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Abstract 

Calix[4]arenes are a versatile class of supramolecular host compounds, and when derivatized with the 

proper chemical functionality they are capable of interacting with a wide variety of guests in solution. An 

azocrown-calix[4]arene in the 1,3-alternate confirmation was derivatized for use as a potassium ion 

sensor in a microfluidics blood analysis device.  
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Calixarenes are a versatile class of molecules which participate in host-guest chemistry. 

Consisting of anywhere from 4 to 20 aromatic moieties circularly linked with methylene bridges, 

calix[n]arenes were one of the first supramolcules to be extensively researched in the late 1970’s as 

enzyme mimics due to the deep π-electron rich basket with distinct hydrophobic upper rim and 

hydrophilic lower rim, capable of forming inclusion complexes with a wide range of guest molecules. 

Depending on the chemical moieties attached to the rims, calixarenes are capable of strongly binding 

many different species in solution, from ions to small molecules, and have been widely used in 

supramolecular chemistry to create self-assembling structures such as cavitands, capsules, and 

nanotubes. However due to their exceptional selectivity for divalent metal cations, much recent 

research has been directed towards developing calixarenes (especially calix[4]arenes) for use as 

ionophores. 

Here, a potassium sensing azocrown calix[4]arene in the 1,3-alternate conformation, developed 

previously1 has been adapted for use in a Surface Plasmon Resonance (SPR) based microfluidics blood 

analysis device. The unique structural and conformational properties of the calixarene framework are 

responsible for the high specificity of the sensor for potassium ions, and accordingly the synthetic 

procedure employed has been optimized to achieve the proper conformation of the molecule and the 

azocrown bridge.  

Structural Properties of Calix[4]arenes 
The best characterized calix[4]arene is t-butylcalix[4]arene (1, R=H, R’=t-butyl), because it was 

the first synthetically accessible calixarene.2 Currently, (1, R=H, R’=t-butyl) and its de-tertbutylated 

analogue calix[4]arene (1, R=H, R’=H) are commercially available from major chemical suppliers and 

there have been a large number of studies and review works published on the chemistry of these 

                                                           
1
 J. S. Benco, H. A. Nienaber, K. Dennen, W. G. McGimpsey, J. Photochem. Photobiol. A 2002, 152, 33. 

2
 A. Zinke, E. Ziegler, Chemische Berichte 1944, 77, 264, 1729. 
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materials.3 Upon the discovery of (1, R=H, R’=t-butyl) it was initially thought that during formation of the 

molecule the aryl groups were conformationally locked and could not rotate through the central cavity 

of the ring, explaining the appearance of four separate regioisomers (2-4, R=H, R’=t-butyl) and 

explaining the apparent differences in the compounds isolated.4 However with the assistance of 

temperature dependant NMR studies, it was shown that the conformational energy barriers were such 

that (1-4) were not capable existing independently in solution, and in fact slowly interconvert at room 

temperature.5 

 

Modifying the groups on the rims of the calixarene can alter its conformational mobility in 

solution by hindering the interconversion rate between conformers,6 or depending on the steric bulk of 

the group introduced, prohibiting interconversion altogether.7  This is due to hindrance in the two 

available pathways for conformational interconversion in the calixarene molecule (see Figure 1): the 

“endo rim through the annulus” pathway where the hydroxyl groups rotate through the center of 

molecule, or the “exo rim through the annulus” pathway where the pendant aryl groups rotate through 

the center.8 Although, in calix[4]arenes the exo pathway is so sterically hindered that even when the t-

                                                           
3
 C. D. Gutsche, Calixarenes: An Introduction (Cambridge, UK: RSC, 2008); Z. Asfari, Calixarenes 2001 (Dordrecht, 

Holland: Kluwer Academic, 2001); among many others. 
4
 J. L. Ballard, W. B. Kay, E. I. Kropa, J. Paint Technology 1966, 38, 251. 

5
 H. Kammerer, G. Happel, F. Caesar, Makromol Chem. 1977, 178, 69. 

6
 C. D. Gutsche, L. J. Bauer, J. Am. Chem. Soc. 1985, 107, 6052. 

7
 V. Bocchi, D. Foina, A. Pochini, R. Ungaro, Tetrahedron 1982, 38, 373. 

8
 W.P. van Hoorn, M. G. H. Morshuis, D. N. Reinhoudt, J. Am. Chem. Soc. 1998, 102, 1130. 
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butyl group is removed (1, R=H, R’=H), the molecule cannot interconvert in this way.9 The only other 

pathway available is endo through the annulus, and it was found that attaching bulky enough (n-propyl 

and larger) groups to the hydroxyl moieties will conformationally lock the molecule, causing it to 

permanently adopt either the cone, partial cone, 1,2-alternate or 1,3-alternate (1-4, R=CH2CH2CH3, R’=H) 

conformation in solution.10 

 

Figure 1: Calixarene Conformational Interconversion 

When the groups appended to the endo rim of the calixarene are of requisite steric bulk to 

prevent conformer interconverson, the major product formed is controlled by the reaction conditions 

used to introduce the group.  The solvent, temperature, and reactivity of the alkylating agent all have 

some effect on the distribution of conformers recovered, although the choice of base was found to have 

the greatest effect on the outcome of the reaction.11 When locked conformers were synthesized, the 

strength of the base was found to effect the conformational distribution due to the differing pKa values 

for each of the calixarene hydroxyl groups and rate of oxyanion formation.12 Also the size of counter-ion 

with the base significantly affected conformational outcome, suggesting a templating effect.13 

                                                           
9
 K. Iwamoto, K. Araki, S. Shinkai, J. Org. Chem. 1991, 56, 4955. 

10
 Ibid. 

11
ibid. 

