
 
 

PROJECT NUMBER: MQP YW1-YW11  
 

 

Developing a Low-Cost Methodology for 
Fabricating All-Solid-State Lithium-Ion 

Battery  
A Major Qualifying Project Submitted to the Faculty of 

WORCESTER POLYTECHNIC INSTITUTE 
In partial fulfillment of the requirements for the  

Bachelors of Science in Chemical Engineering 
 
 
 
 

 

Submitted By 
 

----------------------------------- 
Maksim V. Tyufekchiev 

 
 

----------------------------------- 
Somyi Hur 

 
Submitted on 

March 11, 2013 
 

Approved by 
 

----------------------------------------------------------         ---------------------------------------------------------- 
Professor Yan Wang, Advisor                                    Professor Ravindra Datta, Co-Advisor 

 



 
 

 

Contents 
Abstract ......................................................................................................................................................... 4 

Executive Summary ...................................................................................................................................... 5 

Acknowledgements ....................................................................................................................................... 8 

Table of Figures ............................................................................................................................................ 9 

Table of Tables ........................................................................................................................................... 10 

1. Introduction ......................................................................................................................................... 11 

2. Background and Literature Review .................................................................................................... 16 

2.1. Historical Development .................................................................................................................. 16 

2.2. Advantages and Disadvantages of Lithium-Ion Batteries ............................................................... 18 

2.3. Applications and Demand ............................................................................................................... 19 

2.4. All-Solid-State Lithium-Ion Batteries ............................................................................................. 20 

2.5. Electrochemical Overview .............................................................................................................. 21 

2.5.1. Lithium Intercalation ................................................................................................................... 21 

2.5.2. Cathode Materials ....................................................................................................................... 23 

2.5.3. Anode Materials .......................................................................................................................... 25 

2.5.4. Electrolyte Materials ............................................................................................................... 26 

2.6. All-Solid-State Batteries Using LLTO as a Solid Electrolyte ............................................................. 29 

3. Methodology ....................................................................................................................................... 31 

3.1. Lithium Cobalt Oxide (LiCoO2) Cathode Development................................................................. 32 

3.1.1. Cold-Pressing and High Temperature Sintering of Lithium Cobalt Oxide Powder ................... 32 

3.1.2. Polishing of Lithium Cobalt Oxide Cathode Disks..................................................................... 36 

3.2. Lithium Lanthanum Titanium Oxide Solid Electrolyte Thin Film Development ........................... 39 

3.2.1. Lithium Lanthanum Titanium Oxide Sol-Gel with High Concentration of Polyvinylpyrrolidone 

Binder Preparation ...................................................................................................................................... 39 

3.2.2. Low Concentration of Lithium Lanthanum Titanium Oxide Sol-Gel ........................................... 42 

3.3. Spin-Coating Deposition of LLTO Sol-Gel on LCO Cathode Disks .................................................... 43 

3.4. Heat Treatment of LCO-LLTO Cathode-Electrolyte Disks ................................................................ 47 

3.5. Eliminating Pores from LCO Cathode Disk Surface ......................................................................... 49 

3.5.1. Lithium Cobalt Oxide Sol-Gel Reaction Preparation ................................................................... 49 



 
 

3.5.2. Evaporative Deposition of Lithium Cobalt Oxide Sol to Fill Surface Pores ................................. 51 

3.5.3. Spin-Coating Cathode Disks with LCO Sol to Fill Surface Pores .................................................. 53 

3.5.4. Evaporation of Low Concentration LLTO Sol to Fill Surface Pores .............................................. 53 

3.5.5. Spin-Coating Low Concentration LLTO Sol on an Already Covered LCO Cathode Disk ............... 55 

3.6. Battery Assembly and Testing ......................................................................................................... 57 

3.6.1. Swagelok Cell Assembling ........................................................................................................... 57 

3.6.2. Electrochemical Testing .............................................................................................................. 58 

4. Results and Discussion ........................................................................................................................ 61 

4.1. Lithium Cobalt Oxide Disk ............................................................................................................... 61 

4.2. LLTO Solid Electrolyte Thin Film Development ............................................................................... 65 

4.2.1. Deposition of LLTO Sol Solution While Spin-Coating and Heat Treatment at 600° C ................. 65 

4.2.2. Deposition of LLTO Sol Prior To Spin-Coating and Heat-Treatment at 600° C for 2 hours ......... 67 

4.2.3. Different Heat Treatments .......................................................................................................... 68 

4.2.4. Heat Treatment at 350° C after Each Spinning Iteration and Final Annealing at 600° C ............ 69 

4.2.5. Heat Treatment at 600° C for 30 Minutes with 5° C per Minute Heating Rate .......................... 71 

4.3. Eliminating Surface Pores ............................................................................................................... 71 

4.3.1. Low Concentration LLTO Sol Evaporation ................................................................................... 72 

4.3.2. Evaporation of LCO Sol ................................................................................................................ 74 

4.3.3. Spin-Coating Low Concentration LLTO Sol on a Disk Already Covered with LLTO Layer ............ 75 

4.3.4. Spin-Coating LCO Sol on LCO Cathode Disk ................................................................................ 75 

4.4. Battery Testing ..................................................................................................................................... 76 

4.4.1. Lithium Cobalt Oxide Cathode Electrochemical Testing ................................................................... 76 

4.4.2. Electrochemical Testing of Samples with Thin Film of LLTO Solid Electrolyte .................................. 79 

5. Conclusion ............................................................................................................................................... 84 

6. Recommendations for Future Research ................................................................................................. 86 

6.1. Preparing High-Density LiCoO2 Cathode Using Hot-Press ................................................................... 86 

6.2. Polishing LCO Cathode Disks ................................................................................................................ 86 

6.3. Evaporation of Low Concentration LLTO Sol ....................................................................................... 87 

6.4. Anode Preparation for Battery Assembly ............................................................................................ 87 

6.5. Repeating Methodology for Verification and Validation ..................................................................... 88 

6.6. Cost-Benefit Analysis of the Methodology .......................................................................................... 89 

7. Reflections on Major Qualifying Project Experience .............................................................................. 90 



 
 

References: ................................................................................................................................................. 94 

Appendix A: Swagelok Cell Assembling ................................................................................................... 100 

Appendix B: LLTO Sol Solution .................................................................................................................. 103 

LLTO Sol Solution with High Concentrated Polyvinylpyrrolidone (PVP) ...................................... 103 

Low Concentration LLTO Sol Solution without Polyvinylpyrrolidone (PVP) ................................ 103 

Preparation of LLTO Sol .................................................................................................................. 104 

Appendix C: Preparation of LCO Sol .......................................................................................................... 107 

Procedure: ............................................................................................................................................. 107 

  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Abstract 
 

Lithium-ion batteries, rechargeable batteries widely used in laptop computers, cell phones, 

and electric vehicles, utilize liquid electrolyte solutions. Using liquid electrolytes requires the use 

of additional materials and poses inherent fire hazard. All-solid-state lithium-ion batteries utilize 

solid electrolytes and are much safer and efficient, but are much more expensive to produce. This 

project made an effort to develop a low cost method for fabricating all-solid-state lithium ion 

batteries.  LiCoO2 cathodes were prepared using high temperature sintering. Different methods 

of LiCoO2 sol and LiLaTiO3 sol deposition were tested for removing surface pores from cathode 

disks. LiLaTiO3 solid electrolyte was prepared using sol-gel reaction and was deposited on 

LiCoO2 cathode disk via spin-coating. The effectiveness methodology was tested by evaluating 

the condition cathode-solid electrolyte system and testing an all-solid-state battery.  

 

 

 

 

 



 
 

Executive Summary 

 

Lithium-ion batteries are used in wide range of electrical devices, from laptop computers and 

cell phones to electrical vehicles. Just like every other battery, lithium-ion batteries have three 

major components – cathode, anode, and electrolyte. Most commercial lithium ion batteries 

utilize lithium cobalt oxide (LCO), LiCoO2, as the cathode material, liquid solution of lithium 

salt in an organic solvent, and graphite as the anode.  

The cathode is a source of lithium ions. The electrolyte provides a medium for lithium ion 

transfer between the cathode and the anode. The anode stores lithium ions during charging. 

Electrical power is provided as lithium ions transfer from the anode to the cathode through the 

electrolyte and electrons flow through and outside circuit, recombining with the lithium ions at th 

cathode side. 

However, the use of liquid electrolyte poses several problems. The cathode and the anode 

have to be separated in order to avoid short-circuit of the battery. The liquid electrolyte cannot 

provide such a separation and separators have to be used. These separators increase the weight of 

the battery. In addition, the liquid electrolyte can leak through the containment walls of the 

battery and can catch on fire. This is a serious safety issue for commercial lithium ion batteries. 

In all-solid-state lithium ion batteries the components are all in the solid phase. Solid 

electrolytes are being used not only to provide medium for lithium ion transfer but also to 

physically separate the cathode from the anode, eliminating the need for separators. In addition, 

solid electrolytes cannot leak out of the battery and cause fire, enhancing the safety properties of 

the battery. A promising material for solid electrolyte is Lithium Lanthanum Titanium Oxide, 



 
 

LLTO, providing good electrochemical properties, high ionic conductivity and low electronic 

conductivity.  

Fabricating all-solid-state lithium ion batteries is an expensive endeavor. Thin film of the 

solid electrolyte has to be developed to provide low resistance for lithium ion transfer. Costly 

methods such as pulsed-laser deposition, atomic layer deposition, vacuum deposition, are used in 

laboratory environments. The cost of these methods does not allow for scaling up the process and 

commercial production. 

The goal of this project was to develop a cheaper methodology for all-solid-state lithium-ion 

battery fabrication. The goal was separated in three objectives: developing high-relative density 

Lithium Cobalt Oxide cathode, filling surface pores on a cathode disk, and deposition of a thin 

film of Lithium Lanthanum Titanium Oxide solid electrolyte. 

Lithium Cobalt Oxide cathode disks were prepared via cold-pressing LiCoO2 powder and 

subsequent high temperature sintering. The disks were polished to a reflective surface to allow 

for better solid electrolyte deposition. During polishing pores appeared on the surface of the 

cathode disk. Methodology to remove these pores included evaporation of LCO sol, evaporation 

of LLTO sol, spin-coating LLTO and LCO sol on a cathode disk. Thin film of solid electrolyte 

was developed by spin-coating LLTO sol followed by heat treatment. 

The relative density of the LCO cathode disks was satisfying for assembling a battery. 

Electrochemical testing of cathode disks showed that the cathode had to be thin in order to allow 

faster lithium ions to transfer between the anode and the cathode.  



 
 

Evaporation of LCO sol from LCO cathode disk surface proved effective in eliminating 

surface pores. Evaporation of LLTO sol also showed great results in eliminating surface pores. 

Spin-coating LCO sol and LLTO sol did not have the same success as the other two methods. 

Spin-coating LLTO sol on LCO cathode disks followed by heat treatment was effective in 

developing thin film solid electrolyte. The thickness of the electrolyte was approximately 1 

micrometer, just as desired by the research group. 

Testing of all-solid-state battery proved inconclusive. Three batteries were assembled. Of 

the three only two showed voltage of 2V and 0.9 V for a short period of time. All three batteries 

fail as short-circuit occurred when the cathode contacted the anode. The reason for the contact 

was not an imperfection of the LLTO solid electrolyte film, but of the cathode-solid electrolyte 

system sinking in the lithium metal anode. The contact occurred in the periphery of the disks.  

The results were inconclusive in evaluating the effectiveness of the methodology tested. 

Further testing is recommended to evaluate the potential of the methods used in this project. 
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1. Introduction 
 

There is a lot of effort and research put into discovering and developing new energy sources 

and technologies. Most of the current demand for energy is satisfied by fossil fuels (coal, oil, and 

gas). However, fossil fuels are limited energy source and, although widely debated when, 

eventually they will run out and will not be able to satisfy the world’s energy demand.
[1]

 

Alternative energy sources, such as solar, wind and tidal energy sources, and biofuels, have been 

introduced as technologies to replace the fossil fuels.
[2],[3]

 As for now, alternative energy 

resources cannot  satisfy completely the demand for electric power, as shown in the figure 

below. 

