

MSR Database

Technical User Manual

Technical User Manual
This document should provide you with everything you need to know about MSR’s data

management system. In addition to the information here, much of the code (available at

github.com/mattmcd25/msrsite) is commented.

If this document fails to provide the information you need, don’t hesitate to reach out

(mjmcdonald@wpi.edu and rwwittenberg@wpi.edu). We will do our best to reply and answer

any questions, but once we leave the country of Namibia, we don’t plan on doing any more

actual coding on this project.

1. Software

The database software is divided into two main parts - the client and the server. The server,

written with Node.js and Express, responds to requests from the client, which is written using

React.

Running npm start will begin three processes simultaneously:

- npm run start-client, which starts the development server and the React

application on port 3000;

- npm run start-server, which starts the Express app on port 3005 with a proxy

during development; and

- npm run watch-css, which rebuilds the .scss files into .css as needed.

Prior to deployment to production, npm run build must be run, which compiles the client and

server into optimized files and builds the .scss into .css. Then, in production node environments,

only the server is actually run, as it is configured to host the static assets of the client. A

heroku-postbuild script is setup so that deploying to heroku automatically does this, but

npm run build must be manually run when deploying to the server.

Server

The server itself is relatively simple, and composed of only five files. The server is written using

Node.js and Express, along with the assistance of a few other libraries described below.

Server.js is the main file which creates and launches the Express app, and the other four files

(found in /src/api) represent the different actions that API calls can perform.

http://github.com/mattmcd25/msrsite
mailto:mjmcdonald@wpi.edu
mailto:rwwittenberg@wpi.edu

server.js

The server creates the Express app and configures it to launch on either the PORT environment

variable or (by default) 3000. It then configures all of the API calls to make use of the actions

defined in the other four server files, found in /src/api.

Upon being run, the server attempts to connect to the SQL database by calling the connect()

general action. Upon success, the Express app begins listening on the preset port.

The API calls in this application make use of a few middlewares, some of which are from other

libraries and some of which are our own.

- bodyparser is used to parse the request bodies.

- @risingstack/protect is used for basic SQL injection protection via regular

expressions

- checkTableID() and restrictTableID() are used to ensure that only valid

tables are requested from, to prevent SQL injections. Every tableID from every API call

is checked against the list of allowed tables, which is obtained by querying the

information scheme at launch. restrictTableID differs in that if the table being

requested is found in the TABLE_REBINDINGS dictionary, it will instead return the

results of querying the rebound table. This is primarily used to ensure that users with

lower permission levels cannot access all of the data in the Member table.

- authCheck() and validate() are used to ensure that the user making API calls is

signed in via Auth0, and that they have the appropriate permission level to do so.

In addition to the four main files, described below, there is a fifth section of actions, titled

‘Restricted Actions’. These are used in the limited version of the application, and the only

difference is that they make use of the restrictTableID middleware rather than checkTableID.

These are the only API calls that do not require ‘admin’ user level, and therefore are the only

ones a limited user has access to.

generalActions.js

The general actions consist of connecting and disconnecting from the database. These API

calls are never actually used in the client side application, but are still available at

/api/connect and /api/disconnect if needed. They are only called by the server, on

initialization and on close.

queryActions.js

The query actions consist of everything relating to querying the database for information. The

methods are:

- selectAll, available at /api/select*/:table, returns all in the table or view. If you

request from the Member table, it overrides to return information from Member_Full

(which is the same information with the columns in a different order) sorted descending

by MSR member ID. This is used to populate the member table, load constants like

Skills on launch, and as part of the advanced search process.

- advancedQuery, available at /api/query/:table, returns all information in the table

or view that matches the condition specified by the body. For example, requesting query

from Member with { MARITAL: ‘Single’ } in the body would return all Single

Members. This is primarily used in the advanced search process, but is also used to

gather information for a specific member for the view/edit pages. When generating

conditions, the equality operator is always used except in the following cases:

- If the variable being compared is LENGTH, YEAR, or its name begins with MIN,

then a >= operator is used instead.

- If the variable being compared has a name beginning with MAX, then the <=

operator is used instead.

