:00 1900 2000 2100 2200 2300 000 100 200 300 400 500 600 700 800 900 1000 11:00
| Adobe ==Flash — Java ==Windows = Linux — Frefox |

GG] [sewn |

User Activity Feed New Posts
Time Actity Time | Post Content |
0c1 09, 11:34 Doran just saved search Adobe Search with regular expression (Adobe) = =
0ct 09, 11:25 hands out $100,000 in bounty for Windows 8.1 flaw. fixes critical IE
0ct 09, 11:3‘Pwmmnnmluwou) 3 ility (Ma @Phonly g8

0ct 09, nmb«mmummm)
0ct 09, 11:33 Doran ran a search for (Microsoft)
Oct 09, 11:33 8 posts just added to the database

Oct 09, 11:20 Another unknown Java #Malware that doesnt use exploit code hitp:it cor2cdov7UaY

0ct 09, 11:11 Microsoft Hands Out $100,000 In Bounty For Windows 8.1 Flaw, Fixes Critical le
oct 09, nmp«mmmunwm'(w Vulnerability. Microsoft has a... htp it coMa8Yovh2Px

oct 09, nznbotmmaumlw)n)

0ct 09, 10:54 hands out $100,000 in bounty for Windows 8.1 flaw, fixes critical IE... -
0ct 09, 11:30 |6 posts just added to the database IRCOZDLOIOA 1)r ia

= I 5

0011271 nocte kiet addad 1a th,

Figure 6: TRACT Dashboard

-43 -

4.8 LRNOC Interface

The final stage of this prototype is an LRNOC interface. The team implemented a Java Interface
object to dictate how classes that construct LLCySA queries should operate; in short
construction methods need to provide a string output we are capable of displaying to the end
user. Our user interface will assist an analyst form an LLCySA query that pertains to the
information they are searching on in our application. For example, if a user is searching for
vulnerabilities in Firefox version 17.0.3, then we will construct an LLCySA query to determine
how many users are currently running on Firefox version 17.0.3. The results of this operation
are a query string, or prepared JSON statement to send towards the appropriate LLCySA query.
The query generated is based upon the regular expression, search dimension, and date range
supplied by the analyst. When the generated query is run it will allow an analyst to determine
how much of a threat such vulnerability actually poses to the Lincoln Laboratory network. If
only a few computers on running this version they then threat is minimal, however if half are

running it the threat is much more significant.

-44 -

5 Results and Discussion
After the completion of our prototype it was important to look over the successes and the
shortcomings of what we completed. First, we looked over our initial goals and evaluated our

system in how well it accomplished those goals.

5.1 Modularity

One of our central goals was to create a modular design that would allow for simple and
efficient development upon our foundation by laboratory personnel. The design and back end
of our system is governed by several interfaces that outline the functionalities of each
component of our system. The Ingester is guided by /Extract in such a extension of our system
to extract data from currently unsupported source type, such as Facebook or specific websites,
is as simple as creating an addition class the implements the /Extract interface. This class will
pull information from the desired source and store the information in the correct format. This
extension of additional sources does not place and limitations on the types of sources that we

can pull information from or the way in which the implementation is done.

The information retrieval phase of our system is guided by the lInformationRetrieval interface.
This interface provides the guidelines for an information retrieval system running on the
collected data. The information retrieval system was once again created to be modular and the
entire system can easily be changed out for more sophisticated, advanced technologies such as
machine learning or TF-IDF. Replacing the current regular expression matching technology with

more advanced technologies such as again just requires the creation of a class that implements

-45 -

the linformationRetrieval interface and then swapping out the current regular expression

matching technology with this technology in the system.

Lastly, our prototype implemented SQLite and MySQL databases governed by
ITransportStorage and IStorage interfaces. Again, these interfaces ensure a modular design and
allow future uses to implement other storage mechanisms with relative ease and minimal
changes to our existing system. We feel that through the implementation of these interfaces,
the modularity of these components was successfully met. The one component of our design
that is not modular by design is the User Interface. Our user interface is specifically created to
show the kind of information that our system is currently providing. We are running
information retrieval through regular expression matching, so the User Interface is centered on
this functionality. If more advanced information retrieval technologies are put into place, we
feel that the user interface should be recreated to better suit the needs of the technology

implemented.

