
Video/Image Processing on FPGA

by

Jin Zhao

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

April 2015

APPROVED:

Professor Xinming Huang, Major Thesis Advisor

Professor Lifeng Lai

Professor Emmanuel O. Agu

Abstract

Video/Image processing is a fundamental issue in computer science. It is widely

used for a broad range of applications, such as weather prediction, computerized

tomography (CT), artificial intelligence (AI), and etc. Video-based advanced driver

assistance system (ADAS) attracts great attention in recent years, which aims at

helping drivers to become more concentrated when driving and giving proper warn-

ings if any danger is insight. Typical ADAS includes lane departure warning, traffic

sign detection, pedestrian detection, and etc. Both basic and advanced video/image

processing technologies are deployed in video-based driver assistance system. The

key requirements of driver assistance system are rapid processing time and low power

consumption. We consider Field Programmable Gate Array (FPGA) as the most

appropriate embedded platform for ADAS. Owing to the parallel architecture, an

FPGA is able to perform high-speed video processing such that it could issue warn-

ings timely and provide drivers longer time to response. Besides, the cost and power

consumption of modern FPGAs, particular small size FPGAs, are considerably ef-

ficient. Compared to the CPU implementation, the FPGA video/image processing

achieves about tens of times speedup for video-based driver assistance system and

other applications.

Acknowledgements

I would like to sincerely express my gratitude to my advisor, Professor Xinming

Huang. He offered me the opportunity to study and develop myself in Worcester

Polytechnic Institute, guided me in the research projects and mentored me in my

life.

Thanks to Sichao Zhu for his creative and helpful work in the traffic sign detection

project. Thanks to Bingqian Xie for her ideas and experiments in the lane departure

warning system project. Thanks to Boyang Li for helping me learn how to build

basic video/image processing block using Mathworks tools.

Thanks to The Mathworks. Inc for their generously supporting our research,

financially and professionally.

Thanks to all my lovely friends and my family for their help in the past years.

They always encourage me and give me confidence to overcome all the problems.

i

Contents

1 Introduction 1

2 Basic Video/Image Processing 3

2.1 Digital Image/Video Fundamentals 3

2.2 Mathworks HDL Coder Introduction 5

2.3 Color Correction . 7

2.3.1 Introduction . 7

2.3.2 Simulink Implementation . 8

2.3.3 FPGA Implementation . 11

2.4 RGB2YUV . 15

2.4.1 Introduction . 15

2.4.2 Simulink Implementation . 17

2.4.3 FPGA Implementation . 18

2.5 Gamma Correction . 19

2.5.1 Introduction . 19

2.5.2 Simulink Implementation . 21

2.5.3 FPGA Implementation . 22

2.6 2D FIR Filter . 23

2.6.1 Introduction . 23

ii

2.6.2 Simulink Implementation . 26

2.6.3 FPGA Implementation . 28

2.7 Median Filter . 29

2.7.1 Introduction . 29

2.7.2 Simulink Implementation . 30

2.7.3 FPGA Implementation . 33

2.8 Sobel Filter . 34

2.8.1 Introduction . 34

2.8.2 Simulink Implementation . 35

2.8.3 FPGA Implementation . 36

2.9 Grayscale to Binary Image . 37

2.9.1 Introduction . 37

2.9.2 Simulink Implementation . 39

2.9.3 FPGA Implementation . 41

2.10 Binary/Morphological Image Processing 41

2.10.1 Introduction . 41

2.10.2 Simulink Implementation . 43

2.10.3 FPGA Implementation . 44

2.11 Summary . 45

3 Advanced Video/Image Processing 46

3.1 Lane Departure warning system . 46

3.1.1 Introduction . 46

3.1.2 Approaches to Lane Departure Warning 47

3.1.3 Hardware Implementation . 52

3.1.4 Experimental Results . 56

3.2 Traffic Sign Detection System Using SURF 58

iii

3.2.1 Introduction . 58

3.2.2 SURF Algorithm . 59

3.2.3 FPGA Implementation of SURF 61

3.2.3.1 Overall system architecture 62

3.2.3.2 Integral image generation 63

3.2.3.3 Interest points detector 64

3.2.3.4 Memory management unit 67

3.2.3.5 Interest point descriptor 68

3.2.3.6 Descriptor Comparator 69

3.2.4 Results . 70

3.3 Traffic Sign Detection System Using SURF and FREAK 71

3.3.1 FREAK Descriptor . 72

3.3.2 Hardware Implementation . 73

3.3.2.1 Overall System Architecture 73

3.3.2.2 Integral Image Generator and Interest Point Detector 74

3.3.2.3 Memory Management Unit 75

3.3.2.4 FREAK Descriptor 76

3.3.2.5 Descriptor Matching Module 77

3.3.3 Results . 78

3.4 Summary . 79

4 Conclusions 80

iv

List of Figures

1.1 Xilinx KC705 development kit . 2

2.1 Video stream timing signals . 5

2.2 HDL supported Simulink library . 6

2.3 Illustration of color correction . 8

2.4 Flow chart of color correction system in Simulink 9

2.5 Flow chart of video format conversion block 10

2.6 Flow chart of serialize block . 10

2.7 Flow chart of deserialize block . 10

2.8 Implementation of color correction block in Simulink 11

2.9 Example of color correction in Simulink 12

2.10 HDL coder workflow advisor (1) . 13

2.11 HDL coder workflow advisor (2) . 13

2.12 HDL coder workflow advisor (3) . 14

2.13 HDL coder workflow advisor (4) . 14

2.14 HDL coder workflow advisor (5) . 15

2.15 Example of color correction on hardware 15

2.16 Illustration of RGB to YUV conversion 16

2.17 Flow chart of RGB2YUV Simulink system 17

2.18 Implementation of RGB2YUV block in Simulink 18

v

2.19 Example of RGB2YUV in Simulink 19

2.20 Example of RGB2YUV on hardware 20

2.21 Illustration of gamma correction . 21

2.22 Flow chart of gamma correction system in Simulink 22

2.23 Parameter settings for 1-D Lookup Table 22

2.24 Example of gamma correction in Simulink 23

2.25 Example of gamma correction on hardware 24

2.26 Illustration of 2D FIR filter . 25

2.27 Flow chart of 2D FIR filter system in Simulink 26

2.28 Flow chart of 2D FIR filter block in Simulink 26

2.29 Flow chart of Sobel Kernel block . 27

2.30 Architecture of kernel mult block . 27

2.31 Example of 2D FIR filter in Simulink 28

2.32 Example of 2D FIR filter on hardware 28

2.33 Illustration of median filter . 30

2.34 Flow chart of median filter block in Simulink 31

2.35 Flow chart of the median Simulink block 31

2.36 Architecture of the compare block in Simulink 32

2.37 Implementation of basic compare block in Simulink 32

2.38 Example of median filter in Simulink 33

2.39 Example of median filter on hardware 34

2.40 Illustration of Sobel filter . 35

2.41 Flow chart of Sobel filter block in Simulink 35

2.42 Flow chart of the Sobel kernel block in Simulink 36

2.43 Flow chart of the x/y directional block in Sobel filter system 37

2.44 Example of Sobel filter in Simulink 38

vi

2.45 Example of Sobel filter on hardware 38

2.46 Illustration of grayscale to binary image conversion 39

2.47 Flow chart of the proposed grayscale to binary image conversion systems 40

2.48 Implementation of the gray2bin block in Simulink 40

2.49 Example of grayscale to binary image conversion in Simulink 40

2.50 Example of grayscale to binary image conversion on hardware 41

2.51 Illustration of morphological image processing 43

2.52 Flow chart of the proposed image dilation block 44

2.53 Detail of the bit operation block . 44

2.54 Example of image dilation in Simulink 45

2.55 Example of image dilation on hardware 45

3.1 Flow chart of the proposed LDW and FCW systems 48

3.2 Illustration of Sobel filter and Otsu’s threshold binarization. (a) is

the original image captured from camera. (b) and (c) are ROI after

Sobel filtering and binarization, respectively 50

3.3 Hough transform from 2D space to Hough space 51

3.4 Sobel filter architecture . 53

3.5 Datapath for Otsu’s threshold calculation 53

3.6 Hough transform architecture . 54

3.7 Flow chart of front vehicle detection 55

3.8 Results of our LDW and FCW systems 57

3.9 Overall system block diagram . 62

3.10 Integral image generation block diagram 63

3.11 Build Hessian Response block diagram 65

3.12 Is Extreme block diagram . 66

3.13 Interest point descriptor block diagram 68

vii

3.14 Traffic sign detection system . 71

3.15 Illustration of the FREAK sampling pattern 72

3.16 FPGA design system block diagram 74

3.17 Integral image address generator. 75

3.18 Normalized intensity calculation. 76

3.19 Descriptor matching flow chart . 77

3.20 A matching example of STOP sign detection 79

viii

List of Tables

3.1 Device utilization summary . 56

3.2 Device utilization summary . 71

3.3 Device utilization summary . 78

ix

Chapter 1

Introduction

Video/image processing is any form of signal processing for which the input is an

video/image, such as a video stream or photograph. Video/image needs to be pro-

cessed for better display, storage and other special purposes. For example, medical

scientists enhance x-ray images and suppress accompanying noises for doctors to

make precise diagnosis. Video/image processing also builds solid groundwork for

computer vision, video/image compression, machine learning and etc.

In this thesis we focus on real-time video/image processing for advanced driver

assistance system (ADAS). Each year millions of traffic accidents occurred around

the world cause loss of lives and property. Improving road safety through advanced

computing and sensor technologies has drawn lots of interests from researchers and

corporations. Video-based driver-assistance system is becoming an indispensable

part of smart vehicles. It monitors and interprets the surrounding traffic situation,

which greatly improves driving safety. ADAS includes, but is not limited to, lane

departure warning, traffic sign detection, pedestrian detection, etc. Unlike general

video/image processing on computer, driver assistance system naturally requires

rapid video/image processing as well as low power consumption. Alternative solution

1

should be considered for ADAS rather than general purpose CPU.

Field Programmable Gate Array (FPGA) is an reconfigurable integrated circuit.

Its parallel computational architecture an convenient access to local memories make

it the most appropriate platform for driver assistance system. An FPGA is able to

perform real-time video processing such that it could issue corresponding warnings

to the drivers timely. Besides, the cost and power consumption of modern FPGAs

are relatively low, compared to CPU and GPU. In this thesis work, we employ Xilinx

KC705 FPGA development kit in figure 1.1 as the hardware platform.

Figure 1.1: Xilinx KC705 development kit

This thesis is organized as follows. Chapter 2 introduces the basic video/image

processing blocks and their implementation on FPGA. Chapter 3 presents advanced

video/image processing algorithms for driver assistance system and their FPGA

implementation. Chapter 4 concludes our achievements and possible improvement

in the work of future.

2

Chapter 2

Basic Video/Image Processing

This chapter starts with introduction of digital video/image, then presents basic

video/image processing blocks. Basic video/image processing is not only broadly

used in simple video systems, but could be fundamental and indispensable compo-

nent in complex video projects. In the thesis, we cover the following video pro-

cessing functions: color correction, RGB to YUV conversion, gamma correction,

median filter, 2D FIR filter, Sobel filter, grayscale to binary conversion and mor-

phological image processing. For every functional block, this thesis introduces basic

idea, builds the blocks using Mathworks Simulink and HDL Coder toolbox, and

implements hardware block on FPGA.

2.1 Digital Image/Video Fundamentals

A digital image could be defined as a two-dimensional function f (x, y), where the

x and y are spatial coordinates, and the amplitude of f (x, y) at any location of an

image is called the intensity of the image at that point as (2.1).

3

f =

f (1, 1) f (1, 2) · · · f (1, n)

f (2, 1) f (2, 2) · · · f (2, n)

...
...