 

Figure 1 Historical and Projected energy demand of different energy sources[10] 

 



 
 

In addition, the energy supplied by wind and solar power cannot always be used at the 

moment of production. Furthermore, portable devices such as cameras, laptop computers, cell 

phones, etc., cannot constantly be connected to the power grid when used. For these purposes 

electrochemical devices that store energy are used. Electrochemical cells, commonly known as 

batteries, are such devices that store energy for use at a later moment. 

Batteries can be primary and secondary, depending on whether they can be recharged. 

Primary batteries are used only once, while secondary batteries can be used multiple times when 

recharged. Currently, the most widely used secondary batteries include NiCd (nickel cadmium), 

NiMH (nickel metal hydride), Lead-Acid, and Lithium-ion batteries.
[4] 

From these batteries the 

lithium-ion battery has the highest capacity. Lithium-ion batteries can be smaller and lighter and 

provide higher capacity than the rest of the rechargeable type batteries.  

 

Figure 2 Mass-based and volume-based energy density of different types of batteries [5] 

 



 
 

In addition to their higher capacity, lithium-ion batteries are also more expensive than the 

rest. Their wide use, however, and the research involved in their development have caused the 

lithium-ion battery cost to decrease significantly. Cost of the different types of batteries is 

presented in the figure below. In addition to the high cost, lithium-ion batteries have safety 

issues. There are cases of lithium ion batteries catching on fire due to liquid electrolyte leaking 

out of the cell. 

 

Figure 3 Cost of rechargeable batteries (S/kWh) over the last few years[6] 

 

Lithium-ion battery consists of anode, electrolyte, and cathode, just like every other battery. 

The anode stores lithium ions during charging. The cathode supplies lithium ions during 

charging and accepts them back during discharging. The electrolyte provides medium for lithium 

ion transfer between the cathode and the anode and can be either a liquid or a solid.
[7]

 Most 

lithium-ion batteries use liquid electrolyte, i.e. an organic solution of lithium salt. A polymer 

separator is used to physically separate the cathode and the anode and should be permeable to the 



 
 

liquid electrolyte solution, in the lithium-ion batteries that use liquid electrolyte. In addition, a 

binder is necessary to contain the liquid electrolyte and to hold all components of the battery 

together.
[7] 

Electric power is provided by the flow of electrons though an outside circuit and 

recombination with the lithium ions at the cathode, during discharging. 

The use of liquid electrolyte, separator and binder increases the weight of the lithium-ion 

battery, thus decreasing the power per unit mass delivered. In addition, the safety issues, 

mentioned above, result from solution leaking out of the battery, due to binder deformation or 

breaking, and catching on fire.
[8]

 Also, the cathode and anode materials degrade much faster 

because of liquid solutions. Lithium-ion batteries that use solid electrolyte do not pose such a 

threat. The solid electrolyte acts both to allow medium for lithium ion transfer and to physically 

separate the cathode and the anode of the battery.
[7]

 The solid electrolyte has to be a thin film in 

order to reduce the internal resistance of the battery, cause from mass transfer resistance of the 

lithium ions. Lithium-ion batteries using solid electrolyte are much smaller and lighter than the 

lithium-ion batteries using liquid electrolyte. 

Such a battery would be very attractive for the consumer market. Not only the safety issues 

are solved, but also the decreased size allows for lighter and smaller portable devices. However, 

all-solid-state lithium ion batteries are very costly to produce. Developing a thin film of the solid 

electrolyte is done by expensive methods such as spark plasma sintering, atomic layer 

deposition, etc.
[9]

 A cheaper production method would decrease the cost of a lot of portable 

devices and electric vehicles, considering that he lithium-ion battery is contributes a considerable 

fraction of the cost of the final product. A lot of research in the recent years has been directed 

towards developing all-solid-state lithium-ion batteries. 



 
 

The goal of this project is to develop a low-cost method for all-solid-state lithium-ion battery 

fabrication. The focuses of the research are methodologies for cathode development and solid 

electrolyte deposition. Providing that the experiments involved provide promising result, a 

battery will be assembled and tested in order evaluate the potential of the procedures used to 

fabricate an all-solid-state lithium-ion battery. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

2. Background and Literature Review 

 

Lithium-ion battery is an electrochemical cell in which lithium ions, Li
+
, are exchanged 

between positive and negative electrodes, flowing through an electrolyte. Electrons flow through 

an outer circuit to provide electric power and recombine with the positive lithium ions at the 

anode. Lithium-ion batteries are secondary batteries, that is, they undergo cyclic charging and 

discharging and can be used multiple times, unlike primary batteries which cannot be used 

further after they are discharged.
[7]

 Such batteries are used in wide range of electronic devices 

from laptop computers and cell phones to electric vehicles. Currently, research is focusing on 

developing better materials to be used for cathodes, anodes, and electrolytes, in order to increase 

the power storage and life cycle of the lithium-ion batteries, to satisfy the energy demand. 

2.1. Historical Development 

 

Batteries, or electrochemical cells, were invented in the late 18
th

 century. During the next 

hundred years the lead-acid battery and the nickel-cadmium (NiCd) battery were invented by 

Gaston Plante and Waldmar Jungner respectively.
[10]

 Both of these batteries were rechargeable 

and had such an impact on the electrochemical industry and consumption that they are still used 

today. 

During the 1960s and 1970s a large amount of portable electronic goods became available on 

the market.
[10] 

These electronics required small and light energy source. Lead acid and NiCd 

were too big and too heavy to power small electronic devices. The introduction of primary 

lithium batteries, using lithium metal as one of the electrodes, proved to be successful by 



 
 

providing higher energy density, thus, reducing size and weight.
[10] 

 The next step was to make 

lithium batteries rechargeable. 

In the 1970s M.S. Whittingham developed a lithium battery using lithium as the anode, TiS2 

as the cathode, and liquid organic electrolyte.
[11]

 The battery was able to charge and discharge 

multiple times making it a secondary type cell. The discharging process, represented by the 

equation                  , proceeded by lithium intercalation within Titanium Sulfide, 

TiS2 , lattice crystal with approximately 10% expansion of the structure. It was able to withstand 

more than 1100 cycles and retain almost 70% of its theoretical capacity.
[11] 

  

Lithium metal was used as the cathode for its high specific capacity. However, there were 

inherent safety concerns for its use, since lithium is very reactive with water. In the late 70s 

Samar Basu discovered lithium intercalation within graphite.
[10]

 Rachid Yazamy used graphite as 

anode material and solid electrolyte to show reversible lithium intercalation.
[13]

 The governing 

equation that represents the process is as follows:             
 

 
       where the forward 

reaction represents discharging and the backwards reaction - the charging process. Graphite is 

still used and is the most common material for the anode. 

The safety issues were overcome by the introduction of the graphite anode. However, with 

the elimination of the lithium metal, the need for a material that would act as lithium source 

emerged. The properties of the material should be such that it allows reversible movement of 

lithium in and out of its structure in order to allow the electrochemical process.
[7]

 The material 

that met these characteristics was Lithium Cobalt Oxide, LiCoO2 , introduced by Goodenough in 

the 80s. Akira Yoshino concluded the efforts of research and development by assembling a cell 

using LiCoO2 and a carbonaceous anode (carbon fiber) to produce a working rechargeable 



 
 

lithium ion battery in 1985. 
[15]

 The safety improved significantly as no metallic lithium was 

used. After many years of research, discoveries, and development the lithium-ion battery was 

finally commercialized in 1991 by Sony and in 1992 by Toshiba.
[7], [15] 

2.2. Advantages and Disadvantages of Lithium-Ion Batteries 
 

Portable devices have grown smaller and lighter during the years and the batteries have also 

followed that trend. This means that batteries need to have higher energy density - that is provide 

more energy per unit mass or volume. Since their inception, lithium ion battery use and demand 

has increased considerably. The main reasons for that are its advantages compared to the other 

rechargeable batteries.  

The major advantage of the lithium ion battery is the higher energy density. High specific 

energy (240 Wh/kg) and energy density (640 Wh/L) significantly outperform the rest of the 

rechargeable batteries.
[7]

 Lithium-ion battery have long cycle life and low self-discharge rate, 

meaning the batteries can be used multiple times for a long period without losing their charge 

while not being used.
[17] 

Nickel Cadmium (NiCd) batteries have to be fully discharged before recharging. Otherwise, 

they start to lose capacity; this is known as the memory effect. Unlike them, the Li-ion batteries 

don’t have that problem.
[7]

 Other advantages include high terminal voltage (4.2 V), rapid charge 

capability, wide temperature range of operation, and design flexibility due to different 

chemistries available for transport and intercalation of lithium ions.
[7]

 

However, lithium-ion batteries are not perfect and have some drawbacks. Overcharging the 

cell can lead to thermal runaway. This can cause fire and explosions. A protective circuitry is 



 
 

required to avoid overcharging. Cathode and anodes degrade when the battery uses liquid 

electrolytes. Furthermore, this type of battery has the highest cost among all secondary batteries, 

as mentioned before.
[7],[17]

  

Despite its disadvantages the lithium-ion battery is the most widely used battery. However, 

the consumer market requires a cell that provides power for a long time without any risks of 

malfunction. 

2.3. Applications and Demand 
 

Lithium-ion batteries are used in a lot of portable electronic devices, such as laptop 

computers, cell phones, cameras, notebook, etc.
[18],[19]

 They have also been introduced in the 

automotive industry as a power source for electrical vehicles. Basically, the demand for lithium-

ion batteries is closely related to the demand for electronic devices and as the availability of such 

products increases the power requirements for batteries will tend to rise. The lithium-ion battery 

market have a considerable share of the battery market with $11.7 billion for 2012.
[18]

 The figure 

below shows the development of lithium-ion battery market for different consumer electronic 

devices. 



 
 

 

Figure 4 Lithium-Ion battery market development[10] 

 

 

2.4. All-Solid-State Lithium-Ion Batteries  

 

Every battery has three major components: an anode, a cathode, and an electrolyte. All-solid-

state batteries use electrolytes that are in the solid phase, unlike the lithium-ion batteries that use 

liquid electrolytes for medium of positive lithium ions transfer. In addition, the cathode and 

anode are also solids. Using solid electrolytes eliminates the need for plastic separators and 

liquid solutions, which considerably increases the safety feature of the battery. However, solid 

electrolytes do not have high ionic conductivities compared to liquid electrolytes. That is, they 

have higher resistance to positive lithium ion transfer between the anode and the cathode. In 

addition, the interface of contact between the solid electrolyte and the anode or cathode has high 

contact resistance which further inhibits flow of lithium ions.
[20]

 Therefore, materials with high 

ionic conductivity and low electronic conductivity are needed to allow for better lithium ion 



 
 

transfer. This would allow easier and faster transfer of lithium ions and would inhibit electrons 

exchange between the anode and the cathode through the electrolyte. 

2.5. Electrochemical Overview 

 

In lithium-ion batteries lithium ions delithiate from the cathode, transfer through the 

electrolyte, and lithiate in the anode when charging, and vice versa when discharging. The 

electrons that provide electric power flow from an outside circuit and recombine with the lithium 

ions at the cathode to provide electric neutrality.  

2.5.1. Lithium Intercalation 
 

The process of insertion and exiting the cathode and the anode is called intercalation.
[7]

  

Intercalation occurs when a guest species (atom or ion) inserts itself between the layers of ionic 

or covalent layered material. Whittingham and Yazami discovered intercalation of lithium in 

different compounds. 
[11],[14] 

Research has shown lithium intercalation in different compounds 

with layered or tunneled structure.
[21],[22] 

The process of intercalation of lithium within the electrodes during charging and discharging 

is presented visually in the figure below.  