- getColumns, available at /api/colnames/:table, returns the names of the

columns of a table or view, as well as their data type (varchar, int, bit, etc) and the

maximum length (if type is varchar). This is called on launch to get information about

most of the tables, and this information is then primarily used for dynamically making

forms (like the add member page) or data validation on edit screens.

- getTables, available at /api/tabnames, returns the names of all tables and views in

the database. This is only called once, by the server at launch, and is used to verify that

no API call has an invalid table name (to prevent SQL injections).

- getFKs, available at /api/fks/:table, returns a list of all of the tables that reference

the specified table with a foreign key. This is only used when editing constants like Skills,

and allows the ‘force delete’ option to be possible (IE, remove a skill from all places it is

referenced and then delete it).

updateActions.js

The update actions consist of everything related to updating or changing the information in the

database. The methods are:

- insert, available at /api/insert/:table, inserts the information specified in the

body into the table. For example, calling insert/skill with { NAME:’Test’,

DESC:’None’ } would insert a new Skill with name Test and description None.

- update, available at /api/update/:table, updates the table according to the body.

For this api call, an extra argument (of type object/dictionary) must be added to the body

called PK, which the content of is then used to generate the condition for the update

statement. For example, to set the name of member with ID 1 to Matt, you would call

update/member with { FIRSTNAME:’Matt’, PK:{ ID: 1 } } in the body.

- Delete, available at /api/delete/:table, deletes all entries from the table that

match the condition generated from the request body. For example, calling

delete/site with { ABBR:’R’ } would delete the site with code R from the table.

When generating conditions, equality is used for everything. This means that a request body like

{ LENGTH: 0.5 } will only match entries with a length of exactly 0.5, unlike the query

behavior. This is done to ensure the correct entry is modified when updating or deleting.

serverAuth.js

Server Auth contains the methods required for the server to authenticate the client. The main

two methods export.getUsers, exports.getLevel, exports.getPermissions, exports.updateUser,

Run a variety of calls that interact with the auth0 management api, and client api. In general, the

serverAuth file caches all users and their permissions since the last run of the server. When a

user authenticates for the first time in a while, serverAuth first needs the api token to access the

client api. ServerAuth uses the getSysToken method in the file to get this token using the auth0

management api with the management id and secret. In order to get the users permissions, the

server will parse the user id of the individual trying to access the website from the access token

saved on their browser during login. The server then calls the auth0 client api with the api token

and user id to access all of the users information, but most importantly, the app metadata where

the users permissions are stored. All static auth0 keys are stored in the file authConstants.

Client

The client makes up the majority of the entire application. It is designed primarily using React,

making use of a variety of other libraries such as React Router v4 for routing and React Material

Design for visual elements. In the folder structure, it is broken down into four main sections:

- Components, found in /src/components, are the generic elements making up most of

the pages.

- Pages, found in /src/components/pages, are the actual pages displayed by the

React Router.

- Displays, found in /src/components/displays, are the components used to display

data on the view, edit, and query pages.

- Other core/miscellaneous files, found in /src or /src/data, are the actual Routers,

the core application (index.js), and miscellaneous helpers used throughout the code.

Core Application

Index.js

This is the starting point of the application, as well as the central point for constants or global

data for the application. On start, it simply renders the LockedApp component into the DOM.

Also stored in this file is a variety of information:

- HEADERS, CONSTANTS, and FKS store information from the database that is loaded in

once by initialize. These are effectively constants, and never change again.

- WORKSTATUS, WORKTYPE, STATUS, MARITAL, and GENDER store all of the options for

these five fields (as they are restricted to only specific options).

- TODAY is used to ensure that code referencing the current date does not have issues

based on the time changing.

- searchResult is used to store the result of the most recent advanced search, so it is

still displayed if a user clicks on a member on the result page and hits back.

- auth_level is the authorization level of the user, used to filter information based on

the permission level.

The initialize method is used to load all of the constant information from the database at

launch. The other four methods simply interact with the other variables.

LockedApp.js

The locked app is an extremely simple router. By default, it goes to the login page, but also

contains a route for the callback page used by Auth0.

