
MQP GXS-0701

Grid Portal Application

submitted the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Montana Foertsch

Date:

Michael Rawdon

Date:

Richard Skowyra

Date:

Professor Gábor Sárközy, project advisor

Professor Stanley Selkow, project co-advisor

 2

Abstract
 This project concerns EMMIL (E-Marketplace Model Integrated with Logistics)

and its viability as a grid application. The model was evaluated on a single processor and

on the SEEGRID network using MTA-SZTAKI’s P-GRADE Portal. A granularity

heuristic was developed to guide the mapping of EMMIL datasets to processes. A portlet

for P-GRADE Portal was also created to aid in data entry. Finally, pre-processing filters

were added. These were designed to discard useless combinations and reduce overall

computing time.

 3

Acknowledgements

 We would like to thank WPI and MTA-SZTAKI for providing us the opportunity

to live and work in Budapest for seven weeks. We would further like to thank all

members of the Laboratory for Parallel and Distributed Systems for their continued

support and willingness to speak English when we were nearby. Drs. Péter and Livia

Kacsuk did an exceptional job overseeing and guiding the direction of our project. Miklos

Kozlovszky provided excellent counsel, and Gabor Hermann devoted many hours to

assisting us in technical matters. Finally, we would like to thank Professors Gábor

Sárközy and Stanley Selkow for making our presence here possible, and for the guidance

they provided throughout the course of this project.

 4

Table of Contents

1 Project Statement.. 7

2 Background .. 8

2.1 Grid Systems ... 8

2.1.1 History.. 9

2.1.2 Uses .. 10

2.2 Problems in Grid Development... 12

2.2.1 Resource Management ... 13

2.2.2 Load Balancing .. 14

2.2.3 Information Management... 14

2.2.4 Quality of Service... 15

2.3 Components of a Grid System .. 16

2.3.1 Application Layer... 16

2.3.2 Middleware Layers... 22

2.3.3 Fabric Layer ... 25

2.4 Grid Architecture and Technology.. 25

2.4.1 Parallel Processing ... 26

2.4.2 Globus Toolkit.. 30

2.4.3 Condor.. 34

2.5 EMMIL.. 36

2.5.1 EMMIL and Grid Systems ... 37

3 Methodology .. 38

3.1 EMMIL Implementation ... 39

3.1.1 EMMIL Algorithm... 39

3.1.2 Implemented Model ... 41

3.1.3 Gridification ... 44

3.2 EMMIL Grid Application Feasibility Testing .. 48

3.2.1 Single-Processor Testing.. 48

3.2.2 Grid-Based Testing .. 49

3.3 EMMIL Data Input Portlet.. 52

3.4 EMMIL Enhancement... 53

3.4.1 Product Capacity Filtering ... 54

3.4.2 Hopeless Job Filtering.. 55

4 Implementation and Results ... 57

4.1 EMMIL Grid Application Feasibility Testing .. 57

4.1.1 Single-Processor Testing.. 57

4.1.2 Grid-Based Testing .. 62

4.2 EMMIL Data Input Portlet.. 66

4.3 EMMIL Enhancement... 68

4.3.1 Product Capacity Filtering ... 69

4.3.2 Hopeless Job Filtering.. 69

5 Conclusions and Future Work.. 71

5.1 EMMIL Grid Application Feasibility Testing .. 71

5.1.1 Single-Processor Testing.. 71

5.1.2 Grid-Based Testing .. 72

 5

5.2 EMMIL Data Input Portlet.. 75

5.3 EMMIL Enhancement... 75

6 Bibliography... 78

Appendix I: Single-Processor Test Data ... 80

Appendix II: Grid-Based Test Data .. 81

Appendix III: Combinations.. 86

 6

Table of Figures
Figure 1 - Workflow Portal Classification [17] .. 18

Figure 2 - Layered Grid Architecture [7] .. 22

Figure 3 - GT4 Monitoring and Discovery [8].. 33

Figure 4 - Condor and Globus [26] .. 34

Figure 5 - Condor HTC Kernel [26].. 35

Figure 6 - Variables Used.. 40

Figure 7 - Workflow Manager .. 45

Figure 8 - Workflow Editor... 46

Figure 9 - Generator Properties... 47

Figure 10 - JDL Editor .. 47

Figure 11 - Generator Port Properties ... 48

Figure 12 - Example Product Capacities... 54

Figure 13- Hopeless Jobs .. 55

Figure 14 - Selected Sellers Job Time... 58

Figure 15 - Selected Sellers Run Time.. 58

Figure 16 - Container Size .. 59

Figure 17 - Container Size and Selected Sellers (Job Time)... 60

Figure 18 - Container Size and Selected Sellers (Total Time).. 61

Figure 19 - Product and Order Quantity.. 61

Figure 20 - Granularity Results... 63

Figure 21 - Granularity Tests .. 65

Figure 22 - EMMIL Data Entry .. 66

Figure 23 - Mean and Standard Deviation Entry .. 67

Figure 24 - Costs and Capacity ... 68

Figure 25 - Unit Costs ... 70

Figure 26 - Hopeless Discards .. 70

Figure 27 - Granularity.. 73

 7

1 Project Statement
As much commerce becomes increasingly electronic, new marketplaces are necessary

to ensure rapid and efficient transactions. Services such as Amazon.com and E-Bay have

rapidly developed to facilitate such interactions between consumers and producers.

However, business-to-business e-marketplaces are still an emerging field. A variety of

factors, such as the quantity difference between retail and commercial orders, the nature

of the products involved, and the relationship between buyers and sellers prevents a

simple recycling of existing consumer models in many cases.

Specifically, methods are needed for automating the selection of sellers and shippers

involved in a specific buy order. The E-Marketplace Model Integrated with Logistics

(EMMIL) developed by Dr Livia Kacsukné Bruckner of Budapest International Business

School is one such approach. In this model, a buyer places a buy order for an arbitrary

number of products at arbitrary quantities. The system will then compute the best

combination of sellers and logistics providers (shippers), attempting to minimize the total

price paid [3]. (For a more in-depth explanation, see Section 2.5.) However, linear

computations must be performed over many combinations of sellers, products, and

shippers. On a single processor this might take an infeasible amount of time to arrive at

an acceptable solution. Since the same algorithm is being applied to many sets of

parameters, however, the problem lends itself to parallelization.

Our group worked with researchers at MTA-SZTAKI to implement a prototype

EMMIL grid application. In addition, we had three independent objectives. First, the

feasibility of using computational grids as an infrastructure for EMMIL marketplaces was

determined through both single-processor and grid-based testing. Second, we created a

 8

portlet for P-GRADE portal to aid in rapid EMMIL data entry. Lastly, enhancements

were made to the preprocessing algorithms in the EMMIL application. Product capacity

limits were added, and a system of detecting and discarding hopeless combinations of

seller, product, and shipper was implemented.

2 Background
Before discussing the methodology and results behind our project, some background

information on both grid systems and the EMMIL model may be necessary. If the reader

is already well-versed in these topics, this section may be considered optional. No data

specific to our project are presented until Section 3. The origins and uses of grid systems

are considered first, in Section 2.1. Problems that have arisen during their development

and use are touched upon in Section 2.2. Next, a general overview of grid components

and their layered representation is given in Section 2.3. Particularly common toolkits and

libraries are investigated in depth in Section 2.4. Finally, the EMMIL system and its

relationship to grid computing are explained in Section 2.5.

2.1 Grid Systems

 Grid Systems provide computing power to users while abstracting the details of

hardware platform, operating system, and physical location of the machine or machines

doing the computation. A common analogy for grid computing is the power grid: a

device can be plugged into an outlet and connected to the electrical grid, but the user of

this device is not concerned with how or where this power was generated [11]. Grid

computing has not yet reached this ideal level of transparency, as some level of

knowledge is still required by the user. Ian Foster, a leader in grid development, created a

three point checklist to both define and evaluate a grid:

 9

� “coordinates resources that are not subject to centralized control ...

� ... using standard, open, general-purpose protocols and interfaces ...

� ... to deliver nontrivial qualities of service”. [2] [9]

The first of these points is critical. Each node of a grid is not directly managed by a

central authority, but instead can be made up of systems from multiple domains with

different policies. The second point ensures that the grid is useful in the completion of a

range of tasks, and not specific to any specific application. The final point emphasizes

that the grid must be able to guarantee a certain level of service. This is also crucial, as

without guaranteed quality of service the effectiveness of a grid system is lost.

2.1.1 History

 The concept of grid computing arose from an earlier concept, which was

developed in the 1980s. Metacomputing, like grid computing, is intended to make

computing power from different resources transparently available to users. The major

difference between grid computing and metacomputing is that the intent of the latter is to

provide transparent access by clients to supercomputers, rather than to a heterogeneous

network of machines (as is the case in grid computing) [24].

 In 1995 a metacomputing infrastructure was developed that became the basis of

many future grid systems. This infrastructure, known as I-WAY, was demonstrated with

great success at the Supercomputing '95 conference where 60 different applications were

demonstrated on the system [25]. I-WAY’s success led the United States DARPA to fund

a project to develop a toolkit for distributed computing. To head this initiative they

selected Ian Foster, a lead researcher in the I-WAY project. This led to the development

of the Globus Toolkit, which many current grid systems now use [2].

 10

2.1.2 Uses

 Grids have gained popularity in a number of different areas, ranging from

academic to industrial and even entertainment settings. Grids provide a number of high

level benefits to users, including increased agility in product development, reduced risk in

decisions, and increased potential for innovation. These benefits are all a result of the

large amount of parallel data that grid resources can process in a short amount of time,

when compared with a traditional computer system.

 A number of powerful grids have been developed in academic settings, which

utilize the knowledge of computer systems within existing IT and computer science

departments. Houston University Campus Grid is an excellent example of a grid in an

academic setting; it makes use of a heterogeneous computational grid to help solve a

wide range of computationally intensive jobs from a wide range of disciplines. These

jobs include the modeling of atmospheric pollution, the analysis of seismic data for oil

and geophysical service companies, and many others from disciplines such as mechanical

engineering, computer science, and mathematics. The Ontario HPC Virtual Laboratory

(HPCVL) is another interesting example of a campus grid, being composed of machines

located at four different universities in Ontario. This grid helps to solve problems not just

introduced by researchers from the universities involved, but also those which are

considered important to the economy of Ontario and Canada as a whole. For instance,

the HPCVL provides computing resources to the Sudbury Neutrino Observatory, whose

work was selected by Science in 2002 as the second most important discovery of the year.

These grids not only provide computational power to help solve important problems, but

 11

have also helped in the development of grid systems as a whole [2].

Bioinformatics is another area where grid computing has been widely used. Work

in this field centers on the analysis of patterns within genetic databases to find previously

unknown connections and similarities. Genetic databases are extremely large, and the

comparisons lend themselves well to parallel computing. Bioinformatics has aided in the

development of treatments for many diseases, including anthrax and smallpox [2]. Grid

computing has also proved useful in the modeling and creation of new compounds to help

to treat diseases, by testing the possible effectiveness of large numbers of synthetic

molecules [2]. These processes have enabled researchers to solve many genetic and

molecular problems much faster than was previously possible.

 Grid computing has also proved effective in a wide range of commercial and

industrial settings. The financial sector has effectively utilized grid computing to greatly

speed up their ability to make financial predictions: computations that previously took

over ten hours can now be completed in mere minutes. This allows traders to constantly

evaluate the risks that they have taken, and continually reevaluate their position in the

market [2]. Certain sectors of the manufacturing community are also implementing grid-

based solutions. For example, the automotive industry now simulates a large number of

collision tests over grid networks. Similarly the aerospace industry conducts many

simulations on grid computing systems that could previously only be completed with

expensive prototypes in wind tunnels [2]. Another interesting application of grid

computing occurs in the electronic gaming industry, where scalable infrastructures have

been developed for massively multi-player online games [2]. The benefits of grid

computing have been felt in a wide range of industries, and its uses are only increasing as

 12

its influence spreads.

2.1.2.1 Parameter Studies

Grid systems play a particularly important role in parameter studies: applications

with a single algorithm that should be executed over a large set of input parameters. As

this type of task can easily be split into a number of smaller tasks capable of running in

parallel, it is a natural fit for grid computing. A number of projects have provided

implementations of parameter studies within grid systems. One notable implementation

was developed by Worcester Polytechnic Institute students and SZTAKI scientists for the

P-GRADE portal [15]. It integrates grid workflows and parameter studies into a single

concept [18]. This is described in more detail below.

2.2 Problems in Grid Development

 Computational grids must overcome a large number of difficulties in order to be

seen as reliable and efficient from the user’s standpoint. Grids must allow “flexible,

secure, coordinated resource sharing among dynamic collections of individuals,

institutions, and resources” [7].

This sharing of resources requires a term to describe the

different entities involved in the net of resources provided and used. Virtual

Organizations (VO) represent a body of individuals or institutions that consumes

resources, provides them, or both. VOs on the grid host resources that include both

computation and storage elements. Virtual Organizations must also recognize each other,

and have specific rules defined regarding which other VOs are allowed to access their

shared resources and in what manner these client Virtual Organizations may use these

resources [7].