12
 A. Arduini, E. Ghidini, A. Pochini, R. Ungaro, J. Inclusion Phenom. 1988, 6, 119. 

13
 S. Pappalardo, New J. Chem. 1996, 20, 465. 
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Figure 2: Adapted from C. D. Gutsche, Calixarenes, 2008. 

As mentioned earlier, differentiating between the conformers can be accomplished through 

monitoring either the 1H or the 13C NMR chemical shifts of the methylene bridging moieties. Figure 2 

shows the chemical environments experienced by the methylene protons depending on the 

conformation. It has been shown in conformationally locked calixarenes the chemical shifts differ by 0.9 

± 0.2 ppm (at room temperature) from the cone to the 1,3-alternate conformer, whereas 

conformationaly mobile calixarenes will demonstrate a broadening effect.14 For similar reasons the 13C 

NMR chemical shift of the methylene carbons can be monitored, and consequentially, it has been 

determined that these carbons will give a signal around 31 ppm if the calixarene is in the cone 

conformation or around 37 ppm if it is in the 1,3-alternate conformation.15 Several 2D NMR techniques 

such as COSY and HMQC have also been shown to be useful in determining the conformation of 

alkylated calix[4]arenes when other methods fail.16 

                                                           
14

 G. Ferguson, A. Notti, S. Pappalardo, M. F. Parsi, A. L. Speck, Tetrahedron Lett. 1998, 39, 1965. 
15

 J. DeMendoza,  C. Jaime, P. Nieto, P. Prados, C. Sanchez, J. Org. Chem. 1991, 56, 3372. 
16

 J. O. Magrans, J. DeMendoza, M. Pons, P. Prados, J. Org. Chem. 1997, 62, 4518. 
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Figure 3: MM2 Optimized (1, R=H, R’=H)  

In the calixarene molecule, the different orientations of the π-systems and oxygen atoms among 

the conformers control which guest molecules the calixarene tends to form the strongest inclusion 

complexes with. It is well known that (1, R=H, R’=t-butyl) in the cone conformation is capable of forming 

solid state complexes with neutral molecules like chloroform, benzene, toluene, and xylene that have 

been characterized through X-ray crystallography.17 The stability of these complexes is due to the 

intraannular hydrogen bonding between the endo rim hydroxyls in the cone conformation (see Figure 

3), causing the π-electron clouds to orient for optimum binding of the neutral guest within the cavity.18 

However in solution, when the stabilizing hydrogen bonding capability of the hydroxyl is disrupted 

through alkylation (1-4, R=CH3 or CH2CH3, R’=H), the rotational energy barriers are lowered and the 

molecule will readily adopt any of the four conformations in solution to form the most stable host-guest 

interactions with the species present in solution at room temperature, typically favoring metal cations. 

                                                           
17

 C. D. Gutsche, B. Dhawan, K. H. No, J. Am. Chem. Soc. 1981, 103, 3782.  
18

 C. D. Gutsche, Acc. Chem. Res. 1983, 16, 161. 
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Figure 4: Adapted from Shinkai, Chem. Rev. 1997, 97, 1713  

The best studied conformationally mobile calix[4]arene is tetra-O-methylcalix[4]arene (1-4, 

R=Me, R’=t-butyl), and it has been shown by 1H NMR that it adopts different conformations in solution 

(shown in Figure 4) to form complexes with lithium, sodium, potassium, silver, and quaternary 

ammonium ions through maximizing the coordination with the lone pairs of the oxygen or the π-

interactions with the aryl system depending on the size of the cation19. Though the guest binding 

specificity is closely related to the conformation of the molecule, the groups attached to the rims of the 

calixarene have a much greater effect on binding chemistry especially when they are large enough to 

conformationally lock the calixarene20.  

