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ABSTRACT 
 

We focus on single punch compaction of powder metals in hollow cylindrical 

geometries, and pay special attention to the effects of non-uniform initial density 

distribution on final green densities, the effects of density-dependent powder properties 

and pressure dependent coefficients of friction on the evolution of the pressure and 

density profiles during compaction, and the time variations of the force required for 

ejection after the compaction pressure is removed.   

In studying the effects of non-uniform initial density distribution, we extend the 

work of Richman and Gaboriault [1999] to allow for fill densities that vary with initial 

location in the die. The process is modeled using equations of equilibrium in the axial and 

radial directions, a constitutive relation that relates the axial pressure to the radial 

pressure at any point in the specimen, and a plausible equation of state that relates local 

density to the local pressure. Coulomb friction is assumed to act at the interfaces between 

the specimen and both the die wall and core rod.  In this manner, we determine the axial 

and radial variations of the final density, the axial, radial and tangential pressures, and the 

shear stress.  Of special interest are the inverse problems, in which we find the required 

non-uniform initial density distribution that, in principle, will yield no variation in the 

final green density. 

For incorporating the effect of pressure and density dependent powder properties, 

we employ a one-dimensional model that predicts the axial variations of the pressure and 

density.  In this model, however, we incorporate the density dependence of the radial-to-

axial pressure ratio, as well as the pressure-dependence of the coefficients of friction at 

the die wall and core rod.  The density-dependence of the pressure ratio is based on the 
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experimental measurements of Trassoras [1998], and the pressure dependence of the 

friction coefficients is based on the measurements of Sinka [2000] and Solimanjad et. al 

[2001].  In the course of this study, we focus attention on a Distalloy AE powder, and 

establish the relation between its compressibility and its radial-to-axial pressure ratio. 

Finally, we employ linear elasticity theory to model the ejection of the green 

compact.  In the first phase, we model relaxation of the compact after removal of the 

compaction pressure as a misfit of three cylinders, representing the core rod, the compact 

and the die wall.  The known input is radial pressure distribution at the conclusion of 

compaction, and the output is the corresponding radial pressure distributions that prevail 

after the compaction pressures are removed.  In the second phase, we determine the 

variations with punch displacement of the ejection forces required to overcome friction at 

the core rod and die wall.  The model includes additions to the friction forces due to the 

radial expansion (i.e. the Poisson effect) that occurs during ejection.  Predictions of the 

model compare well to the experimental results of Gethin et.al. [1994]. 
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CHAPTER 1 
 

Introduction  
 

Powder metallurgy (P/M) is an important process of manufacturing metal parts 

from metal in powdered form. Although it traces its roots, back to 3000 years B.C., the 

first modern powder metal product was the tungsten filament for electric light bulbs 

developed in the early 1900s. This was followed by tungsten carbide cutting tool 

materials in the 1930s, automobile parts like transmission gears, connecting rods, 

bearings, bushings in the '60s and '70s, aircraft turbine engine parts in the '80s and parts 

made by powder forging (P/F), metal injection molding (MIM) and warm compacting in 

the '90s. P/M parts are used in a variety of end products such as lock hardware, garden 

tractors, snowmobiles, automobile engines and transmissions, auto brake and steering 

systems, washing machines, power tools and hardware, sporting arms, copiers and 

postage meters, off-road equipment, hunting knives, hydraulic assemblies, x-ray 

shielding, oil and gas drilling wellhead components, fishing rods and wrist watches. 

Canadian nickels are made from strip rolled from pure nickel powder. The typical U.S. 

passenger car contains more than 37 pounds of P/M parts, a figure that will go higher 

within the next several years. New commercial aircraft engines contain 1,500-4,400 

pounds of P/M superalloy extruded forgings per engine. Also, specialty P/M products 

such as superalloys, porous products, friction materials, strip for electronic applications, 

high strength permanent magnets, magnetic powder cores and ferrites, tungsten carbide 

cutting tools and wear parts, metal injection molded parts and tool steels are 

manufactured nowadays. The annual worldwide powder metal production exceeds one 
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million tons and the powder metal parts and products industry in North America alone 

has estimated sales of over $5 billion (White, 2001). 

The basic P/M process uses pressure and heat to form precision metal parts and 

shapes. A mechanical or hydraulic compacting press squeezes powder in a rigid precision 

die into an engineered shape like a gear. After the mass of powder is squeezed into a 

shape and ejected from the press, it is fed slowly through a special high-temperature 

controlled atmosphere furnace to bond the particles together. They are metallurgically 

fused without melting, a phenomenon called "sintering". Other processes are also used to 

consolidate powders into finished shapes such as cold or hot isostatic pressing, direct 

powder rolling, forging, injection molding and gravity sintering. In contrast to other 

metal forming techniques, P/M parts are shaped directly from powders while castings are 

formed from metal that must be melted, and wrought parts are shaped by deformation of 

hot or cold metal, or by machining. 

The process is not completely understood, scientifically, yet. Even today, the 

technology is still developing and provides a lot of scope for scientific research and 

industrial applications. Hence, comprehensive understanding of the P/M process is of 

vital importance for the industry. 

 

1.1 Review of Previous Work  
 

The complex nature of powder mechanical behavior coupled with complex 

geometries and boundary conditions, precludes analytical solutions to these problems. 

During the late 80s, maturing of numerical simulation to finite strain plasticity, allowed 

initial attempts of modeling powder compaction process. Formally, powder compaction 
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modeling requires the solution of a boundary value problem, a set of partial differential 

equations representing balance laws for mass, momentum and energy and constitutive 

laws giving relation between stress and strain and friction laws. Finite element method 

(FEM) is most widely used to solve these equations. Modern FEM codes incorporate 

constitutive models for a wide variety of materials. 

Empirical constitutive laws have been developed based on stress-strain behavior 

observed. Development of constitutive law for plastically deforming materials requires 

knowledge of yield surface for the material, which is the surface in the stress space within 

which the material responds elastically. The size and shape of yield surface is a function 

of loading history. 

Attempts were made to understand yield surface for the material. Kim, Suh and 

Kwon (1990) cold isostatically pressed tubes of iron powder, sintered them and then 

those tubes were tested in combined tension and torsion, to obtain yield surface. Brown 

and Weber(1988) demonstrated that the mechanical response of compacted and sintered 

powders is very different from that of only compacted powder. Sintering amounts to add 

to the strength of the compact. Watson and Wert (1993) compacted aluminium powders 

hydrostatically and by using closed die compaction. They performed uniaxial tensile and 

compressive tests on these samples to obtain yield surface. Once the yield surface is 

identified, it remains to develop appropriate laws for the expansion, translation and 

change in shape of the yield surface, as the material deforms plastically. Trasorras, 

Parameswaran and Cocks (1998) have summarized the work done by many researchers in 

this regard. 
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Morimoto, Hayashi and Takei (1982) analyzed the compaction of T shaped 

compact, using single and double punch compaction. Trasorras, Armstrong and McCabe 

(1994) analyzed the compaction of metal powders with ductile particles. Trasorras, 

Krishnaswamy, Godby and Armstrong (1995) modeled the compaction of metal powder 

to complicated gear geometry using finite elements method. Gethin, Tran, Lewis and 

Ariffin (1994) demonstrated that during compaction, particle rearrangement phase is 

important and occupies a significant portion of compaction process. Doremus, Geidreau, 

Debove, Lecot and Dao (1995) studied the important influence of deviatoric stress on 

densification, using a numerically controlled triaxial press. Sinka, Cocks, Morrison and 

Lightfoot (1999) performed similar triaxial consolidated compaction and also isostatic 

compaction with high pressure triaxial testing facility and obtained results which were in 

broad agreement with Doremus et al. (1995). 

After modeling compaction, attempts were made to study the effects of different 

parameters on compaction. Gasiorek, Korczak and Kaminski (1989) studied the effect of 

compressibility of powder on compaction and showed that for metallic powders, the 

compactibility coefficient most likely will never be a constant in practical density range. 

Bocchini and Rapallo (1995) studied the effect of friction on compaction and proposed a 

simple model that will take into account the friction at the punch face. Roure, Bouvard, 

Doremus and Pavier (1999) used industrial type press which had measurement facilities 

for measuring upper and lower punch forces as well as average radial force. A 

mechanical analysis of the data obtained from the experiments showed that the ratio of 

radial to axial pressures also is not constant during compaction. The ratio increases with 

increase in the average compact density. Wikman, Solimanjad, Larsson, Oldenburg and 
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Haggblad (1999) modeled the variation of radial to axial pressure ratio with a Cap yield 

function. It was observed that the friction coefficient and radial to axial pressure ratio 

evolve during compaction in a manner such that their product remains roughly the same. 

Friction tests carried out using high pressure apparatus measured bulk coefficient of 

friction, i.e., the coefficient of friction that takes into account particle-wall friction as well 

as inter particle friction. This bulk coefficient of friction was found to increase during the 

initial stages of compaction and then decrease. Solimanjad, Wikstrom and Larsson (2001) 

designed a powder friction measuring device to measure the friction coefficient between 

powder particles and die wall. By measuring the torque required to prevent the upper 

punch from rotation in a rotating die assembly, actually coefficient of friction between 

the punch face and iron powder particles was measured. This coefficient of friction was 

found to decrease with increasing average compact density. Sinka, Cunningham and 

Zavaliangos et al. (2001) carried out experimental measurement of coefficient of friction 

for pharmaceutical powder and obtained qualitatively similar results. Also, comparison 

was done with modeling results using variation of the coefficient of friction as a function 

of pressure. 

Modeling of relaxation and ejection remained neglected for a long time. Ferguson 

and Krauss (1984) applied finite elements method to investigate stress state developed in 

single and two level parts during ejection. Gethin, Ariffin, Tran and Lewis (1994) studied 

experimentally relaxation and ejection using different powders including iron, carbon, 

ceramic and bronze. It was found that relaxation is approximately elastic in all except the 

ceramic powders. The variation of required ejection force during ejection was also 

measured. Required ejection force was found to increase sharply at the beginning and 
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then decrease. Gethin, Lewis and Ariffin (1995) modeled relaxation and ejection by 

taking the elastic properties of the compact to be constant and compared with previous 

experimental results. Arrifin, Gethin and Lewis (1998) also measured variation of the 

required ejection force and obtained qualitatively similar results. Holownia (1996) 

studied ejection and demonstrated an effective way of reducing the required ejection 

force. Mosbah and Bouvard (1997) studied experimentally the density profiles before and 

after ejection of the compact and then compared finite element modeling results with the 

experimental. 

Accurate estimation of the elastic properties of the compact, which include 

Young’s modulus and Poisson’s ratio, is essential in any modeling effort for ejection. 

Pavier and Doremus (1996) conducted experimental studies and observed that the elastic 

properties of the compact are not constant during compaction. Using cyclic loading 

technique they obtained the variation of Young’s modulus with the average compact 

density. Pavier and Doremus (1999) obtained the variation of the Poisson’s ratio as a 

function of the average compact density. Similar experiments were done by Mosbah, 

Bouvard, Ouedraogo and Stutz (1996). 

Richman, Apelian and Burgos (1998) presented a simple phenomenological 

theory to model the process of powder compaction with the intention to reveal the 

underlying physics governing the process. The theory was presented for a frictionless 

compaction of a cylindrical compact with inner solid cylindrical region consisting of one 

powder and the outer annular region consisting of another powder. Richman and 

Gaboriault (1999) extended the theory to include frictional compaction of hollow 

cylindrical compact with uniform initial density. 
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1.2 Summary of Approach  

There are many analyses available in literature which model the process of 

powder compaction. Though some of them are more accurate than the analysis we intend 

to present, because of their complicated nature they require intense numerical 

calculations to obtain solutions. We present a simple analysis that avoids intense 

numerical calculations. Our goal is to focus on the physics underlying the process, which 

even today is not entirely revealed. 

In this work, we extend the theory of Richman and Gaboriault (1999) to include 

the effects of variation in material properties and to model the ejection phase. The theory 

assumes that all the particles have the same size and shape, such that the particle mass 

can be approximated as continuum. Also, input required is powder specific so that the 

theory is valid for any metal powder. Pressures are obtained using force equilibrium and 

momentum balance. Constitutive relation obtains the induced radial pressure in terms of 

applied axial pressure. The constant of proportionality, which is the radial to axial 

pressure ratio, indirectly measures the inter-particle friction. Density and pressures are 

related by an equation of state. The theory is for the plastic deformation zone only, in the 

stress space and hence this equation of state can replace the complicated yield surface 

concept. 

In chapter 2, we find the effects of initial non uniformities in the fill density due 

to improper filling of the die or feed-shoe movement. The material properties, coefficient 

of friction and the radial to axial pressure ratio are taken as constants for simplicity. The 

compaction is carried out using only upper punch. The pressure variation in the compact 

is obtained and using that the density variation in three dimensions is predicted. Changes 

 7



in the profiles of density and pressure due to changes in the values of initial height of 

compact, final height, friction coefficient between the wall and particles, the ratio of the 

core rod radius to die wall radius are studied. Also, inverse solution is obtained, which 

prescribes how the initial fill can be improved to obtain a perfectly uniform green state. 

Chapter 3 takes into account the variation of radial to axial pressure ratio with 

local density and pressure and also the variation of the coefficient of friction with the 

local pressure and density. The solution to the pressure distribution is sought by 

considering the force equilibrium of a thin slice of infinitesimal thickness under 

externally applied axial pressure and friction forces. The inertia forces arising due to 

instantaneous acceleration of the thin slice as it travels downwards during compaction 

and gravitational forces are neglected in favor of huge externally applied pressure force. 

So, the model does not take into to the effects of compaction velocity. Same equation of 

state governs the relation between local pressure and density.  

Chapter 4 discusses the ejection problem. After the removal of external axial 

pressure, walls confining the compact spring back and produce a different radial pressure 

distribution compared to the one at the end of compaction. This radial pressure 

distribution gives rise to frictional forces that dictate the required ejection force. The 

solution to the radial pressure distribution is sought by solving a problem of elasticity in 

which three cylinders are inserted into one another. The variation of the required ejection 

force during ejection is obtained. 
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CHAPTER 2 
 

Compaction in Hollow Cylindrical Dies with Non uniform Initial 
Density Distribution 

 

2.1 Governing Equations and Boundary Conditions 

We are concerned with single punch compaction of a powder in a hollow 

cylindrical die of inside radius Ri and outside radius Ro.  The height of the powder fill 

before compaction is L, and the current height, at any instant during compaction is H.  

The geometry of the compact is described by the following dimensionless quantities: the 

radii ratio a≡Ri/Ro, which is a measure of the wall thickness of the compact; the height 

ratio H/L, which is a measure of the degree of compaction; and the aspect ratio h≡H/Ro, 

which is a dimensionless measure of the instantaneous height of the compact. The 

geometry of the compact is shown in Figure 2.1. 

The average pressure applied over the top surface of the compact is po, so that the 

total compaction load FC is equal to π(Ro
2- Ri

2)po.  We establish a cylindrical coordinate 

system in which the axial Z*-coordinate measures the initial distance along the centerline 

from the lower face of the fill, before compaction and the radial R*-coordinate measures 

the initial distance from centerline. In a similar way, the axial z*−coordinate measures the 

instantaneous distance along the centerline from the lower face of the compact, during 

compaction and the radial r*-coordinate measures the instantaneous distance from the 

centerline.  The angular position about the centerline is measured by θ.  If there is 

symmetry, there will be no variations with angular position,θ.  But even for small 

variations with angular position about the centerline, the pressure distribution can be  
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Figure 2.1: The pre- and post-compaction geometry. 
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assumed to be almost independent of angular position.  In this case, the axial pressure p*, 

the radial pressure σ*, the tangential pressure ϕ* and the shear stress τ* each vary with 

only r* and z* throughout the compact. 

In what follows, we employ a dimensionless axial coordinate, Z≡Z*/L which 

varies from 0 at the bottom of the compact to 1 at the top and a dimensionless radial 

coordinate R≡R*/Ro which varies from a at the core rod to 1 at the die wall.  Similarly, 

z≡z*/H varies from 0 at the bottom of the compact to 1 at the top and r≡r*/Ro, varies from 

a at the core rod to 1 at the die wall.  The corresponding angular coordinates are Θ before 

compaction and θ during compaction.  In what follows we consider perfectly 

axisymmetric cases or cases in which the inhomogeneities in initial fill contain only small 

variations with Θ.  Under these circumstances, a complete description of the deformation 

during compaction is given by the functions z(R,Z) and r(R,Z).  If z depends on R, then 

flat “discs” of powder in the pre-compaction state will not remain flat in the evolving 

state.  Wherever r is not equal to R, radial movement of the powder will occur.   

The dimensionless axial pressure, p≡p*/po and the dimensionless radial pressure, 

σ≡σ*/po, the dimensionless tangential pressure, ϕ≡ϕ*/po, and the dimensionless shear 

stress, τ≡τ*/po vary with r and z.  In what follows, we carry out all calculations in terms 

of dimensionless quantities. 

In terms of the axial pressure p and the shear stress τ, the axial equilibrium 

equation is given by, 

 

r

r

r

h

z

p

∂

∂
=

∂

∂ )( τ
       .             (2.1) 
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Here, in what follows, we assume that the radial pressure σ is equal to the tangential 

pressure ϕ.  In terms of the radial pressure σ and the shear stress τ, the radial equilibrium 

equation is, 

 

zhr ∂

∂
=

∂

∂ τσ 1
       .            (2.2) 

 
 
The tangential equilibrium equation is identically satisfied.  In this model, the radial 

pressure σ is induced by an axial pressure p according to the simple constitutive relation, 

 
pασ =        ,             (2.3) 

 
 
where α is the radial-to-axial pressure ratio of the powder that measures the tendency of 

the powder to develop radial pressure when subjected to axial pressure.  Values of α vary 

between 0 and 1. For simplicity, we take α to be a constant and ignore its variations with 

density in the course of compaction.  The constant value may be crudely interpreted as an 

average value over the entire compact during the entire compaction process. 