 13

 This restriction on the resources available to VO’s requires a central security

authority that will define resource availability for any Virtual Organization. A Certificate

Authority (CA) fills this need. Within a Grid, a Grid Security Infrastructure (GSI)

provides security functionality [27]. This GSI provides a common security method

among all of the grid resources. Entities within this grid are provided with certificates

that allow them to authenticate themselves to other entities which in this case can be

users or processes. Gateways can convert certificates between different infrastructures

and site resource domains [27].

 CA’s in a Grid generally validate user certificates, although they may also create

these certificates. As long as a VO trusts the CA who signed off on a user’s certificate,

that VO will trust that certificate. This alone does not allow the user access to a VO’s

resources. A user begins to attempt access to VO resources by authenticating itself to a

Community Authorization Service (CAS), which returns assertions to the user defining

how that VO’s resources may be used. The user then presents this assertion to a VO

resource along with a request for resources. The resource checks the CAS policy

statement against its local policy statement, and may then allow the client to utilize the

resource [27].

2.2.1 Resource Management

 Remote resources are required for many grid applications. After security concerns

are taken care of, the grid must still manage the location of remote files, transfer content

to active jobs, control load balancing for grid tasks, handle any generated errors, and

always appear reliable and efficient from a user’s perspective [6].

 14

 Physical file systems on the grid exist at remote locations in the same way

computing elements do. As a great deal of information can be generated by grid tasks

during execution that may need to be consumed again at a later point, it is infeasible to

send this information to the client and then request it back again. Remote file systems

provide large storage space for storing large batches of output data in addition to these

temporary files. The system for file handling by the Globus Toolkit is described in

Section 2.4.2.2.

2.2.2 Load Balancing

 Load balancing among computing elements of grid resources is another important

issue that grids need to deal with. Predicting the future computational needs of processes

is extremely difficult, and due to the rate at which loads on a resource can change load

balancing systems must respond very quickly to prevent further processes from being

allocated before the client realizes the resource is completely occupied.

2.2.3 Information Management

 Due to the dynamic nature of the grid information services are required to keep all

grid users updated with the status of a grid. New resources may be added as new VOs

join a grid, or resources may leave in the event of a crash or disconnect. Tasks being

executed may change their resource requirements, such as increasing the strain on

resources or reducing it. A discovery service is required to discover currently available

resources. Schedulers are required to determine the best resource(s) to allocate to a task.

Application adaptation systems watch running applications and resource availability and

modify applications behavior to improve system performance [5].

 15

 These information services necessarily generate very large quantities of

information that may take a long period of time to be received by those agents affected

and it may be impossible for the grid to delay actions and await a response. These

information services must also be able to adapt to failures in the grid system. Information

systems have to be distributed in order to handle possible node failures within the grid

 [5].

2.2.4 Quality of Service

 Grids have difficulty enforcing a standard quality of service. Since jobs running

on a grid can behave in unpredictable ways, their performance can affect other jobs

which are using the same resources in unforeseen ways. Different resource types can also

affect the performance of grid tasks. Many applications are written to run on specific

systems, and have issues running on many different environments within a grid. Grids

attempt to solve these issues by using virtual workspaces [19].

 Virtual workspaces are abstractions of execution environments that can be made

available to authorized clients. These workspaces allow programs designed to run on a

certain system to be run on grid resources configured differently. One option is for the

resources themselves to reboot and load a new configuration more suitable to the task.

Host machines can also run a Virtual Machine (VM) that can support this abstraction of

another system by emulating instructions issued by the user’s task. This VM can allow a

user to create a custom environment, and also allows strict enforcement of resource

usage. A VM is configured with a set available memory and disk space which can keep

resource usage of unpredictable grid tasks in check [19].

 16

2.3 Components of a Grid System

This section provides a brief overview of grid architecture. The application layer is

discussed first, and portals as a method of human interface are explained. A method of

classifying them is then presented. The application layer section concludes with an

explanation of workflows in grid application development. A section on the middleware

layers follows, wherein the services residing on the Collective, Resource, and

Connectivity sub-layers are detailed. Finally, low-level details of grid systems are

considered in a section on the Fabric layer.

2.3.1 Application Layer

The application layer consists of the applications which are run on a grid system.

These include commercial, scientific and engineering processes. The application layer

makes use of an abstraction of the lower grid computing layers to provide computing

services to the programs running on it. A number of popular applications have been

ported from traditional computing environments to provide grid support, including

Mathematica, DB2, the Websphere Application Server, the Sun Grid Engine Enterprise

Edition, and a number of other critical products from key software vendors [1] [14] [23].

Most current grid applications are developed privately and used for specific research

applications, as discussed in Section 2.1.2.

2.3.1.1 Portals

The use of portals is a common method used to provide application layer access

to users of grid systems through web based interfaces. Some popular grid

portals are:

� Pegasus [10]

� GridFlow Portal [16]

 17

� P-GRADE Portal [17]

Each of these portals provides users access to a number of services, including

workflow management, certificate management, job submission and visualization.

Workflow management allows the grid user to specify the order and parallelism of an

application. The Pegasus portal requires users to develop their workflows outside of the

portal and then upload them, while Gridflow and P-Grade both provide integrated

environments for workflow development. Each of the three portals allow for the

submission and monitoring of workflows, allowing the user to view the status of

submitted jobs whether they are queued, running, completed, etc. One may also view file

output and logs. Additionally the three portals allow the users to download their

certificates to the portal, thus granting them access to resources to which they are entitled.

Through these functions users are able to run, authenticate and visualize the results of

their application on the grid.

2.3.1.1.1 Portlets

P-GRADE is an extension of the open source portlet-based portal model

Gridsphere, giving users of P-GRADE the ability to extend its functionality with portlets

 [17]. The intention of portlets is to provide “pluggable user interface components that

provide a presentation layer to Information Systems,” according to Java Specification

Request (JSR) 168, the initial specification of portlets by Sun Microsystems [1]. Portlets

allow developers to create JSP pages, which integrate tightly with Java code that extends

the Gridsphere portlet model. This allows developers to handle web based events in Java

using a traditional Java event-based model [1]. [1] Within P-GRADE a number of

 18

portlets have been created, including portlets to visualize grid status and to allow users to

run parameter studies on the grid [13], [14].

2.3.1.1.2 Types of Grid Portal

 Workflow oriented grid

portals are defined by two values.

This classification system is

represented by the chart in Figure

1. The first value is the number of

users who can access the same

application and modify it. The second value is the number of grids that a portal is

connected to and that the portal can execute jobs on. The first level of the chart shows the

cases with users able to access only one grid. In the second level, users are able to see and

access resources on multiple grids. All workflow parts are still only executed on one

grid. The third level allows for workflow segments to be divided and run on multiple

resources [17].

 The current state of grid portals does not allow collaborative development of

applications and programs on the grid. This is believed to be an important next step in

grid development. Future users of the grid in industry will likely wish to have multiple

users contributing to a single application project [17].

2.3.1.2 Workflows

 Workflows are an abstraction that allows users to develop applications able to run

on grids and take advantage of the parallel processing power of such systems.

Workflows are a series of nodes of a flow diagram that designate the binaries to run for

Figure 1 - Workflow Portal Classification [17]

 19

each node. Input and output data are also abstracted through the concept of ports. When

creating workflows the user needs only to know how the parallelism of their application

should be structured, as the workflow manager provides for the abstraction of most grid

details.

 When developing grid applications the type of parallelism is an important

consideration. A classification system developed by Flynn, based upon the number of

programs run and the data input, is useful for this. The first application type in this

system is Single Program Single Data (SPSD), is an application which takes in a single

data set and produces a single output set. SPSD applications lend themselves easily to

grid applications, as their workflow consists of only a single node. These applications are

only effective when large numbers of data files exist, as a grid will effectively increase

their throughput [2].

 The next classification is Single Program Multiple Data. These applications split

large data sets into smaller sets, each of which can be processed by the same program and

then compiled together after processing. This workflow of such a system is fairly easy to

handle, as the user only needs to consider the parallel processing of a single node. SPMD

applications are the most popular application group currently being used on grid systems

today [2]. An example of such an application is SETI@home, which splits large data sets

collected by radio telescopes into smaller data sets. These are then processed through a

volunteer-based grid [14]. Many bioinformatic applications also fall into this application

category [2].

 The third category is Multiple Program Multiple Data. These are applications

consisting of multiple data sets that can be processed concurrently by multiple programs,

 20

which can assemble the output after completion. The workflow of MPMD applications

are more complex than the earlier two groups, as the parallel processing of multiple

nodes must now be considered. Successful porting of this application group can again

cause performance gains, as well as having the added benefit of matching nodes to

optimal resources [2].

 The final classification group is Multiple Program Single Data, this is a case in

which a single data set must be processed by multiple applications. These applications

again can be developed for grid applications, but this application type is rarer than the

others [2].

2.3.1.3 P-GRADE

The P-GRADE portal is designed to facilitate the construction of grid workflows

and their execution on the grid. In this capacity, it can emulate any of the above

configurations. The portal provides a graphical environment for the construction of

workflows. This portal application also takes care of many of the necessary background

operations required to run applications on the grid. The P-GRADE portal keeps track of

the state of the grid environment and handles certificate management. In addition, the

portal monitors the progress of running workflows [17].

 The P-Grade portal provides users with the ability to develop and run grid

applications. It does this by providing the user with the following functions:

� Defining a grid environment

� Creating and modifying workflows

� Managing Grid Certificates

� Controlling the execution of workflows

 21

� Monitoring and visualizing the execution of workflows [17]

 The first function, defining a grid environment, is set up by the Portal

Administrator, who must define the VOs which are accessible to the portal. The

administrator will also associate computational resources to each VO. The individual

users of the portal do not have the ability to change the VOs that are accessible to the

portal, but are allowed to add and remove individual computational resources to their

resource list [17].

 Creating and modifying workflows on the P-GRADE portal is handled using a

Java Web-Start application that can be opened from the portal. This application allows

the user to define the nodes of the workflow as well as the connections between their

input and output files. Upon completion of grid workflow development, the application

can then be uploaded back on to the portal along with any necessary binaries and input

files [17].

 Managing Grid Certificates is essential to the use of the P-Grade portal.

Certificates grant users access to the grid resources which they have permission to

execute their code on. Users can download their certificates from a proxy server on the

portal. Once the certificate is on the portal, the user must set it for one or multiple VOs.

After the completion of this step the user will have the ability to execute their code.

 The P-GRADE portal enables users to execute completed workflows which they

have developed or uploaded on to the portal. The portal will also provide details to the

user about the status of each node of their workflow, indicating, if it has been submitted,

is scheduled, running, completed, in error or requires rescuing. The portal will also

 22

display the contents of standard output, as well as any error log that is produced by their

processes [17].

2.3.2 Middleware Layers

Precisely what components of a grid system fall into the category of middleware tend

to vary by architectural and design needs. A grid devoted to computation, for example,

would include a different set of services than a grid devoted to data storage and

accessibility. There are, of course, a core set of components that will be present in nearly

any grid system implementation. There are generally the services and protocols necessary

to map application-layer jobs to fabric-layer resources while remaining free of

application specificity or physical architecture requirements.

Foster et. al. sub-divide middleware into the

collective, resource and connectivity layers (See

Figure 2). As the highest level of the three, the

Collective layer is tasked with collecting and

managing “interactions across collections of

resources.” [7] Two large categories of service are

generally found here: Information Management and

Data Management. The former is responsible for

scheduling, monitoring of resources, diagnostics, and resource discovery, among others.

Services handled by the latter include movement of data, managing of replicated files,

and quality-of-service for large file transfers.

Figure 2 - Layered Grid Architecture [7]

 23

Note that this layer is devoted largely to management. Actually moving files or

allocating hosts for a job must be done by the Resource Layer, which implements

“protocols (and APIs and SDKs) for the secure negotiation, initiation, monitoring,

control, accounting, and payment of sharing operations on individual resources” [7].

While the Collective layer managed interactions between resources, this layer provides

the software tools to actually carry out those interactions.

Information protocols, for example, are “used to obtain information about the

structure and state of a resource,” including such considerations as “its configuration,

current load, and usage policy” [7]. Services that fall into this category are generally

concerned with discovery or querying of a resource. Purposes may be related to

scheduling, diagnostics, job monitoring, or resource allocation. Note that collective-layer

utilities often use these in combination with resource-layer management protocols to

perform their overall task. Unlike information protocols, these are used to “negotiate

access to a shared resource, specifying, for example, resource requirements… to be

performed, such as process creation, or data access” [7].

So far we have avoided how, precisely, resource-application or inter-resource

communication occurs. This is handled by the Connectivity layer, which “defines core

communication and authentication protocols required for Grid-specific network

transactions” [7]. Since development of the Internet has led to a variety of strong and

well-tested protocols for data exchange, these are often employed in grid environments

on the connectivity layer. Other options do exist, of course, and may be more suitable for

certain grid applications.

 24

Authentication on grid systems normally employs a Public-Key Infrastructure to

manage user identity and privileges. The specific implementation will depend upon the

“type of grid topology and the data the security will be protecting” [14]. Military networks

have a much higher level of necessary security than, for example, a university research

site. Similarly, the need for authentication vs. authorization must be considered. If users

share a largely equivalent set of privileges, verifying that a user is in fact whom they

claim to be may be more important than ensuring they have the right to use a given

resource.

