An Affordable Portable Obstetric Ultrasound
Simulator for Synchronous and Asynchronous

Scan Training

Abstract

The increasing use of Point of Care (POC) ultradopresents a challenge in
providing efficient training to new POC ultrasounsers. In response to this need, we
have developed an affordable, compact, laptop-basestetric ultrasound training
simulator. It offers freehand ultrasound scan oraldomen-sized scan surface with a 5
degrees of freedom sham transducer and utilizesufasound image volumes as
training material. On the simulator user interfseceendered a virtual torso, whose body
surface models the abdomen of a particular pregseant subject. A virtual transducer

scans the virtual torso, by following the sham sducter movements on the scan surface.

The obstetric ultrasound training is self-paced gnided by the simulator using a set
of tasks, which are focused on three broad aredsired to as modules: 1) medical
ultrasound basics, 2) orientation to obstetric spand 3) fetal biometry. A learner
completes the scan training through the followimgé steps: (i) watching demonstration
videos, (ii) practicing scan skills by sequentiabmpleting the tasks in Modules 2 and 3,
with scan evaluation feedback and help functioralable, and (iii) a final scan exercise
on new image volumes for assessing the acquiregetancy. After each training task
has been completed, the simulator evaluates wheh®ertask has been carried out
correctly or not, by comparing anatomical landmddentified and/or measured by the
learner to reference landmark bounds created bwritdigns, or pre-inserted by

experienced sonographers.



Based on the simulator, an ultrasound E-trainirgjesy has been developed for the
medical practitioners for whom ultrasound trainisgnot accessible at local level. The
system, composed of a dedicated server and multigteorked simulators, provides
synchronous and asynchronous training modes, aalolesto operate with a very low bit
rate. The synchronous (or group-learning) modewall@ll training participants to
observe the same 2D image in real-time, such &srustration by an instructor or scan
ability of a chosen learner. The synchronizatior2DBfimages on the different simulators
is achieved by directly transmitting the positiamdarientation of the sham transducer,
rather than the ultrasound image, and results system performance independent of
network bandwidth. The asynchronous (or self-lesghimode is described in the
previous paragraph. However, the E-training sysédlows all training participants to

stay networked to communicate with each otherexa ¢hannel.

To verify the simulator performance and trainindiceicy, we conducted several
performance experiments and clinical evaluatiortee Performance experiment results
indicated that the simulator was able to generatatgr than 30 2D ultrasound images
per second with acceptable image quality on medgased computers. In our initial
experiment investigating the simulator training alaipty and feasibility, three
experienced sonographers individually scanned twage volumes on the simulator.
They agreed that the simulated images and theesqagrience were adequately realistic
for ultrasound training; the training procedureldaled standard obstetric ultrasound
protocol. They further noted that the simulator hiael potential for becoming a good

supplemental training tool for medical students eggident doctors.

A clinic study investigating the simulator trainirgficacy was integrated into the
clerkship program of the Department of Obstetricgl &ynecology, University of
Massachusetts Memorial Medical Center. A total 43 year medical students were
recruited and each of them was directed to scamnsge volumes on the simulator in
two 2.5-hour sessions. The study results showedthigasuccessful scan times for the
training tasks significantly decreased as the ingiprogressed. A post-training survey
answered by the students found that they considéeegdimulator-based training useful

and suitable for medical students and residenodsct



The experiment to validate the performance of thealbing system showed that the
average transmission bit rate was approximatelykB/4; the data loss was less than 1%
and no loss of 2D images was visually detected. rBselts also showed that the 2D
images on all networked simulators could be comseai¢o be synchronous even though

inter-continental communication existed.
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Chapter 1

Introduction

The advent of medical imaging techniques has graafluenced the practice of
modern medicine in the diagnosis and treatmentirdsses and medical conditions. In
2000, a total of about 392 million imaging testg;liding ultrasound, x-ray, computed
tomography (CT), magnetic resonance imaging (MRid awuclear imaging, were
performed. This number increased more than teriéo&# 71 million by 2010 [1]. Among
the above mentioned imaging modalities, ultrasoamdl x-ray account for more than 90%
of the tests and they have been growing much fdakeer other imaging modalities.
Although the numbers of the performed x-ray andastiund tests were approximately
equal [1], ultrasound has been used more than rayedical disciplines, such as
obstetrics, emergency medicine and cardiology lsecad its steadily improving image
quality in soft tissues and because of the absehaanizing radiation, which has been
known as a potential cause of cancer. These adyestaave been widely recognized by
medical communities [2,3,4]. Based upon an analg$ibreakdown of the clinical
specialties utilizing ultrasound from Siemens, adound has played a particularly
dominant role in obstetrics and gynecology. Espgciabstetrics ultrasound has been

accepted as the standard prenatal examinatiomitdwide.

Ultrasound, or ultrasonography, creates imagesgsres and other soft tissues inside
a human body by probing with short sound pulseBeguencies far above the audible
range. A transducer connected to an ultrasoun@mystnits highly directional pulses of
high frequency sound waves, using quartz or othexoglectric materials, and then the
same transducer detects echoes to generate amealhtage of the internal anatomical

structures. The ultrasound echoes can be process#doresented in different ways,

1



leading to four image display types, A-mode, B-molltmode and Doppler mode.
Among these four modes, the B mode (brightness ndttasound, as shown in Fig. 1-1,
is the most widely used mode in ultrasonographygdherates a 2D intensity map,
depicting a spatial distribution of echo strengtivkjch in turn is proportional to local
changes in acoustical properties and thereforenestiorgan surfaces well. Fig. 1-1 (a)

and (b) are two examples of obstetric ultrasoundges for measuring fetal biparietal

diameter and abdominal circumference, respectively.

Fig. 1-1. Examples of B mode ultrasound imagesfd&l head; (b) fetal abdomen.

Over the past decade, ultrasound systems have leecmme compact and affordable
with the evolution of technology. Using such poleahltrasonography, usually called
Point of Care (POC) ultrasound, a physician caropar ultrasound scan at a patient’s
bedside, or in an emergency room or in an operating, for an immediate assessment,
rather than require a sonographer to acquire amd sttrasound images to be interpreted
later (radiology ultrasound). Between 2004 and 2@809C ultrasound had 28% growth
compared with 17 % growth of radiology ultrasount accupied half of ultrasound
market share [5]. Substantial literature has shewdence of the effectiveness of POC
ultrasound across many specialties [6,7,8]. Fig.ghZs two examples of POC
ultrasound systems. As shown in Fig. 1-2 (a), tleekpt-size Vscan ultrasound is
manufactured by the General Electric. This ultrasbsystem is designed for medical
professionals including cardiologists, obstetrisiaamd general practitioners. Fig. 1-2 (b)
is the ACUSON P500 POC ultrasound made by the Sisrhealthcare. It is a laptop-

computer-size ultrasound machine and supports pheiltypes of transducers, such as the



curved array, the linear array, the transvagiraidducer, etc. These two POC ultrasound

systems are battery powered and offer hours of ticen

Fig. 1-2. Examples of POC ultrasound: (a) GE Vsahlrasound; (b) ACUSON P500 ultrasound.

Unlike images obtained with other imaging modaditisuch as CT, MRI or nuclear
imaging, diagnostic quality of an ultrasound image highly dependent on a
sonographer’s scan skills. The proper manipulagb@an ultrasound transducer on the
surface of a human body by the sonographer is gakeanorder to generate appropriate
2D images for diagnosis. Thus, well-developed hay®l-coordination, substantial
anatomical and physiological knowledge are criticdpects of ultrasound scan

competency and determine the quality of diagnosis.

Generally speaking, ultrasound sonographers, whbzeutordinary ultrasound
systems in hospitals’ radiology departments, haseeived full-time, lengthy and
comprehensive ultrasound training, and have passachinations before being certified
to take employment. However, with the emergenceP®C ultrasound, physicians
without formal ultrasound training have begun te ufirasound machines in their daily
practice. This trend has raised concerns regardavg to efficiently deliver ultrasound
training to clinicians who have been fully trainidtheir medical fields, but who have

not been instructed in ultrasound scan methodology.

Initially, POC ultrasound aims to provide an imnatdi answer to specific medical
guestions at the bedside or in the emergency ro®nHowever, it has become an

appealing, regular diagnostic tool to hospitalsrumal areas, or in resource limited



settings or low-income developing countries [10,12,13], largely due to POC
ultrasound’s merits, e.g. affordability, durabiligyd portability. The widespread use of
POC ultrasound in these fields also eagerly demaeftisient, affordable training

approaches to educate physicians, nurses andabitieal professionals.

1.1Current Ultrasound Training

For a medical ultrasound learner, today’s ultrasodraining can be primarily
categorized into four types, based on trainingvéeji formats, training length and entry

proficiency levels, as shown in Table 1-1.

Table 1-1. Categories of current ultrasound tragnin

- Entry
. Training -
Delivery Format Proficiency | Involvement
Length

Level
Sonographer|* In-classroom lectures » Full time and
P _ 2 years Minimum | dedicated to
rogram . Hands-on practice ultrasound

* In-classroom lectures '

Medical 1-2 Full time but

Minimum | not dedicated

School |* Hands-on practice without|  years
to ultrasound

actual cases

» Didactic demonstration Part time and

Apprentice- 2-6 , .
ship « Hands-on practice on years Medium ?:Lﬂgslgitr?c?

patients under supervision

Part time and
dedicated to
ultrasound

* Short online lectures 1-2 Medium or

Ad-hoc Solid

« Optional hands-on practice Weeks

1.1.1 Sonographer program model

Of the four training models, the sonographer prograodel provides comprehensive
ultrasound training for the learner who wishes @éadme a professional sonographer. A
typical program lasts approximately 2 years andsists of the study of ultrasound basics,

physiology, pathology and ultrasound scan skillieAthe learner completes the full
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time study, he or she needs to pass the examinatiered by the American Registry for
Diagnostic Medical Sonography to obtain a certtBcaAlthough the learner is not
required to have medical background to enroll thegrams, a bachelor degree in any
discipline is preferred or the applicant must hawadied a few specific college-level
courses. An ultrasound certificate program usuatlyers multiple specialties, including
obstetrics and gynecology, vascular ultrasoundjickrgy, and abdominal ultrasound,
etc. Currently, there are many accredited sonogmrptograms in the Unites States, such
as the programs provided by the Middlesex Commuddilege [14] and the Springfield
Technical Community College [15].

The sonographer program model has been the standaegound training for
decades and it is absolutely able to provide thmkr with effective training in the fields
of ultrasound hands-on and didactic ultrasound. &i@, this model is expensive,
lengthy and not appropriate for POC ultrasoundnless, who usually have solid medical
knowledge and only want to utilize the ultrasoumd promptly answering relatively

uncomplicated medical questions without involvenefmadiologists.
1.1.2 Medical school model

Comparing to the other three models, the medicab@cmodel only requires the
learner to have minimum medical background. A gemdmple is ultrasound curricula
provided by medical schools in recent years [188,29]. Ohio State University College
of Medicine (OSUCM) has developed an advancedsadtrad curriculum for their four-
year undergraduates [16]. It includes didacticuezd, journal clubs, hands-on practice,
and a final project. First and second year ultradoaourses gradually teach basic
ultrasound physics, knobology and protocols. Thedtland fourth year courses are
focused on ultrasound image acquisition and ingtgpion. Faculty members with solid
ultrasound experience in emergency medicine, iatermedicine, obstetrics and

gynecology have been recruited to teach this aulumo.

In another published study, Wayne State UniverSghool of Medicine [17]
(WSUSM) has introduced a standardized ultrasoundricclum for first-year
undergraduates. This curriculum, spanning over acedemic year, includes six 90-

minutes sessions covering ultrasound basic tecbaignd some procedural skills. Each



session contains didactic and hands-on practicmilaé8ly, Virginia et al. [18] and
Angtuaco et al. [19] have developed ultrasoundicula for medical school students

using instructional lectures and organ-specificdsaon practice.

The university programs that are focused on ultraddasics and scan practice have
demonstrated positive outcomes in improving theirbegs’ ultrasound skills. The
participants (medical school undergraduates) akpwessed high level of satisfactions.
However, some limitations have been stated in aliterature references [16,17,18,19].
Undergraduate ultrasound programs often face tladlecige of limited availability of
ultrasound equipment and teaching faculty. Althotigg cost of a portable ultrasound
system (between $30,000 and $60,000) is lower thancost of a larger stand-alone
ultrasound system, it is still costly for medicahsols to acquire ultrasound machines in
sufficient quantity. Additionally, the lack of dewited ultrasound faculty makes the
training less standardized and efficient becauseltiamembers teach the courses based
on their preferences. Another major limitation dfede university programs is that
undergraduates have very limited opportunitiesXer@se ultrasound skills in clinical
settings. Most of the time, they are only allowedtan their partners during the training

sessions.
1.1.3 Apprenticeship Model

The apprenticeship model is usually focused omasdtund hands-on practice and
actual case analysis under the assumption thatetmmer has already acquired the
required medical knowledge. Therefore, this moded heen widely adopted in hospital
residency programs where a graduate continues aj@wgl his or her clinical skills
within a specific field after completing medicahsol. The learner, however, still needs
to take lengthy training sessions before he orislempetent in performing ultrasound
examination and making diagnosis. This is largegduse the traditional apprenticeship
model is “see one, do one, teach one”. Only wheimstructor, a patient scheduled for an
ultrasound scan, and an ultrasound system are ,rdaslyearner will have the chance to
receive the training and practice scan skills. @dmtable scan opportunities make the

ultrasound training less efficient.



According to a recent study that surveyed a nurobdirectors of ultrasound training
programs for obstetrics and gynecology residentatsc[20], most of the programs
primarily relied on observation (sonographers’ destmtion) and hands-on practice to
improve ultrasound skills. These program directbesre agreed that the learning
obstacles mainly resulted from the limited teachiegpurces, i.e., the lack of ultrasound
training opportunities and experienced faculty membMany directors also expressed
the opinion that standard ultrasound training anthpetency assessment would best
facilitate resident doctors’ learning.

As the importance of structured ultrasound traini@gomes increasingly accepted,
some resident programs have begun to investigatdréining curriculum’s impact to
training efficiency. In a recently published arid21], Beaulieu et al. evaluated the
effectiveness of web-based E-learning and handsaaming in a resident program at the
University of Montreal. In this experiment, one gpoof residents received the traditional
apprenticeship training whereas another group sileats received an added curriculum
in addition to the apprenticeship training. The edldurriculum was delivered in the
form of formal courses, which combined self-direlcEe-learning lectures and a number
of hands-on sessions. The training lectures welaveded in different multimedia
formats,e.g.videos and slides, and via module-based apprddic experiment showed
that the residents receiving the added curriculuenfopmed ultrasound scan more
proficiently than those who only took traditiongdpaenticeship training. Another report
has reached the similar conclusion [22]. The ohstetand gynecology department of
Doctors Hospital (Columbus, Ohio) integrated anrasibund curriculum into their
residency program, which included reading prograsupervised hands-on scan and
didactic educational lectures. They found the wmmsisl taking integrated curriculum
performed more proficiently than those who only exgnced standard OB/GYN

programs or one-month ultrasound rotation withauographer guidance.

Although the apprenticeship model with a structysesram has been proven useful
in improving ultrasound scan skills, it still fac#se challenge that an inexperienced
resident doctor occasionally performs ultrasoundnsi complicated environments
without sufficient supervision. This has raised ttencern that patient safety may be

compromised [23].



1.1.4 Ad-hoc Model

Currently, the majority of POC ultrasound learnars physicians, nurses or clinical
professionals who have solid medical background. them, the other three models
cannot meet their needs of completing ultrasoumdhitrg via a short but efficient
program. The ad-hoc trainings may resolve thisngit& in some degree. It has multiple

formats, ranging from comprehensive short-term @ to online training courses.

E-learning and online courses [24] are widely aldé and affordable to the
clinicians who want to learn medical ultrasoundt Bus type of training is not suitable
to a novice user such as a physician with littlenorultrasound experience. The lack of
standard training procedure and scan practice ntakexdequate to provide effective
ultrasound training to those people.

The short-term ultrasound program [25,26] condefesgtares, case study and hands-
on practice into a program lasting over a few daryseeks so that learner can complete
the training in a short time. Instead of certifegtacknowledged credits are given to the
learner who successfully completes such prograrhe. Gulfcoast Ultrasound Institute
[25], for example, offers a broad range of one-wédktime courses, covering major
specialties that often use ultrasound machinesh g obstetrics and gynecology,
emergency medicine, internal medicine, etc. Theggqam is structured with lectures,
clinical studies and optional ultrasound scan [raciadditional charges) on paid
volunteers. The participant should have some lef/ehedical background to be suitable
for this intensive training, but it is not mandatdor the admission. The program is also
open to the people with little or no medical expede.

The ad-hoc training programs indeed are more flexéffordable and accessible than
the other three models in delivering ultrasounthing; however, the learner is less likely

to absorb ultrasound skills with limited hands-q@portunities and no continuing practice.
1.1.5 Challenges in current ultrasound training

The above four models each have their own advastagel disadvantages in
relationship to the POC ultrasound training. Therapticeship model and the medical

school model progressively teach ultrasound skMer a long period so that the learner



has sufficient time to absorb the acquired knowdedgd experience. These two models
are more appropriate for those who have littleana level of medical knowledge. The
short terms training programs (ad-hoc) has beewvepreelatively effective for physicians
or practitioners who have solid medical backgrotmthaster basic ultrasound skills [10].

However, all four models share some common shoitugsnas stated below.

» Limited hands-on opportunities. The scan practicbélieved to be the most critical
part of the ultrasound training and directly infiges final training outcomes, because
learning ultrasound is a mental procedure ofteerrefl to as psychomotor training. A
number of studies [10, 20, 27] have proven thafigeht practice is necessary for

mastering ultrasound scan skills.

» Limited number of teaching faculty. In ultrasoumdiniing, 2D image acquisition and
interpretation are to some extent dependent onnatriuctor, whose competence
directly influences the training result. Almost alltrasound programs employ in-
service faculty members or sonographers to teashréining. The lack of dedicated
instructors may make the training quality incoresistand the training outcome less

satisfactory.

* High cost of training equipment. Although POC wtvand systems are priced
significantly lower than the larger stand-alonegadbund systems, it is still costly to
purchase sufficient number of ultrasound machinegdfucational institutions, not to

mention personal ownership of a training device.
1.2 Simulation Technology in Ultrasound Training

The expanding use of POC ultrasound systems regaimaore efficient, affordable
training approach. Over the past decades, manyighel studies have proven the
efficacy and robustness of simulators in ultrasoathing and promoted the adoption of
Simulation Based Medical Education (SBME). A recseatvey [28] shows that 64
teaching hospitals and 90 medical schools have b#kzing simulation technology in
their programs and obstetrics has been one ofpgbeiaties utilizing simulation widely.
Besides the hands-on training, another major ussinofilators in these programs was

competency assessment, primarily in the form ofllfeek. In obstetrics, the simulation
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has been used in showing how to handle deliveryrgeneies [29] and perform prenatal
examination [30]. A 5-year study [31] has also shothat simulators have been
increasingly used in emergency medicine educa@rihe 134 programs that responded

the survey, 122 programs used simulation in thauication.

In addition to the decent learning effectivenelss,dimulation technology also creates
a safe and supportive learning environment [32]revltee learner can practice his or her
skills before applying them to actual patients. Pgency for Healthcare Research and
Quality (AHRQ) has promoted the development of $ation technology through its
patient safety program for a long time (PAR-11-024)

1.2.1 Effectiveness of simulator based ultrasound trainig

The learning-effectiveness of ultrasound simulétased training has been
extensively studied and many researches have egptinat ultrasound simulators can
efficiently train inexperienced users as well as emen better than conventional
ultrasound training in many specialties [33], sashobstetrics/gynecology [30,34,35],
emergency medicine [36], cardiology [37] and otH88539].

In [40], the authors reviewed more than 100 sinmaglated studies and concluded
that high-fidelity medical simulators can providelueationally effective medical
education. Another review study [41] reached a lsimconclusion regarding the

simulator based education in obstetrics.

Several studies have demonstrated the learningte@ess of ultrasound simulator-
based training in diagnostic ultrasound. One staedgluated the effectiveness of a
multimedia ultrasound simulator in a course of eeused Assessment with Sonography
for Trauma (FAST) [42]. The experimental data idéd that the skills learned in
simulated training could be directly applied to famsubjects. In [30], Maul et al.
conducted an experiment based on the SonoTrainaslegor. Their post-experiment
survey showed that 96% of participants thought thattraining effect was good and the
hands-on training based on the simulator signitigaimproved their actual ultrasound
performance. The study [35] completed by Burdeal.ateached a similar conclusion and

found that obstetricians with little experience Icosignificantly improve their ultrasound
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skills and biometric measurement accuracy and spadd short-term virtual reality
based training.

The effectiveness of simulator-based training itmasbund guided procedures has
similarly been validated. In one study [43], 3(reges received amniocentesis procedure
training based on a simulator, where the learned @sneedle to sample amniotic fluid
from the uterus. The result showed that the siroulags effective in improving clinician
skills. Another recent study concluded that simafat plus didactic training in
ultrasound-guided central venous catheter inserwas superior to didactic training
alone for learning aseptic technique; after reogvicombined training, novices
outperformed experienced resident doctors in themedge of aseptic technique and
measurement [44]. The clear benefits of transoesygdl echocardiography, using two

different commercial simulators, were also desdriiperecent publications [45, 46].
1.2.2 Phantom-based and computer-based simulators

Generally, there are two major types of ultrasosimaulators, either phantom-based
or computer-based. Up to now, the phantom-basedlaiors are still the primarily
training tool in SBME, especially in ultrasound ded intervention training. The
phantoms are made from materials that mimic theugtao and physical properties of

human soft tissueg,g.foam, gel, agar, rubber and gelatin.

The phantoms from the Blue Phantom (Fig. 1-8)ade from elastomeric rubber,
target several specialties, including obstetriesdiology, emergency medicine, etc. They
have been used as training tools for ultrasoundegliregional anesthesia (UGRA) and
served as test objects in many studies. Howevesgtbhantoms are quite expensive. The
unit price ranges from $3,000 (lower torso phantbig, 1-3(c)) to $30,000 (FAST Exam
full torso, Fig. 1-3(a)). The phantom products fréme CIRS are made from patented
solid elastic material. Unlike the Blue Phantone @IRS installs the elastic materials
only in the scanning region rather than in the whohantom, so the cost of the CIRS

phantoms is relatively lower than the Blue Phantophantoms. But if the cost of an

L All pictures in Fig. 1-3 come from Blue Phantormqmany website
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ultrasound machine is included, the price of thearpbm-based training system

skyrockets.
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Fig.1-3. The Blue Phantoms: (a) full torso; (b) epporso; (c) lower torso.

In addition, commercial phantoms do not provideealistic level of anatomical
details, which are often important to ultrasouraining. Some of the larger phantoms are

cumbersome and thereby making simulation systessspertable.

An alternative are computer-based simulators, wiliickate 2D ultrasound images
based on 3D image volumes stored in computerseadsof scanning phantoms to
generate 2D images. These 3D image volumes magretinsist of directly acquired
ultrasound data or CT/MR image data processeddi $omewhat like ultrasound data.
Consequently, a real ultrasound machine is not usélde training. There are currently
different approaches to build computer-based sitorga but they can be mainly
classified into four categories in terms of the gmayeneration approaches [47], as listed

below:

1) 3D ultrasound image volume based approachlhe simulator directly extracts 2D
images, using interpolative algorithms, from 3Dragbund image volumes that are

commonly acquired by scanning human subjects.

2) Deformable mesh model based approachThis type of simulators synthesizes
ultrasound images by simulating ultrasound waveagation in deformable meshes

that integrate tissue elastic properties.

3) ‘Ultrasonified’ 3D image based approach Instead of using 3D ultrasound image

volumes, this method creates 2D images based aviRBr CT image volumes. The
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generated images are made to resemble ultrasousgksrby adding speckle noise

and shadows.

4) Mathematical model based approach This method creates and textures 2D
ultrasound images using mathematic models. Thisoagh is usually used when
anatomical structures of interest are too smalprovide detailed tissue structure

information or moving too fast during data acquosit

The above the four approaches have their own adgastand disadvantages for
implementing an ultrasound simulator. In the tl@pproach, the ‘ultrasonified’ 3D image
volumes typically display the boundaries too wedfided and lacks shadowing artifacts
[48,49] to resemble actual 2D ultrasound images.aBlarge amount of readily available
3D image volumes make this approach attractiveeteeldpers. The deformable model
based approach retains some level of diffractiod sinadowing effects pertaining to
actual ultrasound images. Nevertheless, it is atigreoo computationally demanding to
simulate complex tissue structures [50]. The matigal based approach indeed
provides details in small organs or fast movingitrres, but the generated images are
less realistic and the mathematical models neetthdurverification. Compared to the
other approaches, the 3D ultrasound images bagswah normally offers a higher
level of realism with acceptable computational iezgraents. Therefore, it is currently the

most common approach used by academic researohieusd an ultrasound simulator.
1.3Review of Computer-Based Ultrasound Simulators

Currently, there are several commercial computsetailtrasound simulators made
by different companies, such as MedSim, CAE heatthcSimbionix and SonoSim. In
addition, many universities have developed, ordeeeloping new simulators that are

more portable, affordable and user friendly.

The UltraSim simulator [51], made by the MedSim,tl®e pioneer of modern
computer-based simulators, with the first produatirdy back to 1998. The system is
composed of a manikin, a sham ultrasound consaleaasham transducer, as shown in
Fig. 1-4(a). The system is able to track the oagoh of the transducer and then generate

and display 2D images in real-time based on a 3fasdund image volume. The
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UltraSim simulator currently provides differentitimg image volumes, covering a broad
range of medical specialties, such as obstetriBspriedicine and gynecology. However,
the lack of extended 3D ultrasound image volumektha sham transducer’s limitations
make the UltraSim simulator only able to suppo#nstracking with a limited degree of
realism. Users are unable to see continuous 2Damagile they are scanning a large
region of the manikin. Also, the price of a stathoka UltraSim unit is too expensive (up

to $100,000) to be standard training equipmentfost of educational institutions.

The VIMEDIX simulator from CAE Healthcare, with aedd-to-pelvis manikin, is
focused on visualizing the thoraxes, abdomens ahdsps using a sham transducer, as
shown in Fig. 1-4(b). This product aims to deliveittrasound training for
echocardiography as well as ultrasound exams fogsiland pleural space and FAST
exam. Another CAE product offers obstetrics andegwhogy training with a different
manikin. Learners can develop their skills in acggi 2D images, locating anatomical
structures and performing biometric measuremerits. MIMEDIX simulator visualizes,
on a split screen, anatomical structures on one gidhe screen and the 2D images on
the other. In addition to providing B-mode ultrasdumages, the VIMEDIX simulator
also supports M-mode and Doppler mode, and all@gssuo adjust gain and scan depth.
However, their products simulate the 2D images dase mathematical models or CT
dataset rather than 3D ultrasound image volumess. Mlakes the generated 2D images

less realistic.

The U/S Mentor simulator, manufactured by Simbignaims to teach basic
ultrasound skills in multiple areas, such as ecttography, abdominal exam, FAST
exam and obstetrics. The whole system includesrakinaa sham transducer and a big-
screen monitor (all-in-one desktop), as shown g F4(c). An appealing feature of this
simulator is that a 3D anatomical model is disptagdong with the 2D image on the
screen to help users observing the organs or 8ghiey are scanning. The orientation of
the 3D model can be manipulated by the user toesehthe best observation view.
Similar to the VIMEDIX simulator, the U/S Mentor nsulator uses 3D CT image

volumes to simulate 2D ultrasound images.
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The company Medaphor produces transvaginal andsabalominal ultrasound
simulators with the brand name ScanTrainer, as shiowFig. 1-4(d). A noticeable
difference between the ScanTrainer and other cowgialarltrasound simulators is that
the ScanTrainer’'s scan tracking technology. A aushaptic device is used in the scan
tracking and the haptic device simulates the rase& force caused by the handle. The
ScanTrainer is able to provide 6 Degree of Freettaoking but the scan is restricted to a
limited area. The Medaphor is currently the onlynpany to use mosaiced 3D ultrasound
image volumes. With the mosaicing algorithms, aiiage volume can cover a large
tissue volume and may include multiple organs asglé structures and provides better
scan experience. The major issue of the ScanTramaulator, like the UltraSim
simulator, is its cost, more than $30,000 for gl&irunit; it is too expensive for hospitals
and institutions to acquire sufficient number omsiators for ultrasound training.
Another major issue is that the scan trackingnstéd to a small area, which makes the

scan experience less realistic.

