
 

NVIDIA: A PINMUX CONFIGURATION  

TOOL FOR TEGRA 
Jordan Feeley, Yiren Wang, Yuan (Will) Wen 

March 3, 2017 

 

A Major Qualifying Project Report  

submitted to the Faculty  

of the  

WORCESTER POLYTECHNIC INSTITUTE  

in partial fulfillment of the requirements for the  

Degree of Bachelor of Science  

by:  

 

____________________________________________ 

Jordan Feeley 

 

____________________________________________ 

Yiren Wang 

 

____________________________________________ 

Yuan Wen 

 Date: March 2017 Approved:  

_________________________ 

Professor Mark Claypool, Advisor  

 

This report represents the work of one or more WPI undergraduate students. Submitted to the 

faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports 

on its web site without editorial or peer review. 

 



 

Table of Contents 

Table of Contents 1 

Abstract 4 

Acknowledgements 5 

1 Introduction 5 
1.1 Problem Statement 6 
1.2 Process 7 
1.3 Results 7 
1.4 Roadmap 8 

2 Background 9 
2.1 NVIDIA’s Tegra & Jetson Products 9 
2.2 Jetpack for Linux For Tegra 12 
2.3 Pinmuxing 14 
2.4 Board Configuration File (CFG) Generation Process 15 

3 Requirements 17 
3.1 Pinmux Configuration 17 
3.2 Pad Voltages Configuration 17 
3.3 Board Connections and Pin Constraints 18 
3.4 Seamlessly Generate CFG Files 18 
3.5 Save User’s Work 19 
3.6 Cross Platform Tool 19 
3.7 Package Installation 19 

4 Approach 19 
4.1 GUI Tools From Other Sources 20 

A. Texas Instruments 20 
B. Toradex 22 
C. GUI Tools From Other Sources Summary 24 

4.2 Language Comparison 25 
A. Ability to Run Python Scripts 25 
B. Cross-platform Capability 26 
C. GUI Frameworks 27 
E. Language Summary 28 

1 



 

4.3 Understand How CFG Files work 29 
A. Understand devmem2 29 
B. Find the address location of a register 29 
C. Verification of TRM Findings with the default CFG file 31 
D. Check the value of the location on the board 31 
E. Generate a new CFG file with a slight modification 32 
F. Flash the new CFG file to board 32 

4.4 Process 34 
A. Planned Schedule 34 
B. Tools 36 

4.5 Design 38 
A. GUI Mockup 38 
B. Logic Diagram 39 

4.6 Coding 41 
A. Development 41 
B. Third-Party Frameworks and Modules 45 

5 Results 49 
5.1 Developed Features 49 
5.2 Evaluation 53 
5.3 Summary 54 

6 Conclusion 55 

7 Future Work 57 

8 References 59 

9 Appendices 61 
Appendix A Readme.txt 61 
Appendix B Third Party Documentation 66 
Appendix C Box Diagram 68 
Appendix D Mockups 69 
Appendix E Validation Rules 71 
Appendix F Study of Terminologies 73 
Appendix G Tegra default pinmux CFG File 74 
Appendix H Screenshots of GUI Tool 76 
Appendix I Instructions to generate JSON Data file from Excel Spreadsheet 79 

2 



 

Abstract 

NVIDIA produces system on chips called Tegra chips. NVIDIA also produces Jetson 

development boards, powered by Tegra chips, which are small computer boards that offer pin 

configurations (known as pinmux) for when users want a pin to provide a different functionality. 

Currently, pinmuxing is done through a Microsoft Excel spreadsheet. The spreadsheet defines 

which pins can be configured to what functionality. After configuring, the spreadsheet exports 

the data to intermediate DTS files. Users must then go through a Python script to convert those 

DTS files into a board compatible CFG file. Our project is to develop a cross-platform GUI tool 

with the same functionality as the spreadsheet, plus new features such as pinmux constraints 

depending on user attached boards. After gathering the requirements, we created a GUI mockup 

and logic flow diagram. The GUI tool was primarily written in JavaScript and involved many 

weeks of iterations with our peers. At the conclusion of our project, we were able to deliver a 

functional web app that gives users the ability to configure pins, drag and drop connectors, and 

seamlessly export CFG files. 

 

 
 

 

 

 

 

3 



 

Acknowledgements 

We would like to thank the following for their help and guidance during this project. 

 

Stephen Warren - Requirements, feedback, clarifications 

Christian Gonzalez - L4T setup, building, flashing 

Mark Claypool - Software development advice 

Richard Shen - Excel spreadsheet and hardware questions 

Winnie Hsu - Logistics and networking 

Chris Freeman - Git processes and commands 

Sumathi Natarajan - Internal JavaScript code reviewer 

Lane Harrison - External web development suggestions 

 

4 



 

1 Introduction 

NVIDIA is one of the tech world’s leading companies in graphics processing hardware, 

artificial intelligence (AI), and autonomous vehicles. Currently NVIDIA’s Tegra SoCs (System 

on a Chip) provide additional mobile capabilities with power and efficiency [Introducing 

NVIDIA]. The Tegra TX1 SoC is one of NVIDIA’s advanced mobile processors. NVIDIA also 

produces Jetson development boards, powered by Tegra SoCs. These boards are aimed at 

developers, where they can express creativity and create projects such as autonomous navigation 

to deep-learning analytics.  

The Tegra SoC has over 400-pins that connect to the various boards. Users can configure 

the Tegra pins to their own desired usage. In order to flash a board with customized pin 

configurations, the developer must use a Microsoft Excel spreadsheet to make changes, then go 

through a series of steps to flash the board, discussed in section 2.5. 

1.1 Problem Statement 
Our project is intended to provide a new cross-platform pinmux Graphical User Interface 

(GUI) tool that has all the same functionality as the Excel spreadsheet along with an easy to use 

interface and additional configuration options to help NVIDIA personnel and consumers 

configure their Tegra SoCs. The pinmux tool provides a GUI for configuring pinmux settings, 

validating user options, and specifying pad group voltage. An existing Tegra pinmux Python 

script is also used to export a CFG file. 

5 



 

1.2 Process 

The development process started with mockups, transitioned into coding and redesigning 

based on feedback, and ended with testing and packaging. Before starting the mockups, we 

familiarized ourselves on tools such as Trello and Gerrit that would help organize our 

development process. We then drafted a GUI mockup along with a logic flow diagram. After 

review from NVIDIA personnel, we started coding. We implemented groups of features and 

presented and edited them based on feedback. Near the end of our coding cycle, we tested our 

the CFG files generated from our tool and the Excel spreadsheet by comparing a text difference. 

Lastly, we packaged our web app as distributables for Mac, Linux, and Windows Operating 

Systems through the use of a software package called Electron. Development comprised of initial 

mockups and diagrams, developing the requirements through weekly iterations, and redesigning 

based on continuous feedback. 

1.3 Results 

The Tegra Pinmux GUI Tool we developed supported all pre existing functionality as 

well as added new features that will help the overall user experience. Features that we were able 

to develop include full functionality of the existing pinmux spreadsheet, constraints based on a 

boards connected in a device tree, import/export of current work, and pad group filtering. The 

full functionality of the existing spreadsheet includes modifying the same pinmux settings as 

before, as well as exporting to a DTS file. Constraints is a new feature that prevents specified 

modifications of pin settings based on what boards were connected to the Tegra SoC. Import and 

6 



 

export of current work is also a new feature that allows users to share their work as well as save 

work for later edits. Pad group filtering minimizes a large table and only show the pad groups the 

user selected. 

1.4 Roadmap 

In the following sections, we discuss necessary background information, requirements of 

our GUI tool, the approach we took to design a tool that meets those requirements, and the end 

results we were able to develop. Background (Chapter 2) provides information about the Tegra 

SoC, Jetson development boards, pinmuxing, and NVIDIA’s current process of pinmuxing on a 

Jetson board. Requirements (Chapter 3) lists our initial backlog of features that the GUI tool 

must have based on NVIDIA requirements. Approach (Chapter 4) documents the steps we took 

in order to meet those requirements. Results (Chapter 5) talks in detail, along with screenshots, 

about each feature we integrated in our GUI tool. Conclusion (Chapter 6) summarizes the whole 

project motivation, statement, and the results we accomplished. 

 

  

7 



 

2 Background  

Background information about NVIDIA’s Tegra and Jetson products is provided in this 

chapter. After the products are introduced, we show the initial flashing of Jetpack for L4T onto a 

new TK1 Development Kit. Pinmuxing is also defined as well as its purpose in relation to the 

Jetson Development Kit. The process of flashing a pinmux setting, through a Microsoft Excel 

spreadsheet, onto a development board is also shown. 

2.1 NVIDIA’s Tegra & Jetson Products 

NVIDIA is an American technology company based in Santa Clara, California.  NVIDIA 

designs graphics processing units (GPUs) for the gaming market, as well as system on a chip 

units (SOCs) for the mobile computing and automotive market [Introducing The Tegra]. More 

recently, NVIDIA has moved into the mobile computing market, where it produces Tegra mobile 

processors for smartphones and tablets. For example, the Google Pixel and NVIDIA Shield 

Tablet are both powered by NVIDIA’s Tegra SoCs. Tegra mobile processors include the TX1 

and TK1 models. NVIDIA also produces Development Kits that are development boards 

powered by a Tegra SoC. An example is the TX1 Development Kit and its components is as 

follows: 

 

Tegra TX1 SoC: The TX1 SoC (Figure 2.1.1) is a System on a Chip (SoC) developed by 

NVIDIA for mobile devices such as smartphones. This SoC contains 256 GPU Cores and a 

Quad-core 64-bit ARM A57 CPU. 