Through the addition of chemical functionality to the rims it is possible to design highly specific 

binding pockets for a wide variety of chemical species. For instance, adding carboxylic acid functional 

groups to the endo rim (1, R=CH2COOH, R’=t-butyl) increases binding specificity for divalent metal 

cations,21 while (carbamoylmethyl)-phosphine oxide groups bound to the exo rim (1, R=Me, 

R’=NHCOCH2P(O)Ph2) greatly increases the affinity for trivalent transition metal ions,22 among many 

                                                           
19

 A. Ikeda, S. Shinkai, Chem. Rev. 1997, 97, 1713. 
20

 G. Talanova, V. Talanov, H. Hwang, C. Park, K. Surowiec, R. Bartsch, Org. Biomol. Chem. 2004, 2, 2585. 
21

 A. Arduini, A. Pochini, S. Reverberi, R. Ungaro, J. Chem. Soc. Chem. Commun. 1984, 981. 
22

 S. Barboso, A. G. Carrera, S. E. Matthews, J. Arnaud-Neu, V. Bohmer, M. J. Schwing-Weill, J. Chem. Soc. Perkin 
Trans. 2 1999, 719. 
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other possibilities.23 In addition to adding simple functional groups, it is also possible to create more 

complex 3-dimensional structures (i.e. crown ethers like (5)) to achieve further guest binding specificity 

by means of preorganization.24 

Calixarene Ionophores 
There are two crucial elements required to develop the potassium sensing molecule: 1) it must 

be highly selective for potassium ions in blood, and 2) it must be capable of forming a monolayer on the 

gold sensing surface required for SPR analysis. Conformationally mobile calix[4]arenes have shown that 

the strongest host-guest binding interactions between postassium and the calixarene occur when it is in 

1,3-alternate conformation, implying that calix[4]arenes synthetically locked in the 1,3-alternate 

conformation may have a higher overall binding specificity for potassium since they are unable to alter 

their conformation to strongly bind other ions.25 This evidence combined with the knowledge that 

crown ethers on their own also had high binding specificities for metal ions, lead researchers to attempt 

to combine the two structures in one binding pocket, resulting in a molecule called a calixcrown (5).  

 

 
6 

 

 

Initial molecular modeling and synthetic work indicated that distal bridging of (1, R=H, R’=t-

butyl) with both rigid and flexible ligands was capable of producing a wide variety of ion selective 

                                                           
23

 H. Otsuka, S. Shinkai, Supramol. Sci. 1996, 3, 189. 
24

 J.D. van Loon, W. Verboom, D. N. Reinhoudt, Org. Prep. Proc. Int. 1992, 24, 437. 
25

 S. Shinkai, K. Fujimoto, T.Otsuka, H. L. Ammon, J. Org. Chem. 1992, 57, 1516. 
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binding pockets from the base calix[4]arene structure.26 Further synthesis and x-ray crystallography 

studies on the calixcrowns showed that (5, R=H, R’=t-butyl, n=1) can be conformationally locked if 

anything bulkier than a methyl group is added after the bridge is formed, and specifically that (5, R=C2H5, 

R’=t-butyl, n=1)  in the partial cone conformation was found to have the highest K+/Na+ selectivity of 

any synthetic ionophore at the time.27 However, later work indicated that when the t-butyl groups were 

removed (5, R=C2H5, R’=H, n=1) the molecule demonstrated the highest K+/Na+ selectivity known, 

exceeding both that of prior ionophores and even the natural ionophore valinomycin(6).28 

Furthermore, several studies have indicated that calix[4]arenes retain their ion complexation 

capability when assembled in a monolayer and additionally, it is possible to form a well ordered self 

assembled monolayer on a gold surface with appropriately derivatized calixarenes. Calix[4]rene (1, R=H, 

R’=t-butyl) is completely insoluble in water, although when the tetra-ester derivatives were synthesized 

(1, R=CH2COOR", R’=t-butyl)  the molecules formed an Langmuir-Blodgett film at the air-water interface. 

Upon the addition of different metal cations the concentration of calixarene at the interface was 

observed to change, leading the authors to conclude that calix[4]arene monolayers would retain their 

ion sensing properties.29 Derivatized calix[4]arenes have also been deposited in a well characterized 

monolayer (1, R=CH2(CH2)10SH, R’=t-butyl or H) on a gold surface,30 and more recently through synthetic 

modification of the exo rim31 (1, R=i-Pr, R’=AcSH), indicating that calixarenes are well suited for SPR 

applications. 

                                                           
26

 P. Dijkstra, J. Brunink, D. N. Reinhoudt, R. Ungaro, et. al, J. Am. Chem. Soc. 1989, 111, 7567. 
27

 E. Ghidini, F. Ugozzoli, R. Ungaro, D. N. Reinhoudt, et. al, J. Am. Chem. Soc. 1990, 112, 6979. 
28

 A. Casnati, A. Pochini,  R. Ungaro, et. al, Eur. Chem. J. 1996, 2, 436. 
29

 Y. Ishikawa, T. Kunitake, T. Matsuda, T. Otsuka, and S. Shinkai, J. Chem. Soc. Chem. Comm. 1989, 736. 
30

 B.Huisman, E. van Velzen, F. van Veggel, J. Engbersen, D. N. Reinhoudt, Tetrahedron Lett. 1995, 36, 3273. 
31

 B.Genorio, T. He, A. Meden, S. Polanc, J. Jamnik, J. M. Tour, Langmuir 2008, 24, 11523. 
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Retrosynthetic Analysis 
Since calixcrowns locked in the 1,3-alternate conformation had been shown to be 

extraordinarily selective for potassium ions in solution, the goal of the synthesis was to form the 

calixcrown in the correct conformation with thiol groups for surface attachment. Earlier research carried 

out in the McGimpsey Lab indicated that (7) was an excellent fluoroionophore for potassium in 

solution,32 so it was theorized that the same molecular framework could be adapted for use in the SPR 

based microfluidics system and the novel synthetic target (8) was proposed.  

