NVIDIA: A PINMUX CONFIGURATION

TOOL FOR TEGRA

Jordan Feeley, Yiren Wang, Yuan (Will) Wen
March 3, 2017

A Major Qualifying Project Report
submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Bachelor of Science

by:

Jordan Feeley

Yiren Wang

Yuan Wen
Date: March 2017 Approved:

Professor Mark Claypool, Advisor

This report represents the work of one or more WPI undergraduate students. Submitted to the
faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports

on its web site without editorial or peer review.

Table of Contents

Table of Contents
Abstract
Acknowledgements

1 Introduction
1.1 Problem Statement
1.2 Process
1.3 Results
1.4 Roadmap

2 Background
2.1 NVIDIA’s Tegra & Jetson Products
2.2 Jetpack for Linux For Tegra
2.3 Pinmuxing
2.4 Board Configuration File (CFG) Generation Process

3 Requirements
3.1 Pinmux Configuration
3.2 Pad Voltages Configuration
3.3 Board Connections and Pin Constraints
3.4 Seamlessly Generate CFG Files
3.5 Save User’s Work
3.6 Cross Platform Tool
3.7 Package Installation

4 Approach
4.1 GUI Tools From Other Sources
A. Texas Instruments
B. Toradex
C. GUI Tools From Other Sources Summary
4.2 Language Comparison
A. Ability to Run Python Scripts
B. Cross-platform Capability
C. GUI Frameworks
E. Language Summary

(o< N EEE N e Y |

o

12
14
15

17
17
17
18
18
19
19
19

19
20
20
22
24
25
25
26
27
28

4.3 Understand How CFG Files work
A. Understand devmem?2
B. Find the address location of a register
C. Verification of TRM Findings with the default CFG file
D. Check the value of the location on the board
E. Generate a new CFG file with a slight modification
F. Flash the new CFG file to board
4.4 Process
A. Planned Schedule
B. Tools
4.5 Design
A. GUI Mockup
B. Logic Diagram
4.6 Coding
A. Development
B. Third-Party Frameworks and Modules

5 Results
5.1 Developed Features
5.2 Evaluation
5.3 Summary

6 Conclusion
7 Future Work
8 References

9 Appendices
Appendix A Readme.txt
Appendix B Third Party Documentation
Appendix C Box Diagram
Appendix D Mockups
Appendix E Validation Rules
Appendix F Study of Terminologies
Appendix G Tegra default pinmux CFG File
Appendix H Screenshots of GUI Tool
Appendix I Instructions to generate JSON Data file from Excel Spreadsheet

29
29
29
31
31
32
32
34
34
36
38
38
39
41
41
45

49
49
53
54

55
57
59

61
61
66
68
69
71
73
74
76
79

Abstract

NVIDIA produces system on chips called Tegra chips. NVIDIA also produces Jetson
development boards, powered by Tegra chips, which are small computer boards that offer pin
configurations (known as pinmux) for when users want a pin to provide a different functionality.
Currently, pinmuxing is done through a Microsoft Excel spreadsheet. The spreadsheet defines
which pins can be configured to what functionality. After configuring, the spreadsheet exports
the data to intermediate DTS files. Users must then go through a Python script to convert those
DTS files into a board compatible CFG file. Our project is to develop a cross-platform GUI tool
with the same functionality as the spreadsheet, plus new features such as pinmux constraints
depending on user attached boards. After gathering the requirements, we created a GUI mockup
and logic flow diagram. The GUI tool was primarily written in JavaScript and involved many
weeks of iterations with our peers. At the conclusion of our project, we were able to deliver a
functional web app that gives users the ability to configure pins, drag and drop connectors, and

seamlessly export CFG files.

Acknowledgements

We would like to thank the following for their help and guidance during this project.

Stephen Warren - Requirements, feedback, clarifications
Christian Gonzalez - L4T setup, building, flashing
Mark Claypool - Software development advice
Richard Shen - Excel spreadsheet and hardware questions
Winnie Hsu - Logistics and networking
Chris Freeman - Git processes and commands
Sumathi Natarajan - Internal JavaScript code reviewer

Lane Harrison - External web development suggestions

1 Introduction

NVIDIA is one of the tech world’s leading companies in graphics processing hardware,
artificial intelligence (Al), and autonomous vehicles. Currently NVIDIA’s Tegra SoCs (System
on a Chip) provide additional mobile capabilities with power and efficiency [Introducing
NVIDIA]. The Tegra TX1 SoC is one of NVIDIA’s advanced mobile processors. NVIDIA also
produces Jetson development boards, powered by Tegra SoCs. These boards are aimed at
developers, where they can express creativity and create projects such as autonomous navigation
to deep-learning analytics.

The Tegra SoC has over 400-pins that connect to the various boards. Users can configure
the Tegra pins to their own desired usage. In order to flash a board with customized pin
configurations, the developer must use a Microsoft Excel spreadsheet to make changes, then go

through a series of steps to flash the board, discussed in section 2.5.

1.1 Problem Statement

Our project is intended to provide a new cross-platform pinmux Graphical User Interface
(GUI) tool that has all the same functionality as the Excel spreadsheet along with an easy to use
interface and additional configuration options to help NVIDIA personnel and consumers
configure their Tegra SoCs. The pinmux tool provides a GUI for configuring pinmux settings,
validating user options, and specifying pad group voltage. An existing Tegra pinmux Python

script is also used to export a CFG file.

1.2 Process

The development process started with mockups, transitioned into coding and redesigning
based on feedback, and ended with testing and packaging. Before starting the mockups, we
familiarized ourselves on tools such as Trello and Gerrit that would help organize our
development process. We then drafted a GUI mockup along with a logic flow diagram. After
review from NVIDIA personnel, we started coding. We implemented groups of features and
presented and edited them based on feedback. Near the end of our coding cycle, we tested our
the CFG files generated from our tool and the Excel spreadsheet by comparing a text difference.
Lastly, we packaged our web app as distributables for Mac, Linux, and Windows Operating
Systems through the use of a software package called Electron. Development comprised of initial
mockups and diagrams, developing the requirements through weekly iterations, and redesigning

based on continuous feedback.

1.3 Results

The Tegra Pinmux GUI Tool we developed supported all pre existing functionality as
well as added new features that will help the overall user experience. Features that we were able
to develop include full functionality of the existing pinmux spreadsheet, constraints based on a
boards connected in a device tree, import/export of current work, and pad group filtering. The
full functionality of the existing spreadsheet includes modifying the same pinmux settings as
before, as well as exporting to a DTS file. Constraints is a new feature that prevents specified

modifications of pin settings based on what boards were connected to the Tegra SoC. Import and

export of current work is also a new feature that allows users to share their work as well as save
work for later edits. Pad group filtering minimizes a large table and only show the pad groups the

user selected.

1.4 Roadmap

In the following sections, we discuss necessary background information, requirements of
our GUI tool, the approach we took to design a tool that meets those requirements, and the end
results we were able to develop. Background (Chapter 2) provides information about the Tegra
SoC, Jetson development boards, pinmuxing, and NVIDIA’s current process of pinmuxing on a
Jetson board. Requirements (Chapter 3) lists our initial backlog of features that the GUI tool
must have based on NVIDIA requirements. Approach (Chapter 4) documents the steps we took
in order to meet those requirements. Results (Chapter 5) talks in detail, along with screenshots,
about each feature we integrated in our GUI tool. Conclusion (Chapter 6) summarizes the whole

project motivation, statement, and the results we accomplished.

2 Background

Background information about NVIDIA’s Tegra and Jetson products is provided in this
chapter. After the products are introduced, we show the initial flashing of Jetpack for L4T onto a
new TK1 Development Kit. Pinmuxing is also defined as well as its purpose in relation to the
Jetson Development Kit. The process of flashing a pinmux setting, through a Microsoft Excel

spreadsheet, onto a development board is also shown.

2.1 NVIDIA’s Tegra & Jetson Products

NVIDIA is an American technology company based in Santa Clara, California. NVIDIA
designs graphics processing units (GPUs) for the gaming market, as well as system on a chip
units (SOCs) for the mobile computing and automotive market [Introducing The Tegra]. More
recently, NVIDIA has moved into the mobile computing market, where it produces Tegra mobile
processors for smartphones and tablets. For example, the Google Pixel and NVIDIA Shield
Tablet are both powered by NVIDIA’s Tegra SoCs. Tegra mobile processors include the TX1
and TK1 models. NVIDIA also produces Development Kits that are development boards
powered by a Tegra SoC. An example is the TX1 Development Kit and its components is as

follows:

Tegra TX1 SoC: The TX1 SoC (Figure 2.1.1) is a System on a Chip (SoC) developed by
NVIDIA for mobile devices such as smartphones. This SoC contains 256 GPU Cores and a

Quad-core 64-bit ARM A57 CPU.

Figure 2.1.1 A TX1 Tegra chip
Module: The TX1 module (Figure 2.1.2) is for the TX1 SoC, which is located in the
center of the module. The module includes power management controllers, external memory

(4GB LPDDRA4), storage (16 GB eMMC flash), and WiFi/Bluetooth controllers.

i l:i:!":'i\'l;lfh ili'l L1

P AT

Figure 2.1.2 Jetson TX1 Module
TX1 Jetson Baseboard: The Jetson baseboard can be seen in Figure 2.1.3. Users can
use their own board, as long as it connects to the Jetson TX1 module correctly. The baseboard
contains peripheral connectors such as general purpose input output (GPIO) expansion headers,

WiFi antenna, 19v AC power jack, and camera headers.

Figure 2.1.3 TX1 Jetson Baseboard
TX1 Jetson Development Kit: The Jetson Development Kit can be seen in Figure 2.1.4.
The Jetson Development Kit combines the Tegra SoC, Jetson module, and Jetson board. This kit

is sold to users and developers to use for their own applications.

Figure 2.1.4 TX1 Jetson Development Kit

10

2.2 Jetpack for Linux For Tegra

The Linux For Tegra (L4T) package is Ubuntu OS with NVIDIA drivers, packages, and
programs specifically designed for Jetson Development Kits (TK1, TX1 boards). Jetpack for
LAT includes all the L4T board support packages plus additional software such as CUDA,
TensorRT, and cuDNN. As defined on the NVIDIA website, “the Jetson Development Pack
(Jetpack) for L4T is an on-demand, all-in-one package that bundles and installs all software tools
required to develop for the NVIDIA® Jetson Embedded Platform.”[JetPack for L4T] Users who
have a host computer on Ubuntu 14.04, can flash Jetpack for L4T on their target development
board. In Figure 2.2.1, a host machine running Ubuntu 14.04 is flashing Jetpack for L4T onto a
new TK1 development board. After the flash, the target TK1 can then be independently booted
and runs L4T OS. Figure 2.2.2 shows the target device, in this case a TK 1, running some sample
applications from the Jetpack package. Jetpack for L4T includes the board support package,
additional software, and samples to help developers quickly start up with their Jetson

Development Kits.

11

Post Installation Jetson TK1

Following actions will be performed at this stage

FlashOS to TK1 device
-Push and install CUDA on target
-Push and install OpenCV4Tegra on target
-push and install PerfKit on target
Push and install cuDNN on target
Push and install visionWorks on target
Push and install VisionWorks SFM on target
- Push and install VisionWorks Tracking on target
- Cross<compile Gameworks samples and push to target
Crosscompile CUDA samples and push to target

Post Installation

ase put your device to Force USB Recovery Mode, when your

system in Force USB R ode
emove the AC adapter from the dev.
d or sleep state
to the Recovery SB Micro-B)
end U\ ill available USB port on the host PC
adapter to the device.
the POWER button to power on device
i e FORCE RECOVERY button
cose the FORCE RECOVERY button.:
e lsusb command on host will list a line of "N
Vidia Cory 1

Port

ng bctfile(/hom
Hynix_2GB_H5TC
pying bootloader(/hom
g/u-boot.bin)... don
populating kernel
populating jetson-tkl

Down s LL3 inux_for Tegra tkl/bootloz
AFR_HSTC4GE3CFR_RDA_924MHz.cfg) ...
user/Downloads/TK1/Linux_for_Tegra_ tKl

er/ardbeg/B jid
otloader/ardbe &3

to root done

xtlinux.conf.emmc to rootfs... done.

done.

W laking s

stem.img

populating rootfs from /home/

er/Downloads/TK1/Linux_for_Ti

> L&T Chromium Release

L&T Chromium Sources

LAT Feature List

L&T Multimedia API Ref

Places

© Recent

B Pictures

Hvideos

@ Trast
Devices

1508 v0

@ Computer

ume

Network

15 GB Vol

places

© Recent

cancel

@ Pictures
H videos
(o}

Trash

Devices

L4T Documentation

15 GB Volume
@ Computer

Network

L&T Jetson TX1 Driver

& Browse Netwark
2 col

nect to Ser

we canimprove your experit

Fl

K :R

ume home

ubunty

report_ip_to_host.
sh

NN B

mnt

N :N

3 B 4 1031PM 1%

tegrastats

Figure 2.2.1 Host Machine (Ubuntu 14.04) flashing Jetpack L4T onto a TK1.

A post installation screen is present, summarizing all the packages flashed on the TK1.

