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Abstract

This project created a proof of concept SLAM sensor suite capable of remotely observing

and mapping areas by combining real-time stereo camera imagery with distance measure-

ments and localization data to generate a 3D depth map and 2D floorplan of its environment.

The system used a Xilinx Zynq SoC containing an embedded ARM processor and FPGA fab-

ric, and implemented unique SLAM processing functionality using both embedded software

and parallelized custom logic.
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Executive Summary

Robotic solutions for remotely observing inaccessible areas through video streaming and

localization are becoming a quickly expanding field. Currently, many of said solutions rely

on a simple sensor suite consisting of cameras that transmit raw image data wirelessly for

remote viewing by first responders or military personnel. Although these devices are highly

useful, there is an opportunity to gain much more information from the same type of system

through Simultaneous Localization and Mapping (SLAM). Through performing onboard

image processing on the sensor suite itself, valuable information can be extracted from the

images, such as depth information or even human detection, before its wireless transmission.

This project sought to fill this gap in existing technology by creating a sensor suite that

processed real-time stereo camera imagery onboard and combined it with localization and

distance data to generate a 3D depth map and 2D floorplan of the sensor suite’s environment.

Field Programmable Gate Arrays (FPGAs) were a clear candidate for such an implemen-

tation since they are capable of performing the types of high-overhead calculations used in

remote mapping through low-latency hardware parallelization. FPGAs also consume several

orders of magnitude less power than standard computer processors, are highly cost efficient,

and are a realistic solution for remote and battery operated devices. The FPGA platform

used to create this proof of concept sensor suite was an Avnet ZedBoard, which contained

a Xilinx Zynq-7020 All-Programmable System on Chip (SoC). The Xilinx Zynq-7020 SoC

consists of a dual-core ARM Cortex A9 processor coupled with Xilinx Artix-7 FPGA fabric.

Having both an embedded processor and digital logic on the same chip allowed the sensor

suite to be designed in a way that was able to use each for their unique advantages. The

embedded processor was mainly used to communicate with the necessary peripherals using

Xilinx’s built-in peripheral drivers, whereas the digital logic was used to parallelize the data

processing and interface with memory.

The sensors used in this project included a pair of MT9V034 monochrome camera mod-

ules. These cameras were mounted on a custom-made stereo camera printed circuit board
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developed during the initial testing stages of the project. The MT9V034 camera module is

a global-shutter image sensor capable of capturing WVGA imagery at 60 frames per second.

A Hokuyo URG-04LX scanning laser rangefinder was also used to estimate the distance of

objects closest to the device. This rangefinder has a 240◦ field of view and provides 99%

distance precision. In order to geographically reference data with digital compass readings,

the magnetometer on a Digilent PmodNAV Inertial Measurement Unit (IMU) was also used.

The first stage of data processing consisted of a dual image buffer controller used for

triggering image captures and reading stereo camera imagery into local memory on the Zynq-

7020 processor. Using an image processing technique known as disparity mapping, the stereo

camera imagery was converted into 3D depth maps. A portion of this data was then stored

in local memory for correlation with data from the 2D scanning laser rangefinder. Distance

data from the rangefinder and compass data from the magnetometer were simultaneously pre-

processed on the ARM Cortex A9 processor, and then written to the system’s programmable

logic to undergo further coordinate-axis transformation.

Through its data processing stages, the sensor suite produced a real-time 3D depth map

in addition to a compass-referenced 2D map of the objects closest to the device. These

continuously updated outputs were viewable through the use of an attached VGA display,

and were selectable based on user inputs. The overall result of this implementation was a

proof of concept SLAM sensor suite that could serve as an improvement to a simple imaging

sensor on a remote robotic platform.

Existing robotic surveillance systems use camera modules to transmit real-time video

streams of their surroundings. In addition to outputting a simple video stream, the proof

of concept sensor suite developed through this project extracted depth information from

stereo cameras and used it to create a real-time depth map. Simultaneously, the sensor suite

created a compass-referenced 2D floorplan of its environment. The final product sensor suite

proved that more situational awareness was available than was being provided by existing

solutions, and that FPGAs were a viable tool for this type of application.
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For future work, we recommend incorporating IMU displacement data in order to create

visualizations of the entire path traversed by the device. In addition, incorporating human

detection would be an improvement that could be added to the image processing portion

of this project. A human detection algorithm could be combined with the existing 2D and

3D depth information in order to create an all-encompassing sensor suite for situational

awareness analysis.
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1 Introduction

In recent years, improvements in embedded processing technology have allowed for the

creation of robotic situational awareness platforms for remotely observing dangerous or in-

accessible areas. The market for such devices is a new and expanding field, and faces large

demand from the military and first responders. This field is being piloted by throwable and

remotely drivable platforms such as the Endeavor Robotics 110 FirstLook and the Bounce

Imaging Explorer, shown in Figure 1.

(a) Endeavor Robotics 110 FirstLook [1] (b) Bounce Imaging Explorer [2]

Figure 1: Robotic Situational Awareness Devices

These devices contain simple wireless video streaming technology, allowing for remote

visual surveillance and situational analysis. Although a video stream is an effective strategy

for simple observation, this method of gathering information has room for improvement.

This project investigated the extraction of information such as object positioning and lo-

calization from a camera-based sensor suite in real time, allowing for more comprehensive

situational observation. One method of performing this process is Simultaneous Localization

and Mapping, or SLAM.

SLAM is the technique of mapping an unknown environment with respect to an agent,

and can be performed using a wide variety of sensors and computational methods. SLAM is
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a common area of research in the fields of image processing and high-speed computing, and

has been applied mainly to autonomous vehicles. Most current SLAM implementations rely

on the use of a sensor suite connected to a computer or System on Chip (SoC) computing

device.

One type of technology useful for performing the high speed data processing necessary for

SLAM is a Field Programmable Gate Array, or FPGA. FPGAs consist of digital logic gates

that are designed to be user-configured, allowing for the creation of completely customized

digital hardware. FPGAs are especially useful for parallelized data processing, posing poten-

tial real-time advantages over standard computing or microcontroller technology. Although

FPGA technology is highly applicable to performing SLAM-like tasks, there are currently

few existing products that use FPGAs for this purpose.

This project explored the viability of an FPGA-based real-time SLAM sensor suite as

a replacement for standard video cameras on existing situational awareness systems. This

sensor suite utilized data from stereo camera modules, a scanning laser rangefinder, and

an Inertial Measurement Unit (IMU) to create a real-time depth-augmented video feed and

compass-referenced 2D floorplan of the device’s field of view.

The following chapters detail the creation of this device, beginning with an exploration of

relevant technology and prior work. The overall system design and processing methods used

are examined at a high level in the following section. Next, the implementation requirements

of each individual sensor are explored in more detail. Methods for processing and combining

sensor data for the production of a 2D floorplan and 3D depth visualization are then detailed.

Each of these methods are then verified through comprehensive testing, and a finalized

design is demonstrated. Lastly, conclusions and recommendations for future improvements

are presented.
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2 Background

The initial research portion of this project focused on learning more about different

remote situational awareness products and how they may have been improved using existing

technology, eventually leading to a set of overall project goals.

2.1 Remote Situational Awareness Products

Many situational awareness devices consist of remote-controlled throwable robots with

wireless video-streaming capability. One such example is the 110 FirstLook by Endeavor

Robotics, seen in Figure 1a. This device is a throwable, rugged robot that streams real-

time video of its surroundings, and is used to investigate dangerous locations and hazardous

material while keeping its operator out of harm’s way. The 110 FirstLook has four day and

night cameras, and also supports two-way audio. The device is remotely controlled by a

tablet operator control unit, and is currently in use for military applications [1].

Similar to the 110 FirstLook, the Bounce Image Explorer is a throwable camera ball that

wirelessly transmits a 360◦ real-time video stream of its surroundings, and can be seen in

Figure 1b. The Explorer processes input from six monochrome WVGA camera modules,

and outputs a video stream that can be accessed from a tablet or smartphone. This device

is currently in a trial phase with United States Law Enforcement [2].

A more commercial remote situational awareness device is the Serveball SquitoTM [3].

Squito is a wireless, throwable, 360◦ panoramic camera that implements target detection to

produce a stabilized output video stream. This device is shown in Figure 2 below.
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Figure 2: Serveball’s Squito [3]

Squito utilizes a microprocessor receiving input from a fiber optic camera interface, as

well as orientation and position sensors, in order to transmit a real-time stabilized video

of its surroundings. The image in Figure 3 shows the input from the Squito’s four camera

inputs on the left, and a corresponding stitched output on the right. The device is still in

the prototype stage, and has received interest from the first responder community.

Figure 3: Serveball’s Squito Input and Output [3]

The 110 FirstLook, Explorer, and Squito are all examples of remote situational awareness

products that contain basic controls and real time video streaming outputs. Using additional

image processing in the form of Simultaneous Localization and Mapping, the outputs of each

of these devices could be improved to allow for more comprehensive situational awareness.
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2.2 Simultaneous Localization and Mapping

As mentioned in the previous chapter, Simultaneous Localization and Mapping is the

technique of mapping an unknown environment with respect to a localized agent. SLAM

is especially useful for autonomous systems and remote observation, as it can be used for

situational analysis and response. Recent research in the field of SLAM has focused on

making these systems more portable.

One application of such a system was a proof of concept of camera-based SLAM imple-

mentation for feature identification presented by Andrew Davison of Oxford University [4].

This system was handheld, and relied on a computer using a 2.2 GHz Pentium processor

connected to a single camera and laser rangefinder. This system implemented edge detection

on a known environment, and produced a real-time video output containing a 3D feature

localization plot. An output frame from the device is shown in Figure 4.

Figure 4: Real-Time SLAM with a Single Camera [4]

The left image in Figure 4 shows six points of a paper target that were input to the

system as prior knowledge, along with successfully marked identifying features (marked as

red squares), and another identifying feature that was not marked for measurement (marked

by a yellow circle). The frame on the right is a localization plot that displayed the relative

positions of all red squares detected by the device.

Along with identifying features of interest, SLAM image processing techniques are also

used for depth estimation. The process of estimating depth from imagery is known as dis-
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parity mapping. Disparity mapping algorithms are used to calculate the similarities between

stereo camera image pairs, and to convert said similarities to relative depth measurements.

Disparity mapping is useful for situational awareness because it is used to determine the

exact locations of all objects within a sensor suite’s field of view.

University of Bologna researchers Stefano Mattoccia and Matteo Poggi have worked to

implement a real-time disparity mapping algorithm on an FPGA, and an example of a

disparity image from this implementation is shown in Figure 5 [5]. Using their stereo disparity

implementation, the researchers were able to generate real-time video showing the relative

locations of objects within the device’s field of view. The relative distance from the device

to a given object was displayed using a color gradient, with nearer objects shown in brighter

colors. Based on this depth information, it was also possible for the researchers to detect

objects located within the field of view of the stereo imaging system, as shown in Figure

5. This implementation was extremely applicable to situational awareness systems, as it

allowed for the localization of objects and creation of 2D slices of an area in real-time using

only two camera sensors.

Figure 5: From Left to Right: Original Image, Disparity Map, Object Detection Results [5]

A major concern with calculating disparity in real time is image processing speed. In

the case of the implementation shown above, the parallelized data processing capabilities of

FPGA hardware were used to address these concerns. The successful creation of this system

demonstrated that FPGAs are useful for complex image processing applications [5].
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2.3 The Zynq Evaluation and Development Board (ZedBoard)

The FPGA platform used in this project was the Zynq Evaluation and Development

Board, or ZedBoard. The ZedBoard is a low-cost development board containing a Xilinx

Zynq-7020 All-Programmable SoC, and is shown in Figure 6.

Figure 6: The Avnet ZedBoard [6]

The Xilinx Zynq-7020 SoC consists of a dual-core ARM Cortex A9 processor coupled

with Xilinx Artix-7 FPGA fabric. The ARM Cortex A9 processor uses a dedicated 33.3333

MHz clock source, while the onboard 100 MHz oscillator supplies the Programmable Logic

(PL) clock. The Zynq-7020 SoC contains 85,000 programmable logic cells with 140 36K

Block RAM modules. The ZedBoard also features 5 Pmod IO ports, 8 LEDs, 8 switches, 7

push buttons, a USB UART port, and a VGA port [7]. These are shown in the ZedBoard’s
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block diagram in Figure 7.

Figure 7: ZedBoard Block Diagram [7]

As our research progressed, it became evident that FPGAs were a viable solution for im-

plementing real-time situational awareness algorithms on a compact scale. For the purposes

of this project, we decided to interface the ZedBoard with a stereo camera pair to gather

disparity depth information on an area, and supplement that data with digital compass and

rangefinder readings to produce detailed maps of the sensor suite’s surroundings in real time.

The implementation scheme for this device is detailed in the following chapter.
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3 System Design

The system used in this project was designed to take advantage of the hardware-software

interfaces of the Zynq SoC. An overall block diagram of the system is shown in Figure

8 below. The design was broken down into several functional blocks. These include the

sensor hardware shown in red, programmable logic (PL) shown in green, and programmable

software (PS) shown in blue.

Figure 8: System Block Diagram

The majority of the design was implemented in PL rather than in PS in order to maximize

the amount of calculations performed in parallel. For ease of integration, communication

with the rangefinder and digital compass was handled using the ARM processor of the Zynq

SoC, as pre-configured SPI and UART peripheral drivers were available through Xilinx.

Data obtained through these interfaces was then pre-processed before being passed to the

FPGA fabric, allowing for rangefinder distance data to be rotated based on the digital

compass heading. A customized Advanced eXtensible Interface (AXI) peripheral bus was
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then used to pass said data from the ARM processor to the programmable logic. Within

the programmable logic, a pair of lookup tables were used to convert pre-rotated rangefinder

distance data from Polar to Cartesian coordinates to create a 2D “floorplan” of the sensor

suite’s environment.

Along with pre-processing compass and rangefinder data, the PS was used to initial-

ize each camera module for manual trigger mode per an I2C peripheral driver at startup.

Following this initialization sequence the PS continuously gathered new data samples from

the rangefinder and compass. Simultaneously, a separate PL module triggered new image

captures from the stereo camera pair. Since the camera modules immediately output their

image data after a new trigger sequence, a customized stereo camera printed circuit board

was designed with attached image buffer integrated circuits (ICs) for temporarily storing im-

age data. This intermediate buffering stage allowed the programmable logic to read image

data into local memory using separate clock domains, easing the overall timing requirements

of the image processing pipeline. After stereo camera image data had been read into on-chip

memory, a disparity module was then used to calculate the relative offset between objects

contained in the stereo image pair. The resultant disparity image was stored in a video frame

buffer for VGA display. A portion of this data was also stored in a separate memory buffer

for correlation with data from the 2D scanning laser rangefinder.

In order to correlate disparity data with 2D depth information from the scanning laser

rangefinder, several horizontal lines of pixel data from the disparity algorithm were passed

through a moving average filter. This filter was used to smooth the disparity depth data,

as well as to account for differences in the field of view of each sensor. After this processing

stage, the 2D disparity and laser rangefinder data was combined directly. Depending on the

status of the ZedBoard’s user switches, this 2D floorplan map was then passed to the output

video buffer for external display.

The system implementation is explored further in the next chapter.
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4 System Implementation

After deciding that the proof of concept sensor suite required a scanning laser rangefinder,

IMU, and stereo camera interface, research was then performed in order to determine what

specific sensors to use, as well as the operating modes of each chosen sensor. This chapter

describes the specific research performed for each sensor, as well as the theoretical imple-

mentation of the overall system.

4.1 Rangefinder Operation

A rangefinder is a device that estimates the distance of the objects closest to it. Because

this sensor suite was intended to traverse unknown locations and create a 2-dimensional

map, data accuracy, precision, and reliability were vital design requirements.

4.1.1 Selection

The project’s rangefinder selection depended on the following criteria: field of vision,

maximum sensible depth, accuracy, precision, and cost. Many of the rangefinders limited by

the project’s budgetary restrictions were severely lacking in at least one of our project’s vital

criteria. However Professor Duckworth, and WPI’s Electrical and Computer Engineering

and Robotics Engineering Departments generously donated the URG-04LX Scanning Laser

Rangefinder for the purpose of this project. The URG-04LX, shown in Figure 9, is a durable,

lightweight piece of equipment that has a field of view of 240◦ and can sense objects up to 4

meters away with an accuracy to within 10 millimeters, which was perfect for our application

[8].
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Figure 9: URG-04LX Scanning Laser Rangefinder [9]

4.1.2 Communication

The URG-04LX rangefinder used the Recommend Standard (RS) 232C protocol via Uni-

versal Asynchronous Receiver/Transmitter (UART) communication. RS-232 is a form of

differential serial data transmission which recognizes a digital logic high from -3V to -25V,

and a digital logic low from +3V to +25V [10].

Since the ZedBoard’s Peripheral Module (Pmod) connectors supported UART communi-

cation, the rangefinder was communicated with using a Pmod IO connector. The ZedBoard’s

Pmod connectors used the Transistor-Transistor Logic (TTL) protocol, which is a form of

non-differential serial data transmission that recognizes a logic high of +3V to +5V and a

logic low of 0V [11]. Since TTL has different logic levels than RS-232, these protocols were

incompatible and did not recognize each other. Figure 10 shows a timing diagram of both

RS-232 and TTL communication protocols.

12



Figure 10: Timing Diagram of RS-232 (top) and TTL Communication Protocols [11]

To address these logic-level issues, an external RS-232 to TTL converter board was needed

to allow the rangefinder to communicate with the ZedBoard. The converter’s TTL side was

connected to the ZedBoard’s Pmod connector, and the RS-232 side was connected to the

rangefinder. For ease of connection and testing, the 9-pin DSUB RS-232 connector was

connected to an RS-232 breakout board so that the pins were easily accessible. Figure 11

shows the RS-232 to TTL converter attached to the RS-232 breakout board.

Figure 11: RS-232 to TTL Converter with RS-232 Breakout Board

Although the ZedBoard’s Pmod connectors were sufficient for UART communication with
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the URG-04LX, the power specifications were not compatible; the Pmod connectors output

3.3V but the rangefinder required 5V [7, 8]. Thus, the rangefinder was powered externally

by a lab bench power supply.

4.1.3 Commands

The rangefinder defaulted to a communication speed of 19.2 kbps (19200 baud) and

recognized four different commands: the version command, the communication speed setting

command, the laser illumination command, and the distance data acquisition command [12].

The version command and the communication speed setting commands were both not used

for the purpose of this project. The laser illumination command was used as a debugging

tool to turn the laser on and off. The laser’s status was displayed using a status LED on the

rangefinder, so turning the laser on and off allowed for simple visual confirmation of successful

communication. The distance data acquisition command was the primary command used in

this project, as it was used for gathering new distance data from the rangefinder.

The distance data acquisition command consisted of five different pieces that controlled

the data output: ’G’, the data starting point, the data end point, the cluster count, and

either a line feed or a carriage return. The start point was the step of the area from where

the data reading started, and the end point was where the data reading stopped. The data

reading started at the start point and traversed counterclockwise until the end point. Figure

12 shows a top-down view of the rangefinder’s field of vision with the steps labeled.
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Figure 12: Top-Down View of Rangefinder Field of Vision [12]

For this project, the beginning point was set to ’000’ and the end point to ’768’ to obtain

the device’s maximum coverage of 270◦.

The cluster count is the number of neighboring points that were grouped together as a

cluster. In this implementation, the cluster count was set to ’01’ in order to have a cluster

count of one data point.

Putting all of these pieces together, the data acquisition command ’G00076801\n’ was

obtained and transmitted from the ZedBoard to the rangefinder to request one scan of data.

With the rangefinder’s operation understood, an interface was created for connecting the

ZedBoard to the rangefinder.

4.2 Rangefinder Interface

As discussed in the previous section, the rangefinder was connected to the ZedBoard via

a Pmod connector so that UART communication was possible. Since a UART controller

was needed to drive communication with the rangefinder, the Zynq7 Processing System was

implemented via Xilinx’s Zynq7 Processing System Intellectual Property (IP) core.
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4.2.1 Zynq7 Processing System

The ZedBoard SoC features a dual-core ARM Cortex-A9 MPCore processing system

and Xilinx Programmable Logic. The Zynq7 Processing System IP core acts as a logic

interface that integrates the Programmable Software (PS) with the Programmable Logic

(PL) and allows access to both on-chip and external memory interfaces, PL clocks, many

I/O peripherals, and even extended I/O peripherals [13]. Despite all of this functionality

the processing system was easy to customize and featured a simple user interface. The user

interface was used to change the processing system’s activated features. Figure 13 shows the

processing system customization window.

Figure 13: Zynq7 Processing System Customization Window [13]

There were two options for UART: UART0 and UART1. The functionality of UART0

and UART1 were nearly identical, except that UART1 had the capability of being routed
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to the ZedBoard’s USB UART port, which was not compatible with the rangefinder [7]. So,

UART0 was arbitrarily chosen and the signals were routed to MIO10 and MIO11, which

correspond to the ZedBoard’s PS Pmod, JE.

After choosing UART0 and configuring the MIO pins, the baud rate was configured to

match the rangefinder’s default communication speed of 19200 baud [12]. This was done in

the processing system’s customization window under PS-PL Configuration on the sidebar in

Figure 13. Figure 14 shows the PS-PL Configuration window.

Figure 14: Zynq7 Processing System PS-PL Configuration Window

With the processing system customized in this fashion, the Programmable Logic’s con-

figuration for the rangefinder was complete.
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4.2.2 Designing with the Xilinx SDK

The Programmable Software (PS) was coded in the Xilinx SDK. To launch the SDK, the

hardware design was exported so that the PS had a platform to be coded on. This was done

by generating a bitstream. The bitstream compiled all the project’s hardware customization

into a .bit file which was used to program the FPGA on the ZedBoard. Generating a

bitstream was done in Vivado under the Program and Debug section of the Flow Navigator,

as seen in Figure 15.

Figure 15: Generating a Bitstream in Vivado
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Once the bitstream was generated, the design was exported to the SDK. This was done

in Vivado by choosing File → Export → Export Hardware and including the bitstream.

Finally, the SDK was launched by choosing File → Launch SDK.

When the SDK launched, there was a hardware platform project in the Project Explorer

tab. This file contained the hardware platform that was exported from Vivado and was used

to program the FPGA on the ZedBoard. To begin programming the PS, an Application

Project was created with the hardware platform by choosing File → New → Application

Project, entering a project name, and choosing Next. Note that the hardware platform

exported from Vivado was selected in the Hardware Platform and was used to create the

Application Project. Next, a template was chosen to begin designing. For this project, the

’Hello World’ template was chosen. This process is shown in Figure 16. The programmable

software was edited in the project’s source code file.

Figure 16: Creating a New Application Project in the Xilinx SDK

To upload the design to the ZedBoard, the FPGA fabric of the SoC was programmed
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first in order to configure the PL with the hardware platform. This was done by choosing

Xilinx Tools → Program FPGA. To indicate success, the ZedBoard’s blue DONE LED,

LD12, illuminated. Once that process was completed, the PS was uploaded by right clicking

on the application project then choosing Run As → Launch on Hardware (GDB).

With an understanding of the rangefinder’s interface, the data processing strategy was

implemented. This will be explored in the following section.

4.3 Rangefinder Data Processing

The rangefinder’s implementation into the system had two distinct pieces: communica-

tion and data processing. Since the ZedBoard SoC contains both an ARM processor and

FPGA fabric, the design was optimized by utilizing both parts of the SoC for their unique

advantages. As mentioned in Chapter 3, Xilinx offers a pre-configured UART peripheral

driver through the ARM processor. As such, the Programmable Software (PS) was respon-

sible for all of the communication with the rangefinder, in addition to pre-processing the

data before it was written to the Programmable Logic (PL), where the FPGA was used to

parallelize the data processing, block memory manipulation, and output VGA logic.

4.3.1 Programmable Software

To begin the data transaction, the distance data acquisition command was transmitted

by the PS when it received signals from the PL. Once the command was sent, there were

two different pieces of information that the software captured: the distance data and the

step count. The rangefinder transmitted the distance data half a data point (one character)

at a time. The first character was stored in a buffer until the second character was received.

Once the second character was received, the distance data buffer was updated to hold both

characters, the step count was incremented, and then both were written to the memory

register connected to the PL, described further in Section 4.4.
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4.3.2 Programmable Logic

When the PL receives the distance data and step count, the data begins its decoding

process since the rangefinder encodes each data point before transmitting it. The decoded

data point was expressed by 12 bits, in order to cover the rangefinder’s maximum coverage

distance of 4095 millimeters.1 The rangefinder encoded the data by separating the 12-bit

data into two 6-bit pieces, and then adding 3016 to each. The resultant data point was

comprised of two ASCII characters [14]. The decoding process which took place in the PL

was the inverse of encoding, where 3016 was subtracted from each character and then they

were merged together MSB first[12].

Since the rangefinder provided the distance away from an object and the angle at which

it was detected, the data was essentially expressed in the polar coordinate system [15]. In

order to output the data on a VGA screen, the data was converted from polar to rectangular

coordinates. This was accomplished by using the step number, since it corresponded to an

angle around the rangefinder’s detection circle, as shown in Figure 12. Note the angular

rotation per step was calculated by using Equation 1. Accordingly, each step around the

rangefinder’s field of view corresponded to a change of 0.3515625◦.

360◦

1024 steps
= 0.3515625◦ per step (1)

The transformation from polar to rectangular coordinates required basic trigonometry.

Xilinx supports a few options for performing trigonometry operations in the PL: a Coordinate

Rotational Digital Computer (CORDIC) function, multiplier IP blocks, or Lookup Tables

(LUTs). Due to latency concerns and ease of integration, a LUT with a multiplier was

implemented instead of a CORDIC function. The values in the LUT were used to extract

the horizontal and vertical components from the polar coordinate. The LUT only held

256 values, which corresponded to the amount of rangefinder steps in one quadrant of the

1 212 - 1 = 4095
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rangefinder’s detection circle. Each step value corresponded to two addresses in the LUT:

one scale factor for the detected object’s horizontal distance away from the device, and one

scale factor for the object’s vertical distance away from the device

The LUT was configured using a read-only BRAM IP core with a depth of 256, and was

initialized by importing a coefficient file (.coe). The 256 values in the coefficient file were

calculated by using Equation 2 for step values between 128 and 384, corresponding to one

quadrant of the rangefinder’s detection circle. Note that multiplying by 4096 equates to a

12-bit left shift, and was used to decrease error due to rounding in later data manipulation.

LUT[step] = sin((384− step)× π

180
)× 4096 (2)

This coordinate-axis transformation required both scale factors from the LUT at the

same time, but it was only possible to access one address in the BRAM at a time. To avoid

read conflicts, the 256-address LUT was split into two 129-address LUTs, where one LUT

corresponded to 0◦ ≤ θ ≤ 45◦, and the other corresponded to 45◦ ≤ θ ≤ 90◦.2 The code for

the coefficient files can be found in Appendix D.v.

Once the LUT was customized, the BRAM IP Wizard window specifies the BRAM’s

latency. In this case, there was a latency of 2 clock cycles between the addresses being

calculated and the data from the LUT being valid. Once the LUT data was valid, each was

multiplied by the decoded polar coordinate data point by being wired to a Multiplier IP

block. This multiplier carried a latency of 4 clock cycles in this case. This transformation

converted the data from polar to rectangular coordinates. After this step, the data was

localized to the device’s location and then right-shifted so that the data was scaled properly

and fit onto to a VGA screen with a 640x480 pixel resolution. After this step, each data

point’s x- and y-location accurately reflected the distance data localized to the device. The

rangefinder’s data processing module is found in Appendix D.iii.

2 This process could have been avoided by setting up the BRAM in a True Dual Port ROM configuration,
so that there are two separate, individually addressable address busses for the same BRAM block.
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With proper x- and y-coordinates, each data point was stored in memory. Another

BRAM IP was created for this purpose. Since the VGA resolution is 640x480, the BRAM

required 307,200 addresses.3 This BRAM IP was customized to function in the write-first,

dual port configuration. One port was used as a write-only port with the 100 MHz logic

clock, and the other was used as a read-only port using the 60 Hz VGA clock. This BRAM

IP avoids memory access conflicts by writing to memory before attempting to read. The

write address was calculated by using Equation 3 with another Multiplier IP block.

write address = (640× ylocation) + xlocation (3)

The data was output to the VGA screen from the BRAM module. To control the VGA

logic, Digilent’s VHDL VGA controller module, found in Appendix D.iii, was implemented.