 
 

 

Figure 5 Intercalation of lithium with graphite as the anode and LiCoO2 as the cathode[23] 

 

During charging positive lithium ions deintercalate from the cathode, diffuse through the 

electrolyte, and intercalate in the anode. During discharging the opposite happens, lithium 

deintercalates from the anode, diffuse through the electrolyte, and intercalate in the cathode. 
[23]

 

Structural changes of the host species occur during intercalation. Therefore, it is necessary 

that the material that accepts lithium ions do not undergo significant changes in its structure. The 

amount of electricity produced depends on the amount of lithium ions flowing between the anode 

and the cathode. Thus, the material that hosts the lithium ions should be able to allow easy 

insertion and removal of lithium ions from its structure.  

Also, lithium ions should be able to diffuse easily through the electrolyte. Thus, to allow that, 

the electrolyte needs to have high ionic conductivity and low electronic conductivity, to prevent 

rapid self-discharge.
[7] 

 



 
 

2.5.2. Cathode Materials 
 

The cathode provides the battery with lithium ions. Therefore, it should be able to hold a 

large amount of lithium ions in order to provide high battery capacity.
[24]

 In addition, the material 

should react reversibly with the lithium ions without changing structure as more lithium ions are 

added. If the reaction with the lithium ion is faster during both intercalation and removal of 

lithium, this would allow faster charging and discharging rates. The material needs to be a good 

ionic and electronic conductor since the overall process involves removal of positive lithium ions 

and electrons from the cathode. Stability of the material is also a preferable feature for a proper 

battery function.
[24]

 Degrading of material during overcharging or overdischarging decreases its 

capabilities to store and transfer lithium ions, thus, the ability to withstand such severe conditions 

is preferable. Last but not the least, the cost of the material plays an important role for its 

usability as a cathode. 

Usually, cathodes of lithium-ion batteries are lithium metal oxides that have structures 

allowing lithium intercalation and deintercalation. Lithium Cobalt Oxide, LiCoO2, commonly 

abbreviated as LCO, is the most widely used cathode material. It has high specific energy and 

gravimetric capacity of 137mAh/g, which is a result of its layered structure.
[25]

 However, LCO is 

relatively expensive due to the high cost of Cobalt. In addition, it degrades of fails during 

overcharging, which results in decrease in capacity. Nevertheless, its high capacity makes it 

suitable for cathode use. 

Another cathode material is Lithium Manganese Oxide, LiMn2O4. It has a three dimensional 

spinel structure which allows for less resistance of lithium ion transfer.
[4]

 The lower resistance 

increases the rate of charging and the current during discharging. 
 
The structure provides higher 



 
 

material stability and safety and is less expensive than LCO. However, it has a lower capacity 

than LiCoO2 and the phase change that occurs during cycling decreases the lifespan.
[25] 

The olivine structure of LiFePO4, in which the lithium ions form one-dimensional chains, 

provides a good electrochemical performance and low resistance.
[4],[25]

 In addition, lithium iron 

phosphate is safer and has longer cycle life compared to LiCoO2. However, LiFePO4 has a lower 

voltage which reduces the power obtained from it. This also reduces the specific energy density. 

Furthermore, phosphate batteries have high self-discharge ratio which seriously speeds up the 

aging of the battery.  

Other cathode materials have also been developed. Vanadium oxide is a layered compound 

that provides a high capacity, but a relatively low voltage.
[25]

 LiMnPO4 and LiCoPO4 have higher 

voltages,  but have low capacities. LiNiCoAlO2 has high specific energy and power density, 

which makes it very attractive cathode material for use in electrical vehicles.
[25]

 Different 

cathode materials and their specific capacity are summarized in the table below. 

Table 1 Summary of cathode materials and their specific capacity 

 

 
The research efforts are for producing cathode materials with high capacity, specific power, 

and specific energy that withstand long cyclability and are safe to use.  



 
 

2.5.3. Anode Materials 
 

The anode in a lithium-ion battery acts as a storage for positive lithium ions. During 

charging, lithium ions intercalate in the anode, and they deintercalate during discharging. The 

anode, just like the cathode, needs to have ability to store large amounts of lithium to provide 

high capacity. The anode should have a low voltage in order to provide a high overall voltage 

across the cell. This would ensure a high driving force for the lithium ions to transfer between 

the electrodes and, thus, provide higher battery power.
[4]

  

The amount of lithium ions that the anode can hold is highly dependent on the structure of 

the anode. The first anode material used in lithium-ion batteries was lithium metal. It had high 

specific capacity and produced a good performance.
[4]

 However, its high reactivity and cases of 

batteries catching on fire cause the lithium anode to be abandoned as an anode material. 

The layered structure of the graphite allows for lithium ions intercalation. However, it has 

relatively low capacity. Despite that graphite is the most widely used anode due to its low 

voltage and its ability to withstand long number of cycles.
[26]

 In addition, graphite expansion 

during lithium ion intercalation is just 10% further favoring it over other materials. Graphite 

could also possess flexibility in manufacturing as its structure can be controlled to provide 

different ordering of its layers. In addition, it could also be coated or mixed with other materials 

to improve its capacity and oxidation properties.
[26] 

In addition to graphite there are other carbonaceous materials used as anodes. Soft carbon is 

material that possesses disordered structure, suitable for lithium intercalation. Soft carbon is 

fabricated by organic precursors, such as petroleum pitch and coal tar pitch.
[27]

 Hard carbon, just 

like soft carbon materials, also has a disordered structure. However, hard carbon retains its 



 
 

disordered structure after heat treatment, unlike soft carbon. Hard carbon possesses high 

reversible capacity, compared to graphite and soft carbon. However, it is not as widely used due 

to problems with low density, hysteresis between charge and discharge periods, and large 

irreversible capacity.
[27]

   

Lithium Titanate (Li4T5O12, LTO) is another anode material used in lithium ion batteries. 

LTO has a gravimetric capacity of 175mAh/g, which is lower than the graphite materials.
[28]

 In 

addition, its poor lithium and electronic conductivity limit its rate capabilities. However, LTO 

possesses a spinel structure that gives it a considerable stability during lithium intercalation and 

extraction.
[4],[28]

 Structural changes during charging and discharging are minimal. This results in 

a long cycle life and enhanced safety performance.
[28] 

Other anode materials with better capacity, low voltage, and safety performances are being 

developed, but the ones mentioned above are the most widely used in commercial applications.   

2.5.4. Electrolyte Materials 
 

The electrolyte’s function is to provide medium for lithium ion diffusion between the cathode 

and the anode. It should have high ionic conductivity and low electronic conductivity in order to 

prevent the battery from self-discharging and shorting out.  

Liquid electrolytes utilize a lithium salt dissolved in organic solvents.
[4]

 For proper 

functioning of the battery and good performance the solvent needs to have certain properties. It 

needs to dissolve the lithium salt to a high extent, which means it needs a polar group and high 

dielectric constant.
[29]

 It needs to operate in wide temperature range in order to remain liquid and 



 
 

retain relatively low viscosity for proper lithium ion transfer.
[4]

 Last but not the least it should not 

react with the rest of the battery materials (electrodes, separator, etc.).  

At an early developmental stage of the lithium-ion batteries propylene carbonate (PC) was 

the choice for organic solvent. Lithium salts dissolve to a large extent in propylene oxide.
[4]

 High 

viscosity of propylene oxide hinders lithium transfer. Nowadays, mixtures of solvents are used. 

In addition, it intercalates in carbon anodes causing less lithium ions to be stored in the anode. 

 Usually, solvents in lithium-ion batteries consist of three to five different solvents. Some of 

the most widely used organic solvents are ethylene carbonate (EC), dimethyl carbonate (DMC), 

ethyl methyl carbonate (EMC), and diethyl carbonate (DEC).
[4]

 The table below summarizes the 

solvents and their properties. 

Table 2 Organic solvents and their properties 

Solvent EC PC DMC EMC DEC 

BP (° C) 248 242 90 109 126 

MP (° C) 39 -48 4 -55 -43 

Viscosity(cP) 1.86 2.5 0.59 0.65 0.75 

Dielectric 

Constant 

89.6 64.4 3.12 2.9 2.82 

 

It can be seen that no single solvent has the perfect properties. Solvents with high dielectric 

constant (dissolving lithium salts better), have high viscosity, thus, limiting lithium transfer. 

Solvents with low viscosity have low dielectric constant, thus, dissolving less lithium and 

limiting capacity. That is why mixtures are preferred.  



 
 

Despite the requirement for chemical inactivity towards the rest of the materials, there is a 

reaction that occurs between the electrolyte and the anode during the first cycling. Lithium from 

the electrolyte reacts with the anode forming a passivation layer called solid electrolyte interface 

(SEI).
[4], [29]

 This layer contains inactive lithium which causes irreversible loss of capacity. 

Despite that the SEI is still able to let lithium ions diffuse through it and intercalate in the anode.  

The most common salt used in lithium-ion batteries is LiPF6. Its properties include high 

lithium transference number (0.35) and high ionic conductivity (10
-2 

S/cm).
[4],[30]

 LiBF4 has 

higher ionic conductivity than LiPF6. However, both salts react with water to form HF. Thus, 

they require dry environment and careful handling when used. Carbonate salts do not react as 

readily with water and have received considerable attention in lithium-ion battery research.
[29],[30] 

 Solid electrolytes are not as common in lithium-ion batteries as liquid electrolytes. However, 

they have some advantages. Using solid electrolyte does not require additional materials for 

separators, solvents, and salts. The solid electrolyte contacts both the anode and the cathode and 

physically separates them. This can significantly decrease the weight of the battery if thin film of 

the solid electrolyte is prepared, thus, increasing the energy per unit weight of battery obtained. 

In addition, solid electrolytes offer higher safety, since there is no risk of liquid leaking out of the 

battery and catching on fire.  

Different materials providing different conductivities can be used for solid electrolytes.
[31]

 

Polymers, ceramics, and glass materials have been studied for construction of all solid state 

batteries.
[31],[32]

 Solid electrolytes offer lower conductivities than liquid electrolytes. One of the 

most promising solid electrolytes is Lithium Lanthanum Titanium Oxide (LLTO). 



 
 

LLTO has a relatively high ionic conductivity, between 10
-3

 to 10
-5 

S/cm. The Li/La ratio in 

the ionic structure significantly affects the conductivity. It has been reported that composition of 

Li0.35La0.55TiO3 provides the best ionic conductivity of the material.
[31],[33]

 For laboratory 

purposes LLTO is usually prepared by simple sol-gel reactions.
[33] 

LLTO has electrochemical stability, which gives it long cycle life. However, being a ceramic 

material it poses difficulties for developing a thin film in all-solid-state batteries. 
[31]

  

 

 

 

2.6. All-Solid-State Batteries Using LLTO as a Solid Electrolyte 
 

All-solid-state batteries are composed of materials that are all in solid phase. The solid 

electrolyte is developed as a thin film between the anode and the cathode. The lower the 

thickness of the solid electrolyte the faster the lithium ions can diffuse through it. This results in 

increased current density and faster charging and discharging rates. However, in laboratory 

environments expensive equipment and procedures are used.  

Methods such as spark-plasma sintering, atomic layer deposition, and pulsed laser deposition 

have been used to develop LLTO thin films in laboratories.
[34],[35],[36]

 However, these methods 

and the equipment are too expensive to allow for competitive commercialization. Vacuum 

deposition is a commercial method used for developing atomic layers, but it also uses expensive 

machinery, which results in high cost.
[37]

 If a simpler method, which does not require expensive 



 
 

equipment, is invented, the cost could be brought to a level that can increase the demand and 

utilization of all-solid-state batteries.
[37] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3. Methodology 

 

Every lithium ion battery has three major components: cathode, electrolyte, and anode. In 

the all-solid-state battery all the components are in the solid phase. This eliminates the need of 

liquid electrolytes, separators, and binders. The main focus of the project was the development of 

a cathode with a solid electrolyte layer. The materials chosen for this purpose were Lithium 

Cobalt Oxide (LCO), LiCoO2, for the cathode and Lithium Lanthanum Titanium Oxide (LLTO) 

for the solid electrolyte. Lithium metal was used for the anode part when assembling a battery. 

