
Mobile Reporting Application
A Major Qualifying Project Report

Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements of the

Degree of Bachelor of Science

By:

Jian Mao, Computer Science and Mathematical Science

Caitlin McMahon, Actuarial Mathematics

Patchara Santawisook, Mathematical Science

Project Sponsor: Barclays

Submitted to:

On-site Liaisons: Gregory Friel

 Terrance Snyder

Project Advisors: Professor Jon Abraham, Department of Mathematics

 Professor Micha Hofri, Department of Computer Science

Submitted on

January 3, 2013

i

Abstract

Barclays uses an external service platform, ServiceNow, to report and track application

issues internally. The platform is available on work computers and BlackBerries. With the

increase in personal smartphones, specifically iOS and Android devices, it is imperative to

provide this platform on these devices as well. The team was tasked with creating a live

prototype application to fill this void. The outcome of the project was a prototype application

that works on iOS devices and reports real-time incident data.

ii

Acknowledgements

Our group would like to acknowledge all of the people that helped to provide an

opportunity to take part in this project and the great success that resulted from it.

Foremost we would like to thank Mr. Gregory Friel, our sponsor, who made this project

possible and oversaw the project from the Barclays side. His support provided us with a great

opportunity to work for Barclays and apply the knowledge we have gained through our studies at

Worcester Polytechnic Institute.

We also would like to thank Mr. Terrance Snyder, the project manager, who managed the

day to day operations of the project. We truly appreciate the many hours of guidance and support

he provided us during our time at Barclays. His assistance was especially vital to the completion

of this project.

Moreover, we would like to thank Miles Dolphin for his guidance on ServiceNow and

David Cheung for his assistance with integrating our application with the Barclays Live

framework.

Additionally, we want to extend our gratitude towards Professor Arthur Gerstenfeld,

Director of the Wall Street Project Center, for creating such an enriching experience. Along with

Professor Gerstenfeld, we want to thank Professor Jon Abraham and Professor Micha Hofri, our

faculty advisors, for their continued support, advice, and assistance throughout the project.

Lastly, we would like to thank Worcester Polytechnic Institute and Barclays for

providing us with the opportunity to come to New York City and complete this project.

Without the assistance of these two organizations and all of these individuals, this project

would not have been the success that it was. Thank you!

iii

Authorship

This report was developed through a collaborative effort by all members of the project

team: Jian Mao, Caitlin McMahon, and Patchara Santawisook. All sections were created and

edited as a team, with equal contributions made by each member.

iv

Executive Summary

Barclays strives for pioneering solutions for clients and employees and has become a

leader in innovation. ServiceNow is a third party platform that Barclays currently uses to report

the health of various systems. It not only provides employees with a convenient channel to view

and report issues, but also automates and enhances the workflow in tracking issues by sending

out daily status summary to management.

The ServiceNow platform provides a BlackBerry application that employees can use on

the go. However, this application is not very user friendly, and Android and iOS mobile devices

now hold a greater market share. Access to the application on an employee’s personal device can

greatly improve issue management.

The WPI project team was invited to Barclays to participate in the development of the

mobile application of ServiceNow. The goal of the project was to develop a live Major Incident

Handling prototype application capable running on various devices to improve the mobility of

ServiceNow. The team divided the application structure into three stages: the data stage, the

RESTful API stage, and the client stage. The data stage is to automatically extract data in XML

format from the ServiceNow server and convert it to an interim data format (Java Object). The

RESTful API stage is used to convert the data from the interim format to a light-weight format,

(JSON), and then render it to display on the interface. The data stage and RESTful API stage

form the backend server. The client stage is the user interface, which is used to send requests to

the server and to display the data.

For the prototype application, the team created a design template which emulated the iOS

mail application. The prototype application was designed to have two screens – list screen and

detail screen. The list screen displays all incidents with partial details, including application

name, service owner, status, and short description. The detail screen includes more information

of each incident.

This project utilized various technologies. The backend program mainly used Java for

development and Maven repository for version control. An XStream library was used for parsing

data. A Dropwizard platform was set up for hosting server and rendering data from scratch. The

creation of the interface heavily relied on HTML5, CSS3 and JavaScript.

v

At the end of the first phase, the prototype application worked independently on

computers but was not yet connected to the external environment or server. A demo was given to

the management and suggestions were collected. Based on the feedback from management, the

team revised the prototype application accordingly. The project then moved to the second phase,

which was a formal development and enhancement phase. The end goal was for the application

to be well-integrated with Barclays’ existing environment, including the Barclays Live

framework.

In the second phase, the program was further developed in order to retrieve real-time data

from the external server every five minutes. To better integrate with the Barclays Live

framework, which was supported by the PhoneGap package, the team modified the client side to

follow Model-View-Controller architecture. JavaScript libraries such as Backbone.js, RequireJS,

and jQuery were applied. In addition, the team used “user agent” (a unique way of identifying

the mobile device being used) to apply different templates and style sheets so that the application

would match with different iOS mobile devices. Finally, the application was integrated with

Barclays Live framework. The prototype application worked well with iPhone and iPad.