...

f (m, 1) f (m, 2) · · · f (m,n)

(2.1)

Color image includes color information for each pixel. It could be seen as a

combination of individual images of different color channels. The mainly used color

system in computer displays are RGB (Red, Green, Blue) space. Other color image

representation systems are HSI (Hue, Saturation, Intensity) and YCbCr or YUV.

Grayscale image refers to monochrome image. The only color of each pixel

is shade of gray. In fact, a gray color is one in which the red, green and blue

components all have equal intensity in RGB space. Hence, it is only necessary to

specify a single intensity value for each pixel, as opposed to represent each pixel

with three intensities in full color images.

For each color channel of RGB image and grayscale image pixel, the intensity is

within a given range between a minimum and maximum value. Often, every pixel

intensity is stored using an 8-bit integer giving 256 possible different grades from 0

and 255. The black is 0 and the white is 255, respectively.

Binary image, or black and white image, is a kind of digital image that has only

two possible intensity value for every pixel, 1 as white and 0 for black. The object

is labeled with foreground color while the rest of the image is with the background

color.

Video stream is a series of successive images. Every video frame consists of

active pixels and blanking as figure 2.1. At the end of each line, there is a portion

of waveform called horizontal blanking interval. The horizontal sync signal ’hsync’

indicates start of the next line. Starting from the top, all the active lines on the

4

Figure 2.1: Video stream timing signals

display area are scanned in this way. Once the entire active video frame is scanned,

there is another portion of waveform called vertical blanking interval. The vertical

sync signal ’vsync’ indicates start of the new video frame. The time slot of blanking

could be used to process video stream, which we can see in the following chapters.

2.2 Mathworks HDL Coder Introduction

Matlab/Simulink is a high-level language for scientific and technical computing in-

troduced by Mathworks, Inc. Matlab/Simulink takes matrix as basic data element

and makes tremendous matrix operation optimization. Therefore, Matlab is perfect

for video/image processing since video/image is naturally matrix.

HDL coder is a Matlab toolbox product. It generates portable, synthesizable

Verilog and VHDL code from Mathworks Matlab, Simulink and Stateflow charts.

The generated HDL code can be used for FPGA programming or ASIC (Application

Specific Integrated Circuit) prototyping and design. HDL Coder provides a workflow

advisor that automates the programming of Xilinx and Altera FPGAs. You can

5

control HDL architecture and implementation, highlight critical paths, and generate

hardware resource utilization estimates.

Compared to HDL code generation from Matlab, Simulink provides graphical

programming tool for modeling, which is more suitable for building image/video

processing blocks. Furthermore, HDL Coder provides traceability between your

Simulink model and the generated Verilog and VHDL code. To look up what blocks

in Simulink support HDL generation, just type ’hdllib’ in Matlab command line.

A window will be prompted as in figure 2.2 and customs could find all the HDL

friendly Simulink blocks. In order to successfully generate HDL code, every model

in the subsystem must be from the hdlsupported library.

Figure 2.2: HDL supported Simulink library

In the following content of this chapter, we will focus on construct basic im-

age/video processing system in Simulink environment using HDL friendly models.

The Simulink settings and workflow to generate HDL code are also advised.

6

2.3 Color Correction

2.3.1 Introduction

Color inaccuracies exist commonly during image/video acquisition. An error white

balance setting or inappropriate color temperature will produce color errors. In

most digital still and video imaging systems, color correction is to alter the overall

color of the light. In RGB color space, color image is stored in m×n× 3 arrays and

each pixel could be represented as 3D vector [R,G,B]
′
. The color channel correction

matrix M is applied to the input images in order to correct color inaccuracies. The

correction could be expressed by an multiplication as the following equality in (2.2):

Rout

Gout

Bout

 =

M11 M12 M13

M21 M22 M23

M31 M32 M33

×

Rin

Gin

Bin

 (2.2)

or be unfolded in 3 items as

Rout = M11 ×Rin +M12 ×Gin +M13 ×Bin (2.3)

Gout = M21 ×Rin +M22 ×Gin +M23 ×Bin (2.4)

Bout = M31 ×Rin +M32 ×Gin +M33 ×Bin (2.5)

There are several solution to estimate the color correction matrix. For example,

Least-squares solution could make the matrix more robust and less influenced by

outliers. In the typical workflow, a test chart with known and randomly distributed

color patches was captured by a digital camera with “auto” white balance. Com-

7

parison of means of the red, green and blue color components in the color patches,

original versus captured, reveal the presence of non-linearity. The non-linearity

could be described using a 3 × 3 matrix N . In order to accurately display the real

color, we employ inverse matrix M = N−1 to offset non-linearity of video camera.

For example, In fig. 2.3, (a) is the generated original color patches. (b) is image

(a) with color inaccuracies. All the color patches seem containing more red compo-

nents. The color drifting could be modeled with matrix N and we could correct the

incorrect color patches with M = N−1 and get recovered image (c).

(a) (b) (c)

Figure 2.3: Illustration of color correction

2.3.2 Simulink Implementation

Simulink, provided by Mathworks, is a graphical block diagram environment for

modeling, simulating and analyzing multi-domain dynamic systems. Its interface

is a block diagramming tool and a set of block libraries. It supports simulation,

verification and automatic code generation.

Simulink is easy-to-use and efficient way to modeling functional algorithms. The

8

method is pretty straightforward: 1) create a new Simulink model. 2) type ’simulink’

in Matlab command line to view all available Simulink library blocks. 3) type ’hdl-

lib’ in Matlab command line and open all Simulink block that support HDL code

generation. 4) use these HDL friendly block to build up functional blocks hierar-

chically. You can do so by copying blocks from Simulink library and hdlsupported

library to your Simulink model, then simply draw connection lines to link blocks.

Simulink simulates a dynamic system by computing the states of all blocks at

a series of time steps over a chosen time span, using information defined by the

model. The Simulink library of solvers is divided into two major types: fixed-step

and variable-step. They can further be divided within each of these categories

as: discrete or continuous, explicit or implicit, one-step or multi-step, and single-

order or variable-order. For all the image processing demos in this thesis, variable

step discrete solver is selected. You can go to Simulink → Model Configuration

Parameters and select correct solver in the Solver tab of prompted window.

We will elaborate the basic steps and other algorithms in this chapter follow

the same guideline. It is important to point out that we just need to translate key

processing algorithms to HDL and so other parts of Simulink model, such as source,

sink, pre-processing and etc, are not necessarily from hdlsupported library.

Figure 2.4: Flow chart of color correction system in Simulink

Figure 2.4 gives a big picture of the entire color correction Simulink system.

The state flow is as follow: The source block takes image as system input. Video

Format Conversion block concatenates three color components to a single bus as

9

in Figure 2.5. Serialize block converts image matrix to pixel-by-pixel stream. Fig.

2.6 illustrates the inner structure of Serialize block. Color correction block is the

key componentamong those modules. This block must be purely set up with funda-

mental blocks from hdlsupported library and hence could be translated to Verilog

and VHDL using HDL coder work flow. The subsequent Serialize block as fig. 2.7,

inverse of Serialize, convert serial pixel stream back to image matrix. The final block

- Video Viewer displays filtering result in Simulink.

Figure 2.5: Flow chart of video format conversion block

Figure 2.6: Flow chart of serialize block

Figure 2.7: Flow chart of deserialize block

Fig. 2.8 illustrates color correction block Simulink implementation. The input

bus signal is separated to three color components RGB. The gain blocks implement

multiplication. The sum blocks sum up previous multiplication products. Matrix

10

multiplication is implemented using these gain and sum blocks. Finally the corrected

color components are concatenated again to a bus signal. The delay blocks inserted

in between will be transferred to registers in hardware, which add more clock cycles

to leverage higher clock frequency.

Figure 2.8: Implementation of color correction block in Simulink

Fig 2.9 gives the simulation result in Simulink environment. Image (a) is the

RGB image with color inaccuracy and image (b) is the corrected image using color

correction Simulink system.

2.3.3 FPGA Implementation

After successfully making a functional Simulink project based on HDL friendly basic

blocks, we could simply generate HDL code from it using Mathworks HDL coder

toolbox.

11

(a) (b)

Figure 2.9: Example of color correction in Simulink

In the first step, right click the HDL friendly subsystem and select HDL Code

→ HDL Workflow Advisor. In the Set Target → Set Target Device and Synthesis

Tool step, for Synthesis tool, select Xilinx ISE and click Run This Task as in fig.

2.10.

In the second step as in fig. 2.12, right-click Prepare Model For HDL Code Gen-

eration and select Run All. The HDL Workflow Advisor checks the model for code

generation compatibility. You may encounter some incorrect model configuration

settings problems for HDL code generation as figure 2.11. To fix the problem, click

the Modify All button, or click the hyperlink to launch the Configuration Parameter

dialog and manually apply the recommended settings.

In the HDL Code Generation → Set Code Generation Options → Set Basic

Options step, select the following options, then click Apply: For Language, select

Verilog, Enable Generate traceability report, Enable Generate resource utilization

report. For the options available in the Optimization and Coding style tabs, you

can use these options to modify the implementation and format of the generated

code. This step is showed in fig. 2.13.

12

Figure 2.10: HDL coder workflow advisor (1)

Figure 2.11: HDL coder workflow advisor (2)

After Simulink successfully generate HDL code, you have two ways to synthesize

and analyze the generated HDL code: 1) copy the HDL code to your HDL project

and run the synthesis, translation, mapping and P&R in Xilinx ISE environment

manually. 2) run those task in Simulink environment as in fig. 2.14.

In order to validate the entire color correction design, we conduct an experiment

on a KC705 FPGA platform. The video streams from a camera or computer are

sent to an on-board Kintex-7 FPGA via FMC module. The FPGA performs color

13

Figure 2.12: HDL coder workflow advisor (3)

Figure 2.13: HDL coder workflow advisor (4)

correction on every video frame and exports the results to a monitor for display. We

delay the video pixel timing signals vsync, hsync and de accordingly to match pixel

delay cycles in Simulink.

The reported maximum frequency is 228.94 MHz. The resources utilization of

the color correction system on FPGA is as follows : 102 slice registers and 246 slice

LUTs. Fig. 2.15 illustrates the result of our color correction system on hardware.

Image (a) is an video image with color inaccuracy and image (b) is the corrected

14

Figure 2.14: HDL coder workflow advisor (5)

(a) (b)

Figure 2.15: Example of color correction on hardware

image with accurate color.

2.4 RGB2YUV

2.4.1 Introduction

Color image processing is a logical extension to the processing of grayscale images.

The main difference is that each pixel consists of a vector of components rather

15

than a scalar. Usually, a pixel from an image has three components: red, green and

blue. These are defined by the human visual system. Color is typically represented

by a three dimensional vector and user can define how many bits each component

have. Besides using RGB to represent the color of an image, there are different

ways to represent an image to make subsequent analysis or processing easier, such

as CMYK (subtractive color model, mainly used in color printing) and YUV (used

for video/image compression and television system). Here Y stands for luminance

signal, which is the combination of RGB components, with the color provided by

two color difference signals U and V.

Because many video/image processing is performed in YUV space or simply in

grayscale, so RGB to YUV conversion is very desirable in many video system. We

can use simple functions to show convert these components like:

Y = 0.299R + 0.587G+ 0.114B (2.6)

U = 0.492(B − Y) (2.7)

V = 0.877(R− Y) (2.8)

(a) (b) (c) (d)

Figure 2.16: Illustration of RGB to YUV conversion

16

Fig 2.16 illustrates the result of convert color image in RGB domain to image

with YUV components. Image (a) is the color image with RGB representation and

(b) (c) (d) is YUV components of the image, respectively.