With appropriate boundary conditions, equations (2.1), (2.2) and (2.3) determine 

the variations of the axial pressure, the radial pressure, and the shear stress. Boundary 

conditions at the die wall and the core rod relate the shear stress to the radial pressure 

through Coulomb friction.  If, for example, µo is the coefficient of friction between the 

die wall and the powder compact, then the boundary condition at r=1 is given by, 

 
),1(),1( zrzr o === σµτ        .          (2.4) 
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Similarly, if µi is the coefficient of friction between the core rod and the powder compact, 

then the corresponding boundary condition at r=a is 

 
),(),( zarzar i =−== σµτ        .          (2.5) 

 
 
It is possible to obtain closed form expressions for the pressures p and σ, and the shear 

stress τ that satisfy equations (2.1) to (2.3) and conditions (2.4) and (2.5). 

Constitutive relation (2.3) may be employed to eliminate σ from the radial 

equilibrium equation (2.2).  The result may be combined by cross differentiation with 

axial equilibrium (2.1) to yield a single equation for p, given by, 

 








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=
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∂

r
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h

z
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2

       .           (2.6) 

 
 
In order to express conditions (2.4) and (2.5) entirely in term of the axial pressure p, we 

employ constitutive relation (2.3) to write the radial pressure σ in terms of the axial 

pressure p, differentiate the two conditions with respect to z, and employ equation (2.2) to 

eliminate ∂τ/∂z from the intermediate results. In this manner, we obtain 

 

z
p

r
ph o ∂
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=

∂
∂ µ            ,            (2.7) 

 
 
at r=1, and 
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p

r
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∂ µ          ,            (2.8) 
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at r=a. Equation (2.6) and conditions (2.7) and (2.8) determine p(r,z).  In the case of a 

solid cylindrical compact, the ratio a is equal to 0, and condition (2.8) at r=a is replaced 

by the simple requirement that the stresses remain finite at r=0. 

Based upon the form of equation (2.6), the axial pressure has the form : 

 
p(r,z) = F(z)G(r) .           (2.9) 

 
 
When this form is substituted in equation (2.6) and the z and r dependence are separated, 

we find that both F and G are the solutions to two second order well known ordinary 

differential equations.  In this manner, we find that  

 
 [ )exp()exp()( zBzAzF ]λλ −+=     ,        (2.10) 
 
 
and 

 

 [ )/()/()( o αλαλ hrDKhrI
A
CrG o+= ]     .                 (2.11) 

 
 
Reassembling the product of F and G according to equation (2.9)gives the axial pressure 

p(r, z) to within four unknown constants (B, C, D, and λ).  The manner in which these 

constants are determined depends on whether the compact is a solid cylinder (with no 

core rod), or a hollow cylinder (with core rod surface at r=a).  Each of this case will be 

treated separately in sections 2.3 and 2.4. 

Once the axial pressure p(r,z) is determined, the radial pressure σ(r,z) can be fixed 

by the simple constitutive relation (2.3), and the shear stress τ(r,z) is determined to within 

additional constant by integrating equations (2.1) and (2.2).  The constant is fixed as 

follows.  We define the average pressure P(z) at any axial location z according to  
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and we require that at z=1, 

 
 P(z=1) = 1     .           (2.13) 

 
 
This in turn guarantees that the average of the dimensional axial pressure on the top face 

is equal to po, as it must be. 

 

2.2 Equation of State and Mass Balance 

The equation of state relates the axial pressure p*(r, z) to the corresponding local 

density ρ*(r, θ, z).  A relatively simple equation of state has the form, 

 
[ ]*)1(1** pk αηρ −+=        ,                    (2.14) 

 
 
where k(1-α) is the compressibility of the specimen at any stage of the compaction and 

η*(R, θ, Z) is the apparent density of the loose powder.  The compressibility is the slope 

of the variation of ρ* with p*, and it vanishes when the deformation is incompressible 

(when, for example, α=1).  Because the initial fill can be nonuniform, η* can depend on 

R, θ, and Z.  By assumption, the Θ dependence will be small.  The compressibility k(1-α) 

is itself a decreasing function of density, so that equation (2.14) actually describes a 

nonlinear relationship between density ρ* and pressure p*. As ρ* increases from the 

apparent density η* of the powder, the compressibility decreases monotonically from its 

initial value β(1-α).  Moreover, as ρ* approaches its maximum theoretical value M, the 
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local compressibility approaches zero. The simplest relation between k and ρ* that 

satisfies these conditions is 

 









−
−

−=
*
**1

η
ηρβ

M
k        .         (2.15) 

 
 
By eliminating k between equations (2.14) and (2.15), we obtain the following equation 

of state: 
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If we non-dimensionalize the densities by the maximum theoretical value, M, then 

η≡η*/M represents nondimensional initial density and ρ≡ρ*/M represents relative local 

density during compaction. Equation (2.16) can be written in nondimensional form as : 
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The nondimensional average density ρavg≡ρ*
avg/M at any height z is defined by the 

integral, 

 

∫=−
1

2 ),(2)1(
a

avg rdrzra ρπρπ        .        (2.18) 

 
 
The quantity ρavg is of special interest because it can be determined experimentally by 

measuring the weight of very thin annular disks that are successively removed from the 

green compact. 
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Finally, we imagine that the compact is comprised of infinitely many thin flat 

circular discs that are perpendicular to the centerline, and we approximate the 

deformation during compaction by assuming that each disc remains flat during 

compaction.  Under these circumstances, the balance of mass requires that the mass of 

each disc (of thickness dZ before compaction, and thickness dz after compaction) must 

remain constant through the compaction cycle.  Therefore, the final axial location z is 

independent of the initial radial location, and the balance of mass becomes 

 

∫ ∫ ∫ ∫=Θ
1 2

0

1 2

0a a

rdrdHdzRdRdLdZ
π π

θρη     .                  (2.19) 

 
 
If, in addition, the dependence of η on the angular coordinate Θ is small, then the 

dependence of z on Θ can be neglected.  In that case, z is a function of Z only, and 

equation (2.19) can be written as the following ordinary differential equation:  
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The boundary conditions require that the bottom of the compact does not move during 

compaction, and that the particles that comprise the top surface of the compact remain 

unchanged during compaction.  In mathematical terms, these conditions are simply, 

 
 z(Z=0) = 0  and   z(Z=1) = 1     .                 (2.21) 
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In what follows, it is assumed for simplicity that the radial and angular locations don’t 

change during compaction, so that r=R and θ=Θ.   

 

2.3 Solid Cylindrical Compacts 

In the case of solid cylindrical compacts, there is no core rod and a=0. Coulomb 

friction conditions (2.5) and (2.8) at r=a are replaced by the requirement that the stresses 

and pressures remain finite at the centerline (r=0) of the cylindrical compact.  This in turn 

implies that the constant D must vanish in expression (2.11). 

The remaining constants (B, C, and λ) in p(r, z) may be determined as follows. 

First, the form of axial pressure given by equation (2.9) is substituted in Coulomb friction 

condition (2.7) at the die wall.  This yields a simple first order differential equation for 

F(z), from which we obtain, 
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where Qo is an unknown constant and the primes denote differentiation with respect to r.  

By comparing equations (2.22) and (2.10), we find that B=0 and that, 
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With G(r) (with D=0) given by equation (2.11), equation (2.23) yields the transcendental 

relation, 

 
)()( 1 αλαλαµ hIhIoo =        ,       (2.24) 
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that determines λ as a function of the products µo√α and h√α.  For prescribed values of 

these products, equation (2.24) may be solved numerically by Newton-Raphson iteration 

to determine λ. 

With the constants B=0 and D=0, the product (2.9) for p(r, z) reduces to, 

 
)()exp(),( 0 αλλ hrIzCzrp =       .        (2.25) 

 
 
The expression for the radial pressure σ(r, z), 

 
 )()exp(),( 0 αλλασ hrIzCzr =      .                  (2.26) 
 
 
is obtained from constitutive relation (2.3).  The corresponding expression for the shear 

stress τ(r, z) is obtained by integrating axial equilibrium equation (2.1) with respect to r, 

integrating radial equilibrium equation (2.2) with respect to z, and ensuring that the two 

results are consistent.  In this manner, we obtain 

 
)()exp(),( 1 αλλατ hrIzCzr =    .                  (2.27) 

 
 
In order to completely specify the pressures and the shear stress, it remains only to 

determine the constant of integration C. 

Constant C is determined by integral force balance (2.13). With p(r,z) given by 

equation (2.25), the integration for the average pressure at the top of the compact yields, 
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With C determined in this fashion, equations (2.25), (2.26), (2.27) completely determine 

the r- and z-variations of the dimensionless axial pressure p(r, z), the radial pressure σ(r, 

z) and the shear stress τ(r, z) throughout the solid cylindrical compact.  The average 

pressure at any height is then calculated by substituting equation (2.25) for p in integral 

definition (2.12) to yield, 

 

 [ )()(
)1(

)exp(2)( 1122 ΛΛ−ΛΛ
Λ−

= aIaI
a

zCzP ]λ  ,      (2.29) 

 
 
in which Λ≡λ/h√α. 

The quantities p, σ, τ, and P are each scaled by the average pressure po applied to 

the top surface of the compact.  If po is specified, then the height H of the compact is to 

be determined.  If, on the other hand, the height H is specified, then it remains to find po.   

 

2.4 Hollow Cylindrical Compacts 

For hollow cylindrical compacts, Coulomb friction conditions (2.7) and (2.8) 

apply at r=1 and r=a, respectively.  As in the case of solid cylinders, condition (2.7) at 

r=1 yields exponential solution for F(z) given by Equation (2.22). But now, an additional 

differential equation for F(z) can be generated by substituting the product (2.9) into the 

Coulomb friction condition (2.8) at r=a.  The solution to this equation is given by, 
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By comparing Equations (2.10), (2.22) and (2.30), we conclude that Qo=Qi=A,  

B=0, and 

 

)1(
)1('

G
hG

oµ
λ =        and       

)(
)('

aG
ahG

iµ
λ −=        .       (2.31) 

 
 
If expression for G(r) given by equation (2.11) is employed in the first of equations 

(2.31), then the result is 
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In a similar manner, the second of equations (2.31) yields: 
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Equations (2.32) and (2.33) simultaneously determine the dependence of λ/h√α and D on 

µo√α, µi√α, and a.  Solutions are obtained numerically via Newton-Raphson iteration. 

With B=0, the product (2.9) for p(r,z) reduces to, 

 

[ )()()exp(),( 00 αλαλλ hrKDhrIzCzrp += ]        ,     (2.34) 

 
 
and the expression for the radial stress σ(r, z) is obtained from equation (2.3) as : 

 

 [ )()()exp(),( 00 αλαλλασ hrKDhrIzCzr += ]     .     (2.35) 
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The corresponding expression for the shear stress τ(r, z) is obtained by integrating axial 

equilibrium equation (2.1) with respect to r, integrating radial equilibrium equation (2.2) 

(with σ=αp) with respect to z, and ensuring that the two results are consistent. In this 

manner, we obtain 

 

[ ])()()exp(),( 11 αλαλλατ hrKDhrIzCzr −=    .                (2.36) 

 
 
With D and λ determined by equations (2.32) and (2.33), the dimensionless shear stress 

and pressures are known to within a constant C. 

The constant C is determined by integral condition (2.13).  With p(r,z) given by 

equation (2.34), the integration yields, 
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With C determined in this fashion, equations (2.34), (2.35), and (2.36) completely specify 

the r- and z-variations of the dimensionless axial pressure, radial pressure and the shear 

stress throughout the compact.  The average pressure at any height is then calculated by 

substituting equation (2.34) for p in integral definition (2.12) to yield, 
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in which in which Λ≡λ/hα1/2.  The quantities p, σ, τ, and P are each scaled by the average 

pressure po applied to the top surface of the compact.  If po is specified, then the height H 
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of the compact is to be determined.  If, on the other hand, the height H is specified, then it 

remains to find po.   

 
2.5 Solution Procedure 

In the previous two sections, we have described how to compute the variations of 

the scaled pressures and shear stress in both solid and hollow compacts.  The quantities 

that were prescribed were: h, a (for hollow cylinders), α, µo, and µi (for hollow 

cylinders).  It remains to compute the average applied pressure po, which scales the 

pressures and the shear stress throughout, and the resulting density profiles in the 

compact. 

First, we consider forward problems, in which the initial density distribution, 

η(R=r,Θ=θ,Z) is prescribed and the final density distribution ρ(r,θ,z) is to be determined.  

In such problems, ρ[η(r,θ,Z),p(r,z),βpo] is given by equation of state (2.17), and is 

employed in the balance of mass (2.20).  For prescribed ratios H/L and an initial guess for 

βpo, equation (2.20) is integrated subjected to the first of boundary conditions (2.21).  We 

then iterate on the guess for βpo until the second of conditions (2.21) is satisfied.  With 

z(Z) determined in this manner, it is inverted to determine Z(z).  The density profile 

ρ(r,θ,z) is then determined from equation of state (2.17) with Z(z) used to eliminate Z. 

Next, we consider inverse problems, in which the desired final density distribution, 

ρ(r, θ, z) is specified, and the required initial density distribution, η(R=r,Θ=θ,Z) is 

determined.  Of greatest interest are those initial density variations that yield perfectly 

uniform (i.e. ρ≡constant) final density profiles.  In the inverse problem the initial density 
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η[ρ(r,θ,z),p(r,z),βpo] is determined by inverting equation of state (2.17).  In this manner, 

we find that the expression for η[ρ(r,θ,z),p(r,z),βpo] is given by, 

 
[ ] [ ] pppppp ooo βαρβαρβαρη )1)(1(41)1()1(1)1()1()1(2 22 −−+−−−+−−−−=−   , 

  (2.39) 
 
 
and employ η[ρ(r,θ,z),p(r,z),βpo] in balance of mass (2.20).  Then, as in the forward 

problem, for prescribed ratios H/L and an initial guess for βpo, equation (2.20) is 

integrated subjected to the first of boundary conditions (2.21).  We then iterate on the 

guess for βpo until the second of conditions (2.21) is satisfied.  With z(Z) determined in 

this manner the initial density profile η(r=R,θ=Θ,Z) is then determined from the inverted 

equation of state (2.39). 

 

2.6 Results and Discussion 

In this section we present the results obtained using the solution procedure 

described above.  First we focus on cases in which the initial fill is uniform and evaluate 

the extent of the nonuniformities in green density caused by friction at the core rod and 

die wall.  Figure 2.2 shows the radial variation of density (at axial locations z=0, .25, .5, 

.75 and 1) resulting from a uniform initial fill η=.41 when the pre-compaction aspect 

ratio L/Ro=8.88, the final compaction height H/L=.45, the coefficients of friction 

µi=µo=.2, the radial-to-axial pressure ratio α=.5, and the ratio of radii a≡Ri/Ro=.5.  The 

variation in density caused by friction at the die wall and core rod is almost entirely seen 

in differences in axial location; friction causes almost no variation of density with radial  
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location. In this case, due to friction, the density decreases by about 12.5 percent from the 

top to the bottom of the compact. 

Figure 2.3 shows the corresponding axial variations of axial pressure, βpop, for 

different radial locations r=1, .9, .8, .7, .6 and .5.  Friction causes the pressure to decrease 

with distance from the punch.  In this case the pressure decreases by about 80 percent 

from the top to the bottom of the compact.  This is an illustration of the equation of state, 

which predicts that at high pressures, large pressure differences give rise to considerably 

smaller density differences.  The pressure profiles fall on top of each other, indicating 

that (like the densities) the pressures do not vary much in radial direction.  Figure 2.4 

shows an alternative view of the same axial pressure variations.  For the same case, we 

show in Figure 2.5 the radial variations of the relative density, ρ,  at a fixed axial location 

z=.5 for compaction heights H/L=1, .9, .8, .7, .6, .5 and .45. As expected, during 

compaction the relative density increases from η=.41 without much radial variation. 

In general, the density may vary in both axial and radial directions. To crudely 

characterize these variations, we introduce parameters that describe their size and 

direction.  For example, at any stage of compaction, the inside-to-outside density 

increase, δr , is defined by: 

 
( 1) ( ) 100

( )
r

r r a

r a

ρ ρδ
ρ

= − =
≡

=
×  .       (2.40) 

 
 

The initial value of δr that describes the radial variation of the fill density is denoted by 

∆r.  Non-zero values of ∆r correspond to examples of nonuniform fill. 
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Figure 2.2: Variation of ρ with r for z =1,.75,.5,.25 and 0 for uniform initial density distribution and 
parameter values η=.41, Ri/Ro=.5, α=.5, µi=µo=.2 and L/Ro=8.88. 
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Figure 2.3: Variation of βpop with z for r =1,.9,.8,.7,.6 and .5 for uniform initial density distribution and 
parameter values η=.41, Ri/Ro=.5, α=.5, µi=µo=.2, z =.5 and L/Ro=8.88. 
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Figure 2.4: Variation of βpop with r for z =1,.75,.5,.25 and 0 for uniform initial density distribution and 
parameter values η=.41, Ri/Ro=.5, α=.5, µi=µo=.2, and L/Ro=8.88. 
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Figure 2.5: Variation of ρ with r for H/L=1,.9,.8,.7,.6,.5 and .45 for uniform initial density distribution and 
parameter values η=.41, Ri/Ro=.5, α=.5, µi=µo=.2, z=.5 and L/Ro=8.88. 
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In order to focus on the effects of nonuniform fill, in Figure 2.6, we show the variation of 

the δr with the compaction height H/L (at the bottom (z=0),  mid-plane(z=.5), and top 

(z=1) when L/Ro=8.88, µi=µo=.2, α=.5, a≡Ri/Ro=.5, and ηavg =.41) for initial fills with 

radial density variations that are linear in r for which ∆r=10% (solid), 0% (short dashed), 

and    –10% (long dashed).  The case of  ∆r=0% corresponds to uniform fill.  As the 

compaction progresses, the initially non-uniformity decreases in magnitude. This is a 

“pancake effect” in which regions of relatively high density require higher pressures, 

which in turn drive powder to regions of lower pressure and density.  The effect is most 

marked at the top where the pressures are highest.  In this case, for example, with density 

variations reduce from 10% initially to about 1% finally. By contrast, at the bottom where 

the pressures are lowest, the variations reduce from 10% to about 3.8%. When the fill is 

initially uniform (i.e. ∆r=0), almost no radial density variations are produced at any stage 

of the compaction.  