In addition, the ZedBoard’s VGA pins were configured in a constraints file (.xdc) to support

12-bit color resolution [7]. Similar to Equation 3, Equation 4 was used to calculate the read

address of the VGA BRAM IP.

read address = (640× vcount) + hcount (4)

Since the peripheral communication took place in the ARM processor and the data

processing in the FPGA fabric, data needed to pass between the two on the SoC. The

creation of the PS-PL communication is discussed in the next section.

4.4 PS-PL Communication

Communication between the Programmable Logic (PL) and Programmable Software (PS)

was implemented so that data was able to traverse between the ARM processor and the

FPGA fabric on the SoC. This process was configured in Vivado with the use of an Advanced

eXtensible Interface (AXI) bus.

3 640× 480 = 307, 200 addresses.
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4.4.1 Advanced eXtensible Interface (AXI)

AXI is a type of on-chip interconnect specification intended for transaction based master-

to-slave memory mapped operations, which made it perfect for PS-PL communication. These

AXI busses are integrally involved in most Xilinx IP cores and contain many wires with

sophisticated logic. Instead of attempting to interface with AXI by creating these signals,

a custom IP AXI Peripheral was created that abstracted away the complications of AXI

communication.

4.4.2 Creating Custom IP

For this project, a custom IP module was created to serve as an AXI Peripheral. As

an AXI Peripheral, this IP block was able to communicate with any other Xilinx IP blocks

that use AXI. For the purpose of this project, the custom IP block uses its AXI bus to

communicate with the Zynq7 Processing System. The custom IP was created in Vivado

under Tools → Create and Package IP. The IP was set up as an AXI Peripheral, with four

32-bit wide memory registers attached to the AXI bus.

Once the bare IP AXI peripheral was created, the custom IP’s auto-generated files were

edited to allow for memory registers in the design’s custom logic to be wired to the AXI

bus. In the auto-generated file for the AXI interface, several lines of code were edited in

order to connect the AXI peripheral’s input and output channels to custom logic. The IP

was customized for the use of four memory registers, but only two were used: one for writing

data to the PS, and the other for reading from the PS.

To write to the PS, the AXI output register data was wired to a register in the custom

logic that held the data to be sent to the PS. This is done in the AXI read address case

statement that decodes addresses for reading registers. This can be seen on line 368 of our

edited auto-generated custom IP code, shown in Appendix D.iii. In the PS, a Xilinx built-in

memory access function was used to read the data from the AXI output register, shown on

line 130 of the programmable software in Appendix D.iv.
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To read from the PS, the data stored in the AXI’s input register was wired to a register

in the custom logic. This was done in the AXI write address case statement on line 239 of

our edited auto-generated custom IP code, shown in Appendix D.iii. In the PS, a pointer

to the memory address of the AXI input register was read from to obtain the data from the

custom logic, as seen on line 198 of the programmable software in Appendix D.iv.

In addition, other necessary I/O ports from the custom logic were created in the custom

IP’s top module. Our custom IP top module is found in Appendix D.iii. Advanced user

logic was also implemented within the IP core through modular instantiation.

Once the rangefinder’s implementation into the system was complete, the digital compass

was interfaced to in order to rotate the rangefinder’s data according to the sensor suite’s

compass heading.

4.5 Digital Compass Operation

A digital compass was implemented into the system to account for the sensor suite’s

rotation.This was accomplished through the use of a magnetometer. A magnetometer is

a digital instrument that measures the direction of a magnetic field at a point in space.

Magnetometers are commonly found in Inertial Measurement Units (IMUs).

4.5.1 Selection

This project required a sensitive IMU that was able to provide accurate and repeatable

compass directions. Due to the time limitations and budgetary restrictions of this project,

the PmodNAV IMU was selected. The PmodNAV provided 10-degree of freedom function-

ality through its on-chip LSM9DS1 3-axis magnetometer, 3-axis accelerometer, and 3-axis

gyroscope, and the LPS25HB barometer [16, 17]. The PmodNAV is shown in Figure 17.
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Figure 17: The PmodNAV 10-Axis IMU [18]

The PmodNAV’s was easy to integrate into this design, as it was fixed in position con-

nected to the ZedBoard and its communication was directly compatible, requiring no inter-

mediary hardware.

4.5.2 Communication

The PmodNAV supported two communication protocols: Serial Peripheral Interface

(SPI) and Inter-Integrated Circuit (I2C) [16]. However the magnetometer on the LSM9DS1

was not addressable by the I2C bus, so SPI communication was implemented. The magne-

tometer’s SPI protocol is shown in Figure 18.
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Figure 18: Magnetometer SPI Read and Write Protocol [16]

The CS M line was the magnetometer active-low chip select. The SPC line is the clock

controlled by the master. SDI and SDO M are the data input and data output lines, respec-

tively. They were driven at the falling edge of SPC and were captured at the rising edge

[16].

In an SPI sequence, the first bit sent from the master is the read/write bit, RW . This

bit was set to 1 to read from the compass, and 0 for a write to the compass. For a read

sequence, the DO bits represented the data read from the memory address specified by the

AD bits. The DI bits were not written to. For a write sequence, the DI bits were the

data being written to the memory address, and the DO line was ignored. When the MS

bit was set to 1 the memory address signified by the address bits AD5 down to AD0 was

auto-incremented, allowing for multiple reads or writes to be completed in the same SPI

transaction [16]. Figure 19 shows a multiple-byte SPI read protocol.

Figure 19: Magnetometer Multiple-Byte SPI Read Protocol [16]
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4.5.3 Register Settings

The magnetometer on the LSM9DS1 needed slight adjustments in its register setting in

order to operate properly. The adjustments were done by writing to the magnetometer’s

control registers.

One register that was written to was the magnetometer’s control register 1, CTRL REG 1 M,

at address 2016. 7C16 was written to CTRL REG 1 M to signify ultra high performance mode

for the magnetometer’s x- and y-axis [16].

The other register that was written to was the magnetometer’s control register 3, CTRL REG 3 M,

at address 2216. 8016 was written to CTRL REG 3 M to turn off I2C and turn on the mag-

netometer in the continuous-conversion mode [16].

Due to time constraints, the magnetometer on the PmodNAV was the only slave that

was interfaced to. The accelerometer, gyroscope, and barometer were not used so the above

control registers did not need to be changed to allow the other sensors to be read from.

4.5.4 Read Registers

With the magnetometer turned on and its settings properly adjusted, its data registers

were read from. As such, the RW bit was set to 1. There were two different read sequences

used to obtain compass data.

One sequence that was used was a read from the status register, STATUS REG M, which

is at address 2716. The status register signifies which of the magnetometer’s registers hold

data that has not yet been read. This address was read from until the two least significant

data bits read 112, signifying that new x- and y-axis magnetometer data was available [16].

Once new x- and y-axis data was available, the corresponding data registers were read from.

The next command was used to read the available x- and y-axis magnetometer data.

This data came in 16-bit resolution. Due to the SPI transfer protocol shown in Figure 18,

data was read 8 bits at a time MSB first. Since each axis had 16-bit resolution, each axis had

two addresses containing 8-bit data words. The x- and y-data addresses were consecutive,
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allowing 32 bits of data to be obtained in one cascading read in the format shown in Figure

19. The cascading read was performed from address 2816, OUT X L M, to obtain the x-axis

lower word, the x-axis upper word, the y-axis lower word, and then the y-axis upper word

[16].

4.6 Compass Implementation

The PmodNAV was connected to the ZedBoard via one of its Pmod connectors. The

PmodNAV was controlled by a Pmod connected to the ARM Processor of the SoC so that

the compass data was able to be directly combined with the rangefinder’s data before it

was written to the FPGA. However, only one of the ZedBoard’s five Pmod connectors is

directly connected to the ARM Processor, and it was already used for communication with

the rangefinder. One Pmod connected to the FPGA fabric was re-routed to be controlled

by the ARM Processor through capability provided by the Zynq7 Processing System.

4.6.1 Re-Customizing the Zynq7 Processing System

The Zynq7 Processing System was easily re-customized to account for the PmodNAV’s

specifications. SPI functionality was added in the processing system’s customization window

under I/O Peripherals in the MIO Configuration tab. The SPI pins were routed to Extended

MIO (EMIO) to allow one of the ZedBoard’s FPGA-controlled Pmods to be controlled by the

ARM Processor. Since both SPI0 and SPI1 support EMIO capability, SPI0 was arbitrarily

chosen over SPI1. This process is shown in Figure 20.
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Figure 20: Re-Customizing the Zynq7 Processing System to Add SPI

4.7 Compass Data Processing

Once the Zynq7 Processing System was re-customized to support communication with the

PmodNAV, the Xilinx SDK was relaunched. All of the magnetometer’s data was processed in

the Programmable Software on the ARM Processor to rotate the rangefinder’s data according

to the sensor suite’s compass heading.

4.7.1 Programmable Software

The SPI communication in the SDK was implemented by following example code pro-

vided within the SPIPS driver in the Xilinx SDK. The examples are located in the follow-

ing folder: C:\Xilinx\SDK\2016.2\data\embeddedsw\XilinxProcessorIPLib\drivers\
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spips_v3_0\examples\.

By following Xilinx’s examples, the magnetometer initialization and communication from

Section 4.5.3 was implemented. In the programmable software, the axis data was read into

an unsigned 8-bit variable. The data points were rearranged and then stored into a buffer

of type int for each axis. The magnetometer’s axis data was signed and expressed in Two’s

Complement format [16].4 Combining a data point in this manner works if the int data type

were only 16 bits. However, the data type int in the Xilinx SDK is 32 bits. For positive

numbers this method was sufficient, but for negative numbers this process dropped the sign

bit. The sign bit was the most significant bit of the axes’ 16-bit data, which got lost when

getting stored in a 32-bit integer. This problem was corrected by checking each data point’s

sign bit. If each data point was greater than or equal to 800016 then the sign bit must be

’1’, indicating a negative number. If necessary, the data was turned negative by subtracting

FFFF16 and adding 1.

To perform the necessary complex math on the data, the header file math.h was linked

and included into the project. This was done by right clicking on the application project,

choosing Properties → C/C++ Build → Settings → Tool Settings → ARM v7 gcc linker

→ Libraries, and then adding m under the Libraries (-l) section, shown in Figure 21. In

addition, math.h still was included by using #include in the project’s source code file.

4 Two’s Complement is a way of encoding signed numbers in binary where the most significant bit is
used as a sign bit, with ’1’ signifying a negative number and ’0’ signifying a positive number. To convert a
positive number to negative, all of the bits are inverted and then 1 is added to the resultant number [19].
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Figure 21: Linking math.h into the Application Project

The complex math was used to convert the magnetometer’s axis data, in terms of milli-

gauss per bit, to a compass heading in degrees. The equation that was used for this trans-

formation is shown in Equation 5. Note that the arctangent function from math.h outputs

data in radians, so the resultant angle was multiplied by
180

π
to convert it to degrees.

Compass Heading = arctan(
y

x
)× 180

π
(5)

To convert the compass heading to a rangefinder step offset, Equation 6 was used. This

calculation was possible because there were a total of 768 rangefinder steps around the

rangefinder’s 270◦ field of vision [12].
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Step Offset =
Compass Heading

360◦

1024 steps

(6)

The resultant step offset was added to the rangefinder’s step in order to account for the

sensor suite’s compass direction deviation from North. When the sensor suite faced due

North the step offset equated to 0, so the rangefinder’s data was not rotated. When the

ZedBoard faced due South the step offset equated to 512, which rotated the rangefinder

data by 180◦.

4.8 Camera Operation

Several important criteria were analyzed in order to find a proper camera module for this

project. After selecting a camera for use, further research was then performed to determine

how the chosen module was operated.

4.8.1 Camera Selection

Due to our limited project budget of $250, we focused on finding camera modules that

were low-cost and simple to communicate with. This ruled out many low-cost camera mod-

ules that relied on complicated communications protocols, as well as all commercially avail-

able stereo image sensor suites. One other important factor that we sought to satisfy in our

camera setup was the use of global shutter cameras, which acquire image data from the entire

image sensor at once, rather than sequentially by pixel. The use of global shutter camera

modules made it so that our setup was not susceptible to lens artifacts, or distorted imagery

due to moving objects or a moving camera setup. With these factors kept in mind, the de-

cision matrix shown below was created for selecting a proper camera module. Each module

evaluated was given a ranking from 1-10 based on several categories, with 10 representing

the ideal camera module for our project.
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Camera
Module

Max
Frame
Rate
(FPS)

Resolution
at Max
Frame Rate
(px.)

Cost
Requires
External
Adapter

Data
Transfer
Interface

Shutter

Field
of
View
(deg.)

Rank
1-10

OV7670 30 640x480 $10 No Parallel Rolling 25 5

Raspberry
Pi Camera

90 640x480 $30 Yes, $53
MIPI

(CSI2)
Rolling 49 6

PC1089K 60 720x480 $32 No
NSTC/

PAL
Rolling

Not
Given

5

OV4682 330 640x480 $89 Yes, $50 MIPI Rolling
Not
Given

6

MT9V034 60 752x480 $73 No Parallel Global 55 9

Based on our decision matrix, we believed that the MT9V034 camera module was ideal

for our stereo camera interface. These camera modules were the only low-cost global shutter

option we were able to find in our research. Global shutter cameras contain specialized

circuitry for acquiring image data from all pixels simultaneously, thus reducing motion-

based artifacts and making them ideal for taking images in a sensor suite that is susceptible

to motion. The MT9V034 also used a parallel data interface and relied on an external clock

and shutter trigger, which made the module ideal for interfacing with an FPGA-based stereo

imaging setup.

After obtaining two of the MT9V034 cameras, the operation of the camera modules

was then investigated. In order to gather working images from each camera module, we

began by reverse engineering the camera module breakout boards purchased. The MT9V034

camera breakouts used were purchased through Leopard Imaging Inc. Although these camera

module breakout boards were intended to be used with Leopard Imaging’s LeopardBoard

ARM development board, the breakouts were found to contain only the supporting circuitry

recommended in the MT9V034 datasheet, and we decided that they were ideal for our

application [20, 21]. Once the schematics of each camera module breakout were known, a

basic control interface for each camera was then designed.
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4.8.2 Camera Signaling

By default, the MT9V034 camera module continuously gathered image data at 60Hz

while supplied with an external clock signal and output enable signal [21]. In this operating

mode, several output signals from the camera module were used to transmit image data.

Each image, or frame, was broken up into individual “lines” which corresponded to a line

of pixels that stretched the width of the frame. Since our camera module captured images

at 752x480 pixel resolution, one frame contained 480 lines of 752 pixels each. The camera

modules broke up image data by frame and line, and camera data pins FRAME VALID

and LINE VALID were toggled to indicate the transmission of a frame or line. The timing

diagram shown in Figure 22 shows the operation of these pins while transmitting an image.

Figure 22: Frame and Line Valid [21]

Since the MT9V034 camera module transmitted pixel data in parallel and each pixel

contained 10 bits of resolution, 10 pins were used to transmit pixel values. Pixel data was

transmitted in correspondence with LINE VALID and output clock signal PIXCLK. When

LINE VALID was asserted, the pixel data pins were updated with values corresponding to

pixels 0-751 of the given line. Values for each pixel were written out on the falling edge of

the camera’s PIXCLK pin, which allowed for pixel values to be read on each rising PIXCLK

edge. A full LINE VALID data transmission sequence therefore contained 752 PIXCLK

cycles, which corresponded to the 752 pixels that made up the given line. A timing diagram

of this data transmission scheme is shown in Figure 23.
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Figure 23: Line Data Transfer [21]

The default camera data transmission scheme was also examined using an oscilloscope,

as shown in Figure 24, with channels 1-4 corresponding to camera PCLK, FRAME VALID,

LINE VALID, and Data[0], respectively. In the case of Figure 24, the camera was initially

powered off, resulting in an inactive PCLK signal during the beginning of the recording.

Figure 24: Camera Data Transfer

4.8.3 I2C Control

The MT9V034 Camera module’s mode of operation was configured using a standard I2C

control interface. I2C, or Inter-Integrated Circuit, is a bidirectional serial interface that allows
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for a master device to read from and write to several slave devices sharing the same data bus.

The I2C interface used contained a Serial Data Line (SDA) and Serial Clock Line (SCL) that

were normally pulled to 5V. When one connected I2C device wished to communicate with

another, it pulled the SDA line low while leaving the SCL line high. The master device then

began clocking the SCL line, and SDA was used to transfer 7 bits representing the address

of the desired slave device, along with an 8th bit that represented whether a read or write

operation was being performed. An example of this transfer is shown in Figure 25. After

this initial transfer, a second 8 bit sequence representing a specific register within the slave

device was then transmitted.

As an example, if the master device wished to write to slave device 0x40 at register 0x00,

it transmitted 0x41 (address 0x40 and WRITE), followed by 0x00. If the slave device received

this transmission, it acknowledged by pulling the SDA line low. If this acknowledgement

was successfully delivered, the master then transmitted the value that it wished to write to

the given slave address and register. If the operation was a read rather than a write, the

slave then transmitted a value back to the master.

Figure 25: Example I2C Data Transfer

Based on the LIVM34LP camera board schematic, each breakout board was configured

so that its camera module was accessible at I2C address 0x58 [20, 21]. Note that since both

cameras came configured with the same I2C bus address, a pullup resistor needed to be

added to one of the cameras I2C address lines so that both were individually accessible on a

shared bus.
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4.8.4 Image Buffering

Since each camera image contained 752x480 pixels with 10 bits of resolution per pixel, a

full camera image consumed 3,609,600 bits, or 440.6kB, as shown in Equation 7.

Image Size = 752px∗480px∗10
bits

pixel
= 3609600 bits∗ 1 byte

8 bits
∗ 1kB

1024 bytes
= 440.625kB (7)

In order to send a camera image to a computer or monitor for viewing, several steps

needed to be taken. Although it would have been ideal to transfer the image directly from

the camera to a computer or display, this was difficult to achieve due to the high speeds

of the camera’s data output. In order to properly synchronize camera data with a VGA

display, both the camera and VGA display needed to run at exactly the same clock speed.

The same amount of vertical and horizontal blanking was also required to display each pixel

in its correct location. If the image was transferred to a computer, the act of packaging the

information so that it was interpreted by said computer would have placed severe limitations

on the speed of the system. A proper solution to these timing issues was to buffer image

data between the camera and the desired output source, which allowed for separate clock

domains to be used for camera data transfer and data output. However, the act of locally

buffering a camera image on an FPGA was difficult due to low memory resources.

Although 440kB seemed like a relatively small image size, creating a buffer object large

enough for storing said image would have consumed an extremely large amount of FPGA

resources. For reference, the Nexys3 FPGA evaluation board initially used for camera testing

contained only 18kB of onboard Block RAM, and was not able to buffer an image of this

size without the use of external memory5. This left the final option of using either external

memory or a First-In First-Out (FIFO) memory array for transferring a captured image

between clock domains.

During initial development, an AL422B FIFO IC was used, since the IC was created

5Xilinx, Spartan-6 FPGA Block RAM Resources, 11.
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
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specifically for buffering VGA imagery similar to that of the MT9V034 camera module, and

was able to connect directly to the camera module data output lines [22]. The AL422B

FIFO module contained 3M-bits of RAM that were written to and read from in parallel,

and supported separate input and output clock speeds between 1-50MHz [22]. This meant

that the camera module was able to write pixel data to the FIFO as long as it operated

at a speed between 1 and 50MHz, and the FPGA was able to independently read from the

FIFO at any speed within the same range. Note that since this FIFO supported only 8-bits

of parallel data input and output, the lowest two bits of camera pixel data were truncated.

This was not a major issue, since the truncation corresponded to a 4/1024 reduction in the

range of values that each pixel mapped to.

4.9 Disparity Algorithm

Some important properties of the stereo camera setup used in this project were taken

advantage of in order to extract 3D depth information from 2D image data. Since both

cameras captured imagery of the same scene from slightly different vantage points, depth

information on the scene was extracted by calculating the pixel offsets, or disparity, between

the same object’s relative location in each image. Given this pixel offset, the distance from

the camera pair to a given object was determined using simple geometry based on the focal

length and baseline of the stereo camera pair. Each camera needed to have the same focal

length, or distance from the image sensor to the lens of the camera. The baseline, or distance

between image sensors of the stereo camera pair was equivalent to 63mm. Note that this

number was chosen to reflect the average distance between a pair of human eyes [23].

4.9.1 Image Rectification

One simple method for determining the disparity between objects in a stereo image pair

is known as the Sum of Absolute Differences. The Sum of Absolute Differences algorithm

operates under the assumption that objects in both camera images lie on the same horizontal
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line between both images, known as an epipolar line [23]. An example of shared epipolar

lines between camera imagery is shown in Figure 26 below. Although an ideal stereo camera

setup contains shared epipolar lines between camera images, raw image data from seemingly

identical cameras will contain slight differences in object location based on the physical

position of the camera modules, as well as minor differences in the lenses of each camera.

Both input images are normally adjusted to share the same epipolar lines through a post-

processing step known as image rectification [23].

Figure 26: Horizontal Epipolar Lines [23]

A pictorial representation of the process of stereo image rectification is shown in Figure

27 below [24]. This specific rectification example was achieved using a 3x3 matrix coordinate

transform based on parameters obtained from the external calibration process.
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Figure 27: Stereo Image Rectification [24]

After a given pair of images has been rectified, it is then possible to perform the Sum of

Absolute Differences on the given image pair in order to extract depth information.

4.9.2 Sum of Absolute Differences

The method used in our disparity algorithm implementation was known as the Sum of

Absolute Differences, or SAD. SAD is a common digital image processing technique used

to measure the similarity between blocks of image data. In the case of our stereo camera

interface, a SAD algorithm was used to search along epioplar lines in the right image for

pixel blocks that matched a template block selected from the left camera image. This

process was performed using 7x7 pixel search blocks over 20 pixel horizontal ranges, and was

repeated throughout the image. The expression for the sum of absolute differences is shown

in Equation 8 below.

SAD =
∑
x

∑
y

|template− block| (8)

A visual representation of the Sum of Absolute differences is shown in Figure 28, with the

top image showing the left image template block, and the middle image showing the right

image search window in relation to the location of the template block. Below both images is

a visual representation of the Sum of Absolute Differences between the template block and
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the current search block, outlined in white. In the case of the given example, the template

and search blocks are relatively different, resulting in a high SAD value.

Figure 28: Sum of Absolute Differences [25]

Since the disparity algorithm used in this implementation calculated the sum of absolute

differences for multiple search blocks, the resulting SAD values for each search block were

then compared to find the location of the most similar matching block in the search image.

Due to the nature of the SAD algorithm, lower SAD values indicated higher similarity

between the template and search blocks. This comparison is demonstrated in Figure 29

below. In the case of Figure 29, higher match score values for each search block indicate

lower SAD values.

In the project implementation, the SAD at multiple search points was used to estimate

the pixel offset between the template block and matching search block based on array index

locations, since all SAD values for a single search were stored in a vector. This pixel offset

was equivalent to the disparity value for a given template and search block. The disparity

d at a given point was then transformed into a unit of distance using the focal point f and

baseline distance Tx between image sensors as shown in Equation 9 below.

42



Figure 29: Block Matching Overview [23]

depth = Z =
fTx
d

(9)

Pixel coloration values in a disparity image were based on the distance calculation shown

in Equation 9, where each pixel was referenced to the disparity at a given template block’s

location. As an example, a disparity image created from a given pair of test images is shown

in Figure 30 below.

Figure 30: Disparity Algorithm Output
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4.10 Combined Implementation

The following sections describe the integration of each individual sensor’s data into the

final, combined implementation.

4.10.1 Rangefinder and Disparity Data Integration

3D depth information from the disparity algorithm was combined with 2D depth infor-

mation from the scanning laser rangefinder in order to increase the overall accuracy of the

system. Since the rangefinder and stereo camera interface shared a horizontal viewing plane

and both sensors gathered information on the same scene, there was some distinguishable

overlap in sensor data. This overlap was taken advantage of in order to produce a more

accurate 2D “floorplan” of the area being observed.

This combined data stream relied on a moving average Finite Impulse Response (FIR)

filter across a horizontal line of depth information from the disparity algorithm output.

Note that although 2D rangefinder data was organized using a polar coordinate scheme, the

output buffer used for displaying rangefinder data via VGA contained the same data in a

Cartesian format. Cartesian rangefinder data was easily combined with averaged disparity

depth information at the output stage, where both sensors’ data was displayed relative to

the same central location on screen.

In order to correlate both sensors’ data for a combined output mode, the field of view

of each device needed to be taken into account. Since each camera had an approximate 55◦

field of view, and camera imagery was 752 pixels wide, the stereo camera interface had a

deg:pixel ratio of 752
55

= 13.67 px
deg

. In contrast, output data from the rangefinder was divided

into 768 steps over a 270◦ field of view. In order to correlate disparity and rangefinder data,

the averaged disparity depth line was converted an equivalent number of rangefinder “steps”

worth of data. The conversion factor for pixels of disparity depth to “steps” was calculated

as shown in Equation 10.

13.67
px

deg
∗ 270◦

768 steps
= 4.8

px

step
(10)
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The output from the disparity pixel line needed to be scaled down by an approximate

factor of 4.8 in order for it to correlate with depth information from the scanning laser

rangefinder. Once this scaling process was complete, depth information from the disparity

algorithm was directly overlaid on the 2D scanning laser rangefinder’s output in order to

produce a combined depth map.

4.10.2 Accounting for Compass Data

Device orientation was calculated using compass data from the IMU’s magnetometer.

This compass data was used to offset the rangefinder’s step count in the programmable

software. Changing the step count changed the start point location of the rangefinder sweep,

thus rotating the distance data around the device. In turn, this changed the direction of the

rangefinder’s 240◦ “field of vision”. For example, a compass reading corresponding to due

West was a rotation of 90◦ counterclockwise from due North. By Equation 11, 90◦ equated

to 256 rangefinder steps. So, the rangefinder’s data essentially began at step 256 and ended

at step 1024 or 0,6 seen in Figure 12.

90◦ ÷ 360◦

1024 steps
= 256 steps (11)

In this chapter, the behavior of each sensor was explored in depth, and an overall system

designed was created. Once this design was completed, each sensor’s behavior was thoroughly

tested before integration.

6 step 768 + 256 step offset = 1024. Since there were 1024 rangefinder steps in a circle, step 1024 was
the same as step 0.
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5 Testing and Results

After learning how to interface with the chosen sensors, initial test implementations were

then created for each individual sensor. Many of these implementations were designed for

ease of integration into the finalized design, as detailed in the following sections.

5.1 Rangefinder Testing

The URG-04LX scanning laser rangefinder required an external 5V power source connec-

tion. It was connected to a lab bench power supply for all of the sensor suite’s testing. Once

the power supply was turned on the rangefinder’s status LED illuminated, signifying that it

was ready and waiting to be communicated with.

5.1.1 Testing via the Data Viewing Tool

The URG-04LX has a useful data viewing tool by Hokuyo Automatic Co. that was used

to view, record, and replay the device’s data. To use this tool, the device was connected to

a computer via its USB port and the tool was launched. Figure 31 below shows a screen

capture of the application recording data captured by the rangefinder.
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Figure 31: Screen Capture of the URG-04LX Data Viewing Tool [26]

Note that the start point of 0, end point of 768, and dead zone aligned to that shown in

Figure 12. For this project the data viewing tool was used to verify the project’s 2D map

output.

5.1.2 Command Testing

In addition to the data viewing tool, the rangefinder’s commands were tested by con-

necting it to a laptop via its USB port. We used PuTTy, a serial console application, to

communicate with the rangefinder. Figure 32 shows the data transfer via PuTTy between

a laptop and the rangefinder. Note that PuTTy only shows data received, and that the

rangefinder always echoes back the command that it receives.
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Figure 32: Rangefinder Communication Test via PuTTy

The figure above shows four communication sequences used as a test. The first was the

laser illumination command ’L0\n’. This command turned the laser off. The rangefinder

responded to this command first with the echo ’L0\n’, and then with ’0’, indicating success.

The second command was the data acquisition command ’G00076801\n’. The rangefinder

responded with ’6’, indicating an error code. This specific error code was a result of the

laser being off when new data was requested [12]. The third command shown was ’L1\n’,

the laser illumination command again, which turned the laser back on. The rangefinder’s

response was ’0’ again, indicating success. The last command shown was the data acquisition

command again. The rangefinder’s response begins with the echo and then ’0’, indicating

success, followed by the distance data block. The data block consisted of 768 data points,

specified by the data acquisition command. By communicating with the rangefinder via

PuTTy, the rangefinder’s behavior was confirmed to be functional. This testing also verified
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that communication via the rangefinder’s USB port was working.