2.4.2 Simulink Implementation

Figure 2.17: Flow chart of RGB2YUV Simulink system

Figure 2.17 gives an overview of the entire RGB2YUV Simulink system. The

other blocks are exactly identical with those in color correction model except the

RGB2YUV kernel block. The kernel block detail is shown in fig. 2.18. The input

bus signal is represented in Xilinx video data format, which is 32’hFFRRBBGG. So

we first separate the bus signal to three color components RGB. Red component is

bit 23 to 16; Green is bit 7 to 0; Blue is bit 15 to 8. The gain blocks implement

multiplication. The sum blocks calculate add and subtract result, which are defined

in block parameter. Matrix multiplication is implemented using these gain and

sum blocks. Finally the corrected color components are concatenated again to a

bus signal. The delay blocks inserted in between will be transferred to registers in

hardware, which break down the critical path to achieve higher clock frequency.

17

Figure 2.18: Implementation of RGB2YUV block in Simulink

Fig 2.19 gives the simulation result in Simulink environment. Image (a) is the

color image with RGB representation and (b) (c) (d) is YUV components of the

image, respectively.

2.4.3 FPGA Implementation

We validate the entire RGB2YUV design on a KC705 FPGA platform using gener-

ated HDL code. The reported maximum frequency is 159.69 MHz. The resources

utilization of the RGB to YUV system on FPGA is as follows: 106 slice registers

and 286 slice LUTs. Fig. 2.20 illustrates the result of our RGB to YUV system on

hardware. Image (a) is the color image with RGB representation and (b) (c) (d) is

YUV components of the image, respectively. To display Y(U/V) component in gray

scale, we assign the value of signal component to all RGB channels.

18

(a) (b)

(c) (d)

Figure 2.19: Example of RGB2YUV in Simulink

2.5 Gamma Correction

2.5.1 Introduction

Gamma correction is a nonlinear operation used to adjust pixel luminance in video

or still image systems. Image seems bleach out or too dark when it is not properly

corrected. Gamma correction controls the overall brightness of an image, crucial for

displaying an image accurately on a computer screen.

Gamma correction could be defined by the following power-law expression:

Vout = K × V r
in (2.9)

where K is a constant coefficient and Vin/Vout is non-negative real values. In the

19

(a) (b)

(c) (d)

Figure 2.20: Example of RGB2YUV on hardware

common case of K = 1, the inputs and outputs are normalized in the range of [0, 1].

For 8-bit grayscale image, the input/output range is between [0, 255]. For the case

that gamma value r < 1, it is called an encoding gamma; conversely a gamma value

r > 1 is called a decoding gamma.

Gamma correction is necessary for image display due to nonlinear property of

computer monitor. Almost all computer monitors have an intensity to voltage re-

sponse curve which is roughly r = 2.2 power function. When computer monitor is

sent a certain pixel of intensity x, it will actually display a pixel with intensity x2.2.

This means that the intensity value displayed is less than what it is expected to be.

For instance, 0.52.2 = 0.22.

To correct this annoying bug, the input image intensity to the monitor must be

gamma corrected. Since the relationship between the voltage sent to monitor and

intensity displayed could be depicted by gamma coefficient r and monitor manufac-

tures provide the number, we could correct the signal before it reaches the monitor

20

(a) (b)

(c) (d)

Figure 2.21: Illustration of gamma correction

using a 1
r

gamma coefficient. The procedure is shown in fig. 2.21. Image (a) is origi-

nal video frame; (b)depicts how the image looks like on monitor of gamma coefficient

2.2 without gamma correction. We adjust pixel intensity using a 1
r

gamma coeffi-

cient and get image(c), which looks like image (d) on the monitor with nonlinear

property.

If gamma correction is performed perfectly for the display system, the output

of monitor correctly reflects the image (voltage) input. Note that monitor systems

have many influencing factors, such as brightness and contrast setting other than

gamma adjustment. Adjusting monitor display is a comprehensive task.

2.5.2 Simulink Implementation

Figure 2.22 gives an overview of the entire gamma correction Simulink model. The

Image From File block, Serialize block, Serialize block and video viewer block are

21

Figure 2.22: Flow chart of gamma correction system in Simulink

shared with those in previous color correction system. The key block of gamma

correction system is 1-D lookup table from hdlsupported library. The gamma curve

is described in block parameter as in fig. 2.23.

Figure 2.23: Parameter settings for 1-D Lookup Table

Fig 2.24 gives the gamma correction simulation result in Simulink environment.

Image (a) is the the original video frame in grayscale and (b) (c) is the corrected

image entering nonlinear computer monitor with gamma coefficient 2.2 and 1.8.

2.5.3 FPGA Implementation

We validate the entire gamma correction design on a KC705 FPGA platform us-

ing generated HDL code. The reported maximum frequency is 224.31 MHz. The

22

(a) (b) (c)

Figure 2.24: Example of gamma correction in Simulink

resources utilization of the gamma correction system on FPGA is as follows: 50

slices, 17 slice flip flops and 95 four input LUTs. Fig. 2.25 illustrates the result of

our gamma correction system on hardware. We apply the same gamma correction

block on all RGB color channels. Image (a) is the original color image with RGB

representation. Image (b) and (c) are the result of gamma correction system of co-

efficients 2.2 and 1.8. Image (d) is what the color image looks like on a real monitor

with nonlinear property.

2.6 2D FIR Filter

2.6.1 Introduction

The 2D FIR filter is a basic filter for image processing. The output signals of a

2D FIR filter can be computed using the input samples and previously computed

output samples as well as filter kernel. For a causal discrete-time FIR filter of order

N of 1 dimension, each value of the output sequence is a weighted sum of the most

recent input values, as shown in equation (2.10):

23

(a) (b)

(d)(c)

Figure 2.25: Example of gamma correction on hardware

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2] + · · ·+ bNx[n−N] (2.10)

where x[n] is the input signal and the y[n] is the output signal. N is the filter

order, an Nth order filter has (N+1) terms on the right hand side. bi is the value of

the impulse response at the i-th instant for 0 ≤ i ≤ N of an Nth order FIR filter.

For 2-D FIR filter, the output signals rely on both previous pixels of current line

and pixels of upper lines. Upon the 2D filter kernel, the 2D FIR filter could be

either high-pass filter or low-pass filter. Equation (2.11) and (2.12) gives example

of typical high pass filter kernel and low pass filter kernel.

24

HighPass = [

0 −1 0

−1 4 −1

0 −1 0

] (2.11)

LowPass = [

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

] (2.12)

(a) (b)

(c) (d)

Figure 2.26: Illustration of 2D FIR filter

In this chapter, we will take low pass filter for example. Fig 2.26 illustrates the

result of low pass filter using different filter kernel. Image (a) is the original image

and (b) (c) (d) is the filtered image, respectively.

25

Figure 2.27: Flow chart of 2D FIR filter system in Simulink

2.6.2 Simulink Implementation

Figure 2.27 gives an overview of the entire 2D FIR filter Simulink system. The

architecture is also shared with following 2D filters in this chapter. The filtering

block is the only difference. Other blocks are the very same ones.

Figure 2.28: Flow chart of 2D FIR filter block in Simulink

Sobel filter block is implemented as fig. 2.28. We design a Sobel kernel block

to calculate the filter response of input image, then calculate the response absolute

value and convert it to uint8 data type for further display.

Fig. 2.29 is the architecture of Sobel kernel block. The 2D FIR algorithm

maintains three line buffers. Each iteration the input pixel is pushed into the current

line buffer that is being written to. The control logic rotates between these three

buffers when it reaches the column boundary. Each buffer is followed by a shift

register and data at the current column index is pushed into the shift register. At

each iteration a 3x3 kernel of pixels are formed from the pixel input, shift registers

26

Figure 2.29: Flow chart of Sobel Kernel block

and line buffer outputs. The kernel are multiplied by a 3x3 filter coefficient mask

and the sum of the result values is computed as the pixel output as in figure 2.30.

Figure 2.30: Architecture of kernel mult block

Fig 2.31 gives the low pass 2D FIR filter result in Simulink environment. Image

(a) is the the original video frame in grayscale and (b) is smoothed image output

using low pass filter in equation (2.12).

27

(a) (b)

Figure 2.31: Example of 2D FIR filter in Simulink

2.6.3 FPGA Implementation

(a) (b) (c)

Figure 2.32: Example of 2D FIR filter on hardware

We validate the entire 2D FIR filter design on a KC705 FPGA platform using

generated HDL code. The reported maximum frequency is 324.45 MHz. The re-

sources utilization of the 2D FIR filter system on FPGA is as follows: 71 slices, 120

flip flops, 88 four input LUTs and 1 FIFO16/RAM16. Fig. 2.32 illustrates the 2D

FIR filter system on hardware. Image (a) is the color image in grayscale and (b) (c)

is blurred image using different kinds of low pass filter kernels.

28

2.7 Median Filter

2.7.1 Introduction

Median filter is a nonlinear digital filtering technique, usually used for removing the

noise on an image. It is a more robust method than the traditional linear filtering

in some circumstances. The noise reduction is an important pre-processing step to

improve the results of the later process. The main idea of median filter is that using

a sliding window scan the whole image and replaces the center value in the window

with the median of all the pixel values in the window. The input image for median

filter is the grayscale image and the window is replied to each pixel of it. Usually,

we choose the window size as 3 by 3. Here we give an example of how the median

filter work in one window. For example, we have a 3 × 3 pixel window from an

image. The pixel values in the image window are 122, 116, 141, 119, 130, 125, 122,

120, 117. We can calculate what is the median value from the central one and all

the neighborhood values. The median value is 120. So the next step is to replace

the central value with the median value 120.

Compared to basic median filter, adaptive median filter may be more pratical.

In adaptive median filter, we just do the central value - median value swap when

the central value is black (0) or white (255) pixel. Otherwise, the system will keep

the original central pixel intensity.

Fig 2.33 illustrates the result of median filter using different sizes of filter kernel.

Image (a) is the original image; image (b) is image (a) with thin salt and pepper

noise; image (c) is the result of 3×3 median filter applied on image (b); image (d) is

image (a) with thick salt and pepper noise; image (e) is the result of 3× 3 median

filter applied on image (d); image (f) is the result of 5 × 5 median filter applied

on image (d). Comparing those images, we can find that the median filter blurs

29

(a) (b) (c)

(d) (e) (f)

Figure 2.33: Illustration of median filter

input image. With larger median filter mask, we filter out more noise, but lose more

information as well.

2.7.2 Simulink Implementation

The architecture of median filter Simulink system is the same with 2D FIR filter

model in fig. 2.27. The median filter is depicted in fig. 2.34. The median algorithm,

like 2D FIR filter, also maintains three line buffers. Each iteration the input pixel

is pushed into the current line buffer that is being written to. The control logic

rotates between these three buffers when it reaches the column boundary. Each

buffer is followed by a shift register and data at the current column index is pushed

into the shift register. At each iteration a 3x3 kernel of pixels are formed from the

pixel input, shift registers and line buffer outputs. Then the median block decide

the median output. Note that our adaptive median filter is design to filter out salt

30

Figure 2.34: Flow chart of median filter block in Simulink

and pepper noise. It should be modified in order to handle other kinds of error. It

first chooses the median intensity of input 9 input pixels in compare block in fig.

2.35, then compares the current pixel intensity with 0 and 255. If the pixel is salt

or pepper, the switch block chooses median value as output; otherwise it just passes

through current pixel intensity.

Figure 2.35: Flow chart of the median Simulink block

Fig. 2.36 shows the architecture of compare block. It is built with 19 basic

31

Figure 2.36: Architecture of the compare block in Simulink

Figure 2.37: Implementation of basic compare block in Simulink

compare blocks as in fig. 2.37. The basic compare blocks, taking 2 data input,

employ 2 relational operators and 2 switches to get the larger one and smaller one.

With such design, we get the median pixel value of 9 input pixels.

Fig 2.38 gives the median filter result in Simulink environment. Image (a) and

(c) is the the original video frame in different density of salt and pepper noise.

Image(b) and (d) is the recovered images using our 3× 3 median filter block.