The above four simulators represent the primaryetsodf desktop computer based
ultrasound simulators sold on the market. Althosgiveral literature sources support
their effectiveness in the ultrasound training B0,53], their prices are very high,
ranging from $30,000 to $100,000. The use of a kmardr a large haptic device means
that such simulators usually are installed in satiah centers in hospitals, which thus
reduces the opportunities for individual accesshise ultrasound simulators when no
training is scheduled. The simulators, which Usétrasonified’ CT or MRI images as
training material, do support continuous scan fragkbut the 2D images generated by
these simulators are not realistic as the imagasrgeed based on 3D ultrasound image
volumes. On the other hand, the commercial simtdatbat utilize ultrasound-based
image volumes do not support continuous scan tmgckiith the exception of the

Medaphor’s simulator.

Lower cost simulators exist based on laptop computéor example, the SonoMan
simulator, as shown in Fig. 1-5(a), uses a marakit a laptop computer to provide fixed
position scan. Once the transducer contacts soewfisplocations on the manikin, the

simulator displays corresponding images or vidéldee SonoMan simulator actually
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provides training experience similar to the UltraSiut with lower cost. The SonoSim
[54] (Fig. 1-5(b)) is another laptop-computer-basdttasound simulator that only
supports fixed point scan like the SonoMan simulaitie SonoSim uses 3D ultrasound
image volumes acquired from humans and generatesni2Des based on the sham
transducer’s orientation. A virtual transducer ispthyed on the 3D model of a human
body to indicate the transducer position on theaSom simulator. Comparing with the
simulators shown in Fig 1-4, the SonoMan and th@oSan simulators are more
affordable and portable than the desktop compuasedb simulators but they have the

same limitation of only being able to generate Bages at specific locations.

Fig. 1-4. Selected ultrasound simulators: (a) "@#im; (b) VIMEDIX; (c) U/S Mentor; (d)
ScanTrainer.
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(a) (b)
Fig. 1-5. Laptop-computer-based ultrasound simutai@) SonoMan; (b) SonoSim.

In addition to commercial simulators, a few univigrbased efforts have resulted in
the development of ultrasound simulators in the gasade. In [50], the authors built a
deformable mesh based ultrasound simulator. Thgierement on simple objects, such
as spheroids and cylinders, showed that the siedilahages were visually close to
actual ultrasound images. However, in their attemgptcreate ultrasound images of
complex objects, the computation increased expaibntue to the very large number
of mesh primitives needed to describe those complgjects. The processing was
impossible to complete on a personal computer afem a part of the calculation had
been moved to a Graphic Processing Unit (GPU). Tludy objects with simple
geometries could be simulated in real-time. Kuéterl. [55] developed an ultrasound
simulator based on CT image volumes. This simulatas able to, on a split screen,
display ultrasound 2D images, which were processeddding speckles and noise, on
the right screen, and display 3D anatomical strestwn the left screen. Similarly, this
simulator required the use of a high-end GPU “ardachieve real-time simulation and
visualization. Perk Tutor [56], an ultrasound guidesedle insertion simulator based on
an open source platform, was developed for clinalctitioners. It could visualize
anatomical structures with 3D models on a compatet utilize another computer to

display 2D images generated from a phantom.

2 Quadro FX 5600 (1.5GB). This card is sold at ttiegoof $300 in 2015.
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1.4The Need for An Affordable Computer-based Simulatorfor POC

Ultrasound Training

The need for POC ultrasound training is urgent, #rate is a bigger demand for
training than can currently be met by traditionathods. We believe that ultrasound
simulators can offer an efficient and effective iggeh to meet POC ultrasound training
needs. The simulators provide a means for estatdjsind validating ultrasound training
standards. They can incorporate structured learmuity progressively challenging
imaging tasks, and can assess the scan proficiangyigorous and consistent fashion.
After searching a number of published researchralitee and investigating the
commercial simulators, however, we found that th&iseulators do not provide POC

ultrasound users with effective and affordableniray.

To meet the training need, an ultrasound simulateyuld, in addition to being
affordable, be able to facilitate the learning dfrasound scan skills, such as image
acquisition, interpretation, and decision-making.r&viewed in the previous section, the
existing computer-based simulators have one or rhongations in meeting the POC
ultrasound training needs, such as high cost, adabple, absence of integrated training
curriculum and lacking a realistic simulation oétbscan process. Therefore, we wished to
develop an ultrasound simulator suitable for peas@anership, with standard training
procedure and appropriate scan assessment. Irdidssrtation, we have chosen the

obstetric ultrasound training as the demonstragixample.
1.5The Dissertation Structure

This dissertation is organized based on the simulatomponents and the
implementation of obstetric ultrasound training.after 2 presents an overview of the
design principles and the simulator structure. NEtapter 3 gives an overview of scan
tracking options and describes the design of thmulsitor's scan tacking system.
Following this, Chapter 4 explains the approachduse generate an appropriate
mathematical model to map the abdominal surfaca given 3D image volume to the
generic physical scan surface of the scan trackystem. Chapter 5 presents the design

and structures of the simulator software as welthesimplementation of the software
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modules. A description of how to render a beatetglfheart is also given in this chapter.
In Chapter 6, the dissertation explains the desigd implementation of obstetrics
ultrasound training tasks and the automatic scapsasent provided by the simulator.
With the training and assessment tools availahke]darner is able to practice ultrasound
scan skills with the limited guidance from an inostor. Chapter 6 also covers the
algorithms to segment and to model fetal head dackpta in the 3D ultrasound image
volumes. The modeled anatomical structures are bgetie simulator to evaluate if a
learner has successfully completed training ta€kepter 7 reviews the experiment that
evaluated the training efficacy and simulator perfance. Twenty four'8year medical
students participated in the experiment. A setathdincluding the completion time of
each task and each image volume, the usage ofetharhages and training videos, and
their subjective evaluation of the simulator, weodlected and then analyzed. Chapter 8
presents the design of the ultrasound E-trainirsgesy based on the networked simulator
described in this dissertation together with th&t tesults of the system. Finally, the

conclusion and future work are presented in Chdpter
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Chapter 2

Overview of the Simulator Design Principles and the

Simulator Features

In this chapter, we first describe four charactmssthat we believe the ultrasound
training simulator should have. These four char&ttes have formed the design
principles for the simulator. Then we give an owew of the simulator system (the
tracking system and the user interface), the géineraf 3D training image volumes, the
training curriculum and scan assessment, and theailing system based on the

networked simulators.
2.1 Four Characteristics of the New Ultrasound Simulato

An appropriate POC ultrasound training simulatoouti be able to facilitate
psychomotor learning of ultrasound scan skills,hsas hand-eye coordination, image
interpretation, etc., with an affordable, efficieapgproach. To meet these requirements,

the new simulator should have four characterisdisslescribed below.

Affordability

As mentioned in Chapter 1, the key element in agcgiultrasound skills is the
opportunity for large amount of hands-on practidsing ultrasound simulators is a
possible solution to insufficient practice opporti@s. However, simulator-based
ultrasound training has to date not been widellizeti due to the cost of ultrasound
simulators and training image volumes. Althoughtdapcomputer based simulators are
now available, they are still expensive to purchfasenedical students, resident doctors

and clinical professionals. For medical professi®imadeveloping countries, the cost of a
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simulator for their hospital, let alone for persboanership, is nearly prohibitive. To
make an ultrasound simulator affordable, desigmutswis must be found that utilize
inexpensive, yet reliable hardware components, amlgn for tracking the sham

transducer. In addition, the simulator software tmus suitable for common personal
computers. We have therefore set as a design gadévelop an ultrasound simulator
where the required hardware cost is only a few hreshdollars, in addition to the cost of
a computer on which the simulator software runsis Thill allow simulator-based

ultrasound training to be a reality for a much widgoup of medical students and

medical practitioners.

Realistic Scan Experience

Another critical factor that impacts the successwfobstetric ultrasound simulator is
whether the simulator can offer realistic scan eepee, or free-hand scan, to a learner.
The obstetric ultrasound training cannot be perémsimply by scanning at specific
positions on the abdomen of the simulator maniKime psychomotor learning of scan
skills necessitates that the simulator must haviyalp emulate free-hand scan. This
commonly requires that the scan tracking hardwdre simulator can acquire the
position and orientation of the transducer. In ptlierds, the hardware should implement
5 DoF as a minimum, with 2 DoF for position and @Jor orientation. Currently, a few
5 DoF or 6 DoF tracking systems have been madé&eo foee-hand scan. However, the
cost of such tracking hardware is expensive. Furbee, all simulators having 6 DoF
tracking systems only utilize 3D CT image volumessimulate 2D ultrasound images
and thereby provide less realistic training expere For our simulator design, an

affordable scan simulation hardware supportingsgalscan experience is important.

Self-paced training curriculum and integrated assesment

Even though the efficacy and importance of simutatmsed ultrasound training have
been widely recognized, its potential has not dedén utilized. The ultrasound training
is highly dependent on an instructor’s supervigiad manual evaluation. The absence of
structured training procedures and simulator-basseéssment in an ultrasound simulator
may be the primary obstacles that hinder the implgation of self-paced ultrasound

training.
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Given that the American Institute of UltrasoundMiedicine (AIUM) has published
guidelines for standard obstetric ultrasound exation, the implementation of
structured training curriculum for an obstetricrattound simulator becomes feasible.
From a practical point of view, the design goainworporate self-paced training together
with automated assessment is made feasible bybality 40 model anatomical structures

of training image volumes.

With appropriate structured training curriculum aadtomated assessment, the
learner is potentially less dependent on the awiditha of an instructor and thereby able

to more efficiently complete the ultrasound handdraining.

Remote training for ultrasound scan skills

Another limitation of current ultrasound trainingograms is that training locations
are usually limited to medical schools or hospjtaldiich may be inconvenient for
learners living far away from such locations. Toemome the above restriction on
ultrasound training, it is a design goal that thestetric ultrasound simulator would have
the ability to function in a network, allowing tlmplementation of a remote ultrasound
training system based on the networked simulatmysyhich anyone could participate
the training anywhere when communication netwonies available. The new training
system will benefit ultrasound trainees who arenfivin the areas without training

centers or instructors.
2.20verview of the Simulator System

2.2.1 Implementation of the tracking system and simulatoruser interface

The ultrasound simulator has been designed to dcmgact and affordable training
tool that can provide freehand scan. This requimnessimulator to be primarily software
based. However, the simulator should also be abtedlize the psycho-motor aspects of
diagnostic ultrasound training, that is, the malapan of a physical sham transducer on
a body-like surface while make diagnostic decision®iometric measurements on the
observed ultrasound image. Thus, the new simulatortended to allow the learner to
scan over a particular part of human body corregipgnwith a specific ultrasound scan

protocol, such as obstetrics examination (the destnation specialty in this dissertation).
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This requires a physical scan surface, which apprately represents that particular
body area, and a 3D image volume, which must irclmiatomical and tissue structures
from that particular part of the human body. Suclarge ultrasound image volume,
which for obstetric ultrasound includes most of teenale abdomen, can only be
generated by stitching together several partiallgriapping small 3D images that are

produced during each sweep. Fig. 2-1 depicts thmeegual design of the simulator

system.
Sham transducer and physical Display on laptop
scan surface
Virtual torso 2D P
Position and orientation tracking > and virtual ultrasound
transducer image
A
A selected image volume with Mouse and keyboard to control
associated parameters the simulator

Fig. 2-1. Block diagram of the ultrasound trainisignulator.

As shown in Fig. 2-2, the tracking system is congglosf a physical scan surface
simulating a specific part of human body, and ansheansducer with position and
orientation tracking sensors providing sufficiergtees of freedom (DoF) to support
freehand scan. To reduce cost and size of the aiorulwve chose tracking sensors that do
not require an external physical reference. Thesigly scan surface was constructed as a
cylindrical segment having a footprint that resessbthe scanning area of a typical

female adult abdomen.

The user interface (Ul) of the simulator contaiesesal windows, two of which,
specifically the 2D image window and the virtualksm window, are essential to
implementing the design concept as shown in Fig. B the virtual torso window, a
virtual torso represents the body surface thanhigue to a particular 3D image volume,
and a virtual transducer that follows the shamddacer's motion and move on the body
surface of the virtual torso. The 2D image windowsptays ultrasound images in real
time, which are slices extracted from a selectedrB&ge volume. These 2D images are

determined by positions and orientations of thensh@nsducer on the physical scan
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surface. Instead of showing the complete 2D imdige ®btained from a 3D image

volume, a ‘stenciled’ slice is displayed on theeser. The ‘stencil’ is determined by the

selected transducer type and scan depth. To enhdate features of an actual ultrasound

system, the simulator also includes a basic ultnagdoconsole (gain, TGC, depth,

transducer selection).

Fig. 2-2. The tracking system of the simulator.

File Mode Windows Tasks Helper

Image Library Task 3a: Measure biparietal diameter (BPD)

4 |l | Subject 3
@ *~ Fetal Head Find transverse view of head with thalami, no posterior fossa structures, along with
@ ** Placenta occipitof ! di to calculate head circumference. Freeze image of correct plane and place the
W ** Biaparietal Diameter software calipers appropriately

/| Freeze Previous Task Repeat Task | Next Task |[  ciear Scan Patn Assessment

Fig. 2-3. The user interface of the simulator.
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2.2.2 Generation of extended 3D ultrasound image volumes

The extended (or mosaicked) 3D image volumes usélle training were acquired
from scanning actual pregnant women. To createndetd 3D image volumes from
several partially overlapping 3D image volumes,oaah Markov Random Field (MRF)
based method has been developed by Jason Kutachidetailed in his dissertation [57].
This mosaicking process can be divided into fivepst including sub 3D volumes
acquisition, rigid registration, calculation of asaicking function, group-wise non-rigid
registration and finally blending, as shown in F@4. This approach is briefly

summarized here for the sake of completeness.

2D Image acquisition 3D vols. generated Calculation of

tagged with position from 2D images. L. stitching seam where

and orientation — Rigid registration of ‘ | volumes will be

information adjacent volumes | mosacied together
Blending along seam | 3D Non-rigid

Final mosaiced to compensate for ‘ registration in vicinity

volume generated speckle pattern <—‘ of seam to remove

\_mismatch \_discontinuities

Fig. 2-4. The procedure to produce the extended®iye volume.

The first step is the acquisition of a series of @Dasound images. A Philips iU22
ultrasound system with a convex array transduces uged to perform freehand scan.
The transducer was coupled with Ascension TechimedogakSTAR 6 DoF position
tracker so that the position and orientation ofhe@® image could be registered by
Stradwin software. All 2D images in one sweep wéen stored together to generate a
sub 3D image volume. One sweep far from coversmi@e abdomen region due to the
scan depth and width of the transducer, so seggreéps had to be performed starting
from the left side (or upper side) of the abdomerthe right side (or lower side) to
capture the necessary anatomical structures irtbeleabdomen. In total, 11 pregnant
subjects were scanned by experienced sonographére &niversity of Massachusetts
(UMMS) Medical School following an approved IRB pwool. After all sub 3D image
volumes were generated, rigid registration was weduhk adjacent sub image volumes,
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which corrected the fetus movement. In the thiggpsa stitching plane was calculated to

remove the overlapped area between two adjacer8Bulmage volumes.

The group-wise non-rigid registration problem wasnfulated as a maximum
likelihood estimation, where the joint probabilignsity function was comprised of the
partially overlapping ultrasound image volumes.gbraased methods were then used for
optimization, resulting in a set of transformatiaghat brought the overlapping volumes
into alignment. Furthermore, the registration peoblwas simplified by introducing a
mosaicking function, which partitioned the compesiblume into regions filled with
data from unique partially overlapping source vadsmWith this method, composite

obstetrics image volumes were constructed usimiceli scans of pregnant subjects.

A blending solution, which is the final step of thmsaicking process, has also been
implemented. The simulator user will have bettgrezience if the volume boundaries are
visually seamless, and this usually requires someading prior to stitching. Also,
regions of the volume where no image data was aeltefrom pregnant women should
be given an ultrasound-like appearance before bdisglayed in the simulator. This
ensures the trainee's visual experience is noadegrby the missing tissues or organs. A

discrete Poisson approach has been adapted to plcslothis task.
2.2.3 The obstetric ultrasound training curriculum and assessment

The obstetric ultrasound training curriculum wasigeed by following the standard
second or third trimester examination guidelineblighed by the American Institute of
Ultrasound in Medicine (AIUM). According to theseuidelines, the standard
examination is divided into several individual taso that a sonographer can perform the
examination in a specified sequence. By utilizinig feature, we developed our training
curriculum covering three topics, as shown belovedile 1 is focused on the didactic

ultrasound whereas Modules 2 and 3 are focusetdepultrasound scan training.
Module 1: Basic concept and physics of medicabstiund.
Module 2: Orientation to the obstetric space.

Module 3: Fetal landmarks and biometry.
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The training in Modules 2 and 3 is composed ofdlsteps. In step one, the learner
watches prerecorded a set of tutorial videos whesenographer demonstrates ultrasound
scan skills and shows how each individual taskeidgomed on the simulator. Then, in
step 2, the learner practices the scan skills $gri@s of training tasks, such as identifying
anatomical structures and completing biometric mesaments, over a set of human
subjects (3D image volumes). After each task ismetad, the simulator will assess if
the learner has correctly identified or measurexl gdpecified anatomical structures. In
step 3, the simulator evaluates the training peréoce using the exact same tasks in step
2 but on new 3D image volumes. The difference betwe practice and test modes is
that the simulator provides feedback about wrorantidication or measurement in the
practice mode while the test mode only gives thalfresult. Module 1 does not contain
step 2 (practice).

An essential component of the training simulatatdsability to automatically assess
whether the learner has correctly identified or soeed a specified anatomical structure.
This is achieved by using a pre-inserted surfaaeé ghrrounds, or bounds, the specified
structure at a close distance, where such a surfdtde referred at as a ‘landmark
bound.” Every training image volume has a numbdaonfimark bounds, either registered
by experienced sonographers, or segmented andrtbeéelled by algorithms.

2.2.4 The E-training system for ultrasound scan training

In a traditional obstetric ultrasound hands-on ficac a common scenario is one
where an instructor teaches a small group of learbg demonstrating and guiding the
scan on a pregnant subject using an ultrasound ineachnitially, the instructor
demonstrates the scan skills required to identifym®asure the specific anatomical
structure(s) in question. Then, an individual learmay have a chance to perform the
scan under the instructor’s guidance after the aestnation. Ideally, all learners have the
opportunity to perform the scan by themselves v#bs supervision. Actually, this
typical ultrasound hands-on training can be mimickased on the networked obstetric
ultrasound simulators, i.e., the E-training syst8uch a system allows each training
participant to be instructed in the hands-on tragnat his/hers particular geographic
location. Based on the scenario described aboeetréining can be carried out by first
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observing and then practicing ultrasound skillthie synchronous mode (group training),
followed by personal exercise in the asynchronousden(individual training), as
illustrated in Fig. 2-5.

€-J-
¢e-&5 U-2-4&

Simulator

.
Simulator ' Server
Learner

G@@

Learner Simulator

Instructor

SYNCHRONOUS MODE

¢ —

Learner

Simulator

ASYNCHRONOUS MODE

Fig. 2-5. Conceptual depiction of the E-training®m in synchronous and asynchronous modes.

The synchronous mode allows all training partictpan observe the scan ability of a
given participant selected by the instructor. Tinizde requires all networked simulators
except one to function as passive monitors thatlalysthe 2D ultrasound image, virtual
transducer etc., to be identical to those on thigeasimulator. The passive simulator will
be referred to as thebserver simulatoand the active simulator will be referred to as the
operator simulator.The E-training system requires a dedicated semwegstablish the
communication and accomplish the data transmisamang the networked simulators.
In the synchronous mode, the instructor managesagsggnment of the operator
simulator status. In contrast, the asynchronousemsdiesigned for individual training
where the instructor gives all simulators statusopsrator simulators so that every
participant is able to perform the scan indepengeitaining in the asynchronous mode
is performed according to the training curriculumdathe automatic assessment,
described in Chapter 6.
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Chapter 3

Design of the Scanning Tracking System

To design a new simulator supporting realistic sgperience, we must ensure that it
has the ability to track the instantaneous posiéind orientation of the sham transducer
relative to the physical scan surface, requiriray 6 Degrees of FreeddrtDoF) tracking
sensors. There are currently many position ancht@ien tracking devices available to
build a scan tracking system. Choosing approprefterdable sensors for the simulator
design is not trivial. In this chapter, we will ghan overview of tracking devices that
have been used in the design of simulators andasihevices, explain sensor selection

criteria and implementation of the new simulatacking system.
3.10verview of Motion Tracking Devices

In the past two decades, motion tracking devices lbeen widely used in many
applications, such as robot-assisted surgery sgs{&®,59], interactive entertainment
systems [60], and especially simulation systemsof1 Generally speaking, the motion
tracking is a process of capturing the position andntation of objects in a specific
coordinate system. Entertainment systems use atiezameans to encourage players to
more actively engage in the application. The groeftthe Wii play station and the Xbox
Kinect has demonstrated appealing features of tbBom tracking systems. On such

game consoles, a player utilizes his or her bodyement to control the avatar in a game.

36 DoF refers to the freedom of the movement ofohject in 3D coordinates. For
example, in Cartesian coordinates, an object caglyfrmove and rotate around X, y or z

axes.
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This particular experience offers two distinct atheges that cannot be provided by a
simple game handle: 1) it makes the player reediyi play a role in a game to a large
extent and enhances his or her hand-eye coordma?jpthe player is more likely to

repetitively play the game.

An ultrasound simulation system requires its traglksystem to have as few as 3 DoF
or as many as 6 DoF to detect the orientation arpd/sition of the sham transducer. For
example, normally, a manikin-based ultrasound siou$ utilizes 6 DoF sensors in the
tracking system where a user scans the manikioviatlg its contours of the body surface.
This method is absolutely not fit for our desigragdue to its limitations, that is, non-
portable manikin and unaffordable tracking devidess also noticed that the simulators
with such 6 DoF tracking systems usually do notpsuptissue deformation. In other
words, a 5 DoF tracking system, 2 DoF for positi@tking and 3 DoF for orientation
tracking, is sufficient to implement a manikin-baseltrasound simulator. A feasible
approach to reduce a tracking system’s cost isotobine multiple sensors to achieve
sufficient Degrees of Freedom. Currently, there three major categories of tracking
systems [63] that have been widely used in simtgafthey are the electro-magnetic, the

electro-optical and the electro-mechanical tracldygtems.
3.1.1 Electro-magnetic Tracking Sensors

Compared to the other two categories of trackingtesys, the Electromagnetic
Tracking System (EMTS) has a shorter developmestbty, but it has been the most
widely used technology in the tracking system desidhe EMTS is able to offer 6 DoF
tracking by means of a small sensor attached toobject to be tracked. The sensor
measures the flux of a magnetic field created byebettromagnetic transmitter to

interpret positions and orientations of the object.

Currently, there are two varieties of EMTS, implenteel with either alternating
current (AC) or direct current (DC) pulsed magnéietds. In the AC system, positions
and orientations of a sensor in the AC magnetid fiee calculated based on the changes
of induced currents in the sensor itself [64], watlypical update frequency of 30 — 150
Hz. In contrast, the DC system uses a sequenceé&gbudses, which turn the transmitter

on or off, to create a magnetic field [65]. Theseai short delay between two adjacent
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pulses to avoid eddy currents. Thus, unlike thes&tem, the DC system significantly
reduces field distortion caused by neighboring inagects. The sensor also depends on

the change of induced currents to compute the t@atien and position data.

Fig. 3-1 shows two examples of the EMTS, the trakBT(DC) manufactured by
Ascension Technologies and the FASTRAK (AC) mantufisexl by Polhemus.

3D Guidance trakSTAR
D

4066

(a) (b)
Fig. 3-1. Two examples of EMTS: (a) trakSTAR; (ABFRAK.

The EMTS [66, 67] has short latency (down to 5 nmgh accuracy~ 0.2 mm),
medium cost¥ $3,000) and does not need a line-of-sight to thjeats, but the EMTS is
easily influenced by interferences from metalligeals in the vicinity of the tracking
sensors and inherent accuracy problems. A didliseidvantage of the EMTS is the need

of an external reference in the form of a trangmitt
3.1.2 Electro-optical Tracking Sensors

The Electro-Optical Tracking System (EOTS) utilizzsombination of electronic and
optical components to track an object of inter8stsically, there are three varieties of
electro-optical tracking systems, including the esartracking based, the cross-

correlation based and the pattern recognition bakedro-optical tracking systems.

The first type of the EOTS consists of one or nzameras that are mounted over an
object to be tracked, with a number of tracking kees attached to the object. A good
example isCranUS [68], a neonatal cranial sonography simulator. [é/lthe user is
moving the transducer having the tracking markecaed, the cameras mounted on the
track capture the transducer’'s motion and sendirifgmation to the tracking data
processing computer. Normally, camera-based trgcg&ystems have acceptable refresh

rates (> 60 Hz) and accuracy (<1mm). However, &trons include the need for a direct
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line of sight, high dependence on environmentalofac(cameras locations, brightness,

etc.) and the need of camera(s) as external refesen

In contrast, the cross-correlation ba€se@TS does not need an external reference,
and a familiar example is the optical computer neolisuses optical imaging to monitor
movement relative to a surface by comparing twaisetial digital images captured by a
CMOS sensor. Although this type of EOTS does ngire an external reference, it only
offers 2 DoF position data and measures onlyréiative positionof an object in a

specific coordinate system.

The third type of EOTS is based on pattern recagnitvhich is a surface imprinted
with a coded pattern and used in conjunction wittigital pen. It is therefore called
digital paper or interactive pap@9]. Currently, one of the most widely used digita
papers is developed and manufactured by the Anatmp@ny (Lund, Sweden). The
Anoto pen has a tiny camera and a microprocessbeeéded inside the pen. When the
pen is activated, a built-in infrared light illunaites the pattern so that a small piece of it
can be captured and analyzed to obtain the abspbagiion of the pen relative to the
pattern. As shown in Fig. 3-2, the position infotima is coded in the form of a dot
pattern placed on a grid, but with each dot haargpecific displacement relative to the
grid. The unique offset pattern of the dots at wegiposition expresses an absolute

location of this position.

Absolute coordinate

addrasses Basic pattern

B :.‘ := :-: _f_t_rc..ff | Left
g WE e "q_
-n L ouy | —
Tl et — " Right
fp ey i
1.5mm 0.3mim

Anoto patiern

Fig. 3-2. The position interpretation of Anoto taotogy'.
Of particular relevance for the simulator desigrthe fact that the Anoto pattern
provides the absolute location without the need dar external reference. Another

important feature is that the Anoto pen can deitschbsolute position on the digital

4 http://digitalpennews.typepad.com/blog/anoto/
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paper even though the paper is placed on a cuwéaice [70]. This feature is critical to
our tracking system design because we requiredbedmates of a specific point on the
paper must be absolute values. Such coordinatemthe influenced by the orientation,

location and geometry of the paper.
3.1.3 Electro-mechanical Tracking Sensors

The electro-mechanical tracking systems exist Iomaad range of implementations,
such as joysticks, spaceballs and haptic devicegieheral, these devices detect the
position and orientation of an object by mechamyoadnnecting the object to a reference

point.