Figures 2.7 show the variations with friction coefficients (µi=µo) of the inside-to-

outside density increase δr when H/L=.45 at z=1,.75,.5,.25 and 0 for ∆r=10 and -10 when 

ηavg =.41, a=.5, α=.5, and L/Ro=8.88.  In both cases (∆r=10 and –10), when there is no 

friction, the radial density variation reduces to about 2 percent regardless of axial 

location.  As coefficient of friction increases, however, the pressure required to carry out 

the compaction also increases, while the fraction of pressure reaching the bottom of the 

compact decreases.  Consequently, the “pancake effect” is more pronounced near the top 

and less pronounced near the bottom of the compact.  For extremely high friction 

coefficients, the pressures are extremely high near the top, and the initial non-uniformity 

in density is almost eliminated.  But, the pressures near the bottom are relatively low, so 
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Figure 2.6: Variation of δr with H/L for z=1,.5 and 0 and for three different cases ∆r=10, ∆r=0 and ∆r=-10 
for parameter values ηavg =.41, Ri/Ro=.5, α=.5, µi=µo=.2 and L/Ro=8.88. 
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Figure 2.7: Variation of δr with µi=µo for axial locations z=1,.75,.5,.25 and 0 for ∆r=10 and -10 for 
parameter values ηavg =.41, Ri/Ro=.5, α=.5, H/L=.45 and L/Ro=8.88. 
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the final nonuniformity is much larger than it would be in the absence of friction.  

Account must be taken of both the radial and axial density variations that result to see 

that the overall nonuniformity of the compact increases with increasing friction 

coefficients.  

In a similar fashion, Figures 2.8 shows the effect of radial-to-axial pressure ratio, 

α, on the inside-to-outside density variations for the case considered in Figure 2.7 when 

H/L=.45 at z=1,.75,.5,.25 and 0 for ∆r=10 and -10 when ηavg =.41, a=.5, µi=µo=.2, and 

L/Ro=8.88.  Because increases in radial pressures give rise to increased friction forces at 

the die wall and core rod, the radial-to-axial pressure ratio has qualitatively similar effect 

on the density differences as do the coefficients of friction.  

Figures 2.9 show the variation of the inside-to-outside density increase, δr, with 

the ratio of radii, a≡Ri/Ro when H/L=.45 at z=1,.75,.5,.25 and 0 for ∆r=10 and -10 when 

ηavg =.41, α=.5, µi=µo=.2, and L/Ro=8.88.  As the ratio Ri/Ro increases to 1, the effects of 

friction and the therefore the required pressure for compaction increases.  Consequently, 

the trends in Figures 2.9 are qualitatively similar to those in Figures 2.7 and 2.8.   

From the results shown above when ∆r=0, it is clear that if there are no radial 

variations in the initial fill, then the resulting radial variations in density will be 

extremely small.  In these cases, there are only axial variations of density, and the 

average relative density, ρavg(z), defined by equation (2.18) is an adequate descriptor of 

these density variations throughout the compact.  At any stage of the compaction, we 

defineρ as the average density over the entire compact,  

1

0

( )avg z dzρ ρ≡ ∫       ,          (2.41) 
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Figure 2.8: Variation of δr with α for z=1,.75,.5,.25 and 0 , for ∆r=10 and -10 for parameter values ηavg 
=.41, Ri/Ro=.5, H/L=.45, µi=µo=.2 and L/Ro=8.88. 
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Figure 2.9: Variation of δr with a for z=1,.75,.5,.25 and 0 , for ∆r=10 and -10 for parameter values ηavg 
=.41, α=.5, H/L=.45, µi=µo=.2 and L/Ro=8.88. 
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and denote byη, the value ofρ just before compaction begins. 

 To measure axial variation in density at any stage of compaction, we define the 

top-to-bottom density decrease δz as: 

 

( 1) ( 0)
100

( 1)

avg avg
z

avg

z z

z

ρ ρ
δ

ρ

= − =
≡ ×

=
      .       (2.42) 

 
 

The initial top-to-bottom density increase ∆z=is the initial pre-compaction value of -δz. 

Figure 2.10 shows the axial variations of average relative density, ρavg at 

successive stages of compaction (H/L=1,.9,.8,.7,.6,.5 and .45) for a uniform initial fill 

(∆z=∆r=0) forη=η=.41, α=.5, L/Ro=8.88, µi=µo=.2 and Ri/Ro=.5. At H/L=1, the density 

is uniform throughout.  As expected, as compaction proceeds (and H/L decreases), the 

densities increase more rapidly near the top and less rapidly near the bottom.  We also 

note that the percentage difference between the densities at the top and bottom increases 

in the early stages of compaction but decreases in the latter stages.   

In Figures 2.11 we show how density distributions evolve when the initial fills 

have axial variations (∆z=10% and –10%) for the case corresponding to that described by 

Figure 10..  In the first of these cases (i.e. ∆z=10%), the initial top-to-bottom density 

increase quickly reverses.  At the end of compaction, (i.e. H/L=.45) the top-to-bottom 

density variation (.954-.856=.098), is less than that (.96-.84=.12) which resulted from the 

uniform fill shown in Figure 2.10.  In the second case (i.e. ∆z=-10%) the initial top-to-

bottom density decrease is quickly increased.  At the end of compaction, the top-to-

bottom density variation (.965-.827=.138) is larger than that which resulted from the  
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Figure 2.10: Variation of ρavg with z for H/L=1,.9,.8,.7,.6,.5 and .45 for uniform initial density distribution 
and for parameter values η=.41, α=.5, L/Ro=8.88, µi=µo=.2 and Ri/Ro=.5. 
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Figure 2.11: Variation of ρavg with z for H/L=1,.9,.8,.7,.6,.5 and .45 for ∆z =10 and -10 and for parameter 
values η=.41, α=.5, L/Ro=8.88, µi=µo=.2 and Ri/Ro=.5. 
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initially uniform fill. 

In Figure 2.12, we show the evolution of the top-to-bottom density decrease δz 

during the compaction for three different cases shown in Figures 2.10 and 2.11 when 

initial density distribution, ∆z=10%, 0%, -10%.  In all three cases, because the pressures 

are much higher at the top than at the bottom of the compact, the top-to-bottom density 

decrease δz first increases to a maximum value.  However, the compressibility of the 

powder is inversely related to its density, and at about H/L=.7, regions of lower density 

compress more readily than the regions of higher density even at significantly lower 

pressures.  Consequently, at this stage of the compaction and beyond, the top-to-bottom 

density decrease actually diminishes.  When ∆z=0%, the final value of δz is 12.33%; when 

∆z=10%, the final value of δz is 10.59%; and when ∆z=-10%, the final value of δz is 

14.21%.  These results are interesting because they suggests that more uniform compacts 

could be produced from non-uniform fills that are more dense at the bottom than at the 

top. 

Next we now focus on how several other parameters affect the final axial 

variations of green density.  In Figure 2.13, for example, we show the variation of top-to-

bottom density δz with the coefficients of friction (µi=µo) for the three cases ∆z=10%, 0% 

10% whenη=.41, α=.5, L/Ro=8.88, H/L =.45 and Ri/Ro=.5.  As expected, increases in 

coefficients of friction result in increases of the final top-to-bottom density decrease, and 

as ∆z increases, δz decreases.   

In a similar manner, Figure 2.14 shows the variation of  the top-to-bottom density 

decrease δz with the radial-to-axial pressure ratio, α for the three cases ∆z=-10, ∆z=10 and 

∆z=0 when whenη=.41, µi=µo=.2, L/Ro=8.88, H/L =.45 and Ri/Ro=.5.   The 
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Figure 2.12: Variation of δz with H/L for different cases ∆z =10, ∆z =0 and ∆z =-10  and for parameter 
values η=.41, α=.5, L/Ro=8.88, µi=µo=.2 and Ri/Ro=.5. 
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Figure 2.13: Variation of δz with µi=µo for different cases ∆z =10, ∆z =0 and ∆z =-10  and for parameter 
values η=.41, α=.5, L/Ro=8.88, H/L =.45 and Ri/Ro=.5. 
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effect of the parameter α, is qualitatively similar to that of coefficient of friction shown in 

Figure 2.13.  For α=0, there is no radial pressure transmitted to the die wall and core rod.  

There is no friction developed there and the results are the same as in the frictionless 

case. 

Figure 2.15 shows the effect of varying the ratio of radii, a≡Ri/Ro on the resulting 

axial density variations for the same three cases when η=.41, µi=µo=.2, L/Ro=8.88, H/L 

=.45 and α=.5.  As a increases, the thickness of the compact decreases, the effect of die 

wall and core rod friction increases, and the non uniformity in the final density 

distribution increases. 

In Figure 2.16, we show the variation of the final top-to-bottom density decrease 

δz with the initial top-to-bottom density increase ∆z for µi=µo=0, .1, and .2 when η=.41, 

L/Ro=8.88, H/L =.45, α =.5 and Ri/Ro=.5.  For zero friction, a uniform initial fill results in 

a uniform final compact.  In the presence of friction, on the other hand, zero top-to-

bottom density variation in the final compact can in principle be achieved with an initial 

fill that has an appropriate top-to-bottom density decrease.  The model predicts, for 

example, that when µi=µo=.1, a final density distribution with no top-to-bottom density 

variation will be obtained only if the die is filled such that it is 37.5 % more dense at the 

bottom than at the top. 

In Figure 2.17, we show the variation of the final top-to-bottom density decrease 

δz with the initial top-to-bottom density increase ∆z for different values of the post-

compaction aspect ratio H/Ro=1, 2, 3 and 4 when η=.41, µi=µo=.2, H/L =.45, α =.5 and 

Ri/Ro=.5.  Again we can see that filling the die more densely at the bottom yields more 

uniform density distributions at the end of compaction.  As the post-compaction aspect 
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Figure 2.14: Variation of δz with α for different cases ∆z =10, ∆z =0 and ∆z =-10  and for parameter values 
η=.41, µi=µo=.2, L/Ro=8.88, H/L =.45 and Ri/Ro=.5. 
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Figure 2.15: Variation of δz with Ri/Ro for different cases ∆z =10 ∆z =0 ∆z =-10  and for parameter values 
ηavg =.41, µi=µo=.2, L/Ro=8.88, H/L =.45 and α =.5. 
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Figure 2.16: Variation of δz with ∆z for three different cases µi=µo=.2, .1 and 0 and for parameter values 
η=.41, L/Ro=8.88, H/L =.45, α =.5 and Ri/Ro=.5. 
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Figure 2.17: Variation of δz with ∆z for four different cases L/Ro=8.88, 6.66, 4.44 and 2.22 and for 
parameter values η=.41, µi=µo=.2, H/L =.45, α =.5 and Ri/Ro=.5. 
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ratio H/Ro increases, the compact becomes longer, and the final non-uniformity of the 

compact increases.  Consequently, the initial fill must be made increasingly more dense 

at the bottom to compensate for the increasing non-uniformity.  For H/Ro=1, it is 

sufficient to fill the die 17.3% more densely at bottom to eliminate the final axial 

variation in density.  By contrast, for H/Ro=2 the die must be filled such that the density 

is 37.7% greater at the bottom than at the top. 

Figures 2.16 and 2.17 suggest that for a given set of parameters we can determine 

the exact non-uniformity required in the initial fill to obtain a perfectly uniform final 

density distribution.  This is the fundamental idea behind a special class of “inverse 

problems” in which, more generally, we specify the desired density distribution at a 

prescribed stage of compaction and compute the required distribution of initial fill to 

achieve that distribution.  

Figure 2.18, we take η=.41, µi=µo=.2, L/Ro=8.88 α =.5 and Ri/Ro=.5 and show 

the evolution (at H/L=1, .9, .8, .7, .6, .5, and .45) of one such inverse solution.  In this 

case, the prescribed density distribution at H/L=.45 was uniform (ρavg=.911 =.41/.45), 

and we find that in principle the initial fill should be nonlinear in z (as shown) such that 

the ηavg at the top is equal to .294 and increases to ηavg=.55 at the bottom (yielding ∆z 

=86.8%).  Of course, in practice it is not possible to achieve such large non-uniformities 

in initial density . 

To focus on situations that may not require such large initial density variation, we 

consider a case in which the pre-compaction aspect ratio is L/Ro=4 and the ratio of radii is 

Ri/Ro=.25, while the remaining parameters are unchanged.  Figure 2.19 shows the 

corresponding evolution of the inverse solution obtained here.  In this case, to obtain a  
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Figure 2.18: Variation of z with ρavg for H/L=1,.9,.8,.7,.6,.5 and .45 and δz=0 at H/L=.45, and for parameter 
values η=.41, µi=µo=.2, L/Ro=8.88 α =.5 and Ri/Ro=.5. 
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Figure 2.19: Variation of z with ρavg for H/L=1,.9,.8,.7,.6,.5 and .45 and δz=0 at H/L=.45, and for parameter 
values η=.41, µi=µo=.2, L/Ro=4, α =.5 and Ri/Ro=.25. 
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perfectly uniform final density of ρavg=.911 at H/L=.45, we require the initial fill to be 

ηavg=.372 at the top and increase in a nonlinear way to  ηavg=.450 at the bottom.  Here the 

required value of ∆z is decreased to 21%. 

The inverse solutions obtained in Figures 2.18 and 2.19 demonstrate that the 

initial top-to-bottom density increase required to yield perfectly uniform green densities 

will vary widely depending on the values of the relevant parameters.  In fact, the results 

suggest that only under special circumstances will it be possible in practice to actually fill 

the die with initial nonuniformities predicted by the model.  In order to see how the top-

to-bottom density variation (∆z) required for uniform green density changes with 

corresponding changes in coefficients of friction (µi=µo) and radial to axial pressure ratio 

(α), for example, we show in Figure 2.20 the variation of ∆z with µi=µo for α= .4, .5 and 

.6, when η=.41, L/Ro=4, Ri/Ro=.25 and H/L=.45.  The top-to-bottom density decrease 

produced by a uniform initial fill becomes larger as either the coefficients of friction or 

the radial-to-axial pressure ratio increase.  Figure 2.20 demonstrates that to exactly 

compensate for these phenomenon, the corresponding initial top-to-bottom density 

increase must get larger.  Of course, when there is no friction at the die wall and core rod, 

a uniform initial density distribution is required to produce uniform final density 

distribution. 

In Figure 2.21, we show the variation with precompaction aspect ratio L/Ro of the 

value of ∆z required to produce uniform green density for a= .25, .4, and .5, when 

η=.41, µi=µo =.2, α=.5 and H/L=.45.  The top-to-bottom density decrease produced by 

a uniform initial fill becomes larger as either the aspect ratio increases or the wall 

thickness of the compact decreases (i.e. as Ri/Ro increases).  Figure 2.21 demonstrates  
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Figure 2.20: Variation of ∆z with µi=µo for α =.6, .5 and  .4 andδz=0 at H/L=.45, and for parameter values 
η=.41, L/Ro=4, , Ri/Ro=.25 and H/L=.45. 
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Figure 2.21: Variation of ∆z with L/Ro for Ri/Ro=.25, .4 and .5 and δz=0 at H/L=.45, and for parameter 
values η=.41, µi=µo =.2, α =.5 and H/L=.45. 
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that to exactly compensate for these phenomenon, the corresponding initial top-to-bottom 

density increase must get larger.  Of course, as the height of the compact approaches 

zero, no axial variations in density are possible when the fill is uniform. 

Figure 2.10 demonstrates that (forη=η=.41, α=.5, L/Ro=8.88, µi=µo=.2 and 

Ri/Ro=.5) when the fill is uniform, the top-to-bottom density decrease at H/L=.45 is 

δz=12.33%.  For the same parameters, Figure 2.18 demonstrates that in order produce 

perfectly uniform green densities at H/L=.45, the initial top-to-bottom density increase 

must be ∆z=86.8%.  Because this axial variation is impractically large, we can instead 

require only that the density distribution be uniform at some intermediate stage of 

compaction.  Although the final density distribution will then contain axial variations, we 

expect that these variations will be smaller than those produced by a uniform initial fill.  

As an illustration of this idea, we consider in Figure 2.22 the case in which η=.41, µi=µo 

=.2, α =.5, L/Ro=8.88 and Ri/Ro=.5, compute the initial density distribution that yields a 

perfectly uniform distribution at H/L=.9 (when the density is everywhere equal to 

.41/.9=.455), and track the evolution of the density profiles for H/L=1, .9, .8, .7, .6, .5 and 

.45.  In this case, the required initial top-to-bottom density increase is ∆z=32.5%, which is 

significantly lower than the 86.8% required to produce a uniform compact at H/L=.45.  