5.2 Testing and Documentation

A complete set of testing and documentation was a central goal of our project. We
implemented a testing suite through JUnit and measured testing coverage through EclEmma
(JUnit Testing Framework, 2013) (EclEmma Code Coverage, 2013). Our prototype has 85%
coverage. This coverage ensures that our all classes created are performing as intended and
that the prototype as a whole is well tested to ensure both each part is able to work together as
an integrated, fluid system. Documentation is complete with both technical and in line

documentation. All documentation follows JavaDoc standards to ensure that it is easy

- 46 -

understood and traversed by future developers. All classes, interfaces, and functions have
documentation explaining their function as well as how it is being used to in our system as a
whole. In line documentation is used to explain in more detail what the purpose of each section
of code and how it is being implemented. Documentation also works as a basic in which future
developers can learn how our system functions, the technologies we implemented, and how to
extend or replace parts of our code to develop a more advanced prototype. In addition to this
documentation a readme file is also included that outlines how our prototype is currently

functioning as well as an explanation of how an analysts should use the system.

5.3 Ingester

At the start of our project we set out with the goal of supporting Twitter, RSS and Atom feeds.
Through the use of the Twitter4) library and the Rome library we fully accomplished this goal
(Twitter4) Java Library, 2013) (ROME Java Library, 2013). One unforeseen effect of using these
libraries is that many RSS feeds created are not correctly formatted. The Rome library would
often fail to ingest on these sources and would provide inaccurate information leading to our
system not getting the data, or crashing due to improperly formatted text. For this reason, we
currently support correctly formatted RSS feeds. It is recommended that all RSS and Atom feeds
being checked for proper formatting before being added to the system. Failure to do so could
cause inaccurate information to be added to the system. RSS feeds can easily be checked for
any formatting errors through web services such as feedvalidator.org (Feed Validator, 2013).
Another limitation on our system is the number of posts we can pull in at once, for RSS and

Atom feeds we are able to pull in the first page of posts, which for most feeds is twenty posts,

-47 -

and we can pull in the last 100 posts from Twitter at once. This limitation means that we have
to be constantly pulling from these sources to ensure that we do not miss any posts. In the
early stages of our data collection we found that when pulling from five RSS feeds and one
twitter list of almost two hundred users, every ten minutes we were getting a total of between
five and twenty-five posts per pull. The majority of these posts were coming from the twitter
list and each RSS feed was contributing at most five posts in one pull. Therefore, it was
concluded that a pulling from each data source every ten minutes prevented us from missing
any posts. Ten minutes is also an appropriate amount of time as it allows our application to
remain up to date at all times. We recommend that the timing interval between pulling from
sources remain at or under ten minutes to ensure that an analyst using the application is

getting up to date and accurate information.

5.4 Prototype Backend (Information Retrieval and Database)

The back end framework of our prototype is divided into two central parts, the database
governed by the IStorage interface, and the information retrieval technology implemented by
the IInformationRetrieval interface. The storage mechanism chosen was a MySQL database
with multiple users querying to that database for information at the same time. This
infrastructure was the preferred choice as it cut out the development of a network protocol
between a server and the users as we use the database as this server and the users can directly
query it. Information retrieval, being completed through regular expression matching, was also
implemented through the MySQL built in regular expression query. Once implemented we

needed to ensure that this infrastructure would be fast enough to handle all of the posts being

-48 -

added to the system and then a user querying over the entire database for posts matching a
regular expression. Testing revealed that after the addition of millions of posts to the database
the regular expression testing did being to slow down and complex queries would take over a
second to return. This risk was mitigated by configuring the database to automatically sort
posts by the date in which they were posted. Each search that a user is executing is over a set
time period and we envision that this time period would be over the course of a days or weeks
not years as an analyst will want to be getting up to date information. Providing this constraint
each search query is only running a regular expression search on the posts that are in the
desired time range, which is generally in the range of hundreds or possibly thousands of posts.
This constraint noticeably speeds up search queries, into the range of tenths of seconds for

complex searches, successfully mitigating the risk.