The haptic device is an electro-mechanical sensar simulates tactile feedback,
such as force, vibration and/or motion. Moreoveansn haptic devices have ability to
track the movement of an object with high updatesghundreds per second) and great
accuracy. This technology has been used in somasaiind guided procedure simulators
and in most surgical simulators. For example, tt@n$rainer simulator utilizes a 6 DoF
haptic device, the Phantom Omni, to provide posiiad orientation data. However, the
cost of such a 6 DoF haptic device is high and tlaisuited for an affordable ultrasound
simulator. In addition, the lack of ability to eratg free-hand scan makes haptic devices

improper for implementing an ultrasound simulatgporting realistic scan experience.

Inertial Measurement System (IMU) represents aetkfit mechanical method that
enables orientation tracking by means of one orengyroscopes. By using the earth’s
magnetic north and gravitational field as referenstors, the IMU’s absolute
orientation in world coordinates can be obtainetheut drift. For example, the PNI
Fusion sensor consists of a 3-axis gyroscope, &is3-&ccelerometer and a 3-axis
geomagnetic sensors. This IMU provides rotationleaimgformation(a,f,y) along three
orthogonal axes in the form of quaternions, withate of 125 Hz and a resolution of
better than 0°LAn integrated drift correct algorithm is implemethtia the PNI sensor to

make it free of drift.
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3.2Requirements to Build a Tracking System SupportingRealistic Scan

To make an affordable simulator support realistans experience, the tracking

system should satisfy the following requirements:
» Degree of Freedonbe able to track 5 DoF position and orientation.

» Speedprovide tracking data more than 25 times perseéd¢o guarantee smooth

visual experience.

» Accuracy measure the position and rotation angle with exguof better than 1

mm and 1°, respectively.
* Robustnessot affected by environmental factors.
» Cost and Portabilitysuitable for personal ownership.
» External referencenot accepted.

Based on the overview of the tracking technologiesented in the previous section
(with features summarized in Table 3-1), the omlyson that meets all the requirements
stated above is a combination of an IMU and a pattecognition based EOTS. All
current tracking technologies presented in theiptevsection meet the requirements of
accuracy and speed for the simulator’'s trackingesys Thus, we selected the Anoto
digital paper and pen (Anoto AB, Lund, Sweden) #mel PNI SpacePoint IMU sensor
(PNI Sensor Corp., Santa Rosa, CA), as the spé@fiking components.

The combination of the Anoto pen and the PNI senffers 5 DoF of tracking ability,
2 DoF for position tracking and 3 DoF for orientatitracking. This is sufficient to
support realistic scan experience assuming thatoveot consider the tissue compressive
force applied by the sham transducer to the scafacgu If an ultrasound simulator
existed for training in performing a prostate wWoband exam, the detection of
compressive force should be included in the tragkiypstem design, because a physician
depends on the deformation level of the prostafgédict the subject’s health condition.
For obstetrics ultrasound, tissue deformation &gists, but it is not a key factor to
determine training efficacy. Thus, without simudgfi tissue deformation, the new

tracking system only requires 5 DoF.
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Table 3-1. The feature summary of the trackingesyst

DoF External Cost Adverse Impact
Reference
. |R It in distortion if th tal
EMTS 6 Yes Expensive gsu n O!IS gr onl . -e_ meta
objects exist in the vicinity

Camera-based .| Need line of sight and subject to

. 6 Yes Expensive .
tracking system ambient factors
Optical Mouse 2 No Affordable| Cannot provide absolute positior
Digital Paper 2 No Affordable| Not significant
IMU 3 No Affordable| Not significant

: . .| Cannot be used as a trackin
Haptic Devices 2-6 No Expensive device g

3.3Implementation of the Physical Scan Surface

To reduce the cost of the tracking system and geowealistic scan experience, the
design of the new simulator requires that the majsscan surface meets a few

requirements:

(1) The dimensions and geometry of the physical scarfasa should be

approximately similar to the body surface to benseal.

(2) Every point on the scan surface must have a wéiheld position and surface

normal in a 3D Cartesian coordinate system.

(3) The physical scan surface must be easily trangphoassembled and produced

with affordable materials.

(4) The physical scan surface should accommodate acgugrinted with the Anoto

pattern.

For an obstetric ultrasound simulator, the physisabn surface should have
dimensions and geometries similar to the femaleoaigsh. Therefore, we have chosen
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the physical scan surface in the form of a 120tsed of a cylindrical surface with a
cylinder radius of 0.6”, placed on a stiff plaghase with a footprint of 10” x 12”. The
physical scan surface was made from a lightweiglkt iaexpensive polyethylene sheet
and covered with a 0.4” foam rubber layer to eneutae compliance of a body surface.
The Anoto pattern was printed on a water-proofabile vinyl sheet with a human skin
color. It has an area of 12” by 15”, similar dimems to the physical scan surface, and
was placed on top of the physical scan surface wit@e physical scan surface is shown
in Fig. 3-3.

Intuitively, a two-end truncated ellipsoid segmeesembles the abdomen of a
pregnant woman better than a cylinder segment daepractice, however, using the
ellipsoid segment has a distinct disadvantage,the.segment does not adapt to the vinyl
sheet with the Anoto pattern, which is a flexildet not stretchable rectangular sheet. If
we force the vinyl sheet to follow the shape of éigpsoid segment, the Anoto pattern
will be distorted and the position tracking will la¢st be accurate and at worst not work
at all. Although we did not choose the physicalnssarface as the ellipsoid segment, a
cylinder to ellipsoid model (detailed in Chapter was developed to improve the

accuracy of position tracking.

(a) (b)

Fig. 3-3. The physical scan surface (PSS): (aMe; (b) side view
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3.4Implementation of the Sham Transducer

Ultrasound transducers (or probes) for scanninghenskin surface come in three
broad categories: linear array, phase array angeduarray transducers, as shown in Fig.
3-4, each of which has application in multiple spkies. Given that this dissertation is
focused on obstetrics ultrasound, we chose to lauglam curved array transducer (Fig.
3-4 (c)) for the simulator.

\."‘"—-—"-'—_J

(a) Linear Array

Major Specialties:

musculoskeletal,
breast, small parts,
. vascular

-

(b) Phased Array

Major Specialties:

abdominal,
obstetrics, cardiac

b

=

(c) Curved Array

Major Specialties:

gynecology,
obstetrics,

. abdominal

Fig. 3-4. The major ultrasound transducer types.

The major components of the simulator trackingesystthe Anoto pen and the PNI
sensor, were integrated into the sham transdu@dr l'gwving the same shape and size as
an actual curved array transducer. The Anoto peamaunted in the center of the sham
transducer. A pressure sensor in the pen actitlagegosition tracking when the pen (the
sham transducer) makes contact with the Anoto aftee physical scan surface). An
early evaluation [70] of the Anoto technology iraties the pen could correctly measure
the absolute position with a resolution of arour® fBm when the pattern was placed on
the curved surface (the physical scan surfacegdtition, the correct position data could
be obtained if the sham transducer was tilted noentioan a 55° angle relative to the
normal of the contact point. This angle is sufintig large, as verified by obstetric
ultrasound sonographers, for emulating the fullgeaf the transducer’s orientations

used in an actual abdomen scan. Instead of usowustam IMU circuit board fit to the
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sham transducer, the PNI sensor prototype washatiatco one side of the sham

transducer, as shown in Fig. 3-5(b).

(a) (b)
Fig. 3-5. The sham transducer: (a) front view; §ije view.

3.5Transformation of Five DoF Tracking Data

The tracking data obtained from the sham transdspexcifically from the Anoto pen
and the PNI sensor, cannot directly guide the osdnd orientation of a reslicing plane
through a selected image volume, i.e., the gemgrati a simulated 2D ultrasound image.
The 2 DoF position data are referenced to the mgaiar Anoto pattern rather than the
PSS. Similarly, the PNI sensor outputs the oriemmatlata in world coordinates with a
format of quaternions. Thus, before the five Da€king data from the sham transducer
are passed to the simulator software, they neee appropriately transformed for the 2D

image generation.
3.5.1 Implementation of position transformation

By utilizing the fact that the PSS has fixed dimens and geometry, the 2D
coordinates X;y) on the Anoto surface can be transformed to the c3findrical
coordinatesd,d) referenced to the PSS, as shown in eq. (3-1)ean@3-2) as well as in
Fig. 3-6, where L and Z are two dimensions of theot® pattern; | and z are the

transducer position on the pattern.

g==" (3-1)
d= § (3-2)
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(a) (b)
Fig. 3-6. The physical scan surface: (a) crossisactiew; (b) side view.

3.5.2 Overview of orientation transformation design

A common problem of directly using Euler anglestle IMU is gimbal lock. A
gimbal is a suspended ring that is able to rotateirad an axis. For the IMU, three
gimbals are nested one within another to adaptiootabout multiple axes. The gimbal
lock appears when the rotation axes of two of kinee gimbals are parallel which creates
a situation where only two DoF are available. Atemative to Euler angles is
guaternions [71], which overcome the limitation Bfiler angles in representing an

object’s orientation in 3D space.

However, the quaternions from the IMU sensor canpetdirectly used in the
orientation transformation, because the data deearced to world coordinates, based on
the magnetic north and the gravitational field,heatthan the PSS coordinates. In
principle, the simulator user could manually alige PSS with world coordinates, that is,
one side of the PSS is aligned with the magnetithneith the assumption that the PSS
is placed on a level surface. However, this wouddilmpractical and lead to many

training errors.

Alternatively, we developed an auto calibration imoel, based on a custom version of
the Anoto pen and the known PSS dimensions and ggepnto make the IMU output (in
guaternions) be referenced to the PSS coordinates.custom Anoto pen unlocks an
undocumented function that allows the pen to deteetspinning angle around the pen
itself, with absolute reference to the printed Anggttern. The spinning angle can be
correctly detected on the curved PSS as long aArb& pen is aligned close to normal

to the surface.
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3.5.3 Conversion between Euler angles and a quaternion

To obtain a correct orientation of the sham tranedin the PSS coordinates, the PSS
geometry information and the rotation angles of sham transducer around its axis, in
the form of Euler angles, are integrated into ateungon obtained from the IMU. Thus,

the conversion between Euler angles and a quateiniceeded.

A quaternion consists of a real part and three inaayg parts in 4D space, usually
written asq, + iq; + jq, + kqs, or [qo, 41, 92, q3], Wherei? = j2 = k? = ijk = —1 and
ij =k, jk =1, ki =j. Before showing the conversion equations, we needefine
three axes of the IMU, which are used to identdtation angles around the IMU itself
and describe a rotation sequence. As shown in3-1g.the rotations around the x, y and

z axes are called roll, pitch and yaw, respectively

Pitch

Fig. 3-7. The IMU axes.

In 3-dimensional Euclidean space, a specific oagon of a rotated objeck!’, can
be expressed by the multiplication of three 3x3rioas with its original orientatioriyl,
as shown in eq. (3-3), wheRg, R, andR, denote the rotation matrices derived from the
rotation angles around the x, y and z axes of tdidean space, respectively. The order
of the rotation matrices matters in the calculatibg. (3-3) expresses that the object is
first rotated around the x axis, then rotated adotine y axis and finally rotated around

the z axis.

M'= R, R, R M (3-3)
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In this dissertation, we define the rotation ordeffirst rotating the IMU around its y
axis, then around its z axis and finally aroundxitaxis. Therefore, the equations for

converting a quaternion to the corresponding Eahgjles are:

pitch = atan2(2 * q, * g, — 2 * q, * 4,95 — q5 — 43 + q5) (3-4)
roll = atan2(2 *q, * q, — 2 *q, * q;,,—q7 + q5 — q3 — q5 (3-5)
yaw = asin(2 * q, * q, + 2 * q, * q,) (3-6)

wherepitch, roll andyaw are defined in Fig 3-mtan2 returns an angle between -
andr; asin returns an angle betweeti2 andn/2. The above three equations are suitable
for calculating all rotation angles except for twonditions, that is, when thgaw
rotation equals to 90° or -90°. However, these $imgular angles will never occur in the
simulator’s tracking system due to the geometratrietion of the physical scan surface

and the sham transducer.

The equations of converting Euler angels to a qoette are shown below:

q, = clc2c3 — s1s2s3 (3-7)
q, = s1s2c3 +clc2s3 (3-8)
q, = slc2c3 + cls2s3 (3-9)
q; = cls2c3 — s1c2s3 (3-10)
itch itch
(:1=cos(p ),sl=sin(p2 )
_ yaw _ yaw
where < c2 = cos (T)'SZ = Ccos (_2 )
3 = (roll) 3 (roll)
c3 = cos - ) s3 = cos -

3.5.4 Implementation of the orientation transformation

In world coordinates, a special orientation ocauren the x and z axes of the IMU
points to the magnetic north and aligns with thavgy vector, respectively; this
orientation gives a quaternion with the value q0(Q,0). It is calleddentity quaternion

and it is similar to an orientation that resultsalilgnment along the major axes of 2D or
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3D Cartesian coordinate system. The Euler anglébeofdentity quaternion are all zero
in the three orthogonal directions. Therefore, thest step in the orientation
transformation is to define identity quaterniontle PSS coordinates. As shown in Fig.
3-8, we define a special transducer orientatiorthen PSS coordinates as the identity
guaternion. Given that the IMU outputs the quatarn(Q,,) of the sham transducer
referenced to world coordinates while it is oriehtes visualized in Fig. 3-8, we use its
inverse quaternionQ(,!), computed by eq. (3-11), as the orientation efP$S in world
coordinates. If the PSS is placed in a new ori@tiaf,,' needs to be recalculated. The
Q,,* can be obtained either by manually registeringtthesducer to the simulator or by
an automatic calibration using the spinning axaudee of the Anoto pen. As mentioned
above, we prefer the latter rather than the forstethat the simulator can offer a more

realistic training experience to users.

) . o
Q' = "ortira When Qu =qo +1ia: +jq, + kas (3-11)

Fig. 3-8. Identity quaternion in the PSS coordisate

The automatic calibration utilizes an undocumerfitgttion of the Anoto Pen, which
measures the spinning angle around the pen’s ow# axthe transducer’s axis. Thus,
with the angle and the geometry of the PSS, thesthacer’'s orientation in the PSS
coordinates is calculated when one prerequisitaedas that is, the transducer is roughly
normal to the PSS at the contact point, as showiign3-9. Currently, an angle less than

5° away from the normal at contact point will tregyghe automatic calibration.
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Fig. 3-9. The local coordinates established ondbetact point.

The automatic calibration starts with calculatihg inverse quaternion of the IMU,
then calculating a quaternio@ ) derived from the angles, as defined in Fig. 3-6 (a),
and finally calculating a quaterniofd{) derived from the rotation angle, of the Anoto
pen.qQ, is the quaternion that describes the transducatiootonly around the y axis of
the PSS starting from the identity quaternion dagan in the PSS coordinates. This will
generate a dynamic PSS-based local coordinatemnsytthat specific positiog is the

transducer’s rotation referenced to this local dowte system.

Given thatd and ¢ are known values, we can obt@p andQ,, using the equations

for converting Euler angles to a quaternion. Thesrdation of the PSS in world
coordinates is calculated using eqg. (3-12).

Qpss = Quw " Q5" Q,' (3-12)

Once the)pgs is calculated, we multiply it to any quaternia@) (from the IMU to
obtain the quaternior() of the transducer referenced to the PSS cooelinaging eq.
(3-13) and then convert it to Euler anglesp, ).

Q'=QQpg (3-13)

It should be noted that the PSS'’s orientation tsanfixed value while the simulator is

running because any change of the PSS orientatibtrigger the automatic calibration.
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3.5.5 Summary of tracking data transformation

The orientation and position transformation desdilin this section is part of the
sham transducer driver. The five DoF tracking dé@ta.f,y) need to be further
transformed from the PSS coordinates into a giveni®age coordinates using a
mathematical model generated offline (detailed iafter 5) before these data are used

to guide the simulator to extract 2D images from 3D image volume.
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Chapter 4

Mapping of 3D Image Volumes to Physical Scan Surfac

The obstetric ultrasound simulator utilizes 3D agund image volumes acquired
from actual pregnant women to generate 2D ultradaorages. Each pregnant woman
has a different abdominal geometry and therefoeeahdominal surface of every 3D
image volume is unique. However, the dimensions geaimetry of thé?hysical Scan
Surface(PSS) are fixed. As a result, the movements ofstiean transducer on the PSS
cannot be directly used to generate 2D images ftangiven 3D image volume or to
guide the movement of the virtual transducer ondbeesponding virtual torso. Thus a
mapping approach is required to match the positafrmoints on the abdominal surface
of a given 3D image volume to corresponding poorishe PSS so that the orientation
and position of the sham transducer in the PSSdauates can be correctly transformed

into the unique 3D image coordinates.

Usually, the geometry of the abdominal surface pfegnant woman in the second
trimester approximates a truncated ellipsoid segmbiat is, the surface obtained by
cutting an ellipsoid by a plane parallel to the onagxis and then truncating at both ends
[72]. Therefore, we proposed an approach that eseaftcylindricaVirtual Scan Surface
(VSS) and a truncated ellipsoidgirtual Abdominal SurfacdVAS) from a given3D
image volume to implement the mapping from the atidal surface of the 3D image
volume to the PSS. The use of the VAS aims to imprthe accuracy of the sham
transducer’s position transformation by making tita@sformed coordinates closer to the
abdominal surface in the coordinates of the 3D emagume. This cylinder-to-ellipsoid
model assists the simulator in transforming the Degree of Freedom (DoF) tracking

data, as detailed Chapter 3, into the 3D imagemelgoordinates. In this chapter, we
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will explain the approach used to extract the 3M0amhinal surface from a given 3D
image volume and the method employed to generat¥ 86 and the VAS based on the

3D abdominal surface.
4.1 Extraction of the 3D Abdominal Surface for a 3D Imae Volume

The main objective in the generation of an extendBdimage volume was the
alignment of fetal and maternal anatomical striegun the overlapping parts of adjacent
individual 3D image volumes [57]. This usually rited in the abdominal surface of a
given 3D image volume being irregularly shapedotimer words, only a part of 3D image
volume surface could represent the actual abdonsudhce of the pregnant woman.
This issue often caused difficulties in mapping 3eabdominal surface to the PSS with
our proposed approach, such as lowering the mappacgracy or even making the
mapping model impossible to generate. Thus, we etkdd obtain the appropriate

abdominal surface suitable for the mapping befoeating the VSS and the VAS.

The valid abdominal surface of a given 3D imagaintd was determined manually
by observing the whole image volume in a MatladkiboSliceBrowser. Fig. 4-1 shows
an example of displaying a 3D image volume with\@®ws. The background of the 3D
image volume is totally black (voxel value = 0)daany fetal and maternal tissues or

organs except fluid have voxel values between 12&ad(white).

In the xy and yz planes of Fig. 4-1, only partloé 8D image volume surface can be
considered to be the abdominal surface, but wenateable extract it by simply
truncating the 3D image volume along X, y and zsaxed then detecting the first non-
zero value along the y axis of the 3D image volwuoerdinates. This approach was
originally used to capture the abdominal surfacehef 3D image volume from The
Visible Human Project [70], but it had been prover appropriate for the extended 3D
image volumes in our early evaluation, as it ofeghto an incomplete abdominal surface

or excessive tissues included in the abdominabsarf

Therefore, instead of determining the abdominafaser based on 2D images, we
created the isosurface, or mesh, of the given 3&genvolume, with Fang’'s algorithm

[73], and then determined the abdominal surfadgi@émder, a 3D graphics and animation
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software. Technically, we only utilized one partFaing’s approach, that is, the modified
surface extraction routine built on an open-souieery, CGAL [74], to extract the

surface of a 3D object as a mesh of triangles.

[X:192, Y:271, Z:235,
Time:1/1], value:191

Abdominal surface

Fig. 4-1. The abdominal surface in 2D views.

Fig. 4-2 (a) is the 3D view of the isosurface mekthe 3D image volume in Fig. 4-1.
The highlighted region of the mesh can be thoughtaabest representation of the
abdominal surface of the 3D image volume for creptiylinder-to-ellipsoid model. To
obtain a smooth abdominal surface for the modehtm®e, the mesh was usually
preprocessed in Blender, where all mesh verticasrefmresenting abdominal surface
were manually removed and then the remaining \estigere smoothed by a Laplacian

smoothing function. The final smoothed mesh is showFig. 4-2 (b).
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(a) (b)

Fig. 4-2. The abdominal surface extraction: (a) @@ume mesh, with the surface of the image
volume shown in a darker color; (b) final abdomiimakge surface.

4.2 Overview of Creating the VSS and VAS

The parameters of the VSS and the VAS are calallzased on the geometry of the
smoothedAbdominal Image Surfad@IS), as shown in Fig. 4-2 (b), using the Newton-
Gauss non-linear algorithm (NGNL) [75]. In our ialtapproach, we tried unsuccessfully
to generate the AIS directly from the correspondif@S. This lack of success was
because the mesh geometry was likely to deviatm o ellipsoidal shape (even after
smoothing) and/or the number of vertices of abdamimage surface was limited.
Therefore, we optimized the process of generatieg dylinder-to-ellipsoid model, as
depicted in Fig. 4-3. All computations are basedtlm Cartesian coordinate system of
the given 3D image volume, which was establisheth@ngeneration of that 3D image

volume.

The first step is to determine the parameters ef WsS, which are the radius,
spanning angle and cylinder axis of the VSS, byastl square fit approach based on
NGNL (Step 1 in Fig. 4-3), in order to make the V830 the AIS. Note that the VSS is
always coaxially aligned to the PSS, but has dffiédimensions and spanning angles. In
general, the z axis (cylinder axis) of the VSS a¢ parallel to the z axis of the image
coordinates in the first execution of the NGNL. &a&t, a transformation matrix R is
computed by aligning the VSS cylinder axis to thexis of the 3D image coordinates and

then the AIS is transformed by the matrix R (stap Eig. 4-3). The purpose of this step
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is to simplify the computation in step 3 by reding the number of the VAS parameters
(or DoF) that can be modified to only the lengtlhshe ellipsoid axes instead of having
to include the parameters of rotation and trar@tabiesides the axes length. The inverse
matrix of R (the dashed line between the AIS amdMBS in Fig. 4-3) will be used in the
probe driver to offset the AIS transformation. Thia least-square-fit VAS is generated
from the transformed AIS using the NGNL algorithmwhere the VAS has same
parameters (the dashed line between the VAS and$i&in Fig. 4-3) as the VSS except
for the radii, which are the ellipsoid axes lengtihshe image coordinates (step 3 in Fig.
4-3). In addition, the VAS’s major axis is coaxyadlligned with the cylinder axis of the
VSS. Restricting the number of the VAS parametéss guarantees that we can obtain
the VAS successfully despite the limitations of 8Bage volumes mentioned early.
Finally, the PSS and the VSS are normalized. Thdeigeneration and the calculation

of the parameters are described in detail in tbdmses 4.3 and 4.4, respectively.

Step 1: Apply NGNL

+ Transformation
. matrix based on
- tep 4: Scaling . i 2
Physical Scan |, Virtual Scan | VSSaxis .| Abdominal Image
Surface A Surface . Surface
r J Step 2: Transformation
The cylinder
. 2 parameters of axis, h 4
. . angle from V5S Step 3: Apply NGNL Transformed
Virtual Abdominal |, :
Abdominal Image
Surface
Surface

Fig. 4-3. The procedure for generating the VSStaerdvAS

The computation of the parameters for the cylindesllipsoid model was executed
off-line for each image volume in the Matlab, ahdde calculated parameters were then
stored in a file associated with the correspondibgimage volume so that both the 3D
image volume and the model parameters can be Idadether. During the training, the
simulator probe driver first performs a linear sBmwmation of the position and

orientation of the sham transducer to the corredipgnposition and orientation on the
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VSS, followed by a second linear transformationthe probe driver to the VAS that

actually represents the abdominal surface of ttagewolume.
4.3Generation of the VSS Model

The generations of the VSS and the VAS involve sdveoordinate systems,
including the world coordinate system, the physg@dn surface coordinate system and
the 3D image volume coordinate system. Given that YSS and VAS are directly
derived from the AIS of a given 3D image volumé,camputations in this section are

based on the 3D image volume coordinate system.

An arbitrary point(x, Y, Z) on the cylinder surface that computes the leasarsgfit

VSS can be parametrically expressed in eq. (4-1):

Xc rcos6@ Xo
Ye| =Ry xRy x[rsin€ |+ |Yo (4-1)
Zec L Zy

whered is a free variableQ(< § <2x) andL is the length of the cylinders < L < w0);
further, (o, Yo, ) is a point on the axis of theylinder;r is the cylinder radiufx andRy

are rotation matrices derived fratpnandéy that denote the rotation angles of the cylinder
axis around the x and y axes, respectively, angiveq. (4-2) and (4-3). The parameters
of L, r, X0, Yo, 20, 6xand 6y are fixed values for a specific cylinder. The mat, which
denotes the rotation around the z axis, is noudwd in eq. (4-1). This is because the
cylinder axis of the final VSS for a given AIS wesughly parallel to the z axis in our

early studies anRB; was not necessary to our following calculation.

1 0 0
R, = |0 cosB, —sinf, (4-2)
0 sinf, cos6, |

cosf, 0 sinHy'
R, = 0 1 0 4-3)
—siney 0 cosHy_

Translating and/or rotating a cylinder to makeeétthe least-square-fit (LSF) to the
AIS is a challenging task. Instead, the cylindeassumed to be in a fixed position and
the AIS is manipulated to obtain the VSS. The figglinder is described in eq. (4-4).
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rcosf
J’c = |rsiné (4-4)
First, the AIS, which is described in terms of w@$ and faces, is translated by a
vectorv; = (0, O, - zen) as shown in eq. (4-5), whe(®i, Wi, ) and (V'xi, V'yi, V'z)
represent™ initial and translated vertex of the AIS, respeaty. N is the total number of

the AIS vertices. The variablgen: is obtained from the AIS centroidkcéns Yeens Zeny,
calculated in eq. (4-6).

Vi
U,yi = vyl 1<i<N (4-5)
v’ 7i Zcent
1%

Xcont 1;, l 1 Vi
Ycent N {V 1 Vyi 1<i<N (4-6)
Zcent 1¢N

N i=1Vzi

To use the NGNL, a five-parameter set (6x, 6y, %, W, I) is defined to manage the
translation and rotation of the cylinder. The solutof eq. (4-7) gives the cylinder that is
least square fit to the corresponding AIS. Sintitaf4-1),6 is a free variabled(< 0 <2x);

L is the length of the cylindeRx andRy are rotation matrices;is the cylinder radiugx,
Vi, 0)is a point on the axis of theylinder.

xC
[YC] =R, * R *
ZC

To solve eq. (4-7), the NGNL requires an initiabgs. Our initial study suggests that

rcos O

r sm 0 )’t (4-7)

the cylinder axis of the AIS was roughly parallelthe z-axis of the 3D image volume
coordinates, so the initial guess is sefa$\=0, X = -Xceny = -Ycent, I = C, Wherec is
constant number and associated with each 3D imalgene. A vectord is defined such
that theit" scalar is the distance if vertex on the abdominal surface to the cylindés;ax
hence, this vector can be written as:

dxi ‘U xL
dzi
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wheredyi, dyi, dii are tha™ distance that is projected to the x, y and z aRgsandR’y are

inverse matrices d&;, R.. The distance of a vertex to the cylinder surface

fi = [dxi dyi

dxi

yi

/dxiz +d,°

where Nt = d

/dxiz +d,,°
! 0 _

dzi]* Nt —r

(4-9)

To minimize the =[fy, f2,..., §], a Jacobian Matrix is constructed in eq. (4-10).

where <

\

i

ofi

ds,

dfi

ds,

9 0fi Oh 0K
054 ds, 0s3  0sy
fn 9fn Ofn OfN
054 ds, 0s3  0sy
= Nt*R'), *dR', *
= Nt*dR'), * R’y *
af;
—=Nt*R', xR’
0S5 yooux
af;
— =Nt=*R',*R’
0S, yooux
i _ _
65‘5

dR’y, dRyare the derivatives &'y, RYy.