This leads to another important security trade-off, unique to PKIs. All certificates

must be validated and issued by a central Certificate Authority (CA), as without a trusted

third party certificates may be forged. Although several possibilities exist, two options

immediately present themselves. Either one could use an existing CA, or create one

specific to one’s organization or grid. The former has the advantage of being established,

with known procedures and levels of trust. However, commercial CAs may not be an

affordable option. Government and institution-based CAs require, at minimum,

membership in their organization. The latter option brings with it several questions:

• Where will my CA be deployed and how will I manage it?
• Do I have the necessary processes in place to administer my own CA?
• What are the responsibilities for managing my own CA? [14]

A poorly managed CA has the potential to compromise one’s entire security

infrastructure. Of course, a well-managed certificate authority can provide a powerful

authentication mechanism.

 25

2.3.3 Fabric Layer

The grid fabric layer consists of the actual resources whose jobs and communication

are managed by higher layers. Note that these may be heterogeneous. It does not matter

whether a given entity is a workstation, cluster, or supercomputer as long as all present

the same interface to the connectivity layer. Of course, not all resources need be

computational in nature. Storage resources are also common, and some grids may also

have sensors capable of generating data to be processed (e.g. radio telescope

observatories).

Note that there exists “a tight and subtle interdependence between the functions

implemented at the Fabric level, on the one hand, and the sharing operations supported

[by higher layers], on the other.” [7] This is not to say that the connectivity layer should

ever assume that resources are using a particular architectural configuration. Rather, only

functions which are implemented can be used by higher layers. The mode of their

implementation is not important; their existence is the only requirement. A mechanism to

specify whether a stored file is striped across multiple disks, for example, can only be

called by higher layers if the resource in question supports such operations. Foster et. al.

observe that at minimum, computational resources must provide a means of starting,

monitoring, and controlling process execution. Storage resources must similarly at least

provide operations for writing and reading files [7].

2.4 Grid Architecture and Technology

 While specific hardware and application architectures cannot be sufficiently

generalized to grid systems as a whole, several middleware technologies are widely

implemented and worthy of further study. The Globus Toolkit is a suite of software

services and development tools devoted to all aspects of the collective, resource, and

 26

connectivity layers. In addition to the pre-made packages, libraries are included for

purposes of independent development. Condor exists as a service running both above and

below Globus. It is responsible for fabric creation and resource management in a number

of grid implementations. Before delving into either of these, however, an overview of the

parallel computing libraries that are used in both toolkits is presented.

2.4.1 Parallel Processing

Common to almost all forms of distributed computing is the concept of parallel

processing. In brief, this is a computing approach that divides a job into several

component subtasks. Each subtask is solved in parallel on its own processor, and the

results are re-integrated into one solution. Consider, for example, the calculation of a

factorial. This is at first glance a serial process; one number is multiplied by another until

the product of all integers between one and n have been found. Indeed, this is how the

calculation would proceed in a single-processor environment. In a multi-processor setting

the process would be handled differently, however. One approach might assign each

processor some portion of the problem. Multiplication then proceeds in parallel, and at

the end each sub-problem can be recombined to arrive at the solution. The total time

taken to reach this answer with multiple parallel processors should be proportionally

faster than that of a single processor.

The potentially vast decrease in running time has made parallel processing critical

in solving many computation-intensive problems. Among these are a variety of scientific

research needs in fields ranging from climatology and biology to physics and economics.

Furthermore, “such computing power is driving a new evolution in industries such as the

biomedical field, financial modeling, oil exploration, motion picture animation, and many

 27

others.” [14] Admittedly, barriers exist in most problems which prevent perfect scalability

and parallelization. Some tasks simply cannot be sub-divided, while others may rely on

shared access to a database or storage element.

Currently two de facto standards exist for the implementation of parallel

computing. Both of these at minimum define means by which processes may

communicate with one another. The Parallel Virtual Machine (PVM) uses a virtual

computing device to integrate heterogeneous resources, while the Message Passing

Interface (MPI) uses message passing and static computing to optimize the performance

of multiprocessing. In most cases one implementation will be more appropriate for a

given problem than the other. In “cases where the problems do match but the solutions

chosen by PVM and MPI are different…usually such differences can be traced to explicit

differences in the goals of the two systems, their origins, or the relationship between their

specifications and their implementations.” [12] Both PVM and MPI will now be

considered in more detail, and their particular strengths and weaknesses noted.

2.4.1.1 PVM

The Parallel Virtual Machine is designed to provide both portability and

interoperability in a heterogeneous distributed environment. The distinction between

these two goals can be fine-grained, but is necessary in understanding the different

directions taken by PVM and MPI. Portable applications that are “written for one

architecture can be copied to a second architecture, compiled and executed without

modification.” [11] Interoperable applications are portable applications whose

“executables can also communicate with each other.” [11]

 28

PVM provides both portability and interoperability through the use of a virtual

machine: a set of heterogeneous hosts connected by a network that appears logically to

the user as a single large parallel computer.” [11] Since architectural differences are

hidden from the running process, PVM distinguishes itself in heterogeneous

environments that integrate a variety of computing architectures and platforms. An

unfortunate outcome of this interoperability, however, is the inability of PVM to use

hardware-specific implementations. If a programmer is building an application to run on

clusters of identical machines, for example, PVM may not be the most efficient choice. In

general, performance tends to be sacrificed for the ability to integrate a wide variety of

differing systems into one logical environment.

As a virtual machine PVM also includes resource management features. This

allows for a dynamic computation environment, in which “computing resources, or

‘\hosts,’ can be added or deleted at will, either from a system ‘\console’ or even from

within the user’s application.” [11] Load balancing and task migration are therefore

possible in a PVM environment. Furthermore, “applications can exhibit potentially

changing computational needs over the course of their execution.” [11] Consider, for

example, a process that has an initial serial component, a parallel component, and final

serial component. Resource management also allows for dynamic allocation of

computing elements; the extra processors need not be assigned until the process’ parallel

stage.

Finally, the system supports fault tolerance through notification mechanisms.

Individual “tasks can register with PVM to be ‘\notified’ when the status of the virtual

machine changes or when a task fails.” [11] Each notification contains data relating to the

 29

event that triggered it. Furthermore, a “task can ‘\post’ a notify for any of the tasks from

which it expects to receive a message.” [11] In this way failed processes may be restarted

or allocated to a different machine. Load balancing and resource management can also

take advantage of the notification system. Hosts joining or leaving the virtual machine

can cause dynamic reallocation of jobs by notifying a resource broker of their presence.

Lastly, consider the case in which a particular host has a sub-par record for job

completion. This could be noted by recording the amount of task-fail notifications, and

the resource could be avoided by future processes.

2.4.1.2 MPI

Unlike PVM, the Message-Passing Interface places performance before

interoperability. While an “MPI application can run, as a whole, on any single

architecture and is portable in that sense…nothing in the MPI standard describes

cooperation across heterogeneous networks and architectures.” [11] Technically, this

does not prevent any organization from developing such an implementation. To do so,

however, would be in direct opposition to MPI’s performance orientation. By executing a

single architecture, the system can take advantage of hardware-specific implementations

and thereby achieve potentially large gains in terms of efficiency. This makes it ideal in

homogenous environments such as multi-processor systems and some networked clusters.

Note, however, that there is no support for resource management in MPI. The

“standard does not support any abstraction for computing resources,” and maintains a

strictly static computing environment [11]. Once resources are assigned to a process (i.e.

at execution-time) those resources are considered to be allocated until process

termination. This remains true even if multiple-processors are assigned to a serial job,

 30

such as the example given above with one parallel component sandwiched between

sequential components. MPI was “specifically designed to be static in nature to improve

performance. There is clearly a trade-off in flexibility and efficiency for this extra margin

of performance,” in addition to the overhead of a custom resource management scheme

 [11].

As expected in a static environment, MPI lacks any real fault tolerance. If “a task or

computing resource should fail, the entire MPI application must fail.” [11] No native

methods exist by which a process may be spawned after the initial execution phase,

therefore no means to recover from failure are provided. The MPI-2 standard (a revision

of the original MPI specification) does include a way to spawn processes and provides

notify scheme comparable to PVM’s, however [11].

2.4.2 Globus Toolkit

The evolution and proliferation of grid systems has created “a need for protocols

(and interfaces and policies) that are not only open and general-purpose but also

standard.” [9] Indeed, “it is standards that allow us to establish resource-sharing

arrangements dynamically with any interested party and thus to create something more

than a plethora of balkanized, incompatible, non-interoperable distributed systems.” [9]

Without a common development standard individual grids may at best collaborate only

after a great deal of work, and at worst risk becoming application-specific systems

dependent on specialized or proprietary code. The Global Grid Forum is attempting to

address this need for standards through the Open Grid Services Architecture (OGSA),

which “modernizes and extends Globus Toolkit protocols to address emerging new

requirements, while also embracing Web services.” [9]

 31

The Globus Toolkit provides a suite of software tools to allow rapid

implementation and installation of grid middleware. Specific application services are

avoided in favor of general infrastructural services, such as security, data management,

execution management, and information management. Furthermore, run-time libraries for

Java, Python, and C are provided to support the development of custom services. Each of

these functions will now be considered in more detail.

2.4.2.1 Security

Globus uses the X.509 public-key infrastructure to “implement credential formats and

protocols that address message protection, authentication, delegation, and authorization.”

 [8] Each virtual organization has one certificate authority (CA), and each user has an

authentication certificate signed and validated by that CA. Once any two entities are

issued their certificates, protocols are implemented which allow them to “validate each

other’s credentials, to use those credentials to establish a secure channel…and to create

and transport delegated credentials that allow a remote component to act on a user’s

behalf for a limited period of time.” [8]

Authorization is handled through the authorization framework component. This

provides a means to create secure interface modules for services, and for all access

requests to pass through these interfaces. Various supporting tools, such as MyProxy, are

supported in order to abstract the process of certificate management from end users [8].

2.4.2.2 Data Management

Information is moved, stored, and access in the Globus Toolkit through several key

services. GridFTP “provides libraries and tools for…memory-to-memory and disk-to-

disk data movement” in a grid environment [8]. The protocol is also interoperable with

 32

conventional FTP services, however. Hence, data stored on a grid resource could be

accessed by computers not participating in the grid, or vice versa.

GridFTP transfers are managed by the Remote File Transfer (RFT) service. It is

capable of reliably handling a large number of simultaneous network transfers; RFT “has

been used, for example, to orchestrate the transfer of one million files between two

astronomy archives.” [8]

A number of other data management services are also included in the Globus Toolkit.

Data Access and Integration Tools (OGSA-DAI) allow processing of relational and XML

data, and the Replica Location Service (RLS) maintains information on replicated files. A

revision of RLS is currently in development, which combines its services with GridFTP

to better manage file duplication [8].

2.4.2.3 Execution Management

Remote process control is provided through the Grid Resource and Management

(GRAM) service. Specifically, it provides “a Web Services interface for initiating,

monitoring, and managing the execution of arbitrary computations on remote computers.”

 [8] Precise resource requirements and data transfers can be specified, and the credentials

to use on job execution may be included. In addition to this service, two other

technologies are currently included in Globus Toolkit v4: the Workspace Management

Service (WMS) and Grid TeleControl Protocol (GTCP). Both are in beta stages, and

likely to undergo changes in future releases. WMS allows for “the creation of execution

sandboxes, using Virtual Machines or Unix accounts.” [8] GTCP is used in “managing

instrumentation; it has been used for earthquake engineering facilities and microscopes.”

 [8]

 33

2.4.2.4 Information Services

The Globus Toolkit employs an XML-based monitoring and discovery service.

Standardized

procedures are

provided for

“associating XML-

based resource

properties with

network entities.” [8]

Through querying,

resource managers may

monitor grid resources. Through subscription, new hosts may register with the necessary

brokering and management systems. These procedures are built in each GT4 service. In

addition, they are included in all provided containers (See Section 2.4.2.5). User services

can thus “be configured to register with their container, and containers with other

containers, thus enable the creation of hierarchical (and other) structures.” [8]

2.4.2.5 Common Runtime Libraries

GT4 supports user-created services through Web Services container libraries.

Individual containers are provided for Java, C, and Python. In general these provide

“message handling and resource management, thus allowing the developer to focus their

attention on application code.” [8] As their name implies, containers can be thought of as

a wrapper layer that shields user code from grid implementation details. Any software

Figure 3 - GT4 Monitoring and Discovery [8]

 34

built on a container should run on any GT4 environment, assuming any dependencies on

external libraries are met.

2.4.3 Condor

The purpose and application of Condor can at first seem confusing, as two systems

share this moniker and serve very

different roles. Each can be

considered adjacent to one ‘face’

of the Globus layer, but still fall

within category of middleware

(See Figure 4). The lower

component is more properly

referred to as Condor High Throughput Computing, which serves in this regard as a

“fabric management service (a grid ‘generator’) for one or more sites,” interfacing with

the infrastructural layer [26]. The upper component, Condor-G, is a “submission and job

management service,” which deals directly with the application layer [26]. The Globus

Toolkit bridges the gap between both versions of Condor, providing the services

discussed in Section 2.4.2. Each will now be considered in more detail.