8 



 

 

Figure 2.1.1 A TX1 Tegra chip 

Module: The TX1 module (Figure 2.1.2) is for the TX1 SoC, which is located in the 

center of the module. The module includes power management controllers, external memory 

(4GB LPDDR4), storage (16 GB eMMC flash), and WiFi/Bluetooth controllers.  

  

Figure 2.1.2 Jetson TX1 Module 

TX1 Jetson Baseboard: The Jetson baseboard can be seen in Figure 2.1.3.  Users can 

use their own board, as long as it connects to the Jetson TX1 module correctly. The baseboard 

contains peripheral connectors such as general purpose input output (GPIO) expansion headers, 

WiFi antenna, 19v AC power jack, and camera headers. 

9 



 

 

Figure 2.1.3 TX1 Jetson Baseboard 

TX1 Jetson Development Kit: The Jetson Development Kit can be seen in Figure 2.1.4. 

The Jetson Development Kit combines the Tegra SoC, Jetson module, and Jetson board. This kit 

is sold to users and developers to use for their own applications. 

 

Figure 2.1.4 TX1 Jetson Development Kit 

10 



 

2.2 Jetpack for Linux For Tegra 

The Linux For Tegra (L4T) package is Ubuntu OS with NVIDIA drivers, packages, and 

programs specifically designed for Jetson Development Kits (TK1, TX1 boards). Jetpack for 

L4T includes all the L4T board support packages plus additional software such as CUDA, 

TensorRT, and cuDNN. As defined on the NVIDIA website, “the Jetson Development Pack 

(Jetpack) for L4T is an on-demand, all-in-one package that bundles and installs all software tools 

required to develop for the NVIDIA® Jetson Embedded Platform.”[JetPack for L4T] Users who 

have a host computer on Ubuntu 14.04, can flash Jetpack for L4T on their target development 

board. In Figure 2.2.1, a host machine running Ubuntu 14.04 is flashing Jetpack for L4T onto a 

new TK1 development board. After the flash, the target TK1 can then be independently booted 

and runs L4T OS. Figure 2.2.2 shows the target device, in this case a TK1, running some sample 

applications from the Jetpack package. Jetpack for L4T includes the board support package, 

additional software, and samples to help developers quickly start up with their Jetson 

Development Kits.  

11 



 

 

Figure 2.2.1 Host Machine (Ubuntu 14.04) flashing Jetpack L4T onto a TK1. 

A post installation screen is present, summarizing all the packages flashed on the TK1. 

 

 

Figure 2.2.2 TK1 running various Jetpack application samples including a CUDA Simulation 

12 



 

2.3 Pinmuxing 

 

Figure 2.3.1 Jetson TX1 block diagram 

Pinmux is the software controlled configuration of a pin’s functionality. To help 

understand the concept in more detail, Figure 2.3.1 shows a block diagram of a Jetson TX1 

Development Kit. Blocks on the perimeter indicate components on the Jetson Carrier Board 

(CVB). For example, the 19v AC power jack, WiFi antenna, and SD card slot are apart of the 

Jetson board. The big teal block in the center is the Jetson Carrier Module (CVM), which houses 

the Tegra TX1 SoC (in light green).  The CVB has peripheral headers (groups of pins) such as 

USB, HDMI, DSI, GPIO that connect to the CVM. The connections are made through physical 

pins touching on the CVM and CVB. Inside the CVM, there are also pins that must communicate 

with the TX1 SOC. 

13 



 

Pins can generally be left to serve their default usage, serve as a GPIO, or be unused. If 

we take a look at the SATA pin group on the middle right hand side, all the pins in that group 

can be pinmuxed to be a default SATA usage, set as a GPIO pin, or set to unused. A developer 

would select pinmux to GPIO if they do not plan to use the SATA connection and instead wants 

to use the pin for GPIO. If a developer does not plan to use that pin at all, then the SATA pin can 

be pinmuxed to be unused.  

Along with pinmux configurations, developers can also control the upper bound of 

voltage outputted from a pin group. This is called controlling the pin group’s pad voltage. For 

example, by setting the pad voltage in the pin group “UART1” from 1.5v to 3.3v,  the output 

high voltage of all pins in that pin group are changed from 1.5v to 3.3v. 

2.4 Board Configuration File (CFG) Generation Process 

Previous to our project, the users generated CFG files using an Excel spreadsheet. In 

order to flash a board with the customized pin configurations, the user used the spreadsheet to 

make changes on pinmux settings, then executed Visual Basic macros to generate intermediate 

device tree source (DTS) files. The DTS files were moved to a Linux platform and the user 

executed the dos2unix command to change the line endings to Unix format. Finally, the user 

executed a Python script, inputting in the DTS files, to generate configuration (CFG) files. The 

new CFG files could then be moved to a directory on the host machine and be flashed onto the 

board. A picture of this process is in Figure 2.4.1. 

14 



 

 

Figure 2.4.1 CFG File Generation Process Graph 

This long process not only requires lots of user interaction, such as moving the files to the 

appropriate OS, but also creates the intermediate DTS files that have no use to the end user. 

Since the Excel spreadsheet can only be opened on a Windows computer, while the CFG files 

must be flashed on a Linux host machine, the process of transferring files between operating 

systems results in extra work for a user. 

  

15 



 

3 Requirements 

The Requirements section states what features were required for the Tegra Pinmux GUI 

Tool, as specified by NVIDIA developers, as well as the reasons for each of them.  

3.1 Pinmux Configuration 

NVIDIA used an Excel spreadsheet to configure pins and generate CFG files that could 

be flashed onto the Tegra board. Our tool should contain all the same functionalities that the 

Excel spreadsheet had. The spreadsheet contained hundreds of rows, each row representing a pin 

and the pinmux options it had. The user selected the pin functionalities in the dropdown menus. 

The spreadsheet also had a data validation function, which would mark the cells as red if the pin 

was configured incorrectly. Our tool should configure the same amount of pins with the same 

options as the spreadsheet, and should also detect and show errors if the pins were assigned 

wrong configurations.  

3.2 Pad Voltages Configuration 

Another requirement was to include pad voltages in our tool. The spreadsheet had voltage 

configuration along with the pinmux settings. Pad voltages are only configurable for the pad 

groups (groups of pins with the same default functionality.) A pad group should only be assigned 

one voltage, and this voltage will affect all the pins in that group. Therefore our tool should have 

a separate tab for pad voltages, and changing the voltage would affect all the pins under that pad 

group in the pinmux settings. 

16 



 

3.3 Board Connections and Pin Constraints 

A functionality that the Excel spreadsheet did not have, was to constrain pinmux options 

based on board connections. While a Tegra SoC is the initial connection with no constraints 

applied, when a user adds a module and a board, the GUI tool should constrain some pins to a 

specific usage. The specific constraints applied would depend on data files read in by our tool. 

The tool needs to include a tree representation of which boards are connected, and constrain pins 

depending on those board connections.  

3.4 Seamlessly Generate CFG Files 

The new GUI tool should generate the same CFG files as the spreadsheet does to avoid 

flashing incorrect pinmux settings to the board. In Section 4.3, we prove that if two CFG files are 

similar, then they result in the same pinmux settings. Along with the requirement to produce the 

same CFG, the GUI tool must also remove intermediate DTS files. Abstracting DTS from users 

will reduce much of the overhead (refer back to Figure 2.4.1) to generate CFGs. The new CFG 

file generation method is shown in Figure 3.4.1. 

 

Figure 3.4.1 New CFG File Generation Process Graph 

17 



 

3.5 Save User’s Work 

A feature in any tool would be to the ability to save and resume one’s work. In relation to 

the Tegra Pinmux GUI Tool, saving work would save all the pinmux changes the user has made. 

Importing from a save file bring the exact same state as before.  

3.6 Cross Platform Tool 

An old issue about the spreadsheet was that it was in .xlsx format and had only worked 

on Windows. Our new tool should be cross-platform to avoid Windows dependency. It should be 

able to run on Windows, Linux and Mac OS platforms and perform the same functionalities.  

3.7 Package Installation 

Finally, we need to combine our tool into a package for easy user installation. If we 

decided to distribute a raw web application with a locally hosted server, then the user needed to 

install the Node.js and Node module dependencies on his own machine. The web tool needs to 

be packaged into a simple installer for the user to avoid complicated dependency installation 

instructions. 

4 Approach 

Approach documents the steps our team took in order to meet our requirements. We first 

analyzed GUI tools from other similar embedded system manufacturers. Then, given many 

different languages to write a GUI tool in, we compared and contrasted the languages. A very 

18 



 

simple pinmux flash was done on a Jetson board to verify a pin’s change in configuration. We 

then familiarized ourselves with Trello, our scrum board, and Gerrit, our code review software. 

The last step before starting to code, our team created a GUI mockup and logic flow diagram.  

4.1 GUI Tools From Other Sources 

Before starting the Tegra Pinmux GUI tool design, we analyzed GUI tools from two 

other similar products during our research. The main one was from Texas Instruments, and the 

other one was developed by Toradex. 

A. Texas Instruments 

Texas Instruments (TI) has two versions of their pinmux GUI tool - one for desktop and 

one on the web. As we can see in Figure 4.1.1, the web version is more up to date and supports 

the OS X platform while the desktop version is archived and only supports Windows and Linux. 

Seeing the cloud version as more up to date, we inspected TI’s GUI tool and found various 

design patterns that we may want to consider. 

 

 

 

Figure 4.1.1 Two versions of TI’s pinmux GUI tool 

First one is an old version to run on Windows and Linux,  

while the second tool runs on the cloud and is version 4. 