1 0
dR', = |0 —sinb,
|0 cosO,
—sing, 0
dR'y, = 0 1
—cos8, 0
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x| -1

0
—cos0,
—sin6, |

cosBy

0
—sinHy_

(4-10)

(4-11)

(4-12)



The five-parameter setis continuously updated using eq. (4-13), wheig the solution
of eq. (4-14).
s=s+p (4-13)
p=—f/] (4-14)
Once the tolerance level which is computed in eq. (4-15), is less thanredefined

value (0.01 in our case), the update process tatssn allowing a LSF cylinder to be

defined, as shown in Fig. 4-4 and described using4e7).

t = norm(p)/norm(s) 18)

£-axis

god H-axis

Y-axis

Fig. 4-4. The LSF cylinder that fits to the AIS

To simplify the generation of the VAS and to ca#tel the cylinder angle and
cylinder length, the LSF cylinder and the AIS asnsformed using eg. (4-16), whéxe
Yo, Z) and(X¢, Y, Zc) represent points on the pre-transformed and passformed LSF
cylinder surface, respectivel{xo, Yo, 2) is the point on the cylinder axis and closest to
the centroid of the AIS. As shown in Fig. 4-5, @eds of cylinder passes through the
origin and is aligned to the z axis. A cylindersdeébed by eq. (4-16), is defined as the

standard cylinder or the cylinder in the standavsimon.
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v SRt
i
R BAPAN Y 0
N
PO

Fig. 4-5. The LSF cylinder and the AIS in the staddosition

Then, the cylinder segment andglemax as shown in Fig. 4-6, is determined by two

AIS vertices p1andp), which lead to the maximum cross-section anglthefsegment.

The anglédvcmaxis calculated by eq. (4-17) usipg andp’z, which are the projections of

prandpz on thexy plane that passes the origin. The cylinder leifigihs determined by

the maximum length between two AIS vertices aldmgz-axis. The final VSS is shown

in Fig. 4-7.

evcmax -
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o
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Fig. 4-6. The cross section angle of the LSF
cylinder
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Iprallpral (4-17)

400
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400
Haxig 500 .
f-axis

Fig. 4-7. The final VSS that fits to the AIS



4.4 Generation of the VAS Model

Similar to the generation of the VSS, an ellipsthdt is a least square fit to the
transformed AIS can be simply expressed using448], wherea, bandc are the radii
of the ellipsoid along the x, y and z ax@s; ¢ <z, 0 <0 <2z. Thus, a parameter set
(a,b,c)can be used to manipulate the geometry of ellgpsoi

Xe a cos @ sin ¢
[)’e] = [b sin 6 sin ¢
Ze

ccos @

-18)

An N-by-3matrix f is defined,whosei™ row vector is the minimized distance from

theit™ vertex(vxi, Wi, &) of the AIS to a poinfxei, Yei, Zi) on the ellipsoid surface:

fia Uxi Xei
fi=|fz]| = ([Vyi] - [YeiD' (4)19
fis Vgzi Zej

To minimize the matrixf, another Jacobian matrix is constructed, as shiwn
equation (3-20)N is the total number of the AIS vertices.

o Of Of
0s4 ds, 0s3

] = (4)20
ofn 9N N

0s4 ds, 0s3

r%: —cosgsmgo
s, 0
ofi [ .9
where<£= —sin @ sin ¢ 1<i<N
2
! 0
0
E[ 0
\ 0s3 — COS @

The parameter set is continuously updated using eq. (4-13) and (¥-dmtil the
tolerance value reaches a predefined value (0.Cduincase). The initial guess of the
ellipsoid radii are set to half of the AIS lengtileng x, y and z axes. The LSF ellipsoid
and the final VAS are shown in Fig. 4-8 and Fi@,4espectively. The VAS length along
z-axis is equal to the VSS length.
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The generation of the LSF ellipsoid does not carsile rotation parameters so that
the ellipsoid is actually coaxial with the LSF ayder. In our studies, all available 3D
image volumes had similar radii along the x andegsaso we replacemlandb with their
average value in the position transformation. Thade the VSS and the VAS share the

same segment anglemaxand thereby the position transformation couldib®bfied.
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-100
=200
-300
400
-500
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a g 400
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4007 400 -200 200 o 400

Heaxs Koaxis Y-oaxis

200
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Fig. 4-8. The LSF ellipsoid to the transformedrig. 4-9. The final VAS that fits to the
AlS. transformed AlS.
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Chapter 5

The Simulator Software Framework

Generally, there are two common approaches fordéhelopment of the obstetric
simulator software: custom implementation or impdemwation based on open-source
libraries. A custom software gives developers maxinflexibility, but the development
is time-consuming. The ultrasound training simuldtas been designed with the goal of
making it readily adaptable for other ultrasoungleations in addition to obstetric
ultrasound. An appropriate solution for developsugh ultrasound simulator prototype is

the use of open-source libraries.

As of now, a few open-source libraries, such asitédmaging Interaction Toolkit
[76] (MITK), Voreen [77], Visualization Toolkit [7B(VTK), MeVisLab, ParaView,
VolView, 3D slicer, etc., have been used in 2D/8iage processing and rendering. Each

of them has its own strengths and weaknesses ilemgmting the simulator software.

The VTK is a widely used 2D/3D image-rendering dityr supporting multiple data
formats, including raw data, DICOM, JPEG, etc. Thiisary is written in C++ which
makes 2D/3D image rendering fast on medium speetpaters. The VTK provides a
number of high-level classes and complete classrdeant, which make this toolkit less
challenging to developers. The conceptual rendgripgline of the VTK is shown in Fig.
5-1. The data of a 2D/3D image are first processedl single or cascaded configurable
filters. Then, a mapper creates rendering primsgtifirem the processed data via a lookup
table. The actor, which is the physical represéemaif the 2D/3D object in the rendering

scene, is viewed by a virtual camera that actsuasah eyes. The final image is lastly
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displayed in a VTK rendering window. Although th@K offers powerful visualization,

only limited number of User Interface (Ul) classes provided to developers.

Data Source I—b Image Filter I—} Mapper I—b Actor I
e N\
/ |
4
Rendering I
Window e

Fig. 5-1. The VTK data flow.

The Voreen is an interactive visualization framekvarritten in C++. It provides a
prototyping environment where a user is able toally create the data processing and
rendering pipeline without coding. This featuresualized programming, allows the
developer to drag, connect and configure a setafgssors, which contain a number of
built-in functions, without touching low-level ckeess. For the developers who have
limited programming experience, the visualized paogming eases their work in
processing and rendering 2D/3D data. However, tiseial programming approach
sacrifices the flexibility of an open source librand is less useful for implementing our
obstetric ultrasound simulator. Similar to the VTiKe Voreen supports multiple medical
data formats, such as TIFF, RAW, and DICOM. Anotfeature of the Voreen is the
GPU-based ray-casting technique. This feature, tewerestricts this toolkit to the
platftorms having NVIDIA and ATI graphic cards inka because the high
computational demands resulting from the ray-cggichnique has to be computed on a
GPU.

The MeVisLab is another visual programming toolkithich only allows limited
custom codes to be added to a new application. fidssiction actually makes the
development of our simulator impossible on the MgMb. Another limitation of the
MeVisLab is that the toolkit is implemented witretbbject-oriented (OO) programming.
The MeVisLab utilizes the underlying library, th@€&nhGL, to complete the rendering, in
which the OpenGL needs to globally access the rargldata. The OO design principle
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requires the data to be encapsulated into an icstand thus make graphics performance

less efficient.

The VolView and the ParaView are two open source@mdlering libraries based on
the VTK. Both of them require the developer to piase support service from Kitware to
receive technical supports and development trainihgs would pose a budget challenge
to our academic research. Moreover, the VolViewy@upports 3D volume data and
thereby it is not suitable for implementing our slator, which needs to process 2D

images and mesh data.

The MITK, a superset of the Insight Toolkit (ITKheé the VTK, creates a single
rendering pipeline so that the ITK's image proaegsalgorithms can be seamlessly
integrated into the VTK rendering process. The MIi#t only inherits all classes from
the ITK and the VTK but also extends them by prowdeasy-to-use Ul classes. In
addition to the common medical data formats suggoity the above open source
libraries, the MITK is able to handle non-medicatal The feature of being independent
from a graphic Ul library makes it available to iéegrated into multiple application

frameworks besides the current Qt platform.

One critical consideration in the simulator desigrihat the system must guarantee
smooth visual experience by being able to rendeerttan 25 frames (2D images) per
second on a typical recent computer. Given thatdlgecasting technology has problems
in the rendering speed and precision [79], we l@dnsen the MITK as our development
platform. For the Ul design, we use the Qt [80],ickhis a widely used cross-platform
application framework. The MITK has implementedeav fQt widgets that can quickly

bind the image processing and the rendering liesao the simulator.
5.10verview of Qt and MITK

5.1.1 Overview of the Qt framework

The first version of the Qt toolkit was released 895. It was initially developed by
Trolltech, which later was purchased by Nokia. Tteis currently being developed by
the Digia and is available to developers througtommercial license or an open source

license. There are two major Qt versions that Hsen widely used by developers, the
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Qt 4.x and the recently released Qt 5.x. The sitoulaas implemented using the Qt 4.8
with the open source license for two reasons. |Aingt Qt 5 was not available when we
chose the simulator software platform. The sec@ason is that the core framework of
the Qt 4.x is same as the Qt 5.x’s so we do nadl heeipgrade our Qt platform for the

simulator.

According to the functions of the Qt classes, thayp be categorized into several
modules, such as the core module, the Ul moduéendtwork module, the multimedia
module, the image processing module, etc. Theseul®®dhave been used in
implementing the simulator software. As a parthaf tore module, some basic container

classes, such as vector, list, hash table, et@lsoeprovided for developers.

Most of the Qt classes were developed using thelatd C++ language and are the
inheritances of a base class, QObject, in whicmigue communication mechanism,
signals and slots, was implemented. This mechaisism essential feature making the Qt
different from other application frameworks. Thgrsils and slots can provide flexibility
in Ul programming and preserve the efficiency o tB++ language to a large extent.
Thus, the Qt needs to use its own meta-object dentpi convert the Qt classes using the
signals and slots to the corresponding C++ codk&hawill be then compiled and linked

in a standard toolchain, such as the GCC or theddaft toolchain.

In the Ul design, a major consideration was thdcieficy and robustness of
communications among different objects. For exaymdter a specific event is triggered,
such as that a user clicks a button, the buttoecblyill call appropriate functions to
handle this event. The most common approach igwsitallback mechanism, that is, the
object (the button) calls a pointer to a customcfiom in which the specific event is
processed. The callback function is usually regestedoy passing a ‘void’ pointer to a
register function. In other words, the developar pass a pointer to any function, even
one that has different arguments than the callbaekhanism expects. When such a
function is then called, it will cause the applioatto crash. Thus, the traditional callback
is not type-safe and tightly coupled with the senalgect (the button). The use of the
signal and slots overcomes these shortcomingsotArstmber function actually has two

roles in a class. It either functions as a normaier function to be called by an object
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or it is coupled with a specific signal emitted &gother object without knowing who

sent the signal. In practice, there is no limitshe number of signals (slots) that can be
connected to a slot (signal) as long as the nundietypes of parameters of the signals
and slots are same. As shown in Fig. 5-2, for eXxantpe object A has one signal that is
concurrently connected to two slots of the obj&tnd C, and two signals of the objects
B and C are connected to one slot of the objedih#. sequence of establishing a signal-
slot connection matters in the design. This mehasthe slot functions of the objects B

and C will immediately execute one after the othethe order that the connections have

been established, after the object A emits theasign

Fig. 5-2. An example of the connection of signald slots

In the Qt, the QWidget, an immediate subclass ef@®bject, is the primary base
class of the Ul related subclasses and containg/ ipeedefined signals and slots. The
developer is able to directly use them in the paogning or define custom signals and
slots by inheriting the QWidget or its subclasSés signals and slots have been heavily

used in the simulator to make the software folloes©O paradigm.
5.1.2 Overview of the MITK

Most of the MITK classes are the inheritances & thK classes; therefore an
important feature, the smart pointer, can be reusdatie MITK. The smart pointer is
designed to dynamically manage allocated memonyishased to store an instance. The
pointer has a reference counter that tracks howyntanes the instance has been
referenced. If the instance is out of scope orused anymore, the counter is reset to zero

and then the instance is automatically deletedndgJshe smarter pointer makes the

61



system more robust because dynamic memory allocatid collection are managed by
the system instead of the developer. However, fdature becomes less attractive after
the C++ 11 is released, which has introduced lingarbage-collection ability. The C++
11 has a set of smart pointers that function sigilas the MITK smart pointer. Thus, in
the simulator software, the MITK smart pointer iginty used to create MITK objects
while the custom objects’ pointers are createdguie smart pointers provided by the
C++ 11.

The MITK basically follows the model-view-contrallstructure with an exception
that different data can be viewed in the same windithis feature, achieved by using a
specific class (DataNode) to store different typéslata, is important to the simulator
because the Ul needs to display different typeslaih in one window, called data
manager. Moreover, the MITK allows all data to banaged in a tree structure so that
multiple types of data can be concurrently rendevigd same geometric information. In
addition, properties, such as visibility, colorg.ettan be added into the same data node,
allowing the MITK to appropriately render the datsed on the user’s choice. The data
node class and its storage class are two fundaheataents for implementing the data

manager of the simulator.

In the MITK, each data object that can be visualimassociated with a geometric
object, which defines the object's geometric infation in the MITK world’s
coordinates measured in millimeters. There areraétgpes of MITK geometry classes,
of which the plane geometry and display geometagsgs are the two most important
ones with regard to the simulator. The former defithe geometrical information of a
cutting plane that is used to generate a 2D imege & given 3D image volume and the
latter stores the geometrical information thatgedito appropriately display a 2D image
on the simulator screen. Actually, the MITK geomaibjects do not directly manipulate
data objects; instead, the operations of rotatianslation and scaling are carried out

through the underlying VTK class, the vtkMatrix4x4.

As the superset of the VTK, the MITK generally évils the pipeline in Fig. 5-1 to
render data objects using a rendering manager.nGivat all MITK data objects are

derived from the ITK, a few MITK interface classegsre implemented to connect the
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ITK-derived objects to the VTK pipeline, as showm Fig. 5-3. After the update
procedure is initiated by the rendering manag®)EK rendering window, derived from
the QVTK Widget, sends the request to its corredpun VTK renderer through an
associated MITK renderer. Then, the VTK renderenipidates the corresponding VTK
actors and then completes the rest of renderingegroe. Thus, the MITK rendering
window is able to directly display the final imag&hout involving additional data type
conversion. The VTK actor, actually rendered byWi&, are indirectly managed by the
MITK renderer through a specific interface cladse tvtkMiktRenderProp class. In
practice, the MITK renderer acts as a delegatothef VTK renderer to indirectly
participate in the rendering procedure.

MITK. rendering MITK renderer mitkVtkProp
window
MITK

1
VIK ‘rendermg VTK renderer
window

VTK actor

Fig. 5-3. Data rendering in the MITK.

5.20verview of the Simulator Software

The simulator software contains several componentslocks, as shown in Fig. 5-4,
including the Ul, the virtual reality module, thatd manager, the sham transducer driver,
the 2D image reslicer, the training assessmentl@dommunication module. The
simulator Ul is responsible for interacting wittketbser and managing the communication
among the software blocks. The communication blaskan essential part of the remote
training system, will be described in Chapter 8e Blatomatic training assessment will be
detailed in Chapter 6.

Before the Ul and other software components areriesi, we will introduce

another concept, the anatomical landmark, whichressmts an anatomical structure
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identified by the user by clicked point(s) on a 2Mage. In practice, a specific
anatomical structure, such as a placenta on a 2igeirs represented by a large number
of pixels. With respect to the placenta identificaf this means that there is more than
one correct answer for the simulator assumingtti®user clicked on a point on the 2D
image inside the placenta boundary. Accordinglgrehare usually multiple landmarks
but only one or two anatomical landmark boundsafepecific anatomical structure. The
simulator requires two landmark bounds when thenitrg involves biometric
measurement because the user needs to click twtspmi the 2D image to represent the

anatomical structure, such as a femur.

3D image volume

\\‘h___ﬂ’J,/"'__“‘\

Virtual torso &
virtual transducer

\_f\
Mouse & keyboard

Anatomical
landmarks

Data manager

YyvyY
A\ 4

Training assessment

A

Sham transducer
driver

Simulator user interface

A A

A
A\ 4

2D image reslicer

Communication
module

Sham transducer

Virtual Reality »
module

Fig. 5-4. The simulator software structure.

As shown in Fig. 5-5, the Ul is composed of sixdpdndent windows, each of which,
except for the instruction window, actually reprgsea dedicated software block to
interact with the user. All windows are the immeeéiaubclasses of the QMainWindow
class. In addition to the Ul, the simulator softevatso contains the input devices drivers
(a mouse and a keyboard) and the sham transdut@mnica complete system. The input
devices are managed by the Qt, so they are notredvia this chapter. A brief

description of the six windows, along with the tma@d the control panel, is given below.

i.  The virtual reality windowlt displays a virtual transducer and the virtioaso of

a selected 3D image volume. The virtual transdgcans the virtual torso, by
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Vi.

Vii.

viii.

exactly following the movements of the sham trameduA scan path is also

displayed on the virtual torso in the form of whilats.

The data manager windowt shows a selected 3D image volume and the
anatomical landmarks identified/measured by the.uBee user is also able to
review the 2D image that contains the landmarki{giiified in the previous tasks

or to delete the landmark(s) identified by mistake.

The 2D image rendering windowA 2D ultrasound image, extracted from a
selected image volume, is displayed in this windbeanwhile, it interacts with
the user by allowing him or her to click maternatidetal organs and tissues on

the 2D image with a mouse.

The instruction windowlt displays the instructions of a given traintagk as well

as the evaluation feedback provided by the simulato

The landmark windowit has two drop-down menus. The upper one is tieed
choosing the name of the anatomical structure tti@tuser is identifying. The

lower one is used for reviewing a biometric measiaet value.

The timer The simulator informs the user of the total tineeor she has spent on
a selected training image and tracks the scandineach task. This timer is reset

to zero when an image volume is loaded into theilsitar.

The ultrasound console windowhe user configures the scan depth, the overall

gain, and the transducer type.

The control panelThe buttons on this panel was designed to makesbr easily

move from a given task to the previous or next @skepeat this task. After the
button ‘repeat task’ is pressed, the simulator mataally resets the instruction
window and deletes all landmarks that have beemtiftedl by the user in this task.
The button ‘Clear Scan Path’ is used for removimg $can path shown on the

virtual torso.
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Fig. 5-5. The simulator user interface.

The simulator was implemented based on event dgvegramming, which has been
widely used in modern Ul design. An event driveplegation usually has a low-priority,
endless main loop waiting for incoming events, sashclicks of a mouse button or a
keyboard button, timeout signals from a Qt timedTKIITK messages, etc. When a
specific event occurs, the application calls appade routines defined by the developer
to handle that event. After the event has beengsssrl, the application returns back to
the main loop to wait for future events or procetizer events that have been queued.
The Qt encapsulates the main loop into the QApiitinaclass, hence the developer does
not need to implement such an event driven sysiEm. simulator uses a Qt timer,
configured to send timeout signals every 30 mdrigmer the event of rendering a 2D
image. That means that the simulator roughly ren@8r2D images per second. After the
timeout event is captured, the simulator first iestes the most recent position and
orientation data from the sham transducer and gesrerates a 2D image based on the
transformed 5 DoF tracking data. The position andntation of the virtual transducer
referenced to the virtual torso is simultaneougigtated.

Although multi-thread programming is common in madeapplication design, the
implementation of safe communication between thseadtill complex. We carried out a

study during the simulator development process,clwishowed that the simulator,
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implemented with one thread on a common computas, able to respond to the user in
real-time while it was rendering 2D images. Addiadly, given that the Ul-related
widget are usually not thread-safe, all simulatoftvgare blocks and the Ul were

implemented with single-thread design.
5.3The Sham Transducer Driver

The sham transducer driver acts as an interfatransform 5 DoF tracking data from
the sham transducer into the corresponding posai@horientation in a given 3D image
volume coordinates. The generation of 5 DoF tragklata(d,d«,5,y), which is the first
step of tracking data transformatjdras been described in Chapter 3.5. The second step

will be detailed in this section.

As shown in Fig. 5-6, the 5 DoF tracking déda «,f,y) are first transformed to their
corresponding position and orientation on the tegstare-fit cylinder segment and then
on the least-square-fit ellipsoid segment, basetherphysical scan surface geometries

and the mapping parameters, as shown in eq. (5-1)

f1 f2
1)physical = Pcylinder = Pellipsoid 5'1)

Physical Scan Surface Virtual Scan Surface and Virtual Transducer
and Sham Transducer Virtual Transducer and Virtual Torso

Fig. 5-6. The position and orientation transfornaati
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5.3.1 Position transformation from the PSS to the VSS

The Physical Scan Surface (PSS) is in the form ofliadrical segment with fixed
dimensions and an angular span of 120°8 2adians. Accordingly, the Virtual Scan
Surface (VSS) is generated using the least-squttiregfmethod to make it fit to a given
image volume, under the constraints of cylindrisajment geometry with dimensions
and angular span as variable parameters. In getleeahngular spans and dimensions of
the VSS and the PSS are not same. Thus, a sppoifit on the PSS is needed to be
transformed to that on the VSS, as described ifialfeving paragraphs.

First, the lengths of the cylinder axes of the R8& VSS are normalized to the range
[-0.5, 0.5], respectively. As shown in Fig. 5-7gthentral anglé.,inq.- Of the VSS,
obtained using eq. (4-17), is scaled to the PSSillangpan of #/3 radians so that a
specific angle ) referenced to the PSS can be transformed todhesponding angle
(0,5s) referenced to the VSS, as shown in eq. (5-2).rdrenalized coordinated] along
the cylinder axis (z-axis) of the PSS becomes tireesponding normalized coordinate
(dyss) Of the VSS, as shown in eq. (5-3)

0 0175 S

S - (5-2)
2m/3 ecylinder
dyss = d (5'3)
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Fig. 5-7. Deviation angles in the cross sectiofiafthe PSS and (b) the VSS

5.3.2 Position transformation from the VSS to the VAS

For a specific position on the VSS, its unscaleordimate,z, is calculated in eq. (5-
4), wherelgyinqer is the length of the VSS anli,; is obtained through eq. (5-3). Then,

is used to calculate the anglaising eq. (4-18). The,,; can be obtained using eq. (5-5),
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where the VAS refers to the Virtual Abdominal SedgVAS), and then plugged into eq.
(4-18) to calculate the x and y coordinates. Albwab position transformations are
actually referenced to the 3D image volume cootdmaso thex, y, 2 is the final

position for guiding 2D ultrasound image extraction

Z= lcylinder' dyss (5-4)

91.7(15 -

gvss (5'5)
5.3.3 Orientation transformation

The orientation data from the IMU are referencedvtwld coordinates, defined by
the gravity and magnetic north vectors, and nedakttransformed to the corresponding
orientation in the PSS coordinates and then inldleal coordinates established at the
scanning point, that is, the contact point of thans transducer on the PSS, as shown in
eg. (5-6), based on the geometries of the VSS &med MAS, respectively. The
transformed orientation data will be used by the @iage slicer to generate the
corresponding image. The transformed orientatiota,dahich actually represent the
Euler angles that forms a rotation matrix, are usedletermine the cutting plane’s

orientation in the 3D image coordinates.

3 f4
Qworld = QPSS = Qlocal (5'6)

The orientation transformation involves the quaternmultiplication and the
conversion between Euler angles and a quaternius.i§ because the transformation can
only be linearly calculated based on the quaternibareas we are only able to obtain the
transducer’s rotation in the form of Euler angleshe PSS coordinates. We assume that
Q is the quaternion derived from the,f,y); thereforeQ can be expressed by the
multiplication of two quaterniong,; and@,, as shown in eq. (5-7, denotes that the
sham transducer only rotates around the z axih@fRSS starting from the identity
quaternion (Fig. 3-8) in the PSS coordina@sis the rotation referenced to the local

coordinates established at the contact point o®8f®, as shown in Fig. 3-9.

Q=0Q2% 0 (5-7)
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The orientation referenced to the VSS is then abthiby multiplying Q, with the
inverse quaternion o, and with a quaternio@;, as shown in eq. (5-8p; is derived

from the deviation anglé,,, in Fig. 5-7.

Quss = Q2 Q1° Ql_l ’ Qi (5-8)
As shown in Fig. 5-7 and eq. (5-5), the deviatiogla @,,) on the VSS is same as

the deviation angled(,,;) on the VAS, so we can directly use the quater@igq as the

final quaternion, which is referenced to the 3D gmaolume coordinates.
5.4The Virtual Torso and the Virtual Transducer

The PSS, a cylindrical segment with fixed dimensjosimulating the human
abdomen, provides only a generic representatioth@factual abdominal surface of a
pregnant woman who was scanned to acquire the 3genvolume. Given that the
geometry of a pregnant woman’s abdomen slightlyegafrom person to person, we
utilized virtual reality to enhance the simulatealism. While the user is performing
ultrasound scan with the sham transducer, a vittaakducer scans the virtual torso of a
selected 3D image volume by following the movemaitshe sham transducer on the
PSS with respect to both position and orientatidrus, the limitation in realism caused
by using the generic physical scan surface canlleeigted by using the virtual torso,
whose abdominal surface is geometrically in praportto the selected 3D image'’s

abdominal surface.

We implemented the virtual torso by manually bleigda generic female body with
the unique abdominal image surface (the AIS) ofvarg3D image volume in Blender
software, as shown in Fig. 5-8. First, the AIS enegrated as described in Chapter 4.1.
Then, the AIS is scaled down so that all of itdices coordinates are in the range of (-1,
1) using the following equations. We assurfe,y;, z;) and (x;,y;,z;) are the
coordinates of thé" vertex of the original AIS and the scaled AlS pestively.

Cx = (Xmin + Xmax)/2

Cy = (Ymin + Ymax)/2 (5'9)
C; = (Zmin + Zmax)/2
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( Xmin = Min(xq, X5, ..., Xy)
Xmax = Max(xq, Xz, ..., Xy)
Ymin = Min(yy, ¥z, ...,¥n) N is the number of
Ymax = Max(y1, Yo, -, Yn)  the AlS verticies
Zmin = Min(zy, Z,, ..., Zy)
\ Zmax = Max(zy, 2z, ..., Zy)

where -+

s = 2/ max((lxminl + |xmax|): (Iyminl + Iymaxl): (lZminI + IZmaxl):) (5'10)

X =Cx X S
Yi=CyYis (5-11)
Z,=C,"Z; *S
Following that, a generic female model is scale@roappropriate size to match the
transformed AIS. Finally, the female model is bleddwith the transformed AIS to
generate the final virtual torso, which will be dzal with the 3D image volume into the
simulator during ultrasound training. The proce$sgenerating the virtual torso is

illustrated in Fig. 5-8.

Fig. 5-8. The generation of the virtual torso afigen image volume
As shown in Fig. 5-5 and 5-8, the valid scannirgjae of the virtual torso is marked
with a different shade of skin color. The scan patlthe virtual transducer on the valid
scanning region are marked with white dots, as shiowig. 5-5 (I), and the scan path is

recorded and then used in the learner’s performassessment.