App.js

App is the core router for the application. Its render method returns a router that switches on the

different paths and wraps the resulting page in the Layout component. Rather than using the

component routing type, we use the render function type. This allows us to use our helper

method componentWithRefs to add extra properties to all components. These extra

properties are references to the methods of the App:

- setTitle sets the title on the top of the navigation drawer

- setActions sets the buttons on the top left of the navigation drawer

- toast is used to create a small snackbar popup on the bottom of the application

- popup and dismissPopup are used to control the popup windows

The App also contains a dismissToast method, but this is not included in all components as

toasts are configured to automatically dismiss themselves after a certain amount of time.

LimitedApp.js

The limited app is the same as the App, except all of the administrative pages (manage, add,

edit) have had their paths removed. This could definitely be refactored to use the isAdmin

method and be part of App, but we ran out of time.

Pages

AdminPage.js

The component making up the Administrator Settings page, found at /manage. The actual code

for this page is extremely simple; the list of options are dynamically generated by the

settingCards function at the top of the file, which is effectively a constant that makes use of

props. Each of the dictionaries returned by the settingCards function is then turned into an

ExpandingCard containing the children specified.

In the case of the four constants (Skills, Languages, Sites, and Certificates), the card contains a

ConstantTableElement. In the case of the admin account settings, the

AccountManagerElement is used. More information on these can be found in the Displays

section.

EditMemberPage.js

The edit member page is, by far, the grossest file in this entire application. I apologize greatly for

it, and if we had more time, a great deal would have gone into refactoring it. With that being

said, I will attempt to explain is as much as possible to make your life easier. Starting at the top:

- defaultFor method is used to return the default value for when a new work,

placement, certificate, or training is created. This information should probably be

dynamically generated according to the database columns, and is definitely a potential

place for improvement.

- updateActions method resets the actions in the header bar of the application

according to the current state of the application. The only thing that ever changes (and

the only reason this function exists) is to change the save button to be disabled when the

user enters something invalid, and give it an updated list of issues for its tooltip.

- componentDidUpdate gets called whenever the state of the component just changed.

In this method, we go through and check each important piece of the state to see if it is

invalid. First, it uses the dataLengthIssues method to ensure none of the values are too

long to be inserted. Then, it ensures that the member site is not empty, as this would

cause a foreign key error. Lastly, it makes sure every certificate has a type, and there

are no duplicates. If any of the ‘issues’ returned by these checks are different than last

time the component updated, it updates the save button accordingly.

- componentDidMount is used to do all of the initial loading of the member’s current

information. It begins by trying to get the member information by ID. If the specified

member doesn’t exist, it returns home; otherwise, it loads the rest of the member’s

information, sets the title and action buttons, and sets loading to false.

- past and getAndSave are simple helper methods used to help save two copies of all

information obtained from the database (ex: state.mem and state.pastMem).

- saveChanges and saveJobs are the bulk of this class. The code itself should be

(relatively?) self explanatory, but the basics is that it uses the difference and

intersection helper methods. Find the difference of past - current returns anything

that was removed by the user; the difference of current - past returns anything that was

added. The intersection is anything that was not removed or added (ie, existed before

and stuck around), and these are all checked for changes to the other fields within them.

There is a decent amount of repeated code in this method, and I’m pretty embarrassed

by it to be completely honest, but we were pressed for time and it does the job.

- updateMember, updateItem, updateCert, and setLangs are the onChange

methods passed into the EditMemberDisplay. They update the corresponding piece

of the state accordingly.

- setSkills and setItemSkills are used to change the lists of skills associated with

the member or a job/training.

- addLang, addItem, and addCert are the onClick methods for the add buttons in

the display.

- Similarly, removeLang, removeItem, removeCert, and removeClicked are the

onClick methods for the remove buttons. removeClicked then calls removeMember

(which, in turn, calls removeJobs) to do the actual deleting of the entire member if the

user confirms the action.

- render just returns the EditMemberDisplay with all of the data and handlers if

loading is false, otherwise a react-md CircularProgress tracker.

IndexPage.js

The main page of the application. This is one of the simplest pages, simply loading all of the

member information from the database and displaying it in a MemberTable. Unlike some of the

other MemberTables in the application, this one provides an onRefreshClick method, which

then in turn causes the refresh button to be included.

Layout.js

This displays the overall layout of the application, that is present in all pages. It consists of a

react-md NavigationDrawer, displaying the nav items as specified in the Navigation

component. In addition to whatever children are passed into the layout by the router, the layout

also includes a react-md DialogContainer, used to show popups to the user, and a react-md

Snackbar, used to show small informational messages (called ‘toasts’) along the bottom of the

screen.