 

19 



 

In Figure 4.1.2, we can see that TI’s Cloud based GUI tool first starts out with allowing 

the user to create a new pinmux design by selecting from a variety of devices, parts and 

packages, or to load a previous existing design. 

 

  

 

Figure 4.1.2 TI pinmux selection page 

Start screen of TI’s GUI Tool. Able to select from a variety of devices,  

parts, and packages or load a pre-existing design. 

 

Moving on to the actual pin configuration screen, in Figure 6.1.3, the layout was split into 

three sections: Peripherals, Requirements, and Output. The Peripherals section has the domain of 

all possible pins to configure on the TI Board; Requirements is the section to set the pin 

constraints, and Output is to view the design summary, generate files (.c and .h files to simulate 

your requirements), and visually see the pin layout.  

 

20 



 

 

 

Figure 4.1.3 TI pinmux configuration page 

Main configuration page contains peripherals (contains pins that can be modified) on the far left, 

pin settings in the middle, and a design summary with relevant device files and a pin layout. 

 

Viewing TI’s GUI tool from the front end gave us information about important sections 

to see from an engineer’s standpoint. It also showed that TI has pushed forward to use a 

web-based platform for more OS compatibility. These observations influenced our decision to 

make a web app vs a desktop app, and design our GUI mockup, 

B. Toradex 

Another GUI tool was made by Toradex, a company that produces System on Modules 

(SoM). On the download page of their website (Figure 4.1.4), Toradex only has a Windows 

version of their pinout designer, being as current as December 3rd, 2016. Although Toradex did 

21 



 

not have a cloud platform, we decided to investigate into their GUI tool and see for layout 

similarities with TI. 

 

 

Figure 4.1.4 Toradex Pinout Designer versions 

Only containing one designer for windows, but went through as many as 12 revisions. 

Very up to date with the last version being uploaded at 11/03/16. 

 

The Toradex Pinout Designer shares all the three similar categories - Peripherals, 

Requirements, and Output, though named differently and on different degrees of detail. The 

Peripherals category nearly mirrors the TI’s, but the Requirements on the Toradex does not allow 

easy on-the-fly editing of the pin values. The Output category also differs because while Toradex 

shows the pins being used and pins in conflict, it does not show the pin layout nor the design 

summary while TI does. 

 

22 



 

 

 

Figure 4.1.5 Toradex Pinout Designer Program 

Latest 1.3.4.0 version downloaded from the Toradex website. Left side is similar to TI’s 

peripherals panel, and the center is also similar to TI’s pin setting panel. The difference is the 

scope of the design summary panel. Toradex has the bottom row for a summary, while TI has a 

dedicated column with a Pin Layout diagram. 

C. GUI Tools From Other Sources Summary 

After looking at the pinmux GUI tools from TI and Toradex, we concluded that a 

web-based tool is more scalable on different OSs. We also advised that our tool should be split 

up into three categories: pin selection, pin editing, and pin summary. 

23 



 

4.2 Language Comparison 

There were several programming languages that we could choose from to implement our 

GUI tool: Python, Java, C++ (with Qt) and JavaScript (with a backend Node.js). We compared 

them from different aspects in the following sections, and discuss our evaluation below: 

A. Ability to Run Python Scripts 

NVIDIA has already developed some upstream pinmux tools to configure the pins and 

boards, and those scripts were written in Python [Tegra-Pinmux-Scripts]. Our GUI tool should 

be able to execute some of these scripts directly in order to connect with the board. We found out 

that all four languages can run Python scripts, and the main commands (or libraries) for each of 

them are listed in the Figure 4.2.1. Most notably, writing our tool in Python means the user 

already has Python installed. However, if we developed in Java, C++ , or JavaScript, creating a 

child process needs to assume a user has Python installed, otherwise the OS won’t find Python. 

 

 

 

 

 

 

 

 

 

24 



 

 

Python 1. from sys import path 

path.append(path_to_file) 

// the above two lines are omitted if file is in the same directory 

import [file name]  

2. os.system("script.py 1") 

Java Process p = Runtime.getRuntime().exec("python path/script.py"); 

C++ with Qt 1. Using the library “py_embed” 

2. Using the Python/C API 

Node.js 

(JavaScript) 

1. Using the library “python-shell” (MIT license) 

2. var spawn = require("child_process").spawn; 

var process = spawn('python', ["path/to/script.py", arg1, arg2, ...]); 

 

Figure 4.2.1 Comparison: how to run python scripts 

B. Cross-platform Capability 

The GUI tool we would create should be able to run on different operating systems, 

including Windows, Linux,  and Mac OS. Linux, for example, has different distributions with 

variance in compilers and libraries, so we needed to pay attention to the libraries we wanted to 

use and test the application on all the platforms in the end. Figure 4.2.3 lists the basic 

requirements for a platform to run the GUI tool. 

 

 

 

 

 

25 



 

 

Python Python 2 or 3 installed 

Java JRE support (has different versions) 

C++ with Qt G++ (GNU C++ Compiler) installed 

Node.js 

(JavaScript) 

A web browser (Chrome, IE, Firefox, etc.) and Node.js installed 

 

Figure 4.2.3 Comparison: platform requirements  

 

Meanwhile, operating systems have different UI guidelines. A cross-platform application 

will have similar functions on all the OSs, but the UI design can be very different depending on 

native UI components of the platform. If we used Python, Java or C++ to develop the GUI tool, 

we must adjust the UI appearance and even the flow of the application to fit different platforms. 

Using JavaScript along with a web browser may not be a common solution for 

implementing a GUI tool, but it does not have the problem of varying UI designs. Since the UI is 

always loaded inside a web browser, it can have a common look and the user will not feel 

different. The only problem left would be to scale the web pages for different sizes of screen, 

while most components and features can still operate in the same way.  

C. GUI Frameworks 

We also looked into the GUI frameworks these languages support. Using existing 

powerful frameworks could make the UI look good as soon as we came up with the general 

design, and save our time for adjusting the UI components. The frameworks are listed in Figure 

4.2.4. 

26 



 

 

Python Cross-Browser: PyJamas 

Cross-Platform: AVC, Kivy, etc. 

Java 1. Swing, SwingX 

2. Window Builder (Eclipse plug-in) 

3. Pivot 

C++ with Qt 1. Qt 

JavaScript 1. Bootstrap 

2. Electron (Framework for desktop application) 

 

Figure 4.2.4 Comparison: GUI frameworks 

E. Language Summary 

All of the four languages are powerful enough and have the functionality required for our 

GUI tool. They are able to run the pinmux Python scripts, work on multiple platforms and have 

strong GUI framework support. Thinking about the simplicity of UI design, we decided to use 

JavaScript with a web browser because it was the easiest way to make our application 

cross-platform. Also the code on the client and server side would be written in JavaScript, as 

Node.js runs JavaScript. However, using Python might be preferred by NVIDIA since their 

Linux 4 Tegra upstream team had more experience with it. In that case we needed to study 

Python in order to understand the existing scripts, and learn about GUI design using Python.  

 

  

27 



 

4.3 Understand How CFG Files work 

Before starting working on our tool, we would like to understand how the CFG files work 

and get familiar with the board and the flashing process. Our first task was to try change the 

pinmux configurations ourselves. We could change one pin configuration in the spreadsheet, 

flash the new CFG file generated to the board, and verify that the pin had been changed. The 

process of completing this task is documented below. 

A. Understand devmem2 

“devmem2” is a program pre-installed with the Jetson package, so it can be found on the 

Ubuntu OS installed in the board. Given an address location in the memory, the program can 

return a 4 byte value at that location. 

B. Find the address location of a register 

In order to get the address location to pipe into devmem2, we had to read the Technical 

Reference Manual (TRM) of the TX2 SoC to find where a specific pin is located in memory. In 

this task we used GPIO_SW1_PFF1 as an example. We had to check the values in both Figure 

6.3.1 and 6.3.2. 

 

 

Figure 4.3.1 Documentation showing where in memory the PADCTL_A address starts 

 

28 



 

 

Figure 4.3.2 Documentation showing the specific register offset of the address starting location 

 

Along with getting the register’s address location, the TRM allows us to interpret the 

value bit by bit. For example, bit 4 represents the tri-state value. If bit 4 is a 0, the tri-state is 

passthrough (disabled); if it is a 1, the tri-state is enabled. This is also the bit we specifically 

targeted in the spreadsheet. 

29 



 

C. Verification of TRM Findings with the default CFG file 

From the TRM, we see that the GPIO_SW1 pin has an offset of 0x0 from the starting 

address location of PADCTL_SYS, which is 0x0c301000. Adding the two together results in 

GPIO_SW1 being located at 0x0c301000.  

We can now verify the address location by checking the default CFG file that is flashed 

onto the TX2 Board. To find out which CFG file is used for pinmux configuration, we checked 

the flashing configuration file “P2771-0000.conf.common”. The line 217 of the file said 

PINMUX_CONFIG = "tegra186-mb1-bct-pinmux-quill-p3310-1000-a00.cfg", so we would 

check this CFG file for the pin. 

This CFG file can also be found in Appendix G. The line 27 in that CFG file is 

“pinmux.0x0c301000 = 0x00000058 #gpio_sw1_pff1”. The words after “#” is the comment of 

the line, so this line means the location 0x0c301000 is set to 0x58. The word “gpio_sw1_pff1” 

verified our assumption, which told us that 0x0c301000 is the location for the pin 

GPIO_SW1_PFF1.  

D. Check the value of the location on the board 

 

Figure 4.3.3 Running devmem2 on the TX2 Development board,  

retrieving the value at address location 0x0c30100. 