5.5 Prototype Frontend (User Interface)

The User Interface was implemented through the Java built in Swing library. Our user interface
is centered on giving an analyst the ability to run regular expression queries, over a set time
period. Additional abilities such as saving regular expressions, flagging posts, and viewing a
“Dashboard” or a quick overview of what others users are doing and what content is currently
highly active on. Highly active content given an analyst the ability to see what searches may be
interesting at the current point in time. For example, a spike in activity on the word “Java” may
indicate that there was a recently found vulnerability in Java the many users are currently
talking about. We found this tool to be successful in identifying such new vulnerabilities on

October 4, shortly after a major breach in Adobe software. Our tool was able to quickly and

-49 -

efficiently show a massive spike in activity on the work “Adobe”, as seen in Figure 7. This
functionality will this will be especially useful for analysts looking to catch breaking
vulnerabilities as soon as possible so they can ensure their network is protected before the

vulnerability ever reaches their network.

Online Activity Monitor

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Time (Hours Ago)

|— Adobe ==Flash Firefox Windows Linux |

Figure 7: A spike in Adobe activity is easily noticed when displayed in a graph.

Another key feature of our prototype is the ability for analysts to see what others are doing,
and be able to learn from the searches and refinements of previous searches. The prototype
gave analysts the ability to see popular searches that other analysts are currently using. This
gives analyst searches that are used the most representing current trends or searches that are
constantly being used by analysts. The application also gives analysts a list of the most popular
refinements to the search they are currently running. This ability allows analysts to learn from
more experienced analysts and to refine their searches without having extensive knowledge of

regular expressions. These functionalities successfully gave our prototype a social media aspect

-50-

in which user are constantly learning from the actions of others and can work on protecting
their network as a collective group. A small demo was also held to go over the functionalities of
our User Interface with members of Group 51 including analysts and our thoughts that this
social media aspect of learning and collaboratively working through our system was confirmed.
It was also confirmed that a messaging type system would not be necessary in our system as all
users must be working in the LRNOC here at Lincoln laboratory and will therefore be in the
same room. Many other means of communication are already implemented inside the
laboratory that would both be easier and more efficient to use than our system for any
necessary communications. As whole our prototype was a successful proof of concept that
using online, social media content to monitor cyber threats is possible. Going beyond the proof
of concept a working prototype was delivered that allowed analysts to quickly and easily search

gathered data and find information specific to their needs.

-51-

6 Conclusion

Over the nine working weeks at MIT Lincoln Laboratory the team leveraged the resources of
Group 51 and ISD to accomplish the goal of creating an automated cyber threat aggregation
and evaluation tool for analysts. Through the use of multiple interfaces, testing suites and
standard documentation formats, the team accomplished the goals of a modularly designed,
tested, and documented working prototype. While the project was scoped down from a fully
automated threat detection system to a tool that give analysts the ability to detect these
threats in real time, the initial goal of giving analysts the ability to more efficiently search over
online content for relevant and important information was preserved. The project was also re-
scoped to include a collaborative, team oriented aspect in which multiple analysts have the
ability to work together and learn from each-others work. This change in focus did not change
the direction of the project or prevent any of our initial goals from being accomplished, but

rather added to the produced prototype in order to best serve potential users.

6.1 Future Work

While the prototype delivered is a fully functional system that analysts can use we feel that
certain areas could still be improved given more time and resources. First, information retrieval
was implemented in our prototype through regular expression matching. While this
accomplished the goal of returning all posts pertaining to the given search, regular expression
are very difficult and time consuming to write. Implementing more advanced information
retrieval technologies could streamline this process for analysts and provide them with more

information as to what topics are currently trending. More advanced systems could

-52-

automatically detect spikes in certain topics and flag these topics as interesting, giving analysts

the ability to look only at interesting topics.