Moreover, final density variation is δz=8.12%, which is a significant improvement over 

the 12.33% variation that results form the uniform fill. 
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Figure 2.22: Variation of z with ρavg for H/L=1, .9, .8, .7, .6, .5 and .45 and δz=0 at H/L=.9 and for 
parameter values η=.41, µi=µo =.2, α =.5, L/Ro=8.88 and Ri/Ro=.5. 
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CHAPTER 3 
 

The Effects of Density-Dependent Powder Properties and  
Pressure-Dependent Coefficients of Friction on  

Compaction in Hollow Cylindrical Dies 
 

3.1 Introduction 

In the previous chapter, we modeled compaction with the powder properties, 

radial-to-axial pressure ratio, α, and coefficients of friction µi and µo, as constants 

throughout the process.  But in modeling compaction of powder metal parts, it is critical 

that the radial-to-axial pressure ratio and friction between the compact and the die wall 

and core rod be properly incorporated because the friction forces that develop at these 

containing surfaces are responsible for the density variations that are of primary concern 

to part makers and part users.  During compaction, the metal specimen evolves from its 

initially loose powdered state to its final green solid state.  As a result, the nature of the 

interactions between the specimen and the containing surfaces changes dramatically from 

the beginning to the end of compaction  

Frictional interactions between the evolving specimen and the surfaces that 

contain it may be approximated by Coulomb’s law.  Accordingly, the shear stress that 

develops at any such surface is proportional to the normal pressure that develops there.  

The factor of proportionality is the coefficient of friction appropriate to the surfaces in 

contact.  Compaction models are typically restricted by the assumption that the 

coefficients of friction do not change during compaction.  Further, the radial-to-axial 

pressure ratio is responsible for providing the normal pressure on the containing walls.  

During the three stages of compaction (rearrangement of particles, elastic deformation, 

and plastic deformation) the radial-to-axial pressure ratio varies with density at different 
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rates.  To predict frictional forces correctly, it is therefore necessary to account for the 

density dependence of the coefficients of friction and the radial-to-axial pressure ratio.  

Ignoring the variations with density accounts for neither the roughly two-fold increase in 

average density that occurs as the compaction proceeds from beginning to end, nor the 

spatial variations in density that exist at any single stage of compaction. 

We have identified several workers who have measured the dependence of the 

radial-to-axial pressure ratio and coefficient of friction on either pressure or density.  In 

particular, we incorporate the experimental results of Trasorras et al [1998] for variation 

of radial-to-axial pressure ratio and the results of Sinka et.al. [2001] and Solimanjad et.al. 

[2001] for variation of coefficients of friction.  We propose a mathematical dependence 

that is qualitatively similar to that measured by them, and employ it to predict how the 

density and pressure distributions evolve during compaction of bushing-like parts that 

have rotational symmetry about their centerlines.  As expected, our results demonstrate 

that the manner in which the friction coefficients and radial-to-axial pressure ratio change 

during compaction strongly influence the manner in which the density distribution 

evolves to its green state. 

 

3.2 Axial Equilibrium 

We are concerned here with single punch compaction of a powder in a hollow 

cylindrical die of inside radius Ri and outside radius Ro. The height of the powder fill 

before compaction is L, and the current height, at any instant during compaction is H. The 

geometry of the compact is described by the following dimensionless quantities: the radii 
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ratio a≡Ri/Ro; the height ratio H/L, and the aspect ratio h≡H/Ro. The geometry of the 

compact has been shown in Figure 2.1. 

The average pressure applied over the top surface of the compact is po.  We 

establish a cylindrical coordinate system in which the axial Z*-coordinate measures the 

initial distance from the lower face of the fill before compaction, and the radial R*-

coordinate measures the initial distance from centerline. In a similar way, the axial z* 

coordinate measures the instantaneous distance from the lower face of the compact 

during compaction, and the radial r*-coordinate measures the instantaneous distance from 

the centerline.  In the axi-symmetric case, there is no variation with angular position. So, 

the axial pressure p*, the radial pressure σ* and the shear stress τ* each vary with only r* 

and z* throughout the compact. 

In what follows, we employ dimensionless axial coordinates Z≡Z*/L and z≡z*/H, 

and dimensionless radial coordinates R≡R*/Ro and r≡r*/Ro.  The dimensionless axial 

pressure, radial pressure, and shear stress are defined by p≡p*/po, σ≡σ*/po, and τ≡τ*/po, 

respectively.  We carry out all calculations in terms of dimensionless quantities. 

In terms of the axial pressure p and the shear stress τ, the axial equilibrium 

equation is given by, 

 

r

r

r

h

z

p

∂

∂
=

∂

∂ )( τ        .                        (3.1) 

 
As in Chapter 2, we assume that the radial and tangential pressures are equal.  Coulomb 

friction at the core rod (r=a) and die wall (r=1) relate the shear stress to the radial 
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pressure there. If µi is the coefficient of friction at the core rod and µo is the coefficient of 

friction at the die wall, then the corresponding boundary conditions are,  

 
),(),( zarzar i =−== σµτ      and       ),1(),1( zrzr o === σµτ                  (3.2) 

 
As compaction proceeds, the density of the compact, the frictional nature of the compact, 

and therefore the coefficients of friction µi and µo vary dramatically.  The focus of this 

chapter is on quantifying these effects. 

At any point in the powder during compaction, the local radial pressure σ is 

proportional to the local axial pressure p, so that, 

 
pασ =        ,                        (3.3) 

 
where α is the radial-to-axial pressure ratio that depends on the local value of the 

pressure and density within the evolving compact. 

In order to calculate the radial and axial variations of p, σ, and τ, it would be 

necessary to introduce a radial equilibrium equation.  However, of primary concern here 

are axial variations of the pressures (p and σ) and density.  In order to average the effects 

of the radial variations without calculating them explicitly, we multiply equation (3.1) by 

2r/(1-a2), integrate from r=a to r=1, and employ equations (3.2) and (3.3) to eliminate τ 

and σ.  In this manner, the average pressure P(z), defined by  
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zP      ,           (3.4) 

 
arises naturally, and we obtain the simple first order equation, 
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( )PaQ
dz

dP
io µµα +=   ,                     (3.5) 

 
in which Q≡2h/(1-a2).  Equation (3.5) could also be derived directly from a balance of 

forces on a compact slice of thickness dz.   

At the top of the compact (z=1), the average of the dimensional pressure is equal 

to po.  This condition becomes, 

 
P(z=1) = 1      ,               (3.6) 

 
in dimensionless form.  In principle, equation (3.5) can be integrated to determine the 

axial pressure variation to within a constant of integration determined by condition (3.6). 

 

3.3 Equation of State and Balance of Mass 

The average pressure P at any distance z is related to the corresponding average 

density.  Here, we introduce the dimensionless density ρ(z) equal to the average 

dimensional density at any height z scaled by the maximum theoretical density M.  A 

plausible form of the equation of state that relates P to ρ, or inversely ρ to P, is, 
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−+−
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=    ,      (3.7) 

 
where β is constant factor related to the compressibility of the loose powder, and η(Z) is 

the average pre-compaction density (at any initial height Z) scaled by the maximum 

density M.  Because η depends on Z, the model can incorporate the effects of non-

uniform fill.  Equations of state (3.7) require that the pressure vanish (P=0) when the 
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density is equal to the pre-compaction density (ρ=η), and that the pressure becomes 

unbounded when the density equals its theoretical maximum (ρ=1). 

In this one-dimensional model, the compact can be viewed as infinitely many thin 

discs that remain flat during compaction. Under these circumstances the final axial 

location z depends on the initial axial location Z but not on the initial radial location R.  

The balance of mass requires that the mass of each disc with thickness LdZ before 

compaction be equal to the mass of the corresponding  disc with thickness Hdz after 

compaction.  In terms of the densities η before compaction and ρ after, the balance of 

mass becomes simply, 

 

η

ρ

L

H

dz

dZ
=      .              (3.8) 

 
Because the bottom surface of the compact remains stationary and at all stages of 

compaction, the top of the fill corresponds to the top of the compact, the boundary 

conditions that must be satisfied are 

 
 Z(z=0)=0  and   Z(z=1)=1       .         (3.9) 

 
 If the coefficients of friction µi and µo as well as the radial-to axial pressure ratio 

α were independent of pressure and density, then for given values of a and h, equation 

(3.5) could be integrated to find P(z).  For a prescribed value of the compressibility factor 

β, a prescribed variation of the pre-compaction density η(Z), and a guess for the required 

compaction pressure po, the second of equations (3.7) determines the density variation 

ρ(z).  The details Z(z) of the deformation could then be found from equation (3.8) in 
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which the constant of integration and the unknown po would be determined by boundary 

conditions (3.9).   

 In fact, the coefficients of friction µi and µo as well as the radial-to axial pressure 

ratio α depend on pressure and density.  In this more realistic case, equations (3.5), (3.7), 

and (3.8) must be solved simultaneously.  The focus in the next two sections is on writing 

down plausible variations of the radial-to-axial pressure ratio and coefficients of friction 

with pressure and density, and then incorporating these variations into the model 

described above.   

 

3.4 Dependence of Radial-to-Axial Pressure Ratio on Pressure and Density  

In order to write down a plausible variation of α with P, we introduce a value α0 

of α in the loose powdered state, and note that as the density of the compact reaches its 

theoretical maximum value (ρ=1), the deformation becomes incompressible, the induced 

radial pressure equals the applied axial pressure, the axial pressure becomes unbounded, 

and according to equation (3.3) the parameter α must approach unity.  A simple function 

that has these properties is given by, 

 

])(1[

)1(
1 0

n
o Ppk β

α
α

+

−
−=   ,        (3.10) 

 
where k is nonnegative constant and n is a constant in the range 0<n<1.  Both k and n 

characterize the details of the dependence of radial to axial pressure ratio α on axial 

pressure P.  As such, they must be chosen to match the behavior of a particular powder as 
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it is compacted.  In the special case when k = 0, the radial to axial pressure ratio, α equals 

a constant value α0. 

 Eliminating βpo between equation (3.10) and the first equation (3.7) determines 

the implicit dependence of α on ρ.  In this manner, we obtain 

 
      ,        (3.11) n

n K=−−−− − )]1()1[()1( 0
1 ααα

 
in which the quantity Kn depends on k, ρ, and η according to, 
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From the implicit dependence of α on ρ determined by equation (3.11), it can be seen 

that n must be restricted to the range 0<n<1 to ensure that α=1 as ρ approaches unity.  

Only when n=1/2 can we find the explicit dependence of α on ρ.  In this special case, we 

find that, 
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)1(4
)1( 0

2
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=− nn KK
     .       (3.13) 

 
In Figure 3.1, we demonstrate the general effects of the parameters α0, k and n on the 

density variations of α.  Whenever one parameter is varied, the others are kept constant at 

α0=.35, n=.6 and k=.1.  In all cases the apparent density η is 0.41.   

 As expected, increasing the initial value α0 increases the values of α over the full 

range of densities.  The parameters k and n alter the shape of the curves.  For values of k  
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Figure 3.1: Studying the variation in α with ρ by varying the parameters n, k and α0, one at a time and 
keeping others fixed, the fixed values of the parameters being given as k=.1, n=.6 and α0=.35. 
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close to zero, for example, α remains close to its initial value until the density nears its 

maximum value.  For large values of k, α rises quickly to values near unity. 

In order to determine plausible values of k, n and α0 for a particular powder, we 

need to fit the dependence of α on density ρ given by equation (3.11) to experimental 

results for a specified powder.  In particular, we focus on a powder blend which is 99.5% 

by weight of Distalloy AE, .5% by weight of graphite, and 1% wax Hoechst micropulver 

admixed as internal lubricant.  Distalloy AE is a diffusion alloyed iron powder with 

composition 4 wt% Ni, 1.5 wt% Cu, and .5 wt% Mo.  Particle sizes range from 20 to 180 

µm.  The apparent density of the powder is 3.04 g/cm3, and the theoretical maximum 

density M is 7.33g/cm3 (so that the relative apparent density η is equal to .41).  The 

plasticity theory for powder compaction described by Trasorras and Parameswaran 

[1998] indicates that the radial-to-axial pressure ratio is given by, 

 

 
b
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−
=α      ,          (3.14) 

 
 
where b is a function of relative density ρ.  By curve fitting to data obtained from triaxial 

consolidation experiments, Trasorras and Parameswaran [1998] have found that for the 

powder blend of interest, 
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Equations (3.14) and (3.15) determine an alternative expression for the variation of 

pressure ratio α with relative density ρ.  We can compare this variation with that fixed by 
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equation (3.11) to determine an appropriate set of parameters k, α0 and n.  In Figure 3.2, 

the dashed curve corresponds to the variation determined by Trasorras and Parameswaran 

[1998].  We can see that α increases monotonically from its initial (low density) value α0 

near .38.  During the initial stages of densification, the gradual increase in the value of α 

is attributed to the rearrangement of particles.  Then, due to deformation that is initially 

elastic but gradually becomes increasingly plastic (and incompressible) α increases to 

unity.  The solid curve shows the fit to this dependence obtained from equation (3.11) 

when α0 =.38, k=.11, n=.6.  

 The relation between pressure and density also can not be written down explicitly 

for general values of n.  Instead we employ equation (3.10) to eliminate (1-α), from the 

first equation of state (3.7) and numerically determine the dependence function P=P(ρ).  

In Figure 3.3, we show the variation of the relative density ρ with dimensionless pressure 

βpoP, plotted for Distalloy AE powder blend described above.  The dark curve shows the 

variation obtained using our parametric model with α0 =.38, k=.11, n=.6.  As expected, 

the relative density increases to unity as the pressure becomes unbounded.  When the 

density is low, the powder is highly compressible, and the density is very sensitive to 

changes in pressure.  When the density is high, the powder is much less compressible, 

and the density is much less sensitive to changes in pressure.  The two dashed curves 

correspond to constant values α=0 and α=.75.  As α increases, the material becomes less 

compressible, and therefore less dense at the same level of pressure. Finally, to 

completely characterize the powder, the factor β of compressibility must be determined.  

The value of β can be chosen to ensure good agreement between experimentally 

determined compaction loads and those predicted by our model.  Trasorras et al. (1994),  
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Figure 3.2: The variation of α with ρ. η=.41. The dashed line shows experimental results of Trasorras et al 
for Distalloy AE powder blend and the solid line shows the empirical fit obtained for the values of k=.11, 
n=.6, α0=.38  
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Figure 3.3: The Equation of state, variation of ρ with βpoP, solid line shows α as a function of pressure and 
density k=.11, n=.6, α0=.38 and the dashed lines indicate constant values of α=0 and .75 . η=.41.  
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for example, carried out single punch compaction of the Distalloy AE blend described 

above in a solid cylindrical die with Ro= .5 inch, H=.47 inch, L=1 inch, with reported 

values µi=µo=.2. The measured variation of the compaction load with punch displacement 

is shown by the solid data points in Figure 3.4.  The solid curve is the corresponding 

prediction made by our model when the value β=9.75×10-5 in2/lb is chosen to best match 

with the experimental results.   

The radial-to-axial pressure ratio within the powder is related to, but not the same 

as, the compressibility of the powder.  Both vary with density.  In order to determine the 

direct relationship between them, we use equations (2.14) and (2.15) to identify the 

compressibility C as, 
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It is then possible to eliminate the density between this expression and the implicit 

dependence of α on ρ determined by equation (3.11).  Figure 3.5 shows the resulting 

variation of radial-to-axial pressure ratio with compressibility.  As expected, we see that 

when α=α0, compressibility is β(1-α0).  Then, as α increases, the compressibility 

decreases until (when α=1) the compressibility goes to zero. 

Finally, to determine the manner in which the pressure distribution is affected by 

the pressure- and density-dependence of the radial-to-axial pressure ratio, we employ 

expression (3.10) for α in force balance (3.5) and integrate in closed form.  In order to 

isolate the effects of variable α, we take the coefficients of friction µi and µo to be 

constants.  The integration yields, 
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Figure 3.4: Variation of applied punch load with the displacement of the punch. The solid line indicates 
results from the model with α.as function of pressure with k=.11, n=.6, α0=.38 and the dots correspond to 
the experimental results obtained by Trasorras et al. for η=.42, L/Ro=2, µi=µo=.2, H/L=.47, L=1in 
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Figure 3.5: Relation between compressibility and α  for Distalloy AE powder blend. α.is function of 
pressure with k=.11, n=.6, α0=.38  
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in which, in order to satisfy boundary condition (3.6), the constant D is,  
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When k=0, the radial-to-axial pressure ratio is constant and equation (3.17) reduces to a 

simple exponential variation of P with z.  In the general case when k, α0 and n are chosen 

to characterize a particular powder but it is not possible to solve equation (3.17) explicitly 

for βpoP as a function of z.  However, if equation (3.17) is rewritten in the form. 
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where f(z)≡ )]1)((exp[( −+ zaQ io µµ , then it is clear that there are values of α0 for which 

the variation P(z) can be found explicitly.  In particular, when α0=1/2, equation (3.19) is 

quadratic with solution, 
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In Figure 3.6 we show the variations of P(z) given by equation (3.20)  when α0=.5, 

H/Ro=4, k=.11, n=.6, µ1= µ2=.2 for βpo=1, 10, and 100 and 1000  As the pressures at the 

top of the compact increase, typical values of the pressure-dependent radial-to-axial  
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Figure 3.6: Axial Variation of Normalized Pressure P. for βpo=1, 10, 100, 1000 and h=4.0, a=0.5, α0=.5, 
k=.11, n=.6, µi=µo=.2   
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pressure ratio increase.  This in turn increases the frictional stresses and hence yields an 

increase in the top-to-bottom pressure drop in the compact.  