 

30 



 

As shown in the Figure 4.3.3, running devmem2 on a newly flashed board for the given 

location 0x0c301000 returned the expected result 0x58. Since the board was flashed with the 

default CFG file we found, the value matched the one in the file.  

E. Generate a new CFG file with a slight modification 

Next we opened the spreadsheet T186_customer_pinmux.xlsm and switched to the 

“P3310-1000-A0-A2-CVM-Config” tab (Figure 4.3.4), because the name matched the 

PINMUX_CONFIG value in the file p2771-000.conf.common. 

 

 

Figure 4.3.4 Spreadsheet tabs showing the different models of CVMs 

We changed the gpio_sw1_pff1 pin from tri-state enabled to disabled. Then we generated 

three DTS files using the spreadsheet macros, copied them to Linux, ran dos2unix to change the 

line endings to Unix format, and then ran the Python script DTS2CFG.py to generate the CFG 

file.  

F. Flash the new CFG file to board 

We replaced the old CFG file in the directory with the new edited one. Figure 4.3.5 

below is a text difference between the two CFG files. 

31 



 

 

Figure 4.3.5 Text difference between the default CFG (left) and the CFG we created (right) 

Then we flashed the new CFG file to board and used devmem2 to check the value at the 

location. The command used is shown in Figure 4.3.6. 

 

Figure 4.3.6 Running devmem2 on the location 

The value displayed was 0x48 instead of 0x58 this time. The 4th bit was a 0, meaning the 

tri-state is passthrough, or in other words, disabled. Before we flashed the new CFG file, the 

value was 0x58 where the 4th bit was a 1, so the tri-state was enabled before. Note that the bit 

counting usually starts at 0, so the 4th bit is actually the 5th binary digit. 

  

32 



 

4.4 Process 

A. Planned Schedule 

We came up with an eight-week plan after we arrived at NVIDIA, shown in Figures 4.4.1 

and 4.4.2. In the first two weeks, we would be doing background research on the project, 

including getting familiar with the working environment, reading the internal Wiki pages, and 

trying to flash the board. Then we would decide what features we would actually implement in 

tool, and came up with a GUI Mockup as well as a logic diagram. 

Coding would start on the fourth week, after we had the design reviewed. We planned to 

finish the coding and testing in the three weeks after. We would divide the work into the 

front-end and back-end. We would also write documentation files for our tool, and there would 

be separate documentation for the future users and potential developers. The final MQP report 

would be finished in the last two weeks. The code and documentation would be completed in the 

last week. 

We planned to have weekly meetings with Professor Claypool and our mentor Christian 

Gonzalez. In the meeting, we would discuss the past week’s accomplishments, plans for the 

upcoming week- and record his feedback. This way we could keep our supervisors updated with 

our process, and receive comments on any problems. Stephen was also very responsive through 

emails or Communicator about his requirements for our tool. 

33 



 

  

Figure 4.4.1 Planned Schedule View 

34 



 

 
Figure 4.4.2 Gantt Chart of the Planned Schedule 

B. Tools 

We have used many useful tools throughout the project to keep our work organized. One 

that we used the most often is called Trello, as shown in Figure 4.4.3. Tasks were broken down 

into small pieces each week, and each task was assigned to a team member. A task would show 

up in the “Backlog” section first, and then be moved to “Current” when it was being worked on. 

Then it was moved to “Review” to be reviewed by the other members, and finally moved to 

“Done”. We also kept track of open and fixed bugs on the board. This system worked well to 

alert other members of what has been completed or still needs to be done. Trello function as a 

scrum board for us. 

35 



 

 

Figure 4.4.3 Trello Board View 

 

Another tool that we used is the Gerrit Code Review website. NVIDIA uses an internal 

instance of Gerrit where only NVIDIA developers merge and review code. Our team created a 

new Git branch off of a NVIDIA repository for our only project. Any code that was completed 

was tested locally then pushed to Gerrit. This process was done often so all members had the 

most updated code. After we felt the each code portion was complete, we would start the review 

process. We invited our mentor and NVIDIA JavaScript reviewers to check our code, and 

received useful feedback regarding any code styling problems. Through this process we learned 

to write code in a professional style consistent with NVIDIA’s standards and include detailed 

comments. 

  

36 



 

4.5 Design 

A. GUI Mockup 

To begin the design process we created a GUI Mockup which can be found in Appendix 

D. Considering the designs of GUI tools from other sources and our project requirements, we 

decided to do two tabs for our first draft. The main page would have a table similar to the 

pinmux spreadsheet. This would mimic the spreadsheet functionality and give users who are 

used to the old design the same idea. The sidebar would have another list of all the categories 

which would filter the pinmux table. On the initial webpage load, the table will be filled with all 

pins, and the sidebar categories are all selected. The users can then select or deselect categories 

from the side to change what is filled in the table. The export and flash buttons would also be on 

this page which give users the ability to export to CFG files.  

The second tab is a connector tree which starts with the base SoC (we defined the SoC to 

be the TX2). The users then use the sidebar palette to drag in boards to add to the SoC. Based on 

what the user has added on the device tree, the pinmux table on the first tab will change. As more 

connectors are added, more constraints are applied to the spreadsheet. The user can also drag a 

connector back to the sidebar to remove it from the tree.  

Once the mockup was completed a bootstrap template acted as the starting point and was 

slightly modified to follow the mockup. After a few weeks the mockup helped guide the design 

but as with initial mockups, features would be added or removed along the development process. 

For example, comments from our team led to removing the flash button because users should 

know what to do with a CFG file. Save and import buttons were also added to give users the 

37 



 

ability to save their current changes from the table and import them later. Another tab was added 

to change voltages in its own separate table instead of the spreadsheet table. Comments from our 

team helped make sure this tool was complete with all the mandatory features.  

B. Logic Diagram 

A box diagram was created to show the logic behind the project, which can be seen in 

Appendix C. The diagram splits the client and server into two big boxes. The client side refers to 

the logic on the web pages, and the server side describes the process running on the Node.js back 

end when requests are received from the client. 

 The client side starts with opening the webpage. A loading page request is sent to the 

server, and the server reads from the board definition data files and constructs HTML pages to 

return to the client.  

After the pages are loaded, the user can interact with the three buttons on the navigation 

bar. The “Export File” button is used to save the user’s configurations on the web pages, and will 

send an AJAX “save” request to the server. The server generates a temporary configuration file 

in the TXT format in the backend, and returns a download link to the client. The browser will 

download the file and the user can save it on the computer. The “Import File” button can read 

from any temporary configuration file and restore the user’s configurations on the web page. 

The “Generate CFG” button generates CFG files based on the configurations from the 

web pages. It sends an AJAX “build” request to the server along with the pinmux configuration 

information. The server will generate three DTS files based on the information, and then creates 

a Python process, which reads in the DTS files, existing Python script and some helper TXT 

38 



 

files, to create the CFG files. In the end, the server archives all the CFG files it has generated into 

a ZIP file, and returns the download link to the client for downloading the ZIP file. 

The user can also modify the pin configurations on the web pages before pressing any of 

these buttons. On the default Pinmux page, users can filter the pin table using the category filter, 

or change the pin configurations in the table. The table will show errors in red if any of the pins 

are configured incorrectly. By clicking on the three tabs on the top right corner, the user can 

switch to the Connections page or the Pad Voltages page. 

The Connections page is used to select the current board state. The user can change the 

state by dragging a board to the chart, or removing a board from the chart. The most recent board 

dragged into the chart will become the current board state. The change of the board state will be 

reflected on the Pinmux page, because some pins will not be configurable if the chart has a CVM 

or CVB board on it. The Pad Voltages page is used to select voltages for each pad. The modified 

voltages will also be displayed in text on the Pinmux page. When the board state changes, some 

default pad voltages will also change according to the board definition files.  

  

39 



 

4.6 Coding 

A. Development 

The Tegra Pinmux GUI Tool was developed through weekly iterations and was improved 

based on feedback. As a starting point in development, the first step was to emulate the 

spreadsheet on our web app. We started off with a template page with a table and changed 

around some of the field names to be more appropriate. Next, we used a CSV to JSON converter 

that retained all the dropdowns in the Excel spreadsheets. The Excel spreadsheet could not be 

instantly copied and pasted in, as some columns had different widths that would bug the 

converter. The detailed instructions on how to cleanse the Excel spreadsheet for JSON 

conversion can be found in Appendix I. 

After successfully producing a JSON file, we setup our Node.js server to host our simple 

template website and send that JSON file when requested. The next part of our development was 

to create logic that would populate the table given the JSON object. Many fields were 

one-to-one, so a table row value could directly map to a table column name. Through the use of 

some string templating to create HTML select tags, we maintained the dropdown menus. When 

we reached this point, we ran into a problem where users changed their pinmux settings and 

wanted to export, our app had to run through the whole table and extract all the selected table 

values. We didn't like the process of parsing through HTML text, as it seemed error prone 

because it would be string dependent, so we created a global variable called pinDictionary[] that 

mapped unique IDs to a pin object. A pin object has fields that are all the column names in the 

Excel sheet, and has values that are the ones the user selected. 

40 



 

It was not clear at first how the Excel spreadsheet generated DTS files, but after 

consulting with Richard Shen, we found Visual Basic scripts that the spreadsheet had used. We 

decided to offload the DTS and CFG file generation process to the server because the client side 

should focus on UI changes. Note that Node.js runs JavaScript, so the client and server can 

interchange functions if needed.  