 

There are several possible synthetic routes to the target molecule (8). A primary concern was 

controlling the alkylation of the hydroxyl groups to ensure that the molecule had the proper 

functionality for both the bridging azocrown ring and the thiol groups for surface attachment. Since both 

functionalities in the molecule must be achieved through ether linkages which are larger than n-propyl 

and conformationally lock the molecule, they must be introduced to provide the product calixarene in 

the proper conformation. Therefore the simplest approach would be to attach the azocrown in a single 

reaction; leaving only two possible sites for attachment of the thiol linkages (see Scheme 1). The first 

                                                           
32

 J. S. Benco, H. A. Nienaber, K. Dennen, W. G. McGimpsey, J. Photochem. Photobiol. A 2002, 152, 33. 
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calixcrown studied (5, R=H, R’=t-butyl, n=1) was synthesized in a similar manner through the use of a di-

tosylate,33 and many other calixcrowns have been synthesized in this way34.  

 

Scheme 1 

In this case, attaching the azocrown ring first presents a special challenge because the nitrogen 

is more reactive than the calixarene hydroxyls and must be protected while the calixarene is further 

alkylated. Even so, when the synthetic procedure proposed in Scheme 1 was attempted using a tosylate 

protecting group on the nitrogen and the more reactive mesyl leaving groups on the end of the 

azocrown fragment, a dimeric calixarene structure was formed and the expected azocrown calixarene 

was not isolated (see Scheme 2).35 Instead the authors of that study installed the reactive nitrogen 

connecting the azocrown after the calixarene had been completely alkylated (see Scheme 3), preventing 

the formation of calixarene dimers. 

                                                           
33

 C. Alfieri, E. Dradi, A. Pochini, R. Ungaro, G. Andreetti, J. Chem. Soc., Chem. Commun. 1983, 1075. 
34

 J.D. van Loon, W. Verboom, D. N. Reinhoudt, Org. Prep. Proc. Int. 1992, 24, 437. 
35

 J. S. Kim, O. J. Shon, J. W. Ko, M. H. Cho, I. Y. Yu, J. Vicens, J. Org. Chem. 2000, 65, 2386. 
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Scheme 2 

 

Scheme 3 

However this necessitates that the first alkylation performed on the calixarene must be 

extremely selective; it must distally di-alkylate the calixarene while leaving the other two hydroxyls 

available for subsequent alkylation or the correct azocrown bridge will not be formed later. Fortunately 

it has been shown that mild alkylating conditions will produce the distally di-alkylated product in almost 

quantitative yields due to the stabilizing effects of hydrogen bonding between the distal hydroxyl 

groups.36 Additionally the thiol group is highly reactive under the conditions needed to alkylate the 

calixarene and install the azacrown, thus it must be protected until the end of the synthesis. 

Synthetic Procedure 
With the aforementioned retrosynthetic considerations, the synthesis of (8) was developed 

from procedures readily available in the literature (see Scheme 4 for overview). First selective distal di-

                                                           
36

 J. D. Van Loon, A. Arduini, L. Coppi, W. Verboom, A. Pochini, R. Ungaro, S. Harkema, D. N. Reinhoudt, J. Org. 
Chem. 1990, 55, 5639. 
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alkylation was used to add the thiol linkage synthons,37 followed by a second round of alkylation to 

attach the foundations of the azocrown bridge with conditions optimized to lock the calixarene in the 

1,3-alternate conformation.38 Then the bridging nitrogen was added as the sulfonamide and 

subsequently reduced to an amine.39 Finally, the thiol groups were added to arrive at the final product.40 

                                                           
37

 M. Pitarch, J. Browne, M. Kervey, Tetrahedron. 1997, 53, 16195.  
38

 J. S. Kim, O. J. Shon, J. W. Ko, M. H. Cho, I. Y. Yu, J. Vicens, J. Org. Chem. 2000, 65, 2386. 
39

 J. S. Benco, H. A. Nienaber, K. Dennen, W. G. McGimpsey, J. Photochem. Photobiol. A 2002, 152, 33. 
40

 B. Huisman, E. van Velzen, F. van Veggel, J. Engbersen, D. N. Reinhoudt, Tetrahedron Lett. 1995, 36, 3273. 
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Scheme 4  
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Results and Discussion 
Among other difficulties, the unique chemical properties of the calixarene molecule were at the 

root of nearly every challenge encountered during the synthesis. Purifying the proper 1,3-alternate 

conformational isomer of (10) was the greatest obstacle in obtaining the final product; and since the 

conformation of the calixarene is key to the potassium binding ability, extreme care was taken to 

develop a method for obtaining an analytically pure sample of (10) before continuing the synthesis. On 

the route to (10), several planned reaction conditions were altered to improve initially low synthetic 

yields. However, the generally low solubility of calix[4]arene species in most every solvent complicated 

many procedures and may have been at the root of the separation difficulties as well as the low yields.  