5.1.3 Communication via USB On-The-Go (OTG)

With communication via the rangefinder’s USB port working, this mode of communica-

tion was continued. The ZedBoard supports USB On-The-Go (OTG) which is a specification

that allows USB devices to act as a host for other USB devices [27]. Through USB OTG,

devices choose to act as either a peripheral or a host. For the purpose of this project, the

ZedBoard was expected to act as the host and initiate communication with the rangefinder.

USB OTG was enabled in the Zynq7 Processing System and was controlled by the ARM

Processor. The rangefinder’s laser illumination command was chosen to be transmitted from

the ZedBoard for this communication test. This specific command was chosen because when

received, the status LED on the rangefinder blinks until the laser is turned back on. This

was a simple way of verifying successful communication. In addition, when a command is

transmitted via UART from the ZedBoard, its TX LED flashes. A fully successful transac-

tion observes the ZedBoard’s TX LED flashing and then the status LED on the rangefinder

blinking.

The ZedBoard was programmed, the rangefinder was turned on, and the two devices

were connected by a standard micro-USB to mini-USB cable. The ZedBoard transmitted

the command, as signified by a blink of the TX LED. However the rangefinder did not

acknowledge the command; its status LED stayed lit signifying the laser stayed on. Due to

this failure,7 using USB OTG was not implemented. Instead the methodology described in

Section 4.1.2 was implemented.

7 This communication failure was most likely due to the lack of necessary hardware, as USB OTG requires
an adapter that controls which device will be hosting the communication. Without this adapter, both USB
devices act as a peripheral, and neither will initiate communication [27].
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5.1.4 Communication via Pmod

Once we decided not to continue with USB OTG, we routed the UART signals to a Pmod

connector, described in Section 4.1.2. To make sure that UART via Pmod was functioning

correctly, the transmit pin was measured with an oscilloscope. The laser illumination com-

mand “L0\n” was transmitted and observed indicating success, as shown in the oscillogram

in Figure 33. Note that this is a TTL signal.

Figure 33: Laser Illumination Command TTL Oscillogram

Since the rangefinder uses RS-232 communication, an RS-232 to TTL converter with an

attached breakout board was connected to the ZedBoard. The converter’s VCC and GND

were connected to the ZedBoard Pmod’s respective VCC and GND pins. When these pins

were connected, the converter’s power LED turned on. In addition, the converter’s RX and

TX pins were connected to the ZedBoard’s respective TX and RX pins. The breakout board’s

TX pin was measured on the oscilloscope to observe the resultant RS-232 waveform. However

when the command was transmitted from the ZedBoard, there was no waveform shown on

the oscilloscope. In another attempt, the converter’s TX and RX pins were disconnected

and swapped, so that the converter’s RX and TX pins were connected to the ZedBoard’s

respective RX and TX pins. The laser illumination command was re-transmitted and the

waveform in Figure 34 was observed on the oscilloscope. The oscillogram shows a waveform

from +6V to -6V, which is a valid RS-232 signal.
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Figure 34: Laser Illumination Command RS-232 Oscillogram

With the communication functioning properly, the rangefinder’s RX and TX were con-

nected to the breakout board’s respective TX and RX pins, and the laser illumination com-

mand was transmitted from the ZedBoard. The rangefinder’s status LED started blinking,

signifying that it received the laser illumination command and that the laser was turned off.

This test’s success indicated that the rangefinder’s communication was completely successful.

5.1.5 PS-PL Testing

Once UART communication was verified, the next step was to test the PS-PL commu-

nication. In order to test the communication, UART was reconfigured in the processing

system to be routed to USB UART.

PL to PS communication was tested first, by using a PL button press to initiate a UART

transfer. With UART communication routed to USB UART, the TX LED flashes when

data is transmitted. In the PL, BTNR was used as an input and was wired into the AXI’s

output register, reg data out, in place of slv reg0, as seen on line 368 of the custom IP’s

AXI interface file located in Appendix D.iii. In the PS, the data was read from the AXI bus
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by pointing to the address in memory where the PL’s output register, slv reg0, is located.

This address was found in the SDK in the system.dhf file, which contained the hardware

platform specifications. The base address was the cell with the same name as the custom

IP. For this project, the base address was 43C0000016. Since slv reg0 was the first of the

four designated memory registers, it did not need any address offset from the base address.

Reading from the PL was implemented on line 30 of the PS, shown in Appendix D.iv, by

using Xilinx’s built-in memory access function Xil In32 to read the data from the memory

address that is baseaddr p.8 Once the setup was complete, the ZedBoard was programmed

and connected to a serial console. BTNR was pressed and the TX LED lit up, indicating

that PL to PS communication was functioning properly.

PS to PL communication was tested next per use of the VGA screen. For this test, the

PS was intended to receive the transmit signal from the PL and then wait for 768 data

points to be received, just as if the rangefinder were connected. Since UART was routed to

USB UART, the ZedBoard communicated with a serial console instead of the rangefinder.

Through the serial console, rangefinder communication was simulated by inputting a test

block of rangefinder data. The data was written to the PL one data point at a time by

writing to slv reg1, as shown on line 239 of the custom IP’s AXI interface file located in

Appendix D.iii. This register is located one memory register from the base address of the

custom IP because it is the second of the four designated memory registers. The function

Xil Out32 was first tested but no results were observed, so a pointer was used to write

to the base address offset by one memory register. This is seen on line 198 of the PS, in

Appendix D.iv. The data written to slv reg1 was the distance data point combined with

a data valid flag and the rangefinder step. These were manipulated to fit into one 32-bit

integer by shifting each to a unique bit location of a buffer, data enable step.

To test data accuracy in addition to PS to PL communication, the test block of rangefinder

data sent from the serial console was constant. With data constant across all steps of

8 This could also have been accomplished by using a pointer to read the data from the memory address
that is baseaddr p.
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the rangefinder’s field of view, the intended result was 270◦ of a circle drawn around the

rangefinder on the VGA screen. With the VGA module set up and the rangefinder data

processing ready to be tested, the ZedBoard was programmed. When BTNR was pushed,

an image similar to Figure 35 was observed on the VGA screen with the red dot being the

device and the black lines being the rangefinder’s distance data.

Figure 35: PS to PL Communication Test with Constant Data

Although a circle was not observed, this test confirmed the PS to PL communication

was functioning properly. The shape appeared to be four quadrants of a circle, except in

the wrong orientation. Since the lines seem semi-circular, the polar-to-rectangular transfor-

mation was deemed successful. The problem was a minor sign issue with the rangefinder’s

data processing in the PL. The signs in each necessary quadrant were fixed and the test was

repeated, resulting in Figure 36 being observed on the VGA screen.

Figure 36: PS to PL Communication with Constant Data and Revised Data Processing
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With the PS-PL communication and rangefinder data processing functioning perfectly,

the rangefinder itself was attached and tested.

5.1.6 Data Testing

UART was re-routed to the PS Pmod in order to test the entire rangefinder implemen-

tation. The rangefinder was powered by the lab bench power supply and was connected on

the RS-232 breakout side of the RS-232 to TTL converter, with the ZedBoard connected to

the TTL side. The ZedBoard was connected to the VGA screen, and then was programmed.

BTNR was pushed to initiate the UART transfer and Figure 37 shows the VGA output.

This VGA output shows the rangefinder with a wall directly in front of it.

Figure 37: Rangefinder Data Observed on VGA Screen

Next BTNR was pushed again to start another data transfer, but there was no observed

functionality. The button was held down until the subsequent data transfers in Figure 38

were observed on the VGA screen.
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Figure 38: Subsequent Rangefinder Data Observed on VGA Screen

In the SDK the PS was not accounting for enough data points. By design, when the

rangefinder receives a command from the ZedBoard it echoes back the command. The PS

used this as a test to ensure data accuracy. When not enough data was being accounted for,

the extra data was writing into the next data transfer’s input echo buffer. As a result, the

echo received from the rangefinder did not match the command transmitted and the rest

of the data was garbage. The PS was edited to account for all of the data points and the

rangefinder was tested again. Figure 39 shows the initial data transfer of this test, and the

2D florplan was compared to the objects around it.
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(a) Lab at WPI

(b) 2D Rangefinder “Floorplan” of Lab at WPI

Figure 39: 2D Floorplan of Lab
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In Figure 39b the data points called out in the 2D floorplan include a wall directly to the

left of the device, a chair, computers, windows, and the rangefinder. These objects’ locations

on the floorplan corresponded to their actual locations, so the rangefinder’s accuracy was

confirmed.

Next, the rangefinder was rotated 180◦ and the button was pushed again to test the

rangefinder’s subsequent triggering functionality. Figure 40 shows the rangefinder’s view

when it was rotated 180◦, and the resultant VGA output.

57



(a) Lab at WPI with 180◦ Change of Orientation

(b) Two Overlaid Rangefinder “Floorplan” Captures with 180◦ Offset

Figure 40: Test of Rangefinder’s Subsequent Triggering Functionality
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This test confirmed that subsequent rangefinder data captures were triggered successfully

and without loss of data. The floorplan shown in Figure 40b shows the data from the second

trigger overlaid on top of the existing floorplan. The newly detected objects were called out

in the figure. Note that although the rangefinder was rotated 180◦, the floorplan did not

account for that rotation. Because of this, it was possible for the same object to be detected

in different places in subsequent data captures, as shown by the wall on each side of the

rangefinder. This issue was resolved by incorporating the digital compass’s rotational data

in order to geographically reference the data. With the compass heading used to offset the

direction of the device, 2D floorplan accurately reflected the relative location of objects.

5.2 IMU Testing

The PmodNAV IMU is a small device that was directly connected to the ZedBoard’s

Pmod connector. As such, it required no external power source or other intermediate con-

nections.

5.2.1 Communication Testing

With the rangefinder connected to the ZedBoard’s PS MIO Pmod, JE, the PmodNAV

IMU required an Extended MIO Pmod so that it was able to be controlled by the PS. As

such, the SPI pins were routed to the JD Pmod. Since the only slave this project used on

the PmodNAV was its magnetometer, the slave select and register settings were adjusted

accordingly, as discussed in Section 4.5.3. To choose the magnetometer and deselect the

accelerometer/gyroscope and barometer, the magnetometer’s slave select was brought low

for each SPI transfer while the other two were left high. The behavior of Pmod JD’s pins

were observed with an oscilloscope during an SPI transfer. It was observed that as soon as

the magnetometer’s slave select line was asserted there was unidentified behavior with all

of the other pins. Since the PmodNAV was disconnected this issue was thought to be with

routing the SPI pins to EMIO incorrectly, so it was decided to test the SPI transfer via
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Pmod JE.

The pins were re-routed to the MIO Pmod JE and similar undefined functionality was

observed when the magnetometer’s slave select line was asserted. The ZedBoard’s SPI errata

was investigated until AR# 47511 was found, which describes an unresolved issue in the MIO

interface where the SPI controller resets itself when slave select 0 signals asserts [28]. Since

this issue affected the PS SPI controller itself, this errata was also the cause of the EMIO’s

undefined behavior.

To avoid the problems with SPI on the ZedBoard, I2C was attempted next, since the

PmodNav supports I2C communication. I2C was routed to Pmod JD. Communication with

the PmodNAV’s magnetometer was tested through I2C, but it was learned that the magne-

tometer was inaccessible through the I2C bus. As such, SPI was the only option and needed

to be implemented.

The SPI pins were again routed to Pmod JD. To avoid the errata, slave select 1 was

assigned to the magnetometer. The other two slave select pins were routed away from Pmod

JD so that they were not used in any manner. Instead, two GPIO pins were used and

configured as pull-ups so that these pins idled high and never had to be written to. This

setup was configured in Vivado’s Synthesis tab, as shown in Figure 41.
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Figure 41: EMIO SPI Configuration for PmodNAV

With this configuration a waveform similar to those shown in Figures 18 and 19 were

observed, indicating that the errata was avoided and the the ZedBoard’s SPI waveforms were

accurate. The PmodNAV was connected to the ZedBoard and successful communication was

observed on the oscilloscope, as shown in Figure 42.
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(a) IMU Magnetometer Single Read Operation

(b) IMU Magnetometer Multiple-Byte Read Operation

Figure 42: Successful IMU Communication via EMIO SPI
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5.2.2 Data Testing

The IMU’s data was tested by transmitting it via UART after its data processing. By the

end of its data processing, the magnetometer’s data was transformed into a compass heading.

The ZedBoard’s UART was routed to USB UART and connected to a serial console. The

sensor suite was rotated, and the compass heading was observed. The results were inaccurate

and inconsistent until the sensor suite was moved as far from the lab bench as the wires

allowed. The PmodNAV was a very sensitive piece of equipment that was susceptible to

electromagnetic interference, in this case most noticeably by the ZedBoard’s own power

supply. Once the device was further away from the lab bench, accurate and repeatable

compass headings were observed.

5.2.3 Interfacing with the ADIS16375 IMU

Although this project ultimately interfaced with the PmodNAV IMU, this was not the

first IMU that communication was attempted with. Originally, the ADIS16375 Six Degrees

of Freedom Inertial Sensor, shown in Figure 43, was intended to be used in the sensor suite.

Figure 43: The ADIS16375 Six Degrees of Freedom Inertial Sensor [29]

The ADIS16375 IMU was a highly sensitive, heavy duty device. It had a tri-axis gy-

roscope, a tri-axis accelerometer, and a temperature sensor, had onboard functionality to
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calculate delta-angle and velocity, and used SPI communication. Although the ADIS16375

did not have a magnetometer, its gyroscope’s sensitivity combined with its sample rate and

onboard delta-angle calculation made it perfect to account for rotation. However, commu-

nication was not able to be established with it. There was no way to test the ADIS16375

so its functionality could not be confirmed in any manner. Instead, the PmodNAV was

implemented as a quicker and simpler solution.

5.3 Single Camera Testing

After obtaining two of the MT9V034 cameras chosen through the process described in

Section 4.8.1, several steps were taken to obtain test images from each camera. These steps

are outlined in the following sections.

According to the MT9V034 datasheet, each camera module needed to be supplied with

an external Master Clock and Output Enable signal in order to operate [21]. A simple Verilog

module for the Nexys3 Spartan-6 FPGA board was created that supplied the camera module

with a 24MHz master clock signal, and a switch was used to toggle the output enable line.

With this module implemented, the camera module’s default outputs were then observed.

In order to interface the camera module with an FPGA, the breakout board shown in Figure

44 was also designed to make the module’s pins more easily accessible.

Figure 44: LI-VM34LP Breakout Board

64



5.3.1 I2C Control

Although the MT9V034 camera’s I2C control registers were closed source, the previous

model’s register settings were found to work with the current model [30]. As a baseline, the

camera module was sent a read request at address 0x00, which should have returned 0x1324

for the MT9V034 camera module. An oscilloscope screenshot of this request is shown in

Figure 45, where the first packet consisted of a request to address 0x00 of device 0x058, and

the second packet consisted of the camera’s response of 0x1324.

Figure 45: Example I2C Transfer with Camera

After the camera I2C was deemed working, the camera control register was modified to

put the camera in “snapshot” mode. In this mode, the camera module no longer continuously

took pictures, and only gathered new images when an external trigger was activated. This

was the mode in which each camera needed to operate to acquire stereo imagery, since a

shared trigger line allowed for both cameras to be controlled simultaneously.

According to the previous camera model’s datasheet, the camera module’s operational

mode was set using control register 0x07. By default, this register was set to a value of 0x0388,
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which corresponded to master mode with parallel output and simultaneous readout of pixel

data enabled [30]. The camera was placed in trigger mode by writing the control register

with value 0x0198, which allowed for the same functionality as before with the exception

of having continuous shutter mode replaced with an external trigger. For reference, a table

with camera control register bit descriptions can be found in Appendix item B [30].

A button input was then attached to the camera’s TRIGGER input line, and the TRIG-

GER and FRAME VALID lines were observed on channels one and two of the oscilloscope,

as shown in Figure 46. This oscilloscope screenshot demonstrated that the camera was no

longer in continuous operation, since FRAME VALID only asserted itself in response to a

TRIGGER input.

Figure 46: Camera Trigger and FV in Trigger Mode

In order to prevent accidental modification of the camera module’s configuration registers,

the register lock feature of the camera I2C bus was also used. By writing 0xDEAD to register

0xFE, the camera’s I2C write functionality was disabled. This feature was disabled when
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0xBEEF was written to the register lock register, or when the power of the device was cycled.

5.3.2 Data Management

After a camera control interface was created that placed the MT9V034 camera module

in trigger mode, image data was then acquired from the module for viewing. The included

AL422B FIFO IC made it so that all triggered imagery was captured and stored external to

the FPGA, and allowed for image data to be read in non-continuous chunks. Keeping this

in mind, the system shown in Figure 47 was created for capturing, storing, and transmitting

camera images to a computer for external analysis. Development time of this system was

reduced by including an external microcontroller for controlling the camera module’s I2C

control interface. Various buttons and switches on the FPGA controlled the camera output

and trigger, and allowed for a user to trigger an image for storage on the AL422B FIFO.

Once the image had been stored on the FIFO, the FPGA read the image line-by-line into

an internal buffer. An internal System on Chip (SoC) microcontroller controlled FPGA

reads from the FIFO into this internal buffer. An image dump would begin when the SoC

microcontroller signaled to the FPGA to read a new line of pixels into its internal 8-bit by

752-address pixel buffer. The FPGA then signaled to the microcontroller when this buffer

was full, and the microcontroller would print out the value of each pixel in the buffer to

a connected computer over a Universal Asynchronous Reciever/Transmitter (UART) port.

When the microcontroller finished printing out the value of each pixel in the line buffer, it

signaled to the FPGA to read in a new line of pixels. This process repeated for each of the

480 lines of pixels in the image, and allowed for the transmission of an entire image’s worth

of data from FIFO to computer. The Verilog implementation of the top module and line

buffer for this interface are located in Appendix item D.i.
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Figure 47: Camera Test System Block Diagram

An example of the transmission of one line of pixel data from the FIFO to the FPGA

is shown in Figure 48. The green, purple, blue, and yellow lines in this image represent

pixel data, FIFO read enable, read reset, and read clock, respectively. Since the FPGA read

in one line of pixel data at a time, this process took 752 read clock cycles, as measured in

Figure 48. An internal counter and seven-segment display controller were also implemented

on the FPGA to simplify debugging, and displayed a running count of the number of pixel

lines that were read into the FPGA’s internal buffer, ranging from 0x0000-0x01E0 (0-480).
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Figure 48: Transferring Line Data from FIFO to FPGA

5.3.3 Transmitting Images Over UART for Analysis

Once the FIFO and FPGA line buffer interfaces were created, the source code found in

Appendix item D.i was implemented on a Microblaze SoC that transmitted camera line data

from the FPGA’s internal line buffer to an attached computer over UART. An example of

the microcontroller’s UART output is shown in Figure 49. The microcontroller printed the

value of each pixel followed by a newline and carriage return, starting with the top left pixel

in the acquired image.
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Figure 49: Reading FIFO Data

After the image was received through PuTTy, the Matlab script found in Appendix

item D.i was used to parse the corresponding logfile into a greyscale image. An example

image created through this process is shown in Figure 50. Note that the sub-optimal quality

of this image was due to signal interference and degradation in the test setup’s long wiring,

as shown in Figure 51.

Figure 50: Notebook With Grid and Oscilloscope Leads
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Although this system was tested using the Nexys3 (Spartan-6) FPGA board, the use of

an external FIFO and little to no platform-specific hardware made it so that it could easily

be implemented on any system, including the Zynq family of processors that were used in

the final system implementation.

Figure 51: Camera Test Setup
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5.4 Final Camera Hardware Implementation

After successfully gathering image data from a single camera module, an interface was

created for controlling both cameras at once using the ZedBoard. This implementation

had several design constraints, as it needed to successfully interface both cameras with the

ZedBoard as a stereo pair without consuming too many IO pins.

5.4.1 Stereo Camera Breakout Board

Although it was possible to interface each camera module directly to the ZedBoard’s

GPIO using the camera breakout boards described earlier, this setup was not feasible. A

pair of the original camera breakout boards shown in Figure 44 would have consumed every

available Pmod pin on the board, leaving no additional pins for the IMU or rangefinder9.

One solution originally investigated was the use of the ZedBoard’s FPGA Mezzanine Card

(FMC) connector, since it contained 68 available GPIO pins and would have been more than

adequate for interfacing the stereo cameras with the board. However, the FMC connector

was configured to provide logic voltage levels of only 1.8 or 2.5 volts without modification to

the ZedBoard. Since each camera module was only compatible with 3.3 volt logic, the FMC

connector was therefore not feasible for our designs.

This left the final option of reducing the overall pin count required by the cameras

and interfacing the combined camera setup with the board’s Pmod pins. One significant

method used for reducing the necessary pins required was to include an individual AL422B

FIFO per camera. Based on the testing described in the previous section, it was already

determined that these FIFO modules were compatible with the MT9V034 cameras, that they

significantly reduced FPGA memory and timing requirements. A second major advantage

of including these FIFO modules in the camera interface was that their data output lines

supported being placed in a high-impedance state. This meant that the individual data

output lines of each FIFO module could be connected in parallel, with a single FIFO driving

9[2 ∗ (D[9 : 0] + TRIGGER + OE + RST + SCLK + PCLK + FV + LV )] + SDA + SCL = 36 pins
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the lines at a time. Since the bulk of each camera module’s required pin count lay in its

data lines, the ability to connect these lines in parallel reduced the overall camera GPIO

requirements by 8 pins. Since each AL422B FIFO module was capable of being read from at

a clock speed of up to 50MHz and the maximum master clock rate of each MT9V034 camera

module was 27MHz, the inclusion of the FIFO modules also didn’t cause a significant decrease

in the overall speed of the stereo camera system [22, 21].

Along with the shared camera data lines between each AL422B FIFO module, it was

also possible to connect several other signals in parallel. Since each camera image capture

needed to be triggered at approximately the same time for an stereo imaging setup, it was

already desirable to connect both camera TRIGGER lines together. The RST, OE, SDL,

SCA, and SCLK lines of each camera module were also tied together in pairs of two, and the

OE lines were held at 3.3 volts. Lastly, since each camera LV signal needed to be inverted

for use with the AL422B FIFOs, a discrete inverter IC was used to save on FPGA GPIO.

Overall, these modifications saved a total of 25 pins, as shown in Equation 12.

36 Pins− (8 Data+ 4 truncated bits)− (TRIGGER + SCLK +RST )

−2 ∗ (OE + PCLK + FV + LV ) = 13 pins (!)

(12)

Note that each FIFO needed to be controlled individually, requiring an additional Read

Reset (RRST) and Read Enable (RE) pin per camera, as well as a shared Read Clock (RCK)

line. This brought the total pin count required by the stereo camera setup to 16 pins plus two

I2C pins, which was conveniently the number of GPIO available in two Pmod headers. This

setup was implemented as shown in Appendix item C, and the final stereo camera breakout

board shown in Figure 52 was then created.

A Verilog module was created using a modified version of the MT9V034 camera test code

found in Appendix item D.i that tested the stereo camera breakout board’s functionality

using the Nexys3 platform. A switch input selected one of the two camera modules for

image acquisition, and a binned 60x92 pixel set from the center of the camera’s image was
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buffered locally for an attached VGA display. The image was then independently written

to the display according to VGA pixel timing. This process was repeated at a high rate of

speed, and allowed for a real-time video stream from the selected camera to be displayed.

The assembled stereo breakout board used in this test is shown in Figure 53.

(a) PCB Top

(b) Assembled PCB

Figure 52: Stereo Camera Pmod PCB
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Figure 53: Stereo Camera Breakout Under Test

After manually focusing each camera using the VGA module described above, the UART

transmission implementation described in Section 5.3.3 was used to transmit image data

from the stereo cameras to a computer for further analysis. As shown in the example image

in Figure 54, the new stereo camera setup was far less susceptible to data loss in comparison

to the previous version. For further comparison, please refer back to the test image acquired

using the original camera test setup shown in Figure 50.
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Figure 54: Stereo Camera Breakout Sample Image

5.4.2 Image Buffering

After the camera setup was deemed working based on the results of the Nexys3 test

implementation, a finalized camera controller module was created for the ZedBoard. This

began with the simple implementation shown in the block diagram in Figure 55 below. This

implementation contained a customized camera controller IP based around the same code

used for creating the camera controller described in Appendix Item D.i, with the exception

that internal Block RAM was used to buffer an entire image captured from the cameras. Note

that a custom AXI interface was also included in the test implementation, which allowed for

the option of reading image data into the Zynq Processing System for more advanced testing

and export via PS peripherals such as UART.
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Figure 55: ZedBoard BRAM Camera Test Block Diagram

Since a single camera image contained 8 bits × (752 × 480) pixels, a simple dual-port

Block RAM module containing 752 × 480 = 360960 8-bit addresses was created for storing

the output of the AL422B FIFO reader module. Dual-port Block RAM was used to allow for

external VGA logic to read from the image buffer without the need for read/write protection.

Overall, the purpose of this implementation was to test the capabilities of the ZedBoard’s

internal BRAM for image buffering, as well as to get a simple visual confirmation that the

implementation functioned properly. An example of the output from this implementation is

shown in Figure 56 below.
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Figure 56: ZedBoard BRAM Camera Test

After determining that the Zynq Processor’s internal BRAM would be usable for storing

image data, several tradeoffs associated with the memory requirements of buffering image

data in BRAM were then addressed.

5.4.3 Resource Management

One major issue encountered while dealing with resource management on the ZedBoard

was managing Block RAM resources. The Zynq7020 processor used on the ZedBoard con-

tained 140 individual blocks of 36Kb BRAM, which was equivalent to 630,000 8-bit bytes

of memory [31]. Although this was plenty of memory for buffering a single 752x480 camera

image, three separate image buffers needed to be implemented in BRAM for this project.

Two of said memory buffers were used for storing left and right camera images for processing

by the disparity algorithm, and a third was used for storing a resultant output image that

was then displayed via VGA.
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In order to address this issue, input camera imagery was centrally windowed to a reso-

lution of 384x288 pixels, or 0.6 × V GA. The output display buffer was also been reduced

from WVGA (752x480) to VGA (640x480). In total, this resulted in the use of 27 36Kb

Block RAM modules per input camera image, and 75 36Kb Block RAM modules for the

VGA display buffer. Note that each buffer was configured using an individual Block RAM

IP, and each consisted of a simple dual-port RAM with an 8-bit data length. Overall, this

implementation consumed 129 out of the 140 36Kb Block RAM modules available on the

ZedBoard’s Zynq7020 processor, which left additional resources for use in the IMU and

rangefinder implementations.

5.5 Disparity Testing

After the camera interface was verified as functional, a large portion of time was spent

implementing a disparity algorithm that allowed for the extraction of 3D depth information

from stereo image data. This algorithm was first implemented in Matlab, and was then

re-designed to operate within programmable logic.

5.5.1 Image Rectification

In order to perform the most accurate block matching possible on camera image data, it

would have been ideal to rectify the images as outlined in Section 4.9.1. However, since the

image data used in the disparity calculation contained a central 384x288 image taken from

the middle of each 752x480 input image, a large portion of the input image was cropped out.

Since many of the lens artifacts corrected using a rectification process are contained on the

external edges of the input imagery, no additional camera calibration was performed in the

disparity or camera controller implementations [23].

After extensive testing with the stereo camera breakout board and disparity module

detailed in the following sections, it was also found that camera imagery captured from the

stereo camera interface contained consistent horizontal epipolar lines between both images.
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These lines were accurate enough for the custom disparity algorithm to process without

additional calibration, saving a large amount of calibration time in the image processing

pipeline. With the issue of camera calibration and image rectification addressed, it was then

possible to begin implementing a test disparity algorithm in Matlab.

5.5.2 Matlab Implementation

The Sum of Absolute Differences algorithm discussed in Section 4.9.2 was first imple-

mented using Matlab, and can be found in Appendix item D.ii [25]. This implementation

operated on the “cones” standard test image set, and produced a resultant disparity image

from the given input image pair. In the case of this specific example, the algorithm performed

a 7x7 Sum of Absolute Differences block matching process on 50-pixel search ranges across

horizontal epipolar lines between the two images. Note that the block size and search range

were also implemented so that they could be customized by the user to test the algorithm’s

functionality.