Reaching a point with intermediate DTS files, our tool needed to automates what users 

would manually do at this point. Normally, users would transfer the file over to Linux, run 

DOS2UNIX to remove line endings, and then run the DTS2CFG python script. The script needs 

address info text documents as well as the DTS files for input. The address info text documents 

provide a mapping from pin names to address locations (similar to the TRM mapping found in 

Section 4.3). We developed our server side to spin up another child process to have Python 

execute the script (Figure 4.6.1).  

 

Figure 4.6.1 Node.js code that spawns a child process 

 and runs the Python script with specified arguments 

To reiterate, our tool does the same CFG file generation process as users had to do with a 

spreadsheet before, but this tool hides and automates the process in the backend. When the two 

CFG files are created from the Python script - one for pinmux configuration, another for pad 

41 



 

voltage configuration, they are zipped up using the Node module, Archiver. The server then 

alerts the client with the zip file location, so the user can download it. We were almost done with 

developing the spreadsheet tab, but adding pad voltages needed some UI design considerations. 

A small but important tab is the pad voltage tab. While initially located above every 

grouping in the spreadsheet (Figure 4.6.2), feedback we received leaned us towards creating a 

separate tab in the GUI tool. Adding a separate column for IO Block Voltage in the spreadsheet 

table made all other columns tighter. The overall look and feel was more important, so we 

decided to to put the pad voltages in another tab. The pad voltages tab contains just two columns, 

Pad Group Name and IO Block Voltage, as seen in Figure 4.6.3.  

 

Figure 4.6.2 Excel spreadsheet showing IO Block Voltage on individual row 

42 



 

 

Figure 4.6.3 Pad Voltages tab in the Pinmux GUI Tool 

The last tab we developed is the Connections tab. This tab is an additional feature that is 

not native to the spreadsheet. The purpose of the Connections tab is to allow users to define their 

own boards and the constraints. In our implementation, the Jetson module (CVM) and Jetson 

board (CVB) are defined. Other boards could be created, but we hadn’t done so. A user story of 

this tab is if a user just has the Tegra Chip and wants full flexibility in pinmux options. If only 

the Tegra SoC is selected in the connections tab, then all pins in the spreadsheet view are fully 

configurable. When the user adds the CVM to the connection chart, some pins are going to be 

constrained because in order for the CVM to function, some pins should be set to specific 

functions. Lastly, when the user wants to add his board to the connections design, assuming he 

has created a data file for his board or is using the default CVB, the constraints of the board 

would also be applied. At this point, the user should only be able to pinmux GPIO expansion 

43 



 

header pins, or the pins of IO Controllers they are not planning on using. An example is if a user 

was not going to use the SD Card slot, then they can pinmux it for other functions. Our 

implementation does not allow for creating data files in the application, but the CVM and CVB 

data files could be modified to add or remove constraints in the JSON object. 

Throughout the project, aside from feedback about features, we had feedback on our code 

as well. We refactored our code to match the spacing and naming convention at NVIDIA. We 

submitted patch sets to encapsulated global variables. More refactoring could have been done, 

but due to unfamiliarity of some frameworks (See Future Work), we chose to skip the potential 

for more abstracted code in favor of good documentation and feature development. 

B. Third-Party Frameworks and Modules 

To help meet the requirements of our project without reinventing the wheel, we used 

third party frameworks and modules. The three frameworks that were used are jQuery, jQuery 

UI, and Bootstrap. jQuery let us quickly grab HTML documents, easily add event listeners, and 

asynchronously fetch files from the server in few lines of code. jQuery UI was essential to 

implement drag and drop functions on the connections page. jQuery UI easily let us add 

draggable() and droppable() listeners to the right UI elements. In the code fragment below 

(Figure 4.6.4), we set draggable and droppable event listeners on the board and sidebars for the 

connections tab. 

44 



 

  

Figure 4.6.4 JavaScript code to set drag and drop listeners on a board and sidebar using 

jQuery UI 

The Bootstrap framework was essential to give our webpage a nice look and feel. Aside 

from the sample template we started with, Bootstrap also allows the responsive tables - allowing 

us to resize the window, but still have the table be scrollable.  

We added various third party Node modules to our server side code. The first node 

modules is Commander. Commander allows us to parse command line arguments and respond 

with appropriate logic. We used another Node module called Archiver to zip up the generated 

CFG files and provide it as one file to download for the user. Express is a Node module used to 

serve static web files. It is always listening for file requests from a client and will respond with 

45 



 

the file if it exists. The last Node module we use is Electron. Electron is for our final stage 

packaging of our web app. It builds a desktop app so the user no longer needs to worry about 

starting up with the correct command line arguments; Electron makes our app just click and start. 

Below in Figure 4.6.5, our application is an Electron app. Figure 4.6.6 shows the various 

distributables for Windows, Linux, and Mac OS. 

 

Figure 4.6.5 Our Pinmux GUI tool deployed as an Electron app 

 

Figure 4.6.6 (A) Our Pinmux GUI tool as an Electron app for Windows 

46 



 

 

Figure 4.6.6 (B) Our Pinmux GUI tool as an Electron app for Linux 

 

Figure 4.6.6 (C) Our Pinmux GUI tool as an Electron app for Mac OS 

The complete list of third party libraries we used along with their copyright information 

can be found in Appendix B. 

 

  

47 



 

5 Results 

Results talks about developed features in detail, and how the feature satisfies 

requirements stated earlier. Some features do not satisfy a requirement, but do benefit the user in 

terms of usability. 

5.1 Developed Features 

 

Figure 5.1.1 Tegra Pinmux GUI Tool (Pinmux Tab) 

The initial screen when loading the pinmux web app features a navigation bar and 3 tabs 

on the top right corner, as shown in Figure 5.1.1. The Pinmux Tab is shown by default and lists 

all the data imported from the previous Excel spreadsheet. Each pin can be customized to the 

user’s desired configuration. All changes made to the table are checked for data validation. 

48 



 

Therefore the user cannot specify a configuration that is not possible, such as setting a pin 

direction for a pin that is unused. If the user does make a mistake, a window will pop up showing 

the error, and the table will display a red border around the data. An example of the data 

validation function is shown in Figure 5.1.2. 

 

Figure 5.1.2 Pinmux Tab Data Validation Example 

After the user completes all the necessary changes, they are able to export the CFG files 

directly, which is a feature that the previous spreadsheet does not allow. If the user wants to save 

his or her current work and return later, we also created a feature that saves all the work to a text 

file. The user may import the file and achieve the saved data, which was one of the application’s 

requirements. The buttons for these features are in the navigation bar, as shown in Figure 5.1.3.  

 

Figure 5.1.3 Navigation Bar Buttons 

One flaw of the old spreadsheet configuration was that there were over 600 pins listed 

while many were not configurable. We sought out to minimize the amount of pins our tool 

displays by only showing the pins that the user can change. This reduced the amount of data by 

half so our table is smaller than the spreadsheet.  

49 



 

Another feature developed to help minimize the large table of data was the Category (Pad 

Group) Filtering. All pins are grouped by pad groups so the user may choose to only display 

specific groups by selecting them on the left sidebar. The category filtering sidebar can be seen 

in Figure 5.1.4. The toggle button toggles all of the pin groups selected or unselected. The user 

may also write in the filter bar to filter by name. Any pin group selected or unselected in this list 

changes what is visible in the main pinmux table. These filtering capabilities were not a 

requirement of the app, but help to avoid cluttering the table. 

 

Figure 5.1.4 Pinmux Tab Pad Group Filtering 

This Connections Tab (second tab) displays a draggable and droppable tree so the users 

may add and remove boards to be connected, which in turn constrains the amount of pins that 

may be configured on the Pinmux Tab. An important feature of the table is to only allow pin 

configurations that are possible, and constrain some pins depending on what the user has 

50 



 

physically connected to their personal board. This partially completes the requirement of 

constraints based on connected boards. In our application, constraints would prevent a whole row 

from being modified. In practice, constraints should allow some dropdown elements to be 

unselectable, not disabling the whole row. Figure 5.1.5 shows the Pinmux Tab with some pins 

constrained.  

 

Figure 5.1.5 Pinmux Tab with Pins Constrained 

Our third tab, Pad Voltages, is similar to our pin configuration table, except that it only 

contains the pad group names rather than all the pins. This is because a pad voltage is selected 

for the entire group rather than each individual pin. It was better to display this in its own page 

and table rather than combining it with the pin configuration table to clearly show that this is a 

group option. However, the pad voltages are still displayed in text in the table for user reference. 

  

51 



 

5.2 Evaluation 

The evaluation process can be broken down into two parts: objective testing and 

subjective testing. Objective testing is checking the CFG files output by our tool and comparing 

them with the pre-existing spreadsheet’s output. If the two CFG files match, then our tool will 

flash the same values to a Jetson Board as a spreadsheet would (as shown in Section 6.3). The 

result is binary: a file match, or mismatch. Our process of objectively testing our code did 

actually catch errors that we would have otherwise missed. The reason for the discrepancy 

between our CFG files and the spreadsheet’s CFG files was because of unnoticed edits on the 

spreadsheet that caused it to stray from its default values. The initial state between the GUI tool 

and the spreadsheet must be the same if the output is to stay the same. After we double checked 

our initial state of our GUI tool, we tested and found all CFG files generated match.  

The other component of evaluation is the subjective testing. This form of testing is based 

on feedback from our peers: Stephen Warren, Christian Gonzalez, and the L4T team. We want to 

make sure that we have built the functionalities that they required, and the look and feel of the 

tool meet their expectations. We also go over our backend design and see if adding additional 

requirements would require code refactoring. For example, after we had demonstrated the 

working Pinmux Tab, feedback we received asked for the next feature to be a Connections Tab 

that would constrain the spreadsheet based on what boards the user connects together. Examples 

of feedback that required refactoring code are the patch sets we submit to Gerrit after code 

review from our peers. If a file had inconsistent spacing, or unnecessary whitelines, or unclear 

52 



 

comments, we would see a comment about it on Gerrit, and push a patchset to fix it. This form of 

testing is synonymous with the agile development method.  