This project was in part of a research and development effort. Therefore, new

technologies that were not used by Barclays were employed, which may be of interest for future

Barclays’ projects. Furthermore, many features could be implemented to support this application.

vi

Table of Contents

Abstract .. i

Acknowledgements ...ii

Authorship ... iii

Executive Summary .. iv

Table of Contents .. vi

List of Figures .. viii

List of Tables ... ix

Chapter 1. Introduction .. 1

Chapter 2. Background ... 3

2.1. Barclays ..3

2.2. ServiceNow ...3

2.3. Technology Review...5

2.3.1. Programming Languages .. 5

2.3.2. Data Formats ... 6

2.3.3. Libraries and Software ... 7

Chapter 3. Methodology .. 10

3.1. Research Goals and Objectives .. 10

3.2. Data Collection .. 10

3.2.1. Research ... 10

3.2.2. Meetings ... 11

3.3. Development Approach ... 11

Chapter 4. Application Design... 13

4.1. Design Considerations .. 13

4.2. ServiceNow Application Design ... 14

4.3. Application Framework ... 15

4.4. Architecture ... 16

vii

4.5. Environment .. 17

Chapter 5. Development Phase I: Prototyping .. 19

5.1. Server... 19

5.1.1. Data... 19

5.1.2. RESTful API ... 19

5.2. Client Side ... 21

5.3. Result ... 21

5.4. Feedback ... 22

Chapter 6. Development Phase II: Enhancement .. 25

6.1. Server... 25

6.1.1. Data... 25

6.1.2. RESTful API ... 26

6.2. Client Side ... 26

6.3. Integration ... 29

6.4. Result ... 29

Chapter 7. Recommendations ... 32

7.1. Current Subscriptions .. 32

7.2. Monthly Information Summary ... 32

7.3. Recent History... 32

7.4. Push Notifications .. 32

7.5. Grouping Screen ... 32

7.6. Data Filter and Sorter ... 33

7.6.1. Location Based Filter ... 33

References ... 34

Appendix A .. 37

viii

List of Figures

Figure 1: Sample ServiceNow incident screen ... 4

Figure 2: iOS Mail Application List Screen ... 14

Figure 3: Current ServiceNow List Screen ... 14

Figure 4: Current ServiceNow Detail Screen ... 14

Figure 5: ServiceNow List Screen Sample ... 15

Figure 6. PhoneGap workflow .. 16

Figure 7: Application Structure .. 16

Figure 8: Data Format Conversion Flowchart .. 17

Figure 9: XML data structure ... 19

Figure 10: List Screen ... 22

Figure 11: Detail Screen ... 22

Figure 12: List Screen before and after feedback ... 23

Figure 13: Detail screen before and after feedback .. 24

Figure 14: HttpClient process ... 25

Figure 15. Model-View-Controller structure interaction (Cunningham, 2003) 27

Figure 16: File structure .. 28

Figure 17: Final iPhone List Screen.. 30

Figure 18: Final iPhone Detail Screen .. 30

Figure 19: Final iPad screen ... 31

ix

List of Tables

Table 1: Design Considerations .. 13

Table 2: Server and Client Side Technology Comparison .. 18

Table 3: Dropwizard directories and their uses .. 20

1

Chapter 1. Introduction

Barclays is a major global banking and financial services company headquartered in the

United Kingdom. By following their guiding principles, Barclays has become a leader in

innovation, improving processes for clients and employees.

Currently, Barclays uses a third party software platform, ServiceNow, to report on the

health of various systems. Employees can report errors and issues through this platform. These

requests are then sent to the “right” people automatically. In addition, the system can send a

weekly report regarding system status to management. ServiceNow not only provides employees

with a convenient channel to report issues, but also automates and enhances the workflow in

tracking issues. The ServiceNow platform currently provides a BlackBerry application that

employees can use on the go. However, this application is not particularly user friendly, and

Android and iOS mobile devices now hold a greater market share. The accessibility to the

application on an employee’s personal device can greatly improve issue management.

In order to improve the mobility of ServiceNow, the goal of this project was to develop a

mobile reporting application that can display Major Incident Handlings (MIH) on various mobile

devices. To attain this goal, the team followed a modified scrum approach and completed the

following five objectives:

1. collect requirements for the mobile application;

2. conduct research on application development, such as helpful tools and software;

3. design and implement the application;

4. evaluate and enhance the application; and

5. recommend future improvements.

To fulfill these objectives, the team conducted research and held meetings. The

information collected helped to develop the guidelines to create a user-friendly mobile

application. Based on the design guidelines, and using the iOS mail application as inspiration,

the team designed two screens for the application. The first screen is the list screen displaying all

incidents with partial details, including application name, service owner, status, and short

description. The second screen, the detail screen, includes more information about each incident.

The application had three stages of implementation, including the data stage, the RESTful

API stage, and the client stage. The data stage is to automatically extract data from the

2

ServiceNow server and convert it to an interim data format. The RESTful API stage is to convert

the data from the interim format to a light-weight format and render it to display on the interface.

The data stage and RESTful API stage form the backend server. The client stage is the user

interface, which is used to send requests to the server and to display the data.

To build the prototype application, the project consisted of two phases – prototyping and

enhancement. At the prototyping phase, the team designed, set up and implemented the prototype

application. Major components of implementation were explored separately. At the end of this

phase, the prototype worked independently on computers, but was not yet connected to the

ServiceNow server. A demo was given to management and suggestions were collected. Based on

this feedback, the team revised the application. The project then moved to the second phase,

which was a formal development and enhancement phase. The application could communicate

with external servers and retrieve real-time ServiceNow data. It was successfully integrated with

the Barclays Live framework.

The team also provided recommendations for future improvements for both the

application and the programming process.

3

Chapter 2. Background

This chapter presents the background information regarding the company, Barclays, and its

target application, ServiceNow. The key data attributes, candidate tools, and technologies that were

used to build the application are reviewed.

2.1. Barclays

Barclays is a major global banking and financial services company headquartered in

London. With operations in over 50 countries, the asset size of Barclays ranks it the 7
th

 largest in

the world and 2
nd

 largest in the United Kingdom(Global Finance Magazine, 2012). Around the

world Barclays focuses on five guiding principles -- winning together, retaining the best people,

creating trust, focusing on the client, and pioneering solutions for clients. Following these

principles, Barclays has demonstrated a history of innovation and leadership though notable

achievements including: introducing the world to the automated teller machine (ATM),

becoming the first foreign bank to file with the Securities Exchange Commission (SEC) in the

United States, and recently, partnering with five international banks to launch the first global

ATM alliance (Barclays, 2012). In addition to the innovations Barclays has introduced to their

clients, Barclays creates and implements processes to improve functionality for their employees.