While awaiting the delivery of the initial starting material (1, R=H, R’=H), some t-

butylcalix[4]arene (1, R=H, R’=t-butyl) was discovered in the lab and several attempts were made to 

remove the t-butyl groups. Following established procedure,41 (1, R=H, R’=t-butyl) was subjected to 

reverse Friedel-Crafts conditions as per Scheme 5. 

 

Scheme 5 

Since this reaction was not initially planned, the reagents were of questionable age and purity. 

During the first attempt, crude phenol and aluminum chloride were used without any verification of 

purity or reactivity. After recrystallization, preliminary 1H NMR analysis indicated that there was still a 

large amount of starting material present, and column chromatography was used to isolate a very small 

amount of analytically pure product. Each manually collected fraction was individually analyzed by NMR 

                                                           
41

 C. D. Gutsche, J. A. Levine, P. K. Sujeeth, J. Org. Chem. 1985, 50, 5802. 
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to confirm the lack of the t-butyl absorbance; however only a single fraction contained analytically pure 

product. 

It was theorized that the age of the reagents, especially the aluminum chloride, were 

responsible for the low yields. Therefore, to increase the yield of the reaction the reagents were purified 

by conventional methods. Both the phenol and the aluminum chloride were sublimated under vacuum 

to improve their purity and produce anhydrous material, and the toluene was dried over 4Å molecular 

sieves before being used in the reaction. Together, these steps dramatically improved the outcome of 

the reaction (0.187g, 88% yield) and after initial recrystallization the product was determined to be 

acceptably pure by NMR without the need for column chromatography. 

 

Scheme 6 

The first planned synthetic step (see Scheme 6) was successfully accomplished with the proper 

reaction conditions and solvent choices. Since the reaction is a standard nucleophillic addition, the 

hydroxyl groups on the calixarene must be deprotonated by a base in order to react. This poses a special 

challenge because the inorganic bases strong enough to effect alkylation are completely insoluble in 

many organic solvents, whereas the calixarene is only soluble in a select few organic solvents. Also since 

the type of base used controls the distribution of regioisomers produced during the reaction,42 

potassium carbonate was required to promote the formation of the A,C-distally alkylated calix[4]arene 

                                                           
42

 J. D. Van Loon, A. Arduini, L. Coppi, W. Verboom, A. Pochini, R. Ungaro, S. Harkema, D. N. Reinhoudt, J. Org. 
Chem. 1990, 55, 5639. 
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(9). Thus the reaction was performed in acetonitrile because of its high dielectric constant and ability to 

dissolve potassium carbonate, even though the calixarene is insoluble. 

At first, several experiments were attempted with the planned reaction conditions. The first 

experimental conditions produced an unexpectedly low yield (0.0372g, 11% yield and 0.0413g, 14% 

yield). It was observed that during the reaction workup a precipitate formed and remained at the 

dichloromethane/water interface without seeming to readily solubilize in either layer. After reviewing 

the work up procedures in the literature, it was theorized that the calixarene may have poor solubility in 

dichloromethane, and chloroform was tested as the extracting agent. The switch to chloroform along 

with an increase in the concentration of 4-bromobutene considerably improved the yield (0.3342g, 35% 

yield), although it did not reach the desired level for the first step in a multistep synthesis.  

Further research indicated that a phase transfer catalyst had the potential to dramatically 

improve yields when the calixarene could be dissolved in solution; and a synthetic phase transfer 

catalysis reaction utilizing polyethylene glycol, was adapted from the literature.43 This certainly 

improved the results (0.5328g, 56% yield) although the polyethylene glycol formed emulsions with the 

chloroform and water that took days to separate during the reaction workup. In addition, the resultant 

crude product was highly contaminated with polyethylene glycol and would not crystallize, requiring 

purification by column chromatography to obtain (9). 

                                                           
43

 W. Wang, Q. Zheng, Z. Huang, Synth. Commun. 1999, 29, 3711. 
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Figure 5: Effect of conformation on azocrown formation 

After a sufficient amount of (9) had been synthesized, the greatest obstacle in obtaining the 

final product was purifying the 1,3-alternate conformational isomer of (10).  Since the target ionophore 

is known to have the highest potassium binding capability in the 1,3-alternate conformation and (10) is a 

conformationally locked calixarene, it is essential to obtain the precursuor to the azocrown ring in the 

correct conformation so no cone, partial cone, or 1,2 alternate azocrown calixarene conformers are 

formed during the ring closing reaction (see Figure 5).  