CUDA FFT Ocean Simulation

6 ubuntu@tegra-ubunt
ubuntu@tegra-ubunt
-

~$./run_ganeworks_sanple.dwtHaar1D
cd NVIDIA_CUDA-6.5_Sampdxtc
:~/NVIDIA_CUDA-6.5_SamplesSeigenvalues
e 6 fastWalshTra;
FOTD3d

recursiv
reduction
ubuntu@tegra-ubunt calarprod

egmentationTreeThrust

archingCubes simpleAtonicIntrinsics
i LumeF i simpleCallback
untu:~/NVIDIA_CUDA-6.5_Samples/ sinplecubenapTexture
: No such file or directory > PLeCUBLAS
implecubAzGL
sinpLeCUFFT
SinpLeCUFFT_2d_HGPU
defines.h Hakefile
marchingCubes
ubuntugtegra-ubuntu:-/NVIOTA. CUDA
ngCubes
[./marchingCubes] -
MarchingCubes Hiddle mouse button
grid: 32 x 32 x 32 = 32768 voxels Right mouse button
max verts = 162480 W' ke
Read './data/Bucky.raw', 32768 bytes h\’.UDA FFT Ocean Simulation]

[

Starting... Left mouse button - rotate
- pan
- zoom

- toggle wirefrane

w
a:
*
|

B

.5, aamp\cs/b\n/armv?\/ Linux/re’

sortingNetworks
stereoDisparity
template
template_runti
threadFenceReduction
threaduigration
threadnigration_|
transpose
UnifiedHenoryStreans
oradd

RAN
RAH
RAN
RAH
RAH

RAI
nel3z.ptx RAM
RAI

RAH
RAH
RAH
RAH
RAH

RAI
ase/gnueabihfRAH
RAI

RAH
RAH
RAH
RAH
RAH
RAN
RAN

1071/1892M8
1071/1892M8
1071/1892M8
1072/1892M8
1072/1892M8

M 1072/1892MB

1072/1892MB

M 1072/1892MB

1072/1892MB
1072/1892MB
1072/1892MB
1072/1892MB
1072/1892MB

M 1072/1892MB

1672/1892MB

M 1672/1892MB

1072/1892MB
1072/1892MB
1072/1892MB
1072/1892MB
1072/1892MB
1072/1892MB
1072/1892M8

(Lfb,
(b
(1fb
(1o
(1fb
(1fb.
(1fb
(1fb
(1fb.
(1o
(lfb
(1fb
(lfb
(b
48
48
(b
(1fb
(1fb
(1fb
(b
(Lfb.
(1fb

107x4MB)
107x4MB)
107x4KB)
107x4MB)
107x4M8)
107x4M8)
107x4MB)
107x4M8)
107x4MB)
107x4MB)
107x4M8)
107x4MB)
107x418)
107x4M8)
107x4HB)
107x4HB)
167x4MB)
167x4HB)
107x4HB)
167x4M8)
167x4MB)
167x4MB)
107x4MB)

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
<pu
<pu
<pu
<pu
cpu
cpu
cpu

[55%,100%,0ff,0ff]@-1
[58%,100%, 07, 0f F1@-1
[54%,100%, 07, 0ff1@-1
[59%,100%, 07 ,0ff1@-1
[63%,100%,0ff,0ff]@-1
[55%,100%, 07, 0ff1@-1
[46%,100%,0ff ,0ff1@-1
[48%,100%, 07 ,0ff1@-1
[54%,100%,0ff ,0ff1@-1

[53%,100%, 07, 0f f1@-1

[48%,100%,0ff,0f f]@-1

[51%, 987

3
VDE
VDE
VDE
VDE
VDE
VDE
VDE
VDE
VDE
VDE

e)

J41AM 2

0 EDP limit 0
® EDP limit 0
8 EDP limit 0
0 EDP limit 0
8 EDP limit 0
8 EDP limit 0
® EDP limit 0
0 EDP limit 0
8 EDP linmit 0
8 EDP linit 0
0 EOP linit 0

,off,0ff]@-1 VDE @ EDP linit @

[53%,0ff,0ff,86%]@-1 VDE @ EDP linit ®

[52%,0ff,of f,100%]@-1
[51%,0ff,of f,100%]6-1
[48%,0fF, of f,100%]0-1
S1%,0fF, of f, 100%10-1
[48%,0f f,of f, 100%1@-1
[53%,0ff, of f,100%]@-1
[52%,0ff, of f,100%]0-1
[59%, of F, off 100%]0-1
[51% ,160%]@-1
[a8% .o % ofF, 100%75-1

VDE
VDE
VDE
VDE
VDE
VDE
VDE
VDE
VDE
VDE

CUDA FFT Ocean Simulation

0 EOP linit @
0 EDP linit @
0 EDP linit @
o EDP linit ©
o EDP linit ©
0 EDP linit ©
0 EDP linit ©
8 EDP linmit ©
8 EDP linit ©
9 EDP limit @

Figure 2.2.2 TK1 running various Jetpack application samples including a CUDA Simulation

12

2.3 Pinmuxing

Jetson TX1

— i
045 w/Magnetics «——» G usei
[SerialPort —— USE_S50
[Bluetooth |a— USB2 [=
PEX1 |4 »
GPIDs/| - =
‘ S pEE SOMMCl4—> SOCard |
«— SATA4—> SATA__|
i
5PI2 | Tegra X1
DSI[3:0]
« »[SPI1 DP1
Misc Expansion 1251 DFPO
% »{GPIOs/Control GPI
= 1252 | Csi[5:0]
‘ ik by I:::ww‘w | [PDDRA [eMMC 5.1] i2C_CAM
. 4GB 16GE CAMx_MCLE
> — AUDIO_MCLK PiDIs/Control
Audio Codec - 1250 WiFi/BT
< ¥ GPIOs/Control
GM!!I‘II‘II Conn. #1 Antenna Conn. #2 Q

Figure 2.3.1 Jetson TX1 block diagram

Pinmux is the software controlled configuration of a pin’s functionality. To help
understand the concept in more detail, Figure 2.3.1 shows a block diagram of a Jetson TX1
Development Kit. Blocks on the perimeter indicate components on the Jetson Carrier Board
(CVB). For example, the 19v AC power jack, WiFi antenna, and SD card slot are apart of the
Jetson board. The big teal block in the center is the Jetson Carrier Module (CVM), which houses
the Tegra TX1 SoC (in light green). The CVB has peripheral headers (groups of pins) such as
USB, HDMI, DSI, GPIO that connect to the CVM. The connections are made through physical
pins touching on the CVM and CVB. Inside the CVM, there are also pins that must communicate

with the TX1 SOC.

13

Pins can generally be left to serve their default usage, serve as a GPIO, or be unused. If
we take a look at the SATA pin group on the middle right hand side, all the pins in that group

can be pinmuxed to be a default SATA usage, set as a GPIO pin, or set to unused. A developer

would select pinmux to GPIO if they do not plan to use the SATA connection and instead wants

to use the pin for GPIO. If a developer does not plan to use that pin at all, then the SATA pin can

be pinmuxed to be unused.

Along with pinmux configurations, developers can also control the upper bound of
voltage outputted from a pin group. This is called controlling the pin group’s pad voltage. For
example, by setting the pad voltage in the pin group “UART1” from 1.5v to 3.3v, the output

high voltage of all pins in that pin group are changed from 1.5v to 3.3v.

2.4 Board Configuration File (CFG) Generation Process

Previous to our project, the users generated CFG files using an Excel spreadsheet. In
order to flash a board with the customized pin configurations, the user used the spreadsheet to
make changes on pinmux settings, then executed Visual Basic macros to generate intermediate
device tree source (DTS) files. The DTS files were moved to a Linux platform and the user
executed the dos2unix command to change the line endings to Unix format. Finally, the user
executed a Python script, inputting in the DTS files, to generate configuration (CFG) files. The
new CFG files could then be moved to a directory on the host machine and be flashed onto the

board. A picture of this process is in Figure 2.4.1.

14

Edit XIL.SX

E Visual Basic

Figure 2.4.1 CFG File Generation Process Graph

python

This long process not only requires lots of user interaction, such as moving the files to the
appropriate OS, but also creates the intermediate DTS files that have no use to the end user.
Since the Excel spreadsheet can only be opened on a Windows computer, while the CFG files
must be flashed on a Linux host machine, the process of transferring files between operating

systems results in extra work for a user.

15

3 Requirements

The Requirements section states what features were required for the Tegra Pinmux GUI

Tool, as specified by NVIDIA developers, as well as the reasons for each of them.

3.1 Pinmux Configuration

NVIDIA used an Excel spreadsheet to configure pins and generate CFG files that could
be flashed onto the Tegra board. Our tool should contain all the same functionalities that the
Excel spreadsheet had. The spreadsheet contained hundreds of rows, each row representing a pin
and the pinmux options it had. The user selected the pin functionalities in the dropdown menus.
The spreadsheet also had a data validation function, which would mark the cells as red if the pin
was configured incorrectly. Our tool should configure the same amount of pins with the same
options as the spreadsheet, and should also detect and show errors if the pins were assigned

wrong configurations.

3.2 Pad Voltages Configuration

Another requirement was to include pad voltages in our tool. The spreadsheet had voltage
configuration along with the pinmux settings. Pad voltages are only configurable for the pad
groups (groups of pins with the same default functionality.) A pad group should only be assigned
one voltage, and this voltage will affect all the pins in that group. Therefore our tool should have
a separate tab for pad voltages, and changing the voltage would affect all the pins under that pad

group in the pinmux settings.

16

3.3 Board Connections and Pin Constraints

A functionality that the Excel spreadsheet did not have, was to constrain pinmux options
based on board connections. While a Tegra SoC is the initial connection with no constraints
applied, when a user adds a module and a board, the GUI tool should constrain some pins to a
specific usage. The specific constraints applied would depend on data files read in by our tool.
The tool needs to include a tree representation of which boards are connected, and constrain pins

depending on those board connections.

3.4 Seamlessly Generate CFG Files

The new GUI tool should generate the same CFG files as the spreadsheet does to avoid
flashing incorrect pinmux settings to the board. In Section 4.3, we prove that if two CFG files are
similar, then they result in the same pinmux settings. Along with the requirement to produce the
same CFG, the GUI tool must also remove intermediate DTS files. Abstracting DTS from users
will reduce much of the overhead (refer back to Figure 2.4.1) to generate CFGs. The new CFG

file generation method is shown in Figure 3.4.1.

Figure 3.4.1 New CFG File Generation Process Graph

17

3.5 Save User’s Work

A feature in any tool would be to the ability to save and resume one’s work. In relation to
the Tegra Pinmux GUI Tool, saving work would save all the pinmux changes the user has made.

Importing from a save file bring the exact same state as before.

3.6 Cross Platform Tool

An old issue about the spreadsheet was that it was in .xIsx format and had only worked
on Windows. Our new tool should be cross-platform to avoid Windows dependency. It should be

able to run on Windows, Linux and Mac OS platforms and perform the same functionalities.

3.7 Package Installation

Finally, we need to combine our tool into a package for easy user installation. If we
decided to distribute a raw web application with a locally hosted server, then the user needed to
install the Node.js and Node module dependencies on his own machine. The web tool needs to
be packaged into a simple installer for the user to avoid complicated dependency installation

instructions.

4 Approach

Approach documents the steps our team took in order to meet our requirements. We first
analyzed GUI tools from other similar embedded system manufacturers. Then, given many

different languages to write a GUI tool in, we compared and contrasted the languages. A very

18

simple pinmux flash was done on a Jetson board to verify a pin’s change in configuration. We
then familiarized ourselves with Trello, our scrum board, and Gerrit, our code review software.

The last step before starting to code, our team created a GUI mockup and logic flow diagram.

4.1 GUI Tools From Other Sources

Before starting the Tegra Pinmux GUI tool design, we analyzed GUI tools from two
other similar products during our research. The main one was from Texas Instruments, and the

other one was developed by Toradex.

A. Texas Instruments

Texas Instruments (TI) has two versions of their pinmux GUI tool - one for desktop and
one on the web. As we can see in Figure 4.1.1, the web version is more up to date and supports
the OS X platform while the desktop version is archived and only supports Windows and Linux.
Seeing the cloud version as more up to date, we inspected TI’s GUI tool and found various

design patterns that we may want to consider.

Buy from Texas
Instruments or Third Current Version

Part Number Party Status Version Date Host 0s Description
Free ACTIVE +2andv3 previous Windows, Standalone desktop versions of the tool Device and S support
PINMUXTOOL_DESKTOP_PREVIOUS i W er aie

Archived version of desktop Pin Mux tool supperting AM35x, AM/DM37x,

DME16x. V4 is recommended for new Sitara designs L

o . Free ACTIVE v4 09 Sept Windows, Browser-based tool access via TI Cloud Tools portal.
PINMUXTOOL-V4-CLOUD: 2015 Limx, 0S X Automatic solving, high-level requirements entry for
Pin Mux tool f; AMS572x, AMS571x, CC3200, F2807x, = configuring device mux settings
F2837D, F2837x5, MSP 4C123x, and TMAC120x = b

Figure 4.1.1 Two versions of TI’s pinmux GUI tool
First one is an old version to run on Windows and Linux,

while the second tool runs on the cloud and is version 4.

19

In Figure 4.1.2, we can see that TI’s Cloud based GUI tool first starts out with allowing
the user to create a new pinmux design by selecting from a variety of devices, parts and

packages, or to load a previous existing design.

D Pin Mux Tool - PINMUXT.., 3¢ € TI PinMux - T Cloud Tools % | 4

€3 Dam

i# TI PinMux

lev.ti.com/pinmux/app.htmi#/default/ c Q, Search

Welcome! To get started with Tl PinMux, please use one of the below options to start or continue your design.

Device: 66AK2G02_beta ~
Part: Default v
Package: ZBB v

~ Open an Existing Design

a saved .pinmux file to continue your design.

~ Saved Designs on myTI Cloud (0.17MB of 100MB used)
x _autosaver.pinmux 2016-12-08 20:58:17

Figure 4.1.2 TI pinmux selection page
Start screen of TI’s GUI Tool. Able to select from a variety of devices,

parts, and packages or load a pre-existing design.

Moving on to the actual pin configuration screen, in Figure 6.1.3, the layout was split into
three sections: Peripherals, Requirements, and Output. The Peripherals section has the domain of
all possible pins to configure on the TI Board; Requirements is the section to set the pin
constraints, and Output is to view the design summary, generate files (.c and .h files to simulate

your requirements), and visually see the pin layout.

20

R Pin MuxTool - PINMUXT... X € T/ PinMux-Ti Cloud Tools X | 4

Peripherals

(/2) DCAN

Open

(/1) DDR

(/1) DEBUGSS

(1) Dss

(/2) eCAP

(/7) eHRPWM

(1) EMAC

(/3) eQEP

/2) GPIO

(/1) GPMC

(13) 12C

(/3) McASP

(/1) McBSP

(/1) MDIO

(/1) MLB

(/2) MMC

Save Abou
Requirements

CPTS (0of 1 Added) ~

R

@ Click the "Add" button to add a CPTS to your design.