Figure 4 - Condor and Globus [26]

 35

2.4.3.1 Condor High Throughput Computing

As a fabric management service, Condor HTC is tasked with making a grid from

heterogeneous networks of computers. It is easiest to understand the structure of such

grids (called Condor Pools) by going

step by step through a normal job

submission process. Figure 5

provides a graphical overview of the

below procedure.

First, a user creates the job

and submits it to problem solver

service. Here it is formatted and passed to the agent, which is “responsible for

remembering jobs in persistent storage while finding resources willing to run them.” [26]

Both agents and computing resources report their existence to a matchmaker, whose

function is to find optimal resources to fulfill agent requests. Once such a match is found

the existence of each is reported to the other. Actually establishing the connection and

verifying that resources are still available is left to the agent [26].

To run a job, both sides must spawn new processes. Agent-side, a shadow is

responsible for providing job specifics. Resource-side, a sandbox is created in which the

job will be computed [26]. The actual process is a good deal more complicated, and

includes facilities for handling multiple matchmakers and geographical resource

optimization. Such topics are covered in detail by Thain et. al. in Condor and The Grid.

2.4.3.2 Condor-G

Essentially a GRAM-based agent, Condor-G was created to fill the need for a

“system that can remember what jobs have been submitted, where they are, and what they

Figure 5 - Condor HTC Kernel [26]

 36

are doing. If jobs should fail, the system must analyze the failure and resubmit the job if

necessary.” [26] It may be run over any kind of batch system, and is not limited to

working only with Condor HTC. This has the obvious advantage of hiding architectural

differences and allowing for easier interaction between heterogeneous resources.

Unfortunately, the resource allocation process and job execution processes are coupled in

Condor-G. This “forces the agent to either oversubscribe itself by submitting jobs to

multiple queues at once or undersubscribe itself by submitting jobs to potentially long

queues.” [26] Lastly, Condor-G suffers from the same tradeoff between performance and

interoperability that PVM does. Features specific to certain batch systems cannot be

utilized, therefore potentially sacrificing gains in efficiency implemented in a particular

piece of batch software.

2.5 EMMIL

The Electronic Marketplace Model Integrated with Logistics (EMMIL) is a

business to business marketplace engine developed by Dr. Livia Kacsukné Bruckner. In

this system, a buyer submits a buy order containing a list of goods and their desired

quantities. The model then selects an optimal combinations of sellers and logistics

providers to satisfy this order the least possible cost. EMMIL makes a basic assumption

that all goods are not digital, i.e. products are tangible and must be physically transported.

This model can function regardless of the orientation of the marketplace, allowing for

buyer, seller, and exchange oriented services. The EMMIL engine is designed to sit

between front end processing programs for the buyer, seller, and logistical provider. The

model requires that each of these entities is able to supply the engine with its required

data very quickly [3].

 37

Combinatorial auctions are used to evaluate potential combinations of product

sellers and logistics providers. Specifically, the model generates every possible

combination of sellers and logistics providers to be considered, then computes the most

optimal of these combinations by minimizing the price of purchasing some number of

goods. The number of datasets which are generated can be determined using combination

functions; these are explained in Appendix III. In general, however, this can create a

potentially tremendous number of datasets, and elevates EMMIL to the status of a grand

challenge problem. These require significant amounts of computing power to solve. The

independent nature of each combination (i.e. it may be evaluated in isolation from the

others) indicates that parallel computing could be used to evaluate many of these

simultaneously, however.

2.5.1 EMMIL and Grid Systems

An EMMIL system can require large amounts of computing power as the number

of variables in the model increases. This computational requirement may be impossible

for one computer to supply in the short amount of time required for an interactive bidding

marketplace. One possible solution that has arisen is a grid based implementation. As

already described in this paper, grid systems attempt to make available large amounts of

distributed computing power to users who might otherwise lack the resources to carry out

such massive computations on their own.

The way in which the EMMIL model functions by running computations on

different combinations of input data allows it to be broken up into a number of parallel

processes that can run independently of each other. Each run through the process of

solving for the best sub-combination of sellers for items can be run on a separate

 38

computing element on a grid. If the solving process is fairly rapid, several can be run by a

single computing element and minimize the overhead of allocating grid resources for the

task. This parallel use of multiple computing elements would allow the computations to

finish faster then they would on a single computer.

Note that a grid solution will not allow the EMMIL model to function as a real-

time bidding system due to time delays between allocation of grid resources,

computation, and the returned result. This solution can still allow many bid sessions over

a time period, where bidders will enter values at a predetermined time and the job will be

submitted to the grid. Upon returning from the grid results can be displayed to selected

involved parties, who can then adjust bids based on returned values and submit them for

another period of grid computation.

3 Methodology
Our project was divided into several developmental phases, with the overall intent of

transforming the basic EMMIL system designed by Dr. Livia Bruckner into a useful grid

application. An improved version of the model is already in development by students and

researchers at MTA-SZTAKI. However, testing of this prototype will indicate whether

further research should be put into the conversion of EMMIL to a grid-based B2B e-

marketplace. Our specific objectives are as follows:

• Investigate the feasibility of EMMIL as a grid application

• Create a portlet on the P-GRADE portal to allow intuitive and complete data

entry

• Enhance the basic EMMIL model to optimize performance

 39

In brief, the first objective inserted benchmarking code into the model, but was

much more focused on performance evaluation than code development. In this phase the

P-GRADE Portal provided an interface to the SEE-GRID
1
, on whose resources we

performed all of our grid-based testing. The second phase of our project centered on code

development, using Java Server Pages to create a new portlet on MTA-SZTAKI’s P-

GRADE Portal. The final phase of our project entailed modification of existing C code

running on a Linux platform. Each enhancement was developed independently of the

other, and once operational both were merged into a new version of the EMMIL system.

3.1 EMMIL Implementation

3.1.1 EMMIL Algorithm

The EMMIL algorithm used in the implemented version employs combinatorial

auctions to arrive at an optimal combination of sellers and logistics providers. It is as

follows:

Minimize over S:

+

++∗∗ ∑∑∑ ∑

== = =

N

i

i

S

j

C

t

N

i

itjijjtjj Q
Z

QPVyFt
11 1 1

,,,,

1
1for limit upper theis C where)(

Constraints:

• tjy , must be either 0 or 1

• itjQ ,, will be set to 0 if tjy , is 0

1
 A grid system maintained by the South Eastern European Grid-Enabled eInfrastructure Development

Virtual Organization

 40

The variables used are as shown in Figure 6. Several of these require further

explanation. The number of

total sellers, M, does not

appear in the above

equation. This quantity is

not involved in individual

combinations to be

evaluated, but rather assists

in determining how many

will be created. The number of filtered sellers, U, is a quantity representing some number

of sellers filtered from M. The algorithm governing this is currently very crude, ranking

sellers by the total price of buying all items from that seller and ignoring transportation

costs. U replaces M as the set of sellers to select from. Specifically, the number of total

combinations is equal to

S

U
. The binary decision variable, y, is used in order to keep the

problem linear.

This becomes clearer when one walks through the algorithm. First, the total price

for all products purchased at a seller is calculated. This considers both unit price, P, and a

variable transportation cost, V. To this is added the fixed transportation cost, F, which is

a per-container expense (e.g. a flat fee per lorry). The result is compared against all

sellers in that combination, and the cheapest solution is returned.

Note, however, that the number of containers cannot be a continuous value; in a

real world situation one cannot use 1.5 containers. Two containers must be employed,

with one filled to only half capacity. In order to allow discrete integer variables while

Variable Description Origin

M Number of total sellers Input

U Number of filtered sellers Input

S Number of sellers in a combination Input

N Number of products Input

Q Desired product quantity Input

P Unit price Input

F Fixed transportation cost Input

V Variable transportation cost Input

Z Container size Input

C
Maximum containers needed per
seller Derived

Y Binary decision variable
Derived, see
text

Figure 6 - Variables Used

 41

remaining linear, the binary decision variable, y, is used. This value is true if and only if

the currently selected number of containers, t, is the exact number required to transport

the given selection of products.
2
 A constraint is introduced to guarantee that when y is

false, Q is set to zero. In other words, the current iteration only contributes to the ongoing

summation if the currently selected number of containers is correct; otherwise the

calculation is zeroed out.

3.1.2 Implemented Model

The initial model implemented by our group and colleagues at MTA-SZTAKI is

split into three separate components, to be run in order. The Generator reads input data,

creates combinations of sellers based on that input data, and outputs these to a file. The

Core then reads this file, generates boundary constraints, and submits both these and the

formatted generator output to LP_Solve (a linear problem solver, see Section 3.1.2.2.1).

This must be performed for each combination output by the generator, which often

numbers in the thousands. A file containing LP_Solve’s results is written for each run.

Once all combinations have been processed by the solver, the Collector evaluates the

resulting output, selects the best combination based on this output, and displays the

results in a human-readable format.

3.1.2.1 Generator

The original generator does not include any pre-processing functions. Upon

execution it will open the data input file and initialize the basic variables (see Figure 6),

as well as pricing data for products and shipping costs, with the values specified therein.

Note that this file is not easily human-readable; it is merely an ordered list of numbers

2
 The maximum number of containers per seller, C, is based on maximum container size and total product

quantity. See the above equation for details.

 42

separated by spaces. Data structures are then generated to hold products’ unit prices,

which are assigned using a random number generator. A similar technique is used to

create the fixed and variable transportation costs for each seller.

Next, the list of sellers is sorted in increasing order by the total price that would

result from buying all products in a given buy order from one seller. The first U (the total

number of filtered sellers, from which combinations will be drawn) sellers are then used

to generate all possible combinations of sellers. Each combination has the number of

elements specified in S, an input variable containing the number of sellers per

combination. These combinations are stored in a double-dimensional array indexed by

combination number and seller index. Lastly, all basic variables, generated data

structures, and a number indicating how many combinations to process are written to

output files.

3.1.2.2 Core

Upon execution, the system core processes one input file. This is appropriate for a

grid environment, as the core is the parallel parameter study component and is run on

multiple resources simultaneously. P-GRADE’s workflow management system provides

each instance of the core with one input file, and the results are copied to an output

directory as they are generated.

After processing input the core proceeds to generate a series of constraints that

define the problem space. These are as follows:

• All X-variables (which represent combinations of product quantity, seller,

and container) must be positive, i.e. total prices must be greater than or

equal to zero

 43

• Total product quantities must be equal to those specified in the buy order

• Total product quantities per container must fit within the lower and upper

bounds of that container’s capacity

• All Y-variables must be binary

The constraints and input data are then submitted to LP_Solve, an open-source Mixed

Integer Linear Programming (MILP) solver available at

http://www.lpsolve.sourceforge.net.

3.1.2.2.1 LP_Solve

LP_Solve is not an application, but rather a mixed-integer linear problem solving

library available from Sourceforge. The specific algorithms and mathematical techniques

that this module employs are outside the scope of this paper, but are published online at

the library’s development page [20]. One important to feature to note, however is

LP_Solve’s treatment of integer variable constraints.

 LP_Solve uses branch-and-bound to handle non-continuous (e.g. integer)

variables. The problem is initially solved without any such constraints; i.e. all variables

are treated as continuous. This produces a relaxed solution. Next, the system checks

which variables must, in fact, be integers. For each such variable the model branches into

two: “one with a minimum restriction on this variable that has the ceiling integer value

and a second one with a maximum restriction on this variable that has the floor integer

value.” [20] Each model is again solved, and the one with a value closest to optimal (i.e.

smallest if minimizing, largest if maximizing) is retained. This process repeats until all

integer variables have been found and replaced with either the ceiling or floor values of

the initial continuous value. Due to the nature of such branch-and-bound algorithms,

 44

models with integer variables “are harder to solve and solution time can increment

exponentially.” [20] Since EMMIL must make use of a potentially large number of

integer variables, finding an optimal solution for certain sets of input data may take an

infeasible amount of time on just one processor.

3.1.2.3 Collector

The collector reads a directory of output files generated by the core. Each file is

opened and parsed in order to present a summary of that run listing its minimum price,

how many of each item is to be bought from each seller, and how many containers will be

needed per seller. Finally, after presenting each run the collector prints the overall

minimum price, and hence the best combination of sellers and items to meet the buy

order.

3.1.3 Gridification

In order to send EMMIL files to the grid and have results returned, it was necessary

to set up a grid workflow in P-GRADE Portal. A workflow is a set of nodes and links

which represents the path of a computing process. The workflow manager page displayed

in Figure 7 shows all created workflows along with their current status. The workflow

editor tab opens an application to construct a workflow.

 45

 The workflow editor

display in Figure 8 shows our

created workflow. The workflow

has been changed to a parameter

study workflow, and the editor

designated a generator node, a

sequential node, and a collector

node. The node marked GEN holds our generator file. The input port of this node is

represented by a small box labeled 0. This port is the generator’s input file. A second port

is defined for output and is labeled 1. This output port represents all of the data files that

will be created by the generator and passed on to the core. As this output port belongs to

the GEN node of a parameter study workflow, the workflow editor understands that this

process may produce multiple files and that each file should be passed on to a separate

core process.