2.2. ServiceNow

Barclays currently uses ServiceNow, a leading Software-as-a-Service (SaaS) provider of

enterprise Information Technology (IT) operations, to report the ‘health’ of various IT systems.

ServiceNow provides uniquely designed solutions for each client company based on its needs.

Service options include IT Asset Management, Change Management, and Incident and Problem

Management (ServiceNow, 2012).

Barclays utilizes ServiceNow’s Incident and Problem Management system. The purpose

of this system is to enhance communication by providing one location to report IT-related

systems issues and route notification of issues to the correct employees. Employees can access

this system using their work computer. A sample screen shot of this web-based system can be

seen in Figure 1.

4

In addition to the web-based tool, Barclays employees can also utilize ServiceNow’s

Blackberry application to review and address IT systems issues. Barclays’ goal was to create an

application enabling employees to access incident information on other personal devices,

particularly iPhones and iPads.

In Barclays’ system, each incident has up to 200 pieces of information such as the

incident number, application affected, and urgency. The pieces of information that are relevant

for the team’s application are:

 incident number, unique identification number for each incident for client use;

 system id, unique identification number for each incident for system use;

 initial escalation, time and date when the incident was opened/escalated;

 next update due, time and date when the next update is due;

 last commented, time and date when the incident was last updated/commented;

 last comment statement, most recent statement about the incident status;

 incident owner, individual who reported the incident;

 business units impacted, division(s) of the business impacted by the incident;

 application, the application affected by the incident;

 operational status, indicator showing the status in solving the incident; and

 short description, brief description of what the incident is.

Figure 1: Sample ServiceNow incident screen

5

In addition to the website, emails are sent daily to senior management to summarize the

incidents that occurred or were fixed within the past 24 hours.

2.3. Technology Review

This section reviews technologies that the team used throughout the project to build the

application.

2.3.1. Programming Languages

A variety of programming languages can be used in mobile application development. The

most significant languages the team used are Java, HTML5, CSS3, and JavaScript.

2.3.1a. Java

Java is a general-purpose, object-oriented language. It is designed to provide a simple and

efficient way to develop programs by having as few existing dependencies as possible. The Java

Archive (JAR) format can be generated during the program compilation, which makes the

program more portable. Currently, this language is ranked second among programming

languages in popularity (Finley, 2012).

2.3.1b. HTML5

HTML5 is a markup language that was created by the World Wide Web Consortium and

the Web Hypertext Application Technology Working Group (w3schools, 2012). This language

has already become one of the web standards. Its combination with other standards such as

Cascading Style Sheets (CSS) and JavaScript can deliver abundant functions, including Web

Typography, Web Gallery, Photo Transitions, Audio, VR, Pixel Manipulation (Apple Inc., 2012).

This language is necessary in developing hybrid applications, which leverage the device’s

browser engine to deliver the functions through processing HTML and JavaScript locally (Seven,

2012).

2.3.1c. CSS3

Cascading Style Sheets (CSS) is a simple style sheet language that defines how to display

HTML elements such as background color, spacing, and fonts. Prior to the invention of CSS,

styling for a webpage was added to each element within the page. CSS allows one document to

be created and called upon to apply one style to all elements within the page. This allows for a

quicker process to both load and make changes to the webpage (W3Schools, 2012).

6

2.3.1d. JavaScript

JavaScript is a prototype-based scripting language, which is primarily used for the client

side in order to create enhanced user interfaces and dynamic behavior on an application. In

mobile application development, JavaScript allows the user to display data, show and hide the

navigation menus, and apply style sheets to the existing HTML (Stark, 2010).

2.3.2. Data Formats

The application involved using multiple data formats to receive, parse, and transmit the

data. The data formats the team used were Extensible Markup Language (XML), Java Object,

and JavaScript Object Notation (JSON).

2.3.2a. XML

XML is a markup definition language that was defined by a World Wide Web

Consortium recommendation. XML is designed to be self-descriptive by using tags. These tags

are not predefined, allowing users to name tags based on the data being stored. Additionally,

XML can be used for data exchange. Typically exchanging data between incompatible systems

over the Internet is a time-consuming challenge for developers. However, XML improves this

process because it is stored in text format, which can be read by different incompatible

systems(Liu, 2009).

2.3.2b. Java Object

In Java, an object is the instance of a class and can be used to store data. The class is a

template that defines the structure of the object (member elements, methods). A class can contain

more than one object (Samanta, 2004).

2.3.2c. JSON

JSON is a lightweight text-data interchange format used for storing and exchanging text

information. It is readable and writeable by both humans and machines. JSON is built on two

structures – a collection (object) and a list (array). JSON is advantageous because JSON

documents are much smaller in terms of data size than the equivalent XML documents(Allan,

2010).

7

2.3.3. Libraries and Software

Programmers have created multiple tools and libraries to make the programming process

more efficient. These libraries can be used by other programmers to simplify development

processes.

2.3.3a. Dropwizard

Dropwizard is a Java framework that incorporates multiple Java libraries and provides

RESTful web services. Dropwizard Core is the main package that offers various services such as

server hosting, JSON processing, HTTP handling (Hale, 2012).

2.3.3b. jQuery

jQuery is an open-source JavaScript library for building web applications. Each web

browser handles JavaScript in different ways, making it difficult for developers to create cross-

browser compatible websites. jQuery simplifies this process by creating a common set of

functions across all browsers(Holzner, 2009).

2.3.3c. jQuery Mobile

jQuery Mobile is a unified, HTML5 based user interface system for all mobile device

platforms. Similar to how jQuery created a single set of functions for all browsers, jQuery

Mobile has created a simplified process to make mobile applications work on multiple

platforms(Reid, 2011). It is built on a jQuery and jQuery UI foundation and allows the developer

to create a website or application that is able to work on all popular smartphones and tablets. It

has a simple to use design and is used by hundreds of popular organizations’ websites and

applications, including OpenTable, Ikea, Disney World and Chase (The jQuery Foundation,

2012).