Name:

Preferred Voltage:

10 set:

®CPTS Signals +

HW1_TSPUSH Any o o
HW2_TSPUSH Any o o
REFCLK_N Any

REFCLK_P Any

HTs_comp Any o o
FTs_SYNC Any o o

>

F 66AK2G0Z beta < willweni@gmail.com

Output

» Design Summary
~ Generated Files

(/1) PCIE

(/1) PRUSS0_eCAP

(/1) PRUSSO_IEP

(/1) PRUSS0_MDIO

(/2) PRUSS0_PRU

(/1) PRUSS0_UART

(/1) PRUSS1_eCAP

(/1) PRUSS1_IEP

(/1) PRUSS1_MDIO

(/2) PRUSS1_PRU

(/1) PRUSS1_UART

JES RS R PR USSR Y R O S P PR R S) S S 8 P 5) P) Y

| category filter: [All v
66AK2G02_gpevm_pinmux_data.c starterware &
66AK2G02_pinmux.h starterware &
devicetree.txt devicetree &
PinmuxConfigSummary.csv sV &
@ Total Files &
~ Pin Layout

FTETaT GPIO Used (o]
<EOoWL 0Ty Ezar-o5>3>I222Y
25 GPIO Available @B}
24
23 0
22
21 (1]
20
19
18
17
16
15
14
13
12
1
10
9 []
8
s ®
6
5 ®
1
3
2
1 9 00
o

Figure 4.1.3 TI pinmux configuration page

Main configuration page contains peripherals (contains pins that can be modified) on the far left,

pin settings in the middle, and a design summary with relevant device files and a pin layout.

Viewing TI’s GUI tool from the front end gave us information about important sections

to see from an engineer’s standpoint. It also showed that TI has pushed forward to use a

web-based platform for more OS compatibility. These observations influenced our decision to

make a web app vs a desktop app, and design our GUI mockup,

B. Toradex

Another GUI tool was made by Toradex, a company that produces System on Modules

(SoM). On the download page of their website (Figure 4.1.4), Toradex only has a Windows

version of their pinout designer, being as current as December 3rd, 2016. Although Toradex did

21

not have a cloud platform, we decided to investigate into their GUI tool and see for layout

similarities with TI.

Toradex Pinout Designer

File Name

1 [f toradex pinout designer ¥13.4.0 2016-11-03.zip
2 [I§ toradex pinout designer v1.3.3.0 2016-09-30zip
3 [} toradex pinout designer v1.3.2.0 2016-03-31zip
4 [I§ toradex pinout designer v1.3.1.0 2016-02-10zip

n

\I§ toradex pinout designer v1.3.0.0 2015 07 16.zip

6 [toradex pinout designer v1.2.0.0 2015 05 13.zip

~

[F§ toradex pinout designer v1.1.0.0 2015 03 30.zip

2 [toradex pinout designer v1.0.0.0 2015 02 10.zip

Description

Version 1.3.4.0

Version 1.3.3.0

Version 1.3.2.0

Version 1.3.1.0

Wersion 1.3.0.0

Version 1.2.0.0

Version 1.1.0.0

Version 1.0.0.0

Revision

12

1

~Toradex

Version

File Size

7.62 MB

7.61MB

7.62MB

7.62MB

7 MB

8.42MB

8.41MB

6.9 MB

info@toradex.com

Figure 4.1.4 Toradex Pinout Designer versions

Displaying 1-8 of 8 results.

Submitted Time

2016-11-03 19:41

2016-09-30 20:45

2016-03-31 14:33

2016-02-10 21:46

2015-07-16 14:56

Current

Yes

Only containing one designer for windows, but went through as many as 12 revisions.

Very up to date with the last version being uploaded at 11/03/16.

The Toradex Pinout Designer shares all the three similar categories - Peripherals,

Requirements, and Output, though named differently and on different degrees of detail. The

Peripherals category nearly mirrors the TI’s, but the Requirements on the Toradex does not allow

easy on-the-fly editing of the pin values. The Output category also differs because while Toradex

shows the pins being used and pins in conflict, it does not show the pin layout nor the design

summary while TI does.

22

File Modules View Help

Pin Mwdng Project

>

Category Category/Signal Fin Conflicts IMX6 Function

[s =~ ADC

ADC_AN1_ADCD |-ADC_AN1_ADCO 305 STMPES11_IND_GPIOD|
ADC_AN1_ADC1 ADC_AN1_ADCT 307 STMPEB11_INO_GPIO1
ADC_AN1_ADCZ ADC_AN1_ADC2 309 STMPEST1_INO_GPIO2,
[1+ ADC_AN1_ADC3 L ADC_AN1_ADC3 31 STMPES11_INO_GPIO3
B - ANALOG_AUDIO

@] - BUS

B[] -~ caM

B « CAN

] « CLK

] « csl

w{] « CTRL

& - DIGITAL_AUDIO
& + DSl

&{] ~ ETH

wB{] -~ GPI

] « GPIO

&{] + GPO

@] -~ HOMI

B{] - 1

@] -~ KEYPAD

g{] « LCD

] ~ LVDS

E{] - MISC

w] ~ MMC

] « PCIE

] ~ PaM

] - SATA

] « SD

&{] - SPDIF
]~ SPI

&[] - STRAPPING
w] « TIMER

] . ToucH v >

Pins selected: 4 / 242 Pins not standard: 0 Pins not compatible: 0 Pins in conflict: 0

TTADTA B BV fanmthar itk TTADTH A TVR Cilkar iiea a1l #he mianals fam inrtanen B e fam £ ™ = = =y

Figure 4.1.5 Toradex Pinout Designer Program

Latest 1.3.4.0 version downloaded from the Toradex website. Left side is similar to TI’s
peripherals panel, and the center is also similar to TI’s pin setting panel. The difference is the
scope of the design summary panel. Toradex has the bottom row for a summary, while TI has a

dedicated column with a Pin Layout diagram.

C. GUI Tools From Other Sources Summary

After looking at the pinmux GUI tools from TI and Toradex, we concluded that a
web-based tool is more scalable on different OSs. We also advised that our tool should be split

up into three categories: pin selection, pin editing, and pin summary.

23

4.2 Language Comparison
There were several programming languages that we could choose from to implement our
GUI tool: Python, Java, C++ (with Qt) and JavaScript (with a backend Node.js). We compared

them from different aspects in the following sections, and discuss our evaluation below:

A. Ability to Run Python Scripts

NVIDIA has already developed some upstream pinmux tools to configure the pins and
boards, and those scripts were written in Python [Tegra-Pinmux-Scripts]. Our GUI tool should
be able to execute some of these scripts directly in order to connect with the board. We found out
that all four languages can run Python scripts, and the main commands (or libraries) for each of
them are listed in the Figure 4.2.1. Most notably, writing our tool in Python means the user
already has Python installed. However, if we developed in Java, C++, or JavaScript, creating a

child process needs to assume a user has Python installed, otherwise the OS won’t find Python.

24

Python 1. from sys import path

path.append(path_to file)

// the above two lines are omitted if file is in the same directory
import [file name]

2. os.system("script.py 1")

Java Process p = Runtime.getRuntime().exec("python path/script.py");

C++ with Qt 1. Using the library “py_embed”
2. Using the Python/C API

Node.js 1. Using the library “python-shell” (MIT license)
(JavaScript) 2. var spawn = require("child process").spawn;

var process = spawn('python', ["path/to/script.py", argl, arg2, ...]);

Figure 4.2.1 Comparison: how to run python scripts

B. Cross-platform Capability

The GUI tool we would create should be able to run on different operating systems,
including Windows, Linux, and Mac OS. Linux, for example, has different distributions with
variance in compilers and libraries, so we needed to pay attention to the libraries we wanted to
use and test the application on all the platforms in the end. Figure 4.2.3 lists the basic

requirements for a platform to run the GUI tool.

Python Python 2 or 3 installed

Java JRE support (has different versions)

C++ with Qt G++ (GNU C++ Compiler) installed

Node.js A web browser (Chrome, IE, Firefox, etc.) and Node.js installed
(JavaScript)

Figure 4.2.3 Comparison: platform requirements

Meanwhile, operating systems have different UI guidelines. A cross-platform application
will have similar functions on all the OSs, but the UI design can be very different depending on
native Ul components of the platform. If we used Python, Java or C++ to develop the GUI tool,
we must adjust the Ul appearance and even the flow of the application to fit different platforms.

Using JavaScript along with a web browser may not be a common solution for
implementing a GUI tool, but it does not have the problem of varying UI designs. Since the Ul is
always loaded inside a web browser, it can have a common look and the user will not feel
different. The only problem left would be to scale the web pages for different sizes of screen,

while most components and features can still operate in the same way.

C. GUI Frameworks

We also looked into the GUI frameworks these languages support. Using existing
powerful frameworks could make the UI look good as soon as we came up with the general

design, and save our time for adjusting the Ul components. The frameworks are listed in Figure

4.2.4.

26

Python Cross-Browser: PyJamas

Cross-Platform: AVC, Kivy, etc.

Java 1. Swing, SwingX
2. Window Builder (Eclipse plug-in)

3. Pivot
C++ with Qt 1. Qt
JavaScript 1. Bootstrap

2. Electron (Framework for desktop application)

Figure 4.2.4 Comparison: GUI frameworks
E. Language Summary
All of the four languages are powerful enough and have the functionality required for our
GUI tool. They are able to run the pinmux Python scripts, work on multiple platforms and have
strong GUI framework support. Thinking about the simplicity of UI design, we decided to use
JavaScript with a web browser because it was the easiest way to make our application
cross-platform. Also the code on the client and server side would be written in JavaScript, as
Node.js runs JavaScript. However, using Python might be preferred by NVIDIA since their
Linux 4 Tegra upstream team had more experience with it. In that case we needed to study

Python in order to understand the existing scripts, and learn about GUI design using Python.

27

4.3 Understand How CFG Files work

Before starting working on our tool, we would like to understand how the CFG files work
and get familiar with the board and the flashing process. Our first task was to try change the
pinmux configurations ourselves. We could change one pin configuration in the spreadsheet,
flash the new CFG file generated to the board, and verify that the pin had been changed. The
process of completing this task is documented below.

A. Understand devmem?2

“devmem?2” is a program pre-installed with the Jetson package, so it can be found on the
Ubuntu OS installed in the board. Given an address location in the memory, the program can
return a 4 byte value at that location.

B. Find the address location of a register

In order to get the address location to pipe into devmem2, we had to read the Technical
Reference Manual (TRM) of the TX2 SoC to find where a specific pin is located in memory. In
this task we used GPIO_SW1_PFF1 as an example. We had to check the values in both Figure

6.3.1 and 6.3.2.

List of headers
corresponding to this
aperture

%ﬂggﬁ?}zzﬁrm flaine Parent Aperture Address Start Address End Locality

0x0c301000 arpadctl_SYS.h,

PADCTL_A12 AON_PADCTL_D
arpadetl_SYS_serh

0x0c30 17 ‘

Figure 4.3.1 Documentation showing where in memory the PADCTL A address starts

28

14.32.31 PADCTL SYS Registers

14.32.31.1 PADCTL_SYS_GPIO_SW1 0
Offset: 0x0 | Read/Write: R/W | SCR Protection: SCR_GPIO_BIlll 0 | Reset: 0x00000458

Bit Reset Description

12 DISABLE E_SCHMT:
0 = DISABLE
1=ENABLE

11 DISABLE E_OD:
0 = DISABLE
1=ENABLE

10 HSIO GPIO_SF_SEL:
0=GPIO
1=HSIO

8 DISABLE E_LPDR:

0 = DISABLE
1=ENABLE

6 ENABLE E_INPUT:
0 = DISABLE
1=ENABLE

4 TRISTATE TRISTATE:
0 = PASSTHROUGH
1=TRISTATE

3:2 PULL_UP PUPD:

0 =NONE
1=PULL_DOWN
2=PULL_UP
3=RSVD

1:0 RSVDO PM:

0 =RSVDO
1=RSVD1

2 =RSVD2

3 =RSVD3

Figure 4.3.2 Documentation showing the specific register offset of the address starting location

Along with getting the register’s address location, the TRM allows us to interpret the
value bit by bit. For example, bit 4 represents the tri-state value. If bit 4 is a 0, the tri-state is
passthrough (disabled); if it is a 1, the tri-state is enabled. This is also the bit we specifically

targeted in the spreadsheet.

29

C. Verification of TRM Findings with the default CFG file

From the TRM, we see that the GPIO _SW1 pin has an offset of 0x0 from the starting
address location of PADCTL_SYS, which is 0x0c301000. Adding the two together results in
GPIO_SWI being located at 0x0c301000.

We can now verify the address location by checking the default CFG file that is flashed
onto the TX2 Board. To find out which CFG file is used for pinmux configuration, we checked
the flashing configuration file “P2771-0000.conf.common”. The line 217 of the file said
PINMUX CONFIG = "tegral 86-mb1-bct-pinmux-quill-p3310-1000-a00.cfg", so we would
check this CFG file for the pin.

This CFG file can also be found in Appendix G. The line 27 in that CFG file is
“pinmux.0x0c301000 = 0x00000058 #gpio swl pffl”. The words after “#” is the comment of
the line, so this line means the location 0x0c301000 is set to 0x58. The word “gpio_swl pffl”
verified our assumption, which told us that 0x0c301000 is the location for the pin
GPIO _SWI1 PFFI.

D. Check the value of the location on the board

ubuntu@tegra-ubuntu:-~-% sudo ./devmem2 0x0c301008
[dev/mem opened.

Memory mapped at address e@x7f7ffz1e00.
Value at address 0x0C301000 (0x7f7ff21000): 0x00000058

Figure 4.3.3 Running devmem?2 on the TX2 Development board,

retrieving the value at address location 0x0c30100.

30

As shown in the Figure 4.3.3, running devmem?2 on a newly flashed board for the given
location 0x0c301000 returned the expected result 0x58. Since the board was flashed with the
default CFG file we found, the value matched the one in the file.

E. Generate a new CFG file with a slight modification

Next we opened the spreadsheet T186 customer pinmux.xlsm and switched to the
“P3310-1000-A0-A2-CVM-Config” tab (Figure 4.3.4), because the name matched the

PINMUX CONFIG value in the file p2771-000.conf.common.