Figure 7 - Workflow Manager

 46

The second node marked SEQ

(sequential, i.e. without message-

passing or other parallel

communication capabilities) represents

the parameter study component of our

workflow and contains the core

process. A copy of this process will

automatically run on the grid for every

data set created by the generator. The

input port labeled 0 on this node and

connected by a link to the output port on the generator takes in the data set file. A second

input port is shown in the workflow editor on the core process node. This input port

provides the core with access to the linear problem solver library. The output port of this

node sends a computation result file to the final node in the workflow.

This final component, which is labeled as COLL, represents our collector. This

node contains a single input port. As this is a parameter study workflow, the editor

understands that the collector process will take in a variable number of files, one for each

core process that executed.

Figure 8 - Workflow Editor

 47

Each node in the workflow can be opened to view specific properties. Displayed

in Figure 9 is the generator properties tab with different attribute fields of this node which

can be modified. This properties tab also allows access to the job description language,

visible in Figure 9 as the button labeled JDL Editor.

The Job Description Language

Editor displayed in Figure 10 allows

access to further customization of a node.

Running environment specifics can be

modified in this editor. Specific grid

computing resources can be requested, or

prevented from being allocated for this

task. The definition of a set storage

element can also be defined, which forces the workflow node to run on a computing

element associated with that storage element.

Displayed in Figure 11 is the Generator

port 0 properties window. A port properties

window allows changes to be made to the

properties of files passed through the port. The

type of the port defines whether this port will

pass a file into a workflow node, or pass out a

file produced by that node. The file type defines

whether or not the file is stored locally or on a grid storage element. The internal file

name is the name that the executable in the workflow node associated with this port

Figure 9 - Generator Properties

Figure 10 - JDL Editor

 48

associates to with this file. Finally the file storage

type tab defines whether this file should be

permanently stored, or should be erased after it has

been used. Since a parameter study can potentially

produce a very large number of files, it is necessary

to define files produced by parameter study

processes as volatile.

3.2 EMMIL Grid Application Feasibility Testing

If EMMIL is to be used as a grid application, its performance in a distributed grid

environment must be noticeably better than on a single machine. We created two sets of

tests to determine if such was, in fact, the case. The first concerns single-processor

execution measurements in a well-defined environment, aimed at discovering bottlenecks

in dataset evaluation. The second set is a series of granularity and performance tests on

SEE-GRID. We were unable to determine a feasible means by which computing element

environments, time spent in broker queues, and time spent in local queues could be

measured independently of execution time. Libraries for instrumenting code in such a

way do exist, but are outside the scope of a seven-week project.

3.2.1 Single-Processor Testing

Before conducting any tests, we recorded the operating environment of the system

that EMMIL runs would be executed on. No other significant processes were allowed to

run during our tests, in order to ensure that random resource fluctuations would not

confound any results. Our experiments were aimed at determining how the model

responded to different sets of input data, and identifying crucial factors in computation

Figure 11 - Generator Port Properties

 49

time for creation of a rough granularity heuristic. Specifically, the effects of varying S,

selected sellers; U, filtered sellers; Z, container size; N, number of different products; and

Q, the desired product quantities, were investigated. For testing purposes all desired

product quantities were set equal to one another.

Initially, our group intended to run each test a large number of times. The mean of

all results for a given test would then be found, and random variance would be

minimized. The amount of time that such experiments actually ran for, however, made

this infeasible in practice given our limited scope of time. (See Section 4.1.1 for specific

numbers and analysis.)

3.2.2 Grid-Based Testing

After establishing single-processor baseline values, our group measured the

performance of EMMIL on SEE-GRID at several levels of granularity. These results

were used to evaluate the efficacy of granularity controls, and to establish average

performance measures for a SEE-GRID application. Unfortunately, there is no simple

way to measure the running time of a partially parallel process such as a parameter study.

Since each process is executed on a potentially different resource, and each process will

have varying times of completion, one cannot simply record the time taken by each one

and divide by the number of jobs spawned at once. Our solution was to design a testing

framework such that generator and collector completion times are recorded in addition to

the running times of individual jobs (note that this refers to one process, not one set of

input data) in the parallel component.

One significant problem exists with this method, however: resource broker queues

and local processor queues are conflated the perspective of our timing measurements.

 50

Note also that any error requiring human intervention could significantly affect any

recorded values.

Despite these flaws in the testing framework, our group was unable to employ

more advanced techniques. P-GRADE Portal does support, through the grm library, a

method of monitoring many aspects of a parallel process. All of the following conditions

must first be met, however:

1. The source code of the respective processes has been extended by special
instructions at proper places to send monitoring messages.

2. There is a special infrastructure (the Mercury_monitoring service) deployed in the
remote resource where the submitted job runs to listen for and to gather these

monitoring messages.

3. The user has enabled the monitoring by setting the Monitor flag [22]

The specialized knowledge of instrumentalization techniques and cooperation of

remote resources was judged to not be a feasible solution in the three weeks of time

allotted to our group for testing. All grid-based tests must therefore be considered as

highly dependent upon grid loads at any given time.

One other factor had to be considered before jobs were submitted to the grid. Unless a

storage element (SE) is defined for a given workflow, output files are not guaranteed to

be written on storage elements accessible to all computational elements on the grid. The

disadvantage of using a set SE, however, is that all jobs will be run on a nearby cluster.

This can prove to be problematic, as a limit exists for how many threads per user may run

on a given computing element. A concurrency limit of five processes is therefore

normally imposed on any parallel workflow. This can be manually changed in the P-

GRADE portal. However, if the thread limit is exceeded no other jobs associated with a

given certificate will be run on that element until currently running threads terminate.

This can interfere with experiments if granularity is set to allow more jobs than there are

 51

processors available, or if multiple workflows from the same user are running on a

particular computing element.

 With the above testing framework our group evaluated EMMIL and SEE-GRID

performance at several levels of granularity. In this context, the term refers to the amount

of independent datasets allotted to a single process, i.e. a measure of how the quantity of

datasets maps to the number of processes spawned on remote computing elements. Fine

granularity approaches a one-to-one mapping, while coarse granularity allocates a high

number of datasets to one process. Through these tests we hoped to find a rough

approximation of the relationship between the number of jobs produced, time per job, the

number of computing resources allocated, the effects of grid conditions, and the total

completion time.

The importance of this relationship in a grid environment cannot be understated. If

too few resources are allocated to the EMMIL model due to excessively coarse

granularities, parallelization is not being fully utilized and performance may approach

that of non-grid solutions. If too many resources are allocated due to excessively fine

granularities, grid overhead such as queues and network load could substantially inhibit

time efficiencies. Optimum granularity, then, is tied on the one hand to job quantity and

execution time (investigated in single-processor tests) and on the other to grid load and

environment.

Our group hoped to arrive at an empirical approximation of this relationship, and use

it to justify a heuristic algorithm which would automatically adjust EMMIL granularity

based on an initial scan of input data and some knowledge of grid conditions. We did not

intend to implement such a procedure, but merely sketch a potential heuristic.

 52

3.3 EMMIL Data Input Portlet

The EMMIL application model requires a number of parameters in order to

perform its simulations. The model must know the number of items (N), the number of

sellers (M), the number of suppliers to choose from (M), the combination size, the

container size, the desired quantity of each product and information pertaining to each

seller. The details required of the seller include: the unit price for each item, their

capacity of each item, and their fixed and variable logistic costs. A typical run of this

model may contain as many as thirty sellers and ten products. For a user to manually

enter all the seller details, they would be required to specify the price and product

capacities of 300 items. This is an unacceptable situation, as it would require a large

amount of tedious work by the user before each run.

 Instead we made the decision that the data should be generated randomly for the

user, using a normal distribution
3
. As input, the user would need to enter only a mean

value and a deviation value for the unit price and for each product, as well as the fixed

and variable costs. These values could then be generated for each seller. For the product

capacity the user enters an upper and lower bound percentage, to determine the product

capacity of each seller. In this case the capacity is uniformly distributed throughout the

specified range.

 The process of generating random values originally occurred within the

Generator, which took the constant parameters as input in addition to the means and

standard deviation of seller-related parameters. This leaves the user with no control over

the data that is processed in the model. An alternative was to change the input file of the

3
 A form of statistical distribution in which all values fall within some number of specified deviations of a

specified mean

 53

generator to allow the user to specify all of the seller data. To prevent the user from

having to manually type the seller data into the input file, we created an input portlet.

This portlet allowed the user to specify all the constant parameters, as well as the means

and standard deviations of the seller related items. Using these values the portlet then

generates the values for all the seller related data, and displays the results in an editable

HTML form. This allows the user to create specific scenarios, in which they can specify

all of the seller data, or just the values they wish to control. This increases the control the

user has over the application, while leaving it flexible enough where the user does not

need to manually choose every seller value.

3.4 EMMIL Enhancement

The basic version of EMMIL that our project built on lacked many of the advanced

features described in Bruckner and Csekenyi [3]. Our group introduced two

enhancements to this model, designed to better simulate actual situations and to minimize

the number of linear problems that are generated. Product capacity filtering introduces

limits to how many of each product a seller can actually provide. Hopeless job filtering

discards combinations of sellers that cannot possibly be used to arrive at an optimal

solution.

 54

3.4.1 Product Capacity Filtering

In order to prevent sellers from placing bids that they

cannot fill, a data structure was introduced to hold maximum

quantities of each product for each seller. A double-

dimensional array of width N and depth M was used to store

and access these as needed. (See Figure 12) While potentially

memory-intensive, this approach allowed rapid random-

access modification and retrieval through memory pointers in

C.

The actual values of a product capacity table are tied to the desired quantities of each

product. This is done for simulation purposes only; if employed in real-world situations

this information would not be dynamically generated. In order to test the model’s

performance under varying conditions of product availability, mechanisms were included

to specify lower and upper bounds in its input file.

During EMMIL’s preprocessing phase an algorithm was implemented to discard any

combinations of sellers that cannot collectively supply at least as many products as are

specified in the buy order. However, the number of iterations within each category makes

this computationally expensive:

For each dataset i:
For each seller j:

For each product t:
 IF SUMj Capacities[Seller_indexes[i,j],t] <Quantity[t]
 THEN DISCARD DATASET i

In effect, this algorithm adds the total product capacity for each product individually

over all selected sellers in a given combination. If any value is less than the desired

quantity specified in the buy order, that combination is discarded before processor cycles

Figure 12 - Example

Product Capacities

8 17 16 4

43 16 20 3

19 20 12 2

11 19 11 1

31 16 9 0

3 2 1 Seller

Product

 55

are wasted trying to evaluate it. In addition to discarding combinations of sellers that

cannot supply the desired quantity of goods, it was further necessary to ensure that no

seller provided more goods than its specified maximum. Our enhanced model

accomplished this through a constraint introduced into the linear solver. Specific

implementation details are available in Section 4.

3.4.2 Hopeless Job Filtering

A preprocessing filter has been implemented to reduce the number of jobs sent to

the EMMIL core. The filter removes hopeless jobs containing combinations of sellers

that have no chance of being the ideal solution. To determine if a job is hopeless, we

computed the lowest possible cost of the job; that is the sum of the lowest cost of each

product, the lowest variable cost, and the lowest fixed cost from the selection of sellers.

This lowest cost value of the selection is then

compared with the lowest cost value of any

individual seller. If the individual seller's cost is

less, the job is classified as hopeless and

is filtered out. Figure 13 to the right shows an

example of a situation where the hopeless job

filter would be effective. The column on the left

indicates the size of the selection, and the column

on the right displays the combinations with the filtered selections in red. In this scenario

the seller's rank is ordered based on the cost to buy all items from that seller, so Seller 1

is the best and Seller 5 the worst. In the case where the selection size is one, all but the

selection containing Seller 1 are filtered because no single seller can beat the price of

S=1 {1}{2}{3}{4}{5}

S=2 {1,2}{1,3}{1,4}{1,5}

{2,3}{2,4}{2,5}{3,4}

{3,5}{4,5}

S=3 {1,2,3}{1,2,4}{1,2,5}

{1,3,4}{1,3,5}{1,4,5}

{2,3,4}{2,3,5}{2,4,5} {3,4,5}

S=4 {1,2,3,4},{1,2,3,5}

{2,3,4,5}

S=5 {1,2,3,4,5}

Figure 13- Hopeless Jobs

 56

Seller 1. In the case where S =2, four sellers are filtered, all selections with Seller 1

remain, as well as the selections {2,3} and {2,4}, this would be the case when Seller 2

may offer some products cheaper than Seller 1, and Seller 3 and 4 offer other products

cheaper than Seller 1, producing a lower total cost. When S=3 only one selection is

filtered, as there is now a better chance that a selection will be better than that of the

single best seller. The only filtered selection is the one containing the three worst sellers.

 This filter is potentially computationally intensive, as it performs an increasing

number of computations as the parameters for number of products, sellers, combinations

or the size of seller selections increases. The increased computation time of the

preprocess filter is justified by filtering out the more computationally intensive EMMIL

core jobs, which require large amounts of processor time to calculate linear equations.