Overall, the Matlab disparity test implementation was broken down into the following

steps:

1. Load in image data (also convert to grayscale if using the “cones” image set)

2. Determine the size of the template image and create a resultant matrix to store output
disparity values in

3. For each full row of pixels across an image, perform the following steps:

(a) Set minimum and maximum row bounds for the current block of pixels being used
for SAD

(b) For each column in the given row, perform the following steps:

i. Set minimum and maximum column bounds for the current block of pixels
being used for SAD

ii. Determine the number of blocks that will be used in the current search. Note
that this number will be the Disparity Range until the blocks being searched
are closer in pixels to the right edge of the image than the Disparity Range

iii. Create a memory block for holding the SAD value for each block comparison
based on the number of blocks from (ii), and create a template block from
the right image at the current column/row
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iv. For the number of blocks calculated in (ii)

A. Compute the Sum of Absolute Differences for each left image block along
the current pixel row with respect to the right image template block, and
store the calculated value in the memory block created during (iii)

v. Find the smallest value in the memory block containing SAD values. Use
the index of this block to determine the pixel offset from the template block
location. This value is the disparity for the particular point

vi. Store the calculated disparity value in the resultant image matrix. Go back to
(b) if there are more columns (pixels) remaining in the current row, otherwise
go to (3)

4. When the entire image has been iterated through, display the resultant disparity ma-
trix, and scale pixel coloration based on the minimum and maximum disparity values
for better contrast.

An example of a resultant disparity image from this test implementation is shown in

Figure 57 below.

Figure 57: Disparity Implementation Output

5.5.3 Verilog Test Bench

The original Verilog disparity test implementation used closely followed the Matlab

disparity algorithm discussed in the previous section. This algorithm was implemented using

a finite state machine with five states, as shown in Figure 59 below. To maintain simplicity

for initial testing, the test algorithm originally operated on the 20x7 pixel test images shown

in Figure 58. The search range and block size for this module were set to 15 pixels and

5x5 pixels, respectively. By default, the disparity module remained in an idle state until an
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external enable signal was toggled high using a button input. This caused the finite state

machine to advance to its READ state, and image data for the left and right camera images

was then read in from the stereo camera breakout board. After image data was received,

the state machine would then advance to a cyclical set of states used for iterating through

each image and calculating disparity.

Figure 58: Disparity Test Images

The disparity module would begin by isolating the template and search blocks from the

right and left image data in the finite state machine’s separation state. Next, the state

machine would advance to its SAD state, and calculated the Sum of Absolute Differences

between the template and search block. The SAD value was then placed in a vector that

matched the length of the search range, with a vector index that corresponded to the current

pixel location being searched. If the vector was not completely filled, indicating that there

were more search blocks to compare to the template, the state machine would revert back

to the separate state, isolating a new search block from the right camera image. When the

SAD vector was full, the state machine would then advance to its finalization state.
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Figure 59: Disparity Test Implementation

The finalization state was used to search through the SAD vector for the lowest value.

The index of this value within the SAD vector was equivalent to a disparity value for the

given template block location. This value was converted to a distance measurement using

Equation 9, and was stored in the output image location. If the output image was not

fully populated with distance values, the state machine reverted back to the separate state.

Otherwise, the state machine advanced to its idle state, indicating that the resulting disparity

image was ready for output.

This module was initially tested using a Verilog Test Bench, and was then tested using

camera image data and a VGA display controller module, allowing for real-time verifica-

tion of the algorithm’s effectiveness. After testing the initial disparity algorithm, several

modifications were made to increase the overall speed and efficiency of the disparity module.
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5.5.4 Test Bench Results

The READ state of the disparity state machine was first analyzed using the Verilog

Test Bench, and the these test results are shown in Figure 60 below. The state machine is

shown transitioning from IDLE (0) to READ (1) in the beginning of the timing diagram, as

indicated by state LED. After transitioning to its READ state, the disparity module read

in each image horizontally from left to right, as dictated by buffer href and buffer vref.

The left camera image was read first, and output image sel was then toggled to signal a

second read sequence from the right camera image buffer. During each rising clock cycle,

input image data was stored in an internal BRAM module for the associated camera’s image

data, with the write address based on the current value of buffer href and buffer vref.

Figure 60: Image Read Sequence

After the state machine finished reading both images into local memory, it then iterated

through the SEPARATE (2) and SAD (3) states until an entire search range of search blocks

had been compared to the given template block. After the search range had been traversed,

the state machine advanced to its FINALIZE (4) state to find the disparity value for the

given search and place the value in the output buffer. Figure 61 shows an example of this

process, where a template block set by pixel row bounds minr and maxr and pixel column

bounds t minc and t maxc was compared to 15 individual search blocks set by row bounds

minr and maxr and column bounds b minc and b maxc.
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Figure 61: Disparity Search Vector

Note that in the case of the disparity search shown in Figure 61 above, a disparity value

was calculated for the pixel location (0,0), or the top left corner of the image, as defined by

buffer href and buffer vref.

After each disparity search was completed, the state machine then advanced from the

FINALIZE state to the SEPARATE state to isolate a new template block and search block.

Internal counters for horizontal and vertical pixel location of the disparity search were also

updated at this point, triggering an update of the template and search block parameters,

as well as the number of blocks analyzed in the current disparity search. This number

decreased as the template block approached to the right side of the image, since the search

range eventually exceeded the distance from the template block to the far width (right edge)

of the image. An example of multiple disparity searches across one horizontal line of pixels

in the top row of the 20x7 test image from Figure 58 is shown below in Figure 62. In the

case of this example, numBlocks represented the number of blocks included in the current

disparity search. Since the width of the test image was 20px and the search range was set to

15px, numBlocks began to decrease after the 4th disparity search was performed, as shown

below.

Figure 62: Horizontal Pixel Row Search
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After an entire horizontal row of pixels was analyzed by the disparity algorithm, the

vertical location of the template block was increased, and the overall process was repeated

continuously until the entire image was analyzed. An example of a disparity search through

the entire 20x7 image is shown below in Figure 63.

Figure 63: Full Image Search

The output disparity image from the test analyzed above is shown in Figure 64. Note

that the artifacts in the resultant image were due to the fact that a 5px∗5px template and

search block set was used on a 20px∗7px image. The relatively large block size used in

comparison to the size of the image made it impossible for any block comparison to avoid

the block contained in the upper left corner of the search image. In addition, the direction

of artifacts around the block in the lower right corner of each image were a function of the

search direction, since the search blocks descended downwards and to the left.

Figure 64: Disparity Test Results

After the disparity module was deemed working on the 20x7 test image, further testing

on image data was performed. First, a Matlab script for converting image data to a format

recognizable by the Verilog Test Bench’s $readmemb command was created. Using these

converted images, the Verilog disparity implementation’s results were compared to those

of the Matlab implementation. Note that due to limitations in computer memory, the
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disparity search range and block sizes capable of being processed by the Verilog Test Bench

were limited to 15 pixels and 5x5 pixels, respectively.

Figure 65 below contains a comparison between the test bench and Matlab results from

disparity search on the “cones” test image set. Note that the outputs from the Matlab and

Verilog disparity search algorithms were noticeably close in comparison, as well as in pixel

intensity. Losses in the the output of the Verilog disparity algorithm were likely due to the

fact that all operations were performed using integers rather than floating point values.

(a) Test Bench Result (b) Matlab Result

Figure 65: Matlab vs. Verilog Test Bench Results

After the disparity implementation was fully tested in programmable logic using a Verilog

Test Bench, a modified version of the implementation was created for final use.

5.5.5 Final Disparity Implementation

Several structural changes were made to the original disparity implementation in order

to create a finalized module for use in the overall system. In order to increase the speed of

the disparity algorithm’s output, several portions of the Verilog module used in the previous

section were modified for increased parallelization and decreased overall latency associated

with vectorized summation calculations. Most of this parallelization consisted of modifying
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2D memory arrays used for storing the template and search blocks, and breaking said arrays

into individual vectors. For example, instead of using a 7x7 memory array for storing one

“block” of pixels, the block was broken into seven separate 1x7 vectors that were then

operated on individually. This parallelization decreased the overall latency of the system

by reducing time spent waiting to read from individual addresses within memory arrays.

An overall block diagram of the parallelized disparity implementation is shown in Figure 66

below.

Figure 66: Disparity Final Implementation

The overall state machine used to create the final disparity implementation still followed

the same next-state logic as that of the original implementation shown in Figure 59. Advances

in speed of the overall algorithm were therefore mostly associated with parallel calculations

during the computation of the Sum of Absolute Differences. As discussed in Section 5.4.3,

the left and right search images passed to the disparity algorithm were also windowed to

0.6× V GA resolution, further reducing computation time.

The disparity hardware implementation was debugged by passing the current state of

the disparity state machine to the ZedBoard’s LEDs. Another important debugging step
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included a VGA output mode that showed the current camera images being used by the

disparity algorithm. An example of this mode’s output is shown in Figure 67. This example

image shows a lab bench to the left, with a chair and doorframe on the right. Note that the

image coloration was a result of mapping a monochrome image to arbitrary VGA colors to

account for a lack of grayscale color space.

Figure 67: Raw Camera Data Mode

The output of the hardware disparity implementation was verified by using a VGA display

driver to show the algorithm’s output in real time, as demonstrated in Figure 68. With this

output mode successfully implemented, the disparity and camera controller modules were

then added into a finalized design that incorporated the IMU and Rangefinder modules.

Each of these modules may be found in Appendix items D.iii and D.iii, respectively.
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(a) Device View (b) Resultant Disparity

Figure 68: Disparity Algorithm Output

5.6 Full System Operation

The result of this finalized implementation was a proof of concept SLAM system capable

of generating compass-referenced 2D floorplans of its surroundings, as well as 3D depth

maps of its entire field of view. The operating modes of this device were user-selectable, and

were output to an external VGA display. The final hardware implementation of the project

is shown in Figure 69. Note that the stereo cameras and digital compass were mounted

rigidly to the ZedBoard, while the scanning laser rangefinder and RS232-TTL converter

were attached externally.
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Figure 69: System Hardware

An overall system block diagram is shown in Figure 70. The system implementation

was broken down into several major components. At the top level, the Zynq-7020 ARM

Cortex A9 processing system was used for controlling low-level sensor peripherals. These

included the stereo camera I2C lines, as well as UART and SPI interfaces for the rangefinder

and digital compass, respectively. The ARM processor was also used for continuously pre-

parsing rangefinder and digital compass data before it was written to the programmable

logic.
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Figure 70: Final System Block Diagram

The programmable logic for this implementation consisted of two main processing pipelines.

One main functional process of the PL was to parse image data into depth measurements

using disparity. The other was to read rangefinder and digital compass data from the pro-

grammable software and convert said data into a compass-referenced 2D “floorplan”. Both

the stereo disparity and 2D floorplan data paths were then combined at the output stage,

allowing for resultant data to be viewed on an attached VGA display based on the current

operating mode.

In order to create a fully integrated hardware-software interface that allowed for com-

munication between the Zynq FPGA fabric and ARM processor, a custom AXI IP core was

created. This IP core served as a top module for all programmable logic located within the

green portion of Figure 70. This included all user-defined logic for the rangefinder, digital

compass, camera interfaces, and VGA controller.

This implementation supported several output modes based on the positions of the user

switches. These output modes included a rangefinder mode, disparity mode, and combined
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2D “floorplan” mode. As a demonstration of the device output modes, the sensor suite was

used to observe the scene shown in Figure 71, and each output mode was then documented.

Figure 71: Demonstration Scene

By default, the system was placed in rangefinder output mode, as shown in Figure 72a.

In this mode, objects found within the scanning laser rangefinder’s 240◦ field of view were

displayed in black. The entire scan was also localized to the device’s central location, shown

in red. All rangefinder data was pre-processed by the programmable software to include an

offset from the digital compass before being written to programmable logic. In Figure 72,

picture (a) shows the rangefinder output with the device facing due north, while picture (b)

shows the rangefinder output with the device rotated west by approximately 90◦.
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(a) Rangefinder Output

(b) Rotated Rangefinder Output

Figure 72: 2D “Floorplan” Output Modes
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A second device output mode was included for displaying continuous stereo disparity.

While in disparity mode, a 384x288 pixel depth map was continuously updated to reflect

the camera’s current field of view. An example of the system output for this mode may be

found in Figure 73.

Figure 73: Disparity Output Mode

A final output mode was also included to incorporate filtered disparity data overlaid onto

the 2D “floorplan” produced by the rangefinder. By combining data from both sensors, the

stereo cameras were able to account for situations where the scanning laser rangefinder was

out of range due to limitations in viewing distance. This output mode is shown in Figure

74. In this example the disparity algorithm identified the corner of the lab bench, as it was

the most distinguishable feature found by the filtering algorithm.
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Figure 74: Combined Output Mode

In this chapter, the functionality of each sensor was tested so that the design accurately

reflected their behavior. Once each sensor’s behavior was properly accounted for, their

implementations were combined to create a functional SLAM sensor suite incorporating

multiple operating modes.
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6 Conclusions

This project demonstrated a proof of concept SLAM sensor suite as an effective replace-

ment for the simple camera image sensors available on existing remote situational aware-

ness products. Through the use of a stereo camera pair, scanning laser rangefinder, digital

compass, and Zynq-7020 All Programmable SoC on a ZedBoard development platform, an

all-in-one sensor suite was developed for capturing continuous localization and depth data on

its surroundings. This sensor suite supported three main output modes that each displayed

different localization information to an attached VGA display.

A compass-referenced real-time 2D floorplan mode was created by using a scanning laser

rangefinder to map the objects closest to the sensor suite. The rangefinder and digital

compass modules were connected directly to the dual-core ARM Cortex A9 processor of the

Zynq SoC, and were communicated with using low-level peripheral controls. Data collected

from these sensors was combined and written to the FPGA fabric of the Zynq SoC, where a

coordinate-axis transformation was used to localize distance data and prepare it for output

via VGA display.

As an accompaniment to the 2D floorplan mode, a disparity depth mapping mode was

also created. This operating mode relied on a stereo camera pair. A custom printed circuit

board was designed and built that connected two camera modules and video frame buffer ICs

to the FPGA fabric of the Zynq SoC by plugging it into two of the Pmod ports. Using this

interface, programmable logic was able to read image data from the circuit board’s frame

buffers and trigger new image captures. After acquiring stereo camera image data, a Sum of

Absolute Differences block matching algorithm was used to calculate depth measurements

on a pixel by pixel basis throughout the scene. This depth information was then used to

create a 3D disparity image.

A final output mode was included to incorporate slices of disparity data into the 2D

floorplan. Since the rangefinder and stereo cameras shared a horizontal viewing plane, there

were some distinguishable overlaps in sensor data. These overlaps were correlated by filtering
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several horizontal lines of depth information from the disparity algorithm and combining

them with 2D rangefinder data at the output stage. The resultant floorplan matched stereo

camera depth data with rangefinder distance data, and allowed for compensation between

measurement methods.

Through its different output modes, this sensor suite demonstrated that FPGA-based

data processing was a viable replacement for the simple imaging sensors of existing remote

situational awareness products, and serves as an excellent platform for future development.

6.1 Future Work

The utility of this sensor suite could be increased by adding additional image processing

algorithms for human recognition and object detection. In a first responder situation, human

recognition could be used to provide potentially life-saving information about where persons

of interest are located. This feature could be added through the use of Xilinx’s High Level

Synthesis environment, which would allow for the creation of programmable hardware from

a powerful C/C++ image processing library such as Open Computer Vision (OpenCV).

A simpler improvement could be to incorporate all available inertial displacement data

from the PmodNAV IMU into the device’s processing pipeline. With inertial displacement

data completely integrated, this sensor suite would have the capability to produce a more

sophisticated 2D map showing the complete path traversed by the device. This functionality

would allow for a more complete understanding of the environment around the device.

One other important step in the future of this design would be to combine all hardware

used onto a single platform such as a printed circuit board. This board would contain a

Zynq chip, an onboard IMU, and mounted stereo camera and rangefinder hardware. With

the creation of a customized sensor board, the device could then be added to existing robotic

platforms for field testing.
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Appendix

A Component Selection

Component Part Number Supplier Cost

FPGA ZedBoard Borrowed N/A

IMU PmodNAV Digilent $45

Rangefinder URG-04LX Borrowed N/A

RS232 to TTL Converter MAX232CSE uxcell $7

RS232 Breakout Board Swellder DB9 VIKINS Tech $7

Stereo Cameras† MT9V034 Mouser $146

† Note that we originally planned to purchase a Flir Lepton thermal camera module and

accompanying breakout board to support two stereo OV7670 camera modules. After ex-

perimenting with the OV7670 camera module on our FPGA board, we realized that these

camera modules are highly limited due to their low frame rate and poor documentation,

and decided to search for a different camera module. In addition, at a price of $223 for a

thermal camera with an 80x60 degree resolution, 25 degree field of view, and 7-9Hz image

sample rate, we believed that we were much better off spending our money on better camera

modules that were more usable for our task. For more information see Section 4.8.1.
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B Camera Module Control Register

Table obtained from MT9V032 Datasheet [30]

103



C Stereo Camera Schematic
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D Code

D.i MT9V034 and Al422b Test Code

Top Module:

1 ‘timescale 1ns / 1ps

2 // //////////////////////////////////////////////////////////////////////

3 // Created by Georges Gauthier

4 // July 09 2016

5 // Test module for controlling the Leopardboard LI-VM34LP camera breakout

6 // /////////////////////////////////////////////////////////////////////

7 module mt9v034_top(

8 input sysclk , // 100MHz fpga clk

9 input reset , // oddr2 reset

10 input cam_rst , // button for camera RESET_BAR

11 input trigger , // button for camera trigger

12 input SW_cam_oe , // switch for camera output enable

13 input cam_LV , // line valid in from camera

14 output LOCKED , // oddr2 LOCKED led

15 output cam_sysclk , // sysclk out to camera

16 output cam_reset , // reset_bar out to camera

17 output cam_trigger , // trigger out to camera

18 output cam_oe , // output enable out to camera

19 output i2c_ready , // LED indicator for i2c bus ready

20 output [6:0] cathodes , // 7seg cathodes

21 output [3:0] anodes , // 7seg anodes

22 input MICRO_SW , // SW2 , used to trigger a new FIFO dump over UART from the

mcs

23 input mcs_reset , // Microblaze reset

24 output MICRO_LED0 , // LED used to indicate if mcs is reading from FIFO

25 input [7:0] FIFO_DATA , // DO[7:0] from AL422b fifo

26 output FIFO_WE , // Write enable to fifo (LV inverted)

27 output FIFO_OE , // read enable to fifo (active low)

28 output FIFO_RRST , // read reset to fifo (active low)

29 output FIFO_RCK , // rck to fifo (1MHz)

30 output UART_Tx // UART send pin from mcs

31 );

32

33 wire clk_20Hz_unbuf , clk_20Hz;

34 wire clk_10kHz;

35 wire clk_1MHz , clk_1MHz_unbuf;

36 wire clk_24MHz;

37 wire clk_100MHz;

38

39 // 24MHz clock for driving MT9V034 ’s SYSCLK

40 // 100mhz out for FIFO

41 // note you can ’t connect sysclk to a dcm and other things

42 dcm CLK_24MHz

43 (

44 .CLK_IN1(sysclk),

45 .CLK_OUT1(clk_100MHz),

46 .CLK_OUT2(clk_24MHz),

47 .RESET(reset),

48 .LOCKED(LOCKED)

49 );

50

51 // further divide the dcm clock to other freqs

52 clk_div clks(

53 .reset(reset), // synchronous reset

54 .clk_24M(clk_24MHz), // 24MHz camera SCLK

55 .clk_fifo(clk_1MHz_unbuf), // 1MHz FIFO RCK

56 .clk_debounce(clk_20Hz_unbuf), // 20Hz clock pulse for debouncing stuff

57 .anodes(clk_10kHz) // 10k 7Seg anode driver

58 );
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59

60 // clock buffer for 1MHz fifo rck

61 BUFG clk_1M (

62 .O(clk_1MHz),

63 .I(clk_1MHz_unbuf)

64 );

65 // clock buffer for 20Hz button debouncing

66 BUFG clk_20H (

67 .O(clk_20Hz),

68 .I(clk_20Hz_unbuf)

69 );

70

71 // forward the camera sysclk out using a dedicated clocking route

72 ODDR2 #(

73 .DDR_ALIGNMENT("NONE"), // Sets output alignment to "NONE", "C0" or "C1"

74 .INIT(1’b0), // Sets initial state of the Q output to 1’b0 or 1’b1

75 .SRTYPE("SYNC") // Specifies "SYNC" or "ASYNC" set/reset

76 ) clkfwd0 (

77 .Q(cam_sysclk), // 1-bit DDR output data

78 .C0(clk_24MHz), // 1-bit clock input

79 .C1(~ clk_24MHz), // 1-bit clock input

80 .CE(1’b1), // 1-bit clock enable input

81 .D0(1’b0), // 1-bit data input (associated with C0)

82 .D1(1’b1), // 1-bit data input (associated with C1)

83 .R(1’b0), // 1-bit reset input

84 .S(1’b0) // 1-bit set input

85 );

86

87 // forward the fifo read clk out using a dedicated clocking route

88 ODDR2 #(

89 .DDR_ALIGNMENT("NONE"), // Sets output alignment to "NONE", "C0" or "C1"

90 .INIT(1’b0), // Sets initial state of the Q output to 1’b0 or 1’b1

91 .SRTYPE("SYNC") // Specifies "SYNC" or "ASYNC" set/reset

92 ) clkfwd1 (

93 .Q(FIFO_RCK), // 1-bit DDR output data

94 .C0(clk_1MHz), // 1-bit clock input

95 .C1(~ clk_1MHz), // 1-bit clock input

96 .CE(1’b1), // 1-bit clock enable input

97 .D0(1’b0), // 1-bit data input (associated with C0)

98 .D1(1’b1), // 1-bit data input (associated with C1)

99 .R(1’b0), // 1-bit reset input

100 .S(1’b0) // 1-bit set input

101 );

102

103 // 7seg display controls

104 wire [15:0] displayVal;

105 seven_seg segs(

106 .values(displayVal), // values to be written to the four seven segment LEDs

107 .CLK(clk_24MHz), // 24MHz clock

108 .en(clk_10kHz), // 10kHz counter enable used for setting the segment refresh rate

109 .cathodes(cathodes),

110 .anodes(anodes)

111 );

112

113 // debounce trigger button input

114 debounce deb(

115 .clk(clk_20Hz),

116 .btn(trigger),

117 .btn_val(cam_trigger)

118 );

119

120 // debounce output enable switch

121 btnlatch sw_oe(

122 .clk(clk_20Hz),

123 .btn(SW_cam_oe),

124 .btn_val(cam_oe)

125 );

126
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127 // debounce the microblaze input sw

128 wire read_en;

129 btnlatch fifoRead_en(

130 .clk(clk_20Hz),

131 .btn(MICRO_SW),

132 .btn_val(read_en)

133 );

134

135 // camera initialization sequence

136 reg [11:0] init_count = 12’h000;

137 always @(posedge clk_24MHz) // cam sysclk before ODDR2

138 begin

139 if (cam_rst) // if cam_rst is pressed , redo the initialization sequence

140 init_count <= 12’h000;

141 else if(init_count < 2500) // keep cam_rst asserted for at least 20 cam_sysclk

cycles - I use 30 since it’s the minimum time for the i2c bus to be ready

142 init_count <= init_count + 1’b1;

143 end

144 assign cam_reset = (init_count >= 20);

145 assign i2c_ready = (init_count >= 30);

146

147 // assert/de-assert RE and WE ~0.1mS after power on

148 wire fifo_rden;

149 assign FIFO_OE = fifo_rden;

150 assign FIFO_WE = ~cam_LV;

151

152 // Microblaze MCS for reading from local buffer/Tx over UART

153 wire fifo_read_en , fifo_reset; // tell fpga to put new data in the FIFO

154 wire [7:0] pixelVal; // value of a camera pixel from fpga line buffer -> microblaze

155 wire [9:0] pixelPos; // pixel position (0 -751) on a line , from microblaze -> fpga line

buffer

156 microblaze_mcs mcs_0 (

157 .Clk(clk_100MHz), // input Clk

158 .Reset(mcs_reset), // input Reset

159 .UART_Tx(UART_Tx), // output UART_Tx

160 .GPO1({ fifo_read_en ,

161 fifo_reset ,

162 MICRO_LED0 }), // output [3 : 0] GPO1

163 .GPO2(pixelPos),

164 .GPI1(pixelVal), // pixel data from FIFO/FPGA buffer

165 .GPI2({read_en ,mcs_read_en }) // sw1

166 );

167

168 // Buffer for storing a line of pixels from the FIFO

169 fifo_read linebuf(

170 .reset_pointer(fifo_reset),

171 .get_data(fifo_read_en), // from microblaze (sent to trigger new read from FIFO to

FPGA buffer)

172 .pixel_addr(pixelPos), // from microblaze , 0-751

173 .fifo_data(FIFO_DATA), // 8 bit data in from fifo

174 .fifo_rck(clk_1MHz), // 1MHz clock signal generated by FPGA

175 .fifo_rrst(FIFO_RRST), // fifo read reset (reset read addr pointer to 0)

176 .fifo_oe(fifo_rden), // fifo output enable (allow for addr pointer to increment)

177 .buffer_ready(mcs_read_en),

178 .pixel_value(pixelVal), // 8-bit pixel value from internal buffer

179 .current_line(displayVal)

180 );

181

182 endmodule

Local Data Buffer:

1 ‘timescale 1ns / 1ps

2 // //////////////////////////////////////////////////////////////////////

3 // Module for reading from the AL422b FIFO and storing pixel line data in a

4 // local buffer.
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5 // //////////////////////////////////////////////////////////////////////

6 module fifo_read(

7 input reset_pointer , // from microblaze , signal to assert fifo_rrst

8 input get_data , // from microblaze (sent to trigger new read from FIFO to FPGA

buffer)

9 input [9:0] pixel_addr , // from microblaze , 0-751

10 input [7:0] fifo_data , // 8 bit data in from fifo

11 input fifo_rck , // 1MHz clock signal generated by FPGA

12 output reg fifo_rrst , // fifo read reset (reset read addr pointer to 0)

13 output reg fifo_oe , // fifo output enable (allow for addr pointer to increment)

14 output reg buffer_ready , // to microblaze , signal that buffer is ready to read from

15 output [7:0] pixel_value , // 8-bit value from internal buffer

16 output [15:0] current_line // value to seven segment displays

17 );

18

19 parameter [1:0] ready = 2’b00;

20 parameter [1:0] read = 2’b01;

21 parameter [1:0] done = 2’b10;

22 parameter [1:0] init = 2’b11;

23

24 reg [1:0] state = ready;

25 reg [1:0] prev_state , next_state = ready;

26

27 reg [7:0] pixel_line [0:751]; // implemented in BRAM

28 reg [9:0] pixel = 10’ b00_0000_0000;

29 reg [15:0] num_lines = 16’h0000;

30

31 always @(posedge fifo_rck)

32 state <= next_state;

33

34 always @(state ,get_data ,pixel)

35 case(state)

36 ready:

37 begin

38 if(get_data)

39 next_state = init;

40 else

41 next_state = ready;

42

43 prev_state = ready;

44 end

45 init:

46 begin

47 next_state = read;

48 prev_state = init;

49 end

50 read:

51 begin

52 if(pixel == 751)

53 next_state = done;

54 else

55 next_state = read;

56

57 prev_state = read;

58 end

59 done:

60 begin

61 next_state = ready;

62 prev_state = done;

63 end

64 endcase

65

66 always @(posedge fifo_rck)

67 begin

68 if(reset_pointer)

69 begin

70 fifo_rrst <= 1’b0;

71 num_lines <= 16’h0000;
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72 end

73 else if(state==ready) // allow for MCS to read from pixel_line

74 begin

75 // pixel_value [7:0] <= pixel_line[pixel_addr ];

76 fifo_rrst <= 1’b1; // make sure read addr doesn ’t get reset

77 end

78 else if(state == init) // prepare to read new data from the AL422 into

pixel_line

79 begin

80 pixel <= 10’ b00_0000_000;

81 num_lines <= num_lines + 1’b1;

82 buffer_ready <= 1’b0;

83 fifo_oe <= 1’b0; // allow for read pointer to increment

84 end

85 else if(state == read) // read data in from the AL422

86 begin

87 if(next_state == done)

88 fifo_oe <= 1’b1; // turn off read enable

89 if(prev_state != init) // one cycle delay between init and valid

data

90 begin

91 pixel_line[pixel] <= fifo_data;

92 pixel <= pixel + 1’b1;

93 end

94 end

95 else if(state == done)

96 begin

97 buffer_ready <= 1’b1;

98 end

99 end

100

101 // display number of lines written on 7seg display

102 assign current_line = (num_lines);

103 // allow for MCS to read stored pixel line at given addr if state ==ready

104 assign pixel_value [7:0] = pixel_line[pixel_addr ];

105

106 endmodule

MicroBlaze Code:

1 /*

2 * Source code for printing values from the AL422B FIFO / FPGA Buffer over UART

3 */

4

5 #include <stdio.h>

6 #include "platform.h"

7 #include "xparameters.h"

8 #include "xiomodule.h"

9

10 // GPO1

11 #define GETDATA (1<<2) // load a new line of pixels into the FPGA buffer

12 #define RRST (1<<1) // reset to address 0

13 #define LED (1<<0) // LED indicator

14 // GPI2

15 #define SW_READ (1<<1)

16 #define BUF_READY (1<<0)

17

18 void print(char *str);

19 void _EXFUN(xil_printf , (const char*, ...));

20

21

22 int main()

23 {

24 init_platform ();

25 int pixel_position = 0,row = 0;;

26 u8 data=0x00 ,GPO1=0x00 ,GPI2=0x00 ,swState =0x00 ,prevState =0x00;

109



27

28 XIOModule gpi;

29 XIOModule gpo;

30

31 // GPI1 = pixel_value (7:0)

32 XIOModule_Initialize (&gpi , XPAR_IOMODULE_0_DEVICE_ID);

33 XIOModule_Start (&gpi);

34

35 // GPO1 = (GETDATA)|(RRST)|(LED)

36 XIOModule_Initialize (&gpo , XPAR_IOMODULE_0_DEVICE_ID);

37 XIOModule_Start (&gpo);

38

39 print("\n\rMT9V034 controller and AL422B FIFO reader\n\r");

40 while (1)

41 {

42 // get switch position

43 GPI2 = XIOModule_DiscreteRead (&gpi ,2);

44

45 if((GPI2&SW_READ)!=0){

46 swState = 1;

47 if (row >= 480) GPO1 &=~( LED);

48 else GPO1 |= LED;

49 GPO1 &=~( RRST|GETDATA);

50 XIOModule_DiscreteWrite (&gpo ,1,GPO1);

51 }else{

52 GPO1 &= ~(RRST|LED|GETDATA);

53 XIOModule_DiscreteWrite (&gpo ,1,GPO1);

54 row = 0;

55 swState = 0;

56 }

57

58 // code below runs only once based on SW state change

59 if (prevState != swState){

60 if(swState){

61 print("\n\rReading from FIFO ...\n\r");

62

63 GPO1 |= (RRST); // reset FIFO position to 0th index

64 GPO1 &=~ (GETDATA); // make sure we’re not trying to read data

65 XIOModule_DiscreteWrite (&gpo ,1,GPO1);

66 pixel_position = 0;

67 GPO1 &=~( RRST);

68 XIOModule_DiscreteWrite (&gpo ,1,GPO1);

69 GPO1 |= (GETDATA); // make sure we’re not trying to read data

70 XIOModule_DiscreteWrite (&gpo ,1,GPO1);

71

72 u32 pixelsRead = 0;

73

74 while(row <480){

75 // make sure read_sw hasn’t been turned off

76 GPI2 = XIOModule_DiscreteRead (&gpi ,2);

77 if ((GPI2&SW_READ)==0) break;

78

79 u8 i=0;

80 // check to see if BUF_READY is good to go

81 GPI2 = XIOModule_DiscreteRead (&gpi ,2);

82 // wait until it is

83 while((GPI2&BUF_READY)==0){

84 if(i==0){

85 i++;

86 //print ("\n\t buffer not ready \n\r");

87 }

88 GPI2 = XIOModule_DiscreteRead (&gpi ,2);

89 }

90 GPO1 &=~ (GETDATA); // make sure we’re not trying to read data

91 XIOModule_DiscreteWrite (&gpo ,1,GPO1);

92

93 while (pixel_position < 752){

94 // update pixel position for FPGA buffer
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95 XIOModule_DiscreteWrite (&gpo ,2, pixel_position);

96

97 // make sure read_sw hasn’t been turned off

98 GPI2 = XIOModule_DiscreteRead (&gpi ,2);

99 if ((GPI2&SW_READ)==0) break;

100

101 // read value at pixel position from FPGA buffer

102 data = XIOModule_DiscreteRead (&gpi ,1);

103

104 //print the value

105 xil_printf("%d\n\r",data);

106

107 // increment to the next pixel position

108 pixel_position ++;

109 pixelsRead ++;

110 }

111 // signal to the FPGA that we want more data!