Due to the time limitations, the advancement of the project work highly depended on 

success of each individual experimental step. The project chronology was divided in the three 

objectives presented in the figure below. Each of these three objectives was achieved by stepwise 

procedures. Lack of success in the achieving of any of the objectives meant that development of 

the methodology and testing a battery were precluded. This section will describe the 

experimental procedures in developing a low cost production method. Each sub-section describes 

the considerations behind the experiments, the exact experimental procedures, difficulties faced 

before or after the described procedure. 

 

Figure 6 Project development 
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3.1. Lithium Cobalt Oxide (LiCoO2) Cathode Development 

 

Lithium Cobalt Oxide has high theoretical capacity, 137 mAh/g, and is widely used in 

lithium ion batteries as a cathode material. For this reason, and because of the convenience of a 

being a material already used in the laboratory, it was chosen for making a cathode. The overall 

goal of the following experiments was to prepare a cathode disk with a high relative density. 

Higher relative density meant low porosity. The porosity of the cathode could affect the transfer 

of lithium ions and thus, increase the internal resistance of the battery. 

Much of the methods used to prepare the lithium cobalt oxide cathode were replicated from the 

previous group’s attempts. Additional attempts were made to further improve and develop the 

procedures used.  

3.1.1.  Cold-Pressing and High Temperature Sintering of Lithium Cobalt 

Oxide Powder 

 

Usually, procedures for producing all-solid-state thin film batteries involve expensive 

methods such as RF magnetron sputtering, pulsed-laser deposition, vapor deposition, etc. This 

project utilized a simpler and cheaper methodology that if successful, could be easily 

implemented for a commercial manufacturing. The preparation of LCO cathode involved cold 

pressing and subsequent high-temperature sintering. 

Lithium cobalt oxide powder was prepared by a previous research team at WPI, and was out 

of the scope of this project. The powder was prepared by ball milling of stock LCO powder, 

achieving a particle size of 5 to 30 micrometers in diameter.  



 
 

Approximately 0.3 grams were measured and were put into a steel mold with a diameter of 1 

centimeter. The powder was then pressed in a cold press for two minutes under 10000 psi of 

pressure. The pressure applied made the individual particles stick together. Higher pressure 

would cause formation of cracks and lower pressure would not press the particles tight enough. 

Although it was not determined whether 10000 psi is the optimum pressure, it was deemed 

acceptable for disk formation.  

 

Figure 7  Mold and Cold press 

 

A ceramic plate was covered with stock lithium cobalt oxide powder and the resulted disk 

was put on it. In order to achieve uniform crystallization, retain the shape of the disk, and prevent 

lithium from escaping the crystal structure of LCO, the disk was also covered with stock powder.  



 
 

 

Figure 8  LCO Cathode disk before (left) and after (right) Sintering 

 

Several sintering temperatures and times were used. First, the LCO disk was put in a furnace 

to sinter at 1200° C (degrees Celcius) for 24 hours with a heating rate of 9° C per minute. After 

the sintering procedure was finished the disk was recovered from the powder using combination 

of razor blade and polishing paper. This procedure did not produce a disk with the desired 

properties. During heating the disk had shrunk creating large number of pores. Although, 

individual particles had fused together, which meant that there would be no surface resistance in 

lithium ion transfer, the density was too low and the disk was not appropriate for solid electrolyte 

deposition. In addition, the disk had fused so much with the covering powder that it was very 

difficult to recover and the uncovering process caused extreme stress on the disk and it would 

often break. 



 
 

 

Figure 9  Furnace used for sintering LCO disks 

 

To increase the relative density, avoid disk shrinking and pore formation and the difficulties 

associated with its recovery, the temperature was decreased to 1100° C. The time the disk was 

kept in the furnace remained the same. The disk was recovered easily from the powder and was 

polished. After polishing the density was measured using Archimedes’ method.  

An experiment was made to determine whether the time spent in the furnace would affect the 

relative density. The pressing procedure was repeated but the heat treatment was set at 1100° C 

for 15 hours. Similar procedure was used by the previous research team. Longer heat treatment 

would allow for longer diffusion through each particle’s surface. However, it was hypothesized 



 
 

that the time difference of nine hours would not produce large differences in the density. The 

shorter amount of required would allow for quicker cathode production. The time saved was 

spent for other procedures. The relative density measured was the same despite the different 

amount of time the disks spent in the furnace. 

During the polishing process, the disks sintered at 1100° C would break or disintegrate into 

powder before achieving the desired thickness. The disks sintered at 1200° C could be polished 

below the desired thickness, but were not used because of their low density. An attempt was 

made to improve the strength of the LCO cathode disks. The same preparation procedure was 

repeated, but the sintering temperature and time were set to 1150° C and 15 hours respectively. 

The resulted disk had lower density than those sintered at 1100° C without a significant increase 

of its strength. Therefore, it was determined to improve the polishing procedure. 

3.1.2. Polishing of Lithium Cobalt Oxide Cathode Disks 

 

After the heat treatment, the LCO disks had to be polished to a thickness of no more than 100 

micrometers and a smooth surface. Larger area was needed to increase the transfer rate of lithium 

ions and lower thickness was desired to decrease mass transfer resistance, thus, internal 

resistance of the battery. This would result in higher charging and discharging rates. Smooth 

surface would have allowed for better deposition of the solid electrolyte during spin coating. The 

smoother the surface the thinner and the more uniform film of solid electrolyte could be 

prepared. For the polishing process sand paper with different fineness of the grit was used. The 

polishing was done manually without using polishing equipment. 



 
 

The first step was to decrease the thickness of the disk. 320-grit sand paper was used to 

polish the cathode from one millimeter to about 300 micrometers. The disk was thickness was 

then decreased to approximately 150 micrometers with sequential polishing with 400 and 600 

grit paper. It was then polished to a mirror surface with a 2400 grit paper.  

It was observed that after polishing with 2400 grit sand paper. Small pores and holes were 

visible on the surface with diameter of 10 micrometers. It was hypothesized that these have 

resulted from the preceding rough polishing treatment. To eliminate these pores or holes visible 

on the surface the polishing approach was changed. Sequential polishing with 320, 400, 600, 

800, 1200, 2000, and 2400 grit was carried on to polish to a reflective surface. Scanning the 

surface with electron microscope showed that the pores have not disappeared.  

Surface pores and holes affected the lithium lanthanum titanium oxide (LLTO) solid 

electrolyte film development. The large number of pores caused formation of cracks in the 

LLTO film. These cracks would have resulted in short-circuiting of the battery. Different 

procedures were employed in order to eliminate surface pores, as will be presented later in this 

section. 

During the polishing, uneven pressure from the manual operation would break the disk at 

thickness lower than 300 micrometers. The polar structure of LiCoO2 made it brittle, therefore, 

the polishing required utmost care and exactness. Attempts were made to improve the strength of 

the disk, which did not resolve the problem of disk breaking. To achieve desired thickness 

without compromising its integrity, the disk was attached to a surface with a double tape and one 

side of it was polished manually. This process proved better as the disk was successfully 

polished. 



 
 

After each polishing procedure the disk was washed in ethanol. In addition, it was washed in 

a sonic cleaner to remove any particles stuck on it during polishing. 

The polishing procedure was finalized by additional improvement. After the disk was 

recovered from the furnace, one of the sides was polished to a mirror surface with paper with 

increasing grit. After that, the other side was polished with a rougher sand paper to decrease the 

disk to the desired thickness. Later that proved useful, as it was easily distinguishable which side 

was smooth and covered with solid electrolyte. 

After the lithium cobalt oxide disk was prepared, it was ready to be spin coated with solid 

electrolyte. The overall and finalized procedure for cathode development is represented visually 

in the figure below. 

 

Figure 10 LCO cathode development procedure 
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3.2. Lithium Lanthanum Titanium Oxide Solid Electrolyte Thin Film 

Development 

 

Usually, lithium ion batteries utilize lithium salt dissolved in organic solutions for highly 

conductive electrolyte. However, solid-state batteries utilize materials that conduct lithium ions 

and that do not need to be dissolved in organic solutions. As already discussed Lithium 

Lanthanum Titanium Oxide, LLTO, is a fast lithium ion conductor with bulk conductivity of 

1x10
-3

 S/cm. LLTO thin films have been prepared using sol-gel reactions. Sol-gel LLTO 

deposition was being utilized by the graduate students working in the same laboratory. After 

reviewing studies on an effective electrolyte, the group determined that LLTO sol solution would 

be the best solid electrolyte for the team’s project.  The team created the solution with the help 

from PhD student at WPI, Zhangfeng Zheng. 

3.2.1. Lithium Lanthanum Titanium Oxide Sol-Gel with High 

Concentration of Polyvinylpyrrolidone Binder Preparation 
 

As an initial process, two different types of solutions were prepared by mixing different 

chemicals.  Solution A was created by mixing LiAC (Lithium Acetate Dihydrate), La(AC)3 

(Lantahnum Acetate Hydrate), Acetic acid, and Propionic acid.  Measured amount of solid 

chemicals, LiAC and La(AC)3, were added to liquid chemicals, acetic acid and propionic acid, 

then stirred on the heating pot (90~100˚C) for 15 minutes.   

A second solution was prepared by mixing Titanium isopropoxide, Acetic acid, Isopropyl 

alcohol, and Polyvinylpyrrolidone (PVP).  As a first step, titanium isopropoxide and acetic acid 

were mixed using micropipette, and stirred for about 15 minutes.  Since titanium isopropoxide is 



 
 

a chemical that evaporates easily in air, this process was carried out in an argon hood glove box. 

After 15 minutes, measured amount of isopropyl alcohol and PVP were added to the solution, 

causing the solution to change its color into yellow, then stirred for another 20 minutes.  Once 

both solutions were prepared, solution A was added to solution B drop-wise over a period of 

time on the stirring pot in order to create LLTO sol solution. Each drop was approximately one 

to three cubic millimeters. The prepared solution was stirred for additional two hours to allow for 

perfect mixing and avoid precipitation of LLTO particles. The recipe of the exact amounts of 

each chemical used are presented in the table and figure below. 

Table 3 Composition of solutions A and B 

Chemical Amount 

Solution A 

LiAC (Lithium Acetate Dihydrate) 0.0804 g 

La(AC)3 (Lanthanum Acetate Hydrate) 0.4356 g 

Acetic Acid 0.6800 g 

Propionic Acid 1.6800 g 

Solution B 

Titanium Isopropoxide 0.69 ml 

Acetic Acid 1.30 ml 

Isopropyl Alcohol 2.7045 g 

PVP (Polyvinylpyrroliodine) 0.3750 g 

 



 
 

 

Figure 11 LLTO sol step-by-step preparation 

 

Figure 12 Solution B stirring prior to mixing with solution A 



 
 

The relative composition of Lithium Lanthanum Titanium Oxide achieved with this sol-gel 

process was approximately                . As described in the background section, at this 

approximate composition LLTO shows its highest ionic conductivity. 

The concentration of LLTO in the solution was 5.1% by mass and the PVP binder 

concentration was 4.7% by mass. The PVP binder was used to increase solution viscosity and for 

better adhesion to the LCO substrate. This would have reduced the spinning iterations required to 

produce a thin and uniform LLTO film.  

The solution could be stored and used for 2-3 weeks. After that time precipitation of LLTO 

particles was observed, which changed the overall LLTO concentration; the solution was no 

longer used and was discarded. 

3.2.2. Low Concentration of Lithium Lanthanum Titanium Oxide Sol-

Gel  
 

The results from the heat treatment of the LLTO sol-gel cracks and pores would form in the 

layer. It was decided to use a procedure to cover these cracks and pores. For that reason a low 

concentration LLTO sol-gel without PVP binder was needed. The lack of PVP would decrease 

the viscosity of the solution and would allow it to penetrate pores on the surface of the LiCoO2 

cathode disk.  