5.3 Summary 

At the conclusion of our development cycle, we have a tangible list of features that 

satisfy all the previously defined requirements. While some features did not satisfy a specific 

requirement, they still have a beneficial impact for the user.  

Features that satisfy a specific requirement: 

● Pinmux tab that shows a table where user can select pinmux options 

● Connections tab that allows users to drag and drop connectors that apply constraints on 

the pinmux 

● Read from SoC and Board definition files 

● Validation checks that display a red border around erroneous fields 

● Pad voltage tab to set voltages for pad groups 

● Import and Export current configurations 

● Generate CFG files of current configuration 

● Packaged application as distributables for Mac, Windows, and Linux 

Features that were not required but benefit user: 

● Pad Group filtering 

● Badge icons displaying the number of pins per pad group 

More screenshots of the final Tegra Pinmux GUI Tool can be found in Appendix H.  

  

53 



 

6 Conclusion 

NVIDIA produces system on chips such as the Tegra TK1 and TX1. The SoCs are used 

in modern hardware such as the Nintendo Switch, NVIDIA Shield, and the Google Pixel C. 

NVIDIA also manufactures development boards, called Jetson Boards, which feature the Tegra 

SoC. Jetson Boards have pins that connect to peripherals, and most importantly, to the Tegra 

SoC. NVIDIA allows software to control the functionality of pins on the Jetson Boards. This 

process is called pinmuxing. Pins can generally be pinmuxed to be the default value, GPIO, or 

unused. 

Developers using the Jetson board would want to pinmux when they are not using a 

peripheral and want that pin to do other logic. In the past, developers had to modify a Microsoft 

Excel spreadsheet to select their pinmux options, and then export to an intermediate DTS file. 

The DTS would then be input to a Python script which converts it to a flashable CFG file. This 

process is not only Windows OS reliant, but also included additional steps with a DTS file. The 

main goal of our project is to develop a web application to configure pins and voltages on Tegra 

powered boards. Requirements of this application were drafted through feedback from NVIDIA 

internals. The web tool needed to allow usage across multiple platforms. Internal backend design 

should abstract users from the intermediate DTS file. Constraints should be applied when users 

add boards to a device tree. Import and export buttons should allow users to save and resume 

work. The application should also be distributable to users across multiple platforms. 

The process we took in completing this project involved researching background 

information, familiarizing ourselves with development tools, implementing feedback from 

54 



 

weekly iterations of development, and testing and packing the final product. Background 

research included learning about what a Tegra SoC is, what Jetson boards are, and what 

pinmuxing is. We used Gerrit and Trello as tools to keep our development process standardized. 

New features were often added or old features modified a bit after presenting our weeks 

development to many people. Testing was on the CFG files generated from our tool compared 

with an Excel spreadsheet. The app was finally packaged and distributable for multiple OSs. 

Developed features include a web application with a navigation bar and three tabs. The 

navigation bar has three buttons for users to import/export their work, and generate CFG files. 

Three tabs are used for Tegra configuration options. The default tab is the spreadsheet view 

containing drop down options for pin configurations. The second tab is the connections tab 

where users drag and drop boards to a device tree. On the last tab, users can set pad voltages for 

pad groups. The web app was exported as a desktop application for multiple platforms through 

Electron. Overall, the app has potential to give users and NVIDIA developers a seamless way to 

configure Tegra settings. 

  

55 



 

7 Future Work 

Due to the constraint of seven weeks, there are many improvements that could help 

maintain the readability, scalability, and functionality of the Tegra Pinmux GUI Tool but were 

not implemented. For readability, we could use JavaScript frameworks such as React or Angular 

to create data models and data bindings for our tables, categories, footers, sidebars, tabs, etc. 

This would help future developers more easily see what JavaScript code is affecting which UI 

element. Adoption of ES6 will also help readability, most notably because of its support for 

string templating. In the current code, we use JavaScript to set the innerHTML of elements to 

dynamically created strings. The dynamically created strings would look different with the 

adoption of ES6. On ES6-features.org, an example of the difference in string templating between 

ES6 and ES5 (our version) is given in Figure 7.1.1: 

 

Figure 7.1.1 Difference between ES6 string templating and our current code (ES5) 

 

56 



 

In terms of scalability, the project could be enhanced by refactoring functions and CSS 

files. The purpose of many JavaScript functions should be purely functional and avoid touching 

UI. This will allow for easier unit testing on the functions because testing UI is difficult and hard 

to measure. Throughout our development, we used AJAX to replace the body of the main 

index.html page when a user switches tabs, instead of going to a new page in order to preserve 

global variables. Each tab has different styling so we wrote a function to replace the previous 

tab’s stylesheet with the current tab’s stylesheet. Replacing the stylesheets every time a user 

switched tabs caused stutters, whose lag time was browser dependent. The reason for the stutter 

was because HTML elements were being shown before CSS styling could be applied to it. In our 

last week, we managed to create one CSS file for all tabs, but some elements on a specific tab 

had started behaving strangely. For example, when resizing a window on the spreadsheet tab, the 

table would start jumping into the category section. Future improvements would create a 

collective but functional CSS file for the whole website. 

Last but not least, additional functionality improvements can come directly from Stephen 

Warren’s wiki. We had scaled down his requirements for the purposes of defining a feasible 

MQP project. Functionality that we hope to include in the GUI tool include enabling/disabling 

IO Controllers and auxiliary CPUs, and configuring of DVFS policy. Each of these three 

functionalities would probably be their own separate tabs, and the whole GUI tool would be a 

central hub for all the configuration of a Tegra chip and user defined boards. 

  

57 



 

8 References 

 AnOldGreenHorn. “Embedding Python In Your C++ Application.” CodeProject, 22 May 2006, 
www.codeproject.com/articles/14192/embedding-python-in-your-c-application. 
 
Benchoff, Brian. "The Nvidia Jetson TX1: It’s Not For Everybody, But It Is Very Cool." 
Hackaday. N.p., 24 Nov. 2015. Web. 28 Feb. 2017. 
<http://hackaday.com/2015/11/24/the-nvidia-jetson-tx1-its-not-for-everybody-but-it-is-very-cool
/>. 
 
“Build Desktop Applications.” AppJS, appjs.com/. Accessed 25 Feb 2017 
 
“Call and Receive Output from Python Script in Java?” Stack Overflow, Stack Exchange Inc, 10 
Apr. 2012, 
stackoverflow.com/questions/10097491/call-and-receive-output-from-python-script-in-java. 
 
“Electron.” Electron, electron.atom.io/.Accessed 26 Feb 2017 
 
“Embedded Systems Development Solutions from NVIDIA Jetson.” Development Solutions 
from NVIDIA Jetson | NVIDIA, NVIDIA, www.nvidia.com/object/embedded-systems.html. 
 
“Embedding Python in Another Application.” Python Documentation, 
docs.python.org/2/extending/embedding.html. 
 
Extrabacon. “Extrabacon/Python-Shell.” GitHub, GitHub, Inc., 10 Mar. 2016, 
github.com/extrabacon/python-shell. 
 
Franklin, Dustin. "NVIDIA® Jetson™ TX1 Supercomputer-on-Module Drives Next Wave of 
Autonomous Machines." Parallel FORALL. NVIDIA, 11 Nov. 2015. Web. 28 Feb. 2017. 
<https://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-n
ext-wave-of-autonomous-machines/>. 
 
“GUI Programming in Python.” Python Wiki, 5 Nov. 2016, 
wiki.python.org/moin/GuiProgramming. 
 

58 



 

"Introducing NVIDIA® Tegra® 4, The World's Fastest Mobile Processor." Tegra 4 Processors | 
NVIDIA. NVIDIA, n.d. Web. 28 Feb. 2017. 
<http://www.nvidia.com/object/tegra-4-processor.html>. 
 
“Introducing The Tegra X1 Super Chip from NVIDIA.” Super Chip | NVIDIA Tegra, NVIDIA, 
www.nvidia.com/object/tegra-x1-processor.html. 
 
“Java GUI Frameworks. What to Choose? Swing, SWT, AWT, SwingX, JGoodies, JavaFX, 
Apache Pivot?” Stack Overflow, Stack Exchange Inc, 10 Oct. 2013, 
stackoverflow.com/questions/7358775/java-gui-frameworks-what-to-choose-swing-swt-awt-swi
ngx-jgoodies-javafx. 
 
“JetPack for L4T.” NVIDIA Developer, NVIDIA, 23 Nov. 2016, 
developer.nvidia.com/embedded/jetpack. 
 
"Jetson TX1." Jetson TX1 - ELinux.org. N.p., n.d. Web. 28 Feb. 2017. 
<http://elinux.org/Jetson_TX1>. 
 
“Modules.” Python Documentation, Python Software Foundation, 8 Dec. 2016, 
docs.python.org/2/tutorial/modules.html. 
 
“Pin Mux Tool.” Pin Mux Tool - TI Software Folder, Texas Instruments, 16 June 2014, 
www.ti.com/tool/PINMUXTOOL. 
 
“Pin Mux Tool.” Pin Mux Tool - PINMUXTOOL - TI Software Folder, NVIDIA, 
www.ti.com/tool/PINMUXTOOL. 
 
“PINCTRL (PIN CONTROL).” The Linux Kernel Archives, NVIDIA, 
www.kernel.org/doc/Documentation/pinctrl.txt. 
 