112 GPO1 |= (GETDATA);

113 XIOModule_DiscreteWrite (&gpo ,1,GPO1);

114 pixel_position = 0;

115 row ++;

116 // xil_printf ("Row: %d",row);

117

118 }

119 // xil_printf ("%d Pixels Read by MCS",pixelsRead);

120 } else {

121 GPO1 &=~( GETDATA);

122 GPO1 |= RRST;

123 XIOModule_DiscreteWrite (&gpo ,1,GPO1);

124 print("\n\rReset for new sequence\n\r");

125 }

126 }

127

128 prevState = swState; // update prev switch position

129 }

130 cleanup_platform ();

131 return 0;

132 }

Matlab Image Parser:

1 % Camera data parser - reads .log files from PuTTy for MT9V034 test

2 % Created by Georges Gauthier - 20 July 2016

3 clear all;

4 close all;

5

6 % prompt for a logfile; open selected file for reading

7 FILENAME = uigetfile(’*.log’,’multiselect ’,’off’);

8 fprintf(’File %s selected\n\r’,FILENAME);

9 fid = fopen(FILENAME ,’r’);

10

11 image = zeros (480 ,752); % empty matrix that will hold final image

12 XPOS = 1; % current pixel X position

13 YPOS = 1; % current pixel Y position

14 LINENUM = 1; % number of pixels iterated through

15 ERRNUM = 0; % number of invalid pixels (happens when Tx is set too fast)

16

17 h = waitbar(0,’Parsing image ...’); % show a loading bar

18 c = fgetl(fid); % get rid of 1st line

19

20 while 1 % iterate through the log file

21 c = fgetl(fid); % get the next line of the file

22 if ~ischar(c), break , end

23 if length(c) > 0 % if the given line contains valid data ...

24 image(YPOS ,XPOS) = str2num(c)/255; % ... store it as a pixel val

25 else % otherwise , throw an error
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26 ERRNUM = ERRNUM + 1;

27 fprintf(’Error #%d: Line %d contains no data\n\r’,ERRNUM ,LINENUM)

28 end

29 if XPOS <752 % update pixel x position

30 XPOS = XPOS + 1;

31 else % update pixel y position

32 XPOS = 1;

33 YPOS = YPOS + 1;

34 end

35 if mod(LINENUM ,36096) ==0 % update the loading bar every so often

36 waitbar(LINENUM /360000);

37 end

38 LINENUM = LINENUM + 1; % current line in file (for debug)

39 end

40

41 % display the image ...

42 figure , imshow(image);

43 % ... also save the image to a file , overwrite if already saved

44 [path ,name ,ext] = fileparts(FILENAME);

45 imgname = strcat(name ,’.png’);

46 if (exist(imgname , ’file’) == 2)

47 fprintf(’File for image already exists ... overwriting it\n\r’)

48 delete(imgname);

49 end

50 saveas(gcf ,imgname);

51 fprintf(’Saved figure to image %s\n\r’,imgname);

52

53 % close the file and waitbar before exit

54 fclose(fid);

55 close(h)

112



D.ii Matlab Disparity Algorithm Implementation

1 % The following code was adapted from a Mathworks example available here:

2 % http ://www.mathworks.com/help/vision/examples/stereo -vision.html

3 %

4 % Original Revision by Chris McCormick

5 % http :// mccormickml.com /2014/01/10/ stereo -vision -tutorial -part -i/

6 %

7 % Modified by Georges Gauthier - glgauthier@wpi.edu

8 %

9 % This script will compute the disparity map for the image ’right.png ’ by

10 % correlating it to ’left.png ’ using basic block matching

11

12 clear all;

13 close all;

14

15 % Set to 1 to use ’Cones ’ Dataset

16 % Set to 0 to use your own image data (lines 26 -29)

17 EXAMPLE_DATA = 1;

18

19 % Load the stereo images.

20 if (EXAMPLE_DATA == 0)

21 load(’I1Rect.mat’);

22 leftI = I1Rect;

23 load(’I2Rect.mat’);

24 rightI = I2Rect;

25 else

26 left = imread(’left.png’);

27 right = imread(’right.png’);

28 leftI = mean(left , 3);

29 rightI = mean(right , 3);

30 end

31

32 % DbasicSubpixel will hold the result of the block matching.

33 DbasicSubpixel = zeros(size(leftI), ’single ’);

34

35 % The disparity range defines how many pixels away from the block ’s location

36 % in the first image to search for a matching block in the other image.

37 % 50 appears to be a good value for the 450 x375 images from the "Cones"

38 % dataset.

39 disparityRange = 50;

40

41 % Define the size of the blocks for block matching.

42 halfBlockSize = 5;

43 blockSize = 2 * halfBlockSize + 1;

44

45 % Get the image dimensions.

46 [imgHeight , imgWidth] = size(leftI);

47

48 % Create a progress bar

49 h = waitbar(0,’Loading ...’);

50

51 % For each column ’m’ of pixels in the image ...

52 for (m = 1 : imgHeight)

53

54 % Set min/max row bounds for the template and blocks.

55 % e.g., for the first row , minr = 1 and maxr = 4

56 minr = max(1, m - halfBlockSize);

57 maxr = min(imgHeight , m + halfBlockSize);

58

59 % For each row ’n’ of pixels in the image ...

60 for (n = 1 : imgWidth)

61

62 % Set the min/max column bounds for the template.

63 % e.g., for the first column , minc = 1 and maxc = 4

64 minc = max(1, n - halfBlockSize);
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65 maxc = min(imgWidth , n + halfBlockSize);

66

67 % Define the search boundaries as offsets from the template location.

68 % Limit the search so that we don ’t go outside of the image.

69 % ’mind ’ is the the maximum number of pixels we can search to the left.

70 % ’maxd ’ is the maximum number of pixels we can search to the right.

71 %

72 % In the "Cones" dataset , we only need to search to the right , so mind

73 % is 0.

74 %

75 % For other images which require searching in both directions , set mind

76 % as follows:

77 % mind = max(-disparityRange , 1 - minc);

78 mind = 0;

79 maxd = min(disparityRange , imgWidth - maxc);

80

81 % Select the block from the right image to use as the template.

82 template = rightI(minr:maxr , minc:maxc);

83

84 % Get the number of blocks in this search.

85 numBlocks = maxd - mind + 1;

86

87 % Create a vector to hold the block differences.

88 blockDiffs = zeros(numBlocks , 1);

89

90 % Calculate the difference between the template and each of the blocks.

91 for (i = mind : maxd)

92

93 % Select the block from the left image at the distance ’i’.

94 block = leftI(minr:maxr , (minc + i):(maxc + i));

95

96 % Compute the 1-based index of this block into the ’blockDiffs ’ vector.

97 blockIndex = i - mind + 1;

98

99 % Take the sum of absolute differences (SAD) between the template

100 % and the block and store the resulting value.

101 blockDiffs(blockIndex , 1) = sum(sum(abs(template - block)));

102 end

103

104 % Sort the SAD values to find the closest match (smallest difference).

105 % Discard the sorted vector (the "~" notation), we just want the list

106 % of indices.

107 [temp , sortedIndeces] = sort(blockDiffs);

108

109 % Get the 1-based index of the closest -matching block.

110 bestMatchIndex = sortedIndeces (1, 1);

111

112 % Convert the 1-based index of this block back into an offset.

113 % This is the final disparity value produced by basic block matching.

114 d = bestMatchIndex + mind - 1;

115

116 % Store the calculated disparity value in the resultant img matrix

117 DbasicSubpixel(m, n) = d;

118 end

119

120 % Update progress bar every 5th row.

121 if (mod(m, 5) == 0)

122 str = sprintf(’ Image Row %d / %d (%.0f%%)\n’, m, imgHeight , (m / imgHeight) * 100)

;

123 waitbar(m/imgHeight ,h,str)

124 end

125

126 end

127

128 % close the progress bar

129 close(h);

130

131 % Display the disparity map.

114



132 % Passing an empty matrix as the second argument tells imshow to take the

133 % minimum and maximum values of the data and map the data range to the

134 % display colors.

135 figure , imshow(DbasicSubpixel , []);

136 axis image;

137 colorbar;

138

139 % Specify the minimum and maximum values in the disparity map so that the

140 % values can be properly mapped into the full range of colors.

141 % If you have negative disparity values , this will clip them to 0.

142 caxis ([0 disparityRange ]);

143

144 % Set the title to display.

145 title(strcat(’SAD Block Matching: ’,num2str(blockSize),’x’ ,...

146 num2str(blockSize),’ Block , ’,num2str(disparityRange),’px Search Range’));

147

148 % plot both images in a final output graph

149 figure ,

150 if (EXAMPLE_DATA == 0)

151 subplot (1,3,1), imshow(leftI)

152 title(’Left Input Image ’)

153 subplot (1,3,3), imshow(rightI)

154 else

155 subplot (1,3,1), imshow(left)

156 title(’Left Input Image ’)

157 subplot (1,3,3), imshow(right)

158 end

159 title(’Right Input Image’)

160 subplot (1,3,2), imshow(DbasicSubpixel ,[])

161 title(strcat(’SAD Block Matching: ’,num2str(blockSize),’x’ ,...

162 num2str(blockSize),’ Block , ’,num2str(disparityRange),’px Search Range’));
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D.iii Custom IP

Top Module:

1

2 ‘timescale 1 ns / 1 ps

3

4 module custom_logic_v1_0 #

5 (

6 // Users to add parameters here

7

8 // User parameters ends

9 // Do not modify the parameters beyond this line

10

11

12 // Parameters of Axi Slave Bus Interface S00_AXI

13 parameter integer C_S00_AXI_DATA_WIDTH = 32,

14 parameter integer C_S00_AXI_ADDR_WIDTH = 4

15 )

16 (

17 // Users to add ports here

18

19 // physical pins

20 input wire fpga_clk ,

21 input wire reset ,

22 input wire button ,

23 input wire [7:0] sw ,

24 output wire [7:0] leds ,

25 output wire hsync ,

26 output wire vsync ,

27 output wire [11:0] rgb ,

28

29 // cameras

30 input wire cam_rst , // button for camera RESET_BAR

31 output wire cam_sysclk , // sysclk out to camera

32 output wire cam_reset , // reset_bar out to camera

33 output wire cam_trigger , // trigger out to camera

34 input wire [7:0] FIFO_DATA , // DO [7:0] from AL422b fifo

35 output wire FIFO_OE1 , // read enable to fifo (active low)

36 output wire FIFO_RRST1 , // read reset to fifo (active low)

37 output wire FIFO_OE2 , // read enable to fifo (active low)

38 output wire FIFO_RRST2 , // read reset to fifo (active low)

39 output wire FIFO_RCK , // rck to fifo (1MHz)

40

41 // rangefinder BRAM

42 output wire [7:0] addra1 ,

43 input wire [12:0] coord1_data ,

44 output wire clk_100M ,

45 output wire [7:0] addra2 ,

46 input wire [12:0] coord2_data ,

47 // output wire clk_100M2 ,

48

49 //vga map BRAM

50 output wire [18:0] vga_waddr ,

51 // output wire clk_100M3 ,

52 output wire [7:0] dina ,

53 output wire ena ,

54 output wire wea ,

55

56 output wire [18:0] vga_raddr ,

57 output wire clk_25M ,

58 input wire [7:0] x_vga ,

59 output wire enb ,

60

61 // User ports ends

62 // Do not modify the ports beyond this line
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63

64 // Ports of Axi Slave Bus Interface S00_AXI

65 input wire s00_axi_aclk ,

66 input wire s00_axi_aresetn ,

67 input wire [C_S00_AXI_ADDR_WIDTH -1 : 0] s00_axi_awaddr ,

68 input wire [2 : 0] s00_axi_awprot ,

69 input wire s00_axi_awvalid ,

70 output wire s00_axi_awready ,

71 input wire [C_S00_AXI_DATA_WIDTH -1 : 0] s00_axi_wdata ,

72 input wire [( C_S00_AXI_DATA_WIDTH /8) -1 : 0] s00_axi_wstrb ,

73 input wire s00_axi_wvalid ,

74 output wire s00_axi_wready ,

75 output wire [1 : 0] s00_axi_bresp ,

76 output wire s00_axi_bvalid ,

77 input wire s00_axi_bready ,

78 input wire [C_S00_AXI_ADDR_WIDTH -1 : 0] s00_axi_araddr ,

79 input wire [2 : 0] s00_axi_arprot ,

80 input wire s00_axi_arvalid ,

81 output wire s00_axi_arready ,

82 output wire [C_S00_AXI_DATA_WIDTH -1 : 0] s00_axi_rdata ,

83 output wire [1 : 0] s00_axi_rresp ,

84 output wire s00_axi_rvalid ,

85 input wire s00_axi_rready

86 );

87

88 // processing system

89 wire [27:0] data_enable_step;

90 wire transmit;

91

92 // Instantiation of Axi Bus Interface S00_AXI

93 custom_logic_v1_0_S00_AXI # (

94 .C_S_AXI_DATA_WIDTH(C_S00_AXI_DATA_WIDTH),

95 .C_S_AXI_ADDR_WIDTH(C_S00_AXI_ADDR_WIDTH)

96 ) custom_logic_v1_0_S00_AXI_inst (

97 .data_enable_step(data_enable_step),

98 .transmit(transmit),

99 .S_AXI_ACLK(s00_axi_aclk),

100 .S_AXI_ARESETN(s00_axi_aresetn),

101 .S_AXI_AWADDR(s00_axi_awaddr),

102 .S_AXI_AWPROT(s00_axi_awprot),

103 .S_AXI_AWVALID(s00_axi_awvalid),

104 .S_AXI_AWREADY(s00_axi_awready),

105 .S_AXI_WDATA(s00_axi_wdata),

106 .S_AXI_WSTRB(s00_axi_wstrb),

107 .S_AXI_WVALID(s00_axi_wvalid),

108 .S_AXI_WREADY(s00_axi_wready),

109 .S_AXI_BRESP(s00_axi_bresp),

110 .S_AXI_BVALID(s00_axi_bvalid),

111 .S_AXI_BREADY(s00_axi_bready),

112 .S_AXI_ARADDR(s00_axi_araddr),

113 .S_AXI_ARPROT(s00_axi_arprot),

114 .S_AXI_ARVALID(s00_axi_arvalid),

115 .S_AXI_ARREADY(s00_axi_arready),

116 .S_AXI_RDATA(s00_axi_rdata),

117 .S_AXI_RRESP(s00_axi_rresp),

118 .S_AXI_RVALID(s00_axi_rvalid),

119 .S_AXI_RREADY(s00_axi_rready)

120 );

121

122 // Add user logic here

123

124 mqp_top mqp_top

125 (

126 // physical pins

127 .fpga_clk(fpga_clk),

128 .reset(reset),

129 .button(button),

130 .sw(sw),
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131 .leds(leds),

132 .hsync(hsync),

133 .vsync(vsync),

134 .rgb(rgb),

135

136 // cameras

137 .cam_rst(cam_rst), // button for camera RESET_BAR

138 .cam_sysclk(cam_sysclk), // sysclk out to camera

139 .cam_reset(cam_reset), // reset_bar out to camera

140 .cam_trigger(cam_trigger), // trigger out to camera

141 .FIFO_DATA(FIFO_DATA), // DO[7:0] from AL422b fifo

142 .FIFO_OE1(FIFO_OE1), // read enable to fifo (active low)

143 .FIFO_RRST1(FIFO_RRST1), // read reset to fifo (active low)

144 .FIFO_OE2(FIFO_OE2), // read enable to fifo (active low)

145 .FIFO_RRST2(FIFO_RRST2), // read reset to fifo (active low)

146 .FIFO_RCK(FIFO_RCK), // rck to fifo (1MHz)

147

148 // processing system

149 .data_enable_step(data_enable_step),

150 .transmit(transmit),

151

152 // rangefinder BRAM controllers

153 .addra1(addra1),

154 .coord1_data(coord1_data),

155 .clk_100M(clk_100M),

156 .addra2(addra2),

157 .coord2_data(coord2_data),

158 //.clk_100M2(clk_100M2),

159

160 //vga BRAM controller

161 .vga_waddr(vga_waddr),

162 //.clk_100M3(clk_100M3),

163 .dina(dina),

164 .ena(ena),

165 .wea(wea),

166 .vga_raddr(vga_raddr), // check size on this

167 .clk_25M(clk_25M),

168 .x_vga(x_vga),

169 .enb(enb)

170 );

171

172 // User logic ends

173

174 endmodule

AXI Interface:

1

2 ‘timescale 1 ns / 1 ps

3

4 module custom_logic_v1_0_S00_AXI #

5 (

6 // Users to add parameters here

7

8 // User parameters ends

9 // Do not modify the parameters beyond this line

10

11 // Width of S_AXI data bus

12 parameter integer C_S_AXI_DATA_WIDTH = 32,

13 // Width of S_AXI address bus

14 parameter integer C_S_AXI_ADDR_WIDTH = 4

15 )

16 (

17 // Users to add ports here

18 output reg [27:0] data_enable_step ,

19 input wire transmit ,
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20 // User ports ends

21 // Do not modify the ports beyond this line

22

23 // Global Clock Signal

24 input wire S_AXI_ACLK ,

25 // Global Reset Signal. This Signal is Active LOW

26 input wire S_AXI_ARESETN ,

27 // Write address (issued by master , acceped by Slave)

28 input wire [C_S_AXI_ADDR_WIDTH -1 : 0] S_AXI_AWADDR ,

29 // Write channel Protection type. This signal indicates the

30 // privilege and security level of the transaction , and whether

31 // the transaction is a data access or an instruction access.

32 input wire [2 : 0] S_AXI_AWPROT ,

33 // Write address valid. This signal indicates that the master signaling

34 // valid write address and control information.

35 input wire S_AXI_AWVALID ,

36 // Write address ready. This signal indicates that the slave is ready

37 // to accept an address and associated control signals.

38 output wire S_AXI_AWREADY ,

39 // Write data (issued by master , acceped by Slave)

40 input wire [C_S_AXI_DATA_WIDTH -1 : 0] S_AXI_WDATA ,

41 // Write strobes. This signal indicates which byte lanes hold

42 // valid data. There is one write strobe bit for each eight

43 // bits of the write data bus.

44 input wire [( C_S_AXI_DATA_WIDTH /8) -1 : 0] S_AXI_WSTRB ,

45 // Write valid. This signal indicates that valid write

46 // data and strobes are available.

47 input wire S_AXI_WVALID ,

48 // Write ready. This signal indicates that the slave

49 // can accept the write data.

50 output wire S_AXI_WREADY ,

51 // Write response. This signal indicates the status

52 // of the write transaction.

53 output wire [1 : 0] S_AXI_BRESP ,

54 // Write response valid. This signal indicates that the channel

55 // is signaling a valid write response.

56 output wire S_AXI_BVALID ,

57 // Response ready. This signal indicates that the master

58 // can accept a write response.

59 input wire S_AXI_BREADY ,

60 // Read address (issued by master , acceped by Slave)

61 input wire [C_S_AXI_ADDR_WIDTH -1 : 0] S_AXI_ARADDR ,

62 // Protection type. This signal indicates the privilege

63 // and security level of the transaction , and whether the

64 // transaction is a data access or an instruction access.

65 input wire [2 : 0] S_AXI_ARPROT ,

66 // Read address valid. This signal indicates that the channel

67 // is signaling valid read address and control information.

68 input wire S_AXI_ARVALID ,

69 // Read address ready. This signal indicates that the slave is

70 // ready to accept an address and associated control signals.

71 output wire S_AXI_ARREADY ,

72 // Read data (issued by slave)

73 output wire [C_S_AXI_DATA_WIDTH -1 : 0] S_AXI_RDATA ,

74 // Read response. This signal indicates the status of the

75 // read transfer.

76 output wire [1 : 0] S_AXI_RRESP ,

77 // Read valid. This signal indicates that the channel is

78 // signaling the required read data.

79 output wire S_AXI_RVALID ,

80 // Read ready. This signal indicates that the master can

81 // accept the read data and response information.

82 input wire S_AXI_RREADY

83 );

84

85 reg [31:0] extra_data_enable_step;

86

87 // AXI4LITE signals

119



88 reg [C_S_AXI_ADDR_WIDTH -1 : 0] axi_awaddr;

89 reg axi_awready;

90 reg axi_wready;

91 reg [1 : 0] axi_bresp;

92 reg axi_bvalid;

93 reg [C_S_AXI_ADDR_WIDTH -1 : 0] axi_araddr;

94 reg axi_arready;

95 reg [C_S_AXI_DATA_WIDTH -1 : 0] axi_rdata;

96 reg [1 : 0] axi_rresp;

97 reg axi_rvalid;

98

99 // Example -specific design signals

100 // local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH

101 // ADDR_LSB is used for addressing 32/64 bit registers/memories

102 // ADDR_LSB = 2 for 32 bits (n downto 2)

103 // ADDR_LSB = 3 for 64 bits (n downto 3)

104 localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH /32) + 1;

105 localparam integer OPT_MEM_ADDR_BITS = 1;

106 // ----------------------------------------------

107 //-- Signals for user logic register space example

108 // ------------------------------------------------

109 //-- Number of Slave Registers 4

110 reg [C_S_AXI_DATA_WIDTH -1:0] slv_reg0;

111 reg [C_S_AXI_DATA_WIDTH -1:0] slv_reg1;

112 reg [C_S_AXI_DATA_WIDTH -1:0] slv_reg2;

113 reg [C_S_AXI_DATA_WIDTH -1:0] slv_reg3;

114 wire slv_reg_rden;

115 wire slv_reg_wren;

116 reg [C_S_AXI_DATA_WIDTH -1:0] reg_data_out;

117 integer byte_index;

118

119 // I/O Connections assignments

120

121 assign S_AXI_AWREADY = axi_awready;

122 assign S_AXI_WREADY = axi_wready;

123 assign S_AXI_BRESP = axi_bresp;

124 assign S_AXI_BVALID = axi_bvalid;

125 assign S_AXI_ARREADY = axi_arready;

126 assign S_AXI_RDATA = axi_rdata;

127 assign S_AXI_RRESP = axi_rresp;

128 assign S_AXI_RVALID = axi_rvalid;

129 // Implement axi_awready generation

130 // axi_awready is asserted for one S_AXI_ACLK clock cycle when both

131 // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is

132 // de -asserted when reset is low.

133

134 always @( posedge S_AXI_ACLK )

135 begin

136 if ( S_AXI_ARESETN == 1’b0 )

137 begin

138 axi_awready <= 1’b0;

139 end

140 else

141 begin

142 if (~ axi_awready && S_AXI_AWVALID && S_AXI_WVALID)

143 begin

144 // slave is ready to accept write address when

145 // there is a valid write address and write data

146 // on the write address and data bus. This design

147 // expects no outstanding transactions.

148 axi_awready <= 1’b1;

149 end

150 else

151 begin

152 axi_awready <= 1’b0;

153 end

154 end

155 end
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156

157 // Implement axi_awaddr latching

158 // This process is used to latch the address when both

159 // S_AXI_AWVALID and S_AXI_WVALID are valid.

160

161 always @( posedge S_AXI_ACLK )

162 begin

163 if ( S_AXI_ARESETN == 1’b0 )

164 begin

165 axi_awaddr <= 0;

166 end

167 else

168 begin

169 if (~ axi_awready && S_AXI_AWVALID && S_AXI_WVALID)

170 begin

171 // Write Address latching

172 axi_awaddr <= S_AXI_AWADDR;

173 end

174 end

175 end

176

177 // Implement axi_wready generation

178 // axi_wready is asserted for one S_AXI_ACLK clock cycle when both

179 // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is

180 // de -asserted when reset is low.

181

182 always @( posedge S_AXI_ACLK )

183 begin

184 if ( S_AXI_ARESETN == 1’b0 )

185 begin

186 axi_wready <= 1’b0;

187 end

188 else

189 begin

190 if (~ axi_wready && S_AXI_WVALID && S_AXI_AWVALID)

191 begin

192 // slave is ready to accept write data when

193 // there is a valid write address and write data

194 // on the write address and data bus. This design

195 // expects no outstanding transactions.

196 axi_wready <= 1’b1;

197 end

198 else

199 begin

200 axi_wready <= 1’b0;

201 end

202 end

203 end

204

205 // Implement memory mapped register select and write logic generation

206 // The write data is accepted and written to memory mapped registers when

207 // axi_awready , S_AXI_WVALID , axi_wready and S_AXI_WVALID are asserted. Write

strobes are used to

208 // select byte enables of slave registers while writing.

209 // These registers are cleared when reset (active low) is applied.

210 // Slave register write enable is asserted when valid address and data are available

211 // and the slave is ready to accept the write address and write data.