As our system is used by more analysts we recommend that each analyst add sources to the
Ingester that pertain to their own interests and needs. This will increase the amount and variety
of information being pulled in and provide a more robust, powerful tool for analysts as it will
always be pulling information they need. In addition, more source types (more Ingesters) will
lead to a greater variety in posts (and the potential to add more sources and gather more
information. For example, source types such as Facebook and even Ingesters specific to certain
websites that are particularly accurate and up-to-date could prove to be especially useful. Each
analyst that wants to use their system could add their own sources to the Ingester that
specifically pertain to the information they are interested in, in order to make this tool more
powerful for their own, personal needs. Adding additional sources will not threaten the core
functionalities of our system or other analysts work as each search expression that is run only

returns the posts that match that specific query.

To develop the system of recommending refinements upon particular regular expression
searches, our system maintains a record of every refinement made upon a regular expression
search. These refinements can be seen as edges in a larger graph of regular expressions. In our
prototype, user see small sections of this graph as the refine their regular expressions based
upon the most popular refinements made by other users of the system. With greater time and
resources, the collection of all refinements can be used to develop a full weighted, directed

graph showing all refinements that analysts made. This graph could be used to find the most

-53-

useful regular expressions, as well as to study the process in which analysts make refinements
to regular expressions. While this type of research is out of the scope of our project we feel that
it is very interesting and due to the fact that the entire backend infrastructure is already set up,

we feel that it is worth the time and resources.

This project leaves behind a fully working, tested and documented prototype for analysts to use
as well as a full back end system that can be used in many other applications throughout the
Laboratory. For example, all of our collected data is stored inside a MySQL database that can be
easily accessed through our defined API. With minimal work other projects across the
Laboratory can begin to use this data in applications of their own and use our API that has
already gathered, processed, and stored the data for them. The LRNOC seems the most likely
candidate for making use of this data as it is used as a tool to monitor the security of Lincoln’s
network. The information we gather also directly pertains to network security and could be
used to protect the network before the vulnerability becomes a real threat to Lincoln

Laboratory.

-54 -

Appendix A: Database Design Tables

Transport Storage Database (SQLite)

Gathered Post Table
ID Source Title Source Type | Title | Author | URL | Date | Data
Primary Key, Unique
Auto-Increment

The Gathered Post Table is created by the Ingester and filled with raw posts pulled from the Web; after
a pre-defined amount of time this table is shipped into the LRNOC where it is processed.

Source Table

ID Source Type Identifier Source Title

Primary Key,
Auto-Increment

The Source Table is maintained by the Ingester and contains all of the sources that are currently being
pulled from. Each source contains all of the information that the Ingester needs to successfully pull
information from that source.

Source Type Table

Source Type

Primary Key

The Source Type Table is created by the Ingester from the source types (Ex: ‘RSS’ or ‘Atom’) defined in
the Ingester. It contains all of the different types of sources that are supported. If additional source
types are added they need to be added to the properties file so that the Ingester can add them to this
table.

-55-

Permanent Storage(MySQL)

Post Table

ID Source Title | Source Type | Title | Author | URL Date Data
Primary Key, Index | Unique(512)
Auto-Increment

Once the LRNOC side receives the Gathered Post Table from the Transport Database it adds all of the
posts to the Post Table for permanent storage. The Date column is indexed to speed up queries against
this table that are confined to a short time span. There is a unique constraint on the first 512 characters
of the data field to ensure that no post is put into the database twice.

User Table

Username Salt Password

Primary Key

The User Table is maintained by the LRNOC side. It keeps track of every user account and all necessary
information to authenticate a user log in.

Dimensions Table

Dimension

Primary Key

The Dimension Table is maintained by the LRNOC side. It keeps track of ever supported search
dimension. Dimensions are categorizations of loop-ups that can be done in the LRNOC including
“Browser”, “Operating System”, “Domain”, etc.