Although the solutions are not provided here, we note that when α0=1/3 and 

α0=2/3, equation (3.17) becomes cubic, and in principle can also be solved explicitly for 

P(z). 

 
3.5 Dependence of Friction Coefficients on Pressure and Density 

 In the past, several workers have investigated the relation between sliding friction 

and such parameters as temperature, contact resistance, and surface area that have 

relevance to powder metallurgy.  Earlier studies of this type include those conducted by 

Bockstiegel et.al [1971], Mallender et.al. [1972, 1974], and Ernst et.al. [1990].  However, 

only recently have measurements been made that characterize the changes in the 

coefficient of friction during compaction as the compact evolves from loose powder to 

green solid.  Without such a characterization, it is not possible to predict the manner in 

which the density distributions distort during compaction. 

 Here, we focus on the more recent work of Sinka et.al. [2001], who employed an 

instrumented die to measure the friction coefficient as it changed during the compaction 

of pharmaceutical powders into solid cylindrical tablets of radii Ro.  They employed a 

computer-controlled press with linear variable differential transformers (LVDTs) that 

measured the height H of the compact as it decreased during compaction, load cells that 

measured the axial pressures po and poP(z=0) at the top and bottom, and piezo-electric 

sensors to measure the corresponding radial pressure poσ(z) at every stage.  Reliable 

results were obtained provided that sensors were at least 20 percent of H away from the 

bottom of the compact and at least 30 percent of H away from the top (i.e. .2<z<.7)   
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The determination of the dependence of coefficient of friction on pressure was 

indirect because Sinka et. al. [2001] then used the following simple model for 

compaction of a solid cylinder to relate these measured quantities to the coefficient of 

friction at the die wall in a solid cylindrical compact (i.e. Ri=0).  If the coefficients α and 

µo were constants, then equation (3.5) could be integrated to yield, 
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Equation (3.21) can be re-written as,  
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Solving equation (3.21) for the coefficient of friction, employing equation (3.3) to 

eliminate α, and using equation (3.22) to eliminate P(z) from the final result, we obtain 
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Equation (3.23) forms the basis for the indirect measurement of µo, shown in Figure 3.7.  

According to these results, the coefficient of friction decreases dramatically with 

increasing radial pressure.  It can be inferred, therefore, that the coefficient of friction 

also decreases with increasing density of the powder. This variation of µi=µo is drastic, 

starting (in this case) from a low density value of .9 and dropping to a high density value 

of .25. 
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Direct measurements made by Solimanjad et.al. [2001] during the compaction of 

a .5% lubricated iron powder yielded variations of the friction coefficient that were 

qualitatively similar to those obtained by Sinka et.al. [2001].  By contrast, Solimanjad 

et.al. [2001] employed a powder friction measuring device (PFMD) to measure the torque 

exerted on a flat punch in contact with rotating cylindrical specimens of controlled 

average densities.  The die and the core rod were rotated at the same speed.  With no 

relative motion between compact and side walls, measurements were made of the torque 

and pressure required to prevent the top punch from rotating with the compact.  

Employing a simple Coulomb law to relate the torque, pressure, and friction coefficient, 

these measurements yielded variations of the friction coefficient with changes in density.  

Results obtained in this manner are shown in Figure 3.8 for the Distalloy AE 

powder blend described above..  Again we note the drastic decrease in the value of the 

coefficient of friction from 0.7 for the loose powder at the start of compaction to 0.3 for 

the compact near the end.  These results are qualitatively similar to those obtained by 

Sinka et.al. [2001]. 

The experimental results of Sinka et.al. [2001] and Solimanjad et.al. [2001] 

indicate that the coefficient of friction decreases monotonically with increasing pressure 

(or density), so that it is greatest when the specimen is in its loose powdered state.  As the 

pressure increases from zero, the coefficient of friction decreases rapidly at first, more 

slowly for larger pressures, and hardly at all as the pressures become extremely large.  

Their results fit well to the mathematical variation, 
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Figure 3.7: Variation of µi=µo with radial pressure in MPa for Microcrystalline cellulose powder with 1w% 
magnesium state, plotted experimentally by Sinka et al. (2001). 
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Figure 3.8: Variation of µi=µo with density in g/cm3 for Distalloy AE powder blend comprising of .5w% 
lubricant, plotted experimentally by Solimanzad et al. (2001). 
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where µ2 is the coefficient of friction between the die wall and the loose powder (when 

P=0), and µ1 is the corresponding coefficient of friction when the compact is at maximum 

theoretical density (when P becomes unbounded).  The parameter c determines the rate at 

which the friction coefficient varies with changes in P.  Notice that when µ2 is greater 

than µ1, the rate of change of µo with P, 
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is always negative and that it decreases to zero with increasing P.  Although there was a 

dependence found on punch velocity, typical values found by Solimanjad et.al. [2001] for 

these parameters were: µ2=.85, µ1=.10, and c=.14 (MPa)-1.  Because the density increases 

with pressure, and because the first equation of state (3.7) may be used to eliminate 

pressure from equation (3.24), these results may also be used to infer that the coefficient 

of friction decreases monotonically with increasing density, and that it approaches a 

minimum value as the density reaches its theoretical maximum value.   

 The friction forces at the die wall and core rod are influenced by both the 

coefficients of friction there and the value of the prevailing normal pressures.  The effects 

caused by the dependence of the friction coefficients on the pressure (and density) are not 

easy to isolate because the ratio α of the induced normal stress to the applied axial stress 

also depends on pressure.  In this section, in order to avoid this complication, we present 

 69



an illustrative example that isolates the effects of pressure-dependent friction coefficients.  

We do so by taking α to be a constant throughout the compaction.  In the sections that 

follow, we show numerical results in which both the radial to axial pressure ratio α and 

the friction coefficients µi and µo depend on density. 

 For simplicity, we consider the case in which the friction coefficients µi at the 

core rod, and µo at the die wall are equal.  Provided that they vary according to equation 

(3.24), the pressure variations may be obtained by integrating equation (3.5) in closed 

form for constant values of α.  In this manner, we obtain, 

 
      ,               (3.26) )]1/()1(2exp[)()( 21212 azhcpPcpP m

o
m

o −−+=+ αµµµµµ

 
where the constant m is defined by m≡(µ2-µ1)/µ1..  Equation (3.26) implicitly determines 

P(z) in terms of the unknown constant po, which is determined by satisfying the balance 

of mass.   

 If the coefficients of friction were independent of pressure, then either c=0 or both 

µ2=µ1 and m=0.  In this case, expression (3.26) for P(z) would reduce to a simple 

exponential variation, and clearly the pressure would scale with the applied pressure po.  

For non-zero values of the friction parameter m≡(µ2-µ1)/µ1, equation (3.26) demonstrates 

that p does not scale simply with po.  In general, equation (3.26) can not be solved 

explicitly for P(z).  However, if the initial value µ2 of the friction coefficient is twice the 

final value µ1, then m=1 and equation (3.26) becomes a quadratic equation for P.  Under 

these circumstances, the explicit expression for the axial pressure profile is, 
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which shows clearly that the dimensional pressure  normalized by the applied pressure po 

itself depends on the parameter cpo.  In order to determine the applied pressure po, it is 

necessary to employ equation (3.27) in the second equation of state (3.7), and to use the 

intermediate result in balance of mass (3.8).  For fixed ratios h≡H/Ro  and H/L and the 

parameter ratio β/c that describe a particular powder, both boundary conditions (3.8) are 

satisfied only by the correct choice for cpo.  

 To illustrate the effect of variable coefficients of friction on the pressure, we 

compare the profile given by equation (3.27) to the simple exponential obtained from 

equation (3.26) when the coefficients of friction µi at the core rod and µo at the die wall 

are equal constants throughout compaction (i.e.: when c=0).  For the purpose of 

comparison, we take the friction coefficients µi and µo in the constant friction case to be 

equal to the average of the maximum value µ2 and minimum value µ1 in the variable 

case.  When µ2=2µ1, this means that µi=µo=3µ2/4.  In Figure 3.9, we show as thin-lined 

curves the scaled pressure profiles P(z) given by equation (3.27) when µ1=.3 and µ2=.6 

and α=.5, a≡Ri/Ro=.5, and H/Ro=4.0 for cpo=0, 1, 10, and 100.  For relatively low values 

of po, the pressures are everywhere relatively low, the coefficients of friction are 

relatively high (i.e. near µ2=.6), and the percent top-to-bottom pressure decreases are 

relatively high. For relatively high values of po, the pressures are relatively high, the 

coefficients of friction are everywhere relatively low (i.e. near µ1=.3), and the percent 

top-to-bottom pressure decreases are relatively low.   
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In this case, then, not only do the overall pressures increase as compaction proceeds, but 

the shapes of the pressure profiles change as well. 

By contrast, the thick solid curve in Figure 3.9 corresponds to the single profile 

P(z) that occurs for all values of po when the coefficients of friction are constant 

(µi=µo=.45) throughout compaction.  In this case, the pressures throughout the die 

increase in proportion to the applied pressure po, but the shape of the profile, and 

therefore the percent top-to-bottom pressure decrease, for example, remain unchanged 

during compaction.  

An alternative expression for variation of µo with pressure that is qualitatively 

similar to one observed experimentally, is 

 
 )exp()( 121 Ppoo φβµµµµ −−+=   ,                  (3.28) 

 
where, as in equation (3.24), µ2 is coefficient of friction of loose powder and µ1 is the 

coefficient of friction in solid state.  Here ϕ is a dimensionless parameter analogous to the 

quantity c in equation (3.24) that reflects how rapidly µ changes with P.  We employ 

expression (3.28) when carrying out further numerical calculations. 

 To determine plausible values of ϕ , we examine the variation of coefficient of 

friction, given by equation (3.28).  The explicit dependence of friction coefficients on 

density for the Distalloy AE powder is obtained by employing the first equation of state 

(3.7) to eliminate βpoP from relation (3.28), and by employing equation (3.14) to 

eliminate α from the intermediate result.  Figure 3.10 shows the variation of coefficient 

of friction µi=µo with the relative density ρ obtained in this manner, for ϕ=.5, 1, 5, and 
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Figure 3.9: Axial profiles of P for µi=µo=µ(P) with ϕ=1 when cpo = 0,1,10,100 (thin solid curves) and for 
µi=µo=.45 (dark solid line). Here, α=.5, a≡Ri/Ro=.5, and H/Ro=4.0.. 
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Figure 3.10: The variation of µi=µo with relative density ρ as given by Equation (3.28) for different values 
of ϕ =.5,1,5,10. The parameters µ2=.9 and µ1=.1. From the different profiles, we select ϕ =1.  
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10.  The values of the parameters µ1=.1 and µ2=.9 are chosen such that the variation 

predicted is in the range of the typical experimental results discussed above.  Figure 3.10 

demonstrates that qualitative behavior like that predicted by Solimanjad et.al. [2001] for 

metal powders may be obtained when ϕ in equation (3.28) is between .5 and 5.  In fact, in 

what follows we take ϕ=1 as a plausible value. 

 
3.6 Solution Procedure   

 Finally, it remains to calculate the manner in which the axial pressure and density 

profiles evolve during compaction when both the friction coefficients (µi and µo) and the 

radial-to-axial pressure ratio (α) vary with pressure and density.  Force balance (3.5) for 

the pressure is complicated by the fact that α depends explicitly on P or ρ.  In fact, ρ can 

be determined directly as follows.  The first equation of state (3.7) gives P=P[ρ,α(P or 

ρ),η(Z)].  If α depends explicitly on ρ, the axial gradient of the pressure can be expressed 

in terms of the density and its axial gradient as follows: 
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If α depends explicitly on P, then the axial gradient of P can be determined from 
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where the first equation (3.7) can be used to calculate the derivatives of P with respect to 

ρ, α, and η.  By including the term involving dη/dZ, we have accounted for the 
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possibility that the initial fill density η may be non-uniform.  When α depends explicitly 

on ρ, force balance (3.5) becomes, 
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where P[ρ,α(ρ),η(Z)] is given by equation (3.7), µo{P[ρ,α(ρ),η(Z)]} is given by equation 

(3.28), µi{P[ρ,α(ρ),η(Z)]} is given by an equation analogous to (3.28), and for the 

Distalloy AE powder described in section 3.4, α(ρ) is given by equation (3.14) and 

(3.15).  Note that we have used equation (3.8) to eliminate dZ/dz from equation (3.30) to 

obtain (3.31). 

 Similarly, if α depends explicitly on P, then 
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where, for example, a plausible form of α(P) is given by equation (3.10).  Here, we have 

used equation (3.8) to eliminate dZ/dz from equation (3.30) to obtain equation (3.32). 

 Numerical integration of equations (3.8) and (3.31) or (3.32) may be carried out 

simultaneously to determine ρ(z) and Z(z).  If, for example, integrations are initiated at 

the top of the compact, then we employ the second of boundary conditions (3.9), guess at 

the value ρ(z=1), and iterate on our guess until the first of boundary conditions (3.9) is 

satisfied at z=0.  With ρ(z) and Z(z)completely determined in this manner, the quantity 

βpo is determined by the first equation of state (3.7) at z=1 and subjected to condition 

(3.6), and the pressure variation P(z) for all other values of z is fixed by the first equation 
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(3.7).  With Z(z) known, the net downward displacement u(z) of any particle in the 

compact is simply equal to the difference Z(z)-z of its initial and final locations. 

If the initial fill density is uniform, then η does not depend on Z, and integration of 

equations (3.8) and either (3.31) or (3.32) need not be done simultaneously.  In this case, 

we guess at the value ρ(z=1), integrate equation (3.31) or (3.32) alone to get ρ(z), use this 

result to integrate equation (3.8), and iterate on ρ(z=1) until both boundary conditions 

(3.9) can be satisfied. 

 

3.7 Results and Discussion   

In this section we present the results obtained in the manner described above.  In 

all that follows, unless otherwise specified, we use the powder properties of the powder 

blend comprising of 99.5% Distalloy AE, 0.5% Graphite and 1% Wax Hoechst 

Lubricant.  This allows us to compare our results with the available experimental results 

for the same powder.  Its apparent density is 3.04 g/cm3, its maximum theoretical density 

is 7.33 g/cm3, and, its relative apparent density η is therefore 0.41.  The radial-to-axial 

pressure ratio α, as a function of density ρ, for this powder blend is given by either by 

equations (3.14) and (3.15) or by equation (3.10) with k=.11, n=.6, α0=.38.  In all cases, 

we take the coefficients of friction µi and µo at the core rod and die wall to be equal.  

 In presenting the results, we first take the coefficients of friction to be constant 

throughout compaction, and consider only the effects introduced when the radial-to-axial 

pressure ratio α depends on pressure.  In the Figure 3.11, we take µi=µo=.2, a≡Ri/Ro=.5, 

and L/Ro=10, and show as solid curves the axial variations of the density ρ when α varies 

with pressure.  The solid curves show how the relative density profiles evolve (from an 
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initially uniform density distribution) at different stages (H/L=1, .9, .8, .7, .6, 5, and .45) 

of compaction.  As the compaction proceeds, the difference between the top and bottom 

densities increases to a maximum at approximately H/L=0.7.  Beyond H/L=0.7 the 

density difference decreases.  This is because regions of higher density are less 

compressible than regions of lower density.  In the final stage of compaction, ρ varies 

from .962 at the top to .836 at the bottom.  

We also show in Figure 3.11 a set of corresponding dashed curves that are 

generated with an appropriate constant value of α.  For uniform apparent density η=.41, 

the average density at the end stage of compaction H/L=.45 is equal to 0.911. From 

Fig.3.2, the value of α corresponding to a density of .911 is α =0.66.  The variations 

predicted by using constant value of α are qualitatively similar to but quantitatively 

different from those obtained using varying α.  The variations of density computed based 

on the constant value of α are greater than those based on the constant value.  This is 

because constant value of α is typically greater than the variable values, which in turn 

yields higher radial pressures σ, higher frictional forces, and greater axial pressure 

variations.  Since, we have taken constant value of α appropriate to the last stage of 

compaction, the variations shown by the solid and dashed curves match increasingly well 

as the final stage is stage approached.  In fact, at the final stage (H/L=.45) the value of α 

varies around the constant value of .66.  These relatively minor variations are entirely 

responsible for the differences in the solid and dashed density profiles at the end of 

compaction.  

 Fig 3.12 shows how the percent top-to-bottom density decrease varies with the 

compaction height H/L, for the cases presented in Figure 3.11.  The solid line 
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corresponds to the predictions based on varying α, and the dashed line corresponds to 

those based on α=.66 throughout compaction.  At the start of compaction, the densities 

are uniform and the difference between the top and bottom densities is zero.  As the 

compaction proceeds, wall friction creates increasing top-to-bottom pressure differences.  

Initially these differences serve to increase the top-to-bottom density differences.  But at 

some point (at about H/L= .7 in this case), these differences begin to decrease because the 

compressibility of the powder reduces to a greater extent in regions of higher density.  In 

this case, the solid curve demonstrates that the maximum top-to-bottom density decrease 

is equal to 36.2 percent at about H/L=.7, and the final value reduces to 13.4 percent at 

H/L=.45.  The corresponding dashed curve (for α=.66) are qualitatively similar, with 

density differences that are typically greater than those predicted by the solid curve as 

explained above (Figure 3.11).  In this case, the maximum top-to-bottom density decrease 

is equal to 46 percent at about H/L= .7, and the final value reduces to 17.7 percent at 

H/L=.45.  