2.3.3d. Backbone.js & Underscore.js

Backbone.js is a client-side framework written in JavaScript that helps users to write

highly responsive client-side applications(Bates, 2012). It has three important components –

model, collection, and view. The model class provides a basic set of functionalities for managing

changes. The collection class contains functions for handling and working with the data. The

view class listens to changes in the associated model, and can be updated when the model

changes. These three classes are connected over a RESTful and JSON interface(Ashkenas, 2012).

8

Underscore.js is an open-source JavaScript utility library that contains plenty of

functional programming support. It is usually used to support Backbone.js, especially in the

collection class.

2.3.3e. RequireJS

When an application runs, the load of the program each time can hamper the

application’s usability. RequireJS is a JavaScript file and a module loader that lessens this

problem. RequireJS is able to manage script modules, load them in the right order and can spread

out the download size over time(Burke, 2012). It can be used in conjunction with jQuery, thus

making the process even simpler.

2.3.3f. XStream

XStream is an open-source Java library for converting Java Objects to and from XML

(Fitzgerald, 2004). This library has a relatively high speed and uses little memory in the process,

which fits large data source conversion (XStream, 2012). For this project, ServiceNow data was

exported in XML format from external server, deserialized to Java Objects using XStream, and

then converted to JSON.

2.3.3g. Apache HttpClient

Apache HttpClient is an open-source library to handle HTTP requests. With Apache

HttpClient, users can access online resources and retrieve or send data via HTTP (Kalnichevski,

2008).

2.3.3h. Eclipse

The team used Eclipse, a multi-language software development environment, to develop

the application. It is both a workspace and an extensible plug-in system. It is a typical platform

for Java development (Eclipse Foundation, 2012).

2.3.3i. Apache Maven

 Apache Maven is a software project management. This tool can help users to build and

manage Java-based project. Maven project uses project object model (POM) to define its

configuration, based on which Apache Maven can build the project (Apache Software

Foundation, 2012). This tool not only provides a uniform build system, but also provides

9

convenience to developers in building large projects, especially those depending on many other

existing projects or packages.

2.3.3j. iOS Simulator

The iOS simulator is a tool produced by Apple and included in the Xcode development

tool. The simulator allows a developer to run an iOS application virtually on a Mac. By running

the application on the simulator, major problems can be identified and fixed during design and

early testing. It also allows developers to test the application’s user interface and compare it with

different iOS devices (iPhone, iPhone with Retina display, and iPad) (Apple Inc., 2012).

10

Chapter 3. Methodology

The main goal of this project was to develop a live Major Incident Handling prototype

application capable of running on various devices that improves the mobility of ServiceNow. In

order to build this hybrid application, the team conducted research, developed the program using

Eclipse, tested the application using iOS Simulator, and evaluated as well as enhanced the

application. In addition to developing this application, the project team provided

recommendations for further improvements.

3.1. Research Goals and Objectives

For this project, the team delivered a mobile reporting application for Barclays during

their eight weeks in New York (See Appendix A for timeline). Users can view a list of Major

Incident Handlings (MIHs), their corresponding status and important information from this

application. The team completed the following objectives to fulfill this goal:

1. collect requirements for the mobile application;

2. conduct research on application development, such as helpful tools and software;

3. design and implement the application;

4. evaluate and enhance the application; and

5. recommend future improvements.

3.2. Data Collection

In order to understand and develop the mobile reporting application, the team used two

essential methods: research and meetings. The team researched the software available to develop

an application in addition to the web-based application ServiceNow, which the mobile

application was based on. Additionally, the team set up relevant software and created sample

projects on their personal devices to better understand the backend logic. Furthermore, the team

met with several Barclays employees who had mobile application development experience.

3.2.1. Research

The team began the research by reviewing the software and languages that would be

useful to the project. The computer languages that the team focused on include JavaScript,

HTML5, Java, CSS3, XML and JSON. The team also reviewed useful libraries such as

backbone.js, jQuery, RequireJS, XStream, and additional software such as Maven, and

11

Dropwizard. While conducting the research, the team set up most of the tools on their own

devices and created sample projects to better understand how they work separately.

In addition, the team examined the ServiceNow platform online to see how people use

the Incident Management software and decided on the key information that should be displayed

in the mobile application.

3.2.2. Meetings

The team continued data collection by meeting with several Barclays employees. The

purpose of these meetings was to obtain the necessary information for the ServiceNow mobile

application and discuss the integration process. During the meetings, all team members took

notes and asked any applicable questions.

3.3. Development Approach

The team followed a modified scrum approach to develop the application. The scrum

approach is a “framework for organizing and managing work” (Rubin, 2012). It splits the

development process into ‘sprints’ of a predetermined length. At the beginning of each sprint,

goals are set and prioritized. It has three core roles - product owner, scrum master, and

development team. The product owner is the central point of product leadership and has two

main tasks. The first is to understand the needs of the end user and act as their voice. The second

is to communicate with the development team about product requirements and the priority of

each requirement. The scrum master on the other hand, is the development team’s leader. This

role has a number of responsibilities, including ensuring the sprint is on schedule and discussing

and adjusting the sprint deliverables with the product owner when a task is unattainable or needs

more time. The development team is the group that designs, develops, integrates and tests the

product. The team members meet each morning to plan each day’s tasks based on how to

accomplish the sprint’s goals. Additionally, the development team meets with the product owner

at the end of the sprint to discuss the previous sprint’s achievements and the next sprint’s tasks

(Rubin, 2012).

In the team’s version of this approach, each sprint was one week long. The product owner

for the team was the sponsor, Gregory Friel, however at times Terrance Snyder also held this role.

The scrum master was one of the team members and the position rotated each sprint. The team as

12

a whole constituted the development team. During each sprint, the development team and scrum

master met each morning to assess the progress and plan that day’s work. At the end of each

sprint the development team, scrum master and product owner all met to discuss that sprint’s

accomplishments and future objectives.