The preparation procedure was similar to the one already described.  The only difference was 

that Acetic Acid and Propionic Acid in solution A were substituted with water. In addition, no 

PVP binder was used. The concentration of the LLTO in this solution was 3.78% by mass. Table 

2 presents the amounts of each chemical used. 



 
 

Table 4 Compositions of solutions A and B for low LLTO concentration sol 

Chemical Amount 

Solution A 

LiAC (Lithium Acetate Dihydrate) 0.0804 g 

La(AC)3 (Lanthanum Acetate Hydrate) 0.4356 g 

H2O (Distilled Water) 5.6 g 

Solution B 

Titanium Isopropoxide 0.6935 g 

Acetic Acid 1.3613 g 

Isopropyl Alcohol 2.7045 g 

3.3. Spin-Coating Deposition of LLTO Sol-Gel on LCO Cathode Disks 
 

Once the cathode disks were prepared (polished to a smooth reflective surface) the LLTO sol 

could be deposited on their surface. The method chosen for that was spin-coating. Spin-coating 

allows for a uniform film deposition; thickness of the film can easily be controlled by regulating 

angular speed. The spin-coater device used had the adjusting the speed of rotation as desired.  

The desired thickness of solid electrolyte film was one micrometer. The thicker the film the 

longer it would take for lithium ions to transfer between the cathode and the anode of the battery. 

If the film was too thin it could break due to stress during handling and electrochemical testing 

and would short the battery. Although it was recognized that the optimum thickness of the solid 

electrolyte film depended on set of factors, it was agreed that one micrometer would allow for 

proper functioning of the battery. 



 
 

 Several different procedures were experimented until the desired uniformity and thickness 

were obtained. The Lithium Cobalt Oxide disk was attached to the center of the spin-coater with 

a double-side heat release tape.  

 

Figure 13 Spin-coater with speed regulator and display (visible in the back) 

 

The first spin coating procedure involved depositing LLTO solution during spinning. The 

disk was accelerated to 3000 revolutions per minute. After this, solution was deposited with a 

micropipette drop by drop. Each drop was 5 seconds apart and 20 drops in total were deposited. 

It was observed that large volume of the liquid was expelled outwards, flying off the disk and 

sticking on the protective cover. The covered disk was dried on a hot plate at temperature of 170° 

C for five minutes. After this, the disk with the LLTO film was heat treated. Heat treatment 

procedures will be explained in the next section. The spin-coating procedure was repeated for 

total of five times to allow achieving desired thickness. The figure below represents the overall 

process. 



 
 

 

Figure 14 Procedure of solution deposition while spinning 

 

 

Figure 15 LCO cathode disk covered with LLTO Sol 

 

The results showed that the film was not developing properly. At places there was no 

coverage whatsoever and where there was LLTO large cracks were observed. In addition large 

amounts of solution were propelled off the disk, which meant serious loss of material. Also, after 

heat treatment LLTO particles were observed on scanning electron microscope analysis. Such 



 
 

particles resulted from the sol-gel reaction and could affect the formation of the solid electrolyte 

film during spinning. 

Different method was used in order to improve the coverage, decrease the loss of solution, 

eliminate particles, and to result in a better overall film. First, the solution was placed in a 

syringe with a filter attached to it. The role of the filter was to remove large particles from the 

solution. Second, the after the disk was attached to the spin-coater, it was covered with solution 

prior to spin-coating. To avoid spills and large exhaust amount of liquid, the disk was slowly 

accelerated do 3000 rpm. It was rotated for 30 seconds to allow for uniform film formation. The 

covered disk was then dried at 170° C for five minutes and then was heat treated in a furnace. 

The whole procedure was repeated from three to seven times. 

It was observed that the liquid film was slowly getting thin with accelerating the rotation 

speed. Also, areas of thicker coverage were observed on the edges of the disk. These areas were 

not a concern as they were cut after heat treatment. The figure below presents the overall 

process. 

 

Figure 16 Filtered LLTO deposition prior to spinning 



 
 

The results were satisfying and that procedure was employed throughout the project. The 

thickness and uniformity will be discussed in the next section. 

3.4. Heat Treatment of LCO-LLTO Cathode-Electrolyte Disks 
 

To fully form the Lithium Lanthanum Titanium Oxide solid electrolyte film, heat treatment 

was required to evaporate all organic components. In addition, the film had to be annealed to 

achieve the LLTO amorphous structure for a good ionic conductivity. The parameters that could 

be changed for heat treatment were temperature, time spent annealing, and heating and cooling 

rate. Considerations about the heat treatment process involved too high temperature, too long 

exposure, too quick heating rate.  

Lithium Lanthanum Titanium Oxide would react with Lithium Cobalt Oxide at temperature 

higher than 700° C. Thus, the temperature of annealing was set to 600° C. Too long exposure to 

that temperature could have resulted in the formation of cracks in the film. Such cracks could 

result in battery short-circuit. Too fast heating rate could also cause the film to shrink very 

quickly and, thus, result in cracks. These variables were changed until a film without cracks 

formed. 

After the disk was dried, it was put in a ceramic plate and was put in a furnace. In the first 

experiment the temperature was set to 600° C; the time for the sample to stay at that temperature 

was set to two hours and the heating rate was set to 9° C per minute. The results showed the 

formation of large cracks, which depth reached the LCO disk. It was hypothesized that the cracks 

were due to the long exposure time. 



 
 

The time was decreased to just thirty minutes with the temperature and the heating rate at the 

same values. Again, large cracks were observed at the end of the overall solid electrolyte film 

procedure. Although it was recognized that some of the cracks were due to substrate’s surface 

pores, the large number of them indicated that at least some were formed due to severe stress 

from heat treatment. This lack of integrity of the film could result in short-circuiting of the 

battery. The lithium metal anode would grow and form dendrites, penetrating within the cracks 

and reacting with the LiCoO2 cathode, rendering the battery useless. 

Another heat treatment procedure involved heating the disk to 350° C for 30 minutes at 5° C 

per minute heating rate. Each time the disk was spin coated and dried it was heat treated at that 

set-up. After the last heat treatment at 350° C the disk was cooled and then placed in the furnace 

to anneal at 600° C for 30 minutes with heating rate of 5° C per minute. The results were 

satisfying as the number of cracks had decreased significantly and were observed only where the 

LCO substrate had pores. 

Simultaneously with the upper method, heat treatment that kept the temperature at 600° C 

after each spinning and the time at 30 minutes, but used different heating rate - 5° C, was used. 

This procedure also provided good results. Eventually, the method of heat treating the disk at 

350° C first and then at 600° C was used. Table 4 presents each heat treatment and its 

effectiveness. 

 

 

 



 
 

Table 5 Different heat treatment techniques 

Procedure Temperature Time Heating rate 

1 600° C 2 hours 9° C / minute 

2 600° C 30 minutes 9° C / minute 

3 

350° C after each 

spin-coating, 600° C 

final annealing 

30 minutes for both 

temperatures 

5° C / minute for 

each temperature 

4 600° C 30 minutes 5° C / minute 

3.5. Eliminating Pores from LCO Cathode Disk Surface  
 

The importance of the smooth surface of the LCO disk was implied in the previous sections. 

As mentioned before, SEM scans revealed small pores and holes on the Lithium Cobalt Oxide 

cathode disk surface. These pores affected the spin-coating and heat treatment of LLTO sol 

processes and resulted in the formation of holes and cracks within the solid electrolyte film. This 

meant that the battery would short-circuit if the lithium metal anode penetrated within them. 

3.5.1. Lithium Cobalt Oxide Sol-Gel Reaction Preparation 
 

Sol-gel reaction could also be used to produce thin film LiCoO2. It is used in the fabrication 

of micro-batteries. It was decided to employ such a method in an attempt to produce a smooth 

cathode surface acceptable for spin-coating.  

Co(CH3COO).4H2O was dissolved in Acetic Acid and stirred for 20 minutes. Then, in an 

argon hood Li(OC3H7)
i
 was dissolved in Acetic Acid and was stirred until all solid particles were 

dissolved. The first solution was then added to the second solution drop-wise with 1 drop per 5 

seconds, while stirring, until completely mixed. The resulting solution was then left to stir for 12 

hours to avoid precipitation and had a dark purple color. The goal was to deposit this LCO sol on 

the cathode surface in order to penetrate and fill the surface pores. Therefore, the viscosity 



 
 

needed to be low and no PVP was added. Table 4 presents the amounts of chemicals used for this 

reaction. 

Table 6 Compositions of solution A and B for LCO sol 

Chemical Amount 

Solution A 

Co(CH3COO).4H2O 0.6225 g 

Acetic Acid 4.503 g 

Solution B 

Li(OC3H7)
i
 0.165 g 

Acetic Acid 1.501 g 

 
Figure 17 Lithium Cobalt Oxide Sol Solution 

 

 

 



 
 

3.5.2. Evaporative Deposition of Lithium Cobalt Oxide Sol to Fill 

Surface Pores 
 

The LCO cathode disk was placed on a glass dish. It was covered with LCO sol and was left 

in a fume hood. After approximately 20 hours the liquid content of the solution had evaporated 

and the disk had a solid purple cover. It was removed from the dish and was heat treated. The 

heat treatment involved annealing at 600° C for 30 minutes. After retrieving the disks from the 

furnace a dark black powder was observed on the surface of the cathode. This was LiCoO2 

formed during the reaction. The surface of the disk was then polished with a fine sand paper 

(2400 grit). SEM scan was taken to analyze the effectiveness of this method. The results showed 

that the pore had been filled effectively and only one evaporative procedure was necessary. The 

figure below shows disks covered with LCO sol prior to heat treatment. 

After polishing, the disk was covered with LLTO sol enhanced with PVP binder using the 

spin-coating method as described in the previous sections. 



 
 

 

Figure 18 Evaporative LCO sol deposition (right), spin-coating deposition (left) 

 

 

 

 

 

 

 

 



 
 

3.5.3. Spin-Coating Cathode Disks with LCO Sol to Fill Surface Pores 
 

Another procedure for pore removal involved spin coating. The aim was to deposit LiCoO2 

sol on the surface of the cathode disk, allow some tome for solution to penetrate pores, and spin-

coat to remove excess LCO sol and provide a smooth surface.  

LCO sol was deposited, left for 5 minutes before spin-coating, spun at 3000 rpm and then 

dried at 170° C. After this the same heat treatment followed – at 600° C for 30 minutes at 5° C 

heating rate. After the heat treatment similar result was observed. Black powder has formed on 

the surface of the disk. The disk was carefully polished with 2400 grit polishing paper. This 

process was not very effective in covering the pores. Therefore, several spin-coating procedures 

were needed to provide a smooth surface. 

3.5.4. Evaporation of Low Concentration LLTO Sol to Fill Surface Pores 
 

As described before low concentration LLTO sol without PVP was prepared. The lack of 

PVP decreased the viscosity of the solution and allowed it to penetrated surface pores. 

A cathode disk was boiled in ethanol for 30 minutes. It was then dried and put in 0.02M 

water solution of Dodecylbenzenesulfonic acid sodium salt. This measure was done to improve 

the wettability of the disk for LiLaTiO3.  

Immediately after removal from the water solution, the cathode disk was put in a glass dish 

and was covered with the LLTO sol solution. It was then put in a fume hood to allow for 

evaporation. After 15 hours the disk was removed. The timing of the disk removal was crucial. If 

the disk was left for too long, the whole LLTO solution would have evaporated and the disk 

would get trapped under the solid residue. This made it almost impossible to remove the disk and 



 
 

retain its integrity. The perfect moment for removing the disk was when there was a solid layer 

of LLTO on its upper surface, but the solution had not evaporated under it. This allowed 

removing the disk from the dish using razor blade, without affecting the disk or the LLTO layer. 

The figure below shows a disk covered with LLTO prior to heat treatment. 