Regular Expression Table

ID RegEx Dimension

Primary Key, Unique Foreign Key
Auto-Increment

The Regular Expression Table is maintained by the LRNOC side. It keeps track of every unique regular
expression that is run. The Regular Expression string is constrained to be unique to ensure that each
regular expression is only added to the table once. Each regular expression also has a dimension that
defines what type of information this regular expression is searching for.

-56 -

Saved Regular Expression Table

ID

Username

Name RegEx

Primary Key,
Auto-Increment

Foreign Key

Foreign Key

The Saved Regular Expression Table is maintained by the LRNOC side. It keeps track of every regular
expression that a user saves. It also records who saved this regular expression and allows the user to
give it a name so they can more easily find and reuse it. Multiple users can save the same regular

expression.

Regular Expression History Table

ID

Previous RegEx

Current RegEx

Username

Date

Primary Key,
Auto Increment

Foreign Key

Foreign Key

Foreign Key

The Regular Expression History Table is maintained by the LRNOC side. It logs every single regular
expression search run. If this regular expression was the result of a refinement from another regular
expression it also keeps track of what regular expression this one came from. A user and timestamp is

also associated with each search logged in this table.

-57-

Appendix B: UML Diagrams

Al

Correlator

Al

sis
i

Source
+Source(Sring, String, String)

A

ExtractTwitter
.| +SarapeTwitter(Source source) fe—t |

+SarapeRSSAtom{Source source)

N

<<interface>
IExtract
+extract(): Collection<Post>

+getSource(): Source
+setSource(Source)

-58-

(Bug)uoisuawig+

uoisuawip buns+

uoisuawIq

(buns ‘buns ‘bung)iasn+

plomssed bung+
Jes buns+
aweusasn buns+

a8

()10SAWa6eI015+

10SsAwabel0s

()s110sebeloisu0dsuel | +

au1dsabes0)sH0dsuea |

(uoisuswig ‘Buns “1asn ‘x3bay)x3baypanes+ (49sn 'x3b63y ‘x3b62y)b60 X364+
aweu buns+ 23ep a1eg+
UOISUBLLIP UOISUBLLIQ+ 1asn Jasn+
13sn Jasn+ Juaund x363y+
x3631 x3bay+ snoinaid x363y+
x36aypanes Box3boy
(Bung)x3bay+

x369y Buns+

x369y

suonejuawa|dwryl

u :()adA | 301n05)022S+

(bung)adA | 301n0g=33j8p+
<bung>uomajo) :()sadA 20105196+
(<bung>uom3jo))adA | 3dinosppe+
()seoinosieap+

Ju :()s30in0S)032S+
(224n0§)321n05333]2p+
(<®24n05>u0m3|0))32.n0531epdnppe+
<301n0g>uom3|0) :()204n05326+
()sasodpaisaipen.esp+

u :()sIs0dpaJaLpen)03as+
<350d>U003)0) :()s150dpatayieniab+
(<1504>U0m3]0))SIS04paaLeppe+
(sa Lo+

()sagew+

<x362y>1s :(u “135)paneSIUa03YAWIRO+
<x3b2y>1sM :(qu ‘x3bay ‘a1eQ ‘a1eQ)aseHWo.IeINdoq1e6+
<x36ay>1s7 :(u ‘21eq ‘a1eq@)panesiendodieb+
()Auosiyx3bayleap+

u :()AuoisiHx36y)0225+

(Box3bay)bomau+

()x3baypanesiesp+

u :()x3baypanesj0azs+
<x363ypanes>uonda)o) :(43sn)sayoieaspanesipieb+
(x3baypanes)x3baypanesalspp+
(x3baypanes)x3baypanesppe+

()sx3bayieap+

u :()x3bay0a2s+

(x3b2y)x3bay=3912p+

(xgbay)x3bayppe+

()suoisuawigiesp+

Ju :(JuoisuaLWIQ O3S+
(uoisuawig)uoisuawIga13[ep+
(uoisuaLIg)suoisuaLIga1ean+
<uoIsuaWIQ>uom3|o) :()suoisuawigiab+
()ssasniesp+

u :()1esny0azs+

uesjooq :(bung ‘19sn)4eSNAYpPOL+

ues|ooq :(43sn)a1ednuayine+

<Jasn>uonp3|o) :()siasmeb+

uea|00q :(13sn)IasNAIe30+

()s1s0d.e3p+

u :()s3504)032S+

<1504>Uuo0m3|0) :(x362y ‘a1eq ‘a1eq)X3b63YsIS04196+
<150d>Uu0np3)0) :()s1504136+
(<3s0d>U0n03)03)s3s04ppe+