Using this approach the team was constantly motivated and had attainable weekly tasks.

The timeline in Appendix A displays the team’s progress in creating and implementing the

application during the eight weeks in New York.

13

Chapter 4. Application Design

This chapter describes the principles that the team considered in designing the application,

the general framework of the application, the structure of the application for implementation, and

the requirements to the environment.

4.1. Design Considerations

The team first created Design Considerations based on the research on what makes a

user-friendly application. These considerations are displayed in Table 1 below.

Table 1: Design Considerations

Quality Method

Friendly User Interface

 Acceptable font size

 Responsive – change on screen when link is clicked

 Easy-to-use and intuitive

o Appropriately designed links

 Attention-to-detail

Continuity
 Uses familiar elements

 Follows conventions and patterns

Portability Can run on multiple mobile devices

Integrated
 Incorporates device technologies (location services,

accelerometer, etc.)

Fast Only includes necessary information

14

4.2. ServiceNow Application Design

After creating the design considerations, the

team examined both the iOS mail application and an

available ServiceNow application. The iOS mail

application is seen in Figure 2.

The mail application has a number of great

features that the team emulated. The first is having a

list screen and a detail screen. In the mail application,

the list screen displays all e-mails with a little bit of

detail (sender, time received, and a few lines of the e-

mail). The detail screen on the other hand, shows one

e-mail and includes much more information from the

message. Additionally, the text on both screens is formatted to display each field differently.

Moreover, on the list screen, a blue circle denotes an unopened message. This makes the

structure easy to understand. Lastly, when a message on the list screen is touched (so as to see

the details of that message) the background of that message changes from white to blue.

Next, the team assessed the available ServiceNow mobile application and found a

number of areas that could be improved. The screens can be seen in Figure 3 and Figure 4 below.

Figure 2: iOS Mail Application List Screen

Figure 3: Current ServiceNow List Screen

Figure 4: Current ServiceNow Detail Screen

15

The first area that could be improved was enlarging the clickable area on the list screen

for each incident. Only the incident number could be clicked to view a specific incident’s details.

Moreover, upon first glance at the list screen, it is not obvious the severity of each incident aside

from a highlight on some of the incidents. Also, it is not apparent if the information shown for

each incident is customizable. Based on the team’s discussions with Greg, the team’s sponsor,

the information displayed in this case is not what is important to see. Both the list screen and

detail screen are not very user-friendly, and instead are very bare with little color. The detail

screen provides too much unnecessary information and is deceiving in that it displays the

information as though it could be edited. Finally and most importantly, this application is a web

application, which means that it is a webpage that is custom made for a mobile device. It can not

be downloaded onto a phone and can not as easily access the phone’s features.

After inspecting the mail application and the

ServiceNow web application, the team worked to

design a sample of the new application. The sample

screenshot of the list screen is seen in Figure 5. In the

application, each incident is displayed with a color-

coded icon to inform the user the status of the

incident (red being degraded and green being

operational). Furthermore, the information is kept to a

minimum and is formatted to show the different fields.

Similar to the mail application, when an incident is

clicked, the background color of that incident would

change as the application transitioned to the next

screen.

4.3. Application Framework

Instead of creating a web application (a webpage designed specifically for a mobile

device) or a native application (an application that is built for a specific device and can be

downloaded onto the device), the team created a hybrid application. A hybrid application is an

application that is downloaded onto a mobile device and can utilize the device’s browser engine.

Hybrid applications are also able to work on cross-platforms.

Figure 5: ServiceNow List Screen Sample

16

Further, the team did not build a stand-alone application, instead embedding the

application inside of the Barclays Live framework that Barclays has built to allow for a multi-

purpose application.

4.4. Architecture

This project sat on the Barclays Live framework, which is supported by PhoneGap.

PhoneGap, an Adobe product, allows for cross-platform development using standard web

languages by utilizing the device’s browser engine. It acts as a wrapper to package the mobile

site and embed it to the native mobile application (See Figure 6).

Figure 6. PhoneGap workflow

To create the mobile application, the team divided the creation process into three

components – Data, RESTful API, and Client. RESTful API and Data formed the server. When

the user clicks the button and launches the application, the program creates a request, passes it

through the firewall into the Barclays intranet, and sends the request to the server. Then the

server passes the request to the Network File System and the sends the retrieved data back to the

web server, which in turn renders the data to the user interface (See Figure 7).

Figure 7: Application Structure

iDevice

Public
internet

BCL
intranet

Web server

Network File
System

XML

ServiceNow™

17

 The Network File System retrieves data from a URL, where XML format data is

provided by a Barclays employee. This file is updated every five minutes. The team’s program

was set to automatically retrieve the data from the URL once the file is updated to get the real-

time data.

 Once the data is retrieved, the team’s program uses an XStream library to convert the

data from XML format to Java Objects. During the conversion, Java Objects only saves

necessary data fields, as determined by the team’s meetings with Barclays employees. These

information fields can be updated easily in this program, if Barclays wishes to make changes in

the future.

 The Java Objects are then passed into the RESTful API, which is the web server in this

figure. The Jersey package in the RESTful API will convert the Java Objects to JSON, a light-

weight data format for data transmission, and render the data onto the user interface, which uses

the HTML5, CSS3 and JavaScript to display data and improve the look. The flow of data format

conversion can be found in Figure 8.

Figure 8: Data Format Conversion Flowchart

4.5. Environment

 This project was developed on computers provided by Barclays. The operating systems

were Windows XP and Mac OS X Version 10.7.5. The IDE for implementing the data retrieval

and RESTful API was Eclipse. The iOS Simulator in Mac OS X was mainly used for testing the

user interface. Browsers like Google Chrome, Firefox and Internet Explorer8 were used for

testing. Apache Maven software was used for building projects and committing them to the

repository. A detailed summary of technology applied in this program is displayed in Table 2

below.