1 DATT wddio_sdmmez_h cz BDSOMEN_CFCRI0_WRVDPIPIFTYC [20K pd [EGOS_TXC
) CRMO wddic,_sdmme2_h cz BOSOMEN_CFCRA0_WRVOPPIRPTYE | 20k pu |EQOS_TDO

! DATD vddio sdmme2 h cz EOSOMEM CFCRA0 YXVDPPIPTYE | 201 pu_ |[EGDS TD1
E3301-1000-PB-QSPI-Config P3310-1000-A0-A2-CVM-Config P3310-1000-A03-CVM-Config P3310-1000-CO-C

Figure 4.3.4 Spreadsheet tabs showing the different models of CVMs
We changed the gpio_swl_pffl pin from tri-state enabled to disabled. Then we generated
three DTS files using the spreadsheet macros, copied them to Linux, ran dos2unix to change the
line endings to Unix format, and then ran the Python script DTS2CFG.py to generate the CFG
file.
E. Flash the new CFG file to board
We replaced the old CFG file in the directory with the new edited one. Figure 4.3.5

below is a text difference between the two CFG files.

31

pinmux.0x0c303020 = 0x00000458:
pinmux.0x0c303028 = 0x00000452
pinmux.0x0c303030 = 0x00000402
19, pinmux.0x02440020 = 0x00000550;
able
120. pinmux.0x02440030 = 0x00000560;
pinmux.0x02434058 = 0x00000000;
122, pinmux.0x02434050 = 0x00000058;
23. pinmux.0x02434048 = 0x00000000,
4. pinmux.0x02434040 = 0x00000058;
pinmux.0x02431018 = 0x00000058;
pinmux.0x02431010 = 0x00000000,

pinmux,0x02432020 = 0x00004002
pinmux.0x02433020 = 0x00004058;

132, pinmux,0x02433038 = 0x00004054

15. pinmux.0x0c303018 = 0x00000400: # can0_dout pz2: can0, tristate-disable, input-disable

; # can0_din_pz3: can0, pull-up, tristate-enable, input-enable
; # can_gpioD_paa0: dmic5, tristate-enable, input-enable

; # can_gpiol paal: dmic5, tristate-disable, input-disable

; # dp_aux ch0 hpd ppo: dp, tristate-enable, input-enable, io_high voltage-dis 319. pinmux.0x02440020 = 0x00000550;

; # hdmi cec_pp2: hdmi, tristate-disable, input-enable, io_high voltage-enable
: # gpio_wanl_pb4: rsvd0, tristate-disable, input-disable

; # gpio wan2_pbb5: rsvd0, pull-up, tristate-enable, input-enable
; # gpio_wan3_pb6: rsvdo, tristate-disable, input-disable

; # gpio wan4 pc0: rsvd0, pull-up, tristate-enable, input-enable
: # gpio_aud0 pj5: rsvd0, pull-up, tristate-enable, input-enable
; # gpio audl pj6: rsvd0, tristate-disable, input-disable

7. pinmux.0x02432028 = 0x0000405a; # dmic4 clk pm3: rsvd2, pull-up, tristate-enable, input-enable
; # dmic4_dat_pm4: rsvd2, tristate-disable, input-disable

; # gpio_pq4_pid: rsvd0, pull-up, tristate-enable, input-enable
pinmux.0x02433028 = 0x00004000;
131, pinmux.0x02433030 = 0x00004058;

rsvd0, tristate-disable, input-disable

: rsvd0, pull-up, tristate-enable, input-enable
; # gpio_pq7_pi7: rsvd0, pull-down, tristate-enable, input-enable

$33. pinmux.0x02430020 = 0x00000001; # gpio caml pn0: rsvdl, tristate-disable, input-disable

315. pinmux.0x0c303018 = 0x00000400
316. pinmux.0x0c303020 = 0x00000458;
317. pinmux.0x0c303028 x00000452
318. pinmux.0x0c303030 x00000402,

able
320. pinmux.0x02440030 = 0x00000560,
321. pinmux.0x0243405

0x00000058;
0x00000000;

8. pinmux.0x0243202
pinmux.0x0243302!
0. pinmux.0x0243302
J31. pinmux.0x02433030
332. pinmux.0x02433038 =

0x00004002;
0x00004058;
0x00004000:;
0x00004058;
0x00004054;

58; # gpio wand pc0

; # can0_dout _pz2: can0, tristate-disable, input-disable

; # can0_din_pz3: can0, pull-up, tristate-enable, input-enable

; # can_gpiod_paa0: dmic5, tristate-enable, input-enable

; # can_gpiol paal: dmic5, tristate-disable, input-disable

; # dp aux chO hpd ppO0: dp, tristate-enable, input-enable, io high voltage-d

; # hdmi cec_pp2: hdmi tristate-disable, input-enable, io high voltage-enable
; # gpio wanl pb4: rsvd0, tristate-disable, input-disable

58; # gpio wan2 pb5: rsvd0, pull-up, tristate-enable, input-enable

; # gpio_wan3_pb6: rsvd0, tristate-disable, input-disable

rsvd0, pull-up, tristate-enable, input-enable
wvd0, pull-up, tristate-enable, input-enable
vdO, tristate-disable, input-disable

; # gpio_aud0_pj5
; # gpio audl p

0x0000405a; # dmic4 clk pm5: rsvd2, pull-up, tristate-enable, input-enable

: # dmic4_dat_pm4: rsvd2, tristate-disable, input-disable

; # gpio_pqd pid: rsvdo, pull-up, tristate-enable, input-enable

; # gpio_pg5_piS: rsvdo, tristate-disable, input-disable

; # gpio_pq6 pi6: rsvd0, pull-up, tristate-enable, input-enable

; # gpio_pq7_pi7: rsvd0, pull-down, tristate-enable, input-enable
; # gpio caml pnO: rsvdl, tristate-disable, input-disable

134 [pinmux.0x0c301000 = BX00000058; # gpio_sw1_pif1: rsvd0, pull-up, [Fistate-enable, input-enable

135, pinmux.0x0c301008 = 0x0000005;

gpio_sw2_pft2: tsvd0, pull-up, tristate-enable, input-enable
pinmux.0x0c301010 = 0x00000058; # gpio_ sw3 pff3: rsvd0, pull-up, tristate-enable, input-enable

7 minmuy Ov0eNTN1R = DVONNNANER. # mmin cwd nffd: revdll nullnn trickate.enahla innitenahle

336. pinmux.0x0c301010

18; # gpio_swl pifl: rsvd0, pull-up, tristate-disable, input-enable
58; # gpio_sw2_pff2: rsvd0, pull-up, tristate-enable, input-enable
58; # gpio sw3 pf3: rsvd0, pull-up, tristate-enable, input-enable

7 ninmny Oee201 018 = OvONNONNAR. # rmin cwd nffd: revdl nullun trickataonahle innntenahla

Figure 4.3.5 Text difference between the default CFG (left) and the CFG we created (right)

Then we flashed the new CFG file to board and used devmem?2 to check the value at the

location. The command used is shown in Figure 4.3.6.

ubuntu@tegra-ubuntu:~-$ sudo ./devmem2 0x0c301008
Jdev/mem opened.

Memory mapped at address Ox7T8fcbchan.
Value at address @x8C301000 (8x7f8fcbcoof): Ox00000048

Figure 4.3.6 Running devmem? on the location

The value displayed was 0x48 instead of 0x58 this time. The 4th bit was a 0, meaning the

tri-state is passthrough, or in other words, disabled. Before we flashed the new CFG file, the

value was 0x58 where the 4th bit was a 1, so the tri-state was enabled before. Note that the bit

counting usually starts at 0, so the 4th bit is actually the 5th binary digit.

32

4
5t

—

4.4 Process

A. Planned Schedule

We came up with an eight-week plan after we arrived at NVIDIA, shown in Figures 4.4.1
and 4.4.2. In the first two weeks, we would be doing background research on the project,
including getting familiar with the working environment, reading the internal Wiki pages, and
trying to flash the board. Then we would decide what features we would actually implement in
tool, and came up with a GUI Mockup as well as a logic diagram.

Coding would start on the fourth week, after we had the design reviewed. We planned to
finish the coding and testing in the three weeks after. We would divide the work into the
front-end and back-end. We would also write documentation files for our tool, and there would
be separate documentation for the future users and potential developers. The final MQP report
would be finished in the last two weeks. The code and documentation would be completed in the
last week.

We planned to have weekly meetings with Professor Claypool and our mentor Christian
Gonzalez. In the meeting, we would discuss the past week’s accomplishments, plans for the
upcoming week- and record his feedback. This way we could keep our supervisors updated with
our process, and receive comments on any problems. Stephen was also very responsive through

emails or Communicator about his requirements for our tool.

33

Task Name

TX2 GUI Tool Project

|=| Planning
Project Kickoff
|=| Project Research
Read Wikis/Quick Start Guides
Modify Spreadsheet
Flash CFG with small pin change/pad voltage
|~ Feature Breakdown
Create list of Features (core functionality)
Stephen Review
|-/ Design
Start Design

Final Mockups Review

Development
Backend Server
Front end
Scripts

|=| Defect Review

Bugfixing
QA

Documentation

Finish Final Project

[=I Final Report

Write

Finish Report

| start

0110117
0110717
011117
011117
01/13/17
011717
01/20017
ov20/17
ov24/17
ou24i17
ou24/17
012617
ou30/17
ou30/17
ov30/17
ov30/17
02/20/17
022017
0222417
02/23/17
02123117
02127117
022717
030117

| Finish

0125117
01/11/17
01/18/17
01/12117
01/1817
01/1817
01/25/17
02317
0u25/17
ou27I17
012617
ou27r17
02123717
021717
02/17/17
021717
02723717
0221717
02723717
02724117
02124117
03/03/17
03/01/17
03/03/17

Figure 4.4.1 Planned Schedule View

| Duration

2.75d
2.25d

34

I | Planning
Prgect Kickoft

’—f—‘ Project Research

| Read WikisiQuick Start Guides

Modify Spreadsheet

Flash CFG with small pin change/pad voltage
[T Feature Breakdown
Create list of Features (cofe functionality)

Stephen Review

[Desn
Start Mockup Qesign
1
Final Mobkups Review

I !

Backend Server
Frontend

scripts

[/ Defect Review

Bugfixing
1
QA
Documentation

Finish Final Project

Work on Report

Write report

Finish Report

Figure 4.4.2 Gantt Chart of the Planned Schedule
B. Tools

We have used many useful tools throughout the project to keep our work organized. One
that we used the most often is called Trello, as shown in Figure 4.4.3. Tasks were broken down
into small pieces each week, and each task was assigned to a team member. A task would show
up in the “Backlog” section first, and then be moved to “Current” when it was being worked on.
Then it was moved to “Review” to be reviewed by the other members, and finally moved to
“Done”. We also kept track of open and fixed bugs on the board. This system worked well to
alert other members of what has been completed or still needs to be done. Trello function as a

scrum board for us.

35

@ Boards L R7

+ ﬂr:nWang @

-+ Show Menul

GUI ¢ & TeamVisible

Backlog Current DONE open Bugslissues fixed bugsl issues Review

before import, check if there are (PSR — nav bar buttons? Made changes to the heading part of Toggle after selected peripherals backgr
changes not saved Start paper excel sheet for it to be converted to o1
e push css + other change to dev-other json file correctly !
2o e
design doc Decide whether to include options. Show pins in different categories with abstrat
3rd "mode of operation” to allow Ask for last feature: Constraints or . that dont make & difference i DTS different colors in background OR
defining boards. some Fngielse - file (categories,voltage add separation line between them

help page (change stuff)

X o2 !
global.js & fix camel case using eseefaciiaficstidder SAVE to same file location, SAVE AS Addac
wordstorm " pop up file browser
approach i o i Sort by column name
import new excel so csv->json ® o1 @ o2 "

Add a card..

naming converter for SOC to CVM to

oVB future work

firefox 51.0 vs 44.0

E o1
refactor orgchart and write own -

° (i

Add a card...

Add button "Reset all the table cells to
defauft(initial) values" results

E o1

Get demo working on laptop
(=51 n

Pin Direction option: open drain?
= o1

B2 8 B ®B

Data validation Testing

Add a card...

B

Make table scrollable horizontal

. b 4

Add a card...

Add a card...

Figure 4.4.3 Trello Board View

Another tool that we used is the Gerrit Code Review website. NVIDIA uses an internal
instance of Gerrit where only NVIDIA developers merge and review code. Our team created a
new Git branch off of a NVIDIA repository for our only project. Any code that was completed
was tested locally then pushed to Gerrit. This process was done often so all members had the
most updated code. After we felt the each code portion was complete, we would start the review
process. We invited our mentor and NVIDIA JavaScript reviewers to check our code, and
received useful feedback regarding any code styling problems. Through this process we learned
to write code in a professional style consistent with NVIDIA’s standards and include detailed

comments.

36

4.5 Design

A. GUI Mockup

To begin the design process we created a GUI Mockup which can be found in Appendix
D. Considering the designs of GUI tools from other sources and our project requirements, we
decided to do two tabs for our first draft. The main page would have a table similar to the
pinmux spreadsheet. This would mimic the spreadsheet functionality and give users who are
used to the old design the same idea. The sidebar would have another list of all the categories
which would filter the pinmux table. On the initial webpage load, the table will be filled with all
pins, and the sidebar categories are all selected. The users can then select or deselect categories
from the side to change what is filled in the table. The export and flash buttons would also be on
this page which give users the ability to export to CFG files.

The second tab is a connector tree which starts with the base SoC (we defined the SoC to
be the TX2). The users then use the sidebar palette to drag in boards to add to the SoC. Based on
what the user has added on the device tree, the pinmux table on the first tab will change. As more
connectors are added, more constraints are applied to the spreadsheet. The user can also drag a
connector back to the sidebar to remove it from the tree.

Once the mockup was completed a bootstrap template acted as the starting point and was
slightly modified to follow the mockup. After a few weeks the mockup helped guide the design
but as with initial mockups, features would be added or removed along the development process.
For example, comments from our team led to removing the flash button because users should

know what to do with a CFG file. Save and import buttons were also added to give users the

37

ability to save their current changes from the table and import them later. Another tab was added
to change voltages in its own separate table instead of the spreadsheet table. Comments from our

team helped make sure this tool was complete with all the mandatory features.