The virtual torso and the virtual transducer anedezed using the VTK, basically
following the pipeline shown in Fig. 5-1. Firstetfe two objects, each of which contains

a number of vertices in the format of Wavefront (Mfaont Technologies), are loaded
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into the simulator by calling the VTK object readtass, vtkOBJReader. Their rendering
primitives, generated by the VTK map class, vtkMapgdorm two entities, which are
also known as VTK actors, in the rendering scertee VTK allows the developer to
configure the number, location and intensity ohtsyin the rendering scene to illuminate
the virtual torso. We utilized eight lights, posiied at the eight corners of the invisible

cube encompassing the virtual torso, in the simulat

Although the cylinder-to-ellipsoid model had beersed to optimize the
transformation of the tracking data, the virtuansducer failed to follow the virtual
abdominal surface at some locations, but instethereintersected or separated from the
virtual torso surface. To correct this problem, lveee incorporated the SOftware Library
for Interference Detection (SOLID) into the simolatAs the core of the SOLID, the
simplex-based Gilbert-Johnson-Keerthi algorithm [ 8k utilized to calculate the
Euclidean distance between two sets of vertices;iwdre exactly the basic elements of
the virtual transducer and the virtual torso. Théision detection starts with setting up
the position and orientation of the virtual transeiuin the rendering scene based on the
transformed tracking data. Then, the distance fangirovided by the SOLID is called to
calculate the intersection depth or the distanddewirtual transducer to the virtual torso.
Finally, the calculated value is used to adjust tmginal position of the virtual

transducer.
5.5The 2D Image Reslicer

This software block utilizes the transformed ora&tioin and position to define a
cutting plane, which guides the extraction of astibe (image) from a selected 3D image
volume. The generation of the 2D image is showFRid 5-9. First, the coordinates of
every point on the cutting plane are transformecklia its corresponding coordinates,
(x,y,2z) in the 3D image volume based on the tracking ftata the sham transducer. If
all three coordinateéx,y,z) are valid integers (within the dimensions of tH2 iBrage
volume), the intensity of the voxel &,y,z)is directly sampled. Otherwise, as is the case
under most circumstances, a tri-linear interpotgtiexplained in the next paragraph, is
used to calculate the intensity of the correspamnainint based on its eight neighbor

voxels.
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a b C

Fig. 5-9. The generation of a 2D image by a cutpiane determined by the transducer’s
tracking data

As shown in Fig. 5-10, we assume P is the trangtdrpoint of a point on the cutting
plane and the P’s coordinates &xey,z). Thel,,V,,...Vg are eight closest neighbor
voxels that form a cube encompassing the pointHe. dalculation of P’s intensity is
completed by first interpolating the eight neighoxels along the z-axis to obtain four
intermediate points¢;, C,, C; and C,, and then interpolating these four intermediate
points along the y axis to obtain another two imidiate pointsQ, and 0,, and finally

interpolating0, and 0, along the x axis to obtain the P’s intensity.

Fig. 5-10. The point surrounded by eight neighbmxels (V1 — V8)

The dimensions of the cutting plane were primab&ged on the dimensions of the
3D image training volumes. Thus, we decided tatsetcutting plane with a height of 30
cm and a width of 20 cm. These dimensions guarahtgdhe full depth of a selected 3D
image volume can be displayed on the screen wheeshthm transducer is placed on any
point of the PSS.

73



The reslicer is primarily implemented by modifyitige mitkExtractSliceFilter (the
MITK filter) class and the vtkimageReslice (the VT&slicer) class. They are two core
classes to generate 2D images from the 3D imagemal Fig. 5-11 is the elaborate
rendering process in the MITK pipeline. The MITKitdr first updates the world
coordinates of the cutting plane based on the gegraéthe 3D image volume, and then
adjust the metric dimensions of the cutting plam® ithe pixel dimensions. A stencil,
shaped as either a box or a sector, is createtb¢t but a part of the final 2D image so
that the simulator is able to emulate the imageegded from a linear or convex
transducer with a desirable depth (12, 16, 20 drhg overall gain, which adjusts the
image brightness, was integrated into the VTK ceslby multiplying the gain factor to

the intensities of the pixels on the cutting plane.

vtklmageStencilData mitkPlaneGeometry
(the cutting plane)

The stencil is shaped
as box or sector 1

The origin, dimensions
and transform matrix of
the cutting plane

(3“[)"::11&“;%33;1) mitkExtractSliceFilter

The configuration of the
actual reslicer in VTK

vtkImageReslice vtkImage

Fig. 5-11. The elaborate rendering pipeline in ME'K

5.6 The Landmark Identification and Measurement

This block is a part of the simulator's assessmeshiich evaluates learner’s scan
ability by examining the obtained landmarks in tBB image. The details of the
automatic assessment will be described in Chaptier @trasound training, the simulator
requires the learner to click the anatomical stmectthat need to be measured or
identified on the 2D image with a mouse. Howeviee, toordinates of the clicked point
(landmark) is referenced to the screen coordinedéser than the 3D image volume
coordinates. Therefore, one function of this blaskto transform the landmark’s
coordinates on the screen to the correspondingdowies in the 3D image volume, as

shown eq. (5-12).
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F1 F2
Pscreen = PZD slice = P3Dimage '15)

The screen coordinates are first transformed to dbeesponding coordinates
referenced to the cutting plane, based on the difoes of the screen image and the
cutting plane, and then to the coordinates in theirBage volume. The second step is
actually as same as the procedure of generating@henage presented in Section 5.5.
The biometric measurement requires the learnelick two points on the 2D image on
the screen to define a caliper and thereby thiskbi® able to calculate the distance (the

length of a landmark) between two clicked poingsskown in eq. (5-13).

d=1@-q sl (5-13)
wherep, and q denote the coordinates of two clicked points ofiery anatomical

structure, e.g. the fetal femur, in 3D image cawaitks;s denotes the voxel space.
5.7The Data Manager

The data manager was designed to load and manaigingy sets. A training set
contains four types of data: a 3D image volumejsteged 3D anatomical structure
bounds and/or measured values, corresponding Vittuso and mapping parameters.
After a given training set is loaded into the siatat, it is managed in a tree structure
where the 3D image volume acts as the parent dadrdtiree types of data. The pre-
inserted anatomical structure bounds and/or mesmnevalues of the training set are
only needed for the performance assessment and\waséle to the learner; however, a

list of learner-identified landmarks can be seethendata manager window.

When using the simulator, the learner should bee abl revisit the landmarks
identified before. This requires that the simuldtas the ability to store and display them
appropriately. If the simulator saves the resli@&l images containing the anatomical
structures and then utilizes these 2D image inagsessment, it will be a challenging
work to design sophisticated algorithms to corsesttgment the anatomical structure
from the 2D images, because 1) the ultrasound ingagdity significantly impacts the
segmentation accuracy, therefore the image requid@sst, sophisticated segmentation
algorithms; 2) the segmentation algorithms are lhsusemi-automatic for optimal

segmentation accuracy; thus they require the leaonset initial values. An alternative to
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storing 2D images, the simulator manages the coates of a landmark referenced to the
3D image volume as well as the orientation and tjgosiof the cutting plane. The
landmarks identified by the learner will be relati easily assessed by the simulator
based on the anatomical structure bounds aft@irarg task is completed.

The data manager was basically implemented basdtleomodel-view structure so
that the learner is able to review and delete deatified landmarks during the training.
The data manager is composed of two core elemérgsyee model and the tree view
classes, as shown in Fig. 5-12. The former orgartize MITK data nodes that store the
actual landmarks in a tree structure. The lattepldys those data nodes in the form of
icons in the data manager.

-

Data Storage
Image Data Node Landmark 1 Data Node | Landmark 2 Data Node Landmark 3 Data Node |
3D image [ Landmark 1 coordinates | Landmark 2 coordinates { Landmark 3 coordinate§ ]
(' Tmage properties ( Landmark 1 properties | Landmark 2 properties | { Landmark 3 properties |
( Tree view E i ~
5 D Tree Item 11 { Tree Item ] Tree Item
3D image volume
[ — Node pointer — Node pointer ) — Node pointer 1
el — — } — | I Parentpointer ~ Parentpointer | ~ Parentpointer I
{ Landmark 2 ——p———— — ——— — — = Tree Item I
Node pointer I
. .
Landmark 3 Parent pointer I
t _ |
L8 | A ! Tree Model !/

Fig. 5-12. The relationship of tree view and treadel in the MITK

The tree model was implemented by inheriting theitkIDataStorageTreeModel
class and using the MITK data node and data stockgses. The storage class is the
actual manager of all rendering data nodes in itnelator and is coupled to the MITK
renderer. The tree view was simply implementedrieiiting the QTreeView class and

it is linked to the tree model during the simulatuotialization.

The coordinates of a landmark identified by therusepassed to the simulator
through a custom function, AddNode, which initiabzand then inserts the data node that
contains the coordinates and properties of thenfeamkl into a data storage object. During

the training, the MITK rendering window is listeginto the event of mouse-clicking.
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Once the event is detected, the coordinates oflitleed point referenced to a given 3D

image, as described in the previous section, aréged to the custom function.
5.8 Implementation of a Dynamic Fetal Heart

During an ultrasound examination, a sonographeallysinspects if a fetus is alive or
not at the beginning of the examination, based bserving a beating fetal heart.
Accordingly, a generic 4D fetal heart was integilaiteto the simulator to improve the

overall realism. The beating heart is not intenegrovide any diagnostic information.

The 2D image data used for generating the 4D fe¢art image volumes were
acquired at University of Massachusetts Memoriablidal Center using a Philips iU22
ultrasound system and the Stradwin software. A g@pher slowly moved the
transducer over the fetal heart to acquire a nurob@D images. Based on the actual
heart rate measured by the ultrasound machinetentimestamps of the collected 2D
images, eleven 3D fetal heart image volumes has@mge dimensions were created [57].
Each image volume represents a specific momeritarcardiac cycle of the fetal heart.
To implement a beating fetal heart, the simulateratively renders these 3D image
volumes in a predetermined sequence and rate Wiglaser is scanning the PSS. Instead
of inserting the 4D fetal heart volumes into the B&ining image volume, which will
lead to eleven identical 3D training image volumesept that each has different
stationary fetal heart, the simulator dynamicalgniols the fetal heart into the 2D image
when a cutting plane intersects the fetal heargansmlume. The eleven fetal heart image
volumes are a part of every training set and aaedd with the associated 3D training
image volume into the data manager but they aredto a different data storage object.
During the generation of a 2D image, the simulatils a custom function in the MITK,
NextHeartVolumeto sequentially retrieve a specific fetal hearagm volume for the 2D
image reslicer so that the user can visually olesarleating fetal heart with a rate of 120
beats per minute.

To simplify the rendering process, the geometryhef fetal heart was considered a
sphere §) so that it could be modeled by two parameters,siphere center and radius.
They were determined offline based on the positiod size of the fetal heart of a
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selected 3D image volume. An experienced sonogrdptiped us with placing the fetal
heart at the proper location inside a given imagjeme using the SliceBrowser and the
simulator. These two parameter (position and si&k then stored in the parameter file

associated to the 3D image volume.

The generation of a 2D image basically follows phecess described in Chapter 5.5,
as shown in Fig. 5-13. For a specific pikelof the cutting plane, the simulator first
transformsP’s coordinates into its corresponding coordinateshie 3D image volume
space and then examines if the transformed codedireae within the region defined by
the sphere mode&d The result determines if the simulator calculates pixel intensity,
based on either the 3D image volume (negative answea specific fetal heart image
volume (positive answer). This approach did preseproblem that the 2D image was
discontinuous at the boundary between the fetatt lsphere and the 3D image volume.
To resolve this problem, we introduced an extreespls’) having the same center as the
sphere mode§ but with a larger radius. If the transformed cooadées of the pixeP is
within the modelS’ and outside the mod§] the pixel intensity is calculated based on the
3D image volume and the fetal heart volume by usipfa blending, as shown in eq. (5-
14), wherep, andp, are the intensities of the transformed pixels i fittal heart image
volume and the 3D image volume, respectivelys the distance from the transformed

pixel to the center of the modal

p=pia+ p(1—a) (5-14)
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The boundary of the model
S’ on the 2D image The boundary of the
model S on the 2D image

Fig. 5-13. The generation of a 2D image based erfe¢tal heart and an extended 3D image
volume.
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Chapter 6

The Structured Obstetric Ultrasound Training Curriculu m

and Automated Training Assessment

The use of simulators in obstetrics ultrasoundning overcomes the limitation
inherent in conventional training: that the tramiis dependent on the availability of
pregnant subjects to scan and of ultrasound mashimeuse. However, without an
integrated assessment, simulator-based ultrasoraming still greatly relies on an
instructor’'s guidance and evaluation. In basic otermediate obstetric ultrasound
training, a learner only aims to acquire basic sshills and diagnostic ability. The
training guidance and assessment at these levéigiming can potentially be transferred
to the simulator if we can assume that the scaogohiare and evaluation follows standard
obstetric ultrasound examination guidelines. Theerler can then complete the training
without an instructor or with limited guidance dtet beginning via the simulator-

supervised or self-paced training.

A key to implement the self-paced training is tokedahe simulator provide the
learner with a structured training curriculum amdagpropriate automatic assessment. In
this chapter, we first present implementation oé tbbstetric ultrasound training
curriculum that is composed of a set of tasks. Them present the segmentation and
modelling algorithms, which are used to creatddhemark bounds. Finally, we describe

the automatic assessment of each task.
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6.1 Introduction of the Obstetric Ultrasound Examination

To design appropriate self-paced training, we numsterstand the procedure of an
obstetric ultrasound examination, the best timefg)erform the scan and the criteria to
evaluate scan performance. A 40-week pregnancynmsronly divided into three stages,
the first trimester (0-13 weeks), the second triere¢l4 to 26 weeks) and the third
trimester (27 to 40 weeks), each of which is markgdspecific fetal developments.
Accordingly, the AIUM classifies fetal sonograpl@xaminations into four types [82]: 1)
the first trimester ultrasound examination, (2) standard second or third trimester
examination, (3) the limited examination, and (#Ag tspecialized examination. The
examination in first trimester is focused on canfing the intrauterine pregnancy and
date of the pregnancy, and monitoring the pregnaesglopment. Gestational sac(s), an
important sign of early pregnancy, is observed mna@sured in the first trimester. The
examinations in second and third trimesters cokerdvaluation of fetal presentation,
fetal and placenta position and biometric measungsnd he last two examinations are

performed when a special medical question or atbpamaneeds to be investigated.

Currently, the simulator is only focused on promgliultrasound training for the
standard second or third trimester examinationn¢&ed ultrasound examination), for
two reasons: 1) in the late stage of the secontksier of pregnancy and the early stage
of the third trimester (24 — 36 weeks), many imaottanatomical structures can be
measured due to the fetus having developed suftigiéen size; 2) the examination is a
part of routine pregnancy care so that all pregwamen are required to receive this

examination.

In a regular standard ultrasound examination, sog@pher first evaluates fetal
cardiac activities, fetal presentation and mateanattomy (cervix, bladder, etc.). Then he
or she examines placenta and fetal positions imgittal or transverse view. The
definitions of two views are shown in Fig. 6-1. Téegittal view is a cutting plane that
passes anterior and posterior of a body and thmsuesse view is a cutting plane that
divides the body into superior and interior paf®llowing the examination of the

placental and fetal positions, the sonographer itatiakly estimates amniotic fluid
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volume in four uterine quadrants and then perfdorometric measurements. Finally, the

fetal weight and age are estimated based on timedbic measurement values.

N\

Transverse View

N

Sagittal View

Fig. 6-1. The illustration of sagittal and transgerviews.

Fetal and placental positions are two importanicatdrs affecting clinical decision-
making. During pregnancy, a placenta plays a crudk in providing oxygen and
nutrients to the growing fetus and removing wastadpcts. Placental growth partially
determines the status of the fetal growth. One commroblem in the pregnancy is
placenta praeviaThis condition occurs when the placenta partialyotally covers the
cervix (uterus outlet). Placenta praevia may casmseere vaginal bleeding before or
during delivery. It is detectable in a prenatal rex@ation and hence doctors are able to
apply appropriate obstetric care. Unlike the pléaleposition, the fetal position has less
impact to the pregnancy. It rather determines hiomple or complicated the delivery is
likely to be. Cephalic or vertex is the most comnposition during the labor. In this case,
the fetus is in a longitudinal position, and thadenters the pelvis first. In contrast, if it
is breech position (bottom first), additional atten must be paid due to some risks to the

baby during the process of birth. Caesarean segtaynbe used in difficult situations.

In a standard ultrasound examination, several bideneneasurements need to be
performed in order to more accurately estimatel fetaight and age, including the

measurements of biparietal diameter (BPD) or hdaclmference (HC), abdominal
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circumference (AC) and femur length (FL) [83]. hretpast, the biparietal diameter (BPD)
had been accepted as a reliable indicator for ehatérg the fetal growth status. However,
it has been realized that the BPD alone is notcasrate as the combination of multiple
parameters to evaluate fetal growth [84]. Usuabstetricians prefer to use the
combination of biparietal diameter (BPD), abdomicacumference (AC) and femur

length (FL) to improve the accuracy of fetal weidigcause they can be measured
consistently and accurately in practice [85]. Th&alf weight is then compared with a
population-based growth chart to determine if te¢alf development is normal or

abnormal.

To measure the BPD, a sonographer must appropriatehipulate a transducer to
show a 2D image containing the fetal thalami, whiekembles a butterfly in the 2D
image. Once the correct 2D image is identified,BR® can be measured from the outer
skull edge, across the thalami, to the inner skdlje at the other side [83]. The FL
measurement is considered the easiest becausertbgrapher only needs to align the
transducer to the long axis of the bone and medharessified portions of the diaphysis
and metaphysis [83]. For the AC measurement, thhegapher first identifies the 2D
image containing the stomach bubble and the unabbiiein that is in the shape of a “J”
and then measures the circumference [83]. Theretbee obstetric ultrasound training
could be designed in the format of several seqaktasks, each of which is focused on

specific anatomical structure(s) identification &mdneasurement.
6.2 The Training Curriculum and Procedure

The implementation of the structured obstetric asibund curriculum basically
follows the AIUM guidelines. In this section, wedli present the training tasks and the
scan protocol. Then, we describe the three-stépiricaprocedure. Finally, we introduce
an additional feature of the simulator, which offére learner a number of help images if

she or he encounters difficulty during the training
6.2.1 The training tasks
According to the standard examination procedurerde=d in the previous section,

obstetric ultrasound training should be focused tbe aspects of obstetric space
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orientation and critical biometric measurementatidition to the hands-on practice, a
complete training curriculum should include a seis$eaching basic clinical and medical
ultrasound knowledge. Thus, we defined a moduledasbstetric ultrasound training

curriculum, covering the above material in threedoles, as described below.

Module 1: Basic concept and physics of medical ublisound

» la: Concept Describe sound waves, concept of frequency aad frequency and

wavelength in medical ultrasound.

* 1b: Ultrasound advantagesUltrasound is safe (no radiation), low-cost, high

availability in contrast to other image modality.

* 1c:Image formation Explain the principle of sound to image convensiTransmits

the sound wave and then format 2D image basedfi@cted echoes.

» 1d: Tissue interaction Explain attenuation, reflection, transmissionatsering of

sound in tissues.
* le:Medical UltrasoundIntroduce diagnostic and non-diagnostic ultrasbun

» 1f: Transducer llluminate piezoelectric 1D array with differestan surface. Three

basics are linear, convex, phase array transducer.

* 1g: Image Modes llluminate A-Mode, B-Mode, C-Mode, M-Mode and Duer

Mode ultrasound.

* 1h:Knobology Explain some basic knowledge of the controls yloat will encounter
on the console of an ultrasound scanner is importamch as scan depth, overall

gaining, image mode.

» 1i: Skills in ultrasound scarDevelop good understanding in anatomy and phygiol
of the organs as well as abnormalities and patledognd their appearance in

ultrasound images.

Module 2: Orientation to the obstetric space

» 2a: Determine maternal anatomietkocate an image plane that contains both the
bladder and the internal os of cervix; find bladidever uterine segment/cervix.
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2b: Determine fetal positiarShow longitudinal lower segment image with presen
part and click on the presenting part. Answer thestjon that what is the fetal

position (cephalic, breech or transverse).

2c: Determine placenta positiorDemonstrate a longitudinal lower segment image
and transverse mid-uterine and click on the placeltswer the question that what is

the placenta position (anterior, posterior, furmgbrevia).

2d: Determine amniotic fluid indexFind amniotic fluid and measure maximal
vertical pocket depth in 4 quadrants, which arédtrigpper quadrant (RUQ), left
upper quadrant (LUQ), lower left quadrant (LLQ) aight lower quadrant (RLQ).

Module 3: Fetal landmarks and biometry

3a: Measure biparietal diameterShow transverse view of head with thalami, no
posterior fossa structures, along with occipitofabndiameter to calculate head

circumference. Freeze 2D image and appropriatalgeghe caliper to measure BPD.

3b: Measure abdominal circumferencéransverse, level of stomach bubble and “J”
shape of umbilical vein, no ribs, measure antepmsterior and lateral diameters.

Freeze 2D image and appropriately place the caigereasure two diameters.

3c: Measure femur lengtiMeasure femur closest to and parallel to thesttaner.

Freeze 2D image and appropriately place the calipereasure FL.

3d: Estimate fetal weightSimulator will calculate estimated fetal weighsing

standard growth curves based on the BPD, AC and FL.

The training tasks in Modules 2 and 3 follow théJM’s practice guidelines except

for measurement of fetal heart rate and for caggiat a fetal anatomy survey. The fetal

heart, as stated in Chapter 5.8, was implementtddaniixed rate, 120 beats per minute.

Therefore, the heart rate is not included in timeusator training. The anatomy survey is

commonly necessary when technical limitations ia #tandard examination degrade

anatomical evaluation due to imaging artifacts fracoustic shadowing or a sonographer

finds suspected abnormality exists in a fetus.
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Module 1 introduces basic ultrasound concepts,udioh acoustic impedance,
artifacts, resolution and frequency. This modulasato make the learner familiar with
key aspects of medical ultrasound, the proper g8eteand use of ultrasound transducers,
and techniques for configuring gain and scan deggtiings. The learner primarily
completes the learning of Module 1 by self-study & is thus not the main topic of this

dissertation.

In Module 2, the learner focuses on practicing #idls related to obstetric
orientation, such as how to appropriately manigutae transducer to observe the uterus,
the cervix, the fetus and the placenta in a 2Casttund image. This module also teaches
the learner how to determine the fetal orientatiothe uterus and qualitatively measure
amniotic fluid. In Module 3, the simulator instradhe learner how to perform biometric
measurements, i.e., to locate and measure impoataatiomical structures, and then

estimate fetal weight based on these measuremkmsva

For a specific training image volume, the tasksodules 2 and 3 must be completed
in a fixed sequence, as shown in Fig. 6-2. Thaitngistarts from Task 2a, which locates
the maternal bladder, cervix and presenting pafterfa given task is completed, the
learner will move to the next task. The last tabksk 3d), the estimation of fetal weight,
does not requires the learner to scan the PS&®alhsthe fetal weight is calculated based

on the AC, BPD and FL values, measured in the pusviasks.

Locate bladder, Determine Determine
Cerv"_( and = Fe_tél = Placenta Position
presenting part Position
Measure Measure MeJ;ure
Abdominal <m=s== Biparietal m— .. .
. . Amniotic Fluid
Circumference Diameter
Measure Femur .| Estimate
Length "| Fetal Weight

Fig. 6-2. The sequence of the training tasks.
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6.2.2 The training procedure

The training covered in Modules 2 and 3 is accoshigld as a sequence of three steps,

as shown in Fig. 6-3, each of which requires atleae 3D image volume.

Tutorial mode:
Learn how to perform ultrasound scanning through
demonstration videos for Task 2a — 3d

Practice mode:
Perform multiple training tasks on different subjects

Image 1: _’Image 2: L . _’Image N:
Task2a-3d| |Task2a-3d Task 2a-3d

Test mode:
Demonstrate acquired competence by performing
same tasks on new subjects

Fig. 6-3. The training procedure.

In Step 1,tutorial mode, the learner watches a set of separate, pre-ratorde
demonstration videos, in which a sonographer shbew each individual task is
completed. The training videos provide the basiat@mical knowledge and scan skills
about how to identify and/or measure a specifict@n&al structure as well as the
importance of each individual task. The learnerdsee enter the tutorial mode to watch
the training videos, which are played by a Qt nudtilia video player embedded in the
simulator. The training videos are actually indegert from the selected training image
volume, that is, no matter which image volume i;geaised for the training, the same

training videos are utilized.

The training videos were recorded by a certifiedogpapher in a quiet meeting room
at University of Massachusetts Memorial Medical eeim 2013. A selected image was
first reviewed by the sonographer to confirm thaikability of each single task and then
she prepared a series of manuscripts for each Gatasia, a software product for
creating video tutorials and presentations diregidlyscreencast, was used to produce the
training videos on the simulator. During the re@ogd the sonographer explained the

importance of a task, how to perform ultrasounchsead emphasized the key points of
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that task while she was scanning the physical sudace. After all tasks were completed,
the video clips were edited in the Camtasia to gERreeight training videos, each of

which corresponds to a training task. The length single video ranges from 2 minutes
to 4 minutes.

In Step 2 practice modethe learner exercises his or her scan skillsoigwing the
instructions provided by the simulator to ident#gatomical structures and/or perform
biometric measurements, on multiple training imagkimes. After each individual task
of a selected image volume has been completedirtindator examines whether that task
has been performed correctly based on a set ofnpegted anatomical bounds, as
described in Chapter 6.3. The evaluation feedbaitlkbe displayed in the instruction
window. Given that each image volume was obtaimechfa different pregnant subject,

the practice is equivalent to making the learnanseveral pregnant women.

After a learner has acquired sufficient scan skillh a number of training image
volumes, he or she can enter Stepe8t modgeto validate his or her scan skills with new
3D image volumes. The tasks and evaluation critesed in Step 2 will be employed to
assess the scan competence. Different from thdigramode, the learner in the test
mode only receives the result of pass or fail ftbe simulator after completing all tasks.
The score of pass indicates that learner has ssfatlgscompleted all tasks within

required time. Otherwise, the learner receivestimee of fail.
6.2.3 The help function

The primary goal of this simulator is providing silator-based, self-paced
ultrasound training without an instructor's guidanand assessment. In practice, the
learner may seek the instructor’s help to accorhglie tasks. To make the training on
the simulator more educationally efficient, we imétl a set of help images to assist the

learner to complete the training tasks when héneremcounters difficulty.

For a given task of a selected training image mauthe help images are currently
composed of two JPEG images, one of which (imagis &)e 2D image that contains the
anatomical structures needed to be identified casueed, and the other (image B) is the
2D image and a figure showing the position andntaigon of the virtual transducer on

the virtual torso, as shown in Fig. 6-4. Clickig thelp button once will display image A
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whereas clicking the button twice or more timesl wikplay image B. Note that the
learner is unable to perform the scan while a mage is displayed. All help images are

created based on the anatomical structures idemtir measured by an experienced

sonographer.

Fig. 6-4. Examples of Task 3b help images for amBD image volume: (a) the 2D image; (b)
the virtual transducer position and orientation,dathe 2D image.

6.3 Creation of the Anatomical Landmarks Bounds

An important feature of the simulator is the selted training of the simulator,
which is achieved by the simulator’'s automatic sssent module. Every training image
volume has a number of landmark bounds, eithestegid by experienced sonographers,
or segmented and then modelled by algorithms. Arteark bound is the surface that
surrounds or bounds a given landmark at a pre-el@fthstance. These landmark bounds
are used by the simulator to automatically asskesldarner’s ability of identifying

and/or measuring the specified anatomical landmauksg the training.