212 assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;

213

214 always @( posedge S_AXI_ACLK )

215 begin

216 if ( S_AXI_ARESETN == 1’b0 )

217 begin

218 slv_reg0 <= 0;

219 slv_reg1 <= 0;

220 slv_reg2 <= 0;

221 slv_reg3 <= 0;

222 end
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223 else begin

224 if (slv_reg_wren)

225 begin

226 case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )

227 2’h0:

228 for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH /8) -1; byte_index

= byte_index +1 )

229 if ( S_AXI_WSTRB[byte_index] == 1 ) begin

230 // Respective byte enables are asserted as per write strobes

231 // Slave register 0

232 slv_reg0 [( byte_index *8) +: 8] <= S_AXI_WDATA [( byte_index *8) +: 8];

233 end

234 2’h1:

235 for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH /8) -1; byte_index

= byte_index +1 )

236 if ( S_AXI_WSTRB[byte_index] == 1 ) begin

237 // Respective byte enables are asserted as per write strobes

238 // Slave register 1

239 extra_data_enable_step [( byte_index *8) +: 8] <= S_AXI_WDATA [(

byte_index *8) +: 8];

240 end

241 2’h2:

242 for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH /8) -1; byte_index

= byte_index +1 )

243 if ( S_AXI_WSTRB[byte_index] == 1 ) begin

244 // Respective byte enables are asserted as per write strobes

245 // Slave register 2

246 slv_reg2 [( byte_index *8) +: 8] <= S_AXI_WDATA [( byte_index *8) +: 8];

247 end

248 2’h3:

249 for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH /8) -1; byte_index

= byte_index +1 )

250 if ( S_AXI_WSTRB[byte_index] == 1 ) begin

251 // Respective byte enables are asserted as per write strobes

252 // Slave register 3

253 slv_reg3 [( byte_index *8) +: 8] <= S_AXI_WDATA [( byte_index *8) +: 8];

254 end

255 default : begin

256 slv_reg0 <= slv_reg0;

257 slv_reg1 <= slv_reg1;

258 slv_reg2 <= slv_reg2;

259 slv_reg3 <= slv_reg3;

260 end

261 endcase

262 end

263 end

264 end

265

266 // Implement write response logic generation

267 // The write response and response valid signals are asserted by the slave

268 // when axi_wready , S_AXI_WVALID , axi_wready and S_AXI_WVALID are asserted.

269 // This marks the acceptance of address and indicates the status of

270 // write transaction.

271

272 always @( posedge S_AXI_ACLK )

273 begin

274 if ( S_AXI_ARESETN == 1’b0 )

275 begin

276 axi_bvalid <= 0;

277 axi_bresp <= 2’b0;

278 end

279 else

280 begin

281 if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)

282 begin

283 // indicates a valid write response is available

284 axi_bvalid <= 1’b1;

285 axi_bresp <= 2’b0; // ’OKAY ’ response
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286 end // work error responses in future

287 else

288 begin

289 if (S_AXI_BREADY && axi_bvalid)

290 //check if bready is asserted while bvalid is high)

291 //(there is a possibility that bready is always asserted high)

292 begin

293 axi_bvalid <= 1’b0;

294 end

295 end

296 end

297 end

298

299 // Implement axi_arready generation

300 // axi_arready is asserted for one S_AXI_ACLK clock cycle when

301 // S_AXI_ARVALID is asserted. axi_awready is

302 // de -asserted when reset (active low) is asserted.

303 // The read address is also latched when S_AXI_ARVALID is

304 // asserted. axi_araddr is reset to zero on reset assertion.

305

306 always @( posedge S_AXI_ACLK )

307 begin

308 if ( S_AXI_ARESETN == 1’b0 )

309 begin

310 axi_arready <= 1’b0;

311 axi_araddr <= 32’b0;

312 end

313 else

314 begin

315 if (~ axi_arready && S_AXI_ARVALID)

316 begin

317 // indicates that the slave has acceped the valid read address

318 axi_arready <= 1’b1;

319 // Read address latching

320 axi_araddr <= S_AXI_ARADDR;

321 end

322 else

323 begin

324 axi_arready <= 1’b0;

325 end

326 end

327 end

328

329 // Implement axi_arvalid generation

330 // axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both

331 // S_AXI_ARVALID and axi_arready are asserted. The slave registers

332 // data are available on the axi_rdata bus at this instance. The

333 // assertion of axi_rvalid marks the validity of read data on the

334 // bus and axi_rresp indicates the status of read transaction.axi_rvalid

335 // is deasserted on reset (active low). axi_rresp and axi_rdata are

336 // cleared to zero on reset (active low).

337 always @( posedge S_AXI_ACLK )

338 begin

339 if ( S_AXI_ARESETN == 1’b0 )

340 begin

341 axi_rvalid <= 0;

342 axi_rresp <= 0;

343 end

344 else

345 begin

346 if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)

347 begin

348 // Valid read data is available at the read data bus

349 axi_rvalid <= 1’b1;

350 axi_rresp <= 2’b0; // ’OKAY ’ response

351 end

352 else if (axi_rvalid && S_AXI_RREADY)

353 begin
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354 // Read data is accepted by the master

355 axi_rvalid <= 1’b0;

356 end

357 end

358 end

359

360 // Implement memory mapped register select and read logic generation

361 // Slave register read enable is asserted when valid address is available

362 // and the slave is ready to accept the read address.

363 assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;

364 always @(*)

365 begin

366 // Address decoding for reading registers

367 case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )

368 2’h0 : reg_data_out <= {31’b0, transmit };

369 2’h1 : reg_data_out <= slv_reg1;

370 2’h2 : reg_data_out <= slv_reg2;

371 2’h3 : reg_data_out <= slv_reg3;

372 default : reg_data_out <= 0;

373 endcase

374 end

375

376 // Output register or memory read data

377 always @( posedge S_AXI_ACLK )

378 begin

379 if ( S_AXI_ARESETN == 1’b0 )

380 begin

381 axi_rdata <= 0;

382 end

383 else

384 begin

385 // When there is a valid read address (S_AXI_ARVALID) with

386 // acceptance of read address by the slave (axi_arready),

387 // output the read dada

388 if (slv_reg_rden)

389 begin

390 axi_rdata <= reg_data_out; // register read data

391 end

392 end

393 end

394

395 // Add user logic here

396 always @( posedge S_AXI_ACLK )

397 begin

398 data_enable_step = extra_data_enable_step [27:0];

399 end

400

401 // User logic ends

402

403 endmodule

User Logic Top Module:

1 ‘timescale 1 ps / 1 ps

2 // MQP custom_logic Top Module

3 // contains custom logic for controlling the cameras , AL422B camera FIFOs ,

4 // rangefinder data manipulation , and disparity algorithm.

5 // This module connects to the PS via AXI , as well as to direct GPIO

6 module mqp_top

7 (

8 // physical pins

9 input fpga_clk , // 100 MHz input clock

10 input reset , // reset button

11 input button , // trigger rangefinder data sequence

12 input [7:0] sw, // user switches

13 output [7:0] leds , // output LEDs
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14 output hsync , // VGA HS

15 output vsync , // VGA VS

16 output reg [11:0] rgb , // VGA color logic

17

18 // cameras

19 input cam_rst , // button for camera RESET_BAR

20 output cam_sysclk , // sysclk out to camera

21 output cam_reset , // reset_bar out to camera

22 output cam_trigger , // trigger out to camera

23 input [7:0] FIFO_DATA , // DO[7:0] from AL422b fifo

24 output FIFO_OE1 , // read enable to fifo (active low)

25 output FIFO_RRST1 , // read reset to fifo (active low)

26 output FIFO_OE2 , // read enable to fifo (active low)

27 output FIFO_RRST2 , // read reset to fifo (active low)

28 output FIFO_RCK , // rck to fifo (1MHz)

29

30 // processing system

31 input [27:0] data_enable_step , // AXI data from PS

32 output transmit , // AXI data to PS (trigger new rangefinder data)

33

34 // rangefinder lookup table BRAM (0-45 degrees)

35 output [7:0] addra1 , // lookup table 1 address

36 input [12:0] coord1_data , // lookup table 1 data

37 output clk_100M , // 100MHZ output clock

38 // rangefinder lookup table BRAM (45-90 degrees)

39 output [7:0] addra2 , // lookup table 2 address

40 input [12:0] coord2_data , // lookup table 2 data

41

42 // VGA output pixel value BRAM

43 output [18:0] vga_waddr , // pixel write address (640* vcount)+hcount

44 output [7:0] dina , // pixel write data

45 output ena , // write port enable

46 output wea , // pixel write enable

47 output reg [18:0] vga_raddr , // pixel read address

48 output clk_25M , // pixel read clock (VGA clock)

49 input [7:0] x_vga , // pixel read data (to VGA color logic)

50 output enb // read port enable

51 );

52

53 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Clocking ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

54 wire clk_24M , clk_5M;

55 clk_wiz_0 mmcm(

56 .clk_in1(fpga_clk), // 100 MHz input

57 .clk_100M(clk_100M), // top level output to BRAM modules

58 .clk_25M(clk_25M), // top level output to VGA BRAM module

59 .clk_out3(clk_24M), // MT9V034 camera sysclk

60 .clk_out4(clk_5M), // AL422B FIFO RCK

61 .reset(reset) // mmcm reset

62 );

63

64 assign cam_sysclk = clk_24M; // Camera sysclk (also determines AL422B WCK)

65 assign FIFO_RCK = clk_5M; // AL422B RCK

66

67 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Rangefinder ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

68 wire [15:0] data;

69 wire enable;

70 wire [10:0] step;

71 // splitting up data , enable , and step data from AXI/Ps

72 assign data = data_enable_step [27:12]; // distance value (one data point)

73 assign enable = data_enable_step [11]; // new data ready for processing

74 assign step = data_enable_step [10:0]; // current step (0 -768)

75

76 // offset for centralized device "location" on VGA display

77 // i.e. show rangefinder in center of display

78 parameter [8:0] X_OFFSET = 321, Y_OFFSET = 240, LINE_OFFSET = 170;

79

80 // VGA display buffer controls from rangefinder controller

81 wire [18:0] rangefinder_waddr; // VGA display logic waddr
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82 wire [7:0] rangefinder_data; // VGA display logic data in

83 wire rangefinder_wen; // VGA display logic write enable

84

85 // LED indicators from rangedinder controller

86 wire [7:0] rangefinder_leds;

87

88 rangefinder rangefinder(

89 .clk(clk_100M), // 100MHz input clock

90 .reset(reset), // synchronous reset

91 .button(button), // trigger for new data capture sequence

92 .device_x(X_OFFSET), // device x offset for display

93 .device_y(Y_OFFSET), // device y offset for display

94 .leds(rangefinder_leds), // current_state LED indicators

95 .data(data), // rangefinder data in (from PS/PL AXI interface)

96 .enable(enable), // PL data processing enable (from PS/PL AXI)

97 .step(step), // current step offset (0 -768) [from PS/PL AXI)

98 .vga_waddr(rangefinder_waddr), // write address to VGA logic

99 .transmit(transmit), // enable new data capture (to PS via AXI)

100 .dina(rangefinder_data), // VGA output buffer pixel data

101 .wea(rangefinder_wen), // VGA output buffer write enable

102 .addra1(addra1), // 0-45 degree ROM lookup table address

103 .coord1_data(coord1_data), // 0-45 degree ROM lookup table data

104 .addra2(addra2), // 45-90 degree ROM lookup table address

105 .coord2_data(coord2_data) // 0-45 degree ROM lookup table data

106 );

107 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Cameras ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

108 // Camera Initialization sequence

109 reg [4:0] init_count = 5’d0;

110 always @(posedge clk_24M) // cam sysclk

111 begin

112 if (cam_rst) // if cam_rst is pressed , redo the initialization sequence

113 init_count <= 5’d0;

114 else if(init_count < 5’d25)

115 init_count <= init_count + 1’b1;

116 end

117 // Keep cam_rst asserted for at least 20 cam_sysclk cycles to init cams

118 assign cam_reset = (init_count >= 5’d20);

119

120 // Trigger a new image capture and disparity sequence when disparity idles

121 // this allows for continuous disparity data capture

122 wire trig_db; // camera controller trigger input

123 wire [2:0] current_state; // disparity current state

124 assign trig_db = current_state == 2’b00;

125

126 // Stereo camera breakout board AL422B buffer control lines

127 wire fifo_oe , fifo_rrst , image_sel;

128 // control output enable for left and right cams based on image_sel

129 assign FIFO_OE1 = (image_sel == 1’b0) ? fifo_oe : 1’b1;

130 assign FIFO_OE2 = (image_sel == 1’b1) ? fifo_oe : 1’b1;

131 // control read reset for left and right cams based on image_sel

132 assign FIFO_RRST1 = (image_sel == 1’b0) ? fifo_rrst : 1’b1;

133 assign FIFO_RRST2 = (image_sel == 1’b1) ? fifo_rrst : 1’b1;

134

135 // State machine for capturing and storing new camera images

136 // This module also contains internal BRAM for storing left and right images

137 wire [16:0] laddr , raddr , disp_laddr , disp_raddr; // left/right image buffer addr

138 reg [16:0] img_laddr , img_raddr;

139 assign laddr = (sw[7:0] != 8’h03) ? disp_laddr : img_laddr;

140 assign raddr = (sw[7:0] != 8’h04) ? disp_raddr : img_raddr;

141 wire [7:0] ldata , rdata; // left/right image pixel data

142 wire buffer_ready; // image capture complete (disparity enable)

143 imgbuf camctl(

144 .get_data(trig_db), // image capture enable

145 .laddr(laddr), // left image data addres

146 .raddr(raddr), // right image data address

147 .ldata(ldata), // left image pixel data

148 .rdata(rdata), // right image pixel data

149 .fifo_data(FIFO_DATA), // 8 bit data in from fifo
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150 .fifo_rck(clk_5M), // 5MHz AL422B RCK

151 .bram_rck(clk_100M), // left/right internal image data RCK

152 .image_sel(image_sel), // left/right image select (for AL422B controls)

153 .fifo_rrst(fifo_rrst), // AL422B RRST (Reset read addr to 0)

154 .fifo_oe(fifo_oe), // AL422B REN (allow for addr pointer to increment)

155 .trigger(cam_trigger), // MT9V034 camera trigger line

156 .buffer_ready(buffer_ready) // image capture complete

157 );

158

159 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Disparity ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

160 reg [6:0] lineaddr; // depth line address

161 wire [7:0] lineout; // depth line data

162 wire [7:0] result_data; // output depth data for VGA bram

163 wire result_wen; // VGA bram write enable

164 wire [18:0] result_addr; // VGA bram pixel address

165

166 parallel_disparity disp(

167 .clk(clk_100M), // Read clk signal

168 .enable(buffer_ready), // enable new disparity calculation

169 .sw(sw[7:0] >=8’ h02), // added in to parallel module (was sw[1])

170 .reset(reset), // reset disparity FSM

171 .ldata(ldata), // FIFO data in

172 .rdata(rdata), // FIFO data in

173 .laddr(disp_laddr), // left camera data address (to imgbuf)

174 .raddr(disp_raddr), // right camera data address (to imgbuf)

175 .result_addr(result_addr), // VGA bram write address

176 .result_data(result_data), // VGA bram pixel data (disparity vals)

177 .result_wea(result_wen), // VGA bram write enable

178 .state_LED(current_state), // current state indicator

179 .lineout(lineout), // single line pixel data [7:0]

180 .lineaddr(lineaddr) // single line pixel address

181 );

182

183 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VGA Logic ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

184 // Assign LED outputs for debug based on output mode

185 assign leds = (sw[0]) ? {result_wen ,trig_db ,buffer_ready ,current_state [2:0],sw [1:0]} :

rangefinder_leds;

186

187 // VGA output

188 wire [10:0] hcount , vcount; // horizontal , vertical location on screen

189 wire blank; // blanking signal

190 vga_controller_640_60 vga_controller(

191 .rst(reset),

192 .pixel_clk(clk_25M),

193 .HS(hsync),

194 .VS(vsync),

195 .hcount(hcount),

196 .vcount(vcount),

197 .blank(blank)

198 );

199

200 // address for read from vga BRAM

201 always @(hcount , vcount)

202 if(sw[0])

203 vga_raddr = (384*( vcount -96))+(hcount -128);

204 else

205 vga_raddr = (640* vcount) + hcount;

206

207 // assign vga bram write address

208 assign vga_waddr = (sw[0] == 1’b1) ? result_addr : rangefinder_waddr;

209 // assign vga bram write data

210 assign dina = (sw[0] == 1’b1) ? result_data : rangefinder_data;

211 // assign vga bram port A enable

212 assign ena = (sw[0] == 1’b1) ? 1’b1 : rangefinder_wen;

213 // assign vga bram port A write enable

214 assign wea = 1’b1;

215 // assign vga bram port B enable

216 assign enb = 1’b1;
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217

218 // handle addressing for single -line data from disparity module

219 always @(hcount)

220 lineaddr = (hcount >= 272 && hcount < 368) ? hcount -272 : 7’d0;

221

222 // Modify output color logic based on current mode

223 always @ (hcount , vcount , blank , sw, x_vga , lineout)

224 begin

225 if(blank)

226 rgb = 12’h000;

227 else case(sw [7:0])

228 8’h00: // rangefinder output

229 begin

230 if (( hcount >= X_OFFSET -1 && hcount <= X_OFFSET +1) && (vcount >= Y_OFFSET -1

&& vcount <= Y_OFFSET +1))

231 rgb = 12’hF00;

232 else if(x_vga == 8’hFF)

233 rgb = 12’h000;

234 else

235 rgb = 12’hFFF;

236 end

237 8’h01: // full disparity output

238 begin

239 // center 384 x288 output in the middle of the screen

240 if(hcount >= 128 && hcount < 512 && vcount >= 96 && vcount < 384)

241 rgb = {x_vga ,4’h8};

242 // pad screen areas outside the active image black

243 else

244 rgb = 12’h000;

245 end

246 8’h02: // single line disparity output

247 begin

248 if(hcount >= 272 && hcount < 368)

249 if(vcount == Y_OFFSET -lineout)

250 rgb = {4’h8,lineout };

251 else

252 rgb = 12’h000;

253 end

254 8’h03: // left camera image

255 begin

256 // center 384 x288 output in the middle of the screen

257 if(hcount >= 128 && hcount < 512 && vcount >= 96 && vcount < 384) begin

258 img_laddr = 384*( vcount -96) + (hcount -128);

259 rgb = {ldata ,4’h8};

260 end

261 // pad screen areas outside the active image black

262 else

263 rgb = 12’h000;

264 end

265 8’h04: // right camera image

266 begin

267 // center 384 x288 output in the middle of the screen

268 if(hcount >= 128 && hcount < 512 && vcount >= 96 && vcount < 384) begin

269 img_raddr = 384*( vcount -96) + (hcount -128);

270 rgb = {rdata ,4’h8};

271 end

272 // pad screen areas outside the active image black

273 else

274 rgb = 12’h000;

275 end

276 default: // combined disparity + rangefinder output

277 begin

278 // central point representing rangefinder location

279 if (( hcount >= X_OFFSET -1 && hcount <= X_OFFSET +1) && (vcount >= Y_OFFSET -1

&& vcount <= Y_OFFSET +1))

280 rgb = 12’hF00;

281 // point from rangefinder data (with or without disparity overlap)

282 else if(x_vga == 8’hFF)
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283 if(hcount >= 272 && hcount < 368 && vcount == Y_OFFSET -lineout)

284 rgb = {4’hF,lineout };

285 else

286 rgb = 12’h000;

287 // point from disparity data without rangefinder overlap

288 else if(hcount >= 272 && hcount < 368 && vcount == LINE_OFFSET -lineout &&

lineout > 0)

289 rgb = {4’h0,lineout };

290 else

291 rgb = 12’hFFF;

292 end

293 endcase

294 end

295

296 // --------------------------------- fin --------------------------------------

297

298 endmodule

Rangefinder Data Processing:

1 ‘timescale 1ns / 1ps

2 // Rangefinder controller module

3 // Communicates with PS via AXI , BRAM lookup tables , GPIO , and VGA display controller

4 // Used to convert rangefinder data processed by the PS into a format that can be

5 // output for display and storage

6 module rangefinder(

7 input clk , // 100 MHz input clock

8 input reset , // synchronous reset

9 input button , // trigger new data capture (no longer used)

10 input [8:0] device_x , // device x offset for display

11 input [8:0] device_y , // device y offset for display

12 output [7:0] leds , // LED indicators for debug

13 input [15:0] data , // rangefinder data in (from PS/PL AXI)

14 input enable , // PL data processing enable (from PS/PL AXI)

15 input [10:0] step , // current step offset (0 -768) from PS/PL AXI

16 output reg [18:0] vga_waddr , // write address to VGA logic

17 output reg transmit , // enable new data capture (to PS via AXI)

18 output reg [7:0] dina , // VGA output buffer pixel data

19 output reg wea , // VGA output buffer write enable

20

21 output reg [7:0] addra1 , // 0-45 degree ROM lookup table address

22 input [12:0] coord1_data , // 0-45 degree ROM lookup table data

23

24 output reg [7:0] addra2 , // 45-90 degree ROM lookup table address

25 input [12:0] coord2_data // 45-90 degree ROM lookup table address

26 );

27

28 reg [15:0] watchdog; // timeout to begin new data capture sequence

29 reg [15:0] decoded; // stores 2 bytes of rangefinder data as (MSB -> LSB)-0x30

30 reg [24:0] xmult , ymult; // rangefinder data point x,y location relative to (0,0)

31 wire xneg , yneg; // flag for indicating if x,y data is positive or negative

32 reg [9:0] xlocation; // rangefinder data point x location relative to device_x

33 reg [8:0] ylocation; // rangefinder data point y location relative to device_y

34

35 reg [2:0] offset_counter; // counter to wait for multiply operation in OFFSET state

36 reg [1:0] address_counter; // counter to wait for multiply operation in ADDRESS state

37

38 wire [18:0] vga_product; // current pixel row for output address

39

40 wire [24:0] product1 , product2; // x/y offset output from trig lookup / multiplier

conversion

41

42 // FSM states , next state logic

43 parameter [2:0] IDLE = 0, CLEAR = 1, DECODE = 2, OFFSET = 3, SCALE = 4, ADDRESS = 5,

WRITE = 6;

44 reg [2:0] current_state , next_state;
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45

46 reg [10:0] row_count; // 0-480

47 reg [10:0] col_count; // 0-640

48 reg [8:0] step_count = 9’d0;

49 // -----------------------------------------------------------

50 //data processing

51 //sets flag to indicate negative horizontal value on circle

52 assign xneg = (step >= 0 && step <= 128) ? 1’b0 :

53 (step > 128 && step <= 384) ? 1’b0 :

54 (step > 384 && step <= 640) ? 1’b1 : //1’b1;

55 (step > 640 && step <= 768) ? 1’b1 :

56 (step > 768 && step <= 896) ? 1’b1 : 1’b0;

57

58 //sets flag to indicate negative vertical value on circle

59 assign yneg = (step >= 0 && step <= 128) ? 1’b1 :

60 (step > 128 && step <= 384) ? 1’b0 :

61 (step > 384 && step <= 640) ? 1’b0 : //1’b1;

62 (step > 640 && step <= 768) ? 1’b1 :

63 (step > 768 && step <= 896) ? 1’b1 : 1’b1;

64

65 // State machine overhead control

66 always @ (posedge clk)

67 if (reset)

68 current_state <= IDLE;

69 else

70 current_state <= next_state;

71

72 //next state logic

73 always @ (current_state , offset_counter , address_counter , enable , row_count , col_count ,

button , step)

74 begin

75 case (current_state)

76 // stays in IDLE until a new enable pulse

77 IDLE:

78 if(enable)

79 next_state = DECODE;

80 else if (button) // was (button || step == 768)

81 next_state = CLEAR;

82 else

83 next_state = IDLE;

84

85 CLEAR: // clear pixel data from previous run

86 if(row_count == 479 && col_count == 639)

87 next_state = IDLE;

88 else

89 next_state = CLEAR;

90 // stays in DECODE for one clock cycle

91 DECODE:

92 next_state = OFFSET;

93

94 // stays in OFFSET for a multiply operation

95 OFFSET:

96 if(offset_counter == 4)

97 next_state = SCALE;

98 else

99 next_state = OFFSET;

100

101 // stays in SCALE for one clock cycle

102 SCALE:

103 next_state = ADDRESS;

104

105 // stays in ADDRESS for a multiply operation

106 ADDRESS:

107 if(address_counter == 3)

108 next_state = WRITE;

109 else

110 next_state = ADDRESS;

111
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112 // stays in ADDRESS for one clock cycle

113 WRITE:

114 next_state = IDLE;

115

116 default:

117 next_state = IDLE;

118 endcase

119 end

120

121 //state machine

122 always @ (posedge clk)

123 begin

124 // resets registers , waits for data to process

125 if(current_state == IDLE)

126 begin

127 wea <= 1’b0;

128 dina <= 8’h00;

129 row_count <= 11’d0;

130 col_count <= 11’d0;

131 if(step_count == 9’d767)

132 step_count <= 9’d0;

133 end

134

135 // clear previous set of data from BRAM

136 else if(current_state == CLEAR)

137 begin

138 vga_waddr <= (640* row_count) + col_count;

139 wea <= 1’b1;

140 dina <= 8’h00;

141 if(col_count < 639)

142 col_count <= col_count + 1’b1;

143 else if(col_count == 639 && row_count < 479)

144 begin

145 col_count <= 11’d0;

146 row_count <= row_count + 1’b1;

147 end

148

149 end

150 // calculates adresses for trig LUTs

151 // decodes data by substracting 0x30 from both halves of data point

152 else if(current_state == DECODE)

153 begin

154 step_count <= step_count + 1’b1;

155

156 wea <= 1’b0;

157

158 addra1 <= (step >= 0 && step <= 128) ? 128-step : //index 128 to 0 - Q1 - hz

159 (step > 128 && step <= 256) ? step -128 : //index 1 to 128 - Q2 - hz

160 (step > 256 && step <= 384) ? 384-step : //index 127 to 0 - Q2 - vr

161 (step > 384 && step <= 512) ? step -384 : //index 1 to 128 - Q3 - vr

162 (step > 512 && step <= 640) ? 640-step : //index 127 to 0 - Q3 - hz

163 (step > 640 && step <= 768) ? step -640 : //index 1 to 128 - Q4 - hz

164 (step > 768 && step <= 896) ? 896-step : //index 127 to 0 - Q4 - vr

165 //(step > 896 && step <= 1023) ? step - 896 :

166 step -896; // index 0 to 128 - Q1 - vr

167

168 addra2 <= (step >= 0 && step <= 128) ? step : //index 128 to 256 - Q1 - vr

169 (step > 128 && step <= 256) ? 256-step : //index 255 to 128 - Q2 - vr

170 (step > 256 && step <= 384) ? step -256 : //index 129 to 256 - Q2 - hz

171 (step > 384 && step <= 512) ? 512-step : //index 255 to 128 - Q3 - hz

172 (step > 512 && step <= 640) ? step -512 : //index 129 to 256 - Q3 - vr

173 (step > 640 && step <= 768) ? 768-step :

174 (step > 768 && step <= 896) ? step -768 :

175 //(step > 896 && step <= 1023) ? 1023 - step :

176 1023- step; // index 255 to 128 - Q4 -

vr

177

178
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179 decoded <= {data [7:0]-8’h30 , data [15:8]-8’ h30};

180 end

181

182 //drops upper bit of each data point

183 // calculates horizontal and vertical distance for each data point

184 else if(current_state == OFFSET)

185 begin

186 if(offset_counter == 4)

187 begin

188 if((step > 256 && step <= 512) || (step > 768 && step <= 1023))

189 begin

190 xmult <= product2;

191 ymult <= product1;

192 end

193

194 else

195 begin

196 xmult <= product1;

197 ymult <= product2;

198 end

199 end

200

201 offset_counter <= offset_counter + 1’b1;

202 end

203

204 // scales data and localizes to device

205 else if(current_state == SCALE)

206 begin

207 offset_counter <= 3’b0;

208

209 if(xneg)

210 xlocation <= device_x - xmult [23:16];

211 else

212 xlocation <= device_x + xmult [23:16];

213

214 if(yneg)

215 ylocation <= device_y + ymult [23:16];

216 else

217 ylocation <= device_y - ymult [23:16];

218 end

219

220 // calculates address for VGA BRAM

221 else if(current_state == ADDRESS)

222 begin

223 if(address_counter == 3)

224 vga_waddr <= vga_product + xlocation;

225

226 address_counter <= address_counter + 1’b1;

227 end

228

229 // writes to BRAM

230 else if(current_state == WRITE)

231 begin

232 address_counter <= 2’b00;

233 dina <= 8’hFF;

234 wea <= 1’b1;

235 end

236 end

237

238 // convert data point , trig lookup to x or y offset

239 mult_gen_0 trig_mult_1

240 (

241 .CLK(clk),

242 .A({ decoded [13:8] , decoded [5:0]}) ,

243 .B(coord1_data),

244 .P(product1)

245 );

246 // convert data point , trig lookup to x or y offset

132



247 mult_gen_0 trig_mult_2

248 (

249 .CLK(clk),

250 .A({ decoded [13:8] , decoded [5:0]}) ,

251 .B(coord2_data),

252 .P(product2)

253 );

254

255 // calculates 640* row_count portion of VGA write address

256 mult_gen_2 vga_multiplier

257 (

258 .CLK(clk),

259 .A(ylocation),

260 .P(vga_product)

261 );

262

263 // watchdog counter watches for missed data transfers

264 always @(posedge clk , posedge reset)

265 begin

266 if(reset || transmit)

267 watchdog <= 0;

268 else if (current_state == IDLE)

269 watchdog <= watchdog + 1’b1;

270 else

271 watchdog <= watchdog;

272 end

273

274 // trigger a new rangefinder data aquisition sequence when the entire screen has been

cleared

275 always @ (posedge clk)

276 begin

277 if(( row_count == 479 && col_count == 639) || step_count == 9’d767)

278 transmit <= 1’b1;

279 else

280 transmit <= 1’b0;

281 end

282

283 // write current_state , next_state , and I/O to LEDs for debug

284 assign leds [7:0] = {next_state [2:0], current_state [2:0],enable ,button };

285

286 endmodule

Camera Image Buffer:

1 ‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

3 // Module for reading from the AL422b FIFO and storing pixel line data in a

4 // local buffer.