LoginPage.js

The login page is the true start point of the application, and the first page rendered by

ReactDOM. In its componentWillMount method, it loads the web fonts used by the app. In its

render method, it renders a basic page with a login button, unless the user is already logged

in, in which case it redirects to the LaunchScreen component.

MemberPage.js

Similarly to the EditMemberPage, the view member page begins by loading all of the relevant

information of a member (unless the ID is invalid). It then passes all of this information into a

MemberDisplay component.

NewMemberPage.js

The new member page simply displays an editable PropListCard generated from the

Member table headers with all of its fields empty by default. When the add button is clicked, it

simply inserts into the Member table according to the form data. This includes simple data

validation for the length of the inputs and the fact that Site cannot be empty.

NotFoundPage.js

This page is currently unused, but was previously a catch-all for invalid URLs.

QueryPage.js

The query page is also relatively dense, although it is much better designed than the edit page.

Starting from the top of the file:

- componentDidMount tries to load the saved search from the client. If there is one, it

switches to display mode and displays the previous search. Otherwise, it switches to

query mode.

- clear clears all the search fields in all cards back to the initial state. For the most part,

this just consists of clearing the state; however, due to the fact that the autocompletes

are not controlled, they must be cleared using refs.

- setQueryMode switches to query mode by clearing the fields, changing the title and

action buttons, and clearing the stored search.

- setDisplayMode switches to display mode by clearing the fields, changing the title

and action buttons, and saving the new search result. In addition, it generates a title

based on the condition that was used and sets that to be the title of the member table.

- search does the actual searching of the database. It makes use of the propSearch

and jobSearch helper methods to create a promise that queries the corresponding

table for each of the different search criteria. It then takes the results of these promises

and continually finds the intersection of the current matchingIDs (which starts as all

IDs) and the result of the search query, until the final list contains only the IDs of

members who match all criteria. These IDs are then used to filter the list of all members,

and the resulting list of matches is used to set display mode.

- update, setLang, addLang, and removeLang are the change listeners for the

QueryDisplay.

- render returns the QueryDisplay when in query mode, and a MemberTable when

in display mode.

TrainingPage.js

The training page is used to add a training session to multiple members at once. It is extremely

similar to the new member page, the main difference being the addition of two

ChipListElements for the lists of members that passed and failed the training. In the

handleSubmit method, we iterate through the list of success members and the list of fail

members, and add the training to each of them with SUCCEEDED set to true or false

accordingly.

UnauthorizedPage.js

The unauthorized page is displayed to new users who have just created an account and have

no permissions yet. It displays a simple message, inviting users to email MSR asking for

permissions. This is only shown to Auth0 users with the ‘newUser’ or an unknown user level.

Displays

AccountManagerElement.js

The component used to manage the account permission levels. Visually, it consists of a save

button and an exclusive CheckTableElement. The levelFrom and updateRadios

functions are simple helpers that convert the state of the radio buttons into a text user level, and

ensure that only one button is clicked at a time, respectively. When saving, it compares the past

state of each user with their new state, and uses the Auth0 API calls to save it if necessary.

Cards.js

This file contains a few components that are simple wrappers for the other display elements,

putting each one inside of a BlankCard with a title, actions, children, and footer.

CheckTableElement.js

A component representing a table, where each row has a list of true/false properties. If the edit

property is specified, it makes it editable with checkboxes. If edit and exclusive are both

specified, it uses radio buttons instead of checkboxes. If acData is specified, it adds an

autocomplete at the bottom to add more entries to the list. If tips are specified, each row of the

table will have a tooltip. This component is purely functional and has no state. This component

was designed with the intention of it only being used for languages, so I cut a few corners and it

isn’t the best design.

ChipListElement.js

This component represents a list of chips, with an autocomplete to add more and buttons to

remove them in edit mode. If tips are specified, each chip will have a tooltip. This is a pure

component, and the added methods in the class only exist to make it easier to update the list.

ConstantTableElement.js

This component represents the table displaying and allowing the editing of the constants like

skills or languages. It is paginated, and includes add and save buttons at the top, with an X next

to each row to delete. Clicking on a field in the table allows it to be edited. This component is

entirely self contained and separate from the admin page, and has its own state.