 We now focus attention on cases in which both the coefficients of friction 

µi=µo≡µ and the radial-to-axial pressure ratio α vary with density and pressure.  Equation 

(3.28) describes the variation of µi=µo with pressure.  Based on observations made in 

section 3.5, we take the low density value of µ to be µ2=.9, the high density value to be 

µ1=.1 and the parameter ϕ that measures the sensitivity of friction coefficient to changes 

in pressure to be ϕ=1.  The variation of α with pressure is given by equation (3.10) with 

k=.11, n=.6, α0=.38.  

In Fig. 3.13, we show as solid curves the axial variations of relative density ρ and 

non-dimensional pressure βpoP at H/L =.9, when the initial density distribution is uniform 
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Figure 3.11: The variation of ρ with z, for H/L=1, .9, .8, .7, .6, .5 and .45. The solid lines indicate results 
from the model with α. as function of pressure with k=.11, n=.6, α0=.38 and the dashed lines correspond to 
constant value of α =.66 for uniform initial density η=.41, a=.5, L/Ro=10, µi=µo=.2.  
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Figure 3.12: Variation of δz with H/L. The solid line indicates results from the model with α.as function of 
pressure with k=.11, n=.6, α0=.38 and the dashed lines correspond to constant value of α =.66 for uniform 
initial density distribution η=.41, a=.5, L/Ro=10, µi=µo=.2.  
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at η =.41 and when the compact geometry is described by a=.5, L/Ro=8.  For the purpose 

of comparison, we also show (as dashed curves) two corresponding variations predicted 

when µ≡µf=.1 and µ≡µavg=.302 remain unchanged throughout compaction.  The value 

µ≡µf=.1 is simply the high density value µ1.  The value µ≡µavg=.302 is the value (taken 

from Figure 3.10) corresponding to the mean relative density .615 between the initial 

average density .41 (at H/L=1) and the final average density .82 (at H/L=.5).  The value 

.615 is the average relative density when H/L=2/3.  In Figures 3.14 and 3.15, we show the 

corresponding density and pressure profiles at H/L=2/3 and .5. 

At the earliest stage of compaction, the coefficient of friction µ(P) is still near 

µ2=.9, so that the density variations are much greater than those for µi=µo=µavg=.302 and 

µi=µo=.1.  As H/L and µ(P) decrease, the differences between the details of the profiles 

for the variable coefficient of friction and the minimum coefficient of friction diminish 

until they are virtually indistinguishable at H/L=.5.  Interestingly, at no stage of 

compaction do the variable friction coefficient µ(P) and average friction coefficient µavg 

profiles become indistinguishable.  Even at H/L=2/3=.667, when the average relative 

density in the compact is equal to .615, the large spatial variations in pressure at that 

instant yield differences between profile generated based on a uniform coefficient of 

friction appropriate to the average density and a corresponding profile based on friction 

coefficients that depend on pressure. 

In Figure 3.16, we show how the percent top-to-bottom density variations evolve 

during compaction as H/L decreases from 1 at the start of compaction to .5 at the end, 

when µi=µo is the function µ(P) of pressure given by equation (3.28).  Interestingly, the 

nonuniformity induced in the density distribution increases to a maximum (42 percent) at 
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Figure 3.13: The variation of βpoP and ρ with z for H/L=.9 for three different cases of µ. α .is function of 
pressure with k=.11, n=.6, α0=.38 and density distribution is initially uniform with η=.41, a=.5, L/Ro=8 
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Figure 3.14: The variation of βpoP and ρ with z for H/L=.667 for three different cases of µ. α .is function of 
pressure with k=.11, n=.6, α0=.38 and density distribution is initially uniform with η=.41, a=.5, L/Ro=8 
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Figure 3.15: The variation of βpoP and ρ with z for H/L=.5 for three different cases of µ. α .is function of 
pressure with k=.11, n=.6, α0=.38 and density distribution is initially uniform with η=.41, a=.5, L/Ro=8 
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an intermediate height of H/L=.72 that is approximately four times the nonuniformity 

(10.3 percent) that is present in the final green compact.  The increase in nonuniformity 

that occurs in the early stages of compaction is due to the fact that (according to the 

equation of state (3.7)) even small top-to-bottom pressure differences give rise to fairly 

large density differences when the magnitudes of the pressures are low.  The decrease in 

nonuniformity that occurs in the later stages of compaction is due to two effects.  First, 

even if the coefficients of friction were constant throughout the compaction, the equation 

of state demonstrates that even large top-to-bottom pressure differences give rise to only 

small density differences when the magnitudes of the pressures are high.  Second, the 

coefficient of friction, and therefore the percent top-to-bottom pressure variations 

diminish as compaction proceeds. 

For the purpose of comparison, we have also shown on Figure 3.16 the 

corresponding variations of top-to-bottom density decrease when the coefficients of 

friction µi=µo are taken to be constants.  Just as in Figures 3.13, 3.14, and 3.15, in one 

comparison, we take µi=µo equal to the high density value µ1=.1, and in the other we take 

µi=µo equal to an average value µavg=.302, which (from equations (3.14), (3.7), and 

(3.15)) is appropriate to the average relative density (ρ=.615) between .41 at the start of 

compaction  and .82 at the end.  As expected, the nonuniformities predicted for minimum 

coefficients of friction are typically smaller than those predicted as the friction 

coefficients decrease to their minimum values, and the predictions approach one another 

as compaction concludes.  The nonuniformities predicted by the µi=µo=µavg=.302 curve, 

on the other hand, are smaller than those predicted by the µi=µo=µ(P) curve in the early 

stages of compaction when µavg is less than µ(P), are larger than those on the µi=µo=µ(P) 
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curve in the later stages of compaction when µavg is greater than µ(P), and agree well near 

the instant (H/L=2/3) at which µavg. is equal µ(P).   

In Figure 3.17, we show the variation of the applied pressure βpo during 

compaction for the three cases considered in Figures 3.13 through 3.16.  In the earliest 

stages of compaction, the predictions based on pressure-dependent friction coefficients 

yield the largest required compaction pressures because the friction coefficients are 

highest in this case.  There is a cross-over between the compaction loads predicted by the 

variable friction model and the µavg-model, because at the final stages of compaction the 

µavg-model employs the largest friction coefficients and therefore predicts the largest 

required pressures.  The gradual approach and eventual coincidence of the compaction 

loads predicted by the variable friction model and those predicted by the minimum 

friction model is in every way consistent with the observations made concerning the 

profiles of pressure and density shown in Figure 3.13, 3.14, and 3.15. 

The differences in predicted compaction loads for differing friction models 

suggest that a significant fraction of the total load must be devoted to overcoming the 

frictional forces exerted at the die wall and core rod.  To isolate this phenomenon, in 

Figure 3.18 we calculate the fraction of the total load that is exerted to overcome friction, 

and show how it varies during compaction in the three cases (µi=µo=µ(P), µi=µo=µavg, 

and µi=µo=µf) of interest here.  The portion of the load that is devoted to friction is 

essentially the difference between the pressure at the top of the compact and the pressure 

at the bottom.  Figure 3.18 demonstrates that in all cases the fraction of the load devoted 

to overcoming friction decreases as the compaction proceeds.  In the case of constant 

friction coefficients (µavg and µf), this is because the specimen becomes less compressible  
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Figure 3.16: The variation of δz with H/L for three different cases of µ. α.is function of pressure with k=.11, 
n=.6, α =.38 and density distribution is initially uniform with η=.41, a=.5, L/Ro=8 0
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Figure 3.17: The variation of βp0 with H/L for three different cases of µ. α.is function of pressure with 
k=.11, n=.6, α0=.38 and density distribution is initially uniform with η=.41, a=.5, L/Ro=8 
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and requires a larger fraction of the load to overcome the specimen’s inherent resistance 

to axial contraction.  In the case of variable friction (µ(P)) this effect is present, but it is 

overwhelmed by a larger effect due to the drastic reduction in friction coefficient from 

µ2=.9 to µ1=.1. 

The model employed here is based on the assumptions that the compact is 

comprised of many thin flat discs that remain flat during compaction.  If all these thin 

discs were compacted by equal amounts, then uniform density distribution would result 

and a plot of the axial location z versus the downward displacement u will be linear.  

However, Figures 3.13, 3.14, and 3.15, for example, demonstrate that the degree of 

compaction near the top of the compact is more than it is near the bottom.  Consequently, 

the plot of axial location versus axial displacement will be nonlinear.  Figure 3.19 shows 

one such plot. The solid lines correspond to the displacements during actual compaction, 

whereas the dashed lines show the displacements that would occur if the density 

remained uniform throughout compaction.  A comparison between any of the solid 

curves and its dashed counterparts provides an alternative measure of compact 

nonuniformity. 
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Figure 3.18: The variation of fraction of the applied load with H/L for three different cases of µ. α.is 
function of pressure with k=.11, n=.6, α0=.38 and density distribution is initially uniform with η=.41, a=.5, 
L/Ro=8 

 

Downward Displacement (u)
0.0 0.2 0.4 0.6 0.8 1.0

Ax
ia

l L
oc

at
io

n 
(z

)

0.0

0.2

0.4

0.6

0.8

1.0

H/L=.9 .7 .5

 

 

 

 

 

 

 

 

 

 
Figure 3.19: The variation of u with z for H/L=.9, .7, .5, coefficient of friction as a function of P with µ2=.8, 
µ1=.078, ϕ=1, α.is function of pressure with k=.11, n=.6, α0=.38 and density distribution is initially 
uniform with η=.41, a=.5, L/Ro=8 
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CHAPTER 4 
 

Modeling Springback and Ejection of Hollow Cylindrical Compacts 
 
 
4.1 Introduction 

In this chapter, we present a simple model for the spring back of the die wall and 

core rod that occurs after compaction, and the ejection process required to remove 

compact from its containing die.  As in our previous work, we focus on bushing-like 

compacts, and we employ a compaction analysis that accounts for the evolution of the 

coefficients of friction and the radial-to-axial pressure ratio during compaction.  In fact, 

the results obtained from the compaction model of Chapter 3, serve as the starting point 

for the calculations concerning spring back and ejection.  By comparing ejection force 

predictions made by the model to those determined experimentally, we indirectly can 

evaluate the accuracy of the compaction model already described. 

We first present a simple analysis of spring back, in which we employ the 

pressures calculated during compaction to calculate the corresponding radial pressures 

and frictional stresses exerted by the die wall and core rod on the compact after the axial 

compaction load is removed.   

Next, we present an analysis of the compression that occurs during ejection.  In 

this phase, because there is a resistance to sliding due to the frictional stresses that result 

from spring back, the compact is further compressed.  Associated with this compression 

is a Poisson tendency to expand radially, and a substantial increase in both the radial 

pressures and frictional stresses exerted by the die wall and core rod on the compact.  

Because the increase is substantial, the ejection forces predicted by the complete analysis 
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are much higher than those that would be obtained based on the frictional stresses due to 

spring back alone. 

Finally, we present a survey of results that is focused primarily on understanding 

the contributing factors that impede ejection.  In particular, we focus on the individual 

contributions to the radial pressures that develop between the die wall and the compact, 

and between the core rod and the compact.  These radial pressures in turn give rise to the 

frictional stresses that must be overcome during ejection. 

 

4.2 Compaction Analysis 

As in Chapters 2 and 3, the geometry of the compact (shown in Figure 2.1) is 

described by the following dimensionless quantities: the radii ratio a≡Ri/Ro; the height 

ratio H/L, and the aspect ratio h≡H/Ro.  For axi-symmetric compaction with little radial 

variations in pressure and density, the one dimensional (axial) model developed in 

Chapter 3 is sufficient.  The coordinate Z≡Z*/L measures axial position of any point 

before compaction, and z≡z*/H measures axial position at any instant during compaction.  

The dimensionless pressure P is the average axial pressure at any axial location z, 

nondimensionalized by the external pressure po applied at the top of the compact.  The 

dimensionless pressure Σ is the average radial pressure at any location z, 

nondimensionalized by the external pressure po.  The aim of the compaction analysis of 

Chapter 3 is to determine the axial variations of the density ρ(z), the pressures P(z), and 

Σ(z), and the deformation Z(z) just after compaction is completed but just before the axial 

load from the punch has been removed.  As described in section 3.6, the functions ρ(z), 

P(z), and Z(z), and the quantity po  are determined by equation (3.8) and boundary 
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conditions (3.9), equation (3.32), and the first of equation (3.7) with boundary condition 

(3.6).  In carrying out the solution procedure described in section 3.6, we employ 

equation (3.10) (with the parameters αo=.38, k=.11, and n=.6) for the pressure variation 

of the radial-to-axial pressure ratio α(P), and equation (3.28) (with the parameter φ=1) 

for the pressure variation of the coefficients of friction µi(P)= µo(P). 

Once the pressure distribution P(z) are determined, the radial pressure Σ(z) may 

be computed according to the averaged form of constitutive relation (3.3): 

 
( ) ( )z P zαΣ =        ,            (4.1) 

 
where α(P) is given by equation (3.10).  The radial pressure Σ(z) serves as input into the 

springback/ejection model. 

 

4.3 Springback  

For the compact of interest shown in Figure 2.1, before compaction the radius of 

the solid core rod is Ri, the inside radius of the die wall is Ro, and the outside radius of the 

die wall  (not shown in Figure 2.1) is R.  Just as compaction concludes, but before the 

compaction load is released, the radial pressure Σ(z) applied to the inside surface of the 

die wall and the outside surface of the core rod is given according to equation (4.1) 

computed in the manner described in the previous section.  As a result of the presence of 

the radial pressure, the inside surface of the die wall displaces radially outward, and the 

outside surface of the core rod displaces radially inward.  These displacements can be 

estimated by assuming that at any axial location z, the core rod and die deform elastically 

as a collection of independent disks.  At any axial location, the die is taken to be a hollow 
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disk (of inside radius Ro and outside radius R) subjected to internal pressure Σ(z), and the 

core rod is taken to be a solid disk (of radius Ri) subjected to external pressure Σ(z).  In 

what follows, the die wall has a Young’ modulus ED and a Poisson’s ratio νD, and the 

corresponding values for the core rod are ER and νR, respectively.   

Employing standard elasticity solutions for these problems (see, for example, 

Boresi and Chung [2000]), we find that just before the compaction load is released, the 

radial displacement Uo(z) of the inner surface of die is given by: 

 

( )
2

2

( ) [ ( ) ) ( ) (1 ) (1 )
( ) ( ) 1 ( )

o o D o D
D o

o o o o

U z p z E R R R R
R R R R R R R

ν ν
   Σ −  


 = +

  
+

 −    
 ,   (4.2) 

 
 

while the radial displacement Ui(z) of the outer surface of the core rod is given by: 

 

( ) ( )(1 )i o
R

o R

U z p z Ri

oR E R
ν

  Σ  = − −
  

  

   .        (4.3) 

 

The negative sign in equation (4.3) indicates inward displacement.  Both Uo(z) and Ui(z) 

are completely determined once the radial pressure, Σ(z), is calculated from compaction.  

In the compaction analysis described in the previous section, the core rod and die wall 

were assumed to be rigid, and consequently the displacements Uo(z) and Ui(z) were 

ignored in computing the green density distributions. As it will be seen, these 

displacements will have a negligible effect in on density distributions during compaction, 

but will give rise to large radial pressures and friction forces during compaction. 

Because of the removal of the compaction pressure, both the die and core rod 

spring back elastically.  Consequently, after the compaction is completed and just before 
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the ejection begins, the radial displacements at the die wall and the outer surface of the 

core rod, are actually much smaller than the displacements given by equations (4.2) and 

(4.3).  The die (of inside radius Ro and outside radius R), the compact (of inside radius 

Ri+Ui and outside radius Ro+Uo, respectively), and the solid core rod (of radius Ri) are 

three cylinders pressurized together by their misfit.  The mismatches Uo(z) and Ui(z) are 

given by equations (4.2) and (4.3), 

After the spring back, the net radial displacements of the inner surface of the die 

wall, the outer surface of the compact, the inner surface of the compact, and the outer 

surface of the core rod are denoted by VoD(z), VoC(z), ViC(z), and ViR(z), respectively.  

Compatibility requires that after springback, the inside radius Ro+VoD of the die and the 

outside radius Ro+Uo+VoC of the compact be equal.  Thus, 

 
 VoD – VoC = Uo .  .         (4.4) 

 
Similarly, after springback, the radius Ri+ViR of the core rod, and the inside radius 

Ri+Ui+ViC of the compact must be equal.  Therefore,  

 
 ViR - ViC = Ui    .     .       (4.5) 
 
 

Of greatest interest here are the radial pressures (Σo(z) between the inner surface 

of the die and the outer surface of the compact, as well as Σi(z) between at the inner 

surface of the compact and the outer surface of the core rod) developed at the end of 

spring back.  Both give rise to friction forces that are initially responsible for the 

resistance to ejection that the compact experiences, and both are much different than the 

radial pressure Σ(z) developed in the final stage of compaction.  In order to estimate these 
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radial pressures, as well as the displacements VoD(z), VoC(z), ViC(z), and ViR(z), we assume 

that the die, compact, and core rod behave elastically during spring back, and employ the 

corresponding elasticity solution for a set of three misfit cylinders.  For simplicity, we 

assume that each cylinder is composed of infinitely many independent discs.  The 

Young’s moduli and Poisson ratios of the die, compact, and core rod are ED, EC, ER, and 

νD, νC, νR, respectively 

 In this manner, by analogy to the elasticity solution for a thick walled cylinder 

subjected to internal pressure only given by equation (4.2), the die wall displacement is 

given by, 

 
2

2
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( / ) ( / ) 1 ( / )

oD o o D o D
D o

o o o o

V z p z E R R R R
R R R R R R R

ν ν
   Σ −  


 = +

  
+

 −    
   .         (4.6) 

 
 

From the elasticity solution for a thick walled cylinder subjected to both internal and 

external pressures, the radial displacement of the outer surface of the compact is given 

by: 
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and the radial displacement of the inside surface of compact is given by, 
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where Ui and Uo are functions of z given by equations (4.2) and (4.3), and the quantity ∆ 

is defined as, 

 

 
2 2

1 1

[1 ( / )] [( / ) ( / )]o o i o i oU R R R U R
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Equations (4.8) and (4.9) demonstrate that the radial displacements at inside and outside 

surfaces of the compact are affected by the pressures at both surfaces.  The core rod also 

springs back after the axial pressure exerted by the punch is removed.  By analogy with 

solution (4.3) for a solid cylinder subjected to external pressure, the radial displacement 

of the core rod is simply,  
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where the negative sign again indicates inward radial movement. 
 