32

(a) (b)

(c) (d)

Figure 2.38: Example of median filter in Simulink

2.7.3 FPGA Implementation

We validate the entire adaptive median filter design on the KC705 FPGA platform

using generated HDL code. The reported maximum frequency is 374.92 MHz. The

resources utilization of the median filter system on FPGA is as follows: 81 slices, 365

slice LUTs and 1 Block RAM/FIFO. Fig. 2.39 illustrates the median filter system

on hardware. Image (a) and (b) are the original grayscale image and image with

salt and pepper noise. Image (c) is recovered image using generated RTL median

filter.

33

(a) (b) (c)

Figure 2.39: Example of median filter on hardware

2.8 Sobel Filter

2.8.1 Introduction

The Sobel operator performs a 2-D spatial gradient measurement on an image and

so emphasizes regions of high frequency that correspond to edges. Typically it is

used to find the approximate absolute gradient magnitude at each point in an input

grayscale image. Here we also need a window to do the scanning work and here

we still choose 3 by 3 as the size of the window, then we apply two kernels on the

sliding window separately and independently. The x directional kernel is shown as

the following equation:

Gx =

0.125 0 −0.125

0.25 0 −0.25

0.125 0 −0.125

and y directional kernel is similar. By summing up the x and y directional kernel

response, we get the final Sobel filter response.

Fig 2.40 illustrates the result of Sobel filter. Image (a) is the original image;

34

(a) (b)

Figure 2.40: Illustration of Sobel filter

output image (b) is highlighted result using Sobel filter;

2.8.2 Simulink Implementation

Figure 2.41: Flow chart of Sobel filter block in Simulink

The architecture of Sobel filter Simulink system is the same with 2D FIR filter

system in fig. 2.27. The Sobel filter block filter is depicted in fig. 2.41. It first

calculates Sobel filter response in x and y direction in Sobel kernel block, then sum

their absolute values to get the final Sobel filter response and quantize the response

to Uint8 type for following display.

35

Figure 2.42: Flow chart of the Sobel kernel block in Simulink

Figure 2.42 shows the implementation of Sobel kernel block. Each iteration the

input pixel is pushed into the current line buffer. The control logic rotates between

these three buffers when it reaches the column boundary. Each buffer is followed

by a shift register and data at the current column index is pushed into the shift

register. At each iteration a 3x3 surrounding of pixels are formed from the pixel

input, shift registers and line buffer outputs. Then the x/y directional block in fig.

2.43 takes the surrounding pixels to calculate Sobel filter response in 2 orthometric

directions.

Fig 2.44 gives the Sobel filter result in Simulink environment. Image (a) is the

the original video frame. Image(b) is the gradient grayscale images using our Sobel

filter Simulink block.

2.8.3 FPGA Implementation

We validate the Sobel filter design on the KC705 FPGA platform using generated

HDL code. The reported maximum frequency is 227.43 MHz. The resources utiliza-

tion of the Sobel filter system on FPGA is as follows: 156 slices, 167 slice LUTs and

36

Figure 2.43: Flow chart of the x/y directional block in Sobel filter system

1 Block RAM/FIFO. Fig. 2.45 illustrates the Sobel filter system on hardware. Im-

age (a) is the original grayscale image and (b) is sharpened image with Sobel filter,

which highlights all the edges containing most critical information of the image.

2.9 Grayscale to Binary Image

2.9.1 Introduction

Converting grayscale image to binary image is often used in order to find Region

of Interest - a portion of image that is of interest for further processing because

binary image processing reduces the computational complexity. For example, Hough

transform is widely used to detect straight lines, circle and other specific curve in

an image and it takes only binary image input.

Grayscale image to binary image conversion always follows a high pass filter,

such as Sobel filter, to highlight the key information of an image, which is always

boundary of object. Subsequently, the key step of grayscale to binary conversion is

to set up an threshold. Each pixel of gradient image generated by highpass filter is

37

(a) (b)

Figure 2.44: Example of Sobel filter in Simulink

(a) (b)

Figure 2.45: Example of Sobel filter on hardware

compared to the chosen threshold. If the pixel intensity is larger than the threshold,

it is set to 1 in the binary image. Otherwise, it is set to 0.

We could imagine an appropriate threshold determine the quality of converted

binary image. Unfortunately, there isn’t a single threshold working for every image.

A threshold good for bright scene could never work for dark scene, and vice versa.

In section 3.1.2, we introduce an adaptive thresholding method to convert grayscale

image to binary image. Here, we will focus on fixed threshold method.

Fig 2.46 illustrates the result of grayscale to binary image conversion using dif-

38

(b)

(d)

(a) (c)

(e)

Figure 2.46: Illustration of grayscale to binary image conversion

ferent threshold values. Image (a) is the original image; image (b) is the gradient of

image (a) from Sobel filter; image (c) (d)(e) are corresponding binary image using

different threshold values. We could easily find that the result keeps more image

information with lower threshold. But low threshold also remains more noises. And

vice versa.

2.9.2 Simulink Implementation

Fig. 2.47 gives an overlook of grayscale to binary image conversion system in

Simulink. To keep critical edge information and dismiss noises, we first employ

Sobel filter to highlight object boundary in image. The key operation of grayscale

to binary image conversion is comparison. Here we use a compare to constant block

to compare pixel intensity of Sobel filter output with a pre-defined constant as figure

39

Figure 2.47: Flow chart of the proposed grayscale to binary image conversion sys-
tems

2.48. This will produce an output a binary image of 1 (white) and 0 (black).

Figure 2.48: Implementation of the gray2bin block in Simulink

(a) (b) (c)

Figure 2.49: Example of grayscale to binary image conversion in Simulink

Fig 2.49 gives the grayscale to binary image conversion result in Simulink envi-

ronment. Image (a) is the original grayscale image; image (b) is high-passed image

using Sobel filter; image (c) is converted binary representation of image content.

40

(a) (b)

Figure 2.50: Example of grayscale to binary image conversion on hardware

2.9.3 FPGA Implementation

We validate the grayscale to binary conversion design on the KC705 FPGA platform

using generated HDL code. The reported maximum frequency is 426.13 MHz. The

resources utilization of the grayscale to binary system on FPGA is as follows: 9

slices registers and 2 slice LUTs. Fig. 2.50 illustrates the grayscale to binary system

on hardware. Image (a) is the original grayscale image; image (b) is corresponding

binary image, which keeps the main information of original grayscale image.

2.10 Binary/Morphological Image Processing

2.10.1 Introduction

Morphological image processing is a collection of non-linear operations related to

the shape or morphology of features in an image. Morphological technique typically

probes a binary image with a small shape or template known as structuring ele-

ment consisting of only 0’s and 1’s. The structuring element could be any size and

positioned at any possible locations in the image.

A lot of morphological image processing is conducted in 3 × 3 neighborhood.

41

The mostly used structuring elements are square and diamond as (2.13) and (2.14).

SquarSE =

1 1 1

1 1 1

1 1 1

 (2.13)

DiamondSE =

0 1 0

1 0 1

0 1 0

 (2.14)

In this section, we define two fundamental morphological operation on binary

image: dilation and erosion. Dilation compares the structuring element with the

corresponding neighborhood of pixels to test whether the elements hits or intersects

with the neighborhood. Erosion operation compares the structuring element with

the corresponding neighborhood of pixels to determine whether the elements fits

within the neighborhood of pixels. In other words, dilation operation set the value of

output pixels as 1 if any of the pixels in the input pixel’s neighborhood defined by the

structuring element; the value of output pixel is set to 0 if any of the neighborhood

pixels value are 0 in erosion operation. Erosion operation set the value of output

pixels as 1 only if all of the pixels in the input pixel’s neighborhood defined by the

structuring element; otherwise the value is set to 0;

Here we take the image dilation as example. Fig 2.51 illustrates the result of

image dilation using different structuring elements. Image (a) is the original image;

image (b) is the dilation result with structuring element in (2.13); image (c) is the

dilation result with structuring element in (2.14); image (d) is the dilation result

with 11× 1 vector structuring element.

42

(a) (b)

(c) (d)

Figure 2.51: Illustration of morphological image processing

2.10.2 Simulink Implementation

Fig. 2.52 gives an overlook of image dilation block in Simulink. The delay blocks

collect current pixel surroundings (according to structuring element) for bit opera-

tion blocks to perform subsequent calculation. The key operation of binary image

morphology is bit operation. For image erosion application, bits AND operation is

preformed; for image dilation application, we need to perform bits OR operation.

For example, a 5-input OR operation is applied to perform image dilation in fig.

2.53.

Fig 2.54 gives the image dilation result in Simulink environment. Image (a) is

the original binary image; image (b) is dilated image output using 3 × 3 square

structuring element.

43

Figure 2.52: Flow chart of the proposed image dilation block

Figure 2.53: Detail of the bit operation block

2.10.3 FPGA Implementation

We validate the image dilation design on the KC705 FPGA platform using gener-

ated HDL code. The reported maximum frequency is 359.02 MHz. The resources

utilization of the image dilation system on FPGA is as follows: 28 slice registers, 32

slice LUTs and 1 Block RAM/FIFO. Fig. 2.55 illustrates the image dilation system

on hardware. Image (a) is the original binary image and (b) is dilated image using

generated image dilation HDL code.

44

(a) (b)

Figure 2.54: Example of image dilation in Simulink

(a) (b)

Figure 2.55: Example of image dilation on hardware

2.11 Summary

In this chapter, we introduce basic image/video processing blocks in Simulink and on

hardware. Because implementation of video/image processing blocks on hardware

is time consuming, not to mention debugging, we first prototype and implement

these blocks in Simulink and then transfer the design to RTL implementation using

HDL coder toolbox product. Finally, the RTL design is validated on Xilinx KC705

development platform.

45

Chapter 3

Advanced Video/Image Processing

3.1 Lane Departure warning system

3.1.1 Introduction

Each year millions of traffic accidents occurred around the world cause loss of lives

and properties. Improving road safety through advanced computing and sensor

technologies has drawn lots of interests from the auto industry. Advanced Driver

assistance system (ADAS) thus gains great popularity, which helps drivers to prop-

erly handle different driving condition and giving warnings if any danger is insight.

Typical driver assistance system includes, but is not limited to, lane departure

warning, traffic sign detection [1], obstacle detection [2], pedestrian detection [3],

etc. Many accidents were caused by careless or drowsy drivers, who failed to notice

that their cars were drifting to neighboring lanes or were too close to the car in the

front. Therefore, lane departure warning (LDW) system and front collision warning

(FCW) system are designed to prevent this type of accidents.

Different methods have been proposed for lane keeping and front vehicle detec-

tion. Marzotto et al. [4] proposed a RANSAC-like approach to minimize computa-

46

tional and memory cost. Risack et al. [5] used a lane state model for lane detection

and evaluated lane keeping performance as a parameter called time to line cross-

ing (TLC). McCall et al. [6] proposed a ’video-based lane estimation and tracking’

(VioLET) system which uses steerable filters to detect the lane marks. Others used

Hough transform for feature based lane detection. Wang et al. [7] combined Hough

transform and Otsu’s threshold method together to improve the performance of lane

detection and implemented it on a Kintex FPGA platform. Lee et al. [8] removed

redundant operations and proposed an optimized Hough transform design which

uses fewer logic gates and less number of cycles when implemented on an FPGA

board. Lin et al. [9] integrated lane departure warning system and front collision

warning system on a DSP board.

The key requirements of a driver assistance system are rapid processing time and

low power consumption. We consider FPGA as the most appropriate platform for

such a task. Owing to the parallel architecture, an FPGA can perform high-speed

video processing such that it can issue warnings timely and provide drivers more

time to response. Besides, the cost and power consumption of modern FPGAs,

particularly small size FPGAs, are considerably efficient.

In this contribution, we present a monocular vision lane departure warning and

front collision warning system jointly implemented on a single FPGA device. Our

experimental results demonstrate that the FPGA-based design is fully functional

and it achieves the real-time performance of 160 frame-per-second (fps) for high

resolution 720P video.