As a result the reaction conditions used to synthesize (10) were selected to enhance production 

of the locked 1,3-alternate conformer through the ion templating effect. Since the calixarene will alter 

its conformation to achieve the strongest interactions with the ions in solution, a templating effect has 

been observed in the synthesis of tetra-alkylated conformationally locked calixarenes44 and especially 

                                                           
44

 K. Iwamoto, K. Fujimoto, T. Matsuda, S. Shinkai, Tetrahedron Lett. 1990, 31, 7169. 
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calixcrowns45 depending on the specific base employed. Therefore, cesium carbonate was used as the 

alkylating base instead of potassium carbonate to bias the final product distribution towards the locked 

1,3-alternate conformer.46 

 

Scheme 7 

When (9) was reacted with 2-(2-chloroethoxy)ethanol p-toluenesulfonate to form (10) (see 

Scheme 7), the all of the conformational isomers depicted in the top half of Figure 5 were expected with 

the majority being the 1,3-alternate conformer. Although upon recrystallization of the crude product, 

NMR analysis of the methylene region (see Figure 6) indicated the crystalline product to be a mixture of 

the locked conformers of (10), and further purification was attempted. 

                                                           
45

 E. Ghidini, F. Ugozzoli, R. Ungaro, D. N. Reinhoudt, et. al, J. Am. Chem. Soc. 1990, 112, 6979. 
46

 K. Iwamoto, K. Araki, S. Shinkai, J. Org. Chem. 1991, 56, 4955. 
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Figure 6: Methylene region comparison of (9) (lower spectra) and the reaction mixture of (10) (upper spectra). Peaks are 
labeled according to conformer (a = cone, b = partial cone and 1,2-alternate, c = 1,3-alternate). 

The most typical procedure specified in the literature for obtaining pure calixarene 

conformational isomers during the reaction work up is column chromatography; however despite 

repeated attempts under varying conditions, conventional column chromatography techniques were not 

able to isolate a pure sample of (10) in the 1,3-alternate conformation by NMR. Furthermore, 

preparative scale TLC was also mentioned as a purification technique, so efforts were made to correlate 

the TLC data to the results obtained from the column. The separation observed from the initial TLC 

showed a wide band of calixarene conformers indicating that separation was taking place. However, 

even combined with column chromatography these conditions failed to provide an analytically pure 

sample of the 1,3-alternate conformers via NMR. Therefore, given that column chromatography was 

observed by TLC to improve the separation between conformers, it was theorized that running a 

significantly longer column under pressure would be the best method to produce a pure sample of (10) 

in the 1,3-alternate conformation. 
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Conclusions 
If the calix[4]arene (8) is to be developed into a potassium sensor for use in a SPR based 

microfluidics device, a reliable procedure for isolating the 1,3-alternate conformer must be 

implemented. Central to this challenge is discovering a solvent system capable of providing definitive 

separation of the calixarene conformers when used in either preparative scale thin layer or conventional 

silica gel column chromatography.  Additionally, expanding the conformer characterization methods to 

include a HPLC method would dramatically improve the ease of identifying reasonably pure fractions 

obtained from TLC and column chromatography methods. 

The efficiency of the chromatographic techniques used to separate conformationally locked 

calixarenes depends on the ability to reliably identify the correct calixarene conformer. In this synthesis, 

monitoring the methylene region of the 1H and 13C NMR was the sole analytical method employed to 

differentiate between the conformational isomers. The primary drawback of this technique is the 

inability to determine the relative concentrations of the different conformers with any degree of 

certainty. Although there has been a set of “rules” developed for determining the conformation of a 

calixarene through the chemical shifts of the methylene protons47 or carbons48, the shift observed is too 

small and the region on the spectra is too crowded to rely on the 1H NMR integral ratios as an indicator 

of relative concentrations. Furthermore, due to the generally low solubility of the calixarene in all 

solvents, the sample was too dilute in CDCl3 to obtain high resolution 13C NMR spectra. Thus, it was very 

difficult to determine if the chromatographic purifications were having any impact on increasing the 

concentration of the desired 1,3-alternate conformer. Additionally, analysis of the fractions collected 

from column chromatography was extraordinarily time consuming because the column eluent had to be 

evaporated and the residue taken up with CDCl3 before a purity determination could be made. 
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Since (8) is a novel compound, it is imperative to isolate products (10, 11, and 8) in an 

analytically pure form for spectral characterization if this work is to be published. While conventional 

column chromatography and TLC have been shown effective in the literature for separating mixtures of 

calixarene conformers, the solvent system used to effect these separations is highly specific to the 

functionality of the specific calixarene involved, and the current work indicates that these conditions 

cannot be easily generalized to effect separations differently functionalized calixarenes. Consequently, 

to reliably separate a pure sample of the 1,3-alternate conformer of (10) a new solvent system must be 

developed. 

Employing an HPLC method, as used by several groups to determine the distribution of 

conformers produced in synthetic reactions,49,50 would be an effective method to rapidly determine the 

relative concentrations of the different conformers and evaluate the performance of the separatory 

method. Furthermore, an HPLC method would be capable of providing an analytically pure sample of 

any conformer obtained for further characterization by NMR. If it is not viable to implement an HPLC 

method, simply employing flash chromatography may significantly increase the performance of the 

solvent system due to the elevated pressure in the column, as well as the automated UV-based fraction 

collector capable of separating fractions by their chromatographic signature. Otherwise, the only 

method to monitor fraction composition will be the very time consuming and generally inaccurate 

column chromatography coupled with NMR analysis, thus impeding the attainment of (8) and its 

subsequent incorporation into the SPR based microfluidics device. 
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Experimental Section 

Procedure 1 

 

Experiment 1A 

A slurry of p-tertbutylcalix[4]arene (1.5 g, 2 mmol), crude phenol (0.94 g, 10 mmol) and AlCl3 (1.5 g, 11 

mmol) was stirred in toluene (30 mL) at room temperature for 4 h under  nitrogen. After, the mixture 

was poured slowly onto cooled 0.2 N hydrochloric acid (250 mL) and the aqueous phase was extracted 

with dichloromethane (2 x 100 mL). The combined organic extracts were dried over anhydrous 

magnesium sulfate and evaporated under reduced pressure. The crude product was further purified by 

crystallization from a mixture of dichloromethane and methanol. 