 

 

Figure 19 Cathode disk after LLTO sol evaporation 

 

After the disk was recovered from the dish, it was heat treated using the following procedure: 

first, 350° C for 30 minutes with 5° C per minute heating rate, then cooled to room temperature; 

second, heat to 600° C for 30 minutes with 5° C per minute heating rate, then cool to room 

temperature. After heat treatment a thick film of LLTO was formed, approximately 100 



 
 

micrometers. To remove the excess of LLTO the disk surface was polished with 2000 grit paper. 

The results were satisfying and only one evaporation procedure was needed to fill the pores. 

After the pores were covered with this method it was spin-coated using the methodology 

already described. 

3.5.5. Spin-Coating Low Concentration LLTO Sol on an Already 

Covered LCO Cathode Disk 
 

The last effort to remove surface pores and cracks from the film was to spin coat a disk that 

was already covered with LLTO sol with PVP binder. This time, however, the disk was covered 

with the low concentration LLTO sol on top of the already formed LLTO film.  

The spin-coating procedure was the same as described before. The disk was attached to the 

spin-coater, covered with LLTO sol, accelerated to 3000 rpm and kept rotating for 20 seconds, 

and then dried at 170° C before heat treated. The heat treatment was the same – first at 350° C 

for 30 minutes with 5° C per minute heating rate and cooled to room temperature, then heated to 

600° C for 30 minutes with 5° C per minute heating rate.  

The results were not very promising and several spin coating procedures were necessary. The 

advantage was that no additional polishing was necessary. 

A final process was formulated from the methods described above. Three sample disks were 

prepared using the three methodologies for pore filling. The figure below presents the process for 

preparing each sample.  

 



 
 

 

Figure 20 Final Procedures for all-solid-state cathode-electrolyte system preparation 

 

 

 

 

 

 

 

 

 

 



 
 

3.6. Battery Assembly and Testing  
 

The last stage of fabricating an all-solid-state lithium ion battery was the actual assembling 

and testing the battery. First, the battery was assembled and then the samples were set for 

electrochemical testing using VMP3 Electrochemical Tester. Two types of batteries were tested. 

One battery used liquid electrolyte and tested the capacity of LiCoO2 high density cathodes. The 

second type was an all-solid-state battery testing the samples prepared by the methods described 

above.  

3.6.1. Swagelok Cell Assembling  
 

Swagelok cells were used to produce a battery. The cell consisted of three main parts: main 

body, anode current collector, and cathode current collector. The current collectors were attached 

to the main body using screws and were isolated from the environment using two isolating rings 

for each collector. The anode current collector consisted of hollow metal cylinder into which a 

spring was inserted. A metal plate was attached to the spring. The cathode current collector 

consisted of just solid metal cylinder. 

To assemble a battery first a piece of lithium metal anode was cut from a strip of stock 

lithium metal. The circular anode was put in the middle of the anode current collector plate. A 

piece of separator was cut and was placed on top of the lithium anode. Then, the separator and 

the anode were pressed with the cathode current collector. That way the lithium stuck to the 

anode current collector. The hollow part of the anode current collector cylinder was filled with 

liquid electrolyte. The liquid electrolyte used was 1M LiPF6 solution in ethylene carbonate, 

diethyl carbonate, and dimethyl carbonate with solvent ratio of 1 : 1 : 1. Two pieces of separator 



 
 

were placed on top of the lithium anode and were soaked in liquid electrolyte. The lithium cobalt 

oxide cathode was placed on top of the separators. Then, holding the battery with the cathode on 

top to avoid spilling the electrolyte, the screws were slowly rotated until tight grip. All of the 

above procedure was carried out in an argon hood to avoid moisture reacting with the lithium 

metal. 

When assembling the all-solid-state lithium-ion battery, the hollow cylinder of the anode 

current collector was not filled with liquid electrolyte. After the lithium metal was placed on the 

current collector, a drop of liquid electrolyte was spread on it. This was done to decrease the 

surface resistance of lithium ion transfer between the solid electrolyte and the lithium anode. The 

solid electrolyte-cathode disk was then placed on the lithium metal anode. The battery was then 

screwed. The full assembling procedure is presented step-by-step in the appendix. 

3.6.2. Electrochemical Testing 
 

After a battery was made it was ready to be electrochemically tested. Each disk was 

measured prior to testing. Its weight allowed for calculating the current necessary to charge to 

theoretical density. 

First, only LCO cathodes were tested. For educational purposes a cathode disk with thickness 

of 350 micrometers was tested and was charged with 1C. On theory the higher thickness would 

impose higher mass transfer resistance and the high charging rate would not allow enough time 

for lithium transfer. The results supported theoretical expectations. 

Then the thickness was decreased to 250 micrometers. At that time, polishing the cathode to 

desired thickness was still a problem. The battery was charged with rate of C/50 to allow enough 

time for lithium transfer, considering the thick cathode. Third LCO cathode, this time polished to 



 
 

100 micrometers (± 10 micrometers), was tested using C/30. The results are presented in the 

results and discussion section. 

The three samples prepared with LLTO solid electrolyte were with thickness of 

approximately 100 micrometers. They were set to charge at C/20 as working of concept was 

desired rather than performance. The results were not as desired and the batteries short-circuited. 

Unfortunately, due to time limitations at the time of writing this project the procedure was not 

retested. Table 5 presents each sample and its charging rate. The results are presented in the next 

section. 

Table 7 Samples and their charging rate 

Sample Disk Thickness Charging rate 

A (no LLTO film) 350 micrometers 1 C 

B (no LLTO film) 250 micrometers C/50 

C (no LLTO film) 100 micrometers C/30 

D (surface pores covered with low 

concentration LLTO sol evaporation) 

100 micrometers C/20 

E (surface pores covered with LCO sol 

evaporation) 

100 micrometers C/20 

F (pores and cracks covered with low 

concentration LLTO sol spin-coating) 

100 micrometers C/20 

 

The overall methodology for preparing all-solid-state batteries is presented in in the figure 

below. Sample F had a preparation procedure different from the rest of the samples. 



 
 

 

Figure 21 Overall methodology for preparing all-solid-state battery (top), procedure for Sample F (bottom) 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4. Results and Discussion 
 

The overall goal of the project was to fabricate an all-solid-state battery and its testing. The 

success of that goal depended on achieving smaller objective: high density Lithium Cobalt Oxide 

cathode and Lithium Lanthanum Titanium Oxide electrolyte film development. During the 

course of the project an additional objective emerged from the experiments. Methods had to be 

used to remove surface pores from LCO cathode disk, which appeared after sintering and 

polishing. 

Although some experiments were unsuccessful, important knowledge was attained for further 

research and development of a methodology for low cost all-solid-state lithium ion battery 

production. This section will discuss the results from each set of experiments, successes and 

failures of the methods used, and the extent to which the goal was achieved. 

4.1. Lithium Cobalt Oxide Disk 
 

Lithium Cobalt Oxide cathode disks were prepared by cold-pressing LCO powder and 

subsequent high temperature sintering. That procedure was carried out to achieve a high relative 

density cathode. This meant low internal porosity that would allow for proper lithium ion 

transfer and storage by reducing internal resistance of the battery. Therefore, a capacity close to 

the theoretical could be achieved. 

The disks sintered at 1200° C did not produce the desired results. The higher temperature and 

longer exposure cause the disk to shrink and created a lot of internal pores. Although the 

individual particles had fused together, it was determined that the disk is not appropriate for 

further experimentation, mainly because the pores would affect the development of the solid 



 
 

electrolyte layer. The relative density measured was less than 73%. The cross sectional view of 

the disk presented, made by scanning electron microscope (SEM) in the figure below shows the 

abundance of the pores. 

 

Figure 22 Cross-sectional view of disk sintered at 1200 C  

 

The reasons for the large number of pores were not investigated. Instead, the temperature was 

changed to 1100° C. The disks sintered at that temperature showed considerable improvement of 

the density. No internal pores were observed. The relative density had increased significantly to 

the value of 96% of the density of LiCoO2. The figure below shows a cross sectional view of the 

disk sintered at 1100° C.  



 
 

 

Figure 23 Cross-sectional view of cathode sintered at 1100 C 

 

Despite the 96% measured density it was hypothesized that it was actually a little lower due 

to formation of closed internal pores, which could not be detected on the SEM scans or during 

the density measurements. 

During polishing, the disk would become very brittle and it was extremely difficult to 

achieve the desired thickness of 100 micrometers. Attempts were made to improve disks strength 

by sintering at 1150° C for 15 and 24 hours. The results proved fruitless as the density decreased 

without an increase of disk strength. To achieve desired thickness the polishing procedure was 

improved. 



 
 

The polishing of the disk was carried out until the disk was thin and its surface smooth 

enough. The surface was polished until the disk reflected light. However, during SEM scans, 

taken after spin-coating with LLTO sol, pores and holes appeared on the surface. It was 

hypothesized that these had appeared during the polishing process. The disk was polished 

consecutively with finer polishing paper. Grits of 600, 800, 1200, and 2000 were used. The 

surface was scanned and is compared in the figure below. 

 

Figure 24 Surface scans of disks polished with different polishing paper 

 

Finer polishing methods did not remove surface pores. Initially, the pores could not be 

recognized on the surface of disks polished with 600 grit paper. They appeared as the polishing 



 
 

got finer. It was hypothesized that these were a result of uncovering internal pores. It was 

important to achieve a smooth surface in order to allow for proper development of smooth and 

uniform LLTO film during spin coating. 

4.2. LLTO Solid Electrolyte Thin Film Development 
 

The spin-coating procedure was carried out once the disks were prepared. Assuming that the 

disk was smooth and that the speed of rotation was high enough, the centrifugal force would 

spread the solution evenly in the radial direction. After heat-treating the resulted solid-electrolyte 

layer should have been ready for battery assembly. The objective was to achieve smooth film 

with 1 micrometer of thickness. This section presents the results after the spin-coating and the 

subsequent heat treatment. 

4.2.1. Deposition of LLTO Sol Solution While Spin-Coating and Heat 

Treatment at 600° C 
 

Depositing LLTO sol solution, while spinning, did not provide good coverage of the cathode 

disk. As mentioned in the Methodology section, large amount of the solution was propelled 

outwards and flying off the disk. The subsequent heat-treatment was provided too severe stress 

for the thin film and caused it to shrink and crack. The figure below shows an SEM scan of the 

LLTO film developed by this method. 



 
 

 

Figure 25 LLTO Layer developed by deposition of LLTO sol during spinning (5 spinning iterations) 

 

Larger particles of LLTO were observed on the SEM scans. This called for the use of filters 

during LLTO sol deposition. Also, the severe heat treatment had to be changed by decreasing the 

time of annealing. 

 

 

 

 

 

 

 

 



 
 

4.2.2. Deposition of LLTO Sol Prior To Spin-Coating and Heat-

Treatment at 600° C for 2 hours 
 

In this procedure the solution was deposited prior to spin coating, to avoid loss of material. 

This change appeared to improve the film development. The film cracks had decreased in size 

(from 5 micrometers wide to 1-3 micrometers wide) and the five iterations provided a thin film 

almost exactly 1 micrometer.  

 

Figure 26 Film thickness and surface after 5 spinning iterations and heat treatments 

 



 
 

The desired thickness was achieved (the pale grey strip on left picture), but the problem of 

cracks remained unsolved. It was determined that the lithium metal can grow within these 

valleys, by forming dendrites, and short-circuiting the battery after long operation. Different 

heat-treatment procedures were tried, as described in the Methodology section.  

4.2.3. Different Heat Treatments 
 

As described in the methodology, three heat treatment procedures were carried out. The first 

one consisted of annealing the LLTO film at 600° C for 30 minutes. The decrease of annealing 

time was expected to decrease the stress caused by the contraction during heat treatment. An 

SEM scan of the LLTO film resulting from this procedure is presented in the figure below.  