(sa Lo+

()sagew+

O abeasoysuodsuea)|

<<30RRU>>

abe10iST
<<30RAUS>

(eaep Buns ‘spn buns “Joyane bung ‘ssynuspr buns ‘a1ep a1eq ‘adAy bunssod+

bung :()bunsol+

1sod

paieys

I

-59-

Appendix C: Glossary

* API: a definition of how software components should communicate and work together

* Compromised: When a device is under (some amount of) control of a malicious party

* Cyber Threat: The possibility to gain unauthorized access to a system by exploiting a
vulnerability in a host

* Document (Information Retrieval): One item of information in that a information
retrieval technology searches over (Ex: a Twitter, or RSS post)

* Exploit: a piece of software created to take advantage of a vulnerability in a host

* Host: Any network enabled device

* JavaDoc: an API for formatting java documentation allowing for easy viewing and
traversal

* Modular: a design strategy ensuring simple extension and modification of code without
requiring design changes

* One-Way Link: a network protocol allowing for network traffic to flow in only one
direction

* Penetration Testing: a method of evaluating host security by simulating attacks

* Query (Information Retrieval): a expression defining by a user describing the desired set
of documents

* Syndication Format: a specified format in which information is represented

* Vulnerability: The inability of a device to withstand the attacks from a malicious sender

-60 -

References

(2013, 9 23). Retrieved from Twitter4) Java Library: http://twitter4j.org/en/index.html

(2013, 9 20). Retrieved from ROME Java Library:
https://rometools.jira.com/secure/Dashboard.jspa

(2013, 9 20). Retrieved from EclEmma Code Coverage: http://www.eclemma.org/

(2013, 9 15). Retrieved from JUnit Testing Framework: http://junit.org/

(2013, 9 7). Retrieved from MySQL Database: http://www.mysql.com/

(2013, 8 24). Retrieved from SQLite Database: http://www.sqlite.org/

Chang, C.-H., Kayed, M., Girgis, M., & Shaalan, K. (2006). A survey of web information extration
systems. Knowledge and Data Engineering, IEEE Transactions, 1411-1428.

Greengrass, E. (2013). Information Retrieval: A Survey.

MITLL: Cyber Security and Information Science Accomplishments. (2013). Retrieved 2013 iun
23-09 from MIT Lincoln Laboratory:
https://www.ll.mit.edu/mission/cybersec/cybersecaccomplishments.html

MITLL: Cyber Security and Informational Sciences. (2013). Retrieved 2013 #unn 23-09 from MIT
Lincoln Laboratory: http://www.Il.mit.edu/mission/cybersec/cybersec.html

MITLL: Cyber Systems and Operations. (2013). Retrieved 2013 nn 23-09 from MIT Lincoln
Laboratory: http://www.ll.mit.edu/mission/cybersec/CSO/CSO.html

MITLL: Employment. (2013). Retrieved 2013 iiun 22-09 from MIT Lincoln Laboratory:
http://www.ll.mit.edu/employment/

MITLL: History. (2013). Retrieved 2013 i11n 23-09 from Lincoln Laboratory:
http://www.ll.mit.edu/about/History/history.html

-61-

MITLL: Organization. (2013). Retrieved 2013 iiun 23-09 from Lincoln Laboratory:
http://www.ll.mit.edu/about/Organization/organization.html

MITLL: Services Department. (2013). Retrieved 2013 1iun 23-September from MIT Lincoln
Labratory: http://www.ll.mit.edu/employment/services.html

Sunita, S. (2008). Information Extraction. Foundations and trends in database 1.3, 261-377.

-62 -