1H-NMR of the resultant product (0.722g, 85% yield) showed that recrystallization did not produce a 

pure product. The product was further purified on a silica gel column (DCM:MeOH 9:1) yielding 0.0832g 

of analytically pure product, as verified through the lack of a t-butyl resonance in NMR. 

Experiment 1B 

A slurry of p-tertbutylcalix[4]arene (0.324 g, 0.5 mmol), sublimated phenol (0.94 g, 10 mmol) and 

anhydrous AlCl3 (0.75 g, 5.6 mmol) was stirred in anhydrous toluene (30 mL) at room temperature for 12 

h under  nitrogen. After, the mixture was poured slowly onto cooled 0.2 N hydrochloric acid (250 mL) 

and the aqueous phase was extracted with dichloromethane (2 x 100 mL). The combined organic 

extracts were dried over anhydrous magnesium sulfate and evaporated under reduced pressure. The 

crude product was further purified by crystallization from a mixture of dichloromethane and methanol. 
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1H-NMR of the resultant product (0.187g, 88% yield) showed that recrystallization had produced 

acceptably pure product. 

1H NMR (CDCl3) 3.55 (br s, 4H), 4.26 (br s, 4H), 6.73 (t, 4H), 7.07 (d, 8H), 10.21 (s, 4H) 
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Procedure 2 

 

Experiment 2A 

Calix[4]arene (0.2576g, 0.6 mmol), 4-bromobutene (0.164g, 1.2 mmol) and potassium carbonate (0.20g, 

1.5 mmol) were refluxed in anhydrous acetonitrile (50mL) for 24hrs under anhydrous conditions.  The 

solvent was removed under reduced pressure and the reaction mixture was resuspended in 1 N HCl 

(20mL) and DCM (20mL). The aqueous phase was separated and extracted with DCM (2x10mL), and the 

combined organic phases were washed with brine (20mL) and dried over anhydrous magnesium sulfate. 

The solvent was removed under reduced pressure, leaving a brown waxy residue. The product was 

recrystallized from boiling MeOH/DCM (5:1) with a final mass of 0.0372g (11% yield). 

Experiment 2B 

Calix[4]arene (0.2523g, 0.6 mmol), 4-bromobutene (0.165g, 1.2 mmol) and potassium carbonate 

(0.196g, 1.5 mmol) were refluxed in anhydrous acetonitrile (50mL) for 24hrs under anhydrous 

conditions.  The solvent was removed under reduced pressure and the reaction mixture was 

resuspended in 1 N HCl (20mL) and DCM (20mL). The aqueous phase was separated and extracted with 

DCM (2x10mL), and the combined organic phases were washed with brine (20mL) and dried over 

anhydrous magnesium sulfate. The solvent was removed under reduced pressure, leaving a brown waxy 

residue. The product was recrystallized from boiling MeOH/DCM (5:1) with a final mass of 0.0413g (14% 

yield). 

Experiment 2C 

Calix[4]arene (0.7521g, 1.7 mmol), 4-bromobutene (0.447g, 3.5 mmol) and potassium carbonate (0.41g, 



 
28 

3 mmol) were refluxed in anhydrous acetonitrile (100mL) for 24hrs under anhydrous conditions.  The 

solvent was removed under reduced pressure and the reaction mixture was resuspended in 1 N HCl 

(50mL) and chloroform (50mL). The aqueous phase was separated and extracted with chloroform 

(2x20mL), and the combined organic phases were washed with brine (50mL) and dried over anhydrous 

magnesium sulfate. The solvent was removed under reduced pressure, leaving a brown waxy residue. 

The product was recrystallized from boiling MeOH/CHCl3 (5:1) with a final mass of 0.3342g (35% yield). 