An ideal solution is to generate all anatomical igiusing segmentation algorithms.
In practice, this is challenging work and not nseeg for the training, for two reasons: 1)
Due to the quality of the 3D image volumes, a feittoal anatomical structures, such as
the maternal bladder and cervix, the fetal thalaetc., are not clearly or visually
presented. There are no appropriate segmentatjonitains to handle these structures in
3D/2D ultrasound images. 2) The training assessmérg few tasks do not require
accurate bounds for fetal and maternal anatomitattsires. For example, Task 3a,
measuring fetal BPD, is performed only if the tinalare visible in a 2D image. We
defined a sphere bound that was centered at theowenf the thalami and encompassed

the thalami. The center and radius of the spheree veanually determined by an
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experienced sonographer using the simulator. A comsituation is if the 2D image is

too far away from the bound center, the fetal skunlthe 2D image may be too small for
measuring the correct diameter. Thus, the bound dwot need to exactly model the
thalami geometry. Currently, for a given 3D imag#uwme, all landmark bounds except
the placenta and the fetal head are modelled hyn@bar of spheres with different radii

and determined on the simulator under the guidarican experienced sonographer.
These bounds were created for the maternal bladdercervix, the thalami, the fetal

stomach bubble, the umbilical vein and the two esfdbe femur. The BPD, FL and AC

are also manually measured by the experienced saplogr and then stored with above
landmark bounds in the same file.

In an actual ultrasound examination, the fetal tomsiis determined through
observing the presenting part in a 2D image, sltha fetal head used in Task 2b.
However, in practice, more than one 2D image caunseel to determine the fetal position.
This poses a challenge in designing the assesdorehask 2b if the assessment is only
based on the orientation and position of the shramstucer. An alternative is asking the
learner to click the fetal head on the 2D imagenform the simulator of his or her
identification, in addition to the sham transdusetientation and position. Similarly, the
creation of the placenta bound faces the sameeriyd| as stated above. Moreover, the
placenta in the uterus usually resembles a flagcer [86] and thereby is difficult to be
modeled by a simple shape. Given that the georsetiel characters of these two
anatomical structures are different, we neededn@ament different segmentation and
modelling algorithms to create 3D fetal head arat@hta bounds for a given 3D image

volume.
6.3.1 Overview of segmentation algorithms

In general, image segmentation approaches that bese used in medical images
can be categorized into several types, includirggrttorphological operators based, the
boundary based, the region based, the probabihstidel based, or the combination of
two or more methods.
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Morphological operator based approaches

The initial methods for automatic segmentationetéff anatomies were mainly based
on morphological operators. This approach usuatigtains several steps to generate
binary images for segmentation, such as noise sapjon, image contrast enhancement,
morphological operation, thresholding and skelaetation (find the thinnest
representation of the original pattern that presethe topology). In a study of fetal head
segmentation [87], the authors relied on the atoysbperty of bones, i.e., their high
density (or high acoustic impedance), to detecattal fskull. A boundary between soft
tissue and a bone structure reflects more ultrabemergy back to the transducer so that
such structures appear much brighter than boursdddween relatively similar soft
tissues in ultrasound images. The 2D image comigiaifetal skull was pre-processed by
low-pass filters, then classified as foreground #@adkground areas by the K-mean
algorithm and finally processed by morphologic oped close operations. The iterative
Hough transform was applied the processed imagjadan ellipse being the best fit for
the fetal skull. This method has shown a high l@fetonsistency. In another study, the
researchers also utilized morphologic operatorsegment a fetal femur [88], in which
similar steps were applied to ultrasound imageg. mbrphologic operator based method
usually shows a highr-value (correlation coefficientywhen comparing to the
segmentation results completed by experienced sapbegrs; however, this method
partially depends on the quality of preprocessipgreaches to remove objects that are
not the segmentation target. The users have toriexgretally optimize parameters for

preprocessing filters or classifiers.

Boundary based approaches

Boundary based approaches commonly utilize graslienformation inside 2D
images to locate objects’ boundaries. The earlyhou include first derivative Sobel
operators or second derivative Laplacian operafdiese simple operators are sensitive

to image noise so that they cannot appropriatejyneat objects in ultrasound images.

Active contour and level set are two most widelgdidoundary based approaches.

Active contour (Snakes), a very popular segmemagtgorithm (>4000 citations),
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locates the edges of objects through minimizinggaargy function. The object contour

C:[0,1] = Q is evolved as shown eq. 6-1:

E(C(s)) = = [ IVI(C(s))I?ds + vy [ |Cs(s)I?ds + v [ |Css(s)|Pds (6-1)
whereC; andC,; denote the first and second derivatives with relsfethe parametaes,
Q) denotes the 2D image. The first term is extermargy or image force and usually
favors the location of large gradient. The second third terms controls the length and
stiffness of the contour. In one study [89], théhaus used this approach to detect a fetal
head. The user was required to mark a single paat the center of the head and then
their algorithm automatically calculated the irit@ntour. This study showed that the
identified contours had very highvalue (>0.99) in comparison to manual segmentation
if the initial boundary can be successfully locatedr the object’'s edge. However, their
experiment also showed many segmentation faildiles.active counter often has several
problems when applied to ultrasound images: 1ues must place control points near
the boundary of objects; 2) the contour is oftapped in local minima if inappropriate
initialization is used at which point the contowreds manual correction; 3) it is less

accurate in tackling objects with open boundaryit &) sensitive to noise.

Probabilistic model based approaches

Probabilistic model based approaches have a lomstgorii in medical image
segmentation. Initially, these approaches were cbhasdy on statistical analysis and
applied on discrete pixels without considering atryictural information of the region
[90], such as using thresholding method [91]. Tduk lof integrating objects’ geometries
usually results in the identified pixels not beiogntiguous. It easily misses isolated
pixels within the region (especially near the baanes of the region). Segmentation
outcomes become worse if images are noisy, simpbatse it is more likely that a
pixel's intensity does not represent the normaknstty in a region. Many recent
probabilistic segmentation studies heavily reliedtioe Bayes rule to locate an object’s
boundary [92, 93] in combination of other approache [94], Sandra et al. utilized
maximum likelihood parametric deformable modelsgambination of the active contour,
to identify fetal skulls and femurs under the asgtiom that the intensity distribution of
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ultrasound images follows the Rayleigh distributifig. (6-2) defines a joint probability

density function of a given image with a contouw(#).
p(Z10, 9) = lliciwoy PZil@:) [icowey P(Zil®o) (6-2)

whereZ; denotesi™ pixel of the image](v(8)) and0(v(8)) denote the inside or
outside region of the contour, respectivélys the parameter set of the contapy;and
@, are the distribution factors of the regions insiahel outside the contour, respectively.
By updating the, ¢ iteratively, the algorithm can find an approprig@&rameter sé’
that gives the maximum probability with the contolineir experiment showed that the
algorithm presented a good outcome on synthesiteasound images but also that it

was not accurate on real ultrasound images.

Reqgion based approaches

Region-based approaches are basically hybrid methogually based on a
probabilistic or statistics approach. Region grayvincommonly statistics-based,
continuously examines neighboring pixels of a targgion and determines whether they
should be added to the region on the basis of treolgeneity of spatially localized
features and properties until no more pixels meetdriteria [95]. In [95], the authors
used a seed to initialize the process under themgstifon that the pixels inside a tissue
have similar intensities. If a new neighboring pilewithin the variance of the mean
intensity of the segmented region, it will be addet the region and then the region
mean intensity value and variance are reevalualdwir experiment result has
demonstrated the feasibility of the region-growibgsed approach in medical image
segmentation, but the algorithm was still influeshd®/ the seed point location and the
scan pattern [96]. An inappropriate region seedcsieln or pixel sorting order may result
in an incorrect segmentation [97]. Additionallyethegion growing is sensitive to image
noise. Several automated region growing approati@e® been developed, such as
checking the pixel intensity difference betweernxad amounts of distance [90], using a
co-occurrence matrix (texture extraction) to défgiate homogeneous regions from non-
homogeneous regions [98], or splitting an imagdogimm into several subintervals,

which represent different image regions [99], etc.
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6.3.2 Selection of segmentation algorithms

Although a number of segmentation algorithms hagenbdeveloped for medical
image processing, most of them were designed fof MCT images and therefore may
not work appropriately on ultrasound images dugh&ohigher noise levels. In the past
decade, a few studies have been conducted on seggétal heads [87,89,94] in 2D
ultrasound images. In [87] and [88], authors utidizhe morphological operation based
method to locate the fetal skull. In [89], the ®etcontour method was retained to detect
the fetal head. In [94], the probabilistic modek&d method was used to find the fetal
head. Among them, the morphological-operation baggoach outperformed others in
fetal skull detection due to: 1) it is more robust noisy images or fuzzy objects’

boundaries; 2) it does not need initializationit8)computation is not demanding.

Reviewing recently published literature sourceswshdahat the probability based
approaches have been heavily used in 3D ultraseagthentation. Anquez et al. [100]
developed a Bayes framework to segment the fetdsuterus from 3D images. After the
targets (maternal and fetal tissues) on the 2D @wegre roughly segmented by hand, the
authors assumed that the boundary curve, the exkteaxels (amniotic fluid) and the
internal voxels (maternal and fetal tissues) fokowexponential distribution and
Rayleigh distribution, respectively. To obtain tmaximum posteriori segmentation, an
energy equation, the summation of joint internakelaintensity probability and curve
length probability, was defined. Therefore, thersegtation was actually a process of
minimizing the energy equation. However, their expent result was not convincing, as
only 72% of pixels were correctly classified. Ino#imer study [101], Gutiérrez-Becker et
al. utilized a point distribution model to identifpe cerebellum in a 2D image. This
method needed a preprocessing procedure (anisotdiffusion (SRAD) filter) to
suppress the speckle noise and preserve the demaldbundary at first. Their approach
required a set of training image volumes, in whilch cerebellum boundaries in each
slice was manually segmented, to calculate tercip@h component vectors and a mean
shape, which depicted the cerebellum boundary. sefhection of filter coefficients was
experimental and inappropriate coefficients migitur unsatisfactory outcomes (blurred
edges or insufficient speckle suppression). Inséeher literature sources [87,102,103],

the Hough transform, which is voting procedure todfobjects within specific
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geometries, was used to predict the coefficientnoélliptical fit for a given fetal head in
a 2D ultrasound image. The experimental resultsvedovery positive segmentation
outcomes. Therefore, we chose the morphologicalatipen based Hough transform for

our fetal head segmentation.

After searching literature sources for segmenthey placenta either in a 2D or 3D
ultrasound image, we found that no study had beewdlucted. In an ultrasound image,
the placenta usually appears approximately homagengray and is slightly different
from adjacent tissues. This appearance implies #hatgion-based approach may
outperform other algorithms in placenta segmentation addition, the region-based
approach is able to segment the complete placetiah is essential for creating the 3D
placenta model used in the task assessment. Rgcaityipe of region based algorithms,
the cellular automata (CA) based approaches [1®],b@s drawn lots of attention
because of its strengths in processing medical @néyg an evolving approach. The CA-
based approach is a discrete model that can beghhami as a number of cells on a
discrete grid. These cells can interact locally hwiheir neighbors to propagate
information at a global scale. Each cell has finitember of states and its state is
dynamically updated when the cells interact. Of @febased segmentation algorithms,
the GrowCut is a simple, efficient approach, fpsbposed by Vezhnevets [104]. In the
GrowCut, every pixel of an image is treated aslbvaéh certain amount of energy. The
principle is that each single cell tries to conqiterneighbors until the energies of all
cells reach balance, or no cell energy is chanigéihlly, the energy of each foreground
and background cells are manually set to +1 andedpectively, by the user, and all
others are set to zero. Thus, the GrowCut is semarRaatic segmentation algorithm. In a
recent study, Ghosh et al. [105] proposed an umgigeel GrowCut approach by
randomly labeling the cells with positive intensitglues. Their algorithm was fully
automatic except that the threshold controlling tedl state transition needed to be
experimentally determined. In another study [1@Bg authors improved Vezhnevets's
algorithms by adding a pre-initialization procesgdoe the actual GrowCut occurs. The
user could add new seeds in the pre-initializatooimprove segmentation accuracy. The

experiments of the above GrowCut algorithms reacsiedlar positive outcomes in
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segmenting medical images; thus, we decided toemeht the placenta segmentation

based on the GrowCut.
6.3.3 Creation of a fetal head landmark bound

To segment a fetal head, we modified the IteraRamdomized Hough Transform
(IRHT) [87] so that the fetal skull can be efficignand accurately detected with little
user involvement. In this dissertation, the ellidsis used to model the fetal head of a
given 3D image volume because the ellipsoid isitinely close to the shape of a fetal
head and has been used in a number of studieslE)Z09]. As shown in Fig. 6-5, the
skull in every 2D image of a given 3D image voluimédentified and modeled by a set
ellipses with different axes lengths, and then ¢heBipses are used to construct an

ellipsoid using the least-square-fit method.

< 3D image volume > < Ellipsoidal head model >

A

v binary images vertice list

3D ellipsoidal head
construction

|-

image preprocess » 2D fetal skull detection >

Fig. 6-5. The procedure of modelling a fetal head.

Image pre-processing

Before applying the IRHT, the 2D/3D images are pmecessed, as shown in Fig. 6-6.
The 3D image volume containing the fetal headris forocessed using a low-pass filter
to reduce speckle noise. Then each single 2D islisent through a white top-hat filter to
enhance image contrast. The filtered slices anwithehlly processed in a binary fashion
using the Otsu threshold method [110] that distisiges the foreground (skull and bright
objects) from the background (other tissue stresurFollowing that, every 2D image is
processed by two consecutive morphological operatiopen and close, to remove small
objects and holes on the fetal skull. Finally faileground objects in each binary slice are

skeletonized and then processed by a custom filter.
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(f) (e) (d)

Fig. 6-6. The pre-processing of a fetal head imdggthe image processed by the low pass filter;
(b) the image processed by the white top-hat fi({@rthe image processed by the Otsu method;
(d) the image processed by the morphological opmraf (e) the image processed by the
skeletonization filter; (f) the image processedh®s/custom filter.

The custom filter, as described in this paragraplintended to decrease the number
of iterations for finding the parameters of the tbelipse by further removing small
objects that are not likely to be a part of thealfegkull. After a single 2D image is
processed by the skeletonization filter, a listtld foreground pixels’ coordinates is
obtained. Starting with first pixelPj in the list, the custom filter searches the eight

neighbors of the pixdP. If it has one or more neighbors, the filter puskige neighbor
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pixel(s) into a container and then repeats seagctiie neighbors of the pixels in the
container until the container is empty. Finallye tustom filter generates a set of separate
objects, each of which is a set of connected pixatsl then removes the small objects

based on an experimentally determined threshold.

Fetal head detection and modelling

An quadratic form of an ellipse is given in eq.36and can be described with a
parameter ses = (m, n, %, Y., ) as shown in eq. (6-4), where<00 < 2x; (X, V)
represents a point on the ellip$®; Yc) is the center of the ellipse) andn are the long
and short semi-axes aids a rotation matrix derived from the rotation anglas shown
in eq. (6-5).

ax? +by*+cxy+dx+fy+g=0 (6-3)
b= = [asngl * [y (6-4)

ol (©-5)
To start the IRHT, the region of interest (ROIs&t to the whole 2D slice containing

the thalami. In addition, all elements of the pagtan set are set to zero. The IRHT has

been implemented in the following iterative stegiss the parameter setin ki" iteration,

k=1.2,....

1. If the input parameter sekexists, lets‘= s (k=1), go to step 4. Otherwise continue
with step 2.

2. Randomly select five pixels from the list and sodep (6-4) to obtain a parameter
sets’. If it is valid, s’ is pushed into a five-column parameter array. Repatil
the size of the parameter array is less than 1000.

3. Find ten most frequent elements in each columnhef parameter array and
average them to generate a new parametef set

4. Adjust the ROI based on the center and radii oflipse defined by.

5. Eliminate the pixels that are out of ROI from thiees
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6. Compute the difference vectdr={t;|t; = (s¥ —s¥™*)/sk,i =1to 5} if sf*
exists. If the number of iterations is less thao v any element im is bigger

than 0.05, go to step 2.

As illustrated in Fig. 6-7 (d), the best-fit ellpsf a given 2D slice is highlighted with
blue color. We can see that the ellipse accurdt#lgws the shape of the fetal skull.
Similarly, the IRHT is sequentially applied to thest of the slices containing the fetal
skull except that the input parameter sehherited from the previous slice, are provided
to the current slice. This method can reduce thautzion for new ellipse parameters by

limiting the size of an initial ROI and increase ttobustness of the IRHT.

(b) (c) (d)

Fig. 6-7. The process of finding the best fit sif the fetal head: (a) the original image; (g t
image processed by the pre-processing filtersthe)image processed by IRHT; (d) the ellipse
fitting to the fetal skull.

After the IRHT is applied to all 2D images contaigithe fetal skull, along the x and
z axes of the 3D image volume, a set of best-lipsds are obtained, which are
composed of a number of voxe{$;,V,, ..., Vy), of the 3D image volume. The reason to
apply the IRHT to the 2D images along two axesislttain sufficient number of fetal
skull voxels for generating the ellipsoid. Finaltie Non-Linear Newton-Gauss (NGNL)
is applied to calculate the parameters of the s#igh that is fit for these voxels, as shown
in Fig. 6-8. The NGNL has been detailed in Chaptevhere we used it to generate the
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virtual cylinder and virtual ellipsoid models, sa@will not describe the NGNL in this

chapter.

300
250
200 -

150

Z-axis

100 -

50

Neaiis 50 200 X-axis

Fig. 6-8. The ellipsoid fitting to the fetal head

6.3.4 Creation of a placenta landmark bound

The process of creating a 3D placenta bound isdéiviinto two steps. We first
identify the placenta in every 2D slice of a giveD image volume by labelling the
corresponding pixels basically based on the GroWOu#]. These labeled pixels actually
define the placenta’s geometry. Then, the isosarfd¢he placenta is extracted based on
the labeled pixels using Fang’s approach [73]. Géeerated 3D isosurface will be used

in the task assessment.

The GrowCut requires the user to select a setrefjffound and background seeds, in
the form of strokes, to initiate the process. Thues,developed a Matlab program for the
seed initialization, as shown in Fig. 6-9. The graad red lines (strokes) represent the
foreground and background seeds, respectively.sEgenentation is executed on every
single 2D slice but we can use same foregroundbam#tground strokes for multiple

consecutive 2D images. This is because the plagemtay two adjacent 2D images has a
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similar geometry. Additionally, the user can choaskest plane, Slice XY as exampled

in Fig. 6-9, to segment the placenta.

B GrowCut Segmentation

Slice XY Slice XZ

= 400

300 600 800 1000

z

o
Slice YZ
=l 7 4 Plane Selection

Object Selection
9 XY plane Current Pos
Z d 4
oregroun: Fplane 2:475

9/ Background Minus Plus

0 0

YZ plane

% Enable Grow Cut  Apply Grow Cut | | Clear Lines | Clear Labels

Pixel Information
X i z Value

Brush Width
1.0

401 385 475 124

Fig. 6-9. The user interface of the GrowCut program

In the GrowCut, a cellular automaton is definedaltyiplet(S, N, §), whereS, Nand
6 denote the state, the neighborhood system anahsition function, respectively. The
transition function defines the condition that det@es the state of a cell at tintel
based on the state at timeCurrently, the Moore neighborhood £ 1), is used in the
GrowCut. As shown in eq. (6-6), the target cell gt neighbor cells.

N(P(xp, ¥)) = {Q(xq,¥q) € Z%: |y — x| S L, |yp — g < 1 (6-6)

For each single cel, its stateSis defined by a triple€l, e, v), wherel, e andv denote
the label, energy (between 0 and 1) and intenditthe cell C. The state transition
functiond is defined as a monotonically decreasing funchioanded to [0, 1], as shown
in eq. (6-7).

s(x)=1-— (6-7)

max(v)
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The process of updating the cell’'s energy and labdescribed below. At timeand
t+1, the label and energy" cell are denoted aKi), [(i)'*! ande(i)!, e(i)*t?,
respectively.

Algorithm GrowCut:

1: Fori € (1,N)then

2 If 1(i) # 0 then

3: e(i)=1

4: End If

5: End for

6: converged = false

7. While !convergeddo

8: converged = true;

9: Fori € (1,N) then

10: HOREEN O

11: e()*t =e()*

12: Forj € (1,8)then

13: If §(|lv(i) — v(neighbor j)|) - e(neighbor j)! < e(i)t then
14: [(D)t+! = I(neighbor j)*
15: e(i)t*! = e(neighbor j)*
16: converged = false;

17: End If

18: End For

19: End while

As illustrated in Fig. 6-10, the segmented placeam&2D image is highlighted with a
set of labels. Then, the GrowCut is sequentialiylied to the rest of the 2D images that
contain the placenta. After all placenta labels @tained, the 3D placenta bound, as

shown in Fig. 6-11, can be generated using Famppsoach.

(b)

Fig. 6-10. An example of applying GrowCut to a 2iage
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Fig. 6-11. An example of a placenta bound: (a)ftbat view; (b) the side view.

6.4The Automatic Assessment of the Training Tasks

The basics of medical ultrasound is taught in Meddl, and the learner’s
understanding is assessed by a number of multigiee questions randomly selected by
the simulator from a questions pool. As shown ig. B-12, a sample question and four
answers are displayed in the quiz window. The keraisiasked to choose the best answer
by checking the box under that answer. He or simengave to the next question and
review the previous question by clicking the bustoNext and Previous, respectively.
The number of total questions and unanswered qumsstre indicated at the bottom of
the quiz window. After all questions are answethd,button Complete is enabled for the
learner to start the assessment, where the simuatopares the learner’'s answers with
the pre-stored correct answers and gives out shdtr& he simulator automatically and
randomly changes the sequence of the questionthargbquence of the answers in each
guestion when those questions are loaded intoirtindator.
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Question 1 ‘What is the attenuation coefficient for a 5 MHz transducer in soft tissue?

Please select only one answer

25 dB/cm 10dB/cm
A B
1dB/cm 0.1 dB/cm
< b
Previous Complete Next
Total Questions: Remaining Questions:

Fig. 6-12. The quiz window for Module 1.

In general, for the tasks in Modules 2 and 3, theiktor assesses the learner’s scan

skills based on four rules, as listed below.

* The ability to position the sham transducer to ldigp 2D image containing

specific anatomical structures required by a giask.

» The ability to correctly identify specific anatoralcstructures on the 2D image.

» The ability to appropriately perform specified bietmic measurement.

* The understanding of basic obstetrics by answeguggtions.

When the learner practices a given task, he orfisftemoves and orients the sham

transducer on the physical scan surface to findst bltrasound image that contains the

anatomical structure(s) associated with a givenitrg task. Then, the learner freezes the

2D ultrasound image. The actual identification loé tanatomical structure is done by

clicking it with a mouse. For an anatomical struetidentification task, the simulator

examines if the learner has correctly identified fipecified structure in the appropriate

2D image and then correctly answered the questiedaby the simulator. As to a

biometric measurement task, the simulator examihéds learner is able to locate an

appropriate 2D image for performing the measureraedtthen if the measurement value

is correct or not based on the value measured bgxperienced sonographer. The
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simulator gives one out of three qualitative restdtthe learner, based on the accuracy of
the measurement result, i.e, correct (<5%), or Bsurate (5% - 10%) or incorrect
(>10%).

As described in the previous section, the interatedanatomical structures, such as
thalami, stomach bubbles, etc., were modeled abdheds and are used for determining
if the 2D images contain those specific structumethe assessment. That is achieved by
examining the distance between the coordinateshefléarner-clicked point and the
center of a specific bound in a given 3D image nwucoordinates. If the distance is
equal to or smaller than the bound’s radius, theukitor concludes that the 2D image
contains that specific anatomical structure. This@ation approach is also applied to the
maternal bladder and the cervix in Task 2a. Thessssent for each task is detailed in

the following paragraphs.

Task 2a Determine the area of lower uterine segmantl bladder:

In this task, the learner needs to first find a i2iage containing the bladder, the
cervix and the presenting part. Then, the simulatstructs the learner to click the
bladder and the cervix with the mouse. The assedsfiosv is shown in Fig. 6-13. The
simulator first examines if the 2D image contaihge tbladder and cervix and then
whether the learner’s clicks are inside the bowfdbe bladder and cervix, respectively.

If this task is not available, the simulator rengrite learner of that in a message window.

Output:
No=—$ The 2D image should
contain bladder and cervix

If 2D image contains bladder and

Yes cervix?

Output:
Y es=—p You have successfully found bladder
and cervix

f clicks are inside the bladder and
cervix bounds

Output: —
NO—P Bladder or cervix is not 1 End +
correctly identified

Fig. 6-13. Task 2a assessment procedure.
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Task 2b Determine fetal position:

In this task, the learner needs to identify thalféead in the sagittal view and then
answer a question about the fetal position. Cligkany point inside the fetal head on the
2D image is viewed as the learner has successétldhtified the fetal head. As shown in
Fig. 6-14, the simulator first examines if the 2Baige is obtained in the sagittal view and
then if the learner’s click is inside the fetal dsabound, which has been modeled with
the ellipsoid created using the method describe@hapter 6.3.3. First, we assume that a
user-clicked pointH) and the ellipsoid centeC} form a ray that starts from the center
and intersects with a poing)(on the ellipsoid surface. Given that the coortésaf the
pointsP andC are known values, we can calculate the coordiradtése pointSbased on
the parametric equations of the fetal head bountheellipsoid. Then, we compare the
distanceD1 from the pointP to the pointC and the distancB. from the pointS to the
point C. if D1is smaller than or equal @, the simulator concludes that the learner has
correctly identified the fetal head. Otherwise, sivaulator gives out negative feedback.

Output:
No=—9{ The 2D image should be
obtained in sagittal view

1f2Di is obtained i ittal
Yes image is obtained in sagitta

Output:
Yes—  You have correctly
identified the fetal head

If click is inside the fetal skull?

No Output:
b9 The fetal head is not {
correctly identified

If fetal position question is
answered correctly?

¥ Yes No
Output: Qutput:
The fetal position is correct The fetal position is incorrect

4>< End <

Fig. 6-14. Task 2b assessment procedure.
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Task 2c Determine placenta position:

In this task, the learner needs to identify thec@ha in the sagittal view and then
answer a question about the placental positiortkidly any point inside the placenta on
the 2D image is viewed as the learner has fourithg. assessment procedure is shown in
Fig. 6-15. First, we find a fac&) that is the closest to the user-clicked po)tgnd the
three vertices\(1, V2, V3) consisting of théd=. The coordinates of these vertices and the
face have been obtained in the process of cre#ttglacenta bound, as described in
Chapter 6.3.4. Second, we calculate three vetr,, Us, defined by thevi, Vz, Vs

and the poin®, and then add the vectolis, U,, Us to obtain a new vectdf. Finally, we

calculate the angle between the vedtand the vectofP defined by the poir and the
bound’s centroidO, which can be calculated using eq. (4-6). If thgla is a positive
value, the simulator concludes the learner hasddba placenta. Otherwise, the learner
has incorrectly carried out the task.

Qutput:
No=— The 2D image should be
obtained in sagittal view

if2Di is obtained i ittal
Yes image is obtained in sagitta

Output:
Yes—  You have correctly
identified the placenta

If click is inside the placenta?

No Output:
b——gp( The placenta is not
correctly identified

If placenta position question is
answered correctly?

v No
* TCS
Output: Output:
The placenta position is correct The placenta position is incorrect

4>< End <

Fig. 6-15. Task 2c assessment procedure.
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Task 2d Measure amniotic fluid index (AFI):

In this task, the learner needs to measure theamrluid in the four quadrants
(LLQ, LUQ, RLQ, RUQ) and determines if the AFI ismmal or not. As shown in Fig. 6-
16, the simulator first examines if all four measuents are performed on the correct
locations on the PSS, which is evenly divided fiotar regions. Each region corresponds
one quadrant of the uterus. Then, the simulatgrecis if the total AFI measured by the
learner is in the range specified by the sonognah@rently, there are three fluid ranges,
normal (8-20 cm), low (<8 cm) and high (>20 cm).

Output:
Missing measurement in
N specific quadrant(s) or
Measurement is performed in
wrong position.