18

Table 2: Server and Client Side Technology Comparison

Server

Client

Languages

Java

HTML5, CSS3, JavaScript

Software

Eclipse

Apache Maven

iOS Simulator

Web Browsers

Framework and Libraries

Apache HttpClient

XStream

Dropwizard

Backbone.js

Underscore.js

RequireJS

jQuery

19

Chapter 5. Development Phase I: Prototyping

This chapter describes the process of setting up and implementing the team’s application

to work independently on computers, without being connected to external environment or servers.

5.1. Server

This section illustrates how the backend program works, which includes the

deserialization of data and server hosting.

5.1.1. Data

 In this phase, the MIH data that were going to be displayed on the user interface were

retrieved from the external server and saved in a static file. These MIH data were stored in the

format of XML, and then converted to Java Objects.

To convert the data from XML format to Java Objects, XStream library was used. Based

on the XML file that contained MIH data, four model classes were created in Java to represent

the structure of how the data should be stored.

The first class represented the Simple Object Access

Protocol (SOAP) envelope. Inside the SOAP envelope was

the SOAP body, which was represented by the second class.

The third was the Payload class, which was the list of MIH

records. The fourth class was the Record class, which

represented the structure of each MIH record. The

relationship of the data classes can be seen in Figure 9.

After all classes were created, the fromXML()

function defined by XStream library was used to deserialize

data from XML to Java Objects.

5.1.2. RESTful API

The program that can provide web service upon requests is the key to this project. The

team chose to use the RESTful API to support the web service for this project. A RESTful API

follows four basic design rules as below:

Figure 9: XML data structure

20

 use HTTP methods explicitly;

 be stateless;

 expose directory structure-like URIs; and

 transfer XML, JavaScript Object Notation (JSON), or both (Rodriguez, 2008).

To launch the server, the team utilized Dropwizard, which pulls multiple external

libraries together, as the framework. Due to the light-weight and simple properties, Dropwizard

library helped to initialize the server in a short time (Hale, 2012). Once a user request is received,

the program gets the Java objects, and then saves them into a map so that further data retrieval

from the client is easier.

The team organized these files into several directories including: service, configuration,

core, db, and resource. Table 3 describes each directory and the main uses of each.

Table 3: Dropwizard directories and their uses

Directories Uses

service Main class used for setting up the environment and compiling this program

 The assetBundle function to set the path for the client files

 The addResource function to call the data and render them to the client

configuration Defined the environment-specify parameters

 Used a class and subclass to achieve the definition. The subclass is used to

specify these necessary fields and the class acts like a wrapper that contains

the subclass as a member field. The grouping makes the configuration file

and class manageable, especially when there are too many parameters.

core Included compile files for data deserialization from XML to Java objects

db Retrieved data from the output from the core deserialization

resource Included three resource classes, each associated with a URI template

 Included two important annotations, @Path and @Produces

- @Path defines the path through which the user can access. For example,

@Path(“/service”) tells Jersey that this resource can be accessed at the

URI /service.

- @Produces regulates the representation out from the resource and send

to clients. This program has used two types, including

@Produces(“MediaType.APPLICATION_JSON”) for rendering data in

JSON format and @Produces(“MediaType.TEXT_HTML”) for

displaying the HTML pages.

21

5.2. Client Side

The next step for this project was to make the interface to display rendered data in a

better way. This program has used HTML5, CSS3, and JavaScript (jQuery) to achieve this goal.

HTML5 is mainly used to define the structure of the page, such as where the header and

content are located. HTML also refers to the CSS file and JavaScript to make connections. This

project contained two HTML web pages, one for the MIH list page and the other one for the

MIH detail page. These two pages mainly used id and class to identify different tags so as to hold

the place for the real data.

The CSS file here is used for describing the format and the look of the HTML file, such

as the scroll bar, the background color, the fonts and size of words. It used the class name or id to

match up with the tags in the HTML. The CSS file is the external style sheet, and the internal

CSS code has the higher priority to apply in web pages.

JavaScript played an important role in rendering the data to the HTML, especially jQuery

library in this project. The jQuery library has easier syntax and can achieve the same features

with less code compared with the standard JavaScript library (jQuery: Advantages and

Disadvantages). The program mainly used getJSON to retrieve data from the server program by

using the URI defined in the resource file. Each and append are the other two key functions,

which can collaborate together to deal with each record in a whole list of records and show it on

the HTML.

5.3. Result

 In this phase, the team was able to display the MIH data retrieved from the static file

through the RESTful API. The team also used CSS3, HTML5, and jQuery to make the style and

layout of the screen display in a nicer way. The result of Phase I for the List screen and Detail

screen can be seen in Figure 10 and Figure 11.

22

Figure 10: List Screen

Figure 11: Detail Screen

5.4. Feedback

 After the team got the Phase I result, two screens displayed on iPhone Simulator were

presented to the team’s sponsor, Greg, and discussed among the team members. Feedback

focused on the structure of the screens and the functionality of the application. Figure 12 shows

the screenshot of the list screen before the feedback and the screenshot of it after the team made

the changes based on the feedback.

23

Figure 12: List Screen before and after feedback

1. The incident number was removed from the list screen since only the most important

piece of information should be shown on the list screen.

2. Based on Greg’s suggestion, the MIH application’s name was the most important

information that should be on the first screen.

3. The incident owner was one of the important documents that should be shown on the list

screen, but his/her username or id was removed to make the user interface looked better.

4. Based on the mail application on the iPhone, two lines of short descriptions would be

better than one so that users could have better picture of what the issue of that incident

was.

 Figure 13 shows the screenshot of the detail screen before the feedback and the

screenshot of the detail screen after the team made the changes based on the feedback.

24

Figure 13: Detail screen before and after feedback

1. The incident number was moved down to the second line. For the second screen, it is

necessary to include the incident number so that users could refer to this number as an

identifier when it happened to have duplicate names of the applications

2. The MIH application’s name has been set to the top. As it was mentioned before, it was

primary information that should be shown.