With displacements Ui(z) and Uo(z) at the final stage of compaction completely 

determined by equations (4.2) and (4.3), the four unknown displacements VoD(z), VoC(z), 

ViC(z), and ViR(z), and the two interface pressures Σo(z) and Σi(z) are determined by 

simultaneous equations (4.4), (4.5), (4.6), (4.7), (4.8), and (4.10). 
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4.4 Ejection 

The radial pressures Σo(z) and Σi(z) at the interface give rise to frictional forces 

that resist ejection.  Once the compact experiences resistance to ejection, it is compressed 

further by the applied ejection force, and due to Poisson effect, it tends to expand 

radially.  The tendency to expand radially induces normal pressures between the die wall 

and the compact and the core rod and the compact.  These normal pressures are added to 

those that are already present due to spring back of the die and core rod, and give rise to 

additional friction forces.  Consequently, the ejection forces are larger than those that 

would be predicted based on the friction forces maintained by the normal pressures 

caused by spring back alone.  

In order to describe this phenomenon in a one-dimensional model, we refer to the 

geometry and z-coordinate shown in Figure 2.1.  In what follows, Pe(z) is the 

dimensionless axial pressure (nondimensionalized by the compaction pressure po) 

induced throughout the compact during ejection.  We note here that Pe(z) is quite 

different from its counterpart, the dimensionless pressure P(z) during compaction.  Force 

equilibrium (during ejection) on a thin disc in the compact of thickness dz involves a 

balance between the axial pressures Pe(z) and Pe(z) + dPe(z) acting on the two sides of the 

disc during ejection, the frictional stresses that can be maintained in the presence of radial 

pressures Σo(z) and Σi(z) caused by spring back alone and the frictional stresses further 

introduced by the Poisson effect of the ejection pressures Pe(z).  In this manner, the axial 

variation of the pressure induced by an applied ejection force is governed by 

 

[ ] [{ }
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−
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where µo and µi are respectively the coefficients of friction between the die wall and the 

compact and between the core rod and the compact.  In the present analysis, µo and µi  are 

equal to each other and are functions of density and pressure as given by equation (3.28), 

αe is the ratio of the radial pressure induced to the axial pressure applied in the elastic 

compact.  The first two terms on the left hand side of the force balance equation (4.11) 

account for the friction forces at the die wall and at the core rod that can be maintained by 

the pressures Σo(z) and Σi(z) induced by spring back.  The last two terms account for the 

additional friction forces that develop as a result of the Poisson response to the axial 

pressure Pe(z) induced by ejection. 

 The pressure ratio αe measures the tendency of the compact to expand radially 

when it is compressed axially.  Although it is analogous to the pressure ratio α used 

during compaction, it reflects the elastic behavior of the compact, the core rod, and the 

die during ejection, and is in no way affected by the plastic behavior described by α 

during compaction.  For this reason, the value of αe is not equal to the final value of α.  

In principle, the ratio αe is determined by the elastic properties of the compact, the die 

and the core rod.  This is because the radial pressures developed at the interfaces between 

the compact and the die wall and between the compact and the core rod depend on the 

radial displacements of each.  A precise treatment of this mechanism is given in the 

Appendix. Here, we expect that the Young’s moduli of the die and the core rod are 

significantly greater than that of the green compact, and the radial pressures induced by 

the axial ejection force cause negligible radial displacements in the die and core rod. If 

this is nearly so, then αe may be approximated by an expression that depends only on the 

Poisson’s ratio νC of the compact according to 

 96



 

1
C

e
C

να
ν

=
−

  .         (4.12) 

 
 
 Equation (4.11) can be integrated at any stage of ejection.  If d is the length of the 

compact that has emerged from the die during ejection (so that 0 ≤ d ≤H where H is the 

height of compact after compaction), then at all axial locations z ≥ (H-d)/H, the axial 

pressure Pe(z) vanishes. Throughout the compact that is contained within the die (i.e. 0 ≤z 

≤ (H-d)/H), the pressure increases from zero at z = (H-d)/H to the value Po that 

corresponds to the pressure applied by the lower punch at z= 0. The appropriate boundary 

condition for equation (4.11) is therefore given by  

 
 

Pe(z = (H-d)/H )  =  0          (4.13) 
 
 
The value of d depends on the axial displacement D of the bottom punch during 

compaction.  So we get, 

 
     0  ( when       0 ≤ D ≤ L-H  ) 

 d =             (4.14) 
      D-(L-H) ( when  L-H ≤ D ≤ L       )                    . 
 
 
Because the value of d remains unchanged until the punch displaces by an amount D = 

(L-H), the simple model presented here will predict that ejection force also remains 

unchanged until D = (L-H).  Because d increases to H, as D increases beyond (L-H) to L, 

the model will predict a rapid decrease to zero in the ejection force, for the punch 

displacements D increasing beyond (L-H). 
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 To obtain the axial pressure distribution Pe(z) at any stage of ejection, the solution 

procedure requires first finding the radial pressures Σ(z) at the end of compaction in the 

manner outlined in section 4.2.  The radial pressures, Σo(z) and Σi(z), induced by spring 

back are then computed using the solution procedure described in section 4.3.  Finally, 

for a given punch displacement D and corresponding value of the emerged length d given 

by equation (4.14), force balance (4.11) is integrated from z=(H-d)/H, where pressure 

vanishes to zero, to z = 0, where the unknown punch pressure Po is applied to the bottom 

of the compact.  The resulting integration gives variation of Pe(z) from z=0 to z=(H-d)/H.  

In fact, the unknown punch pressure Po is fixed by Po=Pe(z=0).  The dimensionless 

ejection force is then given by π[1-(Ri/Ro)2]Po. 

 

4.5 Results and Discussion 

In order to obtain results in the manner described above, we must have knowledge 

of the elastic properties of the compact.  Pavier et al (1999) performed cyclic loading-

reloading tests on iron powder compacts to obtain a variation of Young’s modulus EC of 

the compact with its average relative density ρ throughout.  In Figure 4.1, the solid data 

points are the results of the experiments.  For relatively low values of density, the 

stiffness EC of the compact increases gradually with increasing density.  As the density 

approaches its maximum theoretical value, the stiffness increases dramatically.  Also 

shown (as a solid curve) in Figure 4.1 is a parametric fit to the experimental results given 

by  

 
EC = { b + cexp[-f(1-ρg)] }          (4.15) 
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Figure 4.1 : Variation of EC with ρ. The experimental measurements done by Pavier et al. (1999) are shown 
by solid dots and the empirical curve fit obtained to those results for b=2, c=223, f=5, g=1.5 in Equation 
(4.15), is shown by dark line. 
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Figure 4.2 : Variation of νC with ρ. The experimental measurements done by Mosbah et al. (1996) are 
shown by solid dots and the empirical curve fit obtained to those results for A=.335, B=.133, C=.95, in 
Equation (4.16) is shown by dark line. 
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where the parameters b, c, f, and g are given as b=2×109 N/m2, c=223×109 N/m2, f=5, 

g=1.5.  

Figure 4.2 shows (as solid data points) variation of the Poisson’s ratio, νC, for the 

compact, as measured by Mosbah et al. (1996) on iron powder compacts.  As the density 

increases over its full range, Poisson’s ratio for the compact increases steadily.  Also 

shown (as a solid curve) in Figure 4.2 is a linear fit to the experimental results given by, 

 
νC = A + B( ρ - C )   ,          (4.16) 

 

where the parameters A, B, and C are given as A=.335,B=.133, and C=.95. 

 In presenting results, unless otherwise specified, we focus on an iron powder 

blend of 98% SC100, 2% Cu and 1% zinc sterate, used by Gethin et al [1994] in 

measuring the ejection forces.  The apparent density is 2.93g/cm3, and the maximum 

theoretical density is 7.33 g/cm3, so that η=.40(=2.93/7.33).  For compaction that ends at 

H/L=.5, for example, the average relative density ρ throughout the compact is .8, and 

according to equations (4.15) and (4.16), the elastic properties of the compact are EC=55 

GPa and νC=.315.  By contrast, we take the elastic properties of the die and the core rod 

to be ED=ER=200 GPa, and νD=νR=.3. 

In all cases, we take coefficients of friction, µi=µo, as functions of axial pressure 

given by equation (3.28) with the parameters φ=1, µ2=.8, and µ1=.078; the quantity βpo is 

determined from the compaction analysis, as described in section 3.6.  The radial-to-axial 

pressure ratio, α, depends on pressure according to equation (3.10) with the parameters 

αo=.38, k=.11, and n=.6.  
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In order to compare our predictions with corresponding measurements of Gethin 

et al [1994], we take the fill height L=80 mm unless otherwise specified, and regardless 

of the value of L, the compaction is carried out until H/L=.5.  The inside and outside radii 

Ri and Ro in Figure 2.1 are equal to 8.5 mm and 12.5 mm.  The corresponding geometric 

parameters for the model are parameters a≡Ri/Ro=.68 and L/Ro=6.4.  The outside radius R 

of the die wall is assumed to be much larger than Ro, so that in all mathematical 

expressions, the ratio Ro/R can be neglected compared to 1. 

 With the elastic properties of the compact, die, and core rod known, it is possible 

to determine the dimensions of the compact at the end of compaction (before the applied 

punch pressure is removed) and at the end of springback (after the compaction load is 

removed but before the ejection force is applied).  When the compact is fully ejected, it 

regains the shape it had at the end of compaction before the punch pressure was removed. 

In Figures 4.3 and 4.4, we show, respectively, the radial deformations at the 

interface between the compact and the core rod and between the compact and the die wall 

for the two stages of compaction and ejection of interest.  The solid curves in both figures 

give the inner shape (Figure 4.3) and the outer shape (Figure 4.4) of the compact just 

after compaction is complete but before the compaction load is removed.  The two curves 

together give also the shape of the compact after ejection, and are determined by 

equations (4.3) and (4.2).  The short dashed curves in both figures give the inner (Figure 

4.3) and outer (Figure 4.4) shape of the compact after springback but before the ejection 

load is applied.  These are determined by equations (4.8) and (4.7).  For reference, the 

long dashed lines show the undeformed radial locations of the core rod (r=a≡Ri/Ro=.68) 

and die wall (r=1) before compaction begins.  At the end of compaction, due to the  
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Figure 4.3 : Axial Variation of the inner radial displacement of the compact, before compaction (shown by 
long dashed curve), at the end of compaction (shown by solid curve), and after the spring back (shown by 
short dashed curve) with axial location z , for the parameter values uniform initial density η=.4, µ2=.8, 
µ1=.078, ϕ=1, α0.=.38, k=.11 and n=.6 Ri/Ro=.68, R/Ro=800, H/L=.5, L/Ro=6.4, νC=.315, νD=νR=.3,  EC=55 
GPa, ED=ER=200 GPa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: Axial Variation of the outer radial displacement of the compact, before compaction 
(shown by long dashed curve), at the end of compaction (shown by solid curve), and after the spring back 
(shown by short dashed curve) with axial location z , for the parameter values uniform initial density η=.4, 
µ2=.8, µ1=.078, ϕ=1, α0.=.38, k=.11 and n=.6 Ri/Ro=.68, R/Ro=800, H/L=.5, L/Ro=6.4, νC=.315, νD=νR=.3,  
EC=55 GPa, ED=ER=200 GPa 
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Poisson effect of the axial pressure, the interface between the compact and the core rod 

(shown by the solid curve in Figure 4.3) displaces radially inward, and the interface 

between the compact and the die wall (shown by the solid curve in Figure 4.4) displaces 

radially outward.  Because the pressure decreases with distance from the top of the 

compact, so too do the radial displacements.  When the compaction pressure is removed, 

the core rod and die wall spring back radially (to the positions shown by the short dashed 

curves), but not quite to their undeformed positions.   

When the compact is fully ejected from the die, it regains the shape it had at the 

end of compaction, shown by the solid curves.  For the case considered here, comparison 

of these curves to the (long dashed) lines corresponding to the undeformed shape of the 

die wall and core rod demonstrates that the difference between the radial dimensions of 

the ejected compact and the radial dimensions of the die are on the order of 0.1%.  Given 

the practical tolerance for powder metal parts (see, for example, 

http://www.wake.com/Wakefield/tol.html), these differences can be significant. 

In Figure 4.5, we show as solid lines the axial variations of the radial pressures, 

βpoΣi and βpoΣo, due to the spring back at the inner (core rod) and outer (die wall) sides 

of the compact, respectively.  For contrast, we also show as a dashed line, the 

corresponding variation of the induced radial pressure βpoΣ at the end of compaction.  As 

expected, due to frictional effects, the radial compaction pressures and the elastic 

deformation of the die and the core rod decrease with distance from the punch.  

Consequently, when the applied compaction pressure po is removed, the radial pressures 

(βpoΣi and βpoΣo) developed due to spring back also decrease with distance from the 

punch.  The magnitudes of the radial springback pressures are less than (but of the same 
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order of) the magnitude of the radial compaction pressures at the end of compaction.  

Interestingly, the radial pressures due to springback are somewhat higher at the core rod 

than at the die wall. 

There are two sources that make it necessary to apply a nonzero ejection force.  The 

first is from the friction force maintained by the radial pressures (βpoΣi and βpoΣo) arising 

from spring back. The second is addition to the friction that is maintained by the radial 

pressure arising from the Poisson effect experienced by the compact as the ejection 

pressure Pe is applied.  The first two terms on the left hand side of the force balance 

equation (4.11) account for the first effect, and last two terms account for the additional 

second effect. 

 In Figure 4.6, we show (as a solid curve) the axial variation of the axial pressure 

βpoPe(z) when the ejection force is first applied (i.e. D=0, and therefore d=0) and the part 

begins to slide through the die.  This curve includes both friction effects described above.  

For comparison, we also show (as a dashed curve) the corresponding variation of axial 

pressure when the Poisson effect is ignored (i.e. αe=0).  The ejection pressure is 

maximum at the bottom of the compact, and decreases monotonically to the top.  At the 

top, according to boundary condition (4.13) Pe is zero. A comparison of the solid and 

dashed curves demonstrates that in this case the Poisson effect during ejection can not be 

ignored and is responsible for about one third of the required ejection force.  The pressure 

distribution throughout the compact is given by the curves shown in Figure 4.6 provided 

that no part of the compact has emerged from the die (i.e. 0≤ D≤L-H), because in this 

range (according to equation (4.14)) d≡0. 
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Figure 4.5 : Variation of βpoΣ indicated by dashed line and βpoΣi and βpoΣo indicated by solid lines with z 
for the parameter values uniform initial density η=.4, µ2=.8, µ1=.078, ϕ=1, α0.=.38, k=.11 and n=.6 
Ri/Ro=.68, R/Ro=800, H/L=.5, L/Ro=6.4, νC=.315, νD=νR=.3,  EC=55 GPa, ED=ER=200 GPa 
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Figure 4.6 : Variation of the βpoPe with z for improved ejection analysis (shown by solid line) and simple 
ejection analysis (shown by dashed line), at the start of ejection, for the parameter values uniform initial 
density η=.4, µ2=.8, µ1=.078, ϕ=1, α0.=.38, k=.11 and n=.6 Ri/Ro=.68, R/Ro=800, H/L=.5, L/Ro=6.4, 
νC=.315, νD=νR=.3,  EC=55 GPa, ED=ER=200 GPa 
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 In Figure 4.7, we show how the axial ejection pressure profile changes as the 

ejection proceeds.  With H/L=.5, the part does not emerge from the die until D(=L-H)=H, 

so that for all values of D/H between 0 and 1 the axial pressure variation corresponds to 

that given by the solid curve in Figure 4.6.  When the bottom punch moves by an amount 

D that is greater than L-H(=H), the compact emerges from the die, d increases according 

to equation (4.14), and the total area of the compact that remains in contact with the die 

walls and core rod decreases.  This, in turn, reduces both the friction to be overcome and 

the ejection pressure required from the bottom punch.  In the case when H/L=.5, the 

values D/H=1.25, 1.5, and 1.75 shown in Figure 4.7 correspond to times at which the part 

is 25, 50, and 75 percent ejected.  At all instances when the compact is only partly 

contained in the die, the pressure vanishes at all points in the compact that are outside the 

die. 