3.1.2 Approaches to Lane Departure Warning

The proposed LDW and FCW system takes video input from a single camera

mounted on a car windshield. Fig. 3.1 shows the flow chart of the proposed LDW

47

Sobel Filter

Otsu Threshold
Binarization

Hough
Transform

Lane Detection

Departure

Lane Departure
Warning

Gradient Image

Binary Image

Peak

T

Shadow
Detection

Distance
Calculation

LUT

Collision

Front Collision
Warning

With Velocity

T

Image Dilation

Grayscale Image

Figure 3.1: Flow chart of the proposed LDW and FCW systems

and FCW systems. The first step is to apply a Sobel filter on the gray scale image

frame to sharpen the edges after an RGB to gray scale conversion. This operation

helps highlight the lane marks and front vehicle boundary while eliminating dirty

noise on the road. The operator of Sobel filter is

G = G2
x +G2

y (3.1)

where the Gx is Sobel kernel in x - direction as in (3.2) and similarly Gy in y-

direction.

Gx =

0.125 0 −0.125

0.25 0 −0.25

0.125 0 −0.125

 (3.2)

Next, an important task is to convert the gray scale video frame to a “perfect”

binary image which is used by both LDW and FCW systems. A “perfect” binary

48

image means high signal-to-noise ratio, preserving desired information while aban-

doning useless data to produce more accurate results and to ease computational

burden. For LDW and FCW systems, the desired information is lane marks of the

road and vehicles in the front. Therefore, we cut off the top part of every image

and crop the area of interest to the bottom 320 rows of a 720P picture. All subse-

quent calculations are conducted on this region of interest (ROI). When converting

from gray scale to binary image, a fixed threshold is often not effective since the

illumination variance has apparent influence on the binarization. Instead, we choose

Otsu’s threshold, a dynamic and adaptive method, to obtain binary image that is

insensitive to background changes. The first step of Otsu’s method is to calculate

probability distribution of each gray level as in (3.3).

pi = ni/N (3.3)

where pi and ni are probability and pixel number of gray level i. N is the total

pixel number of all possible levels (from 0 to 255 for gray scale). The second is to

step through all possible level t to calculate ω∗(t) and µ∗(t) as in (3.4) and (3.5).

ω∗ (t) =
t∑

i=0

pi (3.4)

µ∗ (t) =
t∑

i=0

ipi (3.5)

The final step is to calculate between-class variance (σ∗B(t))2 as in (3.6).

(σ∗B (t))2 =
[µ∗Tω

∗ (t)− µ∗ (t)]2

ω∗ (t)× [1− ω∗ (t)]
(3.6)

where µ∗T is µ∗(255) in this case. For easy implementation on an FPGA, (3.6) is

49

re-written as (3.7)

σ2
B (t) =

[µT/N × ω (t)− µ (t)]2

ω (t)× [N − ω (t)]
(3.7)

where ω (t) = ω∗ (t)×N and µ (t) = µ∗ (t)×N . Otsu’s method selects level t∗ as

binarization threshold, which has largest σ2
B(t∗). Fig. 3.2 illustrates effects of Sobel

filter and Otsu’s threshold binarization.

(a)

(b)

(c)

Figure 3.2: Illustration of Sobel filter and Otsu’s threshold binarization. (a) is the
original image captured from camera. (b) and (c) are ROI after Sobel filtering and
binarization, respectively

Image dilation is a basic morphology operation. It usually uses a structuring

element for probing and expanding shapes in a binary image. In this design, we

apply image dilation to smooth toothed edges introduced by Sobel filter, which can

50

Figure 3.3: Hough transform from 2D space to Hough space

assist the subsequent operations to perform better.

Furthermore, Hough transform (HT) is widely used as a proficient way of finding

lines and curves in binary image. Since most lines on a road are almost straight

in pictures, we mainly discuss the way of finding straight lines in binary image

using Hough transform. Every point (x,y) in 2D space can be represented in polar

coordinate system as

ρ = xcos (θ) + ysin (θ) (3.8)

Fig. 3.3 illustrates 2D space to Hough space mapping. If point A and B are

on the same straight line, there exists a pair of ρ and θ that satisfy both equation,

which means two curves in polar coordinate have an intersection point. As more

points on the same line are added to the polar system, there should be one shared

intersection point between these curves. In Hough transform algorithm, it keeps

track of all intersection points between curves and the intersections with big voting

imply that there is a straight line in 2D space.

By analyzing Hough transform for lane detection, we optimize the transform

during the following two steps: 1) dividing the image into a left part and a right

part, perform HT with positive θ for the left part and negative θ for the right part

due to the slope nature of the lanes; 2) further shrink the range of θ by ignoring

51

those lines that are almost horizontal with θ near ±90. Empirically, the range of

θ is set to [1, 65] for the left part and [−65,−1] for the right part. We choose the

most voted (ρ, θ) pairs of left part and right part as detected left lane and right

lane, respectively. To avoid occasional errors on a single frame, the detected lanes

are compared with results from preceded 4 frames. If they are outliers, the system

takes weighted average of results of preceded 4 frames as the current frame’s lanes.

If either the left lane or the right lane is excessively upright (i.e. abs (θ) < 30), the

system issues lane departure warning.

For the front collision warning system, we identify the front vehicle by detecting

the shadow area within a triangular region in front of the car on the binary image.

From the position of the front vehicle, the actual distance is obtained using an

empirical look-up-table (LUT). The system generates a collision warning signal when

the distance is smaller than suggested safe distance at the vehicle traveling speed.

3.1.3 Hardware Implementation

In this section, we elaborate the hardware architecture for LDW and FCW systems,

especially for the design implementations of Sobel filter, Otsu’s threshold binariza-

tion, Hough transform and front vehicle detection.

Fig. 3.4 is the architecture of Sobel filter. The Sobel filter module takes 3 Block

RAMs (BRAMs) to store the current row of input pixels and buffer 2 rows right

above it. Two registers connected to Block RAM output buffer the read data for 2

clock cycles (cc) for each row. With such an architecture, we get every pixel together

with its 8 neighbors at the same cc. The Sobel kernel is then applied on the 3 × 3

image block. The system sums the 3 × 3 result to get Sobel response in x - and y-

directions. The sum of square of Sobel filter response in two directions is set as

gradient value of the center pixel (the red color in Fig. 3.4). The image dilation

52

... ...

... ...

... ...

X

Line Buffer
Block RAM

Sobel kernel Reg

=

Figure 3.4: Sobel filter architecture

module has similar architecture as Sobel filter. The only difference is that it uses a

structuring element of 3× 3 1’s rather than Sobel kernel on the block and produces

a dilated binary image.

REGREGREGREGREG

Gray
level

w
RAM

u
RAM

REG

X

+

REG

+

REG

X
1/N

X

- X X

i

ut

Deno
reg

Nume

X

-

N

X

Nume
reg

Deno

COMP

Figure 3.5: Datapath for Otsu’s threshold calculation

We implement the Otsu’s method by closely following (3.7). The gradient pixel

intensity is 8-bit gray level as an input of this block. Hence we use 256 registers to

count the total number of every level (i.e. ni) in ROI of current video frame. The

following step is to accumulate ni and i×ni to get ω and µ, which are stored in two

separate RAMs. [10] directly computes σ2
B as in (6), but the division is expensive

in term of processing speed and hardware resource use. [7] takes advantage of extra

ROMs to convert division to subtraction in log domain. After careful consideration,

53

we find that this part is to find the intensity level that maximizes σ2
B rather than

get the exact value of σ2
B. Therefore, we design a datapath to find the Otsu’s

threshold as in Fig. 3.5. As t varies from 0 to 255, ω(t) and µ(t) are read from

the RAMs to calculate the numerator and the denominator of σ2
B(t). Two registers,

Numerator reg and Denominator reg buffer the corresponding numbers of biggest

σ2
B (i) for i < t. Just two multipliers and one comparator are deployed to check

if σ2
B(t) is larger than the largest σ2

B (i) for i < t. If so, the Numerator reg and

Denominator reg are updated accordingly. With such an architecture, we find the

Otsu’s threshold that is employed to convert the gradient gray-level image to black

and white image.

ROM1

X

ROM2

X

5 COSINEs 5 SINEs

x y

+

RAM1 RAM2 RAM3 RAM4 RAM5

ρ

Control Logic countcount

address address address address address

Figure 3.6: Hough transform architecture

The Hough transform is the most computationally expensive block in the entire

design. Here we just discuss Hough transform for the left part since the right part

has almost identical architecture. As mentioned in Section II, we let θ vary across

1 to 65 to find the left and right lanes by seeking most voted (ρ, θ) pairs. It is

reasonable to assume less than 10% pixels are edge pixels in a road scene. Thus,

in order to achieve real-time Hough transform, we propose a pipeline and dedicated

54

architecture as in Fig. 3.6. ROM1 and ROM2 store cosine and sine values for θ

from 1 to 65 (totally 13 groups with every 5 successive ones as a group). When the

HT module receives position information of edge pixels, it reads out cosine and sine

values of θ and performs Hough transform. Control logic generates a signal count to

indicate which 5 θ′s are being processed. Once they receives the ρ, each block reads

its corresponding value from RAMs, adds it by 1, and then write it back. After

all edge pixels go through the Hough transform module, the system scans all RAM

locations and finds most voted (ρ, θ) pair as the left lane. If the detected lanes are

excessively upright (θ < 30), a lane departure warning will be released at the very

first time.

Control logic

Binary image

RAM

Accumulator

Comparator

Search logic

ROM

Y

X

Left position

right position

Total
length

Shadow
length

Vehicle location

Distance

Candidate

Figure 3.7: Flow chart of front vehicle detection

Fig. 3.7 shows the algorithm flow chart for detecting front vehicles. The de-

tection is based on shadow information in a triangular region formed by the left

and right lanes. When a binary image enters, the control logic generates position

55

information X and Y. For every row, the RAM, as a LUT, provides left and right

boundary positions of a targeted triangle region based on vertical information Y.

The Accumulator block counts the white pixels within the triangle area for each

row. If the number of filled pixels is larger than a fixed ratio to the triangle width

of that row, it is a candidate for front vehicle detection. The candidate row, which

are closest to the bottom of an image, is considered as the front vehicle’s position.

Finally, the system converts the row number to the physical distance on the ground

through a LUT implemented using a ROM. If the vehicle traveling speed is known,

a front collision warning can be issued when the front vehicle is closer than the safe

distance.

3.1.4 Experimental Results

The proposed design is implemented in Verilog HDL. Xilinx ISE tool is used for

design synthesis, translation, mapping and placement and routing (PAR). In order

to validate the entire design, we conduct an experiment on a KC705 FPGA platform.

The video streams from a camera mounted on a vehicle windshield are sent to an

on-board Kintex-7 FPGA via FMC module. The FPGA performs lane departure

and front collision warning examination on every video frame and exports the results

to a monitor for display. The input video is 720P resolution at the rate of 60 fps.

We take the video clock as system clock of our design, which is 74.25MHz in this

case.

Table 3.1: Device utilization summary
Resources Used Available Utilization
Number of Slices Registers: 8,405 407,600 2%
Number of Slice LUTs: 10,081 203,800 4%
Number of Block RAMs: 60 445 13%
Number of DSP48s 31 840 3%

56

The resources utilization of the LDW and FCW systems on an XC7K325TFPGA

is shown in Table 3.1. Although we verify the design on a 7-series FPGA, it can also

be implemented on a much smaller device for lower cost and less power consumption,

e.g. Spartan-6 FPGA. The reported maximum frequency is 206 MHz. Thus if the

system runs at maximum frequency, it can process 720P video at 160 fps, which is

corresponding to the pixel clock frequency at 206 MHz. The design is validated by

road tests using the FPGA-based hardware system. Fig. 3.8 illustrates some results

of our LDW and FCW systems. The detected lanes are marked as green and the

detected front vehicle is marked as blue.