 

Figure 27 LLTO film surface after 600 C for 30 minutes heat-treatment 



 
 

 

The resulted film exhibited almost no cracks. However, at that point of time the presence of 

surface pores was realized. The LLTO film was too viscous to penetrate the pores during spin-

coating. Possibly, the pores contained air trapped under the LLTO film that expanded during 

heat-treatment, rupturing the LLTO film. In addition, due to the lack of substrate under these 

particular areas the LLTO film shrank during heat treatment exposing the pores. The results from 

the methods used to eliminate surface pores will be presented later. 

4.2.4. Heat Treatment at 350° C after Each Spinning Iteration and Final 

Annealing at 600° C 
 

The heat treatment was further improved. In this procedure the film was annealed at 350° C 

for 30 minutes with 5° C per minute heating rate after each spin-coating procedure. A final 

annealing was done at 600° C for 30 minutes with 5° C per minute heating rate. This procedure 

cause less heat stress on the LLTO film. It was observed that were significantly lower in number 

and width and that they were forming predominantly around the surface pores. The figure that is 

following presents the surface SEM scan of the LLTO film. 



 
 

 

Figure 28 LLTO film after heat-treatment at 350 and 600 C (surface view) 

 

 

 

 

 

 

 

 



 
 

4.2.5. Heat Treatment at 600° C for 30 Minutes with 5° C per Minute 

Heating Rate 
 

This procedure had similar results to the previous heat-treatment. Since the presence of pores 

could not be eliminated by changing the heat treatment, and because of the usefulness of the 

previous procedure, this procedure was abandoned. 

After altering the heat-treatment settings, the LLTO film improved significantly. The pores in 

the LLTO film were investigated and it was concluded that their bottom reached the lithium 

cobalt oxide cathode and that they were wide enough for the lithium anode to grow in them and 

short-circuit the battery. Therefore, they had to be removed in order to produce a uniform thin 

film of solid electrolyte.  

4.3. Eliminating Surface Pores  
 

The development of the cathode disks with this high relative density was partially successful. 

The appearance of surface pores was considered a drawback that had to be overcome. As 

described in the Methodology section four different procedures were experimented. 

The process of filling surface pores to achieve smooth disk surface was carried out after spin-

coating results were obtained. The time limitations did not allow for extensive SEM scanning 

and the surface after each procedure was checked with an optical microscope. After filling the 

pores, the resulted disks were spin-coated with high concentration of LLTO sol enhanced with 

PVP binder. The resulted films were also observed with an optical microscope. 



 
 

4.3.1. Low Concentration LLTO Sol Evaporation 
 

Removing pores with evaporation of low concentration of LLTO sol without PVP binder 

proved very successful. As described before, the sol was evaporated and the disk was heat 

treated. The disk was then polished to remove excess LLTO. In the figure below the LLTO is 

visible as a white layer on the cathode disk. 

 

Figure 29 LLTO sol evaporation disk after heat treatment 

 

The SEM scans in the figure below of the surface after polishing with 2000 grit paper, did 

not reveal any pores. The light grey shapes were hypothesized to be the areas where the pores 

were. It was thought that the procedure could be repeated once more, to make sure that these 

areas are also smooth enough. However, it was determined that they do not represent concern for 



 
 

short-circuiting since they were already filled with LLTO, and the disk was ready to be spin-

coated with LLTO sol enhanced with PVP binder. 

 

Figure 30 Disk's surface after LLTO evaporation 

 

The spin-coating procedure was repeated five times and the surface was checked with an 

optical microscope. Observations did not reveal any pores on the LLTO solid electrolyte film. 

 

 

 

 

 

 



 
 

4.3.2. Evaporation of LCO Sol  
 

As described in the Methodology section, this procedure involved evaporation of LCO sol 

covered disk. After the solution had evaporated the disk was treated and then polished. 

The results of this method are presented in the figure below. The procedure of LCO 

evaporation also showed great results. Small lithium cobalt oxide particles were visible on the 

surface, which could be removed with very fine polishing. The pores were successfully filled 

and, after fine polishing, the surface was smooth. The disk was then spin-coated with LLTO sol 

enhanced with PVP.  

 

Figure 31 Disk surface after LCO sol evaporation 

 

After spin-coating the LLTO film was observed with optical microscope and was determined 

to be acceptable for all-solid-state battery fabrication.  



 
 

4.3.3. Spin-Coating Low Concentration LLTO Sol on a Disk Already 

Covered with LLTO Layer 
 

This procedure involved an attempt to fill pores and cracks not in the LCO cathode disk, but 

in the LLTO film that resulted from spin-coating high concentration LLTO enhanced with PVP 

binder. Low concentration LLTO sol was spin-coated on top. 

The results were checked with optical microscope. The pores appeared to be filled, but minor 

cracks were observed in the film. Nevertheless, it was assumed that these cracks would not result 

in short-circuit, since there was another LLTO layer beneath them. Despite the fact that this 

procedure was not as effective as the first two procedures, a battery was constructed and was 

tested.  

4.3.4. Spin-Coating LCO Sol on LCO Cathode Disk 
 

This attempt to fill surface pores did not prove to be as effective as the other three methods. 

After five spin-coating iterations and subsequent heat treatments, the LCO disk was checked 

using optical microscope. The observations revealed that the pores were not covered. In addition, 

annealing had caused additional crack formation the LCO film that was spin-coated. Because of 

lack of success that procedure was abandoned.  

The pore filling procedures had different efficiency. However, the end result allowed 

proceeding to spin coating. Each procedure and its effectiveness of creating a smooth surface 

acceptable for spin-coating is presented in table 8. 

 



 
 

Table 8 Effectiveness of different methods used to fill surface pores 

Method Difficulties Pore Removal Results 

LCO sol evaporation 

Problems with 

removing disk from 

glass dish after 

evaporation 

Highly effective 

Low concentration 

LLTO sol evaporation 

Problems with 

removing disk from 

glass dish after 

evaporation 

Highly effective 

Low concentration 

LLTO sol spin-coated 

on LLTO film 

None Effective 

LCO sol spin-coating None Not effective 

4.4. Battery Testing 
 

The main goal of the project, as mentioned before, was to assemble and test a battery. All 

samples prepared for testing utilized LCO cathode disks sintered at 1100° C for 24 hours. Six 

different samples were tested in total. Three of them were only LiCoO2 cathodes and utilized 

liquid electrolyte.  The other three were samples that had thin film of LiLaTiO3 solid electrolyte. 

4.4.1. Lithium Cobalt Oxide Cathode Electrochemical Testing 
 

The first cathode was polished to 350 micrometers. At the time of the testing this was the 

optimal thickness that resulted after the polishing process. It was tested using 1 C charging and 

discharging rates. The battery was charged to 4.2 volts. Figure 26 shows the voltage as a function 

of time for this sample. 



 
 

 

Figure 32 Voltage as a function of time graph for 350 micrometers thick sample 

 

The test of this sample was purely educational. It was expected that because of the quick 

charging and discharging rate and the thick cathode the lithium ions would not have transferred 

from the cathode to the anode. As the graph shows, there is almost no capacity.  

Another sample tested was polished to 250 micrometers and was charged with C/50 charging 

rate and was charged to 4.2 volts. This sample charged and discharged for approximately 16 

hours. The total capacity was 37 mAh/g (32% of the theoretical capacity). Despite lower 

charging rate, the thickness was still too high to achieve higher capacity. 
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The last LCO cathode tested was polished to 100micrometers (±13 micrometers). The battery 

was set to C/20 charging rate, but to 4.3 volts. This allowed for higher than theoretical capacity 

to be obtained, as well as to overcome the resistance due to the thickness of the cathode disk. 

Figure 27 presents the voltage as a function of time. 

 

Figure 33 Voltage as a function of time for 100 micrometers thick cathode 

 

Figure 27 shows a good charging and discharging curve. The charging and discharging 

processes lasted almost 23 hours each. The higher voltage caused the battery to charge more 

quickly than the 30 hours it was set to. The capacity was calculated to be 151 mAh/g, (10% 

higher than the theoretical capacity). This was expected as the voltage the battery was charged to 
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4.3 volts, above the usual charging voltage of 4.2 volts. Due to time limitations, the battery was 

not cycled multiple times. 

Table 9 Results for the electrochemical testing of each LCO cathode 

Sample Thickness (in 

micrometers) 

Charging/Discharging 

rate 

Charging/discharging 

time (in hours) 

Capacity 

(mAh/g) 

A 350 1 C 1 ~ 0 

B 250 C/50 16 37 

C 100 C/20 23 151 

4.4.2. Electrochemical Testing of Samples with Thin Film of LLTO Solid 

Electrolyte 
 

Three samples that had solid electrolyte layer were prepared. They differed only in the way 

the pores on the surface of the cathode were filled.  All samples had the same thickness of 100 

micrometers. 

The first sample utilized low concentration LLTO sol evaporation to cover the pores. The 

battery was assembled and was connected to the electrochemical tester. Before the open circuit 

voltage was recorded the battery showed a voltage of 2 V. The settings of the electrochemical 

testing procedure were set to charging to 4.2 volts with C/20 charging rate. Seconds after the 

program was run, the battery short-circuited and stayed flat at approximately 0 volts. T 

This was considered a partial success. Even though the battery failed, for few seconds it had 

voltage of 2 V. The battery was disassembled, but the disk disintegrated before it could be 

recovered for investigation. It was noticed that the anode disk had a footprint of the sample. 



 
 

The second sample had its surface pores covered with LCO evaporation. After the 

evaporation, spin-coating was performed. The same procedure of battery assembly and 

electrochemical testing was employed. The program was set to the same settings of 4.2 volts and 

C/20 charging rate. This time the battery did not show any voltage. It was flat at 0 volts right 

after connecting to the electrochemical tester. The same footprint in the lithium metal anode was 

observed. 

The third sample did not fail right away, but did not work properly either. It was a sample 

that was spin-coated with high concentration LLTO sol enhanced with PVP five times, and the 

spin-coated with low concentration LLTO sol another five times, to fill pores and cracks in the 

layer. The battery was set to charge to 4.2 volts and C/20 charging rate. This was the only sample 

which could experience any charging. Figure 28 shows the voltage as a function of time for this 

sample. 



 
 

 

Figure 34 Sample with LLTO film spin coated with two different LLTO sol solutions 

 

The battery did not fail immediately after connecting to the electrochemical tester. The open 

circuit voltage on figure 28 (the blue line) showed that the battery had a voltage of 0.9 volts that 

slowly dropped to 0.5 volts. After that the battery started charging. This by itself can be 

considered a success since the battery showed potential to work. However, after charging for 

almost an hour the voltage started decreasing rapidly, indicating short-circuit. 

When the battery was disassembled, the same phenomenon was observed as with the other 

batteries. The lithium metal anode had a footprint on it resembling the LCO/LLTO disk.  
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Figure 35 Disassembled battery after electrochemical testing 

 

On the figure above it can be observed that the sample had not shorted out in the middle. 

This meant that the reason is not in the LLTO solid electrolyte thin film, rising hopes to potential 

future success of the process. The reason for the battery to fail was determined to be in the force 

the cathode is pressed against the anode. Lithium metal is soft and the solid electrolyte film is 

only 1 micrometer thick. When pressed the lithium metal has “engulfed” the cathode/electrolyte 

disk, going around the LLTO solid electrolyte layer and reacting with the lithium cobalt oxide 

cathode.  



 
 

 

Figure 36 LCO/LLTO system sinking in lithium metal anode 

 

The figure above visually represents the contact between the anode and the cathode. The red 

circles represent the points where short-circuit occurred.  

 

 
 

 

 

 

 

 

 

 

 

 

 



 
 

5. Conclusion  
 

The overall goal of this project was to establish a methodology for fabricating an all-solid-

state lithium ion battery. The objectives were to prepare a high-density LiCoO2 cathode, deposit 

a thin film of LiLaTiO3 solid electrolyte, and assemble and test an LCO/LLTO/Lithium battery. 