Because this is designed to only be used with constants, a table name and primary key are

specified in props rather than data. In the save method, the current value of the data is

compared to the global constant, and any changes necessary are made to the database before

storing the new list as the global constant.

This element should be relatively straightforward, and mirrors the layout of the edit page (to a

much lesser scale); the only complicated part comes in the deleting. When the user clicks the

save button, if deleting of a row fails due to it being referenced elsewhere in the database the

catchDel method is called. This gives the user the option to cancel or force delete, where

force delete goes through every table that references this constant with a foreign key and

deletes all occurrences of this value.

EditMemberDisplay.js

This component creates all of the other display element cards corresponding to the member

information passed in. First is a PropListCard for the member data, followed by a

PropAndChipCard for each work/placement/training, a PropListCard for each certificate, a

CheckTableCard for languages, a ChipListCard for other skills, and lastly a BlankCard

containing the add and delete buttons.

This is probably the single least flexible part of the application, along with the

EditMemberPage and the other MemberDisplay, and could be greatly improved with the use

of the global FKS variable and some refactoring time.

ExpandingCard.js

This is a very simple component representing an expandable react-md Card with title, actions,

an icon, and children.

MemberDisplay.js

This component mirrors the EditMemberDisplay, except all the components are not editable,

and the list of skills comes first. Once again, this could be dramatically improved and simplified

with some refactoring.

PropListElement.js

This is the most commonly used component in the displays, and shows a list of properties. In

normal mode, it simply displays the properties with the help of the DisplayUtils formatting.

In edit mode, it uses a variety of react-md components to make the information easy to control:

- If acData is specified and there are more than 20 options, an Autocomplete is used.

- If acData is specified and there are less than 20 options, a SelectField (drop down

menu) is used.

- If the data type in the database is a boolean, a Checkbox is used.

- If the data type in the database is a date, a DatePicker (calendar popup) is used.

- Otherwise, a simple TextField is displayed, with text validation generated based on

the field’s type and max character length in the database.

This component has no state, but does keep track of refs to the autocompletes, as these are still

uncontrolled components and there was no other way to clear them when invalid data is

entered/when the clear button is pressed.

QueryDisplay.js

Similarly to the AdminPage, the query display is a list of dynamically generated

ExpandingCards according to the searchCards function. It generates elements almost

exactly as it would on the edit page, except each element begins empty instead of having a

default value.

Other Components

Callback.js

The callback page used by Auth0 to store the access and ID tokens.

IssueButton.js

A button that dynamically changes itself based on the list of ‘issues’ passed in. If there are

issues in the list, it returns a label (styled to look like a disabled button) instead of a button, with

a tooltip according to the issue. This is only necessary because disabled buttons do not show

their tooltips, but I wanted to inform the user of why the button was disabled instead of leaving

them to figure it out for themselves. This element looks a little ugly at times, as it is styled to look

like a disabled raised button even if the enabled button is flat, but this is a minor complaint.

LaunchScreen.js

The launch screen simply displays the MSR logo and a loading circle while initialization goes on

in the background. If the user is not logged in (generally when their access token expires), it

clears the tokens and sends them back to the login page. Otherwise, it requests their user level

from the server and stores it in the client, initializing accordingly. If the user is a ‘creator’ or

‘admin’, it renders the full App component into the DOM, replacing the LockedApp. Similarly, if

they are a ‘user’, it renders the LimitedApp, and if they are a ‘newUser’ or another unknown

level, it renders the UnauthorizedPage.

MemberTable.js

Displays a paginated, filterable table of members. A list of members is passed in as a property,

which is then filtered into match based on the input in the text box (handled by

updateInputValue), and then sliced into a display to show one page at a time. This class

does all of the heavy lifting of filtering the members down to a list, which is then actually

rendered by the MemberTableBody.

MemberTableBody.js

If the loaded property is set to true, this component renders the actual data table of members,

including pagination and a ‘No results’ method if the list is empty. This is a stateless pure

component, and the information to display is handled by the MemberTable itself.

MemberTableHeader.js

This is another stateless pure component, and it simply renders the header of the table. It

includes a title, a separate section to display information about the filter condition (on the query

page), the filtering search bar, a download as CSV button, and a refresh button (if the

onRefreshClick function is defined).