“Run a Python Script .” Stack Overflow, Stack Exchange Inc, 23 Sept. 2010, 
stackoverflow.com/questions/3781851/run-a-python-script-from-another-python-script-passing-i
n-args/. 
 
“Tegra-Pinmux-Scripts.” GitHub, NVIDIA, 31 Aug. 2016, 
github.com/NVIDIA/tegra-pinmux-scripts.  

59 



 

9 Appendices 

Appendix A Readme.txt 

 

Pinmux GUI Tool 

---------------- 

A local web app GUI tool to allow configuration of pinmux and pad voltages on the jetson-tx2 

development board. 

 

0. INSTALLATION 

---------------- 

NOTE: $PINMUX_DIR refers to the directory you extracted the pinmux tool to. 

 

Requirements: 

-  Install NodeJS 6.9.5 on your system: 

$ curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash - 

$ sudo apt-get install -y nodejs 

 

- One of the following browsers: 

Firefox - above 51.0 

Chrome - above 56.0.2924.87 

 

60 



 

- Install required NodeJS modules: 

$ cd $PINMUX_DIR/pinmux 

 #The below command will install the node modules: Archiver 1.3.0, Commander 2.9.0, 

#Express 4.14.1, and Electron 1.4.15. 

$ npm install 

 

- The following are used but do not require any installation: 

jQuery 3.1.1 

jQuery UI 1.12 

    Bootstrap 3.3.7 

 

Usage: 

$ cd $PINMUX_DIR/pinmux 

$ npm start 

Then visit "localhost:8080" on a web browser. 

 

For usage and help: 

# node http-server.js -h 

 

1. IMPORTANT 

---------------- 

 

61 



 

See validation_rules.txt to see all validation rules used. 

 

 

2. DESCRIPTION 

---------------- 

 

The tool reads in data files for a Tegra board, and allows users to 

change the board connections, configure the pinmux settings as well as 

the pad voltages. The tool can output a zip file containing cfg files 

that can be flashed onto the MB1. 

 

The tool will apply data validation rules to prevent users from 

configuring pins incorrectly, and allow constraints - for when a 

user wants to modify pins pertaining to certain board connections. 

 

The tool allows users to save their board and pinmux configurations by 

downloading a txt configuration file. They can import that file into 

the tool later and restore their configurations on the webpage. 

 

The tool seeks to replace the old method of editing spreadsheets on windows, 

exporting DTS files, moving them to unix, and running some python scripts to convert them to 

CFG files. Instead it can generate CFG files on any platform. 

62 



 

 

3. FILE DETAILS 

---------------- 

 

Below is the description of each folder and important files for reference: 

 

dist/* - framework files (jquery, bootstrap) 

node_modules/* - modules used by Node.js (express) 

css/* - style sheets for webpage 

js/* - javascript files used in webpage 

validation_rules.txt - validation rules used to check the pinmux configurations 

http-server.js - server side code executed by NodeJS 

 

output/ - folder is created once files are generated 

output/cfg - contains generated cfg files 

output/dts - contains generated dts files 

output/save - contains user saved configuration file 

 

python_tool/ - contains the python script tool 

python_tool/pinmux-dts2cfg.py - python script used to convert dts to cfg files 

python_tool/*.txt - helper files used with pinmux-dts2cfg.py 

 

63 



 

data/* - JSON data files read in to generate the pinmux table 

data/pad.txt - defines the pads needed for generating pad.dts 

data/soc.txt cvm.txt cvb.txt - different data files to read in 

 

index.html - webpage for client to see when loading localhost:8080 

connections_body.html - webpage for the connections page 

spreadsheet_body.html - webpage for the spreadsheet page 

voltages_body.html - webpage for the pad voltages page 

 

images/icon_placeholder.png - icon for the webpage 

  

64 



 

Appendix B Third Party Documentation 

3rd Party Code:  Electron 

Where: http://electron.atom.io/ 

Description: Electron is a framework for creating native applications with web technologies. 

 

3rd Party Code: jQuery UI 

Where: http://jqueryui.com/ 

Description: jQuery plugin allows elements to be dragged, dropped, and selected. 

 

3rd Party Code: jQuery 

Where: http://jquery.com/ 

Description: jQuery is a fast, small, and feature-rich JavaScript library. It makes things like 

HTML document traversal and manipulation, event handling, animation, and Ajax much simpler 

with an easy-to-use API that works across a multitude of browsers. 

 

3rd Party Code: Node.js 

Where: https://nodejs.org 

Description: Node.js is a JavaScript runtime that uses event-driven, non-blocking IO model that 

makes it lightweight and efficient.  

 

3rd Party Code: Bootstrap 

65 

https://nodejs.org/


 

Where: http://getbootstrap.com 

Description: Bootstrap is the HTML, CSS, and JS framework for developing the responsive UI. 

 

3rd Party Code: Express (Node Module) 

Where: http://expressjs.com/ 

Description: Express is a minimal and flexible Node.js web application framework that provides 

a robust set of features for web and mobile applications. 

 

3rd Party Code: Node-Archiver (Node Module) 

Where: https://www.npmjs.com/package/archiver 

Description: A streaming interface for archive generation. Allows for files to be saved. 

 

3rd Party Code: Commander (Node Module) 

Where: https://www.npmjs.com/package/commander 

Description: The complete solution for node.js command-line interfaces, inspired by Ruby's 

commander. 

 

  

66 

https://www.npmjs.com/package/commander


 

Appendix C Box Diagram 

 

 

 

 

  

67 



 

Appendix D Mockups 

 

68 



 

 

 

  

69 



 

Appendix E Validation Rules 

 

Whenever a user changes any setting, the following validation checks are run: 

 

1. Pin Direction Validation 

a. If Customer Usage is set to an unused pin, then pin direction MUST be "Not 

Assigned" or empty 

 

2. Allowed Pin Direction based on selected Customer Usage 

a. If Pin Direction is “B” then anything works 

b. If Pin Direction is “O”  then only output 

c. If Pin Direction is “I”  then only input 

 

3. Initial State Validation 

a. If the "Customer Usage" is unused, then they can only select "", "N/A", or “Z” 

b. Advised when pin direction is “Input” do not use “Drive 0/1” 

 

4. Ext Pull Validation 

a. if ExtPullUpValue is set or ExtPullDownValue is set, then you cannot select 

IntPU or Int PD for the required initial state for this pin. 

 

70 



 

5. Wake Pin Validation 

a. Wake pin cannot be "yes" if a "Customer Usage" is unused_* 

b. Wake pin cannot be "yes" if "Selected Pin Direction" is output or non assigned. 

 

6. 3.3 Tolerance Enable Check 

a. REV_SEL cannot be "enable" if the "customer usage" is unused_* 

  

71 



 

Appendix F Study of Terminologies 

A. System on a Chip (SoC) 

A SoC is a microchip that integrates all the components of an electronic device into a 

single chip. It is known for low power consumption and is widely used in mobile phones and 

embedded systems. 

B. CUDA 

CUDA is a parallel computing platform and API model created by NVIDIA. 

C. Microprocessor and Microcontroller 

A Microprocessor only has the CPU inside the chip. It does not have ROM, RAM, or any 

other peripherals on the chip.  

A Microcontroller contains all the peripherals on one small chip. It is a synonym with 

System on a Chip. 

  

72 



 

Appendix G Tegra default pinmux CFG File 

## 
## Pinmux version 1.0 
## Input pinmux file name: 
/home/smangipudi/shared/pinmux/16_mar_2016/tegra18x-p3310-1000-a0-a2-cvm-config-pinmu
x.dtsi 
## Input gpio file name: 
/home/smangipudi/shared/pinmux/16_mar_2016/tegra18x-p3310-1000-a0-a2-cvm-config-gpio-d
efault.dtsi 
## Generation date: 2016-03-16 13:50 
## PLEASE DO NOT EDIT THIS FILE 
## This is autogenerated file using the script pinmux-dts2cfg.py 
## 
pinmux.major = 1; 
pinmux.minor = 0; 
#### Pinmux for gpio-input pins #### 
pinmux.0x022130a0 = 0x00000001; # CONFIG B5 
pinmux.0x02434050 = 0x00000000; # GPIO gpio_wan2_pb5 
pinmux.0x02213200 = 0x00000001; # CONFIG C0 
pinmux.0x02434040 = 0x00000000; # GPIO gpio_wan4_pc0 
pinmux.0x022150a0 = 0x00000001; # CONFIG J5 
pinmux.0x02431018 = 0x00000000; # GPIO gpio_aud0_pj5 
pinmux.0x022156a0 = 0x00000001; # CONFIG M5 
pinmux.0x02432028 = 0x00000000; # GPIO dmic4_clk_pm5 
pinmux.0x02210880 = 0x00000001; # CONFIG I4 
pinmux.0x02433020 = 0x00000000; # GPIO gpio_pq4_pi4 
pinmux.0x022108c0 = 0x00000001; # CONFIG I6 
pinmux.0x02433030 = 0x00000000; # GPIO gpio_pq6_pi6 
pinmux.0x022108e0 = 0x00000001; # CONFIG I7 
pinmux.0x02433038 = 0x00000000; # GPIO gpio_pq7_pi7 
pinmux.0x0c2f1020 = 0x00000001; # CONFIG FF1 
pinmux.0x0c301000 = 0x00000000; # GPIO gpio_sw1_pff1 
pinmux.0x0c2f1040 = 0x00000001; # CONFIG FF2 
pinmux.0x0c301008 = 0x00000000; # GPIO gpio_sw2_pff2 
pinmux.0x0c2f1060 = 0x00000001; # CONFIG FF3 
pinmux.0x0c301010 = 0x00000000; # GPIO gpio_sw3_pff3 
pinmux.0x0c2f1080 = 0x00000001; # CONFIG FF4 
pinmux.0x0c301018 = 0x00000000; # GPIO gpio_sw4_pff4 
pinmux.0x0c2f1000 = 0x00000001; # CONFIG FF0 
pinmux.0x0c301058 = 0x00000000; # GPIO power_on_pff0 
pinmux.0x022114e0 = 0x00000001; # CONFIG X7 
pinmux.0x0243d058 = 0x00000000; # GPIO uart5_cts_px7 