The hopeless job filter first must iterate through each seller selection; within the selection

each seller of the selection is then iterated through, and then the products are iterated

through for each seller. Below the pseudocode of the prefilter algorithm is shown:

For jobindex=1 to U do
 ‘Leave out jobs that are hopeless

‘Calculate theoretical lowest limit of cost for this data
‘set

 Cost_lowest_limit :=0
 For j=1 to S
 For i=1 to N do
 lowestProductCost= min(
 unitPrice[j,i]*Quantity[i],
 lowestProductCost)
 EndLoop
 Cost_lowest_limit+= lowestProductCost
 lowestVarCost= min(varCost[j,i]*contNeeded),
 lowestVarCost)
 lowestFixedCost= min(fixedCost[j,i]*totalQty),
 lowestFixedCost)
 EndLoop
 costLowestLimt+=lowestVarCost+lowestFixedCost

‘Do not use this data set if the cheapest sellers
'can offer lower cost then theoretical lowest limit
'calculated here
If Cost_lowest_limit> Sorted_Purchase_cost[0] Then

 57

 DISCARD_DATASET_JOBINDEX
Endif

 EndLoop

4 Implementation and Results
Our implemented objectives spanned two programming environments. EMMIL

model enhancements were written in the C programming language and compiled on a

UNIX platform using gcc version 3.2.3. The P-GRADE portlet was written using Java

Server Pages, and implemented on version 2.5 of the portal. All raw data tables are

available in the Appendices.

4.1 EMMIL Grid Application Feasibility Testing

4.1.1 Single-Processor Testing

All testing was done on n49.hpcc.sztaki.hu. This machine has the following relevant

statistics:

• Intel Pentium 4 3.00GHz with a 1024kb cache

• 2Gb of RAM

• Running Red Hat Linux 3.2.3

A single process was allotted up to 50% of total processor usage per execution.

 58

4.1.1.1 Selected Sellers

Our first series of tests

investigated the effect of

increasing the number of

selected sellers (S) while

holding all other values

constant. As expected, the

amount of time taken to

process each job increased

steadily, and indeed almost

linearly (see Figure 15).

The precise progression is

impossible to determine

given the dearth of data

points available for

statistical analysis,

however. An important

note is that as S approaches U/2, (U is the number of filtered sellers) the number of jobs

generated will increase to a maximum of

2

U

U

. (See Appendix III) This increases the

number of jobs as well as increasing the time taken to compute each job. Figure 14

provides an overall summary of the effects of S-values on total computation time. Again,

a linear progression appears to relate various values of S. The lack of data points beyond

S=6 makes this impossible to prove satisfactorily, however.

Selected Sellers

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

3 4 5 6

Number of Sellers Selected (U=10, Z=60)
T
im

e
 P
e
r
J
o
b
 (
S
e
c
)

Figure 14 - Selected Sellers Job Time

Selected Sellers

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

3 4 5 6

Number of Sellers Selected (U=10, Z=60)

T
im

e
 (
S
e
c
)

Figure 15 - Selected Sellers Run Time

 59

4.1.1.2 Container Size

Our next series of

experiments investigated

the effects of container

size on total computation

time. Again, all variables

were held constant unless

otherwise stated. At high

container sizes job time

was quite rapid, and

individual processes often finished in less than five seconds. At lower container sizes the

time taken per job increases drastically, demonstrating exponential behavior. We attribute

this to lp_solve’s branch-and-bound handling of integer variables and the associated

exponential increases in solve time caused by the introduction of more binary y

variables [20]. At high container sizes all items bought from a given seller can fit into a

single container, keeping the amount of integers in the problem to a minimum. At lower

container sizes, multiple containers must be allocated to each seller in order to fit all

goods purchased from that vendor. This could significantly increase the number of

integer variables involved, especially if a large number of sellers are being purchased

from.

Container Size

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

40 50 60 70 80 90 100 110 120 130

Container Size (U=10, S=4)

T
im

e
 P
e
r
J
o
b
 (
S
e
c
)

Figure 16 - Container Size

 60

4.1.1.3 Selected Sellers and Container Size

After investigating the role of selected seller quantities and container sizes

individually, we ran a series of experiments to study their interaction at 3-6 sellers per

combination and maximum container size of 20-130 units. The expected spike arising

from multiple

container allocation

does indeed occur,

at a container size

of 50 units (see

Figure 17).

At high

container sizes

relative to product quantity, these data indicate that the selected number of sellers may be

the determinant factor in processing time. As container size decreases, we theorize that a

greater number of integer variables are introduced to the solver. This becomes a more

important factor in computation time than the number of selected sellers. The two are

also more intricately related, however. Increasing numbers of selected sellers presents a

wider variety of sellers from which products may be purchased. As is shown in Section

 3.1.1, each new seller will cause new y-variables to be created equal to the maximum

number of containers per seller.

Container Size and Selected Sellers (Time Per Job)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

20 30 40 50 60 70 80 90 100 110 120 130

Container Size

S
e
c
o
n
d
s
 P
e
r
J
o
b

S=3

S=4

S=5

S=6

Figure 17 - Container Size and Selected Sellers (Job Time)

 61

Furthermore,

Figure 18, when

compared with Figure

17, indicates that the

number of jobs

generated has, on its

own, little effect on

total execution time if

all jobs are executed by the same processor. This is unsurprising, as in this case the

number of jobs acts as a scalar value multiplied by the time taken per job. Granularity is,

effectively, at the most coarse level possible.

4.1.1.4 Product Number and Quantity

Our last series of

experiments on the

implemented EMMIL model

investigated the effects of

product number (N) and

desired product quantities on

execution time (Q). For

testing purposes all desired quantities were set equal to one another. In Figure 19 above,

Q=25 ensures the desired amount of each product will be less than the container size.

Q=50 ensures it will equal the container size, and Q=75 will result in each product order

exceeding the container size. The significant increase in processing time between

Container Size and Selected Sellers

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

20 30 40 50 60 70 80 90 100 110 120 130

Container Size

S
e
c
o
n
d
s

S=3

S=4

S=5

S=6

Figure 18 - Container Size and Selected Sellers (Total Time)

Product and Order Quantity

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

Items (N)

T
im

e
 (
S
) Quant=25

Quant=50

Quant=75

Figure 19 - Product and Order Quantity

 62

Quantity = 50 and Quantity = 75 is the most interesting feature of these experiments.

Note that if each product order exceeds the container size, the number of y-variables will

increase steeply. Each seller must be allotted a number of containers equal to the ceiling

of total product quantity divided by container size. These data support our theory that

increased numbers of integer variables have a significant impact on computation time.

4.1.2 Grid-Based Testing

 The results of our granularity tests are presented in Figure 21. Pre-solver idle time

represents the time a job spent waiting for a resource to become available. Solve time

represents the duration a process spent executing on a resource. Finally, post-solver idle

time represents the amount of time taken waiting for other processes to finish and for the

collector to run. The most desirable outcomes have the least total time from the first

process beginning to the final process finishing. It is important to note that for these tests

there were ten processes on a cluster reserved for our use. However these processors were

not idling waiting for our tests to be submitted. If these resources were working on a

previously assigned job they would first finish and then begin running our processes. The

granularity of the different tests was chosen to force a workflow with more, the same

number, and fewer processes then the number of computing resources available.

 In the first graph in Figure 21 displays the time taken by the test running five core

processes. This test was assumed to provide a suboptimal time increase over running all

the tests on a single machine, as it did not make use of all of our available resources.

Visible is the effect of different computation times for different data sets. While each

 63

process computed the results for sixty six different data sets, the overall computation time

of each process varied widely.

 The second graph represents the results of our ten process test each with thirty

three different sets of data and produced the greatest increase in overall time required for

computations. Two processes of this test were scheduled for a longer time then the rest,

indicating that of our ten processors, only eight were immediately available. However,

this scheduling delay did not greatly prolong the total time consumed by this test.

 The final graph represents the results of our thirty process test each handling

eleven different data sets. For this test ten processes began at approximately the same

time, indicating that all of our resources were available from the start of the test. The

purpose of this test was to determine weather or not it was better to further subdivide data

sets. It was possible that a workflow with more processes each with fewer datasets would

save time overall, by removing additional tasks form computationally intensive

processes, and scheduling them on processors who had completed computationally light

data set calculations.

 Figure 20 is a graph

displaying the total time

required for the computation

processes to finish. This

means that each bar is the

time from the first process

scheduled beginning to run

Granularity Results

0

10000

20000

30000

40000

50000

60000

1 5 10 30

Number of Processes

T
im

e
 (
S
e
c
o
n
d
s
)

Figure 20 - Granularity Results

 64

until the final process finished. It does not include initial process schedule times or the

final scheduling delay before the collector process began. Our five run process test

completed approximately four times faster then a single process running all computations

on data sets. Our ten run test completed six and a quarter times faster then the single

process run. While the thirty process test completed five times faster then a single

process, and completed faster then our five process test, it failed to complete faster then

the ten process test.

One observation from the thirty process test in Figure 21 is that two processes

waited in the scheduled state after all other processes had completed which may have

caused this test to take a noticeably longer time period to complete. Two processes were

also delayed in our ten process test. These interferences with our test indicate the

importance of not relying on resources being available beyond the start point of a

workflow.

Secondly, the best completion time was achieved when the granularity used

created a number of processes equal to our available resources. Despite the greatly

differing computation times for each of these processes this test still performed better

then our thirty run test. As the thirty run test was designed to shorten run time by further

dividing data sets and distributing the resource load more evenly among resources its

failure to complete faster indicates that too much time is wasted with scheduling

additional processes. We observed that there does not appear to be a convincing reason to

schedule more tasks then the number of available computing resources.

 65

Figure 21 - Granularity Tests

Granularity 33

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

Process

T
im
e
 (
S
e
c
o
n
d
s
)

Pre-Solve Idle Time Solve Time Post-Solve Idle Time

Granularity 11

0

5000

10000

15000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Process

T
im
e
 (
S
e
c
o
n
d
s
)

Pre-Splve Idle Time Solve Time Post-Solve Idle Time

Granularity 66

0

5000

10000

15000

1 2 3 4 5

Process Number

T
im
e
 (
S
e
c
o
n
d
s
)

Pre-Solve Idle Time Solve Time Post-Solve Idle Time

 66

4.2 EMMIL Data Input Portlet

The EMMIL Data

Input Portlet was

implemented as described in

Section 3.3. Preliminary

work on the portlet was done

with the assistance of

colleagues at MTA-SZTAKI.

This prototype allowed the

user to input the basic application parameters and the means and standard deviations for

the seller related items. We made the decision to extend the functionality of this existing

model to support the generation of seller data. The result consists of four Java classes and

two JSP pages.

 The Java classes involved in this application were the EmmilHandler, EmmilDB,

SessionUserData and Quantity. EmmilHandler extends ActionPortlet, a class from the

Gridsphere Portlet library, which is responsible for handling all web-based events from

the JSP pages. The EMMILDB class is responsible for remote storage of the application

data, both to allow the user to save and load files within the portlet, and to associate the

generator input file to a workflow. The SessionUserData class holds all the data the

application needs while running. The Quantity class is used to hold the details about the

product capacities.

 The two JSP pages in the original portlet were EMMIL.jsp and EMMIL_2.jsp,

these JSP pages provide the end user with an interface to create the generator input file.

Figure 22 - EMMIL Data Entry

 67

EMMIL.jsp provides the user with an interface as can be seen in Figure 22 to set the

basic application parameters, the mean and standard deviations for fixed and variable

costs, and the high and low capacity limits. The EMMIL_2.jsp interface provides the

user with the ability to specify the quantity, mean and standard deviation for each product

(see). Each page also allows the user to save the current portlet data, for reuse in the

portlet, or to associate it

with a workflow.

 In the modified

version of this

application two new

Java classes and a new

JSP page were added.

Additionally,

modifications were

made to the existing files. The first class added was SellerData. This class stores all data

related to the sellers, the unit costs and product capacities for each item, the fixed cost

and the variable cost. The other class added was the DataGenerator class. This class uses

the data stored within the SessionUserData class to generate the seller data using a

standard deviation. To generate a standard deviation we made use of the central limit

theorem approach, due to its ease of implementation as well as the fact that its

performance was comparable to more complex methods. The new JSP page,

EMMIL_3.jsp, as can be seen in Figure 23, displays the data generated by the Data

Generator class to the user. Additionally the page allows the user to generate a new set of

Figure 23 - Mean and Standard Deviation Entry

 68

seller data which will erase any previous seller data values. The page also gives the user

the ability to load and save the files

as the previous pages did.

 In addition to the creation of

these new files much of the work

came in the modification of the

existing portlet. Within the

EmmilHandler class extensive

modifications were made as a

method needed to be written to

handle the events created from any

button clicks in the JSP pages. The

EmmilDB and SessionUserData classes were both modified to store the generated seller

data, stored in SellerData objects. Additionally the EmmilDB class was modified to

write the new generator input file, which holds all seller data, rather than just the means

and standard deviations. The final changes were made to Emmil_2.jsp which was

modified to allow the user to input a seed for data generation, as well as by adding a

button which allows the user to view the seller data.