3. The name’s tag of each piece of information was added so users could have better idea

what displayed information was.

4. The information about “impacted business unit” was added.

5. The format of the time was changed based on the professor’s suggestion that the later

format is more user friendly than the former.

25

Chapter 6. Development Phase II: Enhancement

Development Phase I dealt with the setup and implementation of the application on its

own. The results did not rely on anything located outside of the running computer. In Phase II,

improvements were made to the application components, and the team’s application prototype

was ready to be moved to Barclays’ application environment.

6.1. Server

The improvements in the backend server include real-time data retrieval and the

implementation of database.

6.1.1. Data

In Phase II, MIH data were retrieved as real-time data , and converted into Java Objects

before insertion into the database.

The recent MIH data from the browser were scheduled to be retrieved every five minutes

so that the displayed MIHs on the user interface were always up to date. HttpClient library was

used to download the data from the external browser. Below is the HttpClient process:

Figure 14: HttpClient process

26

The steps above were followed by first creating the instance of HttpClient, and the

instance of one of the methods called getMethod(). This method took the URL as the input and

retrieved the data that the URL points to. The method was executed using HttpClient by calling

the executeMethod() function. After the execution process, the response was read by using the

getResponseBodyAsString() function. In this way, the response downloaded from the external

browser was a string containing the response body (MIH data in XML format). After the data

was downloaded, the connection was released indicating that the downloading process had been

finished. Then the downloaded data was converted into Java Objects using XStream library,

which was also used in the first phase. To periodically retrieve data from the browser, the

ExecutorService method was used to schedule the command to execute every five minutes.

6.1.2. RESTful API

Considering the limitation of available data source, the team decided to begin

implementing a database in the server to store historical data and provide it for users in this

application. The database lays the foundation for a Monthly Reporting function for future use by

senior management.

6.2. Client Side

To better fit with the Barclays’ framework, the team modified the structure of the client

into Model – View – Controller (MVC) architecture. This organization of files separates the

representation of information into three types of components:

 Model

o Manages the application data

o Responds to requests of data information

o Responds to instructions to change data information

 View

o Manages the display of information

o Requests the necessary data to generate the presentation

 Controller

o Interprets the mouse and keyboard inputs from the user

o Notifies associated models or views to change

27

 Figure 15 shows the interaction between each component.

Figure 15. Model-View-Controller structure interaction Invalid source specified.

In this phase, Backbone.js, Underscore.js, Require.js, and jQuery libraries were used.

Backbone.js and Underscore.js provided the structure through models, collections, and views.

Require.js was a module loader and connects each component, which could improve the speed of

the application. jQuery was used in the HTML templates to display data. See Figure 16 for the

file structure.

28

Figure 16: File structure

29

In this structure, MIH was the index page, which only defined the header and the content.

The header was the Barclays logo on the page and content was an empty container to be filled by

templates. To make the screen more user friendly, the team designed a screen to display when

loading the data, which was defined in the index page. The Templates folder contained two

templates – ListViewTemplate for the MIH list page and the DetailViewTemplate for the MIH

detail page. JavaScript was used to define the mechanism of assigning, retrieving, and filling

data into these two templates. This application would load the data only when opening the list

screen. All data was cached temporarily and cleared once the user quitted the application. No

more data would be loaded when going to detail screen or going back to the list screen from the

detail screen.

Besides the above changes in the file structure, the team designed an iPad version for this

application. Because the principles are similar to the iPhone version, the things that needed to be

changed were only the style sheets and a minor change in the ListView. User agent was used in

the application for conditioning statement. The program would determine the device first and

then apply different code.

6.3. Integration

This application is an embedded application in the Barclays Live framework. Since this

application was a prototype for further development, the integration process was not formalized.

To create a working prototype, the team used one employee’s proxy and a cURL command, a

command line tool for transferring data with URL syntax, to post requests to the team’s running

server (Haxx, 2012). The server responded to the request, and then sent data back.

6.4. Result

In this phase, the team was able to retrieve the MIH data from external server every five

minutes and display them to the user interface. To better fit into the Barclays Live framework,

the team made modifications to the structure of the client side and finally used the Model-View-

Controller architecture to make the web pages work. The team also implemented different views

for iPhone and iPad. Finally, the web pages were integrated with the Barclays Live framework

and the application could be viewed using both iPhone and iPad.

30

Figure 17 and Figure 18 are the screenshots of List screen and Detail screen respectively

for the iPhone version.

Figure 17: Final iPhone List Screen

Figure 18: Final iPhone Detail Screen

31

Figure 19 is the screen for the iPad version.

Figure 19: Final iPad screen

32

Chapter 7. Recommendations

The team compiled a list of enhancements from team discussions, research, and meetings.

These recommended enhancements are detailed below.

7.1. Current Subscriptions

Managers at Barclays currently subscribe to specific categories of incidents and receive

an email at the beginning of each day, which provides details about the incidents that were open

during any part of the past 24 hours. A future enhancement would retrieve employees’

subscription preferences and incorporate these into the team’s application.

7.2. Monthly Information Summary

A Monthly Information Summary would include a month-to-date number of incidents for

each application and department. This would provide a centralized location for incident and

metrics trending analysis.

7.3. Recent History

The application only includes incidents that are currently open. It would be beneficial if

incidents that were open within the past 24 hours were also included so that if an incident

occurred and was fixed over night, the appropriate employees would be aware of it.

7.4. Push Notifications

When an incident occurs and/or is updated, a push notification would be sent to

employees with a corresponding subscription election. This would make the notification of

incidents happen in real-time.

7.5. Grouping Screen

A grouping screen would improve the functionality of the application by allowing

employees to choose which department or application they want to see incidents for. This would

also allow employees to see the number of current incidents affecting each Barclays’ application

and department.

33

7.6. Data Filter and Sorter

A data filter would allow users to view only the incidents that are of interest to them

while a sorter would allow the user to view all of the incidents sorted based on specific

characteristics.