If measurement is correctly

Yes performed in four quadrants

If amniotic fluid index is in the
predefined range that includes the value
measured by an sonographer

Output:
Yes=——p  You have correctly
measured fluid index

Output:
NO====ps|  Your measurement fejp
value is not correct

the question about fluid status is
answered correctly?

No
¥ Yes
Output: Qutput: J
Your evaluation about amniotic Your evaluation about amniatic
fluid is correct fluid is incorrect
End <

Fig. 6-16. Task 2d assessment procedure.

Task 3a Measure biparietal diameter (BPD)

In the task, the learner needs to measure theidighdiameter in the 2D image
containing the thalami. As shown in Fig. 6-17, Swmulator first examines if the 2D
image passes the thalami bound and then compardsalmer’'s measurement value with

the value measured by the experienced sonographer.
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he BPD value is 10%
smaller or larger than the

If 2D image contains thalami? Yes

predefined value ? Yes
No l‘NO
Output: Output: Output:
The 2D image must cantain Your BPD measurement is Your BPD measurement is
the thalami correct not correct
> End <

Fig. 6-17. Task 3a assessment procedure.

Task 3b Measure abdominal circumference (AC):

In this task, the learner needs to measure theianposterior and lateral diameters
in the 2D image containing the stomach bubble aedimbilical vein. As shown in Fig.
6-18, the simulator first examines if the 2D imag@ultaneously passes the bounds of
the stomach bubble and the umbilical vein. Thee, d@ngle between the lateral and
anterior-posterior diameters is inspected. Two ét@ns should be roughly perpendicular
to each other, that is, the angle should be bet@®rand 100°. Finally, the simulator
compares the circumference, calculated based ordiaweters by the simulator, to the

circumference measured by the sonographer.

e AC value is 10%
smaller or larger than the
predefined value 2

If two diameters are
roughly at right angle?

2D image contains stomach

bubble and umbilical vein? Yes

Yes

Yes
No:
No No I
* Output:
. : Output:
_ Output: ) The lateral diameter and anterior- v Aé}utput. Vour AC mepausurement
The 2D image must contain posterior diameter should be roughly our AC measurement o
stomach bubble and umbilical vein. at right angle is correct is incorrect

> End

™

Fig. 6-18. Task 3b assessment procedure.
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Task 3c Measure fetal femur length (FL):

In this task, the learner needs to measure théeiour length, which requires that the
femur is located roughly parallel to the transduocethe 2D image. As shown in Fig. 6-
19, the simulator first examines if the 2D imagatems the two ends (bounds) of the
femur and then compares the learner's measurenadme with the value measured by

the sonographer.

he FL value is 10% smaller or

Yes larger than the predefined

If 2D image contains two
ends of femur?
Yes

No l_No l
Output: Output: Output:

The 2D image is not appropriate for Your FL measurement is Your FL measurement is
measurement correct incorrect

»
|

Fig. 6-19. Task 3c assessment procedure.

Task 3d Calculate estimated fetal weight (EFW):

In this task, the fetal weight is calculated basedthe AC, BPD and FL values,
measured in the previous tasks. Then, the simugates the quantile of the fetal weight
in a chart, based on the known fetal age, as iited in Fig. 6-20. The simulator
automatically loads the AC, BPD and FL values dmehtcalculates the corresponding
fetal weight based on eq. (6-8) [85]. The quardfi¢he fetal weight is then shown in the
chart as well as in the dialog window. The learneeds to determine if the fetal
development is normal or not based on the chartlduantile. As shown in Fig. 6-21,
the simulator first compares the learner's estimatdh the sonographer’s and then

evaluates if the learner’s diagnosis about thd teteelopment is correct or not.

lg(fetal weight) = 1.335 —0.0034 * AC * FL + 0.0316BPD + 0.0457 * AC + 0.01623 * FL
(6-8)
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he fetal weight is 10% smaller or
larger than the predefined value ?

Yes

Fo

Output: Output:
Your fetal weight estimate Your fetal weight estimate
is correct is incorrect

Does the diagnosis about fetal
development match the quantile
chart?

No

Yes
v ¥
Output: Output:
Your diagnosis about fetal Your diagnosis about fetal
development is incorrect development is correct
> End <

Fig. 6-21. Task 3d assessment procedure.

112



Chapter 7

Evaluation of the Training Simulator

In the previous chapters, we have described th@mesd implementation of an
affordable ultrasound simulator supporting freehaswhn and self-paced obstetric
ultrasound training. In this chapter, we will fireixplain the goals and design of
evaluation experiments, where the simulator weraluated based on two primary
qualities, the simulator performance and the trejrefficacy. Then, we will review the
experiment results regarding the 2D image qudlitg,rendering speed, the feasibility of

training tasks and assessment, and the trainifgaetf.

In the performance evaluation, the simulator wasdrdased on two qualities: i) an
adequate image generation and rendering speetidositulator, and ii) a realistic 2D
ultrasound image quality and achievable biometsasurements. Additionally, we did a
preliminary experiment in which three sonographevaluated the structured training
curriculum with the automatic assessment. Theserarpnts were conducted before the
experiment that investigated the training efficasxy that we could understand the

simulator’s capability and feasibility of being dsas a training tool.

To determine the training efficacy, the obstetraining simulator was evaluated by
24 39 year medical students enrolled at UMASS Medicdld®t in order to establish the
learning curve of the participants, specificallige tscan time of each training image
volume. The medical students were asked to praatlitasound scan skills on six
training image volumes under the simulator's guaganrAn ideal experimental design
typically involves two groups, a control group adexperiment group, and the training
efficacy of the two groups is then compared. Howgdae to the constrained access to
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UMASS medical students, we assigned all particgpanot the experiment group and
therefore there was no control group in our expeninThe training efficacy of the

simulator was indirectly determined from the leagnhcurves of the participants.
7.1Evaluation of the Simulator Performance

In this section, we first present the test resaft¢he 2D image generation and the
rendering speed of the simulator on four differeatmputers. Then, we compare 2D
ultrasound images generated from the simulatorctaaa ultrasound images acquired
from a pregnant subject at the same time that Eharthge volumes were acquired.

7.1.1 The simulator rendering speed

In the simulator design, the generation and thdeeng speed of 2D images directly
impact the training experience and realism of tmeukator. If the simulator cannot
generate and render 2D images with a satisfactmegds the user will perceive frameskip,
i.e., the loss of 2D image frames. This issue isallig caused by insufficient hardware
processing capability and is a major root causertiekes the display of 2D images not

continuous on the simulator and degrades the h@iexperience.

Our research had as one of its major objectivedegign an affordable ultrasound
simulator. In addition to affordable scan trackiregdware, the simulator software should
be suitable for affordable computers. Thus, we htested the simulator on four
moderately-priced computers with different hardwamnfigurations, as described in
Table 7-1. All four computers had 64-bit Window#gtalled and were compatible with

OpenGL 2.1 or onwards, as required by the VTK.

The processing speeds on the four computers warelai@d in frames per sec (fps),
based on the total time of rendering 500 frame® rEsults are presented in Table 7-2.
These numbers also included the time required dadering the virtual torso and the
virtual transducer. We configured the simulatorgemerate and render 2D images at a
speed of 33 fps, or process 2D images every 30Taisles 7-1 and 7-2 indicate the
processing speed was largely dependent on the @Rit,is, a CPU having higher
frequency can process more 2D images in a unit. thhiurther test indicated that the
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most intensive computation of the simulator is titidinear interpolation used in the 2D

image reslicer.

Table 7-1. The summary of the four computers usduki test.

Computer CPU Supported Graphics Memory
A Xeon 3.2 GHz OpenGL 4.0 16 GB
B Core i7 2.9 GHz OpenGL 4.3 8 GB
C Core i5 2.5 GHz OpenGL 4.0 8 GB
D Core i3 2.3 GHz OpenGL 3.1 6 GB

The experiment results in Table 7-2 show that theilstor was able to generate and
render 2D images at a speed above 30 fps on thlec@oaputers. This met our design
goal of greater than 25 fps, which is a widely ated requirement for smooth visual
presentation and minimum interfering motion blur jater. The CPU usage of the
simulator on Computers A, B and C typically rangpativeen 25% and 30%. The usage
occasionally went up to 40% in our test. The memasgge was roughly 600 MB on
Computers A, B, and C. The image volumes used &fopmance evaluation had an
average size of 800 by 550 by 900 voxels. The voesblution was 0.49 mm in the x, y

and z directions of 3D image volume coordinates.

Table 7-2. The rendering speed of 2D ultrasoundyiesaon laptops A, B, C and D.

Computer A B C D
Frame rate (fps)| 45.66 | 39.37| 35.39 30.6D
Total (s) 10.95 | 12.70| 14.13 16.34

7.1.2 Comparison between biometric measurements performedn and 2D images

obtained from the training simulator and a ultrasound machine

Given that biometric measurements are an impor@spgect of the obstetric

ultrasound training, we have compared the valueBRiD, AC and FL measured on the
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simulator-generated images against the values @,B¥C and FL measured on the
clinical ultrasound images obtained when a sondgrapcanned the human subjects. The
evaluation of simulator-generated images with ogeds is a demanding test, because the
3D image volume was constructed from 2D images ie@gjdrom multiple linear scans,
while the real images for measurements are obtaliredtly. Even for the same pregnant
subject, both the fetal biometric measurements #rel 2D images used for the

measurements vary from one scan to the next, dueaweoidable fetal movements.

The clinical fetal measurements were obtained usinghilips iU22 ultrasound
machine at UMASS Memorial Medical Center. The soapber who carried out the
initial fetal measurements on the pregnant subje&eis not the same as the sonographer
who performed the measurements on the simulatoe. Gibmetric measurements for
three image volumes performed on the simulatorgeed images and on the clinical

ultrasound images are presented in Table 7-3.

Table 7-3. Clinical vs. Simulated biometric measugats (dimensions in cm)

Image Image Biparietal Abdominal Femur
Volume Source Diameter | Circumference Length
Clinical 6.48 22.31 4.68

! Simulated 7.13 24.67 4.83
Clinical 8.31 28.91 6.21

° Simulated 8.3 25.43 5.6
Clinical 8.79 30.2 6.68

3 Simulated 8.76 28.27 6.51

We can see the measurements obtained from theadonwere close to but not fully
consistent with clinical results. In the opinion thfe experienced sonographer who
performed the measurements on the simulated imdlgssdegree of difference was
acceptable for ultrasound training. The differe@tween the clinical and simulated
measurements is mainly a result of two factorsTdp sonographers might define the
anatomical locations used in the biometric measargsa little different so that two
measurements were not taken at the exact sameopesénd orientations. 2) The
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anatomical structures in the extended 3D imagemelare slightly different from the

actual ones due to extensive fetal movement.

Another critical factor impacting the training exigaice is the realism of simulated
2D images. Given that there was not an efficienjedlve approach to evaluate the
quality of the simulated 2D images, we directly gamed simulator-generated 2D images
to the corresponding images acquired at the timgcahning the pregnant subject. The
simulated images required for measuring BPD, AC &mhd were chosen for this
comparison. Fig. 7-1, 7-2 and 7-3 present a corsparbetween simulator-generated
images and clinical images for three different saty, obtained from image volumes 1, 2

and 3, respectively.

The first row contains fetal skull images for th€B measurement. Although the
shapes of the skull outline in the simulated amicdl images were not exactly the same,
the sonographer was able to easily identify thé&atha which resemble a butterfly, in the
simulated images and then determine the best 2@aniar the BPD measurement. In
addition, the BPD values obtained from the simudteages were close to those from
the clinical images. This provides indirect evidenaf the acceptable quality of the

simulated 2D images.

The images in the second row are for the abdongcinadmference measurement. We
can clearly see the stomach bubble (a round dgienat the lower of abdomen) and the
umbilical vein (above the stomach bubble and appegdike a “J”), which are two
important references to judge if the 2D image itable for the abdominal circumference
measurement. Similar to using an ellipse to meatheecircumference on the clinical
images, the simulator calculates the circumferdrased on the lateral and the anterior-
posterior diameters, which are perpendicular ttedlcer. Such diameters are considered

the major and minor axes of an ellipse.

The third row contains the images for the femugtermeasurement. By convention,
the sonographer should measure the femur wherhdrigontal and its two blunted ends
are visible in the 2D image. The simulated 2D insabasically satisfy the above two
requirements. As mentioned in Chapter 2, the aeadf an extended 3D image volume

was focused on aligning major maternal and fetalt@mical structures rather than a
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specific one. Given that the femur is not as natite as the fetal skull or the abdomen,
the femur length measurement is likely to be mdrallenging than other biometric
measurements. The learner may spend longer tiffiadan appropriate 2D image that

contains the full length of the femur.
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Fig. 7-1. Comparison of clinical images and simathtmages (Image Volume 1)
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Fig. 7-2. Comparison of clinical images and simathtmages (Image Volume 2)
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Fig. 7-3. Comparison of clinical images and simathtmages (Image Volume 3)
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7.2 Preliminary Evaluation of the Simulator as a Training Tool

For investigating the feasibility of the ultrasousithulator as a valid training tool, we
conducted an evaluation based on the followingniegrcriteria: (i) whether the tasks in
Modules 2 and 3 were achievable, (i) whether task$ were appropriate for an
integrated learning experience, and (iii) whether simulator provided a realistic scan
experience and good image quality. Criterion (isveaaluated by measuring the scan
times for Modules 2 and 3 tasks, while criterig @nd (iii) were assessed via a
guestionnaire. The evaluation of all three critexias performed by three experienced
obstetrics sonographers from UMASS Memorial Med@ahter.

For Criterion (i), we evaluated the ability of ts®nographers to successfully
complete six tasks in Modules 2 and 3 where eagleréxscanned two image volumes,
volumes 1 and 2. We recorded the time for succksefupletion of each task, as shown
in Table 7-4. The times (in seconds) spent on dkkst for volumes 1 and 2 are listed in
the left and right columns under each task, respdgt To minimize the time used in
learning the simulator, we demonstrated how to detapthe tasks on the simulator
before they carried out the scan. In addition, tthee used for the measurement and/or
identification of a specific anatomical structurasarexcluded from the final completion

time.

Table 7-4. Scan times (in seconds) of image volunaesl 2 by three sonographers

Task 2b Task 2¢ Task 2d Task 3a Task 3b Task 3

Expert1 | 10 8 7 24| 102 32 | 221| 248 20 | 23| 24| 18

Gt
IR
N
N
(o)
w
(o)

Expert2 | 20 9 10| 11| 63 20 46 79 12

Expert3 | 6 6 11| 21| 50 22 13 13 18 16 18 15

The results indicate that the simulator was ablegsess the performance of the
training tasks based on the predefined criteriatther words, the simulator could discern
correct or incorrect answers. Although the indiabtasks required different amounts of
time and effort, the completion times were fairbnsistent across the three experts, with

the exception of the time spent on Task 3a (BPDsuremnent) by expert 1 who took
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longer time, mainly because we defined a tight ldoaround the thalami, thus making

the criteria of selecting the appropriate 2D imaigeshe measurement more strict.

From the responses in the questionnaire, all teoe®graphers agreed that the tasks
were easily performed and well organized in seqeeit addition, the sonographers
considered the simulated images to be adequatelistie for ultrasound training and
found the simulator to provide a fully adequateeleaf processing speed. They further
noted that the simulator had the potential for In@og a good supplemental training tool
for medical students and resident doctors andttigatraining tasks were appropriate for
obstetrics training.

One sonographer indicated that the absence oftagdatal heart in the ultrasound
image of the simulator somewhat detracted from risglism. This is because the
sonographer usually first inspects the fetal hatthe beginning of obstetric ultrasound
examination and then performs the tasks definesuimtraining curriculum. In response
to this comment, we have now implemented the dyodetal heart on the simulator, as
described in Chapter 5.8.

7.3 Evaluation of the Simulator Training Efficacy

As stated in the previous section, the simulatos Ki@e potential of being a
supplementary obstetric ultrasound training tool ddferent groups of people, such as
medical students or residents. Accordingly, weglesil a clinical study to investigate the
training efficacy of the simulator by three growgfiamedical students. In this section, we
will review the evaluation experiment and presdm tesults. Following that, we will

summarize the data collected from the experimedtgive a conclusion.
7.3.1 Design of the clinical evaluation

The role of an ultrasound simulator is to train @waluate the psycho-motor skills
(hand-eye coordination, coupled with relevant amatal knowledge), which is critical to
ultrasound scan proficiency and cannot be taughtdlassroom setting. As we presented
in Chapter 1, the effectiveness of simulators itragbund education has been
documented through publications [33-46] in whicle @wuthors directly compared the
scan proficiency (the scan time and accuracy ahbioic measurement) of two groups of
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participants. One group received the training drasbund simulators whereas the other

group completed the training via traditional edigrat

The training efficacy evaluatiowas specifically designed for obstetric ultrasound,
based on a set of built-in training tasks followithg basic AIUM protocol, except that
there was no control group. Thus, the trainingceffy was indirectly evaluated by
comparing each individual’'s scan proficiency as shelent progressed through a set of
training image volumes. Specifically, the experitn@valuated how the simulator
facilitated the learning of basic ultrasound sday,measuring how much faster and/or
more correctly scan tasks were performed on sulesg¢gmage volumes in a stipulated
sequence, relative to the initial image volumeadidition, each participating student was

asked, at the completion of all training image wods, to complete a survey.

Our initial plan was to recruit 10 to 207 ®r 4" year medical students from UMASS
Medical School, who were considering OB/GYN or Hgnhledicine as their specialty.
This is becauseBor 4" year students have usually completed some negessatical
courses, such as anatomy, physiology and patholgy,have no or little ultrasound
experience. All voluntary participants would notege compensation for the experiment.
However, we failed to recruit a large enough nunddgparticipants for our experiment.
With the help of Dr. Michele Pugnaire at UMASS Meali School, the experiment was
integrated into the clerkship program of the Daparit of Obstetrics and Gynecology
(OB/GYN) of UMASS Memorial Medical Center. A totaf 24 39 year medical students

were recruited when they participated in a 5-we8k@&¥'N clerkship program.
7.3.2 Overview of the clinical evaluation

In this section, we will present the experimentadst including the selection of

training image volumes, experiment arrangementdana collection.

Image volume selection

As shown in Table 7-5, a total of 9 candidate fregnmage volumes were generated.
However, not all of them proved suitable for tharting. Dr. Petra Belady helped us with
selecting the best 6 image volumes for the experirhased on the 2D image quality of

each training task.
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Table 7-5. Evaluation of the 3D image volumes dqualased on each single task.

Task 2a| Task 2b | Task 2c | Task 2d | Task 3a | Task 3b | Task 3c
May 2012 v v v v v v v-
Jan 2013 v v v v v v- v-
May 2013 x v v v v v v
Jun 2013 x v- v x v v v
Nov 2013 v v v v v v v
Dec 2013 x 4 4 x x x x
Jan 2014 x v v v v v v-
Apr 2014 x x v x v v v
May 2014| v v v v v v v

In Table 7-5, each image volume was named with date when the clinical
ultrasound image data were acquired. The sym¥olg’- and x denote the 2D image
guality are good, acceptable and unsatisfactoryafgiven task, respectively. Although
all extended 3D image volumes were created usiagntiproved approach developed by
Jason Kutarnia [57], the image quality was stilg&ly determined by the degree of fetal
movement during the data collection. The more esttenthe fetal movement is, the more

likely the generated 3D image volume is not suédbt ultrasound training.

The scan sequence of 6 training images was basidatermined based on the 2D
image quality of Task 3c (the femur length measw@m®nrather than a randomized
selection. Technically, the training difficulty approximately the same for all 6 image
volumes. A primary training obstacle for the begrmis the quality of 2D images.
Another consideration was that we used the imadenmw May 2013 to produce the
training videos, so it was scanned last. Thusstiam sequence of 6 image volumes was

fixed for all participants, as shown in Fig. 7-4.
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Image Volume 1 i Image Volume 2 h Image Volume 3
(Nov 2013) (Jan 2014) (Jan 2013)
Image Volume 6 ‘ Image Volume 5 ‘ Image Volume 4
(May 2013) (May 2012) (May 2014)

Fig. 7-4. The scan sequence of the image voluntbe iavaluation.

Evaluation experiment schedule

Each student was required to scan 6 training invafjames in two 2.5-hour sessions.
The 24 students were assigned into three groupsudents in July and August, 8 in
September and 7 in October 2015. Accordingly, estakdent was given a code name
based on the start time of his or her first sessanh as J1, S1 and O1. In the clerkship
orientation session (week 1), each group was ga/presentation about simulator-based
ultrasound training and a demonstration of howde the simulator. Following that, they

completed the 6 image volumes in weeks 2 and 3.

We recommended to all students to watch the trgimideos at least one day before
they started the experiment. However, that wasnmahdatory. An additional detailed
demonstration of how to use the simulator was gitceeach group of students at the
beginning of their first session. The questionatesl with the usage of the simulator and

basics of obstetric ultrasound were answered dihegxperiment.

Data collection

We collected the time used by the student to cormm@ach task in every single image
volume. The student could move to the next task arlen he or she had successfully
completed or given up a given task. In addition,wsed the screen capture tool called
Camtasia to record a video of the screen whilestident was scanning. Finally, each
student was asked to complete a survey, detailégppendix A, after all training tasks

were completed. The data we collected from the exeat are listed below.
» Completion time for each of 7 tasks for each imagame.
» Total time on task for the completion of all 7 task a given image volume.
» Utilization of Demonstration Videos in a given ineagolume.
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» Utilization of Help Functions (mainly in the formf dielp images) in a given

image volume.

» Scan pattern of the sham transducer, where wededdhe total length of the
scan path for each task.

* Video screen capture of the user interface on trapater screen, while the
student was scanning. No sound were recorded. Moifgpusage for this is
currently planned.

» Data from the survey.
7.3.3 Highlights of the survey feedback

The purpose of the survey was to provide additiolaéh to qualitatively evaluate the
training efficacy of the simulator. We designedogal of 14 questions in the survey,
including 13 multiple choices and 1 open questidrese questions asked the students to
assess the simulator in terms of ultrasound sca@ergnce, 2D image quality, scan
assessment feedback as well as specific evaluatieach training task. In the following

paragraphs, we will presents some highlights ostingey results.

Question 1: Do you think that the 2D ultrasound imas are realistic?

As shown in Fig. 7-5 left column, 95% of the papants agreed that the simulator
was able to provide acceptable level of or reali®Dd ultrasound images and it could be
used for ultrasound training. The realism of 2D ges was also confirmed by the

experienced sonographers, as stated in Chapter 7.2.

Question 2: Do you think the simulator offers yogalistic scan experience?

As shown in Fig. 7-5 right column, 91% of the papants agreed that the simulator
was able to provide acceptable level of or realistian experience and it could be used

for ultrasound training. The experienced sonogrepteached a similar conclusion.
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Fig. 7-5. The students’ feedback for Questionsd. &n

Question 3: Do you think the tasks are appropriatelesigned for obstetric ultrasound
training?

As shown in Fig. 7-6 left column, 79% of the papants agreed that the training
tasks were appropriate for ultrasound trainingradtdittle modification or close to the
standard training without any changes. Howeveeyadtudents thought that tasks 3b and
3c were much harder than other tasks and thatdhsition of the task difficulty was not

smooth within a training image volume.

Question 4: Do you think the feedback for each taskuseful to training?

We received a range of opinions to this questigsBown in Fig. 7-6 right column,
50% of participants agreed that the feedback peavioy the simulator was pertinent for
the training whereas approximately 45% of partiostpathought that the feedback was
somewhat useful but not sufficient to provide eéfic training. According to our
observation, the participants who voted ‘pertinerseéd less time to complete the training
tasks comparing with those who voted ‘not suffitieMoreover, we found that the
participants who had observed obstetric ultrasoseahs were able to accomplish the

training image volumes more quickly than those \whd not.
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Question 3 Question 4

Fig. 7-6. The students’ feedback for Questions®4n

Question 5: Could you envision the simulator as @&aful supplement to obstetric

ultrasound training?

As shown in Fig. 7-7 left column, 91% of the papgents agreed that the simulator
was acceptable as an ultrasound training suppleamehthey would like to recommend it
as a training tool. Actually, the experiment resutidicate that the current form of the
simulator requires that a learner should have basierstanding of medical ultrasound
and obstetrics to efficiently accomplish the tragiIf the learner is deficient in such

knowledge, the training efficacy may be impacted.

Question 12: Could you envision the simulator asugeful supplement to obstetric

ultrasound training?

As shown in Fig. 7-7 right column, most of the papants agreed that medical
students, resident doctors, technicians and nuweakl benefit from practice on the
training simulator. This conclusion basically mastthe answers from the experienced

sonographers in the initial study.
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Fig. 7-7. The students’ feedback for Questionsd Eh

In Question 14, the participants provided specd@mnments for improving user
experience and training efficacy of the simulatbhose comments dealt with the
improvements to the evaluation feedback providedhasysimulator, the image quality
and the completeness of the training image voluthesneed for providing more training
image volumes covering more medical situations, #mel value of more detailed

demonstration videos and help images.
7.3.4 Overview of other experiment results

The training efficacy was primarily evaluated byagtitatively comparing the scan
time for each task over several training image n@s. In this section, we will present
the scan times of the tasks for the six image vekjnthe relationship between the scan

time and the scan path length, and the usage dfdiméng videos and the help images.

Fig. 7-8 and 7-9 give the scan times for two pgréints, J9 and S8, for each task in
the six image volumes, respectively. These tworéguindicate that the scan times
gradually decreased somewhat as the training pgegde The same trend was found in

other participants’ scan times.
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Fig. 7-8. The scan times of image volumes 1 tonfpbeted by the student J9.
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Fig. 7-9. The scan times of image volumes 1 tonfpdeted by the student S8.

The experimental results also show that J9 and &®umtered difficulties in
completing Task 3c of image volumes 3 and 5. Fangde, J9 used far more time than
anticipated but could not complete the task. THus scan time was set to 12 minutes, or
720 seconds, for the task she failed, as showigin7F8. The unexpected long scan time
was primarily attributed to the challenging 2D ireaguality for Task 3c.
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Fig. 7-10, 7-11 and 7-12 are box-whisker plots lfok plots) of the scan times of
Tasks 2b, 3a and 3b in the 6 image volumes, respictThe crosses denote outliers in
terms of the scan times. The upper and lower baneté the maximum and minimum
time in each image volume, respectively. The bopeu@and low edges denote the 75%
and 25% quantile scan time (in seconds) in eaclyenva@lume, respectively. The lines

inside the boxes denote the median or 50% quaditiein each image volume.

These three figures indicate that the median staastof Tasks 2b, 3a and 3b
decreased slightly with increasing amount of tragniand effort. We also observed
similar reduction in the scan times for the otresks. In addition, we can see that the

range of the scan times of these tasks narrowedwbat with increased training.
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Fig. 7-10. The scan times of Task 2b of image veduinto 6.
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Fig. 7-11. The scan times of Task 3a of image vetuinto 6.
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Fig. 7-12. The scan times of Task 3b of image veduinto 6.

Fig. 7-13 presents a 3D view of the average seaegtiof all 24 medical students for
the six tasks, Tasks 2b to 3c, as they progressedgh the six image volumes. While

Fig. 7-13 shows that the average scan time wasmeglwith training, the trend was not
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monotonic. Such non-linear learning behavior hatiadly been observed in other
learning situations [111]. Additionally, the quglibf image volumes influenced the scan
times a great deal.

In Fig. 7-14, the scan time of each image volumeraged over all 24 medical
students, also demonstrates that the training mhgrave ultrasound scan skills. On
average, a student needed roughly 25 minutes teletenall tasks in image volume 1,
but the scan time was reduced to 8-12 minutes aftstudent scanned three image
volumes. However, we found that the scan time afgenvolume 5 was longer than that
for image volume 4. This observation could probdi#yexplained in two ways. First, as
mentioned in Chapter 7.3.2, the medical studengscayly needed two sessions to
complete all six image volumes. In most casesudesit was able to complete first four
image volumes in the first session and the lastibwtbe second session. The interruption
of training would make the student spend some tmrecall the scan skills he or she had
learned before. The second reason is that the imagkty of image volume 4 is better
than the quality of image volume 5, and hence tbhdent used less time to complete
image volume 4.
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Fig. 7-13. The 3D view of the average scan timestatks of image volumes 1 to 6.