4.3 EMMIL Enhancement

Figure 24 - Costs and Capacity

 69

4.3.1 Product Capacity Filtering

The product capacity table was implemented as a double-dimensional array of

primitive ints. This was populated with a uniform distribution whose possible values are

defined by capFactorLow and capFactorHigh. These represent the lower and upper

bounds of the distribution, respectively. Each variable stores a percentage of the desired

product quantity. Values of 0.25 and 1.0, for example, would allow all capacities between

25% and 100% of the desired amount (inclusive) to be generated. This was done for

testing purposes only; real-world situations would not use randomly assigned values.

The preprocessing algorithm was implemented according to the pseudocode in

Section 3.4.1. Language-specific considerations are described by in-line comments within

the source code, and for the sake of brevity and readability will not be repeated here.

Product capacity constraints needed by lp_solve are implemented in the EMMIL core.

Since a single constraint can only govern one variable, actual constraint generation must

take place in nested loops. Recalling that the X-variable used by lp_solve in this case

represents combinations of seller, product and container, the following code is necessary:

for (j = 0; j<S; j++){ //For each seller
gSj = getS(j,jID); //Get the seller index
for (i = 0; i<N; i++) { //For each product

for (t = 0; t<C; t++){ //Check over all containers
fprintf(out, "+1 %s - %d <= 0 ;\n",
 varXgen(gSj,i,t), //Formats syntax
 capacities[gSj][i]); //capacity table

}
}

}

4.3.2 Hopeless Job Filtering

The hopeless job filter was implemented in C according to the psuedocode

presented in section 3.4.2. The implementation functions as originally intended and

filters out the hopeless jobs which the algorithm was intended to remove. The impact of

 70

the filter is difficult to measure, as the length of time to process the filtered core jobs can

vary anywhere from milliseconds to hours. The filter processes a job containing thirty

sellers and ten products in under 200ms. As this is a realistic upper bound scenario for

the model these findings demonstrate the effectiveness of the filter, as the algorithm

completes in significantly less time than an average core job.

 Depending on the input

given to the application the

filter can be very effective at

removing jobs. Figure 25 -

Unit Costs displays the unit

prices of five sellers, in this

scenario the fixed cost and variable cost were held constant. This scenario resulted in the

filtering of a number of jobs; the results are displayed in Figure 26. The results in this

table show that the filter is effectively removing

jobs. The jobs filtered when S is two are all the

jobs which do not contain the best seller, this

shows that the scenario set up has a single

powerful seller which can not be beat by the

combination of any other two sellers. When S

is three, however, two jobs are filtered out. This

shows that some combinations which do not

include the best seller are able to deliver a better value. Again, as in the hypothetical

filter scenario that was produced, no jobs are removed when the selection size is higher

Figure 25 - Unit Costs

S=1 {1}{2}{3}{4}{5}

S=2 {1,2}{1,3}{1,4}{1,5}

{2,3}{2,4}{2,5}{3,4}

{3,5}{4,5}

S=3 {1,2,3}{1,2,4}{1,2,5}

{1,3,4}{1,3,5}{1,4,5}

{2,3,4}{2,3,5}{2,4,5} {3,4,5}

S=4 {1,2,3,4},{1,2,3,5}

{2,3,4,5}

S=5 {1,2,3,4,5}

Figure 26 - Hopeless Discards

 71

than four. The filter clearly shows its effectiveness in filtering jobs in the instances when

S is low compared to the total number of sellers.

5 Conclusions and Future Work
This section details the conclusions that we’ve drawn from the data presented in Part

4, obtained using the methods described in Part 3. We have also pointed out avenues of

future work in areas of theory and implementation. Section 5.1 presents our conclusions

concerning the EMMIL model and its feasibility as a grid application, taking into account

that all tests were run on SEE-GRID. The role of granularity in the parallelization process

is considered, and a rough relationship between granularity, grid conditions, and input

data is hypothesized. Section 5.2 suggests extensions to our implemented data entry

portlet and discusses potential data output utilities. Finally, Section 5.3 contains many

suggestions for improving the currently implemented EMMIL model. Many of these are

based on the features described by Bruckner and Csekenyi [3]. Other arose from our own

experiences with the code and its design.

5.1 EMMIL Grid Application Feasibility Testing

5.1.1 Single-Processor Testing

Analysis of our single-processor data has led to several conclusions concerning

EMMIL and its implementation. First, the data represented in Figure 17 and Figure 18

suggest that the number of jobs generated by a given input set should not in and of itself

be used to estimate overall completion times. The time per job is also a crucial factor, and

the relationship between these is important in determining optimal granularity.

 72

Second, the number of integer variables introduced into lp_solve has a very

significant effect on the time taken to complete each job. This is not considered in the

theoretical model, but represents a significant loss of efficiency in the implemented

system. The number of integer variables in an EMMIL problem can be determined from

its input data, using:

+ ∑

=

N

i

iQ
1Z

1
 1S

Where S is the number of sellers per combination, Z is the container size, N is the

number of products, and Q is the desired quantity of a product. Further empirical testing

is needed to discover a more precise relationship between this number and the amount of

processor cycles consumed by lp_solve.

The first and second conclusions lead naturally to our final conclusion based on

single-processor testing. In a parallel environment, granularity heuristics should consider

the number of integer variable constraints in an EMMIL problem. If time per job is likely

high, a finer granularity may be beneficial in order to maximize parallelization. If time

per job is low, a coarser granularity would help minimize grid overhead costs. The

precise number of jobs assigned to each machine given fine or coarse granularity is a

factor of the number of jobs that are created; this can be determined by

S

U
.

5.1.2 Grid-Based Testing

We have drawn several conclusions about the feasibility of EMMIL as a grid

application and the role of granularity in overall efficiency. Note that in theory, EMMIL

would complete faster on a grid than a single processor in most cases. The core algorithm

is a parameter study, in which one process (in this case a mixed-integer linear problem

 73

solver) executes over a variety of independent datasets. Furthermore, a significant

number of real-world situations can easily generate millions of jobs. For example,

selecting six sellers to buy from out of fifty creates 15,890,700 independent processes.

Only problems dealing with small parameter sets and low numbers of jobs would make a

single processor desirable.

In practice, a number of external factors limit EMMIL’s efficiency on SEE-GRID.

The VO does not have dedicated resources, and what processors are available are often

heavily utilized. Broker and resource waiting times can vary widely throughout the

course of a day. Depending on the length and scope of a combinatorial auction this factor

alone may make SEE-GRID an undesirable environment for EMMIL execution.

Our results in both single-processor testing (Sections 4.1.1 and 5.1.1) and grid-

based testing (Section 4.1.2) have provided some indication of a granularity heuristic that

could mitigate some of these problems. From a purely local perspective granularity

should be based on an estimate of two factors: the number of jobs produced and the time

taken to run per job. An

upper bound on the former

can be established by a

combination of U and S; capacity and hopeless job filtering could potentially result in a

lower amount of jobs actually passed to the solver. An algorithm to estimate the latter

might approximate the number of integer variables generated by a set of input data, as

explained above.

From the standpoint of a grid application, any granularity heuristic must account

for current resource load and wait times. These are, after all, the essential point of a

Figure 27 - Granularity

 74

granularity metric. If scheduling time on the grid is high, representing a high grid load,

then the algorithm should favor a coarse granularity, in order to minimize the time jobs

spend waiting in queues. Lower grid loads should favor fine granularities, in order to

capitalize on parallelization of the parameter study. These parameters are summarized in

Figure 27. Finally, one of the greatest factors in the determination of optimal granularity

is the number of processors available to that workflow. Our results indicate that running

at the maximum concurrency limit generally achieves the best result. Little reason exists

to set a granularity higher than the processor limit, since any threads beyond this

threshold will be forced to wait until a resource becomes available. Although extra

computing elements may become available over the course of a workflow, resources

previously available may also have other jobs scheduled on them, resulting in a decrease

in available computing elements. Note that a special case does exist, however, in which a

finer granularity would be beneficial. This only occurs when one dataset takes an

inordinately long amount of time to execute. However, by attempting to compensate for

such a condition to much scheduling interference may be introduced, as occurred in our

testing.

In conclusion, EMMIL is a viable grid application. Our test results on SEE-GRID

indicate that jobs with a long solve time complete faster in a parallel environment despite

overhead time costs. Process granularity is a critical factor in optimizing execution time

and minimizing the effect of these overhead costs.

 75

5.2 EMMIL Data Input Portlet

The EMMIL Data Input portlet facilitates the creation of advanced input files, which

allows the user to have increased control over the parameters of the EMMIL model. This

increased control allows the user to create specific scenarios by specifying the seller data

according to their own desired criteria. The portlet also allows the user to easily associate

the input file to a workflow, with no need to upload the file to the portlet. Unfortunately,

the workflow cannot be run directly from the portlet as the user must still switch to the

Workflow tab to execute the workflow. Additionally, there is no corresponding EMMIL

output portlet. Currently the user must view the output through the Workflow Manager.

Ideally one would be able to specify the input parameters, begin the execution of the

model, and view the results a single application. Unfortunately at this time such an

application does not exist, but it is theoretically possible to create such a program, given

enough time, by extending existing Gridsphere and P-GRADE technology.

5.3 EMMIL Enhancement

The current EMMIL implementation is missing several features included in Dr.

Bruckner’s original model. Volume-based discounts, in which a price reduction is applied

for buying some quantity of a product from a particular seller, are one of two discounting

strategies discussed in Brucker and Csekenyi [3]. The second, total-spending discounts,

provides price reductions if a buyer spent a specified amount of funds purchasing

products from a particular buyer. Neither of these is supported by the current EMMIL

implementation.

Furthermore, the original model included an expanded set of variables describing a

buyer and each seller. Warehouse locations and shipping time are particularly notable

omissions in the current implementation, and represent a level of geographical awareness

 76

that present several optimization strategies not yet considered. Sellers that are on the

same transportation route could, for example, be favored in order to minimize logistic

costs.

Arbitrary numbers of logistics providers are also currently unimplemented. The

original model calls for each seller to have a list of valid logistic providers, while the

implemented model has only one provider. This significantly impacts the algorithms used

to select filtered sellers (U) and simplifies the computations performed by the solver.

Inclusion of multiple logistics providers per seller may significantly affect computation

times, and increase the feasibility of EMMIL as a grid application.

Several opportunities for future work also exist in the fields of algorithm analysis and

creation. The mechanism by which hopeless sellers are filtered (see Section 3.4.2) may be

amenable to improvement through use of a tree structure. This strategy has not been

heavily analyzed, however. As is true with many algorithms which are currently

implemented, support is not provided for arbitrary numbers of logistics providers.

In addition, the method by which sellers are filtered is currently very simplistic, does

not allow discounting, and can not handle an arbitrary number of logistics providers. A

variety of more sophisticated algorithms could be employed in its stead. Determining

which technique is best is likely a matter of balancing increased pre-processing

computation costs with an increased probability of arriving at an optimal solution.

File sizes could be minimized by writing only those combinations that will be solved

to a given instance of the EMMIL core. Currently all possible combinations are stored in

each file, even though only a fraction are used per process.

 77

Finally, an increase in performance might be possible through increased interaction

with the solver. Currently a problem is submitted and its solution is read; no record of

previous solutions is kept. Cases have arisen, however, in which the relaxed solution to a

given job (an upper bound on optimal price, obtained by relaxing constraints) is worse

than the optimal solutions of previous jobs. In such instances there is no need to continue

calculation, and the job could be discarded.

 78

6 Bibliography
[1] Abdelnur, Alejandro, and Stefan Hepper. Java Portlet Specification. SUN

Microsystems. 2003. 15 Apr. 2007

<http://jcp.org/aboutJava/communityprocess/final/jsr168/>.

[2] Abbas, Ahmarr. An Overview Grid Computing: a Practical Guide to Technology and

Applications. 1st ed. Boston: Charles River Media, 2003.

[3] Bruckner, Livia K., and Jozsef Csekenyi. "Principles and Algorithms of EMMIL

Marketplaces." Proceedings of the Seventh IEEE International Conference on E-

Commerce Technology (2005).

[4] Clauson, Jens. "Branch and Bound Algorithms - Principles and Examples."

University of Copenhagen (1999).

[5] Czajkowski, K., S. Fitzgerald, I. Foster, and C. Kesselman. "Grid Information

Services for Distributed Resource Sharing." Proceedings of the Tenth IEEE

International Symposium on High-Performance Distributed Computing (HPDC-10),

IEEE Press (2001).

[6] Feller, M., I. Foster, and S. Martin. "GT4 GRAM: a Functionality and Performance

Study."

[7] Foster, Ian, Carl Kesselman, and Steve Tuecke. "The Anatomy of the Grid."

International J. Supercomputer Applications, 15 (2001).

[8] Foster, Ian. "Globus Toolkit Version 4: Software for Service-Oriented Systems."

Journal of Computer Science and Technology 21 (2006).

[9] Foster, Ian. "What is the Grid? A Three Point Checklist." GRIDToday (2002).

[10] G. Singh et al., The Pegasus portal: Web based Grid computing, in Proc. of 20
th

Annual ACM Symposium on Applied Computing, Santa Fe, New Mexico, 2005.