Figure 4.8 shows (as solid curves) the axial variation of the radial pressure 

βpo(Σi+αePe) at the core rod and the radial pressure βpo(Σo+αePe) at the die wall when the 

ejection force is first applied (i.e. D=0, and therefore d=0) and the part begins to slide 

through the die.  Also shown (as dashed curves) for contrast are the corresponding 

variations predicted when αe=0.  The dashed lines are identical to the radial pressures 

due to spring back as shown (as solid curves) in Figure 4.5.  Because the spring back 

analysis accounts for radial variations, the model predicts different radial pressures at the 

core rod and at the die wall.  When the Poisson effect on ejection is ignored, the radial 

pressures vary axially in a manner that is qualitatively similar to the variations of the 

compaction pressures themselves.  However, the Poisson effect is most pronounced at the 

bottom of the compact (where the spring back is least pronounced), and decreases  
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Figure 4.7 : Variation of the βpoPe with z as the ejection evolves for D/H=0-1, 1.25, 1.5, 1.75, for improved 
ejection analysis, for the parameter values uniform initial density η=.4, µ2=.8, µ1=.078, ϕ=1, α0.=.38, k=.11 
and n=.6 Ri/Ro=.68, H/L=.5, L/Ro=6.4, νC=.315, νD=νR=.3,  EC=55 GPa, ED=ER=200 GPa, R/Ro=800 
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Figure 4.8 : Variation of the radial pressures, with z. Solid lines show the results corresponding to improved 
ejection analysis (βpo(Σi+αePe) and βpo(Σo+αePe)) and dashed lines correspond to simple ejection analysis 
(βpoΣi and βpoΣo ) for the parameter values uniform initial density η=.4, µ2=.8, µ1=.078, ϕ=1, α0.=.38, 
k=.11 and n=.6 Ri/Ro=.68, H/L=.5, L/Ro=6.4, νC=.315, νD=νR=.3,  EC=55 GPa, ED=ER=200 GPa, R/Ro=800 
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monotonically until it vanishes at the top (where the spring back is most pronounced).  

Consequently the radial pressure variations are qualitatively very different when the 

Poisson effect during ejection is incorporated.  

Figure 4.9 shows the evolution of the radial pressure variation at the die wall, as 

the ejection proceeds.  As in Figure 4.7, with H/L=.5, the part does not emerge from the 

die until D(=L-H)=H, so that for all values of D/H between 0 and 1 the axial pressure 

variation corresponds to that given by the corresponding solid curve in Figure 4.8.  When 

the bottom punch moves by an amount D that is greater than L-H(=H) the compact 

emerges from the die, d increases according to equation (4.14), and the total area of the 

compact that remains in contact with the die walls and core rod decreases.  This reduces 

both the friction to be overcome, and the axial ejection pressure required from the bottom 

punch.  This in turn reduces the corresponding radial pressures.  As in Figure 4.7, the 

values D/H=1.25, 1.5, and 1.75 shown in Figure 4.9 correspond to times at which the part 

is 25, 50, and 75 percent ejected.   

To compare the predictions of the model presented here with the results of the 

ejection experiments carried out by Gethin et al [1994], we need to determine the value of 

the compressibility factor β for the iron powder blend (98% SC100, 2% Cu and 1% zinc 

sterate) used by Gethin et al [1994].  As in section 3.4, we compare the measured 

variation of applied compaction load at top and the transmitted load at the bottom of the 

compact with the results predicted by our model, and adjust β to obtain the best match.  

Figure 4.10 shows the experimental data (as solid points) obtained by Gethin et al. (1994) 

for the variation of the force at the top and bottom of the compact during compaction.  

The solid curves show the corresponding theoretical predictions (made by the model  
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Figure 4.9 : Variation of the outer radial pressure βpoΣo, with z as the ejection evolves for D/H=0-1, 1.25, 
1.5, 1.75 , for improved ejection analysis, for the parameter values uniform initial density η=.4, µ2=.8, 
µ1=.078, ϕ=1, α0.=.38, k=.11 and n=.6 Ri/Ro=.68, H/L=.5, L/Ro=6.4, νC=.315, νD=νR=.3,  EC=55 GPa, 
ED=ER=200 GPa, R/Ro=800. 
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Figure 4.10 : Variation of the compaction load with top punch displacement as the compaction evolves. 
The solid points indicate experimental values obtained by Gethin et al (1994), circles are at the top and the 
triangles at the bottom and curve shows the results of this model for the parameter values uniform initial 
density η=.4,µ2=.8, µ1=.078, ϕ=1, α0.=.38, k=.11 and n=.6 Ri/Ro=.68, H/L=.5, L/Ro=6.4, νC=.315, 
νD=νR=.3, EC=55 GPa, ED=ER=200 GPa, L=80mm, Ri=8.5mm, R=10m. 
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described in Chapter 3) for a compressibility factor of β=2.6×10-8 m2/N, chosen as the 

best fit.  In addition to measuring the forces during compaction, Gethin et al (1994) also 

measured variation with lower punch displacement of the force required throughout 

ejection.  With all parameters (including β) known, we can compare the results of these 

ejection experiments with the corresponding predictions of the model presented here.  In 

Figure 4.11, we show the variation with punch displacement of the required ejection 

force when the fill height L=80 mm and the compact height H=40 mm.  The solid points 

indicate the experimental results while the solid line indicates the result obtained using 

the ejection analysis described in the previous sections.  For comparison, we also show 

(as a dashed curve) the predictions made when the Poisson effect during ejection is 

ignored (i.e. αe=0).  As it must, the model predicts that while the compact is fully 

contained within the die (i.e. 0<D<40 mm), the ejection force remains unchanged.  As an 

increasingly larger fraction of the compact emerges, the friction between the compact and 

the die decreases, and the required ejection force decreases to zero when the compact is 

fully removed.  The experimental results indicate that, while the bottom punch moves 

upward but while the compact is still fully contained in the die, the ejection force appears 

to increase.  While the reasons for this increase are not clear, it may indicate that in the 

experiments the compact is accelerating while it is contained in the die.  The predictions 

made by the current model, on the other hand, are based on the assumption that the 

compact moves with constant upward velocity.  Despite this qualitative discrepancy, 

most notable is the excellent agreement between the magnitudes of the measured and 

predicted ejection forces in this range (0<D<40 mm) of punch displacement provided that 

the Poisson effect during ejection is included.  Moreover, even in the experiments, once 
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the compact emerges from the die, the effects of decreasing friction dominate the ejection 

force, which decreases to zero when the part is fully ejected.  Again, in this range of 

punch displacement (i.e. 40 mm<D<80 mm), agreement between the experimental results 

and theoretical predictions is quite good provided the Poisson effect is included. 

In Figure 4.12, we show corresponding results when the fill height L=40 mm and 

the compact height H=20 mm.  As in Figure 4.11, the solid points are the experimental 

results obtained by Gethin et.al. (1994), the solid curve indicates the result obtained using 

the ejection analysis described in the previous sections, and the dashed curve gives the 

prediction with αe=0.  Comments made concerning Figure 4.11 apply to Figure 4.12 as 

well. 
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Figure 4.11: Variation of the ejection force with bottom punch displacement with the results of improved 
ejection analysis (shown by solid line) superimposed over those of simple theory and compared with the 
experimental results of Gethin et al., for the parameter values uniform initial density η=.4, µ2=.8, µ1=.078, 
ϕ=1, α0.=.38, k=.11 and n=.6 Ri/Ro=.68, R/Ro=800, H/L=.5, L/Ro=6.4, νC=.315, νD=νR=.3,  EC=55 GPa, 
ED=ER=200 GPa, L=80 mm, Ri=8.5 mm..  
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Figure 4.12: Variation of the ejection force with bottom punch displacement with the results of improved 
ejection analysis (shown by solid line) superimposed over those of simple theory and compared with the 
experimental results of Gethin et al., for the parameter values uniform initial density η=.4, µ2=.8, µ1=.078, 
ϕ=1, α0.=.38, k=.11 and n=.6 Ri/Ro=.68, R/Ro=800, H/L=.5, L/Ro=3.2, νC=.315, νD=νR=.3,  EC=55 GPa, 
ED=ER=200 GPa, L=40 mm, Ri=8.5 mm..  
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CHAPTER 5 

Conclusion 

In this work, we have extended the existing phenomenological theory of Richman 

to investigate the problems involving a variation in initial density distribution for single 

punch compaction in hollow cylindrical compacts. We looked into the effects of 

nonuniform initial density distribution on the resulting final pressure and density 

variations. We then included the pressure and density dependence of the coefficients of 

friction and radial to axial pressure ratio into the model. Finally, we modeled the 

springback and ejection of the compact. It was not always possible to obtain solutions in 

the closed form and we resorted to numerical solutions, when needed.  

The analysis was carried out as a continuum analysis. Powder particles are neither 

of the same size nor do they have the same shape. Existence of varying particle size 

would have introduced significant complications in the analysis and so, the work here 

assumed that all particles have the same size and spherical shape. Particle size plays an 

important role as far as the applicability of the continuum analysis is concerned. Larger 

the particle size, less smooth will be the variation of the physical properties of the 

compact, questioning the assumption of continuum. So, the applicability of this analysis 

is valid to the problems where the particle size and shape is such that the continuum 

assumption is not obviously violated. Also, the particles were assumed to have no 

attractive or repulsive forces and the effect of the interstitial fluids (air, lubricants and 

binders) was assumed to be negligible. Also the effect of gravity was ignored in favor of 

the tremendous compaction force. The inertia of the punch during the downward 
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compacting motion, was also neglected for the same reason, and hence the model is 

insensitive to compaction speeds. 

Equations of motion were applied to differential volume satisfying the balance of 

mass and the balance of momentum. Equation of state, which related the local pressure to 

the local density, was used. A constitutive relation, formulating the dependence of radial 

pressure on axial, was employed. Within the framework of these equations, solutions 

were obtained to the density and pressure distributions throughout the compact. The total 

applied compaction force on the punch, the friction forces between the powder and the 

containing walls of the compact served as boundary conditions. Additionally, the 

compatibility constraints that the powder particles in contact with the top and the bottom 

punches maintain their positions relative to the punches, provide more boundary 

conditions. 

In Chapter 2, we focused attention on the effects of nonuniformity in the initial 

density distribution. First, we saw that because of friction, pressure decreases 

exponentially in the downward direction but radial variation of pressure is almost 

negligible. We observed that the radial density variations evolving from uniform initial 

density distribution were negligible and also that in the case of nonuniform initial fills, 

the initial nonuniformities in radial density variations die down during compaction. On 

the contrast, density variations are significant in axial direction. Also, the axial variation 

of density during the compaction, initially increases, reaches a maximum and then 

decreases to its final value, instead of increasing monotonically. The effects of increase in 

coefficient of friction, increase in radial to axial pressure ratio and increase in the ratio of 
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radii, on final density variation in axial direction are qualitatively similar. Increase in any 

of these, results in larger variations in final density distribution.  

We also solved the inverse problems where to obtain a desired final state, we 

predicted the required initial density distribution. An important conclusion that can be 

drawn from these results is, to obtain a compact with better uniformity in density 

distribution, we should start with initial fill, more dense at the bottom rather than starting 

with a uniform initial density distribution. Also this initial variation in density required to 

obtain a uniform final density distribution, increases with increase in the coefficient of 

friction or the ratio of radii or the radial to axial pressure ratio. 

In Chapter 3, we included in our model the dependence of radial to axial pressure 

ratio and coefficients of friction on pressure and density. We saw the effect of this 

dependence on the axial density distributions. The varying radial to axial pressure ratio as 

a function of pressure can be approximated by a constant radial to axial pressure ratio 

appropriate to that particular stage of compaction. However, the density variations 

produced by using such constant radial to axial pressure ratio are always more than that 

produced by varying radial to axial pressure ratio. The effect of including this 

dependence was more of a quantitative nature than a qualitative one. We obtained the 

value of compressibility factor β for Distalloy AE powder blend. For the same powder 

blend, we also obtained the relation between the compressibility and the radial to axial 

pressure ratio. 

Including the dependence of coefficient of friction on pressure and density 

indicated quantitative differences in the axial density variations obtained using an 

appropriate constant value pertaining to that stage of compaction. Comparison of the 
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results obtained using varying coefficient of friction and using an appropriate constant 

value was excellent near the final stages of compaction and was poor during initial 

stages. Also, it was seen that a substantial part of applied load is spent in overcoming 

friction during the initial stages of compaction. 

Finally, in Chapter 4, we obtained the radial pressures resulting form the 

springback of the die walls after removal of applied compaction load. The shape of the 

compact was estimated. We saw the ejection pressure is maximum at the bottom of the 

compact and then we also obtained the variation of ejection pressure as ejection proceeds. 

Then for iron powder, we compared the variation of applied ejection force predicted by 

our model (both including and excluding the contribution of Poisson effect of applied 

ejection pressure) and experimental results of Gethin et al. The results indicated good 

agreement and we observed that the Poisson effect of applied ejection pressure is 

significant in the prediction of ejection force. 
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APPENDIX 

 We are concerned here with three coaxial, linear-elastic cylinders in contact: a 

solid cylinder (core rod) of radius Ri; a hollow cylinder (compact) of inside radius Ri and 

outside radius Ro; and a large hollow cylinder (die) of inside radius Ro and outside radius 

R. The modulus of elasticity and the Poisson’s ratio of the core rod, compact, and die are 

ER and νR, EC and νC, and ED and νD, respectively. For simplicity, we assume that the 

surfaces of the cylinders (at Ri and Ro) are frictionless. The z-coordinate measures axial 

distance along the cylinder, and the r-coordinate measures distance from the centerline of 

each cylinder. The compact is subjected to an external compressive axial pressure pe as 

shown in Figure A.1. 

 In response to the applied pressure pe, the radial displacements uR(r) (in the core 

rod), uC(r) (in the compact) and uD(r) (in the die) depend on r only. The axial 

displacements wR(z) (in the core rod), wC(z) (in the compact) and wD(z) (in the die) 

depend on z only. The tangential displacements, the shear strains, and the shear stresses 

vanish everywhere in all three cylinders. 

 We focus first on the compact. The normal strains in the radial, tangential, and 

axial directions are duC/dr, uC/r and dwC/dz respectively. The corresponding normal 

stresses are  
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Figure A.1: Three concentric cylinders of which the
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Rearranging equation (A.3) yields the axial strain, 
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in terms of the applied axial pressure and the strains in the radial and tangential 

directions. 

 The radial equilibrium equation in this simple case reduces to  
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By employing equations (A.1) and (A.2) in equation (A.5), we find that, 
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Therefore, 
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where the constants A and B are determined by appropriate boundary conditions. The 

tangential and axial equilibrium equations are identically satisfied. 
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 When equations (A.7) and (A.4) are employed in equations (A.1) and (A.2) , we 

find that the radial variations of σrr and σθθ are given by,  
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In particular, if p1 and p2 are the unknown, induced radial pressures at the interfaces at 

r=Ri and r=Ro, then according to equation (A.8), 
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and, 
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Equations (A.10) and (A.11) may be inverted to find the unknown constants of 

integration A and B in terms of the unknown induced radial pressures p1 and p2. In fact. 

Equations (A.10) and (A.11) demonstrate that AEC/pe and BEC/pe depend linearly on 

p1/pe and p2/pe, and nonlinearly on νC, Ri and Ro. 

 In order to determine p1 and p2, we first write down the radial displacements uR(r) 

and uD(r) in the core rod and die wall, respectively. The core rod is simply a solid, elastic 
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cylinder of radius Ri subjected to external pressure p1, and the die wall is simply an 

elastic cylinder of inside radius Ro and outside radius R, subjected to internal pressure p2 

and no external pressure. The classical elasticity solutions for these cases (see for 

example: Boresi and Chong (2000)) yields: 
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The two conditions that guarantee that the displacements uR(r), uC(r) and uD(r) are 

compatible with one another are: 

 
 )  ,       (A.14) ()( iCiR RruRru ===
 

and  
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where, uC(r) is given by equation (A.7).  

 Equations (A.10), (A.11), (A.14) and (A.15) determine p1, p2, A and B. Although 

we do not show the explicit solution here, it is easy to demonstrate that the values p1/pe 

and p2/pe depend on ER/EC, ED/EC, νR, νC, νD, Ri, Ro and R. In the extreme case, when the 

core rod and the die are rigid, ER/EC and ED/EC become unbounded and uR and uD vanish 
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for all r. Equation (A.14) and (A.15) dictate that A=0 and B=0 so that uC also vanishes for 

all r. In this case, equations (A.10) and (A.11) yield: 
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This is the simple result used in Chapter 4. (see equation (4.12) with αe defined as the 

radial-to-axial pressure ratio) 

 Interestingly, for general parameter values, the pressure ratios p1/pe and p2/pe are 

not equal. In this case, equation (4.12) would be modified to 
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where α1 and α2 are the radial-to-axial pressure ratios at r=Ri  and r=Ro respectively. A 

more precise model than that employed in Chapter 4 would include taking α1= p1/pe and 

α2= p2/pe, where p1/pe and p2/pe are determined as described above. 

 In Figure A.2, we show the variation of p1/pe and p2/pe with ER/EC=ED/EC for 

νR=νD=0, .3 and .5, when Ri/Ro=.68 and νC=.315. These values of Ri/Ro and νC coincide 

with those used in Chapter 4, where we employed νR=νD=.3. When ER and ED are equal 

to zero, the compact experiences no resistance to radial expansion when it is compressed 

axially. Consequently, no radial pressures are developed, and p1=p2=0. As the stiffness of 

the core rod and die increases relative to the stiffness of the compact itself, the resistance 

to radial expansion, and therefore the induced radial pressures increase as well. (Although 

p1 and p2 are not exactly equal, they are indistinguishable in Figure A.2. This is primarily  
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Figure A.2: The variation of p1/pe and p2/pe with ER/EC=ED/EC for νR=νD=0, .3 and .5, when Ri/Ro=.68 and 
νC=.315. 
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because of our assumption that the core rod and the die have equal elastic properties.) As 

the stiffness of the core rod and die becomes large compared to that of the compact, the 

radial-to-axial pressure ratios approach νC/(1-νC)=.459, as predicted by equation (A.16). 

 In Chapter 4, the ratios ER/EC and ED/EC  were equal to 3.636. Figure A.2 

demonstrates that under these circumstances, the limiting value of νC/(1-νC)=..459 

overestimated by 28.93% the more precise value (.356) predicted by the model presented 

here.
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