MemberTableRow.js

Represents one row of the MemberTable. Each row is wrapped in a route, so that clicking on a

row in the table redirects you to the information page for that member.

Navigation.js

Returns a div containing a list of the ‘nav items’, which are generated by the NAV_ITEMS

function and vary depending on whether isAdmin is true. If the nav item specifies a to

attribute, it is wrapped in a link; otherwise, it is given an onClick handler function.

Tooltip.js

A simple convenience component that allows anything to be easily wrapped in a react-md tooltip

on the fly, without needing to call injectTooltip.

Miscellaneous

databaseManager

The databaseManager is the main point of connection from the client to the server. It consists

of three main sections:

- The internal functions are used to make other actions possible. This include things like

making get/post/patch/delete requests, checking the status of an HTTP response and

throwing an error if necessary, and cleaning the returned JSON into a nicer format.

- The exported functions are the building blocks of the application, and correspond almost

one-to-one with the API calls listed in server.js (so look there for more information!). The

main thing to note here is that if any of the get requests are made and the user is not an

admin, the databaseManager makes use of the limited version of the API calls.

- The exported helpers make use of the original functions to make other common

operations easier. Currently, the only functions here are used to get properties of a

member by ID.

Utils

A collection of generic utility functions that operate on lists, dictionaries, and strings. The

majority of these should be self explanatory, but the more obscure ones are:

- makeDict makes a dictionary from a list where each value in the list is a key with a

value of an empty string. This is used to generate empty PropListElements from the

headers of a table.

- filterObj removes all key/value pairs from an object where the value is either an

empty string, false, undefined, or an empty object. This is used to ignore values a user

didn’t specify in the query page.

- dictFromList goes through a list of objects and converts it to a dictionary by

accessing the specified key of the object and using that as the key in the dictionary. This

is mostly used to convert information from the database into a friendlier format, since we

already know there will be no duplicate keys.

- uniteRoutes is used when the primary key of a constant (like skill or language name)

is changed to ensure that the right constant is the one being updated in the database.

Without this, the constant table would think that renaming a skill was the same as

deleting the old and adding a new one, which would obviously cause issues if the skill

was referenced anywhere.

DisplayUtils

This contains a bunch of tools for formatting data to look better. It is primarily based around the

giant formats dictionary at the top, which maps the name of a database column to a friendlier

version of the name and occasionally a function to format the value. All of the non-exported

functions with ‘pretty’ in the name are used as formatters for values, and the exported ‘pretty’

functions make use of this format object. The other functions in the file include:

- textValidation is used to generate size and type constraints for a text field based

on the type of a column in the database.

- dataLengthIssues compares the size of a field against its contents to ensure nothing

is too long and returns ‘issue’ objects accordingly.

- issueTip converts the ‘issue’ objects generated elsewhere into a friendly format to give

to the user as a tooltip.

- doubleDate takes a dictionary (usually generated by dictFromList or makeDict)

and, if there is a key for a date, it changes it so instead there are two: one with MIN and

one with MAX before its name.

- displayTitle uses the other formatters to convert the state of the query page into a

title for the member table.

AuthConstants

Auth constants contains the keys necessary to authenticate the client to to the server these

constants are used by both serverAuth and AuthMan.

AuthMan

The AuthMan file is used by the client application to handle all necessary client side

authorization actions.

- setAccessToken stores the users accessToken to their browser

- setIdToken stores the users id_token to their browser

- getAccessToken gets the user’s access_token from their browser

- getIdToken get the user’s idToken from the browser

- clearIdToken clears the id_token from the browser

- clearAccessToken clears the access_token from the browser

- getUserId decodes the jwt and returns the user id from the access_token

- getParamerterByName parses the url after call back an returns the specified token to

be stored on the browser

- isLoggedOn checks to see if the user is logged on

- isExpired checks to see if the user’s tokens are expired

- getTokenExpirationDate gets the expiration date of the user’s tokens

- login calls the auth0 client side log in screen

- logout clears bth tokens and redirects user back to locked app.