5 // ////////////////////////////////////////////////////////////////////////////////

6 module imgbuf(

7 input get_data , // trigger a new image capture

8 input [16:0] laddr , // left camera bram read address: (640* vcount)+hcount

9 input [16:0] raddr , // right camera bram read address: (640* vcount)+hcount

10 output [7:0] ldata , // left camera bram data

11 output [7:0] rdata , // right camera bram data

12 input [7:0] fifo_data , // 8 bit data in from fifo

13 input fifo_rck , // AL422B FIFO read clock (~5MHz)

14 input bram_rck , // bram read clock

15 output reg image_sel , // left/right camera select

16 output reg fifo_rrst , // fifo read reset (reset read addr pointer to 0)

17 output reg fifo_oe , // fifo output enable (allow for addr pointer to increment)

18 output reg trigger , // MT9V034 camera trigger

19 output reg buffer_ready // camera capture and storage sequence complete

20 );

21

22 // left and right image bram write enables
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23 reg wen_l , wen_r;

24

25 // FSM states

26 parameter [1:0] ready = 2’b00;

27 parameter [1:0] read = 2’b01;

28 parameter [1:0] done = 2’b10;

29 parameter [1:0] init = 2’b11;

30 reg [1:0] state = ready;

31 reg [1:0] prev_state , next_state = ready;

32

33 // number of pixels and horizontal lines read by the image buffer

34 reg [9:0] pixel = 10’ b00_0000_0000;

35 reg [15:0] num_lines = 16’h0000;

36

37 // left bram write address (windowed to 384 x288)

38 reg [16:0] lwrite;

39 always @(num_lines ,pixel)

40 if(128 <= pixel && pixel <= 512 && num_lines >= 96 && num_lines <= 384)

41 lwrite = (384*( num_lines -96))+(pixel -128);

42 else

43 lwrite = 17’d0;

44

45 // right bram write address (windowed to 384 x288)

46 reg [16:0] rwrite;

47 always @(num_lines ,pixel)

48 if(128 <= pixel && pixel <= 512 && num_lines >= 96 && num_lines <= 384)

49 rwrite = (384*( num_lines -96))+(pixel -128);

50 else

51 rwrite = 17’d0;

52

53 // left image storage

54 wire [7:0] left_dout;

55 blk_mem_384_288 left(

56 .clka(fifo_rck),

57 .wea(wen_l),

58 .addra(lwrite), // 19 bits

59 .dina(fifo_data), // 8 bits

60 .clkb(bram_rck),

61 .enb(1’b1),

62 .addrb(laddr), // 19 bits

63 .doutb(ldata) // 8 bits

64 );

65

66 // right image storage

67 wire [7:0] right_dout;

68 blk_mem_384_288 right(

69 .clka(fifo_rck),

70 .wea(wen_r),

71 .addra(rwrite), // 19 bits

72 .dina(fifo_data), // 8 bits

73 .clkb(bram_rck),

74 .enb(1’b1),

75 .addrb(raddr), // 19 bits

76 .doutb(rdata) // 8 bits

77 );

78

79 // FSM overhead control

80 always @(posedge fifo_rck)

81 state <= next_state;

82

83 // next_state logic

84 always @(state ,get_data ,num_lines ,image_sel)

85 case(state)

86 ready: // ready: wait for a new trigger sequence

87 begin

88 if(get_data)

89 next_state = init;

90 else
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91 next_state = ready;

92

93 prev_state = ready;

94 end

95 init: // initialize and proceed to reading from AL422B

96 begin

97 next_state = read;

98 prev_state = init;

99 end

100 read: // read from AL422B into left or right image buffer

101 begin

102 if(num_lines == 479 && image_sel == 1’b1)

103 next_state = done;

104 else

105 next_state = read;

106

107 prev_state = read;

108 end

109 done: // finished a full AL422B read sequence

110 begin

111 next_state = ready;

112 prev_state = done;

113 end

114 endcase

115

116 // FSM internal logic

117 always @(posedge fifo_rck)

118 begin

119 case(state)

120 // allow for VGA controller to read from pixel_line

121 ready:

122 begin

123 buffer_ready <= 1’b0;

124 wen_l <= 1’b0;

125 wen_r <= 1’b0;

126 pixel <= 10’ b00_0000_000;

127 num_lines <= 16’h0000;

128 // trigger a new image capture from the cameras

129 if(next_state == init)

130 trigger <= 1’b1;

131 end

132 // prepare to read new data from the AL422 into local memory

133 init:

134 begin

135 fifo_rrst <= 1’b0; // allow for read addr to increment

136 trigger <= 1’b0;

137 pixel <= 10’ b00_0000_000;

138 num_lines <= 16’h0000;

139 buffer_ready <= 1’b0;

140 fifo_oe <= 1’b0; // reset read pointer for next run

141 image_sel <= 1’b0;

142 end

143 // read data in from the AL422 into local memory

144 read:

145 begin

146 trigger <= 1’b0;

147 fifo_rrst <= 1’b1; // allow read pointer to increment

148 // truncate 752 x480 image to CIF (384 x288)

149 if(128 <= pixel && pixel <= 512 && num_lines >= 96 && num_lines <= 384)

begin

150 if(image_sel == 1’b0) begin

151 wen_l <= 1’b1;

152 wen_r <= 1’b0;

153 end

154 else begin

155 wen_l <= 1’b0;

156 wen_r <= 1’b1;

157 end
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158 end

159 else begin

160 wen_l <= 1’b0;

161 wen_r <= 1’b0;

162 end

163

164 // turn off read enable if at end of read sequence

165 if(next_state == done)

166 fifo_oe <= 1’b1;

167 // cycle through pixel count

168 else if(pixel < 751)

169 pixel <= pixel + 1’b1;

170 else if(num_lines < 479)

171 begin

172 pixel <= 10’ b00_0000_0000;

173 num_lines <= num_lines + 1’b1;

174 end

175 // cycle from left -> right image

176 else if(num_lines == 479 && image_sel == 1’b0)

177 begin

178 fifo_rrst <= 1’b0; // reset read pointer

179 image_sel <= 1’b1;

180 pixel <= 10’ b00_0000_0000;

181 num_lines <= 16’d0;

182 end

183 end

184

185 // close out read sequence before returning to ready state

186 done:

187 begin

188 fifo_rrst <= 1’b0; // reset read addr to 0

189 trigger <= 1’b0;

190 buffer_ready <= 1’b1;

191 end

192 endcase

193 end

194

195 endmodule

Disparity Algorithm:

1 ‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

3 // Disparity Algorithm implementation

4 // ////////////////////////////////////////////////////////////////////////////////

5 module parallel_disparity(

6 input clk , // Read clk signal

7 input enable , // Enable new disparity calculation

8 input sw , // Input from left/right image buffer controller

9 input reset , // Reset disparity FSM

10 input [7:0] ldata , // Left bram pixel data in

11 input [7:0] rdata , // Right bram pixel data in

12 output reg [16:0] laddr , // Left bram read address

13 output reg [16:0] raddr , // Right bram read address

14 output reg [18:0] result_addr , // Result bram write address

15 output reg [7:0] result_data , // Result bram pixel data

16 output result_wea , // Result bram write enable

17 output [2:0] state_LED , // Current state indicator

18 output [7:0] lineout , // Single line pixel data out

19 input [6:0] lineaddr // Single line pixel data address

20 );

21

22 // user -defined constants (image search parameters)

23 parameter WIDTH = 384 - 1; // output image width (0-indexed)

24 parameter HEIGHT = 288 - 1; // output image height (0-indexed)

25 parameter SEARCH_RANGE = 20-1; // disparity block comparison search range (0-indexed)
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26 parameter HALF_BLOCK = 3; // half block size

27 parameter FOCAL_LENGTH = 6; // 6mm

28 parameter BASELINE = 63; //63mm

29

30 // calculated constants

31 parameter BLOCK_SIZE = (2* HALF_BLOCK) + 1; // block size

32 parameter BLOCK_SIZE0 = (2* HALF_BLOCK); // block size with zero based index

33 parameter FB = FOCAL_LENGTH*BASELINE; // focal length * baseline (done here to save

computation space)

34

35 // search variables (incremented automatically)

36 reg [8:0] col_count = 9’b0; // number of cols iterated through (m in matlab code)

37 reg [8:0] row_count = 9’b0; // number of rows iterated through (n in matlab code)

38 reg [8:0] minr = 9’b0, maxr = 9’b0, t_minc = 9’b0, t_maxc = 9’b0, b_minc = 9’b0, b_maxc = 9’

b0; // current search block borders

39 reg [8:0] rcnt = 9’b0, dcnt=9’b0; // temporary counters based on above wires for search

blocks

40 reg [2:0] cdcnt = 3’b0, rdcnt = 3’b0, ccnt = 3’b0;// temporary counters based on above wires

for search blocks

41 reg [5:0] mind = 6’b0, maxd = 6’b0; // min/max disparity search bounds (limit SEARCH_RANGE

to 63 blocks !)

42 reg [5:0] scnt = 6’b0; // number of disparity search comparisons performed

43 reg [5:0] numBlocks = 6’b0; // number of blocks within current search bounds

44 reg [5:0] blockIndex = 6’b0; // current block being searched in numBlocks

45 reg [5:0] index; // index of the min number in the disparity vector (disparity value)

46 reg [7:0] min; // value of min number in disparity vector

47 reg [1:0] pipe = 2’b00; // pipeline control for FSM

48 reg done; // will be 1 if disparity is 100% done , 0 otherwise (used for next_state == IDLE)

49

50 // temporary memory for template block , search block , and computational storage

51 // note that these blocks are broken down by row to allow for faster summations

52 // 7x7 template block

53 reg [7:0] template0 [0: BLOCK_SIZE0 ]; // template block row 0

54 reg [7:0] template1 [0: BLOCK_SIZE0 ]; // template block row 1

55 reg [7:0] template2 [0: BLOCK_SIZE0 ]; // template block row 2

56 reg [7:0] template3 [0: BLOCK_SIZE0 ]; // template block row 3

57 reg [7:0] template4 [0: BLOCK_SIZE0 ]; // template block row 4

58 reg [7:0] template5 [0: BLOCK_SIZE0 ]; // template block row 5

59 reg [7:0] template6 [0: BLOCK_SIZE0 ]; // template block row 6

60 // 7x7 search block

61 reg [7:0] block0 [0: BLOCK_SIZE0 ]; // search block row 0

62 reg [7:0] block1 [0: BLOCK_SIZE0 ]; // search block row 1

63 reg [7:0] block2 [0: BLOCK_SIZE0 ]; // search block row 2

64 reg [7:0] block3 [0: BLOCK_SIZE0 ]; // search block row 3

65 reg [7:0] block4 [0: BLOCK_SIZE0 ]; // search block row 4

66 reg [7:0] block5 [0: BLOCK_SIZE0 ]; // search block row 5

67 reg [7:0] block6 [0: BLOCK_SIZE0 ]; // search block row 6

68 // 7x7 storage for abs(template -block)

69 reg [7:0] SAD_diffs0 [0: BLOCK_SIZE0 ]; // block for holding abs(template -block) row 0

70 reg [7:0] SAD_diffs1 [0: BLOCK_SIZE0 ]; // block for holding abs(template -block) row 1

71 reg [7:0] SAD_diffs2 [0: BLOCK_SIZE0 ]; // block for holding abs(template -block) row 2

72 reg [7:0] SAD_diffs3 [0: BLOCK_SIZE0 ]; // block for holding abs(template -block) row 3

73 reg [7:0] SAD_diffs4 [0: BLOCK_SIZE0 ]; // block for holding abs(template -block) row 4

74 reg [7:0] SAD_diffs5 [0: BLOCK_SIZE0 ]; // block for holding abs(template -block) row 5

75 reg [7:0] SAD_diffs6 [0: BLOCK_SIZE0 ]; // block for holding abs(template -block) row 6

76 // 7x1 storage for sum(abs(template -block))

77 reg [10:0] temp0; // block for holding sum(abs(template -block)) row 0

78 reg [10:0] temp1; // block for holding sum(abs(template -block)) row 1

79 reg [10:0] temp2; // block for holding sum(abs(template -block)) row 2

80 reg [10:0] temp3; // block for holding sum(abs(template -block)) row 3

81 reg [10:0] temp4; // block for holding sum(abs(template -block)) row 4

82 reg [10:0] temp5; // block for holding sum(abs(template -block)) row 5

83 reg [10:0] temp6; // block for holding sum(abs(template -block)) row 6

84 // 20x1 for storing SAD value for ALL search blocks corresponding to a single template block

85 reg [14:0] SAD_vector [0: SEARCH_RANGE ]; // block for holding sum(sum(abs(template -block))) -

up to 9x9 block size

86 reg [10:0] line; // reg for holding [(focal length)*( baseline)]/index

87
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88 // ~~~~~~~~~~~~~~~ Disparity FSM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

89 parameter [2:0] IDLE = 3’b000 , // wait for next read sequence

90 READ = 3’b001 , // read data from FIFO

91 SEPARATE = 3’b010 , // separate search image into rows

92 SAD = 3’b011 , // perfom sum of absolute diff ’s

93 FINALIZE = 3’b100; // search for max vector values , store in

disparity matrix

94 reg [2:0] current_state = IDLE ,

95 next_state = IDLE;

96

97 // state -machine flip -flops

98 always @ (posedge clk)

99 if(reset) // synchronous to protect bram

100 current_state <= IDLE;

101 else

102 current_state <= next_state;

103

104 // next state logic

105 always @(current_state ,enable ,ccnt ,dcnt ,pipe ,done ,rcnt ,maxd)

106 case(current_state)

107 IDLE: // wait for new sequence enable

108 if(enable)

109 next_state = READ;

110 else

111 next_state = IDLE;

112 READ: // previously stored logic now contained in imgbuf.v

113 next_state = SEPARATE;

114 SEPARATE: // isolate template and search block

115 if(ccnt == (BLOCK_SIZE0) && rcnt == (BLOCK_SIZE0))

116 next_state = SAD;

117 else

118 next_state = SEPARATE;

119 SAD: // perform sum(sum(abs(template -search)))

120 if(dcnt < maxd && pipe == 2’b11)

121 next_state = SEPARATE;

122 else if (dcnt < maxd || pipe < 2’b11)

123 next_state = SAD;

124 else

125 next_state = FINALIZE;

126 FINALIZE: // Find disparity value from SAD vector and store in output buffer

127 if(~done && pipe == 2’b11)

128 next_state = SEPARATE;

129 else if(done && pipe == 2’b11)

130 next_state = IDLE;

131 else

132 next_state = FINALIZE;

133 default: next_state = IDLE;

134 endcase

135

136 // FSM disparity Implementation

137 always @(posedge clk)

138 case(current_state)

139 IDLE: // wait for next read sequence

140 begin

141 if(~sw)

142 row_count <= 9’b0;

143 else

144 row_count <= 9’d144;

145 col_count <= 9’b0;

146 dcnt <= 9’b0;

147 pipe <= 2’b00;

148 end

149

150 READ: // read in image data from buffers

151 begin

152 pipe <= 2’b00;

153 end

154
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155 SEPARATE: // Read in new block data for next comparison

156 begin

157 // read in the template and search blocks IN PARALLEL as set by the

following:

158 // template block: (t_minc:t_maxc ,minr:maxr)

159 // search block: (b_minc:b_maxc ,minr:maxr)

160 // read in template image block

161 if(ccnt <= (t_maxc -t_minc) && rcnt <= (maxr -minr)) // fully within template

search bounds

162 case(rcnt)

163 0: template0[ccnt] <= ldata;

164 1: template1[ccnt] <= ldata;

165 2: template2[ccnt] <= ldata;

166 3: template3[ccnt] <= ldata;

167 4: template4[ccnt] <= ldata;

168 5: template5[ccnt] <= ldata;

169 6: template6[ccnt] <= ldata;

170 endcase

171 else // outside tempate bounds

172 case(rcnt)

173 0: template0[ccnt] <= 8’h00;

174 1: template1[ccnt] <= 8’h00;

175 2: template2[ccnt] <= 8’h00;

176 3: template3[ccnt] <= 8’h00;

177 4: template4[ccnt] <= 8’h00;

178 5: template5[ccnt] <= 8’h00;

179 6: template6[ccnt] <= 8’h00;

180 endcase

181

182 // read in search image block

183 if(ccnt <= (b_maxc -b_minc) && rcnt <= (maxr -minr)) // fully within template

search bounds

184 case(rcnt)

185 0: block0[ccnt] <= rdata;

186 1: block1[ccnt] <= rdata;

187 2: block2[ccnt] <= rdata;

188 3: block3[ccnt] <= rdata;

189 4: block4[ccnt] <= rdata;

190 5: block5[ccnt] <= rdata;

191 6: block6[ccnt] <= rdata;

192 endcase

193 else // outside tempate bounds

194 case(rcnt)

195 0: block0[ccnt] <= 8’h00;

196 1: block1[ccnt] <= 8’h00;

197 2: block2[ccnt] <= 8’h00;

198 3: block3[ccnt] <= 8’h00;

199 4: block4[ccnt] <= 8’h00;

200 5: block5[ccnt] <= 8’h00;

201 6: block6[ccnt] <= 8’h00;

202 endcase

203

204 // increment ccnt and rcnt to iterate through all pixels within blocks

205 if(pipe == 2’b11) begin

206 pipe <= 2’b00;

207 if(ccnt <( BLOCK_SIZE0))

208 ccnt <=ccnt+1’b1;

209 else if(rcnt <( BLOCK_SIZE0) && ccnt ==( BLOCK_SIZE0)) begin

210 rcnt <= rcnt+1’b1;

211 ccnt <= 3’b0;

212 end

213 end

214 else

215 pipe <= pipe + 1’b1;

216

217 // make sure pipe is clear for SAD

218 if(next_state == SAD)begin

219 pipe <= 2’b00;
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220 ccnt <= 3’b0;

221 rcnt <= 9’b0;

222 cdcnt <= 3’b0;

223 rdcnt <= 3’b0;

224 end

225 end

226

227 SAD:

228 begin

229 // ~~~~~~~~~~~~~~~~ abs(template -block) ~~~~~~~~~~~~~~~~

230 if (pipe == 2’b00) begin

231 // abs0

232 if(template0[ccnt]>block0[ccnt])

233 SAD_diffs0[ccnt] <= template0[ccnt] - block0[ccnt];

234 else

235 SAD_diffs0[ccnt] <= block0[ccnt] - template0[ccnt];

236 // abs1

237 if(template1[ccnt]>block1[ccnt])

238 SAD_diffs1[ccnt] <= template1[ccnt] - block1[ccnt];

239 else

240 SAD_diffs1[ccnt] <= block1[ccnt] - template1[ccnt];

241 // abs2

242 if(template2[ccnt]>block2[ccnt])

243 SAD_diffs2[ccnt] <= template2[ccnt] - block2[ccnt];

244 else

245 SAD_diffs2[ccnt] <= block2[ccnt] - template2[ccnt];

246 // abs3

247 if(template3[ccnt]>block3[ccnt])

248 SAD_diffs3[ccnt] <= template3[ccnt] - block3[ccnt];

249 else

250 SAD_diffs3[ccnt] <= block3[ccnt] - template3[ccnt];

251 // abs4

252 if(template4[ccnt]>block4[ccnt])

253 SAD_diffs4[ccnt] <= template4[ccnt] - block4[ccnt];

254 else

255 SAD_diffs4[ccnt] <= block4[ccnt] - template4[ccnt];

256 // abs5

257 if(template5[ccnt]>block5[ccnt])

258 SAD_diffs5[ccnt] <= template5[ccnt] - block5[ccnt];

259 else

260 SAD_diffs5[ccnt] <= block5[ccnt] - template5[ccnt];

261 // abs6

262 if(template6[ccnt]>block6[ccnt])

263 SAD_diffs6[ccnt] <= template6[ccnt] - block6[ccnt];

264 else

265 SAD_diffs6[ccnt] <= block6[ccnt] - template6[ccnt];

266

267 // increment through each index in all template and search rows

268 if(ccnt <( BLOCK_SIZE0))

269 ccnt <=ccnt+1’b1;

270 else

271 pipe <= 2’b01; // proceed to next stage of SAD

272 end

273

274 // ~~~~~~~~~~~~~~~~ sum(abs(template -block)) ~~~~~~~~~~~~~~~~

275 if(pipe == 2’b01) begin

276 if(cdcnt < BLOCK_SIZE) begin // 0 .. block_size -1

277 case(rdcnt) // sum(abs0 + abs1 + abs2 + abs3 + abs4 + abs5 + abs6) for all

columns within each row

278 0: temp0 <= SAD_diffs0[cdcnt] + SAD_diffs1[cdcnt] + SAD_diffs2[cdcnt] +

SAD_diffs3[cdcnt] + SAD_diffs4[cdcnt] + SAD_diffs5[cdcnt] +

SAD_diffs6[cdcnt ];

279 1: temp1 <= SAD_diffs0[cdcnt] + SAD_diffs1[cdcnt] + SAD_diffs2[cdcnt] +

SAD_diffs3[cdcnt] + SAD_diffs4[cdcnt] + SAD_diffs5[cdcnt] +

SAD_diffs6[cdcnt ];

280 2: temp2 <= SAD_diffs0[cdcnt] + SAD_diffs1[cdcnt] + SAD_diffs2[cdcnt] +

SAD_diffs3[cdcnt] + SAD_diffs4[cdcnt] + SAD_diffs5[cdcnt] +

SAD_diffs6[cdcnt ];
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281 3: temp3 <= SAD_diffs0[cdcnt] + SAD_diffs1[cdcnt] + SAD_diffs2[cdcnt] +

SAD_diffs3[cdcnt] + SAD_diffs4[cdcnt] + SAD_diffs5[cdcnt] +

SAD_diffs6[cdcnt ];

282 4: temp4 <= SAD_diffs0[cdcnt] + SAD_diffs1[cdcnt] + SAD_diffs2[cdcnt] +

SAD_diffs3[cdcnt] + SAD_diffs4[cdcnt] + SAD_diffs5[cdcnt] +

SAD_diffs6[cdcnt ];

283 5: temp5 <= SAD_diffs0[cdcnt] + SAD_diffs1[cdcnt] + SAD_diffs2[cdcnt] +

SAD_diffs3[cdcnt] + SAD_diffs4[cdcnt] + SAD_diffs5[cdcnt] +

SAD_diffs6[cdcnt ];

284 6: temp6 <= SAD_diffs0[cdcnt] + SAD_diffs1[cdcnt] + SAD_diffs2[cdcnt] +

SAD_diffs3[cdcnt] + SAD_diffs4[cdcnt] + SAD_diffs5[cdcnt] +

SAD_diffs6[cdcnt ];

285 endcase

286 end else begin // avg accross block width when one sum is done temp[

idx ]=[sum[idx ](0..7) /7]

287 case(rdcnt)

288 0: temp0 <= (temp0/BLOCK_SIZE);

289 1: temp1 <= (temp1/BLOCK_SIZE);

290 2: temp2 <= (temp2/BLOCK_SIZE);

291 3: temp3 <= (temp3/BLOCK_SIZE);

292 4: temp4 <= (temp4/BLOCK_SIZE);

293 5: temp5 <= (temp5/BLOCK_SIZE);

294 6: temp6 <= (temp6/BLOCK_SIZE);

295 endcase

296 end

297

298 // iterate through each colum within each row

299 if(cdcnt <BLOCK_SIZE)

300 cdcnt <=cdcnt+1’b1;

301 // after finishing all sums , reduce to an average value

302 else if(cdcnt == BLOCK_SIZE && rdcnt < BLOCK_SIZE0) begin

303 rdcnt <= rdcnt + 1’b1;

304 cdcnt <= 0;

305 // when finished , reset for next stage of SAD

306 end else begin

307 pipe <= 2’b10;

308 ccnt <= 3’b0;

309 rcnt <= 9’b0;

310 cdcnt <= 3’b0;

311 rdcnt <= 3’b0;

312 end

313 end

314

315 // ~~~~~~~~~~~~~~~~ sum(sum(abs(template -block))) ~~~~~~~~~~~~~~~~

316 if (pipe == 2’b10) begin // pipe = 2’b10

317 if(ccnt <3’b001) begin

318 SAD_vector[blockIndex] <= temp0+temp1+temp2+temp3+temp4+

temp5+temp6;

319 ccnt <= ccnt + 1’b1;

320 end

321 else begin

322 SAD_vector[blockIndex] <= SAD_vector[blockIndex ]/( BLOCK_SIZE

);

323 ccnt <= 3’b0;

324 pipe <= 2’b11;

325 end

326 end

327

328 // update SAD vector index (when full , proceed to finalization)

329 // this index represents the position of the current search block

330 // in relation to the template block (0-19 for a 20px disparity search)

331 if(dcnt < maxd && pipe == 2’b11) begin

332 dcnt <= dcnt + 1’b1; // number of searches performed

333 blockIndex <= dcnt - mind; // index in SAD_vector

334 end

335

336 // update cols & rows processed by the algorithm after comparing

337 // SEARCH_RANGE search blocks to the current template
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338 if (next_state == FINALIZE) begin

339 scnt <= 6’b0;

340 pipe <= 2’b00;

341

342 // increment accross each row of pixels

343 if(col_count < (WIDTH -( HALF_BLOCK +1’b1)))

344 col_count <= col_count + 1’b1;

345 // increment through all rows if NOT performing a line search

346 else if (~sw && col_count == (WIDTH -( HALF_BLOCK +1’b1)) && row_count

< HEIGHT) begin

347 row_count <= row_count + 1’b1;

348 col_count <= 9’b0;

349 end

350 // increment through two rows if performing a line search

351 else if (sw && col_count == (WIDTH -( HALF_BLOCK +1’b1)) && row_count < 9’d145)

begin

352 if(row_count < 9’d144)

353 row_count <= 9’d144;

354 else

355 row_count <= row_count + 1’b1;

356 col_count <= 9’b0;

357 end

358

359 // full disparity search complete when all rows and cols have been

processed

360 if(~sw && col_count == (WIDTH -( HALF_BLOCK +1’b1)) && row_count ==

HEIGHT)

361 done <= 1’b1;

362 // line disparity search complete when two most central rows and

cols have been processed

363 else if (sw && col_count == (WIDTH -( HALF_BLOCK +1’b1)) && row_count

>= 9’d145)

364 done <= 1’b1;

365 // if neither search is complete , allow for the FSM to keep cycling

366 else

367 done <= 1’b0;

368 end

369

370 // reset for a new SAD sequence if there are more search blocks to compare

to the template

371 if (next_state == SEPARATE) begin

372 ccnt <= 3’b0;

373 rcnt <= 9’b0;

374 cdcnt <= 3’b0;

375 rdcnt <= 3’b0;

376 pipe <= 2’b00;

377 end

378 end

379

380 FINALIZE:

381 begin

382 dcnt <= 9’b0;

383 // search for index of min value in SAD_vector

384 // this index corresponds to the pixel offset between the template

385 // block and the closest matching search block

386 if(scnt <numBlocks) begin

387 // value at idx=0 will always be the lowest value to start ...