Experiment 2D 

 

Calix[4]arene (0.7536g, 1.7 mmol), 4-bromobutene (0.447g, 3.5 mmol) and potassium carbonate (0.41g, 

3 mmol) were combined with deionized water (40mL), chloroform (40mL) with  PEG 400 (3g) as a phase-

transfer agent. After 2 days of stirring at room temperature, the mixture was neutralized with the 

addition of 1 N HCL (10mL) and the aqueous layer was discarded. The organic layer was extracted with 

water (5x20mL) and dried over anhydrous magnesium sulfate. Excess chloroform was removed under 

reduced pressure, leaving 1.0231g of an oily yellow residue. This crude product was further purified by 

column chromatography (Silica Gel, MeOH:CHCl3, 3:1) to obtain 0.5328g of pure product (56% yield) 

1H NMR (CDCl3): 3.37 (d, 4H) 3.55 (br s, 2H), 4.26 (br s, 2H), 4.34 (d 4H), 5.06 (m, 4H), 5.18 (m, 4H) 6.60-

7.05 (m, 12H), 10.21 (s, 2H) 
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Procedure 3 

 

Experiment 3 

p-toluenesulfonylchloride (7.626g, 40 mmol) and 2-(2-chloroethoxy)ethanol (3.737g, 30 mmol) were 

dissolved in DCM (100mL) chilled to 2.5°C. Triethylamine (13.91mL, 100 mmol) was added dropwise, and 

the solution was allowed to stir with chilling.  After 24 hrs, the reaction was quenched by the addition of 

1 N HCl  (25mL), allowed to warm to room temperature and the aqueous phase was separated and 

extracted with DCM (2x25mL). The combined organic phases were washed with deionized water (2x25 

mL), brine (25mL), and dried over anhydrous magnesium sulfate. Removal of the solvent under reduced 

pressure gave 9.722g of product (87% yield). 

1H NMR (CDCl3): 2.36 (s, 3H), 3.47 (t, 2H), 3.58 (t, 2H) 3.63 (t, 2H) 2.89 (t, 2H), 7.44-7.72 (m, 4H) 
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Procedure 4 

 

Experiment 4A 

A slurry of dialkylated calix[4]arene (0.1327g, 0.25 mmol), 2-(2-chloroethoxy)ethanol p-toluenesulfonate 

(0.1393g, 0.5 mmol), and cesium carbonate (0.8172g, 2.5 mmol) was suspended in anhydrous 

acetonitrile (50mL) and heated to reflux. After 24 hours, the reaction mixture was allowed to cool to 

room temperature and the solvent was removed under reduced pressure. The reaction mixture was 

then resuspended in CHCl3 (30mL) and 1 N HCl (30mL). The aqueous phase was separated and extracted 

with chloroform (2x20mL) and the combined organic phases were dried over anhydrous magnesium 

sulfate. Removal of the solvent and recrystallization from boiling MeOH/CHCl3 (5:1) gave 0.1732g of a 

colorless crystalline solid (92% yield). Analysis by NMR showed the crystalline solid to exist as a 

homogeneous mixture of locked product conformers. The crystalline product was further purified by 

column chromatography (Silica Gel, EtOAc:Hexane, 1:8) although the 1,3-alternate conformer was not 

isolated when the fractions were examined by NMR. After recombining the fractions, the resultant 

0.1354g of product was subjected to a second round of column chromatography (Silica Gel, 

MeOH:CHCl3, 3:1) yet no pure product was isolated. Recombination of the fractions left a trace amount 

of product (0.0117g). 

Experiment 4B 

A slurry of dialkylated calix[4]arene (0.1307g, 0.25 mmol), 2-(2-chloroethoxy)ethanol p-toluenesulfonate 
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(0.1417g, 0.5 mmol), and cesium carbonate (0.8203g, 2.5 mmol) was suspended in anhydrous 

acetonitrile (50mL) and heated to reflux. After 24 hours, the reaction mixture was allowed to cool to 

room temperature and the solvent was removed under reduced pressure. The reaction mixture was 

then resuspended in CHCl3 (30mL) and 1 N HCl (30mL). The aqueous phase was separated and extracted 

with chloroform (2x20mL) and the combined organic phases were dried over anhydrous magnesium 

sulfate. A small aliquout of the light brown solid was analyzed by TLC (EtOAc:Hexane, 1:8) showing by 

UV light the sulfonate (Rf = 0.83) and a band assumed to be the calixarene conformation isomers (Rf = 

0.41) enveloping the starting material (Rf = 0.37). Separate TLC analysis (MeOH:CHCl3, 3:1) separated the 

sulfonate (Rf = 0.96) and a wider calixarene band (Rf = 0.64) enveloping the starting material (Rf = 0.58). 

The resulting product (0.1830g, 97% yield) was purified by column chromatography (Silica Gel, 

MeOH:CHCl3, 3:1) and the fractions obtained were analyzed by TLC to identify those containing 

calixarene. Pooling these 8 fractions and evaporating the solvent resulted in 0.1231g of colorless crystals 

(65% yield), however when analyzed by NMR the solid was not a pure conformer. 

Expected NMR Data: 

1H NMR (CDCl3): 3.37 (d, 4H), 3.68 (s, 2H), 3.65 (t, 4H), 3.71 (s, 2H), 3.79 (t, 4H), 3.83 (t, 4H), 4.31 (t, 4H), 

4.34 (d 4H), 5.06 (m, 4H), 5.18 (m, 4H) 6.60-7.05 (m, 12H) 
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Spectral Data 
All NMR spetra were acquired in CDCl3 on a 400Mhz Bruker Avance NMR spectrometer. 

Procedure 1 
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Procedure 2 
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Procedure 3 
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Procedure 4 

 