(a)

(b)

(c)

(d)

Figure 3.8: Results of our LDW and FCW systems

57

3.2 Traffic Sign Detection System Using SURF

3.2.1 Introduction

In driver-assistance systems, traffic sign detection is among the most important and

helpful functionalities. Many traffic accidents happen due to drivers’ failure to ob-

serve the road traffic signs, such as stop signs, do not enter signs, speed limit signs,

and etc. Three kinds of methods are often applied to implement road traffic sign de-

tection – color-based, shape-and-partition-based, and feature-based algorithms[11].

Traffic signs are designed with unnatural color and shape, making them conspic-

uous and well-marked. Color-based and shape-based method are the initial and

straightforward ones to be used for sign detection[12][13]. However, these methods

are sensitive to the video environment. Illumination change and partial occlusion of

traffic sign seriously degrade the effectiveness of these methods. The third type of

methods are based on feature extraction and description. These algorithms detect

and describe salient blob as features of an image and video. The features are usually

unaffected by the variance of illumination, position and partial occlusion. Reported

feature-based algorithms contain Scale Invariant Feature Transformation (SIFT)[14],

Histogram of Oriented Gradient (HoG)[15], Haar-like feature algorithm[16], etc.

Speeded Up Robust Features (SURF) [17] is one of the best feature-based algo-

rithms and has found wide application in the Computer Vision community[18][19][20].

It extracts Hessian matrix-based interest points and has a distribution-based de-

scriptor, which is a scale- and rotation-invariant algorithm. These features make it

perfect for object matching and detection. The key advantage of SURF is to use

integral image and Hessian matrix determinant for feature detection and descrip-

tion, which greatly boosts the process efficiency. Even so, like other feature-based

algorithms, SURF is computationally complex which often results very low frame

58

rate on an embedded processor. In order to employ SURF for real-time appli-

cations, parallel processing architecture and platform need to be considered. By

analyzing the parallelism during each step of the SURF algorithm, we choose Field

Programmable Gate Array (FPGA) as the embedded platform because of its rich

resources for computations and convenient access of local memories. Finally, we

implement a SURF-based real-time road traffic sign detection system on a Xilinx

Kintex-7 FPGA with SVGA video input and output.

3.2.2 SURF Algorithm

This section overviews the SURF algorithm [17]. The algo-rithm consists of three

main steps: integral image generation, interest point localization, and interest point

description.

I∑ (P) =
x∑

i=0

y∑
j=0

I(x, y) (3.9)

Integral image is one of the main advantages of SURF. Integral image I∑ (P)

in P = (x, y) represents the sum of all the pixels on the left and top of P as in

(3.9). Integral image is used in both the subsequent interest point detection and

description to obtain higher efficiency. Once integral image is computed, it takes

only 3 additions/subtractions to get the sum of the pixels intensities over an upright

rectangular region. Another benefit is that the calculation time is independent of

the box size.

SURF detector locates features based on the Hessian matrix. The original defi-

nition of Hessian matrix is shown in (3.10),

59

H (P, s) =

 Lxx (P, s) Lxy (P, s)

Lxy (P, s) Lyy (P, s)

 (3.10)

where Lxx (P, s) denotes the convolution of Gaussian second-order derivative in x−

direction with input image in point P at scale s, and similarly for Lxy (P, s) and

Lyy (P, s). Simple box filters using the integral image are used to approximate

the second-order Gaussian partial derivation, and yielding less computation bur-

den. The problem thus reduces from calculating Gaussian second-order derivative

responses to the box filter responses. Denoting the blob responses by Dxx, Dyy and

Dxy , then the determinant of the original Hessian matrix in SURF is approximated

as follows:

det(Happrox) = DxxDyy − (0.9Dxy)
2 (3.11)

where 0.9 is used to balance the Hessian determinant. In order to achieve scale

invariance, SURF applies box filters of different sizes on the original image to search

and compare interest points. Box filters of different sizes construct the scale space,

which is divided into octaves. The local maxima of box filter responses larger than

a predefined threshold in image and scale space are selected as interest point candi-

dates. A non-maximum suppression in a 3×3×3 neighborhood is applied to screen

out “false” candidates with position correction elements above 0.5 and localize in-

terest points.

SURF builds an descriptor around the neighborhood of each interest point. First,

a square region of 20s-by-20s centered on the interest pointis constructed along the

dominant direction. In order to keep it simple, the dominant directions of interest

points are set to be upright. The region is then divided into 4×4 smaller sub-regions

with each window size 5s-by-5s (sampling step s). For each of these sub-regions,

60

Haar wavelet responses (filter size 2s) are computed at 5 × 5 regularly distributed

sample points. These responses are then weighted by a Gaussian function(σ = 3.3)

centred at the interest point. We use dx and dy to denote weighted Haar wavelet

response in horizontal direction and vertical direction. Each sub-region generates a

4-D vector v = (
∑
dx,

∑
dy,

∑
|dx|,

∑
|dy|). All sub-regions are then concatenated

into a vector, resulting in a 64-dimensional descriptor vector.

3.2.3 FPGA Implementation of SURF

The SURF algorithm introduced in Section 3.2.2 is considered as a high-speed,

robust and accurate method to extract and describe interest points of an image or

a video frame. Descriptors of these key points can be used as pivotal features of

images and videos, and can be applied in many applications, such as traffic sign

detection, machine stereo vision, object tracking, etc. However, the complexity of

the algorithm itself leads to frequent memory access and long computing latency,

which makes the SURF algorithm difficult to be used in real-time systems. On

a dual-core 2.5 GHz processor,simulations of the Matlab code configured with the

first two octaves takes 1.38 seconds to detect and describe all the 284 feature points

from an image with 800×600 resolution. More recently, an FPGA SoC architecture

was proposed and it achieved about 10 fps processing rate on a Xilinx XC5VFX70

FPGA incorporating PowerPC-440 CPU with floating-point processing units [21].

It was an approach of hardware/software co-design with integral image generator

and fast-Hessian generator implemented by dedicated hardware, and the rest of

the algorithm was implemented using software of the embedded PowerPC. But the

frame rate is still unsatisfactory for real-time systems like traffic sign detection.

This section presents a FPGA-only architecture to implement the real-time

SURF algorithm toward videos in 800×600 resolution at 25 fps. We will first present

61

the overall system architecture using data flow and state the limitation and approx-

imation of the FPGA implementation. Then we will describe each function module

in detail.

3.2.3.1 Overall system architecture

We make every effort to follow the original SURF algorithm as closely as possible.

However, we still have to do several approximations for the hardware design. Firstly,

traffic sign usually occupies only a small part of a frame, which makes most of interest

points detected at the first two octaves with small filter sizes. Based on this, the

hardware architecture computes the fast-Hessian responses of pixels and detects the

interest points among them only at the first two octaves. The filter size at octave 1

is 9, 15, 21, 27 while octave 2 contains 15, 27, 39, 51. Initial sample rate of octave

1 is set to 2. The current design is oriented towards videos in 800×600 resolution

at 25 fps and it can be easily adapted to other sizes. Secondly, as mentioned in

Section 2, the dominant direction of each interest point is set upright to simplify

calculation. Finally, we implement a modified descriptor using larger, overlapping

sub-regions to ensure better matching performance.

DDR-3 SDRAM

Physical

Interface

Integral

Image

Generator

Interest

point

detector

Interest point

descriptor

Kintex 7 FPGA

Video

In

Video

Out

Memory Controller Module

Interest Points

Index & Scale

Integral

Image

Interest Points

Surroundings

Xilinx FPGA MIG Solution

Integral

Image

Figure 3.9: Overall system block diagram

The overall system diagram is summarized in Fig. 3.9. The FPGA-based SURF

architecture is composed of 4 submodules - Integral Image Generator, Interest Point

62

Detector, Interest Point Descriptor and Memory Controller Module. The input is

RGB format video with 40M pixel rate. Integral Image Generator converts the

original data to gray integral image and transfers it to Interest Point Detector and

Memory Controller Module. Interest Point Detector is aimed to find all the local

Fast-Hessian maxima as interest points and get their index and scales. Memory

Controller Module is designed for data writing and reading with SDRAM interface.

It stores the integral image and provides the integral image of interest points sur-

roundings to the Interest Point Descriptor. In addition, a comparator module (not

shown because it is independent of SURF) matches the interest points descriptors of

the current frame with those of the library to determine if a traffic sign is detected.

In the video output, the traffic sign is highlighted before sending to the display. The

details of each module are explained below.

3.2.3.2 Integral image generation

RGB2GRAY
address

generation
accumulation

24-bit
RGB
pixel

8-bit
Gray
pixel

8-bit
Gray
pixel

28-bit
integral

pixel

Control
signals

Control
signals

Control
signals

and
address

Control
signals

Figure 3.10: Integral image generation block diagram

Integral image generation module is the entry point of the entire architecture.

Its block diagram is shown in Fig. 3.10. It consists of 3 lower-level modules. The

input video data is in RGB format while all the SURF calculation is based on gray

scale. The RGB2GRAY unit is responsible for this transformation. After that, row

and column information is produced according to control signals (vsync, hsync and

de) in address generation module. Finally, an integral image is calculated in the

accumulation module. Suppose the current video position is D, its integral image

63

can be obtained from ID = IA + iD − IB − IC , where I denotes integral image and

i the gray value. A,B,C are the upper-left, upper and left pixel of D, respectively.

To reduce register uses, the integral image of upper line is stored in a block ram.

It is also noted that the video of integral image has the same format with the

original one. The only difference is that the 24-bit RGB information is replaced by

a 28-bit gray integral value.

3.2.3.3 Interest points detector

This module is designed to calculate fast-Hessian responses of all sample points

at multi-scale and then find local maxima at x, y and scale space as interest

point candidates. A non-maximum suppression is applied to these candidates to

screen out “false” interest points. Interest points detector is divided into 3 blocks:

Build Hessian Response, Is Extreme and Interpolate Extremum. They are explained

as follows.

Build Hessian Response Build Hessian Response block diagram is shown in

Fig. 3.11. The largest filter size among the first 2 octaves is 51. According to

SURF algorithm, integral image located in the rectangle with relative location be-

tween (-26,-26) and (25,25) are needed to calculate responses of all Gaussian filter

size of the first 2 octaves. In our design, the initial sampling step is defined as 2 and

octave 2 doubles that. Therefore, iterative cycle is 4 lines. Calculation of filter size

of octave 1 is carried out in line 1, 3, 5, 7, etc, while that of octave 2 in line 1, 5, 9, 13,

etc. Based upon these analysis, this block utilizes 56 block RAMs with depth of 800

to buffer 56 integral image lines. Each Block RAM can be accessed independently.

600 lines of integral image are stored into the 56 Block RAM iteratively. This archi-

tecture makes the writing of incoming pixels and calculation of Gaussian response

64

RGB2GRAY
address

generation
accumulation

24-bit
RGB
pixel

8-bit
Gray
pixel

8-bit
Gray
pixel

28-bit
integral

pixel

Control
signals

Control
signals

Control
signals

and
address

Control
signals

Figure 3.11: Build Hessian Response block diagram

happen concurrently. For example, the incoming integral image pixel of line 53 is

stored into Block RAM 53 while the first 52 image lines are all available for Gaus-

sian response calculation of octave 1 and octave 2. 100 MHz clock frequency ensures

the pace of 192 pixels (due to overlap, it is actually 164 pixels) access for the re-

sponse computation of 6 different filter size. In addition, Pre BRAM FIFO buffers

incoming integral image at 40 MHz pixel rate and delivers the data at 100 MHz

system clock. Hessian Response Computation is the pipelined calculation unit of

fast-Hessian determinant response. To save DSP resources of FPGA, 192 pixels are

serialized into 6 groups. After calculation, 6 Hessian determinants are de-serialized

and transferred to Is-Extreme block in parallel.