[11] Geist, G.a., J.a. Kohl, and P.m. Papadopoulos. "PVM and MPI: a Comparison of

Features." Calculateurs Paralleles (1996).

[12] Gropp, William, and Ewing Lusk. "PVM and MPI are Completely Different." Fourth

European PVM - MPI Users\' Group Meeting.

[13] Harrington, Ramon, Martin, Danielle, and Winsnes, Carsten, Grid Portal Testing.

WPI. 2006.

[14] Jacob, Bart, Michael Brown, Kentaro Fukui, and Nihar Trivedi. Introduction to Grid

Computing. Vervante, 2005.

 79

[15] Jamin, Amanda, and Domenic K. Giancola. GRID Portal Application Visualization.

WPI. Worcester: WPI, 2005.

[16] J. Cao, S.A. Jarvis, S. Saini, and G.R. Nudd, BGridFlow: Workflow management for

Grid computing, in Proc. of the 3rd IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGRID’03), pp. 198Y205, 2003.

[17] Kacsuk, Peter, and Gergely Sipos. "Multi-Grid, Multi-User Workflows in the P-

GRADE Grid." Journal of Grid Computing (2006).

[18] Kacsuk, Peter, Gergely Sipos, Adrian Toth, Zoltan Farkas, Gabor Kecskemeti, and

Gabor Hermann. "Defining and Running Parametric Study Workflow." MTA

SZTAKI (2007).

[19] Keahey, K., I. Foster, T. Freeman, and X. Zhang. "Virtual Workspaces: Achieving

Quality of Service and Quality of Life in the Grid." Scientific Programming Journal

(2006).

[20] "Lp_solve Reference Guide." Sourceforge. 13 Apr. 2007

<http://lpsolve.sourceforge.net/5.5/>.

[21] Morgan, Steven S. A Comparison of Simplex Method Algorithms. 1997. University

of Florida. 13 Apr. 2007 <http://www.cise.ufl.edu/~davis/Morgan/index.htm>.

[22] "P-GRADE Grid Portal Manual." LPDS. 15 Feb. 2007. SZTAKI. 12 Apr. 2007

<http://www.lpds.sztaki.hu/pgportal/manual/user/v25a/UsersManualRelease2_5.html

>.

[23] Sun Microsystems. 05 Apr. 2007 <http://www.sun.com/>.

[24] Smarr, Larry, and Charles E. Catlett. "Metacomputing." Communications of the

ACM 35 (1992): 44-52.

[25] Stevens, Rick, Paul Woodward, Tom Defanti, and Charlie Catlett. "From the I-WAY

to the National Technology Grid." Communications of the ACM 40 (1997): 50-60.

[26] Thain, Douglas, Todd Tannenbaum, and Miron Livny. "Condor and the Grid." Grid

Computing – Making the Global Infrastructure a Reality. Ed. F. Berman, A. Hey, and

G. Fox. John Wiley and Sons, 2003.

[27] Welch, V., F. Seibenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C.

Kesselman, S. Meder, L. Pearlman, and S. Tuecke. "Security for Grid Services."

Twelfth International Symposium on High Performance Distributed Computing

(HPDC-12) (2003).

 80

Appendix I: Single-Processor Test Data
Variable Description

M Number of total sellers

U Number of filtered sellers

S Number of sellers in a combination

N Number of products

Q Desired product quantity

P Unit price

F Fixed transportation cost

V Variable transportation cost

Z Container size

All timing measurements are in seconds.

M=20, N=10, U=10

M=20, N=10, U=10

M=20, U=10, S=3, Z=50

Container Size Processor Time using times(&struct_tms)

S 20 30 40 50 60 70 80 90 100 110 120 130

3 1801.31 466.94 219.39 95.27 77.79 58.30 38.44 39.94 41.33 26.77

4 7976.05 2274.61 1209.25 562.59 463.62 232.27 254.88 160.50 179.63 95.96

5 13769.00 4190.74 2957.68 1141.81 899.86 760.92 592.59 381.37 393.60 289.55

6 15781.71 4614.90 3795.87 1634.64 1276.68 922.68 763.29 712.57 509.72 370.76

Container Size (Job Time)

S 20 30 40 50 60 70 80 90 100 110 120 130

3 15.94 4.13 1.94 0.84 0.69 0.52 0.34 0.35 0.37 0.24

4 37.98 10.83 5.76 2.68 2.21 1.11 1.21 0.76 0.86 0.46

5 54.64 16.63 11.74 4.53 3.57 3.02 2.35 1.51 1.56 1.15

6 75.15 21.98 18.08 7.78 6.08 4.39 3.63 3.39 2.43 1.77

 Items (Execution Time)

Quantity 1 2 3 4 5 6 7 8 9 10 11 12

25 0.11 0.16 0.32 0.29 0.89 0.91 2.02 2.06 5.77 5.89 9.48 7.07

50 0.12 0.29 0.44 0.79 1.63 2.73 4.69 8.21 13.29 18.66 26.25 6.9

75 0.21 0.35 1.19 1.62 10.3 10.01 53.45 47.58 398.71 161.31 1008.16 495.7

 81

Appendix II: Grid-Based Test Data
Variable Description

M Number of total sellers

U Number of filtered sellers

S Number of sellers in a combination

N Number of products

Q Desired product quantity

P Unit price

F Fixed transportation cost

V Variable transportation cost

Z Container size

All measured times are in seconds

Granularity Graph Dataset 1.1

N M U S G Jobs Pre-Solve Idle Time
Solve
Time

Post-Solve Idle
time

Total Idle
Time

15 10 10 6 42 5 303 609 337 640

15 10 10 6 42 5 356 420 473 829

15 10 10 6 42 5 303 588 358 661

15 10 10 6 42 5 360 574 315 675

15 10 10 6 42 5 360 613 276 636

 Total Elapsed Time 1249

Granularity Graph Dataset 1.2

N M U S G Jobs Pre-Solve Idle Time
Solve
Time

Post-Solve Idle
time

Total Idle
Time

15 10 10 6 21 10 287 336 1166 1453

15 10 10 6 21 10 1054 233 502 1556

15 10 10 6 21 10 261 303 1225 1486

15 10 10 6 21 10 312 370 1107 1419

15 10 10 6 21 10 312 193 1284 1596

15 10 10 6 21 10 329 182 1278 1607

15 10 10 6 21 10 818 262 709 1527

15 10 10 6 21 10 826 247 716 1542

15 10 10 6 21 10 838 255 696 1534

15 10 10 6 21 10 886 258 645 1531

 Total Elapsed Time 1789

 82

Granularity Graph Dataset 1.3

N M U S G Jobs Pre-Solve Idle Time
Solve
Time

Post-Solve Idle
time

Total Idle
Time

15 10 10 6 10 21 544 96 1810 2354

15 10 10 6 10 21 998 80 1372 2370

15 10 10 6 10 21 1300 154 996 2296

15 10 10 6 10 21 1324 156 970 2294

15 10 10 6 10 21 1314 165 971 2285

15 10 10 6 10 21 1335 162 953 2288

15 10 10 6 10 21 1396 83 971 2367

15 10 10 6 10 21 1696 76 678 2374

15 10 10 6 10 21 1749 141 560 2309

15 10 10 6 10 21 1844 146 460 2304

15 10 10 6 10 21 1833 101 516 2349

15 10 10 6 10 21 561 102 1787 2348

15 10 10 6 10 21 1844 158 448 2292

15 10 10 6 10 21 2012 96 342 2354

15 10 10 6 10 21 687 68 1695 2382

15 10 10 6 10 21 600 150 1700 2300

15 10 10 6 10 21 658 111 1681 2339

15 10 10 6 10 21 871 139 1440 2311

15 10 10 6 10 21 906 135 1409 2315

15 10 10 6 10 21 971 106 1373 2344

15 10 10 6 10 21 983 124 1343 2326

 Total Elapsed Time 2450

 83

Total Elapsed Time: 12560

Granularity Dataset 2.1

N M U S G Jobs Pre-Solve Idle Time
Solve
Time Post-Solve Idle time

20 11 11 7 11 30 10293 1946 302

20 11 11 7 11 30 1026 1983 9550

20 11 11 7 11 30 4191 1046 7322

20 11 11 7 11 30 2693 1408 8458

20 11 11 7 11 30 2805 1365 8389

20 11 11 7 11 30 1024 1882 9653

20 11 11 7 11 30 10448 1809 303

20 11 11 7 11 30 1036 1750 9774

20 11 11 7 11 30 4293 1539 6728

20 11 11 7 11 30 1036 2609 8915

20 11 11 7 11 30 2400 2053 8107

20 11 11 7 11 30 5610 1272 5678

20 11 11 7 11 30 5564 2190 4806

20 11 11 7 11 30 1025 1308 10227

20 11 11 7 11 30 3662 1319 7579

20 11 11 7 11 30 2923 2666 6971

20 11 11 7 11 30 3701 2261 6598

20 11 11 7 11 30 1013 2668 8879

20 11 11 7 11 30 1036 1256 10268

20 11 11 7 11 30 4084 2354 6122

20 11 11 7 11 30 3024 1039 8497

20 11 11 7 11 30 1024 3246 8290

20 11 11 7 11 30 1036 1637 9887

20 11 11 7 11 30 1024 2997 8539

20 11 11 7 11 30 4120 1500 6940

20 11 11 7 11 30 5261 1506 5793

20 11 11 7 11 30 4044 2153 6363

20 11 11 7 11 30 2315 3639 6606

20 11 11 7 11 30 4473 1067 7020

20 11 11 7 11 30 4997 1159 6374

 Total Compute time 56627

 Total Run time 11226

 Speed up 5.0442722

 84

Wallclock Time: 14588

Granularity Dataset 2.2

N M U S G Jobs Pre-Solve Idle Time
Solve
Time Post-Solve Idle time

20 11 11 7 11 10 359 8932 11149

20 11 11 7 11 10 3936 5682 10822

20 11 11 7 11 10 359 3560 16521

20 11 11 7 11 10 3796 5808 10837

20 11 11 7 11 10 386 5139 14934

20 11 11 7 11 10 405 7352 12684

20 11 11 7 11 10 368 6965 13108

20 11 11 7 11 10 407 4862 15172

20 11 11 7 11 10 420 4116 15960

20 11 11 7 11 10 419 5586 14437

 Total Compute time 58002

 Total Run time 9259

 Speed up 6.2643914

Granularity Dataset 2.3

N M U S G Jobs Pre-Solve Idle Time
Solve
Time Post-Solve Idle time

20 11 11 7 66 5 220 12285 2082

20 11 11 7 66 5 220 8743 5625

20 11 11 7 66 5 279 13673 636

20 11 11 7 66 5 292 8815 5481

20 11 11 7 66 5 292 12018 2278

 Total Compute time 55534

 Total Run time 13732

 Speed up 4.0441305

 85

Wallclock Time: 16930

Granularity Dataset 2.4

N M U S G Jobs Pre-Solve Idle Time
Solve
Time Post-Solve Idle time

20 11 11 7 17 20 428 3567 12934

20 11 11 7 17 20 498 2433 13998

20 11 11 7 17 20 506 2353 14070

20 11 11 7 17 20 504 404 16021

20 11 11 7 17 20 505 1108 15316

20 11 11 7 17 20 516 1345 15068

20 11 11 7 17 20 517 2740 13672

20 11 11 7 17 20 518 2916 13495

20 11 11 7 17 20 530 2369 14030

20 11 11 7 17 20 531 2204 14194

20 11 11 7 17 20 541 4551 11837

20 11 11 7 17 20 473 4036 12420

20 11 11 7 17 20 542 4172 12215

20 11 11 7 17 20 446 3084 13399

20 11 11 7 17 20 475 2796 13659

20 11 11 7 17 20 473 2328 14129

20 11 11 7 17 20 485 2179 14266

20 11 11 7 17 20 497 1987 14446

20 11 11 7 17 20 498 2888 13544

20 11 11 7 17 20 500 2881 13549

 Total Compute time 52341

 Total Run time 4664

 Speed up 11.222341

 86

Appendix III: Combinations
 The combination function finds the number of ways to combine some number of

unique elements in a set. Combinations are defined as unordered collections of elements

from a specified set, and are calculated by:

)!(!

!

knk

n

k

n

−
=

Where n is the cardinality a set containing at least k elements, and k is the number of

elements selected from n. For example, if one has a set of 10 elements and wishes to

know how many combinations of six elements from this set is possible, the problem

would be represented as:

210
17280

3628800

)!610(!6

!10

6

10
==

−
=

A graph of all combinations of size 1 to 10, drawn from a set of ten, would be as follows:

Set Size: 10 Elements

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Selected Elements

N
u
m
b
e
r
o
f
C
o
m
b
in
a
ti
o
n
s

 87

As you can see in the above graph and table, the highest

number of combinations occurs at a selection size of five.

This is due to the way combinations are calculated; k!(n-k)!

is always smallest when n-k = k.

N K Combinations

10 1 10

10 2 45

10 3 120

10 4 210

10 5 252

10 6 210

10 7 120

10 8 45

10 9 10

10 10 1