B. Logic Diagram

A box diagram was created to show the logic behind the project, which can be seen in
Appendix C. The diagram splits the client and server into two big boxes. The client side refers to
the logic on the web pages, and the server side describes the process running on the Node.js back
end when requests are received from the client.

The client side starts with opening the webpage. A loading page request is sent to the
server, and the server reads from the board definition data files and constructs HTML pages to
return to the client.

After the pages are loaded, the user can interact with the three buttons on the navigation
bar. The “Export File” button is used to save the user’s configurations on the web pages, and will
send an AJAX “save” request to the server. The server generates a temporary configuration file
in the TXT format in the backend, and returns a download link to the client. The browser will
download the file and the user can save it on the computer. The “Import File” button can read
from any temporary configuration file and restore the user’s configurations on the web page.

The “Generate CFG” button generates CFG files based on the configurations from the
web pages. It sends an AJAX “build” request to the server along with the pinmux configuration
information. The server will generate three DTS files based on the information, and then creates

a Python process, which reads in the DTS files, existing Python script and some helper TXT

38

files, to create the CFG files. In the end, the server archives all the CFG files it has generated into
a ZIP file, and returns the download link to the client for downloading the ZIP file.

The user can also modify the pin configurations on the web pages before pressing any of
these buttons. On the default Pinmux page, users can filter the pin table using the category filter,
or change the pin configurations in the table. The table will show errors in red if any of the pins
are configured incorrectly. By clicking on the three tabs on the top right corner, the user can
switch to the Connections page or the Pad Voltages page.

The Connections page is used to select the current board state. The user can change the
state by dragging a board to the chart, or removing a board from the chart. The most recent board
dragged into the chart will become the current board state. The change of the board state will be
reflected on the Pinmux page, because some pins will not be configurable if the chart has a CVM
or CVB board on it. The Pad Voltages page is used to select voltages for each pad. The modified
voltages will also be displayed in text on the Pinmux page. When the board state changes, some

default pad voltages will also change according to the board definition files.

39

4.6 Coding

A. Development

The Tegra Pinmux GUI Tool was developed through weekly iterations and was improved
based on feedback. As a starting point in development, the first step was to emulate the
spreadsheet on our web app. We started off with a template page with a table and changed
around some of the field names to be more appropriate. Next, we used a CSV to JSON converter
that retained all the dropdowns in the Excel spreadsheets. The Excel spreadsheet could not be
instantly copied and pasted in, as some columns had different widths that would bug the
converter. The detailed instructions on how to cleanse the Excel spreadsheet for JSON
conversion can be found in Appendix I.

After successfully producing a JSON file, we setup our Node.js server to host our simple
template website and send that JSON file when requested. The next part of our development was
to create logic that would populate the table given the JSON object. Many fields were
one-to-one, so a table row value could directly map to a table column name. Through the use of
some string templating to create HTML select tags, we maintained the dropdown menus. When
we reached this point, we ran into a problem where users changed their pinmux settings and
wanted to export, our app had to run through the whole table and extract all the selected table
values. We didn't like the process of parsing through HTML text, as it seemed error prone
because it would be string dependent, so we created a global variable called pinDictionary[] that
mapped unique IDs to a pin object. A pin object has fields that are all the column names in the

Excel sheet, and has values that are the ones the user selected.

40

It was not clear at first how the Excel spreadsheet generated DTS files, but after
consulting with Richard Shen, we found Visual Basic scripts that the spreadsheet had used. We
decided to offload the DTS and CFG file generation process to the server because the client side
should focus on UI changes. Note that Node.js runs JavaScript, so the client and server can
interchange functions if needed.

Reaching a point with intermediate DTS files, our tool needed to automates what users
would manually do at this point. Normally, users would transfer the file over to Linux, run
DOS2UNIX to remove line endings, and then run the DTS2CFG python script. The script needs
address info text documents as well as the DTS files for input. The address info text documents
provide a mapping from pin names to address locations (similar to the TRM mapping found in
Section 4.3). We developed our server side to spin up another child process to have Python

execute the script (Figure 4.6.1).

python = require(’'child process').spawn(’python’,
[python_tool path "/pinmux-dts2cfg.py’,
'—-pinmux’,
python_tool path "faddr_info.txt’,

python_tool path ‘/epio_addr_info.txt’',
python_tool path "fpor val.txt',

dts full path + pinmux dts,

dts full path + gpio dts,

-

Figure 4.6.1 Node.js code that spawns a child process
and runs the Python script with specified arguments
To reiterate, our tool does the same CFG file generation process as users had to do with a
spreadsheet before, but this tool hides and automates the process in the backend. When the two

CFG files are created from the Python script - one for pinmux configuration, another for pad

41

voltage configuration, they are zipped up using the Node module, Archiver. The server then

alerts the client with the zip file location, so the user can download it. We were almost done with

developing the spreadsheet tab, but adding pad voltages needed some Ul design considerations.

A small but important tab is the pad voltage tab. While initially located above every

grouping in the spreadsheet (Figure 4.6.2), feedback we received leaned us towards creating a

separate tab in the GUI tool. Adding a separate column for IO Block Voltage in the spreadsheet

table made all other columns tighter. The overall look and feel was more important, so we

decided to to put the pad voltages in another tab. The pad voltages tab contains just two columns,

Pad Group Name and IO Block Voltage, as seen in Figure 4.6.3.

r Customer Usage

Pin Direction

Req.
Initial
State

LPDR
Enable

EQOS LPBK Up Value Down

Customer Usage Description or Net

Names

UD3_TXD

Output

Disable

UART4_TX [CVM: UART3_TX)

UD3_RXD

Input

Int PU

Disable

UART4_RX (CVM: UART3_RX)

UD3_RTS

Output

Disable

UART4_RTS (CVM: UART3_RTS)

UD3_CTS

Input

Int PU

Disable

UART4_CTS (CVM: UART3_CTS)

GPIO3_PB.04

Output

Drive 1

Disable

GPIO (CVB_BT_EN)

Figure 4.6.2 Excel spreadsheet showing 1O Block Voltage on individual row

42

|
Pad Voltages

Pad Name Voltage
CONN 18V .
AUDIO P N

AUDIO_HV (3 3V Capable)

3.3V v
DMIC_HY 18V v
CAM 18v v
PEX_CTL 18y v
SDMMGC1_HV (3.3V Capable) T .
SDMMC2_HV (3.3V Capable) p— P
SDMMC3_HV (3.3V Capable) eV g .
SDMMC4 18V v

Figure 4.6.3 Pad Voltages tab in the Pinmux GUI Tool

The last tab we developed is the Connections tab. This tab is an additional feature that is

not native to the spreadsheet. The purpose of the Connections tab is to allow users to define their

own boards and the constraints. In our implementation, the Jetson module (CVM) and Jetson

board (CVB) are defined. Other boards could be created, but we hadn’t done so. A user story of

this tab is if a user just has the Tegra Chip and wants full flexibility in pinmux options. If only
the Tegra SoC is selected in the connections tab, then all pins in the spreadsheet view are fully
configurable. When the user adds the CVM to the connection chart, some pins are going to be
constrained because in order for the CVM to function, some pins should be set to specific
functions. Lastly, when the user wants to add his board to the connections design, assuming he
has created a data file for his board or is using the default CVB, the constraints of the board

would also be applied. At this point, the user should only be able to pinmux GPIO expansion

43

header pins, or the pins of IO Controllers they are not planning on using. An example is if a user
was not going to use the SD Card slot, then they can pinmux it for other functions. Our
implementation does not allow for creating data files in the application, but the CVM and CVB
data files could be modified to add or remove constraints in the JSON object.

Throughout the project, aside from feedback about features, we had feedback on our code
as well. We refactored our code to match the spacing and naming convention at NVIDIA. We
submitted patch sets to encapsulated global variables. More refactoring could have been done,
but due to unfamiliarity of some frameworks (See Future Work), we chose to skip the potential

for more abstracted code in favor of good documentation and feature development.

B. Third-Party Frameworks and Modules

To help meet the requirements of our project without reinventing the wheel, we used
third party frameworks and modules. The three frameworks that were used are jQuery, jQuery
UI, and Bootstrap. jQuery let us quickly grab HTML documents, easily add event listeners, and
asynchronously fetch files from the server in few lines of code. jQuery Ul was essential to
implement drag and drop functions on the connections page. jQuery Ul easily let us add
draggable() and droppable() listeners to the right UI elements. In the code fragment below
(Figure 4.6.4), we set draggable and droppable event listeners on the board and sidebars for the

connections tab.

44

function setChartlisteners() {

var droppedId - ui.draggable[0].id;

s.deviceTree.length 1 Nu ~(droppedId)) {
“Please remove the boards at the bottom first.™);
(globals.deviceTree.length 1) {

alert("The chart cannot be empty.");

r
x

consale.log(' Removing the board ' globals.deviceTree[globals.deviceTree.length-1]
globals.deviceTree.pop();
globals.connectionsBoardState - globals.deviceTree[globals.deviceTree.length-1];

drawBoards () ;

Figure 4.6.4 JavaScript code to set drag and drop listeners on a board and sidebar using
jQuery UI

The Bootstrap framework was essential to give our webpage a nice look and feel. Aside
from the sample template we started with, Bootstrap also allows the responsive tables - allowing
us to resize the window, but still have the table be scrollable.

We added various third party Node modules to our server side code. The first node
modules is Commander. Commander allows us to parse command line arguments and respond
with appropriate logic. We used another Node module called Archiver to zip up the generated
CFG files and provide it as one file to download for the user. Express is a Node module used to

serve static web files. It is always listening for file requests from a client and will respond with

45

the file if it exists. The last Node module we use is Electron. Electron is for our final stage
packaging of our web app. It builds a desktop app so the user no longer needs to worry about

starting up with the correct command line arguments; Electron makes our app just click and start.

Below in Figure 4.6.5, our application is an Electron app. Figure 4.6.6 shows the various

distributables for Windows, Linux, and Mac OS.

AO_HV (3.3V Capabie) €D
AUDIO o
AUDIO_HV (3 3V Capabie)@D)

CAM

Pinmux Dashboard

Ball Name category Customer Usage Pin Direction

CONN

UART4_TX

UART4_RX

UART4_RTS

UART4_CTS s UD3_CTS
GPIO_WAN1 GPIO3_PB.04
GPI03

GPIO3_FC.00

1 |Bigirectional v

1 | Bidirectional v

1 [Input

' |Bidirectional v

Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved | Legal Inf

Connections

Req. Initial ... | WakePin | 3.3V Toleran... LPDR Enable

ntPU v

v [IntPU v

v |Drive1 v

ntPy v

v |Drive0 ¥

ntPU v

formation | Privacy Policy | README

Figure 4.6.5 Our Pinmux GUI tool deployed as an Electron app

Mame Date modified Type Size
_| RELEASES 2/28/2017 7:23PM File

m[Setup.exe 2 Application

f;i:'j! Setup.msi Windows Installer ...

J tegra_pinmux_gui_teol-1.0.0-full.nupkg

MNUPKG File

Figure 4.6.6 (A) Our Pinmux GUI tool as an Electron app for Windows

Pad Voltages

10 Block

18V

46

locales resources blink_image_ content_resources_
resources_200_ 200_percent.pak
percent pak

content_shell.pak icudtl.dat libffrpeg.so libnode so
Coprr T
Shenl
Parm “heae
o ee s
LICENSE LICENSES natives_blob bin snapshot_blob bin
chromiurn.htrml
<’> i \ ¥4 i \
tegra-pinmux-gui- ui_resources_200_ wersion wviews_resources_
tool percent.pak 200_percent pak

Figure 4.6.6 (B) Our Pinmux GUI tool as an Electron app for Linux

v [pinmux =
¥ |7 tegra-pinmux-gui-toal-darwin-x64 -
LICEMSE 1KB

¢ LICENSES.chromium.html 1.4 MB

VEISIon 7 bytes

k|| webpage --

Figure 4.6.6 (C) Our Pinmux GUI tool as an Electron app for Mac OS
The complete list of third party libraries we used along with their copyright information

can be found in Appendix B.

47

5 Results

Results talks about developed features in detail, and how the feature satisfies
requirements stated earlier. Some features do not satisfy a requirement, but do benefit the user in

terms of usability.

5.1 Developed Features

Import File £ Export File &

Connections Pad Voltages

Categories

ey Pinmux Dashboard

CONN

Ball Name Category Customer Usage Pin Direction Req. Initial State | Wake Pin | 3.3V Tolerance E.. LPDREnable 10 Block V.
AUDIO

CONN Lav
AUDIO_HV (3.3V Capable)
DMIC_HV VARTI X coNyl unused_UART4_TX v || Notassignec v . Disable
GAM UART4 RX CONN unused_UART4_RX v Not Assignec v v Disable
PEX_CTL

UARTY RTS CONN unused_UART4_RTS v Not Assignec v v Disable
SDMMC1_HV (3.3V Capable)

UART4 CTS CONN

unused_UART4_CTS v Not Assignec ¥ v No v Disable
SDMMC2_HV (3.3V Capable)

c0o00 0000 RoBooB@oboB

SOMMC3_HV (3.3V Capable) GPIO_WAN1L CONN i_GPIO_WAN1 Disable
SOMMCa GPIO_WANZ CoNN unused_GRIO_WAN2 N Disable
sYs »

GPIO_WAN3 EONN unused_GPIO_WAN3 v Not Assignec v v Disable
UART

CEICVANS 2] unused_GPIO_WAN4 v Not Assignec ¥ v No v Disable
DEBUG —
20 DAP2_SCLK SONN unused_DAP2_SCLK v Not Assignec v Disable
AO_HV (3.3V Capable}

LA b DAP2_DOUT SO unused_DAP2_DOUT v Not Assignec ¥ v Disable

SP1

DAP2_DIN CONN 1_DAPZ_DIN Disable
EDP

DAPZ_FS Conn unused_DAP2_FS v || notassignec v . Disable
UFs

GENL 12¢_sCL i unused_GEN1_I2C_SCL v Not Assignec ¥ . Disable v Disable

GENL 12C SDA SR unused_GEN1_[2C_SDA v Not Assignec v . No v Disable v Disable

AuDIO 18v

Copyright (c) 2017, NVIDIA CORPORATION. Al rights reserved | Legal Information | Privacy Policy | Help Page

Figure 5.1.1 Tegra Pinmux GUI Tool (Pinmux Tab)
The initial screen when loading the pinmux web app features a navigation bar and 3 tabs
on the top right corner, as shown in Figure 5.1.1. The Pinmux Tab is shown by default and lists
all the data imported from the previous Excel spreadsheet. Each pin can be customized to the

user’s desired configuration. All changes made to the table are checked for data validation.