Is Extreme Is Extreme unit (in Fig. 3.12) is aimed to find local maxima of

Hessian-matrix determinants as interest points candidates. With the incoming first

two octaves response, local maxima can be detected on layers with filter size of 15,

65

line1

Control
Logic

reg reg

line2 reg reg

line3 reg reg

line4 reg reg

Threshold
examining

Derivative
Calculation

Derivative
FIFO

8 blocks for 8 layers
of octave 1 and 2

4 blocks for 4 middle
layers of octave 1 and 2

iimg
and
de

27
iimg

pixels
for
4

layers

wr_en

data

x 9 30-bit
derivatives
of ipoints

Location
and scale

info

Comparer

DataPrefetch MaxJudge

Figure 3.12: Is Extreme block diagram

21, 27 and 39. The block consists of DataPrefetch, MaxJudge and control logic

sub-blocks. For each scale, DataPrefetch block uses 4 block RAMs of depth 400 or

200 (400 for octave 1 and 200 for octave 2) to store current Hessian determinant line

and buffer last 3 lines. When a determinant is stored in one block RAM, the three

determinants on top of it are read. Two registers to buffer the read data are refreshed

concurrently. With 8 such blocks, each determinant is sent to the downstream

MaxJudge block together with its 26 neighbors. Each determinant is compared

with its 26 neighbors as well as the threshold to determine whether it is an interest

point candidate in MaxJudge block. To save clock cycles, this block also performs

the first and second order derivatives of Hessian response calculation simultaneously.

If it passes the local maximum and threshold check, their derivatives are then stored

into Derivative FIFO with their locations and scale information. Control logic block

generates the address information and control data flow of Is Extreme module.

Interpolate Extremum Non-maximum suppression is carried out in this block.

At the beginning, a task queue block chooses entering data from one of the deriva-

tive FIFOs of filter size 15, 21, 27 and 39 in Is Extreme block. Then, the main

66

computation is to perform the matrix operation as in (3.12).

O = −H\D

= −

H11 H12 H13

H21 H22 H23

H31 H32 H33

 \

D1

D2

D3

= − 1

det(H)
·

H∗11 H∗12 H∗13

H∗21 H∗22 H∗23

H∗31 H∗32 H∗33

 ·

D1

D2

D3

(3.12)

where det (H) = H11 ×H∗11 +H12 ×H∗12 +H11 ×H∗12.

the companion matrix H∗ijis shared by numerator and denominator calculation.

Considering enormous resources demanding of division, only fraction
1

det(H)
is com-

puted to transform other arduous division to multiplication. The absolute value of

matrix O elements should be less than 0.5 so that the local maximum is accepted as

interest point. The x, y and scale of interest points are then adjusted accordingly.

3.2.3.4 Memory management unit

A frame with 800×600 resolution is too large for on-chip block RAM and can only be

stored in on-board SDRAM. Xilinx provides designers the 7 Series FPGA Memory

Interface Generator (MIG) to communicate with off-chip DDR3 SDRAM. It wraps

the complex physical signals of DRAM and provides an easily-access user interface.

The user interface runs at 200 MHz clock with 512-bit data width. In our design,

this unit manages all memory access, and plays the role of a bridge between interest

point detector and interest point descriptor. It performs the following functions:

1. de-serializing 8 successive integral image points and writing them into the MIG

and SDRAM. A clock domain crossing FIFO is deployed to interface between

67

40 MHz pixel rate to 200 MHz data rate.

2. generating the addresses of interest point surroundings of the rectangle be-

tween (-13s, -13s) and (12s, 12s) with interval s, where s is the scale. Then

read command is applied to MIG with desired pixels addresses. Due to the

single port property, we grant write command with higher priority than read

command.

3. when all the surroundings of an interest point, 26 × 26 integral image pixels,

are available, transferring them to Interest Point Descriptor module serially

with index and scale information of current interest point. The clock domain

crossing between 100 MHz system clock and 200 MHz MIG UI clock is also

implemented by independent clock FIFO.

3.2.3.5 Interest point descriptor

Haar wavelet transform

Wavelet response
reconstruct

Gaussian mask controller

Gaussian mask weight

Gaussian mask
LUT

Sub-regions accumulation

Gaussian scaling

Accumulation
for length of

region
normalization

26x26 iimg

scale

28 bits

32 bits
24x24 Haar

wavelet response

Gaussian
mask

32 bits

Sub-region
wavelet response

32 bits

16x2 response
block channels for

X and Y dir

32 bits

36 bits 16x2 Gaussian
weight results

48 bits
16x4 Sub-region
pre-descriptor

36 bits

48 bits
64-dimensional

descriptor

Figure 3.13: Interest point descriptor block diagram

68

Unlike original SURF implementation, modified SURF calculates descriptor from

a square region with edge size of 24s. Equally, this rectangle is split up to 16 sub-

region. Each sub-region is 9s×9s. Adjacent sub-regions have overlap of 9×4 points.

To perform modified SURF descriptor computation, a 26 × 26 matrix needs to be

extracted from the integral image to calculate the 2D Haar wavelet transform. The

block buffers 3 lines of serial-coming integral image pixels to calculate Haar wavelet

response of the central lines. After that, the 24× 24 responses are reconstructed as

16 9× 9 sub-block. We use Gaussian mask to weight each sub-block and obtain 16

dx and dy simultaneously. Gaussian mask of possible scales has been pre-calculated

and loaded to look up table during the initial stage. After that, we sum dx, dy

and |dx|, |dy| of all 16 sub-regions respectively and get the pre-descriptor. The pre-

descriptor is organized as a 64 × 1 vector. Finally, the pre-descriptor is Gaussian-

scaled and normalized to get the final descriptor for a precise matching result. An

accumulation unit is used to compute normalization factor. Fig. 3.13 shows key

design details, such as data flow and bus width, that are important to achieve real-

time performance.

3.2.3.6 Descriptor Comparator

After interest point descriptors calculation, the comparator computes the similarity

of current frame and pre-built traffic sign libraries to determine whether a traffic

sign is detected. As an initial experiment, the system stores only stop signs in the

library using on-chip block RAM. We choose 128 representative interest points in

the standard stop sign image, then calculate their descriptors for the library.

When the descriptor of an interest points enters this module, the comparator

reads descriptors of interest points in the library for matching. The entering de-

scriptor needs to be matched with every descriptor in the library. The speed is un-

69

acceptable if the match is conducted completely serially. As a tradeoff between speed

and resource use, the 128 descriptors are divided into 8 independent groups. The

groups are matched with the current descriptor concurrently while 16 descriptors in

a group enter in pipeline mode. This architecture improves processing performance

considerably.

A descriptor subtracting 128 library descriptors produces 128 distance values.

After all the interest point descriptors are processed, this module generates a 128

distance vectors. The 128 vectors are sorted and the system chooses sum of the

smallest 30 ones to compare with the threshold. If the sum is less than the threshold,

then a stop sign is detected.

3.2.4 Results

We build the system on a Kintex-7 FPGA board shown in Fig. 3.14. The video

frames are sent to a Xilinx KC705 platform through the AVNET video I/O board on

the FMC connector. FPGA detects traffic signs of every video frame and output the

video for display using the same adaptor. Table 3.2 presents the design summary

on Kintex 7 FPGA. The maximum frequency is 125.92 MHz (the Xilinx memory

interface IP core runs independently at a separate 200 MHz clock zone). All timing

constraints are met. The test frame rate is 60 fps of 800 × 600 resolution. The

FPGA-SURF implementation achieves real-time while producing the same results in

video stream as original CPU-based SURF, thus very promising for future industry

application.

70

Figure 3.14: Traffic sign detection system

Table 3.2: Device utilization summary
Resources Used Available Utilization
Number of Slices Registers: 108,581 407,600 26%
Number of Slice LUTs: 179,559 203,800 88%
Number of RAM36s: 182 445 40%
Number of RAM18s: 80 890 8%
Number of DSP48s 244 840 29%

3.3 Traffic Sign Detection System Using SURF

and FREAK

In our previous work [1], the SURF algorithm is used because it employs integral

image to quickly search blob-like keypoints by detecting local maxima of Hessian

matrix determinant. However, the calculation and matching of SURF descriptors

cost much computational and memory resources. In this paper, we adopt the state-

of-the-art FREAK descriptor to replace the SURF descriptor in [1].

Inspired by human visual system, FREAK produces a cascade of binary strings

as the keypoint descriptor. The binary structure makes the descriptor faster to

compute and easier to match, while remaining robust to scale, noise and rotation.

To the best of our knowledge, this is the first hardware implementation of FREAK

on an FPGA. Our experimental results demonstrate that the FPGA-based design

71

is fully functional and it achieves the real-time performance of processing videos of

800×600 resolution at 60 frame-per-second (fps), while the software implementation

on Intel Core i5-3210M CPU achieves only about 2.5 fps using the same algorithms.

3.3.1 FREAK Descriptor

For every keypoint detected by SURF detector, FREAK generates a binary de-

scriptor that compares 43 weighted Gaussian average over sampling points near the

keypoint. Fig. 3.15 shows the FREAK sampling pattern. The sampling pattern

is biologically inspired by human retina sampling grid which is circular with the

difference of having higher density of sampling points near the central keypoint. In

order to make the descriptor less sensitive to noise, all sampling points need to be

smoothed with Gaussian kernel. By mimicking the retina pattern, FREAK applies

different kernels size on the sampling points. The closer to the center, the smaller

kernel size is used.

Figure 3.15: Illustration of the FREAK sampling pattern

FREAK constructs the binary descriptor string S by one-to-one comparison of

the smoothed sampling point:

S =
∑

0≤a≤N

2aT (Pa) , (3.13)

72

where Pa is a pair of sampling points, N is the length of the descriptor string,

and

T (Pa) =

1

0

if M (P r1
a) > M (P r2

a) ,

otherwise,

(3.14)

with M (P r1
a) and M (P r2

a) are the smoothed intensity of sampling points of the

pair Pa.

Instead of comparing each sampling point with all others, FREAK produces a

512-bit descriptor by comparing 512 most important pairs. The 512 bits are further

separated to 4 components each with 128-bits, which represents a coarse-to-fine

information architecture, to speed up the matching processing.

3.3.2 Hardware Implementation

This section presents the FPGA design to implement real-time object detection

using SURF detector and FREAK descriptor on a Xilinx KC705 board. The design

is aimed to process videos of 800× 600 resolution at 60 fps and detect 10 different

kinds of objects simultaneously. We first introduce the overall system architecture,

and then describes each module in detail.

3.3.2.1 Overall System Architecture

Fig. 3.16 shows the overall system architecture that is composed of 5 sub-modules.

As the entry module, Integral Image Generator converts RGB format video pixels to

grayscale and accumulates them to get the integral image. Interest Point Detector

finds all blob-like keypoints using SURF. Keypoint descriptor calculation is per-

formed in FREAK Descriptor module. Memory Management Unit is responsible for

73

SDRAM

Interest point
Detector

FREAK
Descriptor

Kintex 7 FPGA

Video
In

Memory Management Unit

Keypoints
location & scale

Integral
Image

Xilinx FPGA MIG Solution

Integral
Image

Descriptor
Matching

Sampling points
surroundings

 Result

Keypoint
Descriptor

Integral
Image

Generator

Figure 3.16: FPGA design system block diagram

integral image storage and access. Finally, Descriptor Matching Module performs

the keypoint descriptor matching and produces traffic sign detection results.

3.3.2.2 Integral Image Generator and Interest Point Detector

The design of these two modules are similar to our previous implementation in [1].

Integral Image Generator has three lower-lever blocks which implement RGB to

grayscale transformation, address generation and integral image calculation, respec-

tively. Interest Point Detector also consists of three functional blocks: Build Hessian Response,

Is Extreme and Interpolate Extremum. An independent clock FIFO first trans-

fers 40 MHz integral image pixel rate to 100 MHz system clock domain. Then,

Build Hessian Response uses a Block RAM ping-pong structure to fetch necessary

integral image pixels and calculates box filter responses of the first two octaves of the

scale space in pipeline mode. Is Extreme employs an buffer to obtain every box filter

response together with its 26 neighbors in x, y and scale space at the same time, and

then finds all local maxima as keypoint candidates. Interpolate Extremum carries

out non-maximum suppression to filter out false keypoint candidates. More details

can be found in [1].