The time of 14 weeks allocated for this project and the problems faced with the presence of 

surface pores on the LCO cathode disk severely limited the development of the methodology. 

Nevertheless, the results can be considered a partial success for achieving the goal. 

High temperature sintering of LiCoO2 powder proved to be a good method for developing a 

high-density cathode. This method and the powder, initially developed by a previous research 

group, resulted in a LCO cathode with 96% relative density. During the polishing process, 

surface pores were discovered. It was hypothesized that during polishing closed internal pores 

were uncovered, but this was not proven. 

The experiments that were carried out to fill the pores on the cathode disk surface were quite 

effective. Evaporation of LCO sol and LLTO sol produced a smooth cathode disk surface. It is 

worth noticing that if there is a methodology that can produce a cathode with smooth surface, 

then these procedures are not needed. Nevertheless, they allowed for spin-coating with high 

concentration LLTO sol. 

The spin-coating and subsequent heat-treatment procedure was very effective in developing a 

thin-film of LLTO solid electrolyte. A film with thickness of 1 micrometer was produced and, 

after removing pores from the cathode surface, uniformity was achieved.  



 
 

The results, however, remain inconclusive due to failure of all of the three all-solid-state 

batteries assembled with the cathode-solid electrolyte samples. Two of those samples did not 

short out immediately, showing voltage of 0.9 and 2 V for a small amount of time, and raised 

hopes that the overall methodology could be effective in fabricating an all-solid-state lithium ion 

battery using LiCoO2 as the cathode and LiLaTiO3 as the anode. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

6. Recommendations for Future Research 
 

The procedure developed in this project appears to be much simpler and cheaper from the 

methods used for fabricating an all-solid-state battery. However, further research is necessary for 

its evaluation as a potential commercial process. Here are some recommendations for future 

studies. 

6.1. Preparing High-Density LiCoO2 Cathode Using Hot-Press 
 

The cold-pressing/high temperature sintering of LCO powder provided good results for 

fabricating a cathode. The two steps involved in this procedure meant multiple handling of the 

disk. This could damage the fragile cathode. To avoid this, and to achieve better results in terms 

of density, disk strength, and better particle adhesion and fusion, a hot-press can be used. This 

not only combines two procedures into one and avoids multiple handling of the cathode, but also 

provides for better particle interaction during the sintering stage. In addition, it was hypothesized 

that using hot press can eliminate the formation of surface pores. 

6.2. Polishing LCO Cathode Disks 
 

It is easier to know which side of the cathode disk has been covered with LLTO solid 

electrolyte if the two sides are different. If the one cannot distinguish which side is covered, 

assembling and testing of the battery might not work. We recommend polishing one side to a 

smooth, light-reflecting surface before polishing to the desired thickness. Then polish the other 

side with rough polishing paper until the desired thickness is achieved. There will be an obvious 

difference that can serve for recognizing the covered side. Also, if the disk is polished to the 



 
 

desired thickness and then to the desired smoothness, there is a high risk of the disk 

disintegrating. Therefore, this can be avoided with the recommended procedure.  

 

Figure 37 Cathode disk sides polished to different smoothness 

6.3. Evaporation of Low Concentration LLTO Sol 
 

This procedure was used for filling surface pores. Previous researchers have used it to 

develop a thin film of the solid electrolyte. This procedure proved to be much simpler and 

quicker than the spin-coating. It also meant less handling of the disk. However, when performing 

this procedure it is imperative to monitor the evaporation of the LLTO sol. If all of the solution 

has evaporated, then removing the cathode disk without damaging it becomes impossible. The 

amount of time for evaporation depends on the amount of the sol deposited. Ideally, the sol 

would have evaporated and solidified on the top surface of the disk and would remain gel-like on 

the bottom surface. This state allows for easier removal of the cathode disk. 

6.4. Anode Preparation for Battery Assembly 
 



 
 

In this project the all-solid-state batteries failed due to cathode contacting the lithium anode. 

The lithium anode disk was much wider than the LCO/LLTO disk. Since the lithium metal is soft 

it allowed for the cathode-solid electrolyte to sink in and short-circuit the battery. A better way to 

test the battery and avoid short-circuit is to prepare a cathode disk that is wider than the anode. 

Also, cutting a smaller piece of lithium metal that fits in the interior of the cathode would prevent 

battery failure. The recommendation is visually presented in the figure below. On the other hand, 

to avoid the contact between the anode and the cathode, graphite anode could be used. 

 

Figure 38 Recommendations for Anode Preparation 

6.5. Repeating Methodology for Verification and Validation 
 

Since the methodology developed in this project showed inconclusive results, we recommend its 

repetition. Repeating the procedures and avoiding or solving the problems that this project faced 

could show results that either support or reject this methodology. If the batteries assembled and 

tested work, then further research can improve and develop the process to achieve better 

performance. 



 
 

6.6. Cost-Benefit Analysis of the Methodology 
 

The goal of this methodology was to develop a low cost method for fabricating all-solid-state 

lithium ion batteries. However, cost-benefit analysis was not carried out due to time limitations. 

We recommend calculating the use of materials for fabricating a single battery, then comparing 

the cost with the methods that are currently used for fabrication of all-solid-state batteries. Only 

such analysis can resolve whether this method is suitable for commercialization. 

 

 

 

 

 

 
 

 

 

 
 

 

 



 
 

7. Reflections on Major Qualifying Project Experience 
 

The Major Qualifying Project (MQP) is designed for students to apply the knowledge they 

gained throughout their undergraduate studies in a real life engineering application or problem 

and is a required for obtaining a degree. It is often completed in the course of one to four seven 

week terms under the guidance of one or more professors. Quite often it is carried out in parallel 

with other classes. That being said, MQP is not a typical research project as its time restrictions 

often do not allow for an exhaustive scientific study. 

In addition to the time constraints, very often there were also equipment limitations. In this 

project the laboratory space was shared with other students. Quite often the equipment was 

unavailable because it was occupied by somebody else. The equipment was not highly 

sophisticated and this exactly matched the goal of the project – to develop a low cost production 

method for all-solid-state lithium ion batteries. The devices used were hydraulic press, high 

temperature furnace, spin-coater, argon hood glove box, and an electrochemical tester. Last but 

not the least the research was carried out by two undergraduate students, which meant lack of 

human capacity for quick progress of the project work. 

The above mentioned limitations not only delayed the project work, but also provided the 

researchers with valuable experience for their future work and careers. One of the most 

important lessons learnt was that time is a valuable resource and managing it wisely will provide 

a good foundation for achieving project results. In this particular project too much time was 

spent on developing the lithium cobalt oxide cathodes. This slowed down the work and severely 

limited the amount of time left for other experiments. 



 
 

The main delay was caused by the formation of pores on the cathode surface. Surface pores 

were discovered after spin coating with LLTO sol and SEM scanning. The team drew the wrong 

assumptions that with changing the sintering temperature the cathode disk would result in no 

pores. The continuous effort to develop a high relative density cathode disk did not provide 

satisfying results. The procedures for filling surface pores came at a late stage of the project. 

Although successful, not enough time was left for testing the battery. Were they implemented at 

an earlier point in time, more time could have been spent on battery testing and performance. 

The team recognized the need to be more result oriented with the experiments done. Trying 

to achieve the overall goal proved fruitful as more ideas emerged during the thinking process. 

Group members also noted that the time allocated for the project did not allow for testing the 

effect of one variable at a time.  

Valuable experience and knowledge was gained through communication with professors and 

graduate students. The team members learned that effective communication with other 

researchers can give rise to ideas or sharing of knowledge that can be beneficial for both sides of 

the contact.  

Evaluating the mistakes and the successes of this project, the team made a retrospect as how 

the project could have been done in a more efficient manner. Summarizing the experience and 

the lessons learnt from this project – time is the most valuable resources; communication with 

other people can provide valuable feedback and give rise to ideas that would prove useful in 

project work; gaining knowledge of the matter involved in the experiments and predicting 

possible outcomes to allow for further problem solving.  



 
 

Although those conclusions seem obvious, they were the result of experience that the 

research group had never faced before in their studies. This valuable experience would serve in 

the future endeavors and work of each of the research group members.   
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Appendix A: Swagelok Cell Assembling 

 

 

 

Step 1: Wash battery parts in water, distilled water, and ethanol, and dry for 24 hours;  

Battery parts: A - main body of the battery; B - screws; C - hollow cylinder for anode 

current collector; D - spring inserted in the hollow cylinder for anode current collector; E - 

anode current collector plate; F - cathode current collector. 

 

Steps 2 and 3 Insert hollow cylinder in the main body of the battery and attach with one of 

the screws. 

1 

2 

A 
B 

B C 

D 
E 

F 

3
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Steps 4 and 5 Insert spring in the hollow cylinder and place anode current collector plate 

on top 

 

Steps 6 and 7 Place a piece of lithium metal on the anode current collector; Place a plastic 

separator on the lithium metal and press with the cathode current collector to attach the 

lithium metal to the plate 

4 5 

6

  4 

7 



 
 

 

Step 8 and 9 Place 2 pieces of plastic separator on the lithium anode and fill the battery 

with electrolyte and place the LCO sample on the separators (if constructing all-solid-state 

battery do not use separators; instead put a drop of liquid electrolyte on the lithium metal); 

press with the cathode current collector 

 

 

Step 10 Slowly finalize the battery with the last screw. Battery is ready to use 

8 9 



 
 

Appendix B: LLTO Sol Solution 

 LLTO Sol Solution with High Concentrated Polyvinylpyrrolidone (PVP) 

Solution A 

Chemical Amount 

LiAC (Lithium Acetate Dihydrate) 0.0804 g 

La(AC)3 (Lanthanum Acetate Hydrate) 0.4356 g 

Acetic Acid 0.6800 g 

Propionic Acid 1.6800 g 

 

Solution B 

Chemical Amount 

Titanium Isopropoxide 0.69 ml 

Acetic Acid 1.30 ml 

Isopropyl Alcohol 2.7045 g 

PVP (Polyvinylpyrroliodine) 0.3750 g 

Low Concentration LLTO Sol Solution without Polyvinylpyrrolidone (PVP) 

Solution A 

Chemical Amount 

LiAC (Lithium Acetate Dihydrate) 0.0804 g 

La(AC)3 (Lanthanum Acetate Hydrate) 0.4356 g 

H2O (Distilled Water) 5.6000 g 

 



 
 

Solution B 

Chemical Amount 

Titanium Isopropoxide 0.6395 g 

Acetic Acid 1.3613 g 

Isopropyl Alcohol 2.7045 g 

Preparation of LLTO Sol 

Solution A 

1. Mix measured acetic acid and propionic acid. 

2. Mix measured LiAC and La(AC)3 into [1]. 

3. Stir [2] on the heating pot that is heated to 90-100˚C for 15 minutes. 

4. Turn off the heat, then let it stir for another 20 minutes until all the solid chemicals are 

dissolved. 

Solution B 

1. In the argon hood, mix measured amount of titanium isopropoxide and acetic acid using a 

micropipette. 

2. Stir [1] for 15 minutes. 

3. After 15 minutes, add isopropyl alcohol and PVP into the solution (this will cause the 

solution to change its color into yellow). 

4. Stir [3] for another 20 minutes. 

LLTO Sol Solution with High Concentrated PVP 

1. Add solution A into solution B, drop by drop, while stirring. 



 
 

2. Stir [1] for 2 hours. 

3. Let the solution sit for a day before use. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix C: Preparation of LCO Sol 
Chemical Amount 

Solution A 

Co(CH3COO).4H2O 0.6225 g 

Acetic Acid 4.503 g 

Solution B 

Li(OC3H7)
i 

0.165 g 

Acetic Acid 1.501 g 

 

Procedure: 
1. Prepare Solution A and stir for 20 minutes 

2. Prepare Solution B and stir until all solids are dissolved 

3. Mix drop by drop (1 drop every 5 seconds) solution A into solution B and stir for 12 

hours 