48

Therefore the user cannot specify a configuration that is not possible, such as setting a pin
direction for a pin that is unused. If the user does make a mistake, a window will pop up showing
the error, and the table will display a red border around the data. An example of the data

validation function is shown in Figure 5.1.2.

Ball Name Category Customer Usage Pin Direction
CONN
LENFERA. T CENM unused UART4 TX v Input v

Figure 5.1.2 Pinmux Tab Data Validation Example
After the user completes all the necessary changes, they are able to export the CFG files
directly, which is a feature that the previous spreadsheet does not allow. If the user wants to save
his or her current work and return later, we also created a feature that saves all the work to a text
file. The user may import the file and achieve the saved data, which was one of the application’s

requirements. The buttons for these features are in the navigation bar, as shown in Figure 5.1.3.

EGRA PINMUX GUI TOOL Import File & Export File &

Figure 5.1.3 Navigation Bar Buttons
One flaw of the old spreadsheet configuration was that there were over 600 pins listed
while many were not configurable. We sought out to minimize the amount of pins our tool
displays by only showing the pins that the user can change. This reduced the amount of data by

half so our table is smaller than the spreadsheet.

49

Another feature developed to help minimize the large table of data was the Category (Pad
Group) Filtering. All pins are grouped by pad groups so the user may choose to only display
specific groups by selecting them on the left sidebar. The category filtering sidebar can be seen
in Figure 5.1.4. The toggle button toggles all of the pin groups selected or unselected. The user
may also write in the filter bar to filter by name. Any pin group selected or unselected in this list
changes what is visible in the main pinmux table. These filtering capabilities were not a

requirement of the app, but help to avoid cluttering the table.

Categories Categories Categories
TN e icc: carcgorcs. [JRERRIN] e cagones IR

CONN {14] CONN [14] CONN (14]
AUDIO (9] AUDIO (5] AUDIO (5]
AUDIO_HV (3.3V Capable) €3 AUDIO_HV (3.3V Capable) €I AUDIO_HV (3.3V Capable) €D
DMIC_HV 2] DMIC_HV o DMIC_HV (s]
CAM {11 CAM [11] CAM [11]
PEX_CTL (7] PEX_CTL [7] PEX_CTL (7] Categories
SDMMC1_HV (3.3V Capable) @ SDMMC1_HV (3.3V Capable) @ SDMMC1_HV (3.3V Capable) @ _
SDMMC2_HV (3.3v Capable) €3 SDMMC2_HV (3.3V Capable) €D SDMMC2_HV (3.3v Capable) €D SDMMC1_HV (3.3V Capable) @
SDMMC3_HV (3.3V Capable) @ _> SDMMC3_HV (3.3v Capable) @ SDMMC3_HV (3.3V Capable) @

SDMMC2_HV (3.3V Capable) €5
SDMMCA o SDMMC4 [11] SDMMCA [11]
e o e o e o SDMMC3_HV (3.3V Capable) @
UART [30] UART (30] UART [20] SDMMC4 {11]
DEBUG [4] DEBUG (4] DEBUG [4] SYS [16]
A0 55) a0 (15] A0 (15] SPI 0o
AO_HV (3.3V Capable) (12 AO_HV (3.3V Capable) [12] AO_HV (3.3V Capable) a UFS o
SPI (6] SPI (6] SPI [5]
EDP (7] EDP (7] EDP (7]
UFS (2] UFS [2] UFS [2]

Figure 5.1.4 Pinmux Tab Pad Group Filtering
This Connections Tab (second tab) displays a draggable and droppable tree so the users
may add and remove boards to be connected, which in turn constrains the amount of pins that
may be configured on the Pinmux Tab. An important feature of the table is to only allow pin

configurations that are possible, and constrain some pins depending on what the user has

50

physically connected to their personal board. This partially completes the requirement of
constraints based on connected boards. In our application, constraints would prevent a whole row
from being modified. In practice, constraints should allow some dropdown elements to be

unselectable, not disabling the whole row. Figure 5.1.5 shows the Pinmux Tab with some pins

constrained.

Import File & Export File &
Pinmux Connections Pad Voltages
Categories i
Pmuxliacnbesd

A0 {19] Ball Name Category Customer Usage Pin Direction Req. Initial State Wake Pin | 3.3V Tolerance E... ~ LPDR Enable 10 Block V..
AQ_HV (3.3V Capable) o

CONN L8V
AUDIO o

UARTA_TX CONN 5 , N E ,
AUDIO_HY (3.3v Capable) €D uD3_TXD GCutput Disable
CAM (11} UART4_RX CONN UD3 RXD . Input v Int PU B Disable
CONN {14}

UARTA4_RTS CONN UD3_RTS v Output v . Disable
DEBUG (4]

UARTA_CTS CONN uD3_CTS v Input v It PU v No v Disable
DMIC_HV. o
EoP (7 GRIO- WAL CONN GPIO3_PB.04 v Output L Drive 1 v Disable
M L7 SRIOTWAND eni GPIO3_PB.05 v Input b Int PU v Yes v Disable
SDMMC1_HV (3.3V Capable) @

GRIC WAN3, CONN GPIO3_PB.06 v ouput v Diive 0 v Disable
SDMMC3_HV (3.3V Capable) @

SEIOEWANY COMN GPIO3_PC.00 v | input v mpu v Yes v Disable
sPl o
svs o DAPZ_SCLK P 1252_SCLK v+ Bidiecional v . Disable
UES

2] DAP2_DOUT CONN e ——— ||| pr—— E Disable
DARZIDN CONN 1252_SDATA_IN - Input v . Disable

DAEZ<ES £l 1252_LRCK Disabl

GENIL12G.SCL QNN 12C1_CLK Enable - Disable

S 12, ol Ol 12C1_DAT v Bidirectional v v No v Enable v Disable

AUDIO Lav

Copyright () 2017, NVIDIA CORPORATION. All rights reserved | Legal Information | Privacy Policy | Help Page

Figure 5.1.5 Pinmux Tab with Pins Constrained
Our third tab, Pad Voltages, is similar to our pin configuration table, except that it only
contains the pad group names rather than all the pins. This is because a pad voltage is selected
for the entire group rather than each individual pin. It was better to display this in its own page
and table rather than combining it with the pin configuration table to clearly show that this is a

group option. However, the pad voltages are still displayed in text in the table for user reference.

51

5.2 Evaluation

The evaluation process can be broken down into two parts: objective testing and
subjective testing. Objective testing is checking the CFG files output by our tool and comparing
them with the pre-existing spreadsheet’s output. If the two CFG files match, then our tool will
flash the same values to a Jetson Board as a spreadsheet would (as shown in Section 6.3). The
result is binary: a file match, or mismatch. Our process of objectively testing our code did
actually catch errors that we would have otherwise missed. The reason for the discrepancy
between our CFG files and the spreadsheet’s CFG files was because of unnoticed edits on the
spreadsheet that caused it to stray from its default values. The initial state between the GUI tool
and the spreadsheet must be the same if the output is to stay the same. After we double checked
our initial state of our GUI tool, we tested and found all CFG files generated match.

The other component of evaluation is the subjective testing. This form of testing is based
on feedback from our peers: Stephen Warren, Christian Gonzalez, and the L4T team. We want to
make sure that we have built the functionalities that they required, and the look and feel of the
tool meet their expectations. We also go over our backend design and see if adding additional
requirements would require code refactoring. For example, after we had demonstrated the
working Pinmux Tab, feedback we received asked for the next feature to be a Connections Tab
that would constrain the spreadsheet based on what boards the user connects together. Examples
of feedback that required refactoring code are the patch sets we submit to Gerrit after code

review from our peers. If a file had inconsistent spacing, or unnecessary whitelines, or unclear

52

comments, we would see a comment about it on Gerrit, and push a patchset to fix it. This form of

testing is synonymous with the agile development method.

5.3 Summary

At the conclusion of our development cycle, we have a tangible list of features that

satisfy all the previously defined requirements. While some features did not satisfy a specific

requirement, they still have a beneficial impact for the user.

Features that satisfy a specific requirement:

Pinmux tab that shows a table where user can select pinmux options

Connections tab that allows users to drag and drop connectors that apply constraints on
the pinmux

Read from SoC and Board definition files

Validation checks that display a red border around erroneous fields

Pad voltage tab to set voltages for pad groups

Import and Export current configurations

Generate CFG files of current configuration

Packaged application as distributables for Mac, Windows, and Linux

Features that were not required but benefit user:

Pad Group filtering

Badge icons displaying the number of pins per pad group

More screenshots of the final Tegra Pinmux GUI Tool can be found in Appendix H.

53

6 Conclusion

NVIDIA produces system on chips such as the Tegra TK1 and TX1. The SoCs are used
in modern hardware such as the Nintendo Switch, NVIDIA Shield, and the Google Pixel C.
NVIDIA also manufactures development boards, called Jetson Boards, which feature the Tegra
SoC. Jetson Boards have pins that connect to peripherals, and most importantly, to the Tegra
SoC. NVIDIA allows software to control the functionality of pins on the Jetson Boards. This
process is called pinmuxing. Pins can generally be pinmuxed to be the default value, GPIO, or
unused.

Developers using the Jetson board would want to pinmux when they are not using a
peripheral and want that pin to do other logic. In the past, developers had to modify a Microsoft
Excel spreadsheet to select their pinmux options, and then export to an intermediate DTS file.
The DTS would then be input to a Python script which converts it to a flashable CFG file. This
process is not only Windows OS reliant, but also included additional steps with a DTS file. The
main goal of our project is to develop a web application to configure pins and voltages on Tegra
powered boards. Requirements of this application were drafted through feedback from NVIDIA
internals. The web tool needed to allow usage across multiple platforms. Internal backend design
should abstract users from the intermediate DTS file. Constraints should be applied when users
add boards to a device tree. Import and export buttons should allow users to save and resume
work. The application should also be distributable to users across multiple platforms.

The process we took in completing this project involved researching background

information, familiarizing ourselves with development tools, implementing feedback from

54

weekly iterations of development, and testing and packing the final product. Background
research included learning about what a Tegra SoC is, what Jetson boards are, and what
pinmuxing is. We used Gerrit and Trello as tools to keep our development process standardized.
New features were often added or old features modified a bit after presenting our weeks
development to many people. Testing was on the CFG files generated from our tool compared
with an Excel spreadsheet. The app was finally packaged and distributable for multiple OSs.
Developed features include a web application with a navigation bar and three tabs. The
navigation bar has three buttons for users to import/export their work, and generate CFG files.
Three tabs are used for Tegra configuration options. The default tab is the spreadsheet view
containing drop down options for pin configurations. The second tab is the connections tab
where users drag and drop boards to a device tree. On the last tab, users can set pad voltages for
pad groups. The web app was exported as a desktop application for multiple platforms through
Electron. Overall, the app has potential to give users and NVIDIA developers a seamless way to

configure Tegra settings.

55

7 Future Work

Due to the constraint of seven weeks, there are many improvements that could help
maintain the readability, scalability, and functionality of the Tegra Pinmux GUI Tool but were
not implemented. For readability, we could use JavaScript frameworks such as React or Angular
to create data models and data bindings for our tables, categories, footers, sidebars, tabs, etc.
This would help future developers more easily see what JavaScript code is affecting which UI
element. Adoption of ES6 will also help readability, most notably because of its support for
string templating. In the current code, we use JavaScript to set the innerHTML of elements to
dynamically created strings. The dynamically created strings would look different with the
adoption of ES6. On ES6-features.org, an example of the difference in string templating between

ES6 and ESS5 (our version) is given in Figure 7.1.1:

ECMAScript 6 — syntactic sUgar: reduces

var customer = { name: “Foo" }
var card = { amount: 7, product: "Bar", unitprice: 42 }
var message = Hello s{customer.name},

want to buy ${card.amount} ${card.product} for

a total of ${card.amount * card.unitprice} bucks?’

ECMAScript 5 — syntactic sUgar: reducec

var customer = { name: "Foo" };
var card = { amount: 7, product: "Bar", unitprice: 42 };

var message = "Hello " + customer.name + ",\n" +

"want to buy " + card.amount + " " + card.product + " for\n" +
"a total of " + (card.amount * card.unitprice) + " bucks?";

Figure 7.1.1 Difference between ES6 string templating and our current code (ES5)

56

In terms of scalability, the project could be enhanced by refactoring functions and CSS
files. The purpose of many JavaScript functions should be purely functional and avoid touching
UI. This will allow for easier unit testing on the functions because testing UI is difficult and hard
to measure. Throughout our development, we used AJAX to replace the body of the main
index.html page when a user switches tabs, instead of going to a new page in order to preserve
global variables. Each tab has different styling so we wrote a function to replace the previous
tab’s stylesheet with the current tab’s stylesheet. Replacing the stylesheets every time a user
switched tabs caused stutters, whose lag time was browser dependent. The reason for the stutter
was because HTML elements were being shown before CSS styling could be applied to it. In our
last week, we managed to create one CSS file for all tabs, but some elements on a specific tab
had started behaving strangely. For example, when resizing a window on the spreadsheet tab, the
table would start jumping into the category section. Future improvements would create a
collective but functional CSS file for the whole website.

Last but not least, additional functionality improvements can come directly from Stephen
Warren’s wiki. We had scaled down his requirements for the purposes of defining a feasible
MQP project. Functionality that we hope to include in the GUI tool include enabling/disabling
10 Controllers and auxiliary CPUs, and configuring of DVFES policy. Each of these three
functionalities would probably be their own separate tabs, and the whole GUI tool would be a

central hub for all the configuration of a Tegra chip and user defined boards.

57

8 References

AnOldGreenHorn. “Embedding Python In Your C++ Application.” CodeProject, 22 May 2006,
www.codeproject.com/articles/14192/embedding-python-in-your-c-application.