388 if(scnt == 6’b0) begin

389 min <= SAD_vector [0];

390 index <= 8’h00;

391 end

392 // update this value and its index while incrementing through ...

393 else if(SAD_vector[scnt]<min) begin

394 min <= SAD_vector[scnt];

395 index <= scnt;

396 end

397 scnt <= scnt + 1’b1;

398 end
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399

400 // place disparity value in output image array after finding the index

401 else begin

402 if(sw == 1’b0) // use disparity values when in full search mode

403 result_data <= index;

404 else // use depth values when in line mode

405 // in this case I sum 8 pixel values accross two lines for every output

pixel

406 // non -zero pixel value on any col other than 1st

407 if(index > 0 && pipe > 2’b00)

408 line <= line + (FB/index);

409 // non -zero pixel value on first column of pixels

410 else if (index > 0)

411 line <= (FB/index);

412 // zero pixel value on first row of pixels

413 else if (row_count == 9’d144 && pipe <= 2’b00)

414 line <= 8’h00;

415 // zero pixel value in any other location

416 else

417 line = line;

418

419 // count through 4 pixels for each iteration of line mode

420 pipe <= pipe + 1’b1; //pipe <= 2’b11; // was 2’b11 , changed to add a little

extra time

421 end

422 end

423 endcase

424

425 // single line pixel buffer

426 line_bram linebuf (

427 .clka(clk), // input wire clka

428 .wea(pipe == 2’b11 && sw && row_count == 9’d144),// input wire [0 : 0] wea

429 .addra(col_count [8:2]) , // addra will increment every 4 pixels

430 .dina(line >>3), // dina is the sum of 8 depth values / 8

431 .clkb(clk), // input wire clkb

432 .addrb(lineaddr), // line address from top -level display logic

433 .doutb(lineout) // depth value to top -level display logic

434 );

435

436 // disparity value output buffer write enable

437 assign result_wea = (current_state == FINALIZE && scnt == (numBlocks)) ? 1’b1 : 1’b0;

438

439 // result address

440 always @(posedge clk)

441 result_addr = ((WIDTH+1’b1)*row_count)+col_count;

442

443 // left image buffer read address (for template block)

444 always @(posedge clk)

445 laddr = (( WIDTH+1’b1)*(minr+rcnt))+( t_minc+ccnt);

446

447 // right image buffer read address (for search block)

448 always @(posedge clk)

449 raddr = (( WIDTH+1’b1)*(minr+rcnt))+( b_minc+ccnt);

450

451 // assign disparity block search bounds

452 always @(row_count ,col_count ,t_maxc ,maxd ,mind ,dcnt)

453 begin

454 minr = (0 > $signed(row_count - HALF_BLOCK)) ? 9’b0 : (row_count -

HALF_BLOCK);

455 maxr = (( HEIGHT) < (row_count + HALF_BLOCK)) ? HEIGHT : (row_count +

HALF_BLOCK);

456 t_minc = (0 > $signed(col_count - HALF_BLOCK)) ? 9’b0 : (col_count -

HALF_BLOCK);

457 t_maxc = ((WIDTH) < (col_count + HALF_BLOCK)) ? WIDTH : (col_count +

HALF_BLOCK);

458 b_minc =(0 > $signed(dcnt - HALF_BLOCK+col_count)) ? 9’b0 : (dcnt -

HALF_BLOCK + col_count);

459 b_maxc = ((WIDTH) < (dcnt + HALF_BLOCK)) ? WIDTH : (dcnt + col_count +

143



HALF_BLOCK);

460 end

461

462 // assign disparity search bounds

463 always @(t_maxc ,maxd ,mind ,current_state)

464 begin

465 mind = 6’b0; // or = max(-SEARCH_RANGE , 1-t_minc)

466 if (current_state == READ)

467 maxd = SEARCH_RANGE;

468 else if(current_state == FINALIZE)

469 maxd = (SEARCH_RANGE < ((WIDTH) - t_maxc)) ? SEARCH_RANGE : (( WIDTH)

- t_maxc);

470 numBlocks = maxd - mind;

471 end

472

473 // current state indicator LED

474 assign state_LED = current_state;

475

476 endmodule

VGA Controller Module by Digilent:

1 ------------------------------------------------------------------------

2 -- vga_controller_640_60.vhd

3 ------------------------------------------------------------------------

4 -- Author : Ulrich Zoltan

5 -- Copyright 2006 Digilent , Inc.

6 ------------------------------------------------------------------------

7 -- Software version : Xilinx ISE 7.1.04i

8 -- WebPack

9 -- Device : 3s200ft256 -4

10 ------------------------------------------------------------------------

11 -- This file contains the logic to generate the synchronization signals ,

12 -- horizontal and vertical pixel counter and video disable signal

13 -- for the 640 x480@60Hz resolution.

14 ------------------------------------------------------------------------

15 -- Behavioral description

16 ------------------------------------------------------------------------

17 -- Please read the following article on the web regarding the

18 -- vga video timings:

19 -- http ://www.epanorama.net/documents/pc/vga_timing.html

20

21 -- This module generates the video synch pulses for the monitor to

22 -- enter 640 x480@60Hz resolution state. It also provides horizontal

23 -- and vertical counters for the currently displayed pixel and a blank

24 -- signal that is active when the pixel is not inside the visible screen

25 -- and the color outputs should be reset to 0.

26

27 -- timing diagram for the horizontal synch signal (HS)

28 -- 0 648 744 800 (pixels)

29 -- -------------------------|______|-----------------

30 -- timing diagram for the vertical synch signal (VS)

31 -- 0 482 484 525 (lines)

32 -- -----------------------------------|______|-------

33

34 -- The blank signal is delayed one pixel clock period (40ns) from where

35 -- the pixel leaves the visible screen , according to the counters , to

36 -- account for the pixel pipeline delay. This delay happens because

37 -- it takes time from when the counters indicate current pixel should

38 -- be displayed to when the color data actually arrives at the monitor

39 -- pins (memory read delays , synchronization delays).

40 ------------------------------------------------------------------------

41 -- Port definitions

42 ------------------------------------------------------------------------

43 -- rst - global reset signal

44 -- pixel_clk - input pin , from dcm_25MHz
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45 -- - the clock signal generated by a DCM that has

46 -- - a frequency of 25MHz.

47 -- HS - output pin , to monitor

48 -- - horizontal synch pulse

49 -- VS - output pin , to monitor

50 -- - vertical synch pulse

51 -- hcount - output pin , 11 bits , to clients

52 -- - horizontal count of the currently displayed

53 -- - pixel (even if not in visible area)

54 -- vcount - output pin , 11 bits , to clients

55 -- - vertical count of the currently active video

56 -- - line (even if not in visible area)

57 -- blank - output pin , to clients

58 -- - active when pixel is not in visible area.

59 ------------------------------------------------------------------------

60 -- Revision History:

61 -- 09/18/2006( UlrichZ): created

62 ------------------------------------------------------------------------

63

64 library IEEE;

65 use IEEE.STD_LOGIC_1164.ALL;

66 use IEEE.STD_LOGIC_ARITH.ALL;

67 use IEEE.STD_LOGIC_UNSIGNED.ALL;

68

69 -- simulation library

70 library UNISIM;

71 use UNISIM.VComponents.all;

72

73 -- the vga_controller_640_60 entity declaration

74 -- read above for behavioral description and port definitions.

75 entity vga_controller_640_60 is

76 port(

77 rst : in std_logic;

78 pixel_clk : in std_logic;

79

80 HS : out std_logic;

81 VS : out std_logic;

82 hcount : out std_logic_vector (10 downto 0);

83 vcount : out std_logic_vector (10 downto 0);

84 blank : out std_logic

85 );

86 end vga_controller_640_60;

87

88 architecture Behavioral of vga_controller_640_60 is

89

90 ------------------------------------------------------------------------

91 -- CONSTANTS

92 ------------------------------------------------------------------------

93

94 -- maximum value for the horizontal pixel counter

95 constant HMAX : std_logic_vector (10 downto 0) := "01100100000"; -- 800

96 -- maximum value for the vertical pixel counter

97 constant VMAX : std_logic_vector (10 downto 0) := "01000001101"; -- 525

98 -- total number of visible columns

99 constant HLINES: std_logic_vector (10 downto 0) := "01010000000"; -- 640

100 -- value for the horizontal counter where front porch ends

101 constant HFP : std_logic_vector (10 downto 0) := "01010001000"; -- 648

102 -- value for the horizontal counter where the synch pulse ends

103 constant HSP : std_logic_vector (10 downto 0) := "01011101000"; -- 744

104 -- total number of visible lines

105 constant VLINES: std_logic_vector (10 downto 0) := "00111100000"; -- 480

106 -- value for the vertical counter where the front porch ends

107 constant VFP : std_logic_vector (10 downto 0) := "00111100010"; -- 482

108 -- value for the vertical counter where the synch pulse ends

109 constant VSP : std_logic_vector (10 downto 0) := "00111100100"; -- 484

110 -- polarity of the horizontal and vertical synch pulse

111 -- only one polarity used , because for this resolution they coincide.

112 constant SPP : std_logic := ’0’;
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113

114 ------------------------------------------------------------------------

115 -- SIGNALS

116 ------------------------------------------------------------------------

117

118 -- horizontal and vertical counters

119 signal hcounter : std_logic_vector (10 downto 0) := (others => ’0’);

120 signal vcounter : std_logic_vector (10 downto 0) := (others => ’0’);

121

122 -- active when inside visible screen area.

123 signal video_enable: std_logic;

124

125 begin

126

127 -- output horizontal and vertical counters

128 hcount <= hcounter;

129 vcount <= vcounter;

130

131 -- blank is active when outside screen visible area

132 -- color output should be blacked (put on 0) when blank in active

133 -- blank is delayed one pixel clock period from the video_enable

134 -- signal to account for the pixel pipeline delay.

135 blank <= not video_enable when rising_edge(pixel_clk);

136

137 -- increment horizontal counter at pixel_clk rate

138 -- until HMAX is reached , then reset and keep counting

139 h_count: process(pixel_clk)

140 begin

141 if(rising_edge(pixel_clk)) then

142 if(rst = ’1’) then

143 hcounter <= (others => ’0’);

144 elsif(hcounter = HMAX) then

145 hcounter <= (others => ’0’);

146 else

147 hcounter <= hcounter + 1;

148 end if;

149 end if;

150 end process h_count;

151

152 -- increment vertical counter when one line is finished

153 -- (horizontal counter reached HMAX)

154 -- until VMAX is reached , then reset and keep counting

155 v_count: process(pixel_clk)

156 begin

157 if(rising_edge(pixel_clk)) then

158 if(rst = ’1’) then

159 vcounter <= (others => ’0’);

160 elsif(hcounter = HMAX) then

161 if(vcounter = VMAX) then

162 vcounter <= (others => ’0’);

163 else

164 vcounter <= vcounter + 1;

165 end if;

166 end if;

167 end if;

168 end process v_count;

169

170 -- generate horizontal synch pulse

171 -- when horizontal counter is between where the

172 -- front porch ends and the synch pulse ends.

173 -- The HS is active (with polarity SPP) for a total of 96 pixels.

174 do_hs: process(pixel_clk)

175 begin

176 if(rising_edge(pixel_clk)) then

177 if(hcounter >= HFP and hcounter < HSP) then

178 HS <= SPP;

179 else

180 HS <= not SPP;
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181 end if;

182 end if;

183 end process do_hs;

184

185 -- generate vertical synch pulse

186 -- when vertical counter is between where the

187 -- front porch ends and the synch pulse ends.

188 -- The VS is active (with polarity SPP) for a total of 2 video lines

189 -- = 2*HMAX = 1600 pixels.

190 do_vs: process(pixel_clk)

191 begin

192 if(rising_edge(pixel_clk)) then

193 if(vcounter >= VFP and vcounter < VSP) then

194 VS <= SPP;

195 else

196 VS <= not SPP;

197 end if;

198 end if;

199 end process do_vs;

200

201 -- enable video output when pixel is in visible area

202 video_enable <= ’1’ when (hcounter < HLINES and vcounter < VLINES) else ’0’;

203

204 end Behavioral;
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D.iv Programmable Software

Programmable Software for the Zynq7 Processing System:

1 I#include <stdio.h>

2 #include "platform.h"

3 #include "xil_printf.h"

4 #include "xil_io.h"

5 #include "xbasic_types.h"

6 #include "xparameters.h"

7 #include "xiicps.h"

8 #include "xgpiops.h"

9 #include "xspips.h" /* SPI device driver */

10 #include <math.h>

11

12 //I2C config params

13 #define IIC_DEVICE_ID XPAR_XIICPS_0_DEVICE_ID

14 #define IIC_SCLK_RATE 100000

15 #define PAGE_SIZE 16

16 // camera I2C addresses

17 #define CAM1_ADDR 0x48

18 #define CAM2_ADDR 0x58

19 // camera I2C write addresses

20 #define REG_LOCK 0xFE

21 #define CAMERA_CTL 0x07

22 // camera I2C write values

23 #define MANUAL_TRIG 0x0198

24 #define LOCKED 0xDEAD

25 #define UNLOCKED 0xBEEF

26 // I2C address size

27 typedef u8 AddressType;

28

29 // Zynq SPI device ID

30 #define SPI_DEVICE_ID XPAR_XSPIPS_0_DEVICE_ID

31 // SPI addresses to read to / write from

32 #define READ 0x80 /*OR*/

33 #define WRITE 0x7F /*AND*/

34 #define CTL1 0x20

35 #define CTL2 0x21

36 #define CTL3 0x22

37 #define STATUS_ADDRESS 0x27

38 #define DATA_ADDRESS 0x28

39 #define OFFSET_ADDRESS_XLOW 0x05

40 #define OFFSET_ADDRESS_XHIGH 0x06

41 #define OFFSET_ADDRESS_YLOW 0x07

42 #define OFFSET_ADDRESS_YHIGH 0x08

43 #define CASCADE 0x60

44

45 #define PI 3.14159265

46 #define DEGREES_PER_STEP 0.3515625 // 360 degrees /1024 steps = 0.3515625

47 #define MAGNETOMETER_SENSITIVITY 0.00014 // +/- 4 gauss

48

49 // create a new SPI instance

50 static XSpiPs SpiInstance;

51 // create a new GPIO instance

52 static XGpioPs Gpio;

53 static XIicPs IicInstance; /* The instance of the IIC device. */

54

55 int xOffset , yOffset;

56 int xData , yData;

57

58 typedef enum

59 {

60 WAIT = 0,

61 TX_COMMAND = 1,

62 RX_DATA = 2
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63 }UART_STATE;

64

65 // function prototype for camera initialization fxn

66 void init_cams ();

67

68 void delay(int cycles);

69 void IMU_init ();

70 int getIMUdata ();

71 double getCompassHeading ();

72 double getStepOffset(double compassHeading);

73

74 int main()

75 {

76 init_platform ();

77

78 char echo [11];

79 char status [2];

80 char databuf [65][24];

81 char databufbuf [3];

82 char linefeed [4];

83

84 echo [10] = ’\0’;

85 databufbuf [2] = ’\0’;

86

87 Xuint32 *baseaddr_p = (Xuint32 *) XPAR_CUSTOM_LOGIC_S00_AXI_BASEADDR;

88

89 u32 data_enable_step;

90 u32 write;

91 u32 stepbuf;

92

93 char *echotestnl = "G00076801\n";

94 char *echotestlf = "G00076801\r";

95

96 UART_STATE STATE = WAIT;

97

98 // setup LED output

99 XGpioPs_Config * ConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);

100 XGpioPs_CfgInitialize (&Gpio , ConfigPtr , ConfigPtr ->BaseAddr);

101 XGpioPs_SetDirectionPin (&Gpio , 7, 1);

102 // initialize cameras using I2C

103 init_cams ();

104

105 int Status;

106 // initialize SPI

107 XSpiPs_Config *SpiConfig;

108 SpiConfig = XSpiPs_LookupConfig(SPI_DEVICE_ID);

109 // initialize the spi hardware with the device config

110 Status = XSpiPs_CfgInitialize (& SpiInstance , SpiConfig , SpiConfig ->BaseAddress);

111 // Set the Spi device as a master

112 XSpiPs_SetOptions (& SpiInstance , XSPIPS_MASTER_OPTION | XSPIPS_CLK_PHASE_1_OPTION |

XSPIPS_FORCE_SSELECT_OPTION);

113 // Set the SPI clock prescaler

114 XSpiPs_SetClkPrescaler (& SpiInstance , XSPIPS_CLK_PRESCALE_256);

115 // initialize the imu

116 IMU_init ();

117

118 int deviceStepOffset = 0;

119

120

121 // Continuously run rangefinder state machine after initialization is complete

122 while (1)

123 {

124 switch(STATE)

125 {

126 // Wait until the PL indicates that it wants new rangefinder data

127 case WAIT:

128 {

129 // blocks until the flag is set (from PL) to initiate data transfer
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130 while(Xil_In32(baseaddr_p) == 0);

131 while(getIMUdata ()==0);

132 deviceStepOffset = (int) round(getStepOffset(getCompassHeading ()));

133

134 STATE = TX_COMMAND;

135 break;

136 }

137 // Call to the rangedfinder for a new round of data acquisition

138 case TX_COMMAND:

139 {

140 printf("G00076801\n"); // data acquisition command

141 STATE = RX_DATA;

142 break;

143 }

144 // Process incoming data from the rangefinder byte by byte

145 case RX_DATA:

146 {

147 int rx_index = 0; // indexes rows

148 int rx_line = 0; // indexes columns - counts which data line is being

received

149

150 // receives echo

151 for(rx_index = 0; rx_index < 10; rx_index ++)

152 {

153 echo[rx_index] = inbyte (); // blocking - inbyte is polled

154 }

155

156 // makes sure the echo command is successful

157 // if not , it repeats the tx_command state

158 if(strcmp(echo , echotestnl) != 0 && strcmp(echo , echotestlf) != 0)

159 {

160 STATE = WAIT;

161 break;

162 }

163

164 // receives status

165 for(rx_index = 0; rx_index < 2; rx_index ++)

166 {

167 status[rx_index] = inbyte (); // blocking - inbyte is polled

168 }

169

170 int iteration = 0;

171

172 // receives 24 data blocks

173 stepbuf = deviceStepOffset; // deviceStepOffset;

174 for(rx_line = 0; rx_line < 24; rx_line ++)

175 {

176 iteration = 0;

177 // receives 65 bytes per block

178 for(rx_index = 0; rx_index < 65; rx_index ++)

179 {

180 iteration ++;

181 databuf[rx_line ][ rx_index] = inbyte (); // blocking - inbyte is

polled

182 write = 0;

183 databufbuf [1-( iteration %2)] = databuf[rx_line ][ rx_index ];

184

185 // process data two chars at a time

186 if(iteration %2 == 0)

187 {

188 //’enables ’ data in memory when the data is not an error code

189 if(!( strcmp(databufbuf [0], ’0’) == 0 && strcmp(databufbuf [1], ’C

’) <= 0))

190 write = 1;

191 stepbuf ++;

192 }

193

194 //sends information to the programmable logic for each data point (2
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chars)

195 //in the order of {data , enable , step}

196 // data_enable_step = (400 << 20) | (400 << 12) | (write << 11) |

stepbuf;

197 data_enable_step = (databufbuf [1] << 20) | (databufbuf [0] << 12) | (

write << 11) | stepbuf;

198 *( baseaddr_p +1) = data_enable_step;

199

200 }

201 }

202

203 iteration = 0;

204 // account for 4 chars of data after step data has been sent

205 for(rx_index = 0; rx_index < 4; rx_index ++)

206 {

207 linefeed[rx_index] = inbyte (); // blocking - inbyte is polled

208 }

209

210 echo [0] = ’\0’;

211

212 STATE = WAIT;

213 break;

214 }

215 }

216 }

217 cleanup_platform ();

218 return 0;

219 }

220

221 void init_cams ()

222 {

223 // number of bytes to be written from write buffer

224 u8 ByteCount = 4;

225 // Create and fill write buffer with ByteCount bytes of data

226 u8 WriteBuffer[sizeof(AddressType) + PAGE_SIZE ];

227 WriteBuffer [0] = (u8) (CAM1_ADDR); // camera 1 I2C address

228 WriteBuffer [1] = (u8) (CAMERA_CTL); // camera control register

229 WriteBuffer [2] = (u8) (MANUAL_TRIG >> 8); // 16 bit write value (upper byte)

230 WriteBuffer [3] = (u8) (MANUAL_TRIG); // 16 bit write value (lower byte)

231

232 XIicPs_Config *ConfigPtr;

233 int Status;

234

235 // Look up Zynq -specific IIC device configuration

236 ConfigPtr = XIicPs_LookupConfig(IIC_DEVICE_ID);

237 // Initialize said device -specific iic configuration so the driver is ready for use

238 Status = XIicPs_CfgInitialize (& IicInstance , ConfigPtr , ConfigPtr ->BaseAddress);

239 // Run a self test to make sure the driver works (will return XST_SUCCESS if working)

240 Status = XIicPs_SelfTest (& IicInstance);

241 // Set iic SCLK rate (bus now ready for use)

242 XIicPs_SetSClk (& IicInstance , IIC_SCLK_RATE);

243

244 // Initialize Cam1

245 XIicPs_MasterSendPolled (& IicInstance , WriteBuffer , ByteCount ,CAM1_ADDR);

246 while(XIicPs_BusIsBusy (& IicInstance));

247

248 // Initialize Cam2

249 WriteBuffer [0] = (u8) (CAM2_ADDR); // change write address to cam2

250 XIicPs_MasterSendPolled (& IicInstance , WriteBuffer , ByteCount ,CAM2_ADDR);

251 while(XIicPs_BusIsBusy (& IicInstance));

252

253 // Write LED to indicate finished initialization sequence

254 XGpioPs_WritePin (&Gpio , 7, 0x01);

255 }

256

257 void delay(int cycles)

258 {

259 int i = 0;
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260 while(i<cycles)

261 i++;

262 return;

263 }

264

265 void IMU_init ()

266 {

267 u8 DataBuffer [2]; // addr + 8 bits write val

268 // high power mode

269 DataBuffer [0] = (u8) CTL1 & WRITE;

270 DataBuffer [1] = (u8) 0x7C;

271 // ONLY SET SLAVE SELECT ON THE 1ST TRANSFER

272 XSpiPs_SetSlaveSelect (& SpiInstance ,0x01);

273 XSpiPs_PolledTransfer (& SpiInstance , DataBuffer , NULL , 2);

274 delay (500);

275

276 DataBuffer [0] = (u8) CTL2 & WRITE;

277 DataBuffer [1] = (u8) 0x00;

278 XSpiPs_PolledTransfer (& SpiInstance , DataBuffer , NULL , 2);

279 delay (500);

280

281 // turn on the device

282 DataBuffer [0] = (u8) CTL3 & WRITE;

283 DataBuffer [1] = (u8) 0x80;

284 XSpiPs_PolledTransfer (& SpiInstance , DataBuffer , NULL , 2);

285 delay (250);

286

287 return;

288 }

289

290 int getIMUdata ()

291 {

292

293 int newDataReady = 0;

294

295 // check status address

296 u8 DataBuffer [2]; // addr + 8 bits read val

297 DataBuffer [0] = (u8) STATUS_ADDRESS | READ;

298 DataBuffer [1] = (u8) 0x00;

299 XSpiPs_PolledTransfer (& SpiInstance , DataBuffer , &DataBuffer [0], 2);

300

301 // if XY data’s available , indicate so and grab it

302 if (( DataBuffer [1] & 0x03) == 0x03) {

303

304 // grabs x and y magnetometer environmental offset

305 u8 XYoffset [5];

306 XYoffset [0] = (u8) OFFSET_ADDRESS_XLOW | CASCADE | READ;

307 XYoffset [1] = (u8) 0x00;

308 XYoffset [2] = (u8) 0x00;

309 XYoffset [3] = (u8) 0x00;

310 XYoffset [4] = (u8) 0x00;

311 XSpiPs_PolledTransfer (& SpiInstance , XYoffset , &XYoffset [0], 5);

312 xOffset = (XYoffset [2]<<8) | XYoffset [1];

313 yOffset = (XYoffset [4]<<8) | XYoffset [3];

314

315 // grabs x and y magnetometer data

316 u8 XYdata [5];

317 XYdata [0] = (u8) DATA_ADDRESS | CASCADE | READ;

318 XYdata [1] = (u8) 0x00;

319 XYdata [2] = (u8) 0x00;

320 XYdata [3] = (u8) 0x00;

321 XYdata [4] = (u8) 0x00;

322 XSpiPs_PolledTransfer (& SpiInstance , XYdata , &XYdata [0], 5);

323 xData = (XYdata [2]<<8) | XYdata [1];

324 yData = (XYdata [4]<<8) | XYdata [3];

325

326

327 if(XYdata [2] >= 0x80)
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328 xData = (xData - 65535) + 1;

329 if(XYdata [4] >= 0x80)

330 yData = (yData - 65535) + 1;

331

332 newDataReady = 1;

333 }

334

335 return newDataReady;

336 }

337

338 // translates magnetometer data into a compass heading

339 double getCompassHeading ()

340 {

341 // subtracts the environmental interference from the data

342 // int xMagnetometer = xData - xOffset;

343 // int yMagnetometer = yData - yOffset;

344

345 // compass heading in degrees

346 double compassHeading = atan2(( double)yData , (double)xData) * (double)(180/ PI);

347

348 return compassHeading;

349 }

350

351 // converts compass heading to a step offset from north for rangefinder data

352 double getStepOffset(double compassHeading)

353 {

354 if(compassHeading < 0)

355 compassHeading = 360 + compassHeading;

356

357 double stepOffset = compassHeading / DEGREES_PER_STEP;

358

359 return stepOffset;

360 }
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D.v LUT Initialization Code for Transformation from Polar to Cartesian

Coefficient File for 0◦ ≤ θ ≤ 45◦:

1 ; COE initialization file 1.

2 ; 13-bit wide , 129 deep coordinate vector.

3

4 memory_initialization_radix = 10

5 memory_initialization_vector =

6 4096, 4096, 4096, 4095, 4095, 4094, 4093, 4092, 4091, 4090, 4088, 4087,

4085, 4083, 4081, 4079, 4076, 4074, 4071, 4068, 4065, 4062, 4059, 4055,

4052, 4048, 4044, 4040, 4036, 4031, 4027, 4022, 4017, 4012, 4007,

4002, 3996, 3991, 3985, 3979, 3973, 3967, 3961, 3954, 3948, 3941, 3934,

3927, 3920, 3912, 3905, 3897, 3889, 3881, 3873, 3865, 3857, 3848,

3839, 3831, 3822, 3812, 3803, 3794, 3784, 3775, 3765, 3755, 3745, 3734,

3724, 3713, 3703, 3692, 3681, 3670, 3659, 3647, 3636, 3624, 3612,

3600, 3588, 3576, 3564, 3551, 3539, 3526, 3513, 3500, 3487, 3474, 3461,

3447, 3433, 3420, 3406, 3392, 3378, 3363, 3349, 3334, 3320, 3305,

3290, 3275, 3260, 3244, 3229, 3214, 3198, 3182, 3166, 3150, 3134, 3118,

3102, 3085, 3068, 3052, 3035, 3018, 3001, 2984, 2967, 2949, 2932,

2914, 2896

Coefficient File for 45◦ ≤ θ ≤ 90◦:

1 ; COE initialization file.

2 ; 13-bit wide , 129 deep coordinate vector.

3

4 memory_initialization_radix = 10

5 memory_initialization_vector =

6 2896, 2878, 2861, 2843, 2824, 2806, 2788, 2769, 2751, 2732, 2713, 2694,

2675, 2656, 2637, 2618, 2598, 2579, 2559, 2540, 2520, 2500, 2480, 2460,

2440, 2420, 2399, 2379, 2359, 2338, 2317, 2296, 2276, 2255, 2234,

2213, 2191, 2170, 2149, 2127, 2106, 2084, 2062, 2041, 2019, 1997, 1975,

1953, 1931, 1909, 1886, 1864, 1842, 1819, 1797, 1774, 1751, 1729,

1706, 1683, 1660, 1637, 1614, 1591, 1567, 1544, 1521, 1498, 1474, 1451,

1427, 1404, 1380, 1356, 1332, 1309, 1285, 1261, 1237, 1213, 1189,

1165, 1141, 1117, 1092, 1068, 1044, 1020, 995, 971, 946, 922, 897, 873,

848, 824, 799, 774, 750, 725, 700, 675, 651, 626, 601, 576, 551, 526,

501, 476, 451, 426, 401, 376, 351, 326, 301, 276, 251, 226, 201, 176,

151, 126, 101, 75, 50, 25, 0
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