133



2000 ¢
1800 |
1600

1400 1

=

el

L}

L}
T

1000 F

800 1

Completion time (s)

600 -

400 -

200 1

0 I | 1 | |
1 2 3 4 5 3]

Image volumes

Fig. 7-14. The average scan times of each imagamnel

As shown in Fig.7-15, the experiment results ingidhat the scan path length was
approximately proportion to the scan time in Tadk Jhis relationship was also

applicable to other tasks.
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Fig. 7-15. The relationship between the scan tiemesscan path length (Task 3b).

134



Although we had encouraged all students to watehtthining videos before the
experiment, about half of them did not do that. Trening videos were rarely used
during the training and mostly watched during theks for the first image volume.
According to the experimental results, the videanefasuring femur length was the most
watched video during the training. The videos ofaswing abdominal circumference

and measuring amniotic fluid were the second aid thost watched videos.

In addition to the training videos, the simulattscaprovided the medical students
with a set of help images for all image volumesegxcfor the last one. Those help
images allowed the students to glance at the 2@aesaontaining desired anatomical
structures. The experimental results show thatwadeidents frequently used the help
images to complete the training tasks whereas atuelents used the help images only
when they had scanned a long time but had not fomdorrect answers. Analyzing the
usage of the helps images revealed that the paatits utilized the help images mostly in
Task 3c, followed by Task 3b and Task 2d. Actyalhe inclination of using the help
images during the training was directly relatedchviite scan time. If the participant could
not find the correct answer after practicing foceatain amount of time, he or she was

more likely to resort external help.
7.3.5 Summary of the clinical evaluation

Based on the experiment results, we observed tieasuccessful completion time of
each task gradually decreased with the trainings plovides some level of evidence of
the training efficacy of the simulator. Moreoveon® of the students confirmed that the
training on the simulator facilitated their leargiof obstetric ultrasound during the
clerkship program. Although the completion time waso influenced by the image
guality of the tasks, which varies with image voksnit does not invalidate such a
conclusion. The experimental result also indic#tes the scan length was approximately

proportion to the completion time.

The survey completed by all 24 students showsttieasimulator provided a useful
level of ultrasound scan experience, that the tualf the ultrasound images was
acceptable and that the simulator had the poteoftibecoming a valuable supplemental

tool for obstetric ultrasound training. Their feadk was consistent with that obtained
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from the experienced sonographers in the prelingieaperiment at UMASS Memorial
Medical Center. In addition, some students repatteti the level of difficulty for the six
tasks varied significantly within one image volunk®r example, Task 2b and 2c were
much easier than the rest. Almost all 24 studegteesl that the simulator might be a

suitable training tool for medical students, resid#octors, nurses and technicians.

Utilizing the students’ feedback, there are a fewmprovements that should be
implemented in a future version of the simulatom@ake the training more efficiently and
suitable for medical students. These improvementtude: 1) providing more task
assessment feedback to the learner; 2) providinge raining cases (image volumes)

that cover more medical conditions; 3) improving #D image quality and completeness.
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Chapter 8

The Ultrasound E-training based on the Networked

Simulators

In the past decade, with the evolution of inteteetnology, distance education has
become more widely used. According to a report ftbenNational Center for Education
Statistics [112], 22 % of graduates and 11 % ofeugchduates enrolled in distance
education programs in 2012, and the number of knenlts had been growing over the
last ten years. While distance education does regugreater amount of self-discipline,
an instructor still plays a significant role. Intgpical case, a student can take online
classes and quizzes on a flexible basis, accondirigs or her schedule, but the student
must complete these classes and quizzes withintaircgime frame. The instructor is
also able to request a group learning session andask all or a part of students to
remotely join the session at a specific time.

Distance education applied to ultrasound trainiag be divided into two separate
categories: E-learning in didactic ultrasoundand E-training (remote training) in
ultrasound scanThe didactic ultrasound is focused on basic sittusad physics, human
anatomy, physiology, pathology, etc., and can lwpiiaed through traditional classroom
courses, through self-study or through on-line sesr The E-learning material is mainly
delivered in the form of texts, audios, animatistsgaming videos via internet, CDs and
DVDs, eliminating the need for classrooms and n@kire training more affordable and
flexible. In most of cases, the courses are dedtvehrough pre-recorded videos or text-

based reading materials. In contrast, the ultraddwands-on training is focused on the
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learning of ultrasound scan skills on actual subjeoy observing the instructor's

demonstration and practicing the skills under tis¢ructor’s guidance.

The E-learning in didactic ultrasound has been ntedoin a few published papers
[21,113,114] and all of them have reached a sinutarclusion that the E-learning can
efficiently deliver the didactic ultrasound traiginHowever, current E-learning systems
for didactic ultrasound cannot provide scan tragnior ultrasound E-training, which
requires that all participating students can leamd practice ultrasound scan under the

guidance of an instructor at different locations.

As of now, only a few attempts of delivering ulmasd E-training have been
reported. VSee Telemedicine [115] has developedwere that can be integrated to a
regular ultrasound machine. With this hardware,oatar can observe ultrasound scan
remotely performed by another doctor. Through @eidtream, doctors in rural areas can
remotely receive instructions, such as how to gmaitely use the probe. However, one
noticeable problem of this system for ultrasoundining is that video plus voice
transmission may not be feasible in regions onlyirta limited speed networks. In
addition, this system must be installed on an ergstltrasound system and not suitable
for multiple learners. In another recent study, yeleh[116] built a remote ultrasound
training mentor system based on the Wii technolofghough the system is not
expensive, their simulator has a few limitations;lsas 1) the 2D images are generated
based on CT-based images; 2) the simulator providegealistic ultrasound scan; 3) the

system serves as only a monitor rather than aingsystem.

This chapter describes an inexpensive, compaetsaitmd E-training system utilizing
the ultrasound obstetric simulator, described ia pinevious chapters. The E-training
system consists of a dedicated server and multiptevork-connected simulators (one
simulator for each user) that can be located attiphell sites. The system provides
synchronous and asynchronous training modes. Thehsynous (or group-learning)
mode allows all training participants to observe sican ability of a chosen learner, or a
demonstration by the instructor, in real-time w#how transmission bit rate. This is
achieved by directly transmitting position and otation data from the sham transducer,

rather than 2D ultrasound images, and resulting system performance independent of
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network bandwidth. The asynchronous mode was dgtimaplemented with the training

approach described in Chapter 6.
8.1Implementation of E-training System

The complete E-training system is composed of teevorked simulators and a
dedicated server, as shown in Fig. 8-1. As destiitv¢he previous chapters, a key factor
to simulate realistic obstetric ultrasound scarthst the simulator should be able to
mimic freehand scan on the abdominal surface ofegnant woman. Accordingly, all
networked simulators should be able, on their oereens, to synchronously display the
same movement of the virtual transducer on theiafitorso and display the same 2D
ultrasound image. In other words, all networkedwsators except one work as passive
monitors, displaying the same 2D ultrasound imageyal transducer etc., as on the
active simulator, on which a user performs ultrabscan. The passive and active
simulators are referred to as tlwbserver simulatorand the operator simulatoy
respectively. To achieve this in a traditional daesian E-training system has to directly
transmit the 2D images. Although real-time vide®aming is technically feasible over
high speed internets, such as broadband network§&anobile networks in the United
States or other developed countries, real-timeov&teeaming over 2G/3G mobile or low
speed networks is still a challenge. Such limiteeesl networks are often encountered in

developing countries.

An alternative to resolving this problem is to ontgnsmit the sham transducer’s
position and orientation (the five degree of freedtata described in Chapter 3), so that
the data transmission only requires a very lowdt. This requires that all participants
must have the same image volume loaded, whichssred through software commands

from the instructor.
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Fig. 8-1. Workflow of the ultrasound training siratdrs in synchronous mode.

The E-training system was implemented with a clearver architecture for three
reasons. First, the instructor simulator has adstigiive rights over all other simulators
in order to manage the training mode and spedyicassign a simulator to be the
operator simulator. The client-server architectiseappropriate for processing an
incoming connection request based on the send#gistity (an instructor or a learner).
Second, given that routers or gateways have bedgelywised in modern networks, the E-
training system needs the server having a publidolfestablish the communication
between the simulators with and simulators withpublic network IPs. This usually
requires a special technique, called Network Adglfésnslation (NAT), to find the
public IPs and port numbers of all participatinmsiators in private networks. Using a
client-server architecture makes implementationthef NAT easier in the case of a
simulator operating in a mobile or private netw¢tk7]. Finally, since only a limited
number of simulator users (we assumed less tham 4 @ypical scenario) participates the
training at any given time, a client-server ardttilee is feasible to handle the
communication among these networked simulators.

In the current design, the dedicated server mugt hapublic IP address so that the
simulator is able to send a connection requeshaoserver based on its IP address. In

addition to the connection establishment, the seals handles clients (or simulators)
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management and relay of tracking data. The role simulator, either as an operator or
observer, is determined by the instructor and thust be dynamically changeable. In the
synchronous mode, there is only one operator simuk any time, broadcasting the
transducer’s tracking data to other observer sitarda In our design, the instructor
simulator and learner simulators share the sante/aie design except that the instructor

simulator has, as mentioned, administrative rightmanage the system.
8.1.1 Communication establishment

A simple, custom protocol has been developed ferBHraining system to establish
the communication between the server and clieqtsciScally, the protocol is utilized to
establish and monitor communication channels arichttsmit text data through the TCP
protocol. After communication to the server hasrbestablished, the sham transducer’s
tracking data are transmitted via the UDP protocbbsen because the UDP is able to
operate with a much shorter delay than the TCPopabt Each communication packet
includes a header and a payload. The header patébnes packet type, as described

below.

» Greeting: Designed for connection acknowledgement. Once tbenection is

successfully established, the server and the diemtl a greeting packet to each ather

» Update Client: When a new client joins or an existing client legvéhe server

broadcasts this packet that contains an updateudtdist to all networked simulatars

» Update OperatorWhen the instructor designates a new operator atowjlthe server
broadcasts this packet to inform all networked $ataus of the change of the

operator simulator

* Update Training ModeThe instructor configures the training as the syoctus or
asynchronous modes. The server broadcasts thisetpaéckinform all networked

simulators of the change of the training mode.
» MessageDesigned for client communication by text.

* Ping or Pong:Designed for examining if a given connection igeabr not.
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Given that routers or gateways may exist in thevagt, a simulator (client) must
establish a communication channel to the servesreahe simulator can begin sending
or receiving tracking data. Therefore, a UDP halaghing approach was implemented
for the E-training system. The process of the UDF lpunching is shown in Fig. 8-2 and

described in the following paragraph.

Server:
Open a dedicated port (M) to listen incoming connection request

Server:
Waiting for incoming connection request

Client:
Initiate server connection using
server public IP address (A)

Server:
Retrieve the client public IP (B) address
and port number (N)

Server:
Send back the client’s public IP and port
number and bind UDP socket to port N

Client:
Restore its public IP and port number
and bind UDP socket to port N

Server: Client:

Update the internal client list and Send a dummy UDP packet through A:N
broadcast it to all networked clients

Client:
Update and display online clients

Fig. 8-2. Server connection establishment.

The server first opens a dedicated TCP port fdaerigg to incoming connection
requests. The client then is able to initiate thenection to the server, whose public IP
address is denoted A. Once the connection is ssittlgsestablished, the client sends a
greeting message that contains the client user riantiee server. Then the server: 1)
retrieves the public IP address (denoted B) ofctlent and its port number (denoted N);
2) combines them with the client user name to gdrea unique client ID; 3) sends a
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greeting message that contains the IP address @mdnformation (B:N) back to the
client; and 4) binds a UDP socket to port N. Afteceiving the greeting message from
the server, the client sends a UDP packet to tdeead of A:N to make itself visible to
the server in the case that the simulator runs private network. Finally, the server

updates its client list and broadcasts the listitoetworked simulators.
8.1.2 Data transmission

After the communication channel has been estaluistiee operator simulator now
can send the transducer’s tracking data to theeséhwough the “punched” UDP port.
The server then relays the tracking data to alenlkes simulators by searching a client
table, which will be updated when a client joindeaves the session. At the client side, a
first-in-first-out buffer is used to queue the indag tracking data so that the observer
simulator is able to smoothly render 2D imageshéfbuffer is full when new data arrive,
the simulator will decimate the tracking data ie thuffer to make the buffer up-to-date.
If the buffer is empty, the simulator will use tmmediate past tracking data to render

2D images.

In addition to the tracking data, the system alstatdishes text channels among all
clients by using the “Message” packet. Given teats do not need to be synchronized,

the system transmits them through the TCP protocol.
8.1.3 Management of the operator simulator

In the synchronous mode, only one operator simulatperforming the scan while
all the other simulators are observers. The asseghwf the operator simulator status is
managed by the instructor who can dynamically chahg role of any simulator from an
observer to an operator or vice versa by sendirfyaaate operator” packet to the server.
A string variable at the server side stores theofihe operator simulator. Then, the
server informs all networked simulators of the dwrof the operator status. If the
instructor does not appoint any simulator to bedperator simulator, then all simulators
function as observers by default. It should be dateat the text channels are still

available in this mode.
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8.2Performance Evaluation of the E-training System

The performance evaluation of the E-training systeas focused on the quality of
the transmitted tracking data by measuring laterdata loss and bit rate in the
transmission. The quality and rendering speed ef 2B ultrasound images for an
individual simulator have been detailed in Chaftein this section, we first explain the
experimental conditions, then we present the resiltransmission latency, data loss and

bit rate under a set of defined test conditions.
8.2.1 Experiment design of the E-training system

The E-training system is intended to work in twojaonaypes of networks, i.e.,
cellular networks or 802.11 wireless networks. €ntlly, major wireless carriers in the
United States have upgraded their cellular netwook8G/4G. Accordingly, we have
only been able to test our system in 3G/4G netwoikee carrier's channel access
technology was not considered in our evaluatiom.802.11 wireless networks, the most
common scenario is that an end-user accesses tdr@ah through a router at his/her
home, clinic or office; hence, we have only tedfesl system in a router-based wireless
network. The current E-training system was desigieedupport a limited number of
users in a given training session, and we testeditih the minimum number of
participants, specifically three simulators (onstianctor and two learner simulators),
under the following three conditions.

A. All simulators in wireless networks.

B. All simulators in cellular networks.

C. Same condition as A, except that the data fronoferator simulator were routed
via a laptop computer located in China.

The above three conditions covered most of casesrevthe system would be
operating. Condition C was intended to simulate ¢hse where international learners
participate in the training. The test in each ctiadilasted 3 to 5 minutes. The hardware
configurations of the three computers running tivee¢ simulators are described in Table
8-1. All three computers had 64-bit Windows 7 amiell HD graphic cards installed.
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Table 8-1. The summary of the three computers insse experiment.

Computer Identity CPU Memory
0 Instructor Intel i7 2.9 GHz 8 GB
1 Learner Intel i7 2.4GHz 8 GB
2 Learner | Intel Xeon 3.2GHz| 16 GB

The test matrix includes three performance paraisiete

(1) Bit rate: The operator simulator updates trackiatadapproximately 25 times per
second to guarantee a smooth visual experiencd Hadate contains less than
100 bytes of tracking data. This is a very lowrhie so that we tested both the
peak bit rate and average bit rate.

(2) Data loss: The E-training system uses the UDP pobtéor transmission of
tracking data. A significant loss of tracking datat only makes 2D images
display on the simulators loose synchronizatiort, diso degrades the quality of
an image stream and the diagnostic utility (as wdnd encountered with skipped
frames).

(3) Latency: This is an important factor that affetts tlegree to which the simulated
2D image rendering is synchronized between theabpesimulator and any of
the observer simulators. Given that we were no¢ éblsynchronize the system
clocks of the three laptops to millisecond levelg vwneasured two-way

transmission latency instead of one-way latency.

8.2.2 Experiment results and analysis

The test results are summarized in Table 8-2. Mezage bit rate under all three
conditions was approximately 3-4 kB/s. The data las less than 1% and no frameskip
was detected in any of our experiments. The reshlbsv that the tracking data from the
operator simulator usually reached the observeulsitors in less than 100 ms so that the
transmission latency did not negatively impact qoality of the image stream. In other

words, the 2D images on all simulators could besm®red to be synchronous.
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Table 8-2. The summary of the experiment results.

Condition Bit rate Data loss | Two-way Latency
A 3 -4 kB/s <1% 50 -150 ms
B 3 -4kB/s <1% 100 -200 ms
C 3-4kB/s <1% 200 -400 ms

Fig. 8-3 shows the bit rates over time under ComdiA. The red line represents the
upload (transmitted) bit rate of the operator satmi while the blue line represents the
download bit rate of the operator simulator. In experiments, the bit rate remained
nearly constant, between 3-4 kB/s, while the usas werforming the scan on the
operator simulator; the bit rate was less than 4kiBien no scan was performed. The
spikes in the blue and red lines in Fig. 8-3 reslulfrom other Windows back-end
programs, rather than the tracking data from thanshransducer. An approximate
constant bit rate is important to ensure that theirBlages remain synchronized even in
low speed networks because bit rate spikes areobnejor causes making the system
out-of-sync. Given that all simulators in the E#trag system operate exactly in the same
way irrespective of which of the three network ctinds was selected, we did not

measure the bit rate over time in Conditions B @nd
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Fig.8-3. The E-training system bit rates (the gl blue lines represent the total upload and
download bit rate, respectively, on the operatondator).

Our experiment showed negligible data loss (less th%) and smooth 2D image
display under all three conditions. We were undblesvaluate the data loss in a 2G

cellular network or dial-up internet because ot tesitations. Instead, we designed an
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additional experiment to determine the maximum ttz¢a that does not impact the visual
smoothness of an image stream, by using a normsaiilition function to determine

whether a given tracking data packet would be diterhor not during the transmission.
Our experiment showed that there was no obsenfedngeskip if the tracking data loss

was less than 35%. This evaluation was performel@mu@ondition A.

The latencies under the three conditions were xattéy identical, but they met our
requirement that the E-training system was operatip synchronous, meaning that
human observers, looking simultaneously at theesiy®f the operator simulator and an
observer simulator, could not detect any differelpegveen these two displays. The two-
way latencies for the three test conditions arevshim Fig. 8-4, where the left and right
columns are the packets’ two-way latencies of Caensul and 2, respectively. It can be
seen that the one-way latency is less than 10@nm&0f% of packets under Conditions A
and B. A latency of 100 ms has been widely acceptedhe threshold to distinguish
between detectable and indiscernible latency. herotwords, we can consider the E-
training system to be synchronous. In Conditionth@, one-way latency mostly ranges
from 100 — 200 ms. Although it is larger than ti® Ins threshold, we did not observe

2D images to be out-of-sync in our experiments.
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Chapter 9

Conclusions and Future Improvements

9.1 The Dissertation Conclusions

In this dissertation, we have described a new lost;cportable obstetric ultrasound
simulator providing realistic scan experience. Tdhe-cost aspect dictates the design of
the 5 DoF tracking system, a requirement met bypgusin Anoto pen and a printed
surface for position tracking and an IMU for oriatidn tracking. The component cost of
the IMU, the Anoto pen, the physical scan surfawdtae transducer shell totals less than
$300. Making the simulator affordable also requtrest the simulator software is able to
run on an ordinary computer. The module-based soéivdesign makes the simulator
able to run with a frame rate better than 25 fdse Tealistic scan experience is made
possible by using training materials in the formlafge, composite ultrasound image
volumes, with the realism further enhanced by ipocating a beating fetal heart. The
physical scan surface makes the scan experiendisticeathat is, the learner can
continuously scan an extended region while allowangling and rotation of the sham

transducer. This feature is critical to properriag in psychomotor skills.

The simulator is designed to provide simulatorstssi training on the basic or even
the intermediate obstetric ultrasound level, bygnating the training guidance and the
scan evaluation in the simulator software. We Haveaulated the training tasks and the
assessment criteria based on the AIUM’s standasattipe of obstetric ultrasound.
Specifically, the structured training tasks aimttain a learner in the proper obstetric
ultrasound examination sequence, identificationcofical anatomical structures and

biometric measurement. This is achieved by insgtandmark bounds for all anatomical
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structures to be identified, either implementechwite algorithms or under the guidance

of obstetric sonographers.

A preliminary evaluation was performed by a group tbree experienced
sonographers. They completed six specified tasks neasonable time by following the
instructions provided by the simulator. All threenegraphers agreed that the training
tasks were appropriately designed and well organire sequence. In addition, the
sonographers considered the simulated images téguately realistic for ultrasound
training. They also believed that simulator hadpbtential of becoming a supplementary

training tool for obstetric ultrasound.

To evaluate the training efficacy of the simulaglinical study that involved 2493
year students of UMASS medical school was conduciée students had completed
basic medical courses but had no or little ultrasbexperience. Each student scanned 6
image volumes within two 2.5-hour sessions. Theeegrpental results provides firm
evidence of the training efficacy of the simulabyr demonstrating that the successful
completion time of each task gradually decreaseith@sraining progressed. In addition,
some of the medical students confirmed that thaitrg on the simulator facilitated their
learning of obstetric ultrasound in the clerkshipgram. The survey completed by these
students shows that the simulator provided an @abkplevel of scan experience and 2D
images and had the potential of becoming a suppietoel for training medical students,

resident doctors, nurse and technicians.

The simulator described in this dissertation, veittime modifications, is well-suited
for adaption to ultrasound training in other metg@ecialties. For example, the training
simulator can be adapted to emergency medicinegcedly for abdominal injuries,
where the same physical scan surface can be diilikeappropriate training image

volumes are available for and evaluation critereencoded into the simulator.

In this dissertation, we have also described a ®ewaining system that was
implemented with the networked low-cost, portabbstetric ultrasound simulators. The
two operational modes of the E-training systemvalkiudents to either participate in

group learning (synchronous mode) by receivingsiteen guidance from an instructor or
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observing the scan practice by a selected studento practice ultrasound skills

independently under the guidance of the simulasyrfchronous mode).

In the synchronous mode, the sham transducer’kitigicata are directly transmitted
from the operator simulator to all observer simuiatthrough the server, so that every
simulator display the same virtual transducer mey@non a given virtual torso as well
as 2D image images in real-time. Moreover, dirsatgmission of tracking data from the
sham transducer, instead of streaming 2D ultrastmades, lowers the transmission bit
rate dramatically to several kilobytes per secamdl thereby makes the E-training system
able to function well even in low speed networkdieTuse of the server-client
architecture ensures that all simulators, whethaning in private or public networks,
can successfully communicate with each other. Blyachronous (or self-learning) mode
is de factothat the learner practices the scan under the goedaf the simulator, as
described in Chapter 6.

9.2 Future Improvements

The future development of the simulator may incladiew improvements. The first
improvement is providing 3D training image voluntes/ing better quality. This could
be achieved by using a real-time 2D array ultradowansducer. Such a transducer can
directly collect 3D image volumes instead of thguences of 2D images acquired with a
1D linear array transducer. As presented in Chapt2r2, in the image acquisition, a
complete 3D image volume was actually created hbychatg together several
overlapping 3D image volumes obtained with severdividual transducer sweeps. A
primary challenge in creating a 3D image voluméhés fetal movement during the data
collection. By using a 2D array ultrasound transstpyeve could potentially reduce the
scan time and the possibility of incurring fetalvament. This is because the longer the

collection time is, the more likely it is that tfetus will move during the data collection.

The second improvement is providing more detailedluation feedback for the
training tasks. According to the results of thenicial evaluation, the current
implementation of the simulator requires that ttueleant should have basic understanding
of ultrasound and obstetrics. We have observed thieatstudents who have had some
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exposure to ultrasound scans in the past, sucha#shiwg obstetric ultrasound scans
before or knowing basic obstetrics, could compldte training more quickly. The

simulator with more evaluation feedback may male ¢lmulator-based training more
efficient and attractive to the learner on the begr level. In addition, the simulator
currently only has 6 image volumes for the trainamgl those image volumes only cover
a part of all common medical conditions. Providmgre training image volumes will

benefit the learner in experiencing various medamaiditions and having more practice

opportunities.

The last improvement is optimizing the simulatoftware. The current software
loads in many unused MITK, VTK and ITK classes I tboot process. This wastes
computer memory space and makes the simulator lilesly to run on low priced
computers. Such unused classes have been integnétethe MITK and VTK libraries

so that additional efforts are needed to removetiiem the MITK rendering pipeline.
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Appendix A

The Survey for the Training Efficacy Experiment

This survey is to evaluate the realism and trairfewgibility of obstetric ultrasound
simulator. Users are asked to check one item thadt mppropriately describes their

scanning experience.

Question 1
Do you think that the2D ultrasoumziagesare realistic?

1. Not at all.

2. Some level of realism, but not usable for ultragbtraining.

3. Acceptable level of realism and it can be usediftvasound training.
4. Very realistic

Question 2

Do you think the simulator offers you realisticratoundscanningexperience

1. Not at all.

2. Some level of realism, but not usable for ultragbtraining.

3. Acceptable level of realism and it can be usediftvasound training.
4. Very realistic

Question 3
Do you think theasksare appropriately designed for obstetric ultrasiowaining?
1. Not at all.
2. Less appropriate, need to revise some tasks.
3. Neutral.
4. Appropriate, but need to add a little more.
5. Close to standard training and no need to change.
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Question 4

Do you think that thdeedback associated with specific tasks is useful to uttvesl
training?

1. Not at all.

2. Some level of useful, but it is not enough foraswund training.
3. Pertinent for ultrasound training.

4. Not Applicable.

Question 5

Could you envision the simulator, in its currenitnfip as a useful supplement to training
in obstetrics ultrasound?

1. Not at all.

2. Has limited contribution to ultrasound training, tboot enough as useful
supplement.

3. Is acceptable as ultrasound training supplement.

4. Can recommend it as an ultrasound training tool

Question 6

Could you easily identify fetal head and its pasift

1. Impossible to complete this task.

Difficult, but could complete this task.

Neutral.

Easy, but some parts of 2D image obstruct ideatiho.
Very easy.

Question 7

Could you easily identify placenta and its posifion

akrwbd

1. Impossible to complete this task.

Difficult, but could complete this task.

Neutral.

Easy, but some parts of 2D image obstruct ideatiho.
Very easy.

Question 8

Could you easily measure amniotic fluid?

akrwbd

1. Impossible to complete this task.
2. Difficult, but could complete this task.
3. Neutral.

154



4. Easy, but some parts of 2D image obstruct ideatifio.
5. Very easy.

Question 9

Could you easily find thalami and measure bipardimeter?

1. Impossible to complete this task.

Difficult, but could complete this task.

Neutral.

Easy, but some parts of 2D image obstruct ideatiho.
Very easy.

Question 10

Could you easily find the stomach bubble and umhilivein and measure abdominal
circumference?

arwbd

1. Impossible to complete this task.

Difficult, but could complete this task.

Neutral.

Easy, but some parts of 2D image obstruct ideatiio.
Very easy.

Question 11

Could you easily the femur and measure the length?

akrwbd

1. Impossible to complete this task.

Difficult, but could complete this task.

Neutral.

Easy, but some parts of 2D image obstruct ideatiio.
Very easy.

Question 12

Which categories of medical personnel would benfbtin access to an obstetrics
ultrasound training simulator? (You can check ntbes one)
1. Medical students
Residents
Nurses
Technicians
Others. Please specify.

Question 13
Are you aiming to make OB/GYN your future specialty

akrwbd

arwbd

155



O yes; O no; 0 maybe

Question 14
Can you recommend specific improvements to the etfis$s ultrasound training

simulator?
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