73 



 

pinmux.0x02211600 = 0x00000001; # CONFIG Y0 
#### Pinmux for used pins #### 
pinmux.0x02434038 = 0x00000400; # uart4_tx_pb0: uartd, tristate-disable, input-disable 
pinmux.0x02434030 = 0x00000458; # uart4_rx_pb1: uartd, pull-up, tristate-enable, input-enable 
pinmux.0x02434028 = 0x00000400; # uart4_rts_pb2: uartd, tristate-disable, input-disable 
pinmux.0x02434020 = 0x00000458; # uart4_cts_pb3: uartd, pull-up, tristate-enable, input-enable 
pinmux.0x02434018 = 0x00000440; # dap2_sclk_pc1: i2s2, tristate-disable, input-enable 
pinmux.0x02434008 = 0x00000440; # dap2_dout_pc2: i2s2, tristate-disable, input-enable 
pinmux.0x02434000 = 0x00000450; # dap2_din_pc3: i2s2, tristate-enable, input-enable 
pinmux.0x02434010 = 0x00000440; # dap2_fs_pc4: i2s2, tristate-disable, input-enable 
pinmux.0x02431040 = 0x00000440; # dap1_sclk_pj0: i2s1, tristate-disable, input-enable 
pinmux.0x02431038 = 0x00000440; # dap1_dout_pj1: i2s1, tristate-disable, input-enable 
pinmux.0x02431030 = 0x00000450; # dap1_din_pj2: i2s1, tristate-enable, input-enable 
pinmux.0x02431028 = 0x00000440; # dap1_fs_pj3: i2s1, tristate-disable, input-enable 
pinmux.0x02431020 = 0x00000400; # aud_mclk_pj4: aud, tristate-disable, input-disable 
pinmux.0x02431008 = 0x00000401; # gpio_aud2_pj7: dspk1, tristate-disable, input-disable 
pinmux.0x02431000 = 0x00000401; # gpio_aud3_pk0: dspk1, tristate-disable, input-disable 
pinmux.0x02432000 = 0x00004441; # dmic1_clk_pm1: i2s3, tristate-disable, input-enable 
pinmux.0x02432008 = 0x00004451; # dmic1_dat_pm0: i2s3, tristate-enable, input-enable 
pinmux.0x0243602c = 0x00000448; # sdmmc4_dat0: pull-up, tristate-disable, input-enable 
pinmux.0x02436028 = 0x00002448; # sdmmc4_dat1: pull-up, tristate-disable, input-enable 
pinmux.0x02436024 = 0x00002448; # sdmmc4_dat2: pull-up, tristate-disable, input-enable 
pinmux.0x02436020 = 0x00002448; # sdmmc4_dat3: pull-up, tristate-disable, input-enable 
pinmux.0x0243601c = 0x00000448; # sdmmc4_dat4: pull-up, tristate-disable, input-enable 
pinmux.0x02436018 = 0x00002448; # sdmmc4_dat5: pull-up, tristate-disable, input-enable 
pinmux.0x02436014 = 0x00002448; # sdmmc4_dat6: pull-up, tristate-disable, input-enable 
pinmux.0x02436010 = 0x00002448; # sdmmc4_dat7: pull-up, tristate-disable, input-enable 
pinmux.0x0243600c = 0x00000450; # sdmmc4_dqs: tristate-enable, input-enable 
pinmux.0x0c301080 = 0x00000401; # gpio_dis0_pu0: gp, tristate-disable, input-disable 
pinmux.0x0c301048 = 0x00000458; # batt_oc_ps2: soc, pull-up, tristate-enable, input-enable 
pinmux.0x0243d020 = 0x00000400; # uart2_tx_px0: uartb, tristate-disable, input-disable 
pinmux.0x0243d028 = 0x00000458; # uart2_rx_px1: uartb, pull-up, tristate-enable, input-enable 
pinmux.0x0243d030 = 0x00000400; # uart2_rts_px2: uartb, tristate-disable, input-disable 
pinmux.0x0243d038 = 0x00000458; # uart2_cts_px3: uartb, pull-up, tristate-enable, input-enable 
pinmux.0x0243d048 = 0x00000452; # uart5_tx_px4: nv, tristate-enable, input-enable 
pinmux.0x0243d078 = 0x00000401; # gpio_mdm4_py3: spi1, tristate-disable, input-disable 
pinmux.0x0243d0b0 = 0x00000440; # gen7_i2c_scl_pl0: i2c7, tristate-disable, input-enable,  
pinmux.0x0c302040 = 0x00000400; # uart7_tx_pw6: uartg, tristate-disable, input-disable 
pinmux.0x0c302038 = 0x00000458; # uart7_rx_pw7: uartg, pull-up, tristate-enable, input-enable 
pinmux.0x0c302050 = 0x00000400; # gpio_sen1_pv1: spi2, tristate-disable, input-disable 
pinmux.0x0c302058 = 0x00000450; # gpio_sen2_pv2: spi2, tristate-enable, input-enable 
pinmux.0x0c302060 = 0x00000400; # gpio_sen3_pv3: spi2, tristate-disable, input-disable 
pinmux.0x0c302068 = 0x00000400; # gpio_sen4_pv4: spi2, tristate-disable, input-disable 
pinmux.0x0c302078 = 0x00000401; # gpio_sen6_pv6: gp, tristate-disable, input-disable 
pinmux.0x0c302080 = 0x00000401; # gpio_sen7_pv7: wdt, tristate-disable, input-disable  

74 



 

Appendix H Screenshots of GUI Tool 
 

 

Figure H (a) Pinmux Tab 

75 



 

 

Figure H (b) Connections Tab 

 

Figure H (c) Pad Voltages Tab 

76 



 

 

Figure H (d) Help Page 

 

  

77 



 

Appendix I Instructions to generate JSON Data file from Excel 

Spreadsheet 

Instructions on How to Generate the Files in /pinmux/data 
------------------------------------------------------------ 
 
1. Download the spreadsheets 
--------------------------------- 
 
Link to the spreadsheets on p4 (only NVIDIA employees have access) 
 
For soc.txt, download T186_IC_Generic_Customer_Pinmux_Release.xlsm. 
For cvm.txt or cvb.txt, download Quill-CVM-Generic-Customer-Pinmux-Template.xlsm. 
 
These spreadsheets are also available to the NVIDIA customers. 
 
2. Modify the headers of the spreadsheets 
------------------------------------------------ 
 
Note: DO NOT edit any other content and keep the default pin configurations. 
 
Step 1: Unhide all the columns in the spreadsheet. 
 
Step 2: Under the "Pin Muxing" Section there are five column headers, GPIO and SFIO0 to 
SFIO3. 

Add the prefix "Pinmux" to all of them, so they become PinmuxGPIO, PinmuxSFIO0, 
PinmuxSFIO1, PinmuxSFIO2, PinmuxSFIO3 and PinmuxSFIO4. 

 
Step 3 (Only for Quill-CVM-...): Rename the cell A9 from "Signal Name" to "CONN". 
 
Step 4 (Only for Quill-CVM-...): Remove the row 8, which only contains "MPIO" in column C. 
 
3. Select and copy the spreadsheet 
---------------------------------------- 
 

78 



 

Step 1: For row selections, start from row 7 (which contains the headers Ball Name, DSC, 
MID...), 

until the last row that defines pin configurations. Do not include any empty row after that. 
Do not include the small section "Voltage Configuration" at the very bottom. 

 
Step 2: For column selections, do not include the last column, which is called 

"Recommended Usage Description" in T186_IC_Generic_... or "Single-cell Tablet usage 
8 Lane 

DSI Panel" In Quill-CVM-... 
 
(TODO: Give instructions on how to generate the column "Apply Constraint") 
 
Step 3: Copy the whole selection. 
 
4. Paste the spreadsheet to the website and generate files 
--------------------------------------------------------------- 
Step 1: Open the website http://www.convertcsv.com/csv-to-json.htm. 
 
Step 2: Paste the selection into the text box under "Step 1: Select your input". 
 
Step 3: Scroll to "Step 5: Generate output" and click the button "CSV To JSON". 
 
Step 4: Click the button "Download Result", and the browser will download a JSON file. 
 
Step 5: Rename the file to "soc.txt" (or any other depending on the spreadsheet used). 
 
Step 6: Replace the file with the same name in pinmux/data/. Refresh the Pinmux Tool webpage. 
 
Other Information 
-------------------- 
When this instruction file is written, the spreadsheet T186_IC_Generic_... used is Revision #1, 
and the spreadsheet Quill-CVM-... used is Revision #6. If the spreadsheets are updated, some 
instructions may need to change. 
 
The file pads.txt was written by hand. It keeps a list of the pad names shown in the "Voltage 
Configuration" 
section, which can be found at the very bottom of any spreadsheet (all the columns should be 
visible). 

79 



 

Since this section differs in each spreadsheet, pads.txt will keep most of the pad names that have 
shown up. 
The Pinmux Tool Webpage will read from pads.txt to write to pad.dts. 
 
 

80 