Database

The database itself should be relatively self explanatory, and is easiest to view and understand

with a tool like DataGrip. The credentials are:

const config = {

 user: 'msrtest',

 password: 'msr2018!',

 server: 'den1.mssql4.gear.host',

 database: 'msrtest'

};

The Member table is the center of everything, connected to Work, Placement, Training,

Has_Skill, Has_Cert, and Know_Lang. Certificate, Language, Skill, and Site represent the four

constants controllable from the admin page.

A (mostly complete) ERD for the database is below:

2. Hardware

Currently, MSR’s Data management system is running on Gearhost and Heroku. Gearhost is

serving the database, and herokuapp is serving both the server side and client side

applications.

We do also have a server, running Windows Server 2008 Enterprise, that is available and

planned to be used for this purpose. However, due to the short length of our project and the fact

that we didn’t get the server until our second to last day, we weren’t able to get anything set up

beyond installing our application on it.

Heroku URL: msrna.herokuapp.com

Server IP: 41.182.21.206 (external) or 192.168.178.87 (from within MSR’s network)

Username: Administrator

Password: P@ssw0rd

http://msrna.herokuapp.com/
http://41.182.21.206/

3. Potential Areas for Improvement

Move off Gearhost

The database is currently still hosted on Gearhost, even though we have a server of our own!

Making this change would most likely require switching to MySQL due to licensing/costs, which

would then require changing the API calls to use MySQL syntax.

Finish Server Configuration

As mentioned above, the server is not fully setup and fully implementing the hardware is

definitely a spot for potential work. Running off Heroku and Gearhost is less than ideal, and

while the time and storage capabilities have been sufficient for now, they may limit potential

growth. Something like this would most likely include the changes mentioned above to move off

Gearhost, ensuring the server has failsafes to keep the application running as much as

possible, and configuring a subdomain of msr.org.na to point to the server’s IP address.

Windows Server 2008 is also already 10 years old (at the time of writing this), and I can’t

imagine it’s going to get any better, so finding a new server OS would also be nice if possible.

Refactor

Specifically, the EditMemberPage is the worst. However, there is also plenty of room for

improvement on the EditMemberDisplay, MemberDisplay, and QueryDisplay. Ideally,

these would be modified to be dynamically generated, rather than me manually saying render

skills then render work etc. This way, if a new table that referenced member ID as a foreign key

was ever added, it would automatically appear on these pages!

Expandable Database

If the front end is actually updated to dynamically generate the views, then the next logical step

is to add the ability to expand the database. This would require another section in the admin

page, and would basically be a UI that allows them to design a table themselves. In addition, the

ability to modify existing tables by adding new columns or changing data types would be

beneficial. I haven’t put too much other thought into this, but if a feature like this was

implemented it could greatly increase the lifespan of the application, as MSR could add new

fields or tables as their needs change.

Preset Trainings

MSR holds a lot of the same trainings, so it would be nice to add some preset options to the

batch add training page. This could easily be hardcoded, but ideally the presets would be

configurable via another section on the admin page and (probably) another table in the

database.

Communication & Revision History

Add some way of keeping track of who spoke with what members when, and who edits what

members when. This would involve more interaction with the Auth0 accounts, and probably

another table or two in the database.

Attachments

Some way of adding attachments, like resumes, CVs, or even just member profile pictures,

would be nice, but this is not something we have laid any groundwork for.

Reminders

A complex reminder system, where the employees of MSR can set up ‘rules’ (ex. When a

member has been active for 2 years, when a certificate expires) that the system would then

remind them for. This would also require more pages, more tables in the database, and a lot

more work than it’s worth.

4. Account Information

Below is all of the account information that may be needed to maintain the application. Please

be careful with where this information goes!

Email Account

Used as the sign in for all other services. May be required for verification purposes.

Username: msrnadatabase@gmail.com

Password: Khomasdal80!

Heroku Account

Used to deploy to the herokuapp.

Username: msrnadatabase@gmail.com

Password: Khomasdal80!

Auth0 Account

Used to record user profiles and manage authentication.

Username: msrnadatabase@gmail.com

Password: Khomasdal80!

Github Account

Used on server to pull from repository, or on heroku to deploy.

Username: msrnadatabase@gmail.com

Password: Khomasdal80!

Gearhost Account

Used to host the MSSQL database for free.

Username: msrnadatabase@gmail.com

Password: Khomasdal80!