Benchoff, Brian. "The Nvidia Jetson TX1: It’s Not For Everybody, But It Is Very Cool."
Hackaday. N.p., 24 Nov. 2015. Web. 28 Feb. 2017.
<http://hackaday.com/2015/11/24/the-nvidia-jetson-tx 1 -its-not-for-everybody-but-it-is-very-cool
/>.

“Build Desktop Applications.” AppJS, appjs.com/. Accessed 25 Feb 2017

“Call and Receive Output from Python Script in Java?” Stack Overflow, Stack Exchange Inc, 10
Apr. 2012,
stackoverflow.com/questions/10097491/call-and-receive-output-from-python-script-in-java.

“Electron.” Electron, electron.atom.io/.Accessed 26 Feb 2017

“Embedded Systems Development Solutions from NVIDIA Jetson.” Development Solutions
from NVIDIA Jetson | NVIDIA, NVIDIA, www.nvidia.com/object/embedded-systems.html.

“Embedding Python in Another Application.” Python Documentation,
docs.python.org/2/extending/embedding.html.

Extrabacon. “Extrabacon/Python-Shell.” GitHub, GitHub, Inc., 10 Mar. 2016,
github.com/extrabacon/python-shell.

Franklin, Dustin. "NVIDIA® Jetson™ TX1 Supercomputer-on-Module Drives Next Wave of
Autonomous Machines." Parallel FORALL. NVIDIA, 11 Nov. 2015. Web. 28 Feb. 2017.
<https://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx 1 -supercomputer-on-module-drives-n
ext-wave-of-autonomous-machines/>.

“GUI Programming in Python.” Python Wiki, 5 Nov. 2016,
wiki.python.org/moin/GuiProgramming.

58

"Introducing NVIDIA® Tegra® 4, The World's Fastest Mobile Processor." Tegra 4 Processors
NVIDIA. NVIDIA, n.d. Web. 28 Feb. 2017.
<http://www.nvidia.com/object/tegra-4-processor.html>.

“Introducing The Tegra X1 Super Chip from NVIDIA.” Super Chip | NVIDIA Tegra, NVIDIA,
www.nvidia.com/object/tegra-x 1 -processor.html.

“Java GUI Frameworks. What to Choose? Swing, SWT, AWT, SwingX, JGoodies, JavaFX,
Apache Pivot?” Stack Overflow, Stack Exchange Inc, 10 Oct. 2013,
stackoverflow.com/questions/7358775/java-gui-frameworks-what-to-choose-swing-swt-awt-swi
ngx-jgoodies-javafx.

“JetPack for LAT.” NVIDIA Developer, NVIDIA, 23 Nov. 2016,
developer.nvidia.com/embedded/jetpack.

"Jetson TX1." Jetson TX1 - ELinux.org. N.p., n.d. Web. 28 Feb. 2017.
<http://elinux.org/Jetson TX1>.

“Modules.” Python Documentation, Python Software Foundation, 8 Dec. 2016,
docs.python.org/2/tutorial/modules.html.

“Pin Mux Tool.” Pin Mux Tool - TI Software Folder, Texas Instruments, 16 June 2014,
www.ti.com/tool/PINMUXTOOL.

“Pin Mux Tool.” Pin Mux Tool - PINMUXTOOL - TI Software Folder, NVIDIA,
www.ti.com/tool/PINMUXTOOL.

“PINCTRL (PIN CONTROL).” The Linux Kernel Archives, NVIDIA,
www.kernel.org/doc/Documentation/pinctrl.txt.

“Run a Python Script .” Stack Overflow, Stack Exchange Inc, 23 Sept. 2010,
stackoverflow.com/questions/378185 1/run-a-python-script-from-another-python-script-passing-i
n-args/.

“Tegra-Pinmux-Scripts.” GitHub, NVIDIA, 31 Aug. 2016,
github.com/NVIDIA/tegra-pinmux-scripts.

59

9 Appendices

Appendix A Readme.txt

Pinmux GUI Tool

A local web app GUI tool to allow configuration of pinmux and pad voltages on the jetson-tx2

development board.

0. INSTALLATION

NOTE: $PINMUX_DIR refers to the directory you extracted the pinmux tool to.

Requirements:
- Install NodeJS 6.9.5 on your system:
$ curl -sL https://deb.nodesource.com/setup 6.x | sudo -E bash -

$ sudo apt-get install -y nodejs

- One of the following browsers:
Firefox - above 51.0

Chrome - above 56.0.2924.87

60

- Install required NodeJS modules:
$ cd SPINMUX_DIR/pinmux
#The below command will install the node modules: Archiver 1.3.0, Commander 2.9.0,
#Express 4.14.1, and Electron 1.4.15.

$ npm install

- The following are used but do not require any installation:
jQuery 3.1.1
JjQuery Ul 1.12

Bootstrap 3.3.7

Usage:
$ cd SPINMUX DIR/pinmux
$ npm start

Then visit "localhost:8080" on a web browser.

For usage and help:

node http-server.js -h

1. IMPORTANT

61

See validation rules.txt to see all validation rules used.

2. DESCRIPTION

The tool reads in data files for a Tegra board, and allows users to
change the board connections, configure the pinmux settings as well as
the pad voltages. The tool can output a zip file containing cfg files

that can be flashed onto the MB1.

The tool will apply data validation rules to prevent users from
configuring pins incorrectly, and allow constraints - for when a

user wants to modify pins pertaining to certain board connections.

The tool allows users to save their board and pinmux configurations by
downloading a txt configuration file. They can import that file into

the tool later and restore their configurations on the webpage.

The tool seeks to replace the old method of editing spreadsheets on windows,
exporting DTS files, moving them to unix, and running some python scripts to convert them to

CFG files. Instead it can generate CFG files on any platform.

3. FILE DETAILS

Below is the description of each folder and important files for reference:

dist/* - framework files (jquery, bootstrap)

node modules/* - modules used by Node.js (express)

css/* - style sheets for webpage

js/* - javascript files used in webpage

validation_rules.txt - validation rules used to check the pinmux configurations

http-server.js - server side code executed by NodelS

output/ - folder is created once files are generated
output/cfg - contains generated cfg files
output/dts - contains generated dts files

output/save - contains user saved configuration file

python_tool/ - contains the python script tool
python_tool/pinmux-dts2cfg.py - python script used to convert dts to cfg files

python_tool/*.txt - helper files used with pinmux-dts2cfg.py

63

data/* - JSON data files read in to generate the pinmux table
data/pad.txt - defines the pads needed for generating pad.dts

data/soc.txt cvm.txt cvb.txt - different data files to read in

index.html - webpage for client to see when loading localhost:8080
connections body.html - webpage for the connections page
spreadsheet body.html - webpage for the spreadsheet page

voltages body.html - webpage for the pad voltages page

images/icon_placeholder.png - icon for the webpage

64

Appendix B Third Party Documentation

3rd Party Code: Electron
Where: http://electron.atom.io/

Description: Electron is a framework for creating native applications with web technologies.

3rd Party Code: jQuery Ul
Where: http://jqueryui.com/

Description: jQuery plugin allows elements to be dragged, dropped, and selected.

3rd Party Code: jQuery

Where: http://jquery.com/

Description: jQuery is a fast, small, and feature-rich JavaScript library. It makes things like
HTML document traversal and manipulation, event handling, animation, and Ajax much simpler

with an easy-to-use API that works across a multitude of browsers.

3rd Party Code: Node.js
Where: https://nodejs.org
Description: Node.js is a JavaScript runtime that uses event-driven, non-blocking 10 model that

makes it lightweight and efficient.

3rd Party Code: Bootstrap

65

https://nodejs.org/

Where: http://getbootstrap.com

Description: Bootstrap is the HTML, CSS, and JS framework for developing the responsive UI.

3rd Party Code: Express (Node Module)
Where: http://expressjs.com/
Description: Express is a minimal and flexible Node.js web application framework that provides

a robust set of features for web and mobile applications.

3rd Party Code: Node-Archiver (Node Module)
Where: https://www.npmjs.com/package/archiver

Description: A streaming interface for archive generation. Allows for files to be saved.

3rd Party Code: Commander (Node Module)
Where: https://www.npmjs.com/package/commander
Description: The complete solution for node.js command-line interfaces, inspired by Ruby's

commander.

66

https://www.npmjs.com/package/commander

Appendix C Box Diagram

Client

Server

Open Webpage

Saved
Configuration
TXT File

send data and HTML files

Handle Page Load Request

Tmport File

Navigation Bar

Pinmux Page
(default)

Filter by
Peripherals

Tab Switch
Select Pin
Configurations

Connections Page

J Generate CFG Files

< =

" send AJAX build request

board data files

send A, est

ExportFile ———————

Pad Voltages Page

elect Pad
Voltages

Handle the Save Request

Generate Temporary
Configuration TXT File

Qutput

Saved

Configuration
TXT File

dts2cfg.py
and some

helper txt
fileg

Generate 3 DTS Files

Handle the Build Request

Qutput

Input

R
o

Qutput

Execute Python Script
CFG2DTS py

ATAX response with Configuration

TXT File locaiton

AJAX response with

CFG Zip File locaiton

Download Files l

pinmux.dis
gpio.dts
pad dis

Input

pad.cfg
pinmux-
gpio.cfg

Saved

Configuration

TXT F

CFG File
ile

67

Appendix D Mockups

NN Y
Page 1 '\.) '_} p—
https:WGUIMockup.io
SPREADSHEET CONNECTOR TREE
Peripherals ol I pinLabel Header Active Pin Direction 10 Voltage
ADC
© | T PA 10 EXT1 (/] Output ~ 1.8V
CAN (2)
o © | 2 PAOD EXT2 (/] Output +
GPIO O] 3 PADL CAN () Output
UART
© 4 PAOL CAN] output -
EXT1 ®
- @ 5 PADL EX2 [Z Input = J
o t -
— Il] 5 PADL CAN O utpu T
7 PA 10 EXT1 ouput - 3.3V
B PA 10 EXT1 (] Output = 1.8V
Export CFG file Il\'I 9 PADD EXT2 (] nput ~
10 PADL CLOCK (] output ¥ 2.7V

Main page (Alpha)

68

Page 1 O O :)

https:\WGUIMockup.io

SPREADSHEET CONNECTOR TREE

Connector Palette -
R ’ p s Y 1 —_——
s p ¢
- - S0C
. .
. o , T
. . - ™ H
Board
", ., #
ST 1 ke CVM
k ™ L ., # e ; J
Select Connector .
(Display Board) Board
(Optional) Drag and drop CVB
connector boards

E

PINMUX LAYOUT (Beta)

Appendix E Validation Rules

Whenever a user changes any setting, the following validation checks are run:

1. Pin Direction Validation
a. If Customer Usage is set to an unused pin, then pin direction MUST be "Not

Assigned" or empty

2. Allowed Pin Direction based on selected Customer Usage
a. If Pin Direction is “B” then anything works
b. If Pin Direction is “O” then only output

c. If Pin Direction is “I” then only input

3. Initial State Validation
a. Ifthe "Customer Usage" is unused, then they can only select "", "N/A", or “Z”

b. Advised when pin direction is “Input” do not use “Drive 0/1”

4. Ext Pull Validation
a. 1if ExtPullUpValue is set or ExtPullDownValue is set, then you cannot select

IntPU or Int PD for the required initial state for this pin.

70

5. Wake Pin Validation
a. Wake pin cannot be "yes" if a "Customer Usage" is unused *

b. Wake pin cannot be "yes" if "Selected Pin Direction" is output or non assigned.

6. 3.3 Tolerance Enable Check

a. REV_SEL cannot be "enable" if the "customer usage" is unused *

71

Appendix F Study of Terminologies

A. System on a Chip (So(C)

A SoC is a microchip that integrates all the components of an electronic device into a
single chip. It is known for low power consumption and is widely used in mobile phones and
embedded systems.

B. CUDA

CUDA is a parallel computing platform and API model created by NVIDIA.

C. Microprocessor and Microcontroller

A Microprocessor only has the CPU inside the chip. It does not have ROM, RAM, or any
other peripherals on the chip.
A Microcontroller contains all the peripherals on one small chip. It is a synonym with

System on a Chip.