7.6.1. Location Based Filter

To further improve the filter, the application could make use of the mobile device’s

location services and filter or sort the incidents based on the user’s location. For instance, if an

employee is located in London, England, the application would show incidents in London before

incidents in Singapore or the United States.

34

References

Allan, A. (2010). Learning iPhone Programming. Sebastopol: O' Reilly Media Inc.

Apache Software Foundation. (2012). What is Maven? Retrieved December 8, 2012, from

Apache Maven Project: http://maven.apache.org/what-is-maven.html

Apple Inc. (2012). Safari Technology Demos. Retrieved October 7, 2012, from Safari Dev

Center: https://developer.apple.com/safaridemos/

Apple Inc. (2012, September 19). Using iOS Simulator. Retrieved December 8, 2012, from iOS

Developer Library:

http://developer.apple.com/library/ios/#DOCUMENTATION/Xcode/Conceptual/ios_developme

nt_workflow/25-Using_iOS_Simulator/ios_simulator_application.html

Apple. (2012, September). iOS Security. Retrieved October 9, 2012, from iPhone in Business:

www.apple.com/iphone/business/integration/

Ascher Consulting & Development. (2007, September 20). What are the advantages of using

JSON? Retrieved October 8, 2012, from

http://ascherconsulting.com/what/are/the/advantages/of/using/json/

Ashkenas, J. (2012, March 21). Backbone.js. Retrieved October 9, 2012, from Backbone.js:

www.backbonejs.org

Barclays. (2012). Our history. Retrieved October 1, 2012, from Barclays:

http://group.barclays.com/about-barclays/about-us/our-history

Bates, M. (2012). Programming in CoffeeScript. Upper Saddle River, NJ: Addison-Wesley

Professional.

Burke, J. (2012). RequireJS. Retrieved October 9, 2012, from RequireJS a JavaScript Module

Loader: http://requirejs.org/

Eclipse Foundation. (2012). Eclipse. Retrieved December 8, 2012, from Eclipse:

http://www.eclipse.org/

Finley, K. (2012, September 12). JavaScript Tops Latest Programming Language Popularity

Ranking From RedMonk. Retrieved December 6, 2012, from Techcrunch:

http://techcrunch.com/2012/09/12/javascript-tops-latest-programming-language-popularity-

ranking-from-redmonk/

Fitzgerald, M. (2004, August 18). Serializing Java Objects with XStream. Retrieved October 7,

2012, from http://www.xml.com/lpt/a/1462

35

Global Finance Magazine. (2012, August 27). World's 50 Biggest Banks 2012. Retrieved

October 8, 2012, from Global Finance: http://www.gfmag.com/tools/best-banks/11986-worlds-

50-biggest-banks-2012.html#axzz28uMU2kmJ

Google. (2012, July 27). Google-gson. Retrieved October 10, 2012, from Google:

https://code.google.com/p/google-gson/

Haxx. (2012, November 20). cURL. Retrieved January 2, 2013, from cURL: Curl.haxx.se/

Hale, C. (2012, November 26). Dropwizard. Retrieved November 27, 2012, from Dropwizard:

http://dropwizard.codahale.com/

Holzner, S. (2009). jQuery: Visual QuickStart Guide. Berkeley, CA, USA: Peachpit Press.

Ivan, I., & Zamfiroiu, A. (2011). Quality Analysis of Mobile Applicaions. Informatica

Economică , 15 (3), 136-152.

jQuery: Advantages and Disadvantages. (n.d.). Retrieved December 2, 2012, from

JSCRIPTERS.COM: http://www.jscripters.com/jquery-disadvantages-and-advantages/

Kabay, M. E. (2009). iPhone Security: Part 2-iPhone App Security Model. Northfield, VT.

Kalnichevski, O. (2008, February 8). Apache. Retrieved December 28, 2012, from

HttpComponents: http://hc.apache.org/httpclient-3.x/tutorial.html

Kopchik, J. M. (2011, December 19). Mobile Banking: Rewards and Risks. Retrieved October 8,

2012, from Federal Deposit Insurance Corporation:

http://www.fdic.gov/regulations/examinations/supervisory/insights/siwin11/mobile.html

Liu, L. (2009). Encyclopedia of Database Systems. New York, New York, United States of

America: Springer.

Reid, J. (2011). jQuery Mobile. Sebastopol, CA, USA: O'Reilly Media, Inc.

Rodriguez, A. (2008, November 06). RESTful Web services: The basics. Retrieved September 17,

2012, from IBM: http://www.ibm.com/developerworks/webservices/library/ws-restful%20/

Rubin, K. S. (2012). Essential Scrum: A Practical Guide to the Most Popular Agile Process.

Addison-Wesley Professional.

Samanta, D. (2004). Object-Oriented Programming with C++ and Java. Prentice-Hall of India

Private Limited.

36

ServiceNow. (2012). About Us. Retrieved September 15, 2012, from ServiceNow:

http://www.servicenow.com/about-us.do

Seven, D. (2012, June 14). What is a Hybrid Mobile App? Retrieved October 6, 2012, from

http://icenium.com/community/blog/icenium-team-blog/2012/06/14/what-is-a-hybrid-mobile-

app-

Stark, J. (2010). Building iPhone Apps with HTML, CSS, and JavaScript. O'Reilly Media.

The jQuery Foundation. (2012). Retrieved October 9, 2012, from jQuery Mobile:

http://jquerymobile.com

W3Schools. (2012). CSS Introduction. Retrieved December 8, 2012, from w3schools.com:

http://www.w3schools.com/css/css_intro.asp

w3schools. (2012). HTML5 Introduction. Retrieved October 7, 2012, from

http://www.w3schools.com/html/html5_intro.asp

XStream. (2012, July 17). About XStream. Retrieved October 7, 2012, from XStream:

http://xstream.codehaus.org/

Yelton, A. (2012). Mobile Websites. Library Technology Reports , 48 (1), 9+.

37

Appendix A