74

3.3.2.3 Memory Management Unit

Integral image with 800× 600 resolution is too large for the FPGA on-chip BRAM,

and thus can be only stored in off-chip SDRAM. Memory Management Unit is re-

sponsible for writing integral image to SDRAM via FPGA Memory Interface Gen-

erator (MIG) IP core and generating addresses of integral image, which are required

for descriptor calculation, to read data back from SDRAM. In our design, we take

the average of a square patch for every sampling point, instead of using Gaussian

approximation. Thus the integral image, which is obtained in previous step, further

accelerates the calculation of smoothed sampling points intensities. Both the dis-

tances of sampling points to keypoint and the sizes of square patches are related to

keypoint scale. In order to save computational resources, we also quantize possible

keypoint scales to 64 levels and compute the corresponding distances and square

sizes in advance. These data are stored in SRAM for lookup in subsequent steps.

Fig. 3.17 illustrates how this module generates correct addresses from keypoint

locations and scales using the SRAM. (X left, Y top), (X right, Y top), (X left,

Y bottom) and (X right, Y bottom) are locations of 4 vertices of the square patch

for each sampling point.

SRAM

+

+ +

+

-

-

Keypoint x

Keypoint y

Keypoint
Scale

dx

dy

Square size

Sampling
point x

Sampling
point y

X_right

X_left

Y_top

Y_bottom

Figure 3.17: Integral image address generator.

75

3.3.2.4 FREAK Descriptor

SRAM

-

x

area

1/area

Normalized
intensity

Sum of
intensities
over the
square

X_right

X_left

Y_bottom

Y_top

x
-

-
ID

-
-

IC

IB

IA

Figure 3.18: Normalized intensity calculation.

It requires four integral image pixels for a smoothed retina point intensity cal-

culation, namely IA, IB,IC ,and ID. It then involves a division operation to obtain

the normalized sampling point intensity as in (3.15).

M =
ID − IC − IB + IA

area
, (3.15)

However, dividers are expensive for FPGA implementation in term of hardware

resource and latency, and should be avoided if possible. In our design, Fig. 3.18

shows an alternative method to compute the smoothed sampling point intensity.

First, the area of the square patch is calculated. Then, a look-up table (LUT) is

used to get the reciprocal of the area. Meanwhile, the sum of pixels intensities in the

square is quickly obtained using integral image. Finally the normalized sampling

point intensity is obtained from a multiplication.

For object detection applications, image content has little impact on the selected

pairs. We conduct an experiment in advance to find the 512 most important pairs

and their indices. With all 43 smoothed sampling points intensities, this module

takes advantage of 512 pairs indices to build a cascade of 512-bit binary string as

76

the keypoint descriptor.

3.3.2.5 Descriptor Matching Module

SRAM

XOR

Count 1s of each 128 bits and get
a 4D vector

Output 1 only if each element of
the vector is smaller than a

distance threshold

Matching sign of each interest
point in the library

OR

If the matched pairs number is
larger than a pre-set threshold,

corresponding object is detected

Descriptors in library

Descriptors of video
frame

Figure 3.19: Descriptor matching flow chart

Once the FREAK keypoint descriptors are generated, the Descriptor Matching

Module compares them with the precomputed descriptors of the traffic signs in the

library. It effectively quantifies the similarity between the traffic signs detected in the

current video frame and each traffic sign in the library. In our design, the system is

aimed to detect 10 different kinds of traffic signs in the picture and thus 10 descriptor

matching units are instantiated for the parallel comparison. The architecture and

flow chart of the descriptor matching is shown in Fig. 3.19. For each desired

traffic sign in the library, we find 500 representative keypoints and then calculate

the FREAK descriptors for each keypoint. These descriptors are stored in on-chip

SRAM as the library.

When processing each video frame, the descriptor of an keypoint is computed

and is entered into the descriptor matching unit that reads the descriptors from

77

the library for one-to-one comparison. We compare every 128-bits of the 512-bit

descriptor between the evaluated keypoint and the keypoints in library. Only if

all four distances are smaller than a threshold, we set the matching status of the

keypoint as true. It indicates a good match for the keypoint is found in the library.

Initially, the values of all matching results are set to false. After all the keypoints are

processed, the output module counts the number of keypoints whose matching status

bits are set as “true”. If the total number is larger than an empirical threshold, then

a corresponding traffic sign is detected. With a set of 10 parallel matching units, the

system is able to detect 10 different traffic signs concurrently and independently.

3.3.3 Results

In order to validate the FPGA design, we setup an experiment to detect 10 different

traffic signs in a video stream. The video are compared with standard traffic sign

images frame by frame, whose features are precomputed and stored in the library

in the on-chip BRAM. The target platform is Xilinx KC705 evaluation board. The

video streams from a camera are sent to the FPGA through an FMC video adaptor

with HDMI input. FPGA performs traffic sign detection of every video frame and

exports the results to 10 LEDs for display. The target frame rate is 60 fps for image

resolution of 800×600. The entire system architecture is designed and implemented

using Verilog HDL.

Table 3.3: Device utilization summary
Resources Used Available Utilization
Number of Slices Registers: 60,044 407,600 14%
Number of Slice LUTs: 147,190 203,800 72%
Number of RAM36s: 289 445 64%
Number of RAM18s: 321 890 36%
Number of DSP48s 139 840 16%

78

Figure 3.20: A matching example of STOP sign detection

The resources utilization of the traffic sign detection and recognition system on

FPGA is listed in Table 3.3. The maximum frequency is 122 MHz. In order to verify

the design, the same algorithm is implemented on software running on a CPU. The

FPGA hardware produces exactly the same results as the software. In addition, the

FPGA system successfully detects the traffic signs at 60 fps, which is sufficient for

real-time applications. As an example, Fig. 3.20 shows the matching result of a

video frame with a standard STOP sign.

3.4 Summary

In this chapter,we build complex video processing systems design and analyze the

result on hardware. We implement the entire system, including video input, video

processing and video display, for real time video applications: lane departure warn-

ing/ front collision warning system and traffic sign detection system. The results

prove that our systems could handle complicated high-throughput video processing

with real-time requirement.

79

Chapter 4

Conclusions

In this thesis, we focus on real-time video/image processing. At begining, we intro-

duce basic concepts of digital image/video and how to perform basic and fundamen-

tal operations on image/video in Matlab environment. When the image/video size

goes large, as today’s HD and Ultra HD resolution, it’s almost impossible to process

and analyze an ocean of video/image data fastly enough. We employ FPGA, owing

natural parallel computing architecture and easy access to local memory, to accel-

erate image/video processing in real time. However, FPGA development is always

time and energy cosuming compared to software development.

Furtunately, Mathworks provide HDL coder toolbox, which supports HDL code

generation for Matlab and Simulink and provide entire workflow for programming

FPGA boards. We make 8 demos to show building demos in Simulink and translate

Simulink blocks to HDL code that could directly run on FPGA.

Besides, We present two function blocks of advanced driver assistance system -

traffic sign detection and lane departure warning/ front collision warning system, as

examples to demostrate powerfulness of advanced image/video processing on FPGA,

especially for those scenarios having real-time demand.

80

We are glad to find that our FPGA solution achieves the speedup of over 10

times faster than traditional CPU platform for image/video processing.

In conclusion, FPGA accelerations is a cost-efficient, high-performance video

processing solution for those applications with low power and real-time requirements.

81

Bibliography

[1] J. Zhao, S. Zhu, and X. Huang, “Real-time traffic sign detection using surf fea-
tures on fpga,” in High Performance Extreme Computing Conference (HPEC),
2013 IEEE. IEEE, 2013, pp. 1–6.

[2] A. Broggi, C. Caraffi, R. Fedriga, and P. Grisleri, “Obstacle detection with
stereo vision for off-road vehicle navigation,” in Computer Vision and Pattern
Recognition - Workshops, 2005. CVPR Workshops. IEEE Computer Society
Conference on, 2005, pp. 65–65.

[3] D. M. Gavrila, “Pedestrian detection from a moving vehicle,” in Computer
Vision, ECCV 2000. Springer, 2000, pp. 37–49.

[4] R. Marzotto, P. Zoratti, D. Bagni, A. Colombari, and V. Murino, “A real-time
versatile roadway path extraction and tracking on an fpga platform,” Computer
Vision and Image Understanding, vol. 114, no. 11, pp. 1164–1179, 2010.

[5] R. Risack, N. Mohler, and W. Enkelmann, “A video-based lane keeping as-
sistant,” in Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the
IEEE. IEEE, 2000, pp. 356–361.

[6] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and tracking for
driver assistance: survey, system, and evaluation,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 7, no. 1, pp. 20–37, 2006.

[7] W. Wang and X. Huang, “An fpga co-processor for adaptive lane departure
warning system,” in Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on. IEEE, 2013, pp. 1380–1383.

[8] S. Lee, H. Son, and K. Min, “Implementation of lane detection system using
optimized hough transform circuit,” in Circuits and Systems (APCCAS), 2010
IEEE Asia Pacific Conference on. IEEE, 2010, pp. 406–409.

[9] H.-Y. Lin, L.-Q. Chen, Y.-H. Lin, and M.-S. Yu, “Lane departure and front
collision warning using a single camera,” in IEEE International Symposium
on Intelligent Signal Processing and Communication Systems (ISPACS 2012),
2012.

82

[10] W. Jianlai, Y. Chunling, Z. Min, and W. Changhui, “Implementation of otsu’s
thresholding process based on fpga,” in Industrial Electronics and Applications,
2009. ICIEA 2009. 4th IEEE Conference on. IEEE, 2009, pp. 479–483.

[11] K. Brkic, “An overview of traffic sign detection methods,” Department of Elec-
tronics, Microelectronics, Computer and Intelligent Systems Faculty of Electri-
cal Engineering and Computing Unska, vol. 3, p. 10000.

[12] L.-W. Tsai, J.-W. Hsieh, C.-H. Chuang, Y.-J. Tseng, K.-C. Fan, and C.-C. Lee,
“Road sign detection using eigen colour,” IET computer vision, vol. 2, no. 3,
pp. 164–177, 2008.

[13] A. De La Escalera, L. E. Moreno, M. A. Salichs, and J. M. Armingol, “Road
traffic sign detection and classification,” Industrial Electronics, IEEE Transac-
tions on, vol. 44, no. 6, pp. 848–859, 1997.

[14] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[15] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection using
a cascade of histograms of oriented gradients,” in Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, vol. 2. IEEE, 2006,
pp. 1491–1498.

[16] M. J. Jones and P. Viola, “Robust real-time object detection,” in Workshop on
Statistical and Computational Theories of Vision, 2001.

[17] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(surf),” Computer vision and image understanding, vol. 110, no. 3, pp. 346–359,
2008.

[18] Z. Zhang, C. Cao, R. Zhang, and J. Zou, “Video copy detection based on
speeded up robust features and locality sensitive hashing,” in Automation and
Logistics (ICAL), 2010 IEEE International Conference on. IEEE, 2010, pp.
13–18.

[19] M. Zhou and V. K. Asari, “Speeded-up robust features based moving object
detection on shaky video,” in Computer Networks and Intelligent Computing.
Springer, 2011, pp. 677–682.

[20] A. C. Murillo, J. Guerrero, and C. Sagues, “Surf features for efficient robot
localization with omnidirectional images,” in Robotics and Automation, 2007
IEEE International Conference on. IEEE, 2007, pp. 3901–3907.

[21] J. Svab, T. Krajńık, J. Faigl, and L. Preucil, “Fpga based speeded up robust
features,” in Technologies for Practical Robot Applications, 2009. TePRA 2009.
IEEE International Conference on. IEEE, 2009, pp. 35–41.

83