72

Appendix G Tegra default pinmux CFG File

H

Pinmux version 1.0

Input pinmux file name:
/home/smangipudi/shared/pinmux/16_mar 2016/tegral 8x-p3310-1000-a0-a2-cvm-config-pinmu
x.dtsi

Input gpio file name:
/home/smangipudi/shared/pinmux/16_mar 2016/tegral 8x-p3310-1000-a0-a2-cvm-config-gpio-d
efault.dtsi

Generation date: 2016-03-16 13:50

PLEASE DO NOT EDIT THIS FILE

This is autogenerated file using the script pinmux-dts2cfg.py
H

pinmux.major = 1;

pinmux.minor = 0;

###H Pinmux for gpio-input pins ####

pinmux.0x022130a0 = 0x00000001; # CONFIG B5
pinmux.0x02434050 = 0x00000000; # GPIO gpio_wan2 pb5
pinmux.0x02213200 = 0x00000001; # CONFIG CO
pinmux.0x02434040 = 0x00000000; # GPIO gpio wan4 pcO
pinmux.0x022150a0 = 0x00000001; # CONFIG J5
pinmux.0x02431018 = 0x00000000; # GPIO gpio_aud0 pj5
pinmux.0x022156a0 = 0x00000001; # CONFIG M5
pinmux.0x02432028 = 0x00000000; # GPIO dmic4 clk pm5
pinmux.0x02210880 = 0x00000001; # CONFIG 14
pinmux.0x02433020 = 0x00000000; # GPIO gpio pg4 pi4
pinmux.0x022108c0 = 0x00000001; # CONFIG I6
pinmux.0x02433030 = 0x00000000; # GPIO gpio_pq6 pib6
pinmux.0x022108e0 = 0x00000001; # CONFIG 17
pinmux.0x02433038 = 0x00000000; # GPIO gpio pq7 pi7
pinmux.0x0c2£1020 = 0x00000001; # CONFIG FF1
pinmux.0x0c301000 = 0x00000000; # GPIO gpio_swl pffl
pinmux.0x0c2£1040 = 0x00000001; # CONFIG FF2
pinmux.0x0c301008 = 0x00000000; # GPIO gpio sw2 pff2
pinmux.0x0c2f1060 = 0x00000001; # CONFIG FF3
pinmux.0x0c301010 = 0x00000000; # GPIO gpio sw3 pff3
pinmux.0x0c2f1080 = 0x00000001; # CONFIG FF4
pinmux.0x0c301018 = 0x00000000; # GPIO gpio sw4 pfft4
pinmux.0x0c2£1000 = 0x00000001; # CONFIG FF0
pinmux.0x0c301058 = 0x00000000; # GPIO power on_pff0
pinmux.0x022114e0 = 0x00000001; # CONFIG X7
pinmux.0x0243d058 = 0x00000000; # GPIO uart5_cts px7

73

pinmux.0x02211600 = 0x00000001; # CONFIG YO

Pinmux for used pins

pinmux.0x02434038 = 0x00000400; # vart4 tx pb0: uartd, tristate-disable, input-disable
pinmux.0x02434030 = 0x00000458; # uart4 rx pbl: uvartd, pull-up, tristate-enable, input-enable
pinmux.0x02434028 = 0x00000400; # uart4 rts pb2: uartd, tristate-disable, input-disable
pinmux.0x02434020 = 0x00000458; # uart4 cts pb3: uartd, pull-up, tristate-enable, input-enable
pinmux.0x02434018 = 0x00000440; # dap2_sclk pcl: i2s2, tristate-disable, input-enable
pinmux.0x02434008 = 0x00000440; # dap2_dout pc2: i2s2, tristate-disable, input-enable
pinmux.0x02434000 = 0x00000450; # dap2_din_pc3: i2s2, tristate-enable, input-enable
pinmux.0x02434010 = 0x00000440; # dap2 fs pc4: i2s2, tristate-disable, input-enable
pinmux.0x02431040 = 0x00000440; # dap1_sclk pj0: i2s1, tristate-disable, input-enable
pinmux.0x02431038 = 0x00000440; # dapl _dout pjl: i2sl, tristate-disable, input-enable
pinmux.0x02431030 = 0x00000450; # dapl_din_pj2: i2s1, tristate-enable, input-enable
pinmux.0x02431028 = 0x00000440; # dapl_fs pj3: i2sl, tristate-disable, input-enable
pinmux.0x02431020 = 0x00000400; # aud mclk pj4: aud, tristate-disable, input-disable
pinmux.0x02431008 = 0x00000401; # gpio_aud2 pj7: dspkl, tristate-disable, input-disable
pinmux.0x02431000 = 0x00000401; # gpio_aud3 pkO: dspkl, tristate-disable, input-disable
pinmux.0x02432000 = 0x00004441; # dmicl clk pml: i2s3, tristate-disable, input-enable
pinmux.0x02432008 = 0x00004451; # dmicl _dat pmO: i2s3, tristate-enable, input-enable
pinmux.0x0243602c = 0x00000448; # sdmmc4 _dat0: pull-up, tristate-disable, input-enable
pinmux.0x02436028 = 0x00002448; # sdmmc4 datl: pull-up, tristate-disable, input-enable
pinmux.0x02436024 = 0x00002448; # sdmmc4 _dat2: pull-up, tristate-disable, input-enable
pinmux.0x02436020 = 0x00002448; # sdmmc4 dat3: pull-up, tristate-disable, input-enable
pinmux.0x0243601c = 0x00000448; # sdmmc4 _dat4: pull-up, tristate-disable, input-enable
pinmux.0x02436018 = 0x00002448; # sdmmc4_dat5: pull-up, tristate-disable, input-enable
pinmux.0x02436014 = 0x00002448; # sdmmc4 dat6: pull-up, tristate-disable, input-enable
pinmux.0x02436010 = 0x00002448; # sdmmc4 dat7: pull-up, tristate-disable, input-enable
pinmux.0x0243600c = 0x00000450; # sdmmc4 _dgs: tristate-enable, input-enable
pinmux.0x0c301080 = 0x00000401; # gpio disO_puO: gp, tristate-disable, input-disable
pinmux.0x0c301048 = 0x00000458; # batt_oc_ps2: soc, pull-up, tristate-enable, input-enable
pinmux.0x0243d020 = 0x00000400; # vart2_tx px0: uartb, tristate-disable, input-disable
pinmux.0x0243d028 = 0x00000458; # uart2 rx_px1: uartb, pull-up, tristate-enable, input-enable
pinmux.0x0243d030 = 0x00000400; # uart2 rts px2: uartb, tristate-disable, input-disable
pinmux.0x0243d038 = 0x00000458; # uart2_cts px3: uvartb, pull-up, tristate-enable, input-enable
pinmux.0x0243d048 = 0x00000452; # vart5_tx_ px4: nv, tristate-enable, input-enable
pinmux.0x0243d078 = 0x00000401; # gpio mdm4 py3: spil, tristate-disable, input-disable
pinmux.0x0243d0b0 = 0x00000440; # gen7 i12c scl plO: i2¢7, tristate-disable, input-enable,
pinmux.0x0c302040 = 0x00000400; # uart7 tx_pwo6: uartg, tristate-disable, input-disable
pinmux.0x0c302038 = 0x00000458; # uart7 rx pw?7: uartg, pull-up, tristate-enable, input-enable
pinmux.0x0c302050 = 0x00000400; # gpio senl pvl: spi2, tristate-disable, input-disable
pinmux.0x0c302058 = 0x00000450; # gpio _sen2 pv2: spi2, tristate-enable, input-enable
pinmux.0x0c302060 = 0x00000400; # gpio_sen3 pv3: spi2, tristate-disable, input-disable
pinmux.0x0c302068 = 0x00000400; # gpio_send4 pv4: spi2, tristate-disable, input-disable
pinmux.0x0c302078 = 0x00000401; # gpio_sen6_pv6: gp, tristate-disable, input-disable
pinmux.0x0c302080 = 0x00000401; # gpio_sen7 pv7: wdt, tristate-disable, input-disable

74

Appendix H Screenshots of GUI Tool

Import File & Export File & Generate CFG &
d Pinmux Connections Pad Voltages

Pinmux Dashboard

Q Ball Name Category Customer Usage Pin Direction Req. Initial State Wake Pin 3.3V Tolerance E... LPDR Enable 10 Block V...
AO_HV (3.3V Capable) (12} 2
CONN Lav
AUDIO o
UART4_TX CONN D o = - a .
AUDIO_HV (2.3 Capable) €D UD3_TXD Output Disable
CAM o UART4_RX CONN UD3_RXD v Input v Int PU v Disable .
CONN {14}
URRTE RIS CONN UD3_RTS v Output v v Disable v
DEBUG (4]
UARTA_CTS CONN UD3_CTS v Input v Int PU v No v Disable v
DMIC_HV o
EDP (7 GPIO_WANL CONN GPIO3_PB.04 v Qutput v Drive 1 . Disable v
e o GRIO_WAND. CONN GPIO3_PB.OS v Input v IntPU v Yes v Disable v
SDMMC1_HV (3.3V Capable) @
GEIC WANS CONN GPIO3_PB.0S v Output . Diive 0 v Disable v
SDMMC3_HV (3.3V Capable) @
GEIOLWANY COMN GPIO3_PC.00 v npu v | mpu o[res v Disable .
sPl o
sYs {45} DAP2_SCLK CONN 1252_SCLK v Bidirectional * v Disable v
UES
2] DAP2 DOUT; CONN 1252_SDATA_OUT - Bidirectional v - Disable v
DAPZ_DIN CONN 1252_SDATA_IN v Input v v Disable v
DAE2CES CONN 1252_LRCK v Bidiectonal v Disable v
GENL12G. SCL GQONN 12C1_CLK v Bidirectional v v Enable - Disable N
GEN- {20 Sha COh 12C1_DAT v Bidirectional v v No v Enable - Disable v
AUDIO 1av -

‘Copyright (c) 2017, NVIDIA CORPORATION. Al rights reserved | Legal Information | Privacy Policy | Help Page

Figure H (a) Pinmux Tab

75

NVIDIA

Icom EGRA PINMUX GUI import File & Export File & Generale CFG &,

Pinmux Connections Pad Voltages

$SOC: T186
soc
SOC: T186
CVM: P3310
SOC Connectors (Modules)
CVM:
P3310
CVB: P2597
Module Connectors (Boards)
CVB: P2597

Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved | Legal Information | Privacy Policy | Help Page

Figure H (b) Connections Tab

ron T M Import File & Export File & Generate CFG &

Pinmux Connections Pad Voltages

Pad Voltages

Pad Name Voltage

CONN 18V .
AUDIO 1av N
AUDIO_HV (3.3V Capable) — v
DMIC_HV 18V -
CAM 18V ¥
PEX_CTL 18v v
SDMMC1_HV (3.3V Capable) 1aviaav v
SDMMC2_HV (3.3V Capable) 33V .
SDMMC3_HV (3.3V Capable) 18v/3.3v v
SDMMCA 18v v
sYS 18V v
UART 18v ¥
DEBUG 18v v
L 18v v
AQ_HV (3.3V Capable) 33v v|l=

Copyright (¢) 2017, NVIDIA CORPORATION. Al rights reserved | Legal Information | Privacy Poiicy | Help Page

Figure H (c) Pad Voltages Tab

76

Pinmux GUI Tool Help Page

What is the Tegra Pinmux GUI Tool?

This is a local web app GUI tool which allows configuration of pinmux and pad voltages on the Jetson-TX2 development board

The tool reads in data files for a Tegra board, and allows users o change the board connections, configure the pinmux settings
as well as the pad voltages. The tool can output a zip file containing cfg files that can be flashed onto the MB1.

The tool will apply data validation rules to prevent users from configuring pins incorrectly, and allow constraints - for when a
user wants to modify pins pertaining to certain board connections.

The 1001 allows users to save their board and pinmux ions by atd file. They can import
that file into the tool later and restore their configurations on the webpage.

The tool seeks to replace the old method of editing spreadsheets on Windows, exporting DTS files, moving them to Linu, and
running some Python scripts to convert them to CFG files. Instead it can generate CFG files on any platform.

What does the Pinmux page do?

The pinmux dashboard displays a table containing all the pinmux configurations for the TX2 board. The data is read from a
data file listing all the constraints and data. The sidebar displays the pinmux categories and can filter certain categories o be
visible in the table. The user can hover over a table column header to see a brief description of the column name. The table
will highlight any kind of error if the user configures a pin incorrectly, Each error is highlighted with a red border around the
table cell.

What does the Connections page do?

The connections page displays the SOC board as a starting point. The user can drag a connector from the sidebar to the
board if it is allowed, which will change the constraints in the pinmux table. The user can also drag a connector from the board
te the sidebar to remove it. The boards must be added and removed in the correct order.

What does the Pad Voltages page do?

The pad voliages page displays a table with a voltage for each category. The voltage is global and is set for all the pins in that
category, Once the user changes a voltage, it will also be changed under the 10 Block Voltage column in the pinmux page.

How do | change the 10 Block Voltages in the pinmux page?

The pinmux table only displays the voltages in text. To edit the voltages, the user should go to the voltages tab.

Why can't | edit the pinmux table?

If & table cell is greyed out, it means this pin has been constrained by Ihe device tree in (he connections page. If the user

Copyright (c) 2017, NVIDIA CORPORATION. Al rights reserved | Legal Information | Brivacy Policy | Help Page

Figure H (d) Help Page

77

Appendix I Instructions to generate JSON Data file from Excel

Spreadsheet

Instructions on How to Generate the Files in /pinmux/data

1. Download the spreadsheets

Link to the spreadsheets on p4 (only NVIDIA employees have access)

For soc.txt, download T186 IC Generic_Customer Pinmux_Release.xlsm.
For cvm.txt or cvb.txt, download Quill-CVM-Generic-Customer-Pinmux-Template.xIsm.

These spreadsheets are also available to the NVIDIA customers.

2. Modify the headers of the spreadsheets

Note: DO NOT edit any other content and keep the default pin configurations.
Step 1: Unhide all the columns in the spreadsheet.
Step 2: Under the "Pin Muxing" Section there are five column headers, GPIO and SFIOO0 to
SFIO3.
Add the prefix "Pinmux" to all of them, so they become PinmuxGPIO, PinmuxSFIOO0,
PinmuxSFIO1, PinmuxSFIO2, PinmuxSFIO3 and PinmuxSFIO4.

Step 3 (Only for Quill-CVM-...): Rename the cell A9 from "Signal Name" to "CONN".

Step 4 (Only for Quill-CVM-...): Remove the row 8, which only contains "MPIO" in column C.

3. Select and copy the spreadsheet

78

Step 1: For row selections, start from row 7 (which contains the headers Ball Name, DSC,
MID...),
until the last row that defines pin configurations. Do not include any empty row after that.
Do not include the small section "Voltage Configuration" at the very bottom.

Step 2: For column selections, do not include the last column, which is called

"Recommended Usage Description" in T186 IC Generic ... or "Single-cell Tablet usage
8 Lane

DSI Panel" In Quill-CVM-...
(TODO: Give instructions on how to generate the column "Apply Constraint")

Step 3: Copy the whole selection.

4. Paste the spreadsheet to the website and generate files

Step 1: Open the website http://www.convertcsv.com/csv-to-json.htm.

Step 2: Paste the selection into the text box under "Step 1: Select your input".

Step 3: Scroll to "Step 5: Generate output" and click the button "CSV To JSON".

Step 4: Click the button "Download Result", and the browser will download a JSON file.

Step 5: Rename the file to "soc.txt" (or any other depending on the spreadsheet used).

Step 6: Replace the file with the same name in pinmux/data/. Refresh the Pinmux Tool webpage.

Other Information

When this instruction file is written, the spreadsheet T186 IC Generic ... used is Revision #1,
and the spreadsheet Quill-CVM-... used is Revision #6. If the spreadsheets are updated, some
instructions may need to change.

The file pads.txt was written by hand. It keeps a list of the pad names shown in the "Voltage
Configuration"

section, which can be found at the very bottom of any spreadsheet (all the columns should be
visible).

79

Since this section differs in each spreadsheet, pads.txt will keep most of the pad names that have
shown up.
The Pinmux Tool Webpage will read from pads.txt to write to pad.dts.